WorldWideScience

Sample records for bacterivorous soil flagellate

  1. The toxicity of the fungicide Propiconazole to soil flagellates

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Westergaard, Kamma; Søe, Dorthe

    2000-01-01

    We investigated the effects of the ergosterol-inhibiting fungicide, propiconazole {1-[[2-(2,4-dichlorphenyl) - 4 - propyl - 1,3 - dioxolan - 2 - yl]methyl] - 1H - 1,2,4 triazole; Tilt}, on mixed natural populations of bacterivorous and fungivorous flagellates in soil and on single species...... of bacterivorous flagellates in liquid culture. The fungicide affected a mixed natural population of fungivorous flagellates less than the population of bacterivorous flagellates. Our results indicated that the effects of propiconazole on flagellates are direct toxic effects and not effects mediated via their food....... All tested types of flagellates were significantly harmed when exposed to the concentration of propiconazole normally applied to agricultural fields (625¿mg l-1). However, when exposed to the concentration of propiconazole which we expect in the soil water phase after application (ca. 0.6¿mg l-1...

  2. The impact of the fungicide fenpropimorph (Corbel) on bacterivorous and fungivorous protozoa in soil

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    1999-01-01

    1. The ability of indigenous soil protozoa to survive and multiply when exposed to various concentrations of the fungicide fenpropimorph was investigated. The number of protozoan taxa in relation to biocide concentration was examined in enrichment cultures. The population dynamics of bacterivorous...... and fungivorous protozoa, hyphal forming units, and respiration activity were followed in soil microcosms amended with glucose and various concentrations of fenpropimorph. 2. The average number of flagellate taxa detected in 50-mg portions of air-dried soil declined from 12 to zero with fenpropimorph...... as in systems with glucose only; however, soil respiration was significantly impeded in microcosm systems with a low pesticide content and stimulated in systems with a high pesticide content. 4. Bacterivorous protozoa (naked amoebae and heterotrophic flagellates) were affected at all tested concentrations (074...

  3. Heavy metal toxicity and bioavailability of dissolved nutrients to a bacterivorous flagellate are linked to suspended particle physical properties

    International Nuclear Information System (INIS)

    Boenigk, Jens; Wiedlroither, Anneliese; Pfandl, Karin

    2005-01-01

    Many dissolved substances attach easily to sediment particles. In the presence of suspended sediments bioavailability of dissolved substances is therefore, usually reduced and clays are even applied to 'wash' natural waters upon pollution. In organisms which feed on food organisms in the size range of these suspended sediment particles, however, bioavailability of such substances may even increase. For microorganisms the interaction with dissolved substances and suspended sediment particles so far has hardly been investigated. We specifically tested: (1) the importance of suspended particles as an uptake route for dissolved substances; and (2) the significance of particle surface properties, i.e. surface load and mineralogy. As a model system we used an axenically cultured strain of a widespread and often abundant flagellate ('Spumella-like' flagellate strain JBM10). We tested the toxicity of cadmium (II) and mercury (II) as well as availability of dissolved organic matter (DOM) in the absence as well as in the presence of different natural clays, i.e. a kaolinite, a montmorillonite, and a mixed clay, and of artificial silicate particles of different surface charge. When applied separately the presence of the heavy metals cadmium and mercury as well as of suspended particles negatively affected the investigated flagellate but nutritive organics supported growth of the investigated flagellate. Toxic stress response comprises behavioral changes including enhanced swimming activity and stress egestion of ingested particles and was generally similar for a variety of different flagellate species. In combination with suspended particles, the respective effect of trace metals and nutritive substances decreased. Regarding the particle quality, cadmium toxicity increased with increasingly negative surface charge, i.e. increasing surface density of silanol groups (Pearson's product moment, P = 0.005). For mercury particle mineralogy still had a significant effect (P < 0

  4. [Interactions of straw, nitrogen fertilizer and bacterivorous nematodes on soil labile carbon and nitrogen and greenhouse gas emissions].

    Science.gov (United States)

    Zhang, Teng-Hao; Wang, Nan; Liu, Man-Qiang; Li, Fang-Hui; Zhu, Kang-Li; Li, Hui-Xin; Hu, Feng

    2014-11-01

    A 3 x 2 factorial design of microcosm experiment was conducted to investigate the interactive effects of straw, nitrogen fertilizer and bacterivorous nematodes on soil microbial biomass carbon (C(mic)) and nitrogen (N(mic)), dissolved organic carbon (DOC) and nitrogen (DON), mineral nitrogen (NH(4+)-N and NO(3-)-N), and greenhouse gas (CO2, N2O and CH4) emissions. Results showed that straw amendment remarkably increased the numbers of bacterivorous nematodes and the contents of Cmic and Nmic, but Cmic and Nmic decreased with the increasing dose of nitrogen fertilization. The effects of bacterivorous nematodes strongly depended on either straw or nitrogen fertilization. The interactions of straw, nitrogen fertilization and bacterivorous nematodes on soil DOC, DON and mineral nitrogen were strong. Straw and nitrogen fertilization increased DOC and mineral nitrogen contents, but their influences on DON depended on the bacterivorous nematodes. The DOC and mineral nitrogen were negatively and positively influenced by the bacterivorous nematodes, re- spectively. Straw significantly promoted CO2 and N2O emissions but inhibited CH4 emission, while interactions between nematodes and nitrogen fertilization on emissions of greenhouse gases were obvious. In the presence of straw, nematodes increased cumulative CO2 emissions with low nitrogen fertilization, but decreased CO2 and N2O emissions with high nitrogen fertilization on the 56th day after incubation. In summary, mechanical understanding the soil ecological process would inevitably needs to consider the roles of soil microfauna.

  5. Tolerance of soil flagellates to increased NaCl levels

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    The ability of heterotrophic flagellates to survive and adapt to increasing salinities was investigated in this study. Whole soil samples were subjected to salinities corresponding to marine conditions and clonal cultures were used to perform growth and adaptation experiments at a wide range...... of different salinities (0-50 ppm). More morphotypes tolerant to elevated NaCl levels were found in road verge soil that was heavily exposed to de-icing salt than in less exposed soils, though there were fewer tolerant than intolerant morphotypes in all soils examined. Heterotrophic flagellates isolated...... on a freshwater medium from a non-exposed soil were unable to thrive at salinities above 15 ppt, and showed reduced growth rates even at low salt salinities (1-5 ppt). The findings suggest that heterotrophic soil flagellates are less tolerant to NaCl than their aquatic relatives, possibly due to their long...

  6. Some heterotrophic flagellates from a cultivated garden soil in Australia

    DEFF Research Database (Denmark)

    Ekelund, Flemming; Patterson, DJ

    1997-01-01

    The flagellates of an Australian garden soil were studied by placing coverslips on wet soil and subsequently examining the coverslips by light microscopy. A number of genera and species were found which have not previously been reported from soil samples. Besides the three new species, Apusomonas...

  7. 'David and Goliath' of the soil food web - Flagellates that kill nematodes

    DEFF Research Database (Denmark)

    Strandmark, Lisa Bjørnlund; Rønn, Regin

    2008-01-01

    Nematodes and flagellates are important bacterial predators in soil and sediments. Generally, these organisms are considered to be competitors for bacterial food. We studied the interaction among flagellates and nematodes using axenic liquid cultures amended with heat-killed bacteria as food...... and showed for the first time that a small and common soil flagellate (Cercomonas sp.) is able to attack and kill the much larger nematode Caenorhabditis elegans. The killing process is not caused by soluble metabolites but requires direct contact between the flagellate cells and the nematode surface...... and occurs rapidly (within a few hours) at high flagellate density. At lower flagellate density, adult nematodes sometimes avoid attachment of flagellates, feed on them and become the dominant bacterial predator. Considering that bacterial feeders affect bacterial communities differently, and that one...

  8. The Hidden Diversity of Flagellated Protists in Soil.

    Science.gov (United States)

    Venter, Paul Christiaan; Nitsche, Frank; Arndt, Hartmut

    2018-07-01

    Protists are among the most diverse and abundant eukaryotes in soil. However, gaps between described and sequenced protist morphospecies still present a pending problem when surveying environmental samples for known species using molecular methods. The number of sequences in the molecular PR 2 database (∼130,000) is limited compared to the species richness expected (>1 million protist species) - limiting the recovery rate. This is important, since high throughput sequencing (HTS) methods are used to find associative patterns between functional traits, taxa and environmental parameters. We performed HTS to survey soil flagellates in 150 grasslands of central Europe, and tested the recovery rate of ten previously isolated and cultivated cercomonad species, among locally found diversity. We recovered sequences for reference soil flagellate species, but also a great number of their phylogenetically evaluated genetic variants, among rare and dominant taxa with presumably own biogeography. This was recorded among dominant (cercozoans, Sandona), rare (apusozoans) and a large hidden diversity of predominantly aquatic protists in soil (choanoflagellates, bicosoecids) often forming novel clades associated with uncultured environmental sequences. Evaluating the reads, instead of the OTUs that individual reads are usually clustered into, we discovered that much of this hidden diversity may be lost due to clustering. Copyright © 2018 Elsevier GmbH. All rights reserved.

  9. Katabia gromovi nov. gen., nov sp. - a new soil flagellate with affinities to Heteromita (Cercomonadida)

    DEFF Research Database (Denmark)

    Karpov, S.A.; Ekelund, Flemming; Moestrup, Øjvind

    2003-01-01

    Katabia gromovi, cercomonads, ultrastructure, cytoskeleton, soil flagellates, partial SSU gene sequence......Katabia gromovi, cercomonads, ultrastructure, cytoskeleton, soil flagellates, partial SSU gene sequence...

  10. Interaction of bacteria-feeding soil flagellates and Pseudomonas spp

    DEFF Research Database (Denmark)

    Pedersen, Annette; Ekelund, Flemming; Johansen, Anders

    2010-01-01

    Pseudomonas strains may be used as alternatives to fungicides as some of them produce secondary metabolites, which can inhibit growth of plant pathogenic fungi. Increased knowledge of non-target effects of the antagonistic bacteria on other soil organisms as well as of the survival and predation...... resistance of the antagonistic bacteria is necessary for risk assessment and increased performance of antagonistic bacteria as biological control agents. In the present study, we aimed to investigate the difference between Pseudomonas spp. with respect to their predation resistance to and effects...... on the three different and common soil flagellates Bodo caudatus, Cercomonas longicauda, and Neocercomonas jutlandica. Two antagonistic Pseudomonas: Pseudomonas fluorescens CHA0 and P. fluorescens DR54 and two positive control strains: P. fluorescens DSM 50090T and Pseudomonas chlororaphis ATCC 43928 were...

  11. A study of the soil flagellate Phalansterium solitarium Sandon 1924 with preliminary data on its ultrastructure

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    Phalansterium solitarium Sandon 1924, a common soil flagellate, was isolated and a Sandon 1924, a common soil flagellate, was isolated and a clonal culture was examined using light and electron microscopy. The first preliminary observations of its ultrastructure show that the cells of Ph....... solitarium have the same main characters as an earlier investigated species of the genus, Ph. digitatum Stein 1878, including a collarlike structure surrounding the basis of the single emerging flagellum, tubular cristae, a single basal body, surrounded by x, y and z zones with radiating microtubules...

  12. Interaction between Food-borne Pathogens (Campylobacter jejuni, Salmonella Typhimurium and Listeria monocytogenes) and a Common Soil Flagellate (Cercomonas sp.)

    DEFF Research Database (Denmark)

    Bui, Thanh Xuan; Wolff, Anders; Madsen, Mogens

    2012-01-01

    Free-living protozoa may harbor, protect, and disperse bacteria, including those ingested and passed in viable form in feces. The flagellates are very important predators on bacteria in soil, but their role in the survival of food-borne pathogens associated with fruits and vegetables is not well...

  13. Development and application of a most probable number-PCR assay to quantify flagellate populations in soil samples

    DEFF Research Database (Denmark)

    Fredslund, Line; Ekelund, Flemming; Jacobsen, Carsten Suhr

    2001-01-01

    This paper reports on the first successful molecular detection and quantification of soil protozoa. Quantification of heterotrophic flagellates and naked amoebae in soil has traditionally relied on dilution culturing techniques, followed by most-probable-number (MPN) calculations. Such methods...... are biased by differences in the culturability of soil protozoa and are unable to quantify specific taxonomic groups, and the results are highly dependent on the choice of media and the skills of the microscopists. Successful detection of protozoa in soil by DNA techniques requires (i) the development...

  14. A common soil flagellate (Cercomonas sp.) grows slowly when feeding on the bacterium Rhodococcus fascians in isolation, but does not discriminate against it in a mixed culture with Sphingopyxis witflariensis

    DEFF Research Database (Denmark)

    Lekfeldt, Jonas D S; Rønn, Regin

    2008-01-01

    Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates. In this ......Flagellates are very important predators on bacteria in soil. Because of their high growth rates, flagellate populations respond rapidly to changes in bacterial numbers. Previous results indicate that actinobacteria are generally less suitable than proteobacteria as food for flagellates....... In this study, we investigated the growth of the flagellate Cercomonas sp. (ATCC 50334) on each of the two bacteria Sphingopyxis witflariensis (Alphaproteobacteria) and Rhodococcus fascians (actinobacteria) separately and in combination. The growth rate of the flagellate was lower and the lag phase was longer...

  15. Protistan Bacterivory in an Oligomesotrophic Lake: Importance of Attached Ciliates and Flagellates

    Science.gov (United States)

    Carrias; Amblard; Bourdier

    1996-05-01

    Seasonal and depth variations of the abundance, biomass, and bacterivory of protozoa (heterotrophic and mixotrophic flagellates and ciliates) were determined during thermal stratification in an oligomesotrophic lake (Lake Pavin, France). Maximal densities of heterotrophic flagellates (1.9x10(3) cells ml-1) and ciliates (6.1 cells ml-1) were found in the metalimnion. Pigmented flagellates dominated the flagellate biomass in the euphotic zone. Community composition of ciliated protists varied greatly with depth, and both the abundance and biomass of ciliates was dominated by oligotrichs. Heterotrophic flagellates dominated grazing, accounting for 84% of total protistan bacterivory. Maximal grazing impact of heterotrophic flagellates was 18.9x10(6) bacteria 1(-1)h-1. On average, 62% of nonpigmented flagellates were found to ingest particles. Ciliates and mixotrophic flagellates averaged 13% and 3% of protistan bacterivory, respectively. Attached protozoa (ciliates and flagellates) were found to colonize the diatom Asterionella formosa. Attached bacterivores had higher ingestion rates than free bacterivorous protozoa and may account for 66% of total protozoa bacterivory. Our results indicated that even in low numbers, epibiotic protozoa may have a major grazing impact on free bacteria.

  16. Potential Role of Diploscapter sp. Strain LKC25, a Bacterivorous Nematode from Soil, as a Vector of Food-Borne Pathogenic Bacteria to Preharvest Fruits and Vegetables

    Science.gov (United States)

    Gibbs, Daunte S.; Anderson, Gary L.; Beuchat, Larry R.; Carta, Lynn K.; Williams, Phillip L.

    2005-01-01

    Diploscapter, a thermotolerant, free-living soil bacterial-feeding nematode commonly found in compost, sewage, and agricultural soil in the United States, was studied to determine its potential role as a vehicle of Salmonella enterica serotype Poona, enterohemorrhagic Escherichia coli O157:H7, and Listeria monocytogenes in contaminating preharvest fruits and vegetables. The ability of Diploscapter sp. strain LKC25 to survive on agar media, in cow manure, and in composted turkey manure and to be attracted to, ingest, and disperse food-borne pathogens inoculated into soil or a mixture of soil and composted turkey manure was investigated. Diploscapter sp. strain LKC25 survived and reproduced in lawns of S. enterica serotype Poona, E. coli O157:H7, and L. monocytogenes on agar media and in cow manure and composted turkey manure. Attraction of Diploscapter sp. strain LKC25 to colonies of pathogenic bacteria on tryptic soy agar within 10, 20, 30, and 60 min and 24 h was determined. At least 85% of the worms initially placed 0.5 to 1 cm away from bacterial colonies migrated to the colonies within 1 h. Within 24 h, ≥90% of the worms were embedded in colonies. The potential of Diploscapter sp. strain LKC25 to shed pathogenic bacteria after exposure to bacteria inoculated into soil or a mixture of soil and composted turkey manure was investigated. Results indicate that Diploscapter sp. strain LKC25 can shed pathogenic bacteria after exposure to pathogens in these milieus. They also demonstrate its potential to serve as a vector of food-borne pathogenic bacteria in soil, with or without amendment with compost, to the surface of preharvest fruits and vegetables in contact with soil. PMID:15870330

  17. Phytoplankton growth inhibited by the toxic and bacterivorous ciliate

    NARCIS (Netherlands)

    Schaafsma, F.L.; Peperzak, L.

    2013-01-01

    The ubiquitous marine ciliate Uronema marinum is mainly bacterivorous. It was therefore surprising that in a ciliate-contaminated experiment the growth rate of the phytoplankton species Emiliania huxleyi was significantly reduced. As U. marinum does not ingest E. huxleyi cells, their growth

  18. 'Candidatus Pasteuria aldrichii', an obligate endoparasite of the bacterivorous nematode Bursilla.

    Science.gov (United States)

    Giblin-Davis, R M; Nong, G; Preston, J F; Williams, D S; Center, B J; Brito, J A; Dickson, D W

    2011-09-01

    A novel bacterium of the genus Pasteuria was discovered parasitizing bacterivorous nematodes of the genus Bursilla, in selected bermudagrass (Cynodon) field plots in Davie, FL, USA. Soil containing this bacterium was sampled and supplied with bi-weekly inoculations of cultured species of the genus Bursilla in order to build and maintain a source of endospores for continuous in vivo conservation of the bacteria for further study and characterization. 16S rRNA gene sequence similarities supported its congeneric ranking with other members of the genus Pasteuria that have been identified from nematodes and cladocerans. There were, however, no clear sister candidates for this organism, which supported the evidence of endospore ultrastructure and host-range studies, suggesting it belonged to a novel taxon. Because members of the genus Pasteuria cannot yet be isolated, definitive type strains could not be maintained; therefore, the name 'Candidatus Pasteuria aldrichii' is proposed for this organism.

  19. The soil food web revisited: Diverse and widespread mycophagous soil protists

    NARCIS (Netherlands)

    Geisen, Stefan; Koller, R.; Hünninghaus, M.; Dumack, K.; Urich, T.; Bonkowski, M.

    2016-01-01

    Soil protists are commonly suggested being solely bacterivorous, serving together with bacterivorous nematodes as the main controllers of the bacterial energy channel in soil food webs. In contrast, the fungal energy channel is assumed to be controlled by arthropods and mycophagous nematodes. This

  20. An analytical model of flagellate hydrodynamics

    DEFF Research Database (Denmark)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders Peter

    2017-01-01

    solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left......–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming......Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical...

  1. Flagellate dermatitis following consumption of shiitake mushroom

    Directory of Open Access Journals (Sweden)

    Hui Voon Loo

    2011-10-01

    Full Text Available Japanese dermatologists were the first to describe the very characteristic flagellate dermatitis following consumption of under-cooked or raw shiitake mushroom (Lentinus edodes. These similar eruptions were also reported in patients treated with bleomycin, in dermatomyositis and adult onset Still’s disease. We report a case where a 40 year old chinese female developed flagellate dermatitis following ingestion of a bun containing shiitake mushroom.

  2. Renal flagellate infections in reptiles: 29 cases.

    Science.gov (United States)

    Juan-Sallés, Caries; Garner, Michael M; Nordhausen, Robert W; Valls, Xavier; Gallego, Miguel; Soto, Sara

    2014-03-01

    Renal infection with flagellated protozoa was retrospectively evaluated in 29 reptiles, including 12 turtles, 7 tortoises, and 6 chameleons; overall, 20 species of reptiles were represented. Most cases presented with nonspecific clinical signs or a combination of several concurrent diseases. Nineteen of 29 reptiles had tubulointerstitial nephritis associated with flagellates, and this lesion was considered contributory to death in 15 cases, although concurrent diseases were frequent. Infection was invasive into the renal interstitium in three reptiles due to tubular rupture and in one chameleon also spread to adjacent tissues, coelomic cavity, and blood vessels due to renal rupture. Cytologic or ultrastructural evaluation of trophozoites in two cases was consistent with diplomonad flagellates. Renal disease was often complicated with soft-tissue mineralization and/or gout. Gastrointestinal and cloacal infection with flagellates and inflammation were frequent in reptiles in which the digestive tract was available for histopathologic examination, and this supports the possibility of infections ascending the urinary tract from the cloaca. Renal disease associated with flagellate protozoa is rare in vertebrates but appears to be relevant in reptiles, particularly chelonians and chameleons.

  3. Putative bronchopulmonary flagellated protozoa in immunosuppressed patients.

    Science.gov (United States)

    Kilimcioglu, Ali Ahmet; Havlucu, Yavuz; Girginkardesler, Nogay; Celik, Pınar; Yereli, Kor; Özbilgin, Ahmet

    2014-01-01

    Flagellated protozoa that cause bronchopulmonary symptoms in humans are commonly neglected. These protozoal forms which were presumed to be "flagellated protozoa" have been previously identified in immunosuppressed patients in a number of studies, but have not been certainly classified so far. Since no human cases of bronchopulmonary flagellated protozoa were reported from Turkey, we aimed to investigate these putative protozoa in immunosuppressed patients who are particularly at risk of infectious diseases. Bronchoalveolar lavage fluid samples of 110 immunosuppressed adult patients who were admitted to the Department of Chest Diseases, Hafsa Sultan Hospital of Celal Bayar University, Manisa, Turkey, were examined in terms of parasites by light microscopy. Flagellated protozoal forms were detected in nine (8.2%) of 110 cases. Metronidazole (500 mg b.i.d. for 30 days) was given to all positive cases and a second bronchoscopy was performed at the end of the treatment, which revealed no parasites. In conclusion, immunosuppressed patients with bronchopulmonary symptoms should attentively be examined with regard to flagellated protozoa which can easily be misidentified as epithelial cells.

  4. Prey capture by freely swimming flagellates

    Science.gov (United States)

    Andersen, Anders; Dolger, Julia; Nielsen, Lasse Tor; Kiorboe, Thomas

    2017-11-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. Here, we explore the dependence of swimming kinematics and prey clearance rate on flagellar arrangement and determine optimal flagellar arrangements and essential trade-offs. To describe near-cell flows around freely swimming flagellates we consider a model in which the cell is represented by a no-slip sphere and each flagellum by a point force. For uniflagellates pulled by a single flagellum the model suggests that a long flagellum favors fast swimming, whereas high clearance rate is favored by a very short flagellum. For biflagellates with both a longitudinal and a transversal flagellum we explore the helical swimming kinematics and the prey capture sites. We compare our predictions with observations of swimming kinematics, prey capture, and flows around common marine flagellates. The Centre for Ocean Life is a VKR Centre of Excellence supported by the Villum Foundation.

  5. An analytical model of flagellate hydrodynamics

    International Nuclear Information System (INIS)

    Dölger, Julia; Bohr, Tomas; Andersen, Anders

    2017-01-01

    Flagellates are unicellular microswimmers that propel themselves using one or several beating flagella. We consider a hydrodynamic model of flagellates and explore the effect of flagellar arrangement and beat pattern on swimming kinematics and near-cell flow. The model is based on the analytical solution by Oseen for the low Reynolds number flow due to a point force outside a no-slip sphere. The no-slip sphere represents the cell and the point force a single flagellum. By superposition we are able to model a freely swimming flagellate with several flagella. For biflagellates with left–right symmetric flagellar arrangements we determine the swimming velocity, and we show that transversal forces due to the periodic movements of the flagella can promote swimming. For a model flagellate with both a longitudinal and a transversal flagellum we determine radius and pitch of the helical swimming trajectory. We find that the longitudinal flagellum is responsible for the average translational motion whereas the transversal flagellum governs the rotational motion. Finally, we show that the transversal flagellum can lead to strong feeding currents to localized capture sites on the cell surface. (paper)

  6. Phytoplankton growth inhibited by the toxic and bacterivorous ciliate Uronema marinum (Protozoa, Ciliophora)

    NARCIS (Netherlands)

    Schaafsma, F. L.; Peperzak, L.

    2013-01-01

    The ubiquitous marine ciliate Uronema marinum is mainly bacterivorous. It was therefore surprising that in a ciliate-contaminated experiment the growth rate of the phytoplankton species Emiliania huxleyi was significantly reduced. As U. marinum does not ingest E. huxleyi cells, their growth

  7. Huge increases in bacterivores on freshly killed barley roots

    DEFF Research Database (Denmark)

    Christensen, S.; Griffiths, B.; Ekelund, Flemming

    1992-01-01

    Adding fresh roots to intact soil cores resulted in marked increases in microbial and microfaunal activity at the resource islands. Microbial activity increased in two phases following root addition. Respiratory activity and concentration of respiratory enzyme (dehydrogenase) in soil adhering to ...

  8. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa.

    Science.gov (United States)

    Geisen, S; Laros, I; Vizcaíno, A; Bonkowski, M; de Groot, G A

    2015-09-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into common biases associated with this method are limited to aquatic taxa and samples. We created a mock community of common free-living soil protists (amoebae, flagellates, ciliates), extracted DNA and amplified it in the presence of metazoan DNA using 454 HTS. We aimed at evaluating whether HTS quantitatively reveals true relative abundances of soil protists and at investigating whether the expected protist community structure is altered by the co-amplification of metazoan-associated protist taxa. Indeed, HTS revealed fundamentally different protist communities from those expected. Ciliate sequences were highly over-represented, while those of most amoebae and flagellates were under-represented or totally absent. These results underpin the biases introduced by HTS that prevent reliable quantitative estimations of free-living protist communities. Furthermore, we detected a wide range of nonadded protist taxa probably introduced along with metazoan DNA, which altered the protist community structure. Among those, 20 taxa most closely resembled parasitic, often pathogenic taxa. Therewith, we provide the first HTS data in support of classical observational studies that showed that potential protist parasites are hosted by soil metazoa. Taken together, profound differences in amplification success between protist taxa and an inevitable co-extraction of protist taxa parasitizing soil metazoa obscure the true diversity of free-living soil protist communities. © 2015 John Wiley & Sons Ltd.

  9. Numerical Simulations Of Flagellated Micro-Swimmers

    Science.gov (United States)

    Rorai, Cecilia; Markesteijn, Anton; Zaitstev, Mihail; Karabasov, Sergey

    2017-11-01

    We study flagellated microswimmers locomotion by representing the entire swimmer body. We discuss and contrast the accuracy and computational cost of different numerical approaches including the Resistive Force Theory, the Regularized Stokeslet Method and the Finite Element Method. We focus on how the accuracy of the methods in reproducing the swimming trajectories, velocities and flow field, compares to the sensitivity of these quantities to certain physical parameters, such as the body shape and the location of the center of mass. We discuss the opportunity and physical relevance of retaining inertia in our models. Finally, we present some preliminary results toward collective motion simulations. Marie Skodowska-Curie Individual Fellowship.

  10. Rapid detection of predation of Escherichia coli O157:H7 and sorting of bacterivorous Tetrahymena by flow cytometry

    Directory of Open Access Journals (Sweden)

    Bradley J. Hernlem

    2014-05-01

    Full Text Available Protozoa are known to harbor bacterial pathogens, alter their survival in the environment and make them hypervirulent. Rapid non-culture based detection methods are required to determine the environmental survival and transport of enteric pathogens from point sources such as dairies and feedlots to food crops grown in proximity. Grazing studies were performed on a soil isolate of Tetrahymena fed green fluorescent protein (GFP expressing Escherichia coli O157:H7 to determine the suitability of the use of such fluorescent prey bacteria to locate and sort bacterivorous protozoa by flow cytometry. In order to overcome autofluorescence of the target organism and to clearly discern Tetrahymena with ingested prey versus those without, a ratio of prey to host of at least 100:1 was determined to be preferable. Under these conditions, we successfully sorted the two populations using short 5 to 45 min exposures of the prey and verified the internalization of E. coli O157:H7 cells in protozoa by confocal microscopy. This technique can be easily adopted for environmental monitoring of rates of enteric pathogen destruction versus protection in protozoa.

  11. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Horňák, Karel; Šimek, Karel

    2006-01-01

    Roč. 8, č. 8 (2006), s. 1330-1339 ISSN 1462-2912. [SAME /9./. Helsinky, 21.08.2005-26.08.2005] R&D Projects: GA ČR(CZ) GA206/05/0007 Grant - others:MŠM(CZ) 60076658/01 Institutional research plan: CEZ:AV0Z60170517 Keywords : selectivity * flagellates * grazing * fluorescence * reservoir * nutrients Subject RIV: EE - Microbiology, Virology Impact factor: 4.630, year: 2006

  12. Shiitake Flagellate Dermatitis: the First Case Reported in Ireland

    LENUS (Irish Health Repository)

    Byrne, N

    2017-01-01

    Shiitake (Lentinula edodes) is the second most commonly consumed mushroom worldwide1. It is used in Asian medicine for its anticarcinogenic, antihypertensive and lipid lowering properties2. Furthermore, extracts of these mushrooms are used in over-the-counter dietary supplements designed to improve the immune system1. The first case of shiitake mushroom induced flagellate dermatitis was described in Japan in 1977 and it is now being reported in the western world3. After literary review and consultation with the Irish National Poisons Information Centre, we believe this is the first reported case of shiitake flagellate dermatitis in Ireland

  13. Meeting on the Microbiology of Soils, Autumn 2001: Estimation of protozoan diversity in soil

    DEFF Research Database (Denmark)

    Ekelund, Flemming

    2002-01-01

    Different methods of estimating protozoan diversity in soil are discussed in this paper, with the major emphasis on heterotrophic flagellates. Although many species of ciliates and testate amoebae seem to be unique to the soil environment, the communities of heterotrophic flagellates and naked am...

  14. Early decomposer assemblages of soil organisms in litterbags with vetch and rye roots

    DEFF Research Database (Denmark)

    Georgieva, Slavka; Christensen, Søren; Petersen, Henning

    2005-01-01

    and predatory nematodes (the intraguild predator) protozoa (the intraguild prey) and bacteria (the common prey). The much higher fungal biomass in rye than in vetch litterbags was not reflected in the biomass of the fungal feeders. Due to the generally lower intrinsic rate of increase of the fungivores, as well...... as of the omnivores and predators, in comparison with the bacterial feeders, they were not able to generate dense populations at this early stage of decomposition....... relationship to flagellated protozoa. This suggests that these nematodes controlled the protozoan biomass constituting a lower fraction of the bacterivore biomass in vetch compared to in rye. Such intraguild predator-prey relationship is therefore indicated for microbivorous organisms among bacterivorous...

  15. Assessing niche separation among coexisting Limnohabitans strains through interactions with a competitor, viruses, and a bacterivore.

    Science.gov (United States)

    Simek, Karel; Kasalický, Vojtech; Hornák, Karel; Hahn, Martin W; Weinbauer, Markus G

    2010-03-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality. Batch-type cocultures, designated B4+FL and D5+FL, were initiated with a similar biomass ratio among the strains. The proportion of each cell type present in the cocultures was monitored based on clear differences in cell sizes. Following exponential growth for 28 h, the cocultures were amended by the addition of two different concentrations of live or heat-inactivated viruses concentrated from the reservoir. Half of virus-amended treatments were inoculated immediately with an axenic flagellate predator, Poterioochromonas sp. The presence of the predator, of live viruses, and of competition between the strains significantly affected their population dynamics in the experimentally manipulated treatments. While strains B4 and FL appeared vulnerable to environmental viruses, strain D5 did not. Predator-induced mortality had the greatest impact on FL, followed by that on D5 and then B4. The virus-vulnerable B4 strain had smaller cells and lower biomass yield, but it was less subject to grazing. In contrast, the seemingly virus-resistant D5, with slightly larger grazing-vulnerable cells, was competitive with FL. Overall, our data suggest contrasting ecophysiological capabilities and partial niche separation in two coexisting Limnohabitans strains.

  16. Flagellation of Pseudomonas aeruginosa in newly divided cells

    Science.gov (United States)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  17. Pack hunting by a common soil amoeba on nematodes

    NARCIS (Netherlands)

    Geisen, Stefan; Rosengarten, J.; Koller, R.; Mulder, Christian; Urich, T.; Bonkowski, M.

    2015-01-01

    Soils host the most complex communities on Earth,
    including the most diverse and abundant eukaryotes,
    i.e. heterotrophic protists. Protists are generally con-
    sidered as bacterivores, but evidence for negative
    interactions with nematodes both from laboratory and
    field studies

  18. Diplomonad flagellates of some ornamental fish cultured in Thailand

    Directory of Open Access Journals (Sweden)

    Boonkob Viriyapongsutee

    2012-11-01

    Full Text Available The study on diplomonad flagellates infection in some ornamental fishes in the family cichlidae i.e., angelfish(Pterophyllum scalare, oscar (Astronotus ocellatus, blue mbuna (Labeotropheus fuelleborni and the family osphronemidaei.e., Siamese fighting fish (Betta splendens revealed that this parasite infected three out of four ornamental fish species,angelfish, oscar and blue mbuna. The highest infection was recorded in angelfish (90% followed by oscar (75.4% and bluembuna (61%, respectively. Identification of diplomonad flagellates from angelfish by means of morphological studies underlight and electron microscopes indicated that the parasite was Spironucleus vortens. The 14–days LD50 of S. vortens inangelfish was 2.99x103 cells. Histopathological changes of infected angelfish revealed granulomatous liver, numerousnumbers of melanomacrophage in the spleen and inflammation of the intestine. Susceptibility study of S. vortens to goldfish(Carassius auratus, guppy (Poecilia reticulata and platy (Xiphophorus maculatus indicated that they were resistant toartificial infection. In vitro examination of the growth inhibition assay of S. vortens indicated that dimetridazole and metronidazolewere effective in inhibiting parasite growth after 48 hrs exposure at concentrations of >4.0 μg/ml and >6.0 μg/ml,respectively. Magnesium sulfate at a concentration of >60 mg/ml inhibited the parasite growth after 72 hrs exposure. In vivoexamination of the dimetridazole efficiency on S. vortens infection indicated that dimetridazole at 4.0 μg/ml provided thehighest efficiency which could be used for treatment of spironucleosis in angelfish.

  19. Microcystins do not provide anti-herbivore defence against mixotrophic flagellates

    NARCIS (Netherlands)

    Wilken, S.; Wiezer, S.M.H.; Huisman, J.; Van Donk, E.

    2010-01-01

    While most experiments investigating zooplankton grazing on harmful cyanobacteria have been carried out with metazoan plankton, several protozoa can also feed efficiently on cyanobacteria. We investigated grazing by the mixotrophic flagellate Ochromonas sp. on the toxic cyanobacterium Microcystis

  20. [Eye witnesses and the flagellants in the year 1349].

    Science.gov (United States)

    Jansen-Sieben, R

    1999-01-01

    Deeply affected and often desperately afraid, many contemporaries recorded their observations and emotions. These reports--no matter how obviously subjective they sometimes were--provide valuable information about what happened during the plague pandemic of 1348-1350. Thus many of our fellow countrymen left behind a direct testimony: Bartholomew of Bruges, a canon in Andenne; Gilles li Muisis, the abbot of Saint Martin in Tournai; Ludovicus Sanctus of Beringen; Simon de Couvin, a canon in Liège; Jan van Boendale, an alderman's clerk in Antwerp; John of Burgundy (also known as John of Mandeville), professor of medicine in Liège; but also texts in Middle Dutch that were not known up to now, and therefore not published, such as the important thesis by Arent Schryver, licentiate in medicine (see next article); an account in verse in the Brabant Chronicle, as well as contemporary testimonies in a different language that have been translated into our language, such as that by John of Eschinden, Johannes de Rupescissa or Guy de Chauliac (who had had the plague himself). They describe the precautions, the causes (God, a comet, an eclipse of the sun, the polluted water, the planets, the air), the symptoms, the social groups most likely to be affected (the youth, the lower classes, the clergy), the high mortality, the problems of hygiene,the social and administrative chaos, the general panic, the flight of countless people. One of the most virulent reactions led to the emergence of the flagellant sect. They originated from Hungary and advanced in an unstoppable advance with a growing number of followers as far as our country, singing, praying, dancing and flaying themselves until they drew blood. We only recently discovered what they sang in Dutch: very recently, a unique roll of parchment was discovered that they carried in their processions, and that contains the text of their songs and a flagellant sermon. The existence of this valuable document and its contents are

  1. Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Kasalický, Vojtěch; Jezbera, Jan; Horňák, Karel; Nedoma, Jiří; Hahn, M.W.; Bass, D.; Jost, S.; Boenigk, J.

    2013-01-01

    Roč. 7, č. 8 (2013), s. 1519-1530 ISSN 1751-7362 R&D Projects: GA ČR(CZ) GA13-00243S; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : flagellate community composition * food quality of bacteria * Limnohabitans * 454 pyrosequencing * freshwater * flagellate growth Subject RIV: DA - Hydrology ; Limnology Impact factor: 9.267, year: 2013

  2. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Abstract Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it

  3. The bacterial-fungal energy channel concept challenged by enormous functional versatility of soil protists

    NARCIS (Netherlands)

    Geisen, Stefan

    2016-01-01

    Protists (=protozoa) are commonly treated as bacterivores that control the bacterial energy channel in soil food webs. This ecologist’s perspective is, however, challenged by taxonomic studies showing that a range of protists feed on fungi, other protists and even nematodes. Recently, it was

  4. Acquired type III secretion system determines environmental fitness of epidemic Vibrio parahaemolyticus in the interaction with bacterivorous protists.

    Directory of Open Access Journals (Sweden)

    Carsten Matz

    Full Text Available Genome analyses of marine microbial communities have revealed the widespread occurrence of genomic islands (GIs, many of which encode for protein secretion machineries described in the context of bacteria-eukaryote interactions. Yet experimental support for the specific roles of such GIs in aquatic community interactions remains scarce. Here, we test for the contribution of type III secretion systems (T3SS to the environmental fitness of epidemic Vibrio parahaemolyticus. Comparisons of V. parahaemolyticus wild types and T3SS-defective mutants demonstrate that the T3SS encoded on genome island VPaI-7 (T3SS-2 promotes survival of V. parahaemolyticus in the interaction with diverse protist taxa. Enhanced persistence was found to be due to T3SS-2 mediated cytotoxicity and facultative parasitism of V. parahaemolyticus on coexisting protists. Growth in the presence of bacterivorous protists and the T3SS-2 genotype showed a strong correlation across environmental and clinical isolates of V. parahaemolyticus. Short-term microcosm experiments provide evidence that protistan hosts facilitate the invasion of T3SS-2 positive V. parahaemolyticus into a coastal plankton community, and that water temperature and productivity further promote enhanced survival of T3SS-2 positive V. parahaemolyticus. This study is the first to describe the fitness advantage of GI-encoded functions in a microbial food web, which may provide a mechanistic explanation for the global spread and the seasonal dynamics of V. parahaemolyticus pathotypes, including the pandemic serotype cluster O3:K6, in aquatic environments.

  5. Characterizing the interactions among a dinoflagellate, flagellate and bacteria in the phycosphere of Alexandrium tamarense (Dinophyta

    Directory of Open Access Journals (Sweden)

    Lidan eHu

    2015-11-01

    Full Text Available A small flagellate alga was isolated from the phycosphere of a toxic red tide dinoflagellate Alexandrium tamarense. Phylogenetic analysis and ultrastructural observations demonstrated that the samll flagellate alga is a species belong to Ochrophyte Ochromonas sp. The process of ingesting bacteria by Ochromonas sp. was recorded by a time lapse capture under a light microscope. Through the use of different assemblages in the co-culture experiment, the species interactions in this phycosphere microenvironment were analyzed. We demonstrated that the growth of Ochromonas sp. was supported by bacteria. Three strains of bacteria ingested by Ochromonas sp. were isolated and identified to belong to α-, δ- and γ-Proteobacteria. The growth of A. tamarense was suppressed when co-cultured with bacteria. In contrast, Ochromonas sp. triggered the growth of A. tamarense by inhibiting the growth of algicidal bacteria. This result firstly demonstrated a positive effect of a flagellate on a dinoflagellate in the phycosphere of A. tamarense. Combined with other negative effects between dinoflagellates and bacteria or bacteria and flagellates, this study showed a series of clear interactions among dinoflagellate, bacterium, and flagellate in the dinoflagellate microenvironment.

  6. Negative consequences of glacial turbidity for the survival of freshwater planktonic heterotrophic flagellates.

    Science.gov (United States)

    Sommaruga, Ruben; Kandolf, Georg

    2014-02-17

    Heterotrophic (phagotrophic) flagellates are key components of planktonic food webs in freshwater and marine ecosystems because they are the main consumers of bacteria. Although they are ubiquitous in aquatic ecosystems, they were numerically undetectable in turbid glacier-fed lakes. Here we show that glacial particles had negative effects on the survival and growth of heterotrophic flagellates. The effect of glacial particles was concentration-dependent and was caused by their interference with bacterial uptake rather than by physical damage. These results are the first to reveal why establishment of heterotrophic flagellates populations is hindered in very turbid glacial lakes. Because glaciers are vanishing around the world, recently formed turbid meltwater lakes represent an excellent opportunity to understand the environmental conditions that probably shaped the establishment of lake communities at the end of the last glaciation.

  7. Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa

    NARCIS (Netherlands)

    Geisen, S.; Laros, I.; Vizcaino, A.; Bonkowski, M.; Groot, de G.A.

    2015-01-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into

  8. Particle-associated flagellates: swimming patterns, colonization rates, and grazing on attached bacteria

    DEFF Research Database (Denmark)

    Kiørboe, Thomas; Grossart, H.P.; Ploug, H.

    2004-01-01

    Some pelagic flagellates colonize particles, such as marine snow, where they graze on bacteria and thus impact the dynamics of the attached microbial communities. Particle colonization is governed by motility. Swimming patterns of 2 particle-associated flagellates, Bodo designis and Spumella sp......., are very different, the former swimming slowly in an erratic, random pattern, and the latter faster and along smooth helixes of variable amplitude and frequency. At spatial scales exceeding ca. 50 mum, the motility of B. designis can be described as a random walk and modeled as diffusion. Spumella sp...

  9. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    Science.gov (United States)

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  10. Data from: Not all are free-living: high-throughput DNA metabarcoding reveals a diverse community of protists parasitizing soil metazoa

    NARCIS (Netherlands)

    Geisen, Stefan; Laros, I.; Vizcaino, A.; Bonkowski, M.; Groot, de G.A.

    2015-01-01

    Protists, the most diverse eukaryotes, are largely considered to be free-living bacterivores, but vast numbers of taxa are known to parasitize plants or animals. High-throughput sequencing (HTS) approaches now commonly replace cultivation-based approaches in studying soil protists, but insights into

  11. Prey-specific growth responses of freshwater flagellate communities induced by morphologically distinct bacteria from the genus Limnohabitans

    Czech Academy of Sciences Publication Activity Database

    Grujčič, Vesna; Kasalický, Vojtěch; Šimek, Karel

    2015-01-01

    Roč. 81, č. 15 (2015), s. 4993-5002 ISSN 0099-2240 R&D Projects: GA ČR(CZ) GA13-00243S; GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : freshwater reservoir * heterotrophic flagellate bacterivory * Limnohabitans * bacterial food quality * growth responses of flagellates Subject RIV: EH - Ecology, Behaviour Impact factor: 3.823, year: 2015

  12. Food selection by bacterivorous protists: insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization

    Czech Academy of Sciences Publication Activity Database

    Jezbera, Jan; Horňák, Karel; Šimek, Karel

    2005-01-01

    Roč. 52, č. 3 (2005), s. 351-363 ISSN 0168-6496. [Symposium on Aquatic Microbial Ecology /9./. Helsinky, 21.08.2005-26.08.2005] R&D Projects: GA ČR(CZ) GA206/02/0003; GA ČR(CZ) GA206/05/0007 Grant - others:MŠMT(CZ) 1058/2004 Institutional research plan: CEZ:AV0Z60170517 Keywords : hybridization * grazing * flagellates Subject RIV: DA - Hydrology ; Limnology Impact factor: 2.787, year: 2005

  13. Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites

    Science.gov (United States)

    Desai, Mahesh S; Brune, Andreas

    2012-01-01

    Although it is well documented that the lack of nitrogen in the diet of wood-feeding termites is compensated by the nitrogen-fixing capacity of their gut microbiota, the bacteria responsible for this activity are largely unknown. Here, we analyzed the diversity and expression of nitrogenase genes (homologs of nifH) in four species of dry-wood termites (Kalotermitidae), which thrive on a particularly nitrogen-poor resource. Although each species harbored a highly diverse suite of termite-specific homologs in their microliter-sized hindgut, only a core set related to nifH genes of Treponema and Azoarcus spp., ‘Azobacteroides pseudotrichonymphae', the first member of the Bacteroidales identified as a diazotroph, and termite-gut-specific anfH genes of hitherto unknown origin were preferentially expressed. Transcription patterns corroborated that the populations of active diazotrophs differ fundamentally between termite genera. Capillary-picked suspensions of the flagellates Devescovina arta and Snyderella tabogae revealed that their bacterial ectosymbionts each possess two paralogs of nifH, which apparently have been acquired consecutively during evolution of Bacteroidales, but only one of them (anfH) is actively expressed. Transcription patterns correlated neither with the molybdenum content of the diet nor with intestinal hydrogen concentrations, measured with microsensors. We propose that the nitrogen-fixing community in different dry-wood termites is shaped by the symbionts of their specific flagellate populations. Our findings suggest that the diazotrophic nature of ‘Armantifilum devescovinae' has an important role in the nitrogen metabolism of dry-wood termites and is the driving force of co-evolution with its flagellate host. PMID:22189498

  14. Nematode grazing promotes bacterial community dynamics in soil at the aggregate level.

    Science.gov (United States)

    Jiang, Yuji; Liu, Manqiang; Zhang, Jiabao; Chen, Yan; Chen, Xiaoyun; Chen, Lijun; Li, Huixin; Zhang, Xue-Xian; Sun, Bo

    2017-12-01

    Nematode predation has important roles in determining bacterial community composition and dynamics, but the extent of the effects remains largely rudimentary, particularly in natural environment settings. Here, we investigated the complex microbial-microfaunal interactions in the rhizosphere of maize grown in red soils, which were derived from four long-term fertilization regimes. Root-free rhizosphere soil samples were separated into three aggregate fractions whereby the abundance and community composition were examined for nematode and total bacterial communities. A functional group of alkaline phosphomonoesterase (ALP) producing bacteria was included to test the hypothesis that nematode grazing may significantly affect specific bacteria-mediated ecological functions, that is, organic phosphate cycling in soil. Results of correlation analysis, structural equation modeling and interaction networks combined with laboratory microcosm experiments consistently indicated that bacterivorous nematodes enhanced bacterial diversity, and the abundance of bacterivores was positively correlated with bacterial biomass, including ALP-producing bacterial abundance. Significantly, such effects were more pronounced in large macroaggregates than in microaggregates. There was a positive correlation between the most dominant bacterivores Protorhabditis and the ALP-producing keystone 'species' Mesorhizobium. Taken together, these findings implicate important roles of nematodes in stimulating bacterial dynamics in a spatially dependent manner.

  15. Growth and flagellation of Vibrio fischeri during initiation of the sepiolid squid light organ symbiosis.

    Science.gov (United States)

    Ruby, E G; Asato, L M

    1993-01-01

    A pure culture of the luminous bacterium Vibrio fischeri is maintained in the light-emitting organ of the sepiolid squid Euprymna scolopes. When the juvenile squid emerges from its egg it is symbiont-free and, because bioluminescence is part of an anti-predatory behavior, therefore must obtain a bacterial inoculum from the surrounding environment. We document here the kinetics of the process by which newly hatched juvenile squids become infected by symbiosis-competent V. fischeri. When placed in seawater containing as few as 240 colony-forming-units (CFU) per ml, the juvenile became detectably bioluminescent within a few hours. Colonization of the nascent light organ was initiated with as few as 1 to 10 bacteria, which rapidly began to grow at an exponential rate until they reached a population size of approximately 10(5) cells by 12 h after the initial infection. Subsequently, the number of bacteria in the established symbiosis was maintained essentially constant by a combination of both a > 20-fold reduction in bacterial growth rate, and an expulsion of excess bacteria into the surrounding seawater. While V. fischeri cells are normally flagellated and motile, these bacteria did not elaborate these appendages once the symbiosis was established; however, they quickly began to synthesize flagella when they were removed from the light organ environment. Thus, two important biological characteristics, growth rate and flagellation, were modulated during establishment of the association, perhaps as part of a coordinated series of symbiotic responses.

  16. Combined effects of the herbicide terbuthylazine and temperature on different flagellates from the Northern Adriatic Sea.

    Science.gov (United States)

    Fiori, Emanuela; Mazzotti, Matilde; Guerrini, Franca; Pistocchi, Rossella

    2013-03-15

    The triazinic herbicide terbuthylazine (TBA) is becoming an emergent contaminant in Italian rivers and in coastal and groundwater. A preliminary analysis of the sensitivity of marine flagellates to TBA was performed by monitoring the photosynthetic efficiency of nine species (belonging to the Dinophyceae or Raphidophyceae class) isolated from the Adriatic Sea. Different sensitivity levels for each flagellate were observed and the most sensitive microalgae, based on PSII inhibition, were: Gonyaulax spinifera>Fibrocapsa japonica>Lingulodinium polyedrum while the most resistant were two species belonging to the Prorocentrum genus. Then the response of two microalgae to drivers, such as temperature and terbuthylazine, applied in combination was also investigated. Two potentially toxic flagellates, Prorocentrum minimum and G. spinifera, were exposed, under different temperature conditions (15, 20 and 25°C), to TBA concentrations that did not completely affect PSII. For both flagellates, effects of TBA on algal growth, measured through cell density and carbon analysis, as well as on the photosynthetic activity are reported. All parameters analyzed showed a negative effect of TBA from the exponential phase. TBA effect on algal growth was significantly enhanced at the optimal temperature conditions (20 and 25°C), while no difference between control and herbicide treatments were detected for G. spinifera grown at 15°C, which represented a stress condition for this species. The maximum inhibition of photosynthetic efficiency was found at 20°C for both organisms. Both flagellates increased cell carbon and nitrogen content in herbicide treatments compared to the control, except G. spinifera grown at 15°C. Chlorophyll-a production was increased only in G. spinifera exposed to 5 μg L(-1) of TBA and the effect was enhanced with the increase of temperature. Herbicide-induced variations in cellular components determined changes in cellular carbon:nitrogen (C:N) and

  17. A population of giant tailed virus-like particles associated with heterotrophic flagellates in a lake-type reservoir

    Czech Academy of Sciences Publication Activity Database

    Weinbauer, M.G.; Dolan, J. R.; Šimek, Karel

    2015-01-01

    Roč. 76, č. 2 (2015), s. 111-116 ISSN 0948-3055 R&D Projects: GA ČR(CZ) GA13-00243S Institutional support: RVO:60077344 Keywords : viral infection * virus induced mortality * burst size * heterotrophic flagellates Subject RIV: EE - Microbiology, Virology Impact factor: 2.109, year: 2015

  18. Changes in the flagellar bundling time account for variations in swimming behavior of flagellated bacteria in viscous media

    NARCIS (Netherlands)

    Qu, Zijie; Temel, Fatma Zeynep; Henderikx, Rene; Breuer, Kenneth S.

    2018-01-01

    Although the motility of the flagellated bacteria, Escherichia coli, has been widely studied, the effect of viscosity on swimming speed remains controversial. The swimming mode of wild-type E. coli is often idealized as a run-and-tumble sequence in which periods of swimming at a constant speed are

  19. Soils

    Science.gov (United States)

    Emily Moghaddas; Ken Hubbert

    2014-01-01

    When managing for resilient forests, each soil’s inherent capacity to resist and recover from changes in soil function should be evaluated relative to the anticipated extent and duration of soil disturbance. Application of several key principles will help ensure healthy, resilient soils: (1) minimize physical disturbance using guidelines tailored to specific soil types...

  20. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...

  1. Symbiotic flagellate protists as cryptic drivers of adaptation and invasiveness of the subterranean termite Reticulitermes grassei Clément.

    Science.gov (United States)

    Duarte, Sónia; Nobre, Tânia; Borges, Paulo A V; Nunes, Lina

    2018-06-01

    Changes in flagellate protist communities of subterranean termite Reticulitermes grassei across different locations were evaluated following four predictions: (i) Rural endemic (Portugal mainland) termite populations will exhibit high diversity of symbionts; (ii) invasive urban populations (Horta city, Faial island, Azores), on the contrary, will exhibit lower diversity of symbionts, showing high similarity of symbiont assemblages through environmental filtering; (iii) recent historical colonization of isolated regions-as the case of islands-will imply a loss of symbiont diversity; and (iv) island isolation will trigger a change in colony breeding structure toward a less aggressive behavior. Symbiont flagellate protist communities were morphologically identified, and species richness and relative abundances, as well as biodiversity indices, were used to compare symbiotic communities in colonies from urban and rural environments and between island invasive and mainland endemic populations. To evaluate prediction on the impact of isolation (iv), aggression tests were performed among termites comprising island invasive and mainland endemic populations. A core group of flagellates and secondary facultative symbionts was identified. Termites from rural environments showed, in the majority of observed colonies, more diverse and abundant protist communities, probably confirming prediction (i). Corroborating prediction (ii), the two least diverse communities belong to termites captured inside urban areas. The Azorean invasive termite colonies had more diverse protist communities than expected and prediction (iii) which was not verified within this study. Termites from mainland populations showed a high level of aggressiveness between neighboring colonies, in contrast to the invasive colonies from Horta city, which were not aggressive to neighbors according to prediction (iv). The symbiotic flagellate community of R. grassei showed the ability to change in a way that might

  2. Transfer of seston lipids during a flagellate bloom from the surface to the benthic community in the Weddell Sea

    Directory of Open Access Journals (Sweden)

    Sergio Rossi

    2013-09-01

    Full Text Available Total lipid and fatty acid concentrations were studied in a late spring-early summer flagellate-dominated bloom in the Weddell Sea. These indicators were considered a good tool for assessing the quality of organic matter settling from surface to deep-water layers (epibenthic water layers. The results showed different patterns between the early (11-15 December 2003 and the late sampling period (18-27 December 2003 at all studied depths (5 m, 50 m and near-bottom water layers. Low phytoplankton biomass (mainly flagellates in the first half of the study corresponded to low total lipid and fatty acid concentrations. In the second sampling period a spring bloom (mainly flagellates and diatoms was detected, increasing the total lipid and fatty acid concentrations in the water column. The amount of settling organic matter from surface waters to the near-bottom water layers was high, especially in the late sampling period. Trophic markers showed evidence of a sink of available organic matter rich in quality and quantity, especially in terms of polyunsaturated fatty acids, for benthic organisms from surface layers to bottom layers in only a few days. The importance of studying short-time cycles in order to detect organic matter availability for benthic biota in view of the pulse-like dynamics of primary production in Antarctic waters is discussed.

  3. Morphological and molecular identification of Tetratrichomonas flagellates from the giant anteater (Myrmecophaga tridactyla).

    Science.gov (United States)

    Ibañez-Escribano, A; Nogal-Ruiz, J J; Delclaux, M; Martinez-Nevado, E; Ponce-Gordo, F

    2013-08-01

    A tetratrichomonad flagellate found in the diarrhoeic faeces of a 5 years-old male giant anteater (Myrmecophaga tridactyla) was characterised by morphological and genetic analysis. This protozoan presents four anterior flagella of unequal length and a recurrent flagellum attached to the undulating membrane without a free end portion, and a broad axostyle projection. Numerous vacuoles of different sizes containing bacteria and digestion products were found. The complete sequence of the DNA coding for the 16S rRNA-ITS1-5.8S rRNA-ITS2 region was also obtained in order to compare this isolate with other tetratrichomonad species. The sequence obtained was identical to others previously obtained by other researchers from bovines and turtles (Geochelone sp.). It is not easily explainable how the same organism could be found in such different hosts and locations; however these results indicate that some tetratrichomonad species could have a wide host range and could survive in a wide range of environmental conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    International Nuclear Information System (INIS)

    Glogger, M; Subota, I; Spindler, M-C; Engstler, M; Fenz, S F; Stichler, S; Bertlein, S; Teßmar, J; Groll, J

    2017-01-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μ s. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. (paper)

  5. Seasonal variability in irradiance affects herbicide toxicity to the marine flagellate Dunaliella tertiolecta

    Directory of Open Access Journals (Sweden)

    Sascha eSjollema

    2014-06-01

    Full Text Available Photosynthetically Active Radiation (PAR and Ultraviolet Radiation (UVR of the solar spectrum affect microalgae directly and modify the toxicity of phytotoxic compounds present in water. As a consequence seasonal variable PAR and UVR levels are likely to modulate the toxic pressure of contaminants in the field. Therefore the present study aimed to determine the toxicity of two model contaminants, the herbicides diuron and Irgarol®1051, under simulated irradiance conditions mimicking different seasons. Irradiance conditions of spring and autumn were simulated with a set of Light Emitting Diodes (LEDs. Toxicity of both herbicides was measured individually and in a mixture by determining the inhibition of photosystem II efficiency (ΦPSII of the marine flagellate Dunaliella teriolecta using Pulse Amplitude Modulation (PAM fluorometry. Toxicity of the single herbicides was higher under simulated spring irradiance than under autumn irradiance and this effect was also observed for mixtures of the herbicides. This irradiance dependent toxicity indicates that herbicide toxicity in the field is seasonally variable. Consequently toxicity tests under standard light conditions may overestimate or underestimate the toxic effect of phytotoxic compounds.

  6. Effects of solar and artificial UV irradiation on motility and phototaxis in the flagellate, Euglena gracilis

    International Nuclear Information System (INIS)

    Haeder, D.-P.

    1986-01-01

    The effect of solar irradiation on the percentage of motile cells, their average speed and their phototactic orientation to white actinic light was studied in the flagellate, Euglena gracilis. Unfiltered solar radiation in midsummer during mid-day at a location near Lisboa, Portugal, was found to impair motility within 2 h. This effect is exclusively due to the UV-B component of the radiation and not due to UV-A, visible light or a temperature increase. Likewise, phototactic orientation was drastically impaired. Reduction of the solar UV-B irradiation by insertion of an ozone-flooded plexiglass cuvette partially reduced the inhibition and covering the cuvettes with glass prevented any decrease in motility and photoorientation. Similar results were found with artificial irradiation (Xe lamps). After inoculation, the motility of the population follows an optimum curve (optimum at 8 days). Also, the UV-B effect on motility was smallest after about one week and increased for younger and older cultures. (author)

  7. Identification criteria of the rare multi-flagellate Lophomonas blattarum: comparison of different staining techniques.

    Science.gov (United States)

    Alam-Eldin, Yosra Hussein; Abdulaziz, Amany Mamdouh

    2015-09-01

    Bronchopulmonary lophomoniasis (BPL) is an emerging disease of potential importance. BPL is presented by non-specific clinical picture and is usually accompanied by immunosuppression. Culture of Lophomonas blattarum is difficult and its molecular diagnosis has not yet been developed. Therefore, microscopic examination of respiratory samples, e.g., bronchoalveolar lavage (BAL) or sputum, is the mainstay of BPL diagnosis. Creola bodies and ciliocytophthoria are two forms of bronchial cells which occur in chest diseases with non-specific clinical picture like that of BPL. Both forms could be misrecognized as multi-flagellates because of their motile cilia in the wet mounts and due to shape variability of L. blattarum in stained smears. The aim of the study is to compare different staining techniques for visualizing L. blattarum to improve the recognition and diagnosis of BPL, to distinguish respiratory epithelial cells from L. blattarum and to decide which stain is recommended in suspected cases of BPL. BAL samples from patients which contain L. blattarum, creola bodies, and ciliocytophthoria were collected then wet mounts were examined. The BAL samples were also stained by Papanicolaou (PAP), Giemsa, hematoxylin and eosin (H & E), trichrome, Gram, and Diff-Quik (DQ) stains. The different staining techniques were compared regarding the stain quality. In wet mounts, the ciliary movement was coordinate and synchronous while the flagellar movement was wavy and leaded to active swimming of L. blattarum. In stained slides, bronchial cells were characterized by the presence of basal nucleus and the terminal bar from which the cilia arise. Trichrome was the best stain in demonstration of cellular details of L. blattarum. H & E, PAP, and Giemsa stains showed good quality of stains. Gram and DQ stains showed only pale hues of L. blattarum. We recommended adding Wheatley's trichrome staining to the differential diagnosis workup of cases of non-specific chest infections

  8. Upper Arctic Ocean water masses harbor distinct communities of heterotrophic flagellates

    Directory of Open Access Journals (Sweden)

    A. Monier

    2013-06-01

    Full Text Available The ubiquity of heterotrophic flagellates (HFL in marine waters has been recognized for several decades, but the phylogenetic diversity of these small (ca. 0.8–20 μm cell diameter, mostly phagotrophic protists in the upper pelagic zone of the ocean is underappreciated. Community composition of microbes, including HFL, is the result of past and current environmental selection, and different taxa may be indicative of food webs that cycle carbon and energy very differently. While all oceanic water columns can be density stratified due to the temperature and salinity characteristics of different water masses, the Arctic Ocean is particularly well stratified, with nutrients often limiting in surface waters and most photosynthetic biomass confined to a subsurface chlorophyll maximum layer, where light and nutrients are both available. This physically well-characterized system provided an opportunity to explore the community diversity of HFL from different water masses within the water column. We used high-throughput DNA sequencing techniques as a rapid means of surveying the diversity of HFL communities in the southern Beaufort Sea (Canada, targeting the surface, the subsurface chlorophyll maximum layer (SCM and just below the SCM. In addition to identifying major clades and their distribution, we explored the micro-diversity within the globally significant but uncultivated clade of marine stramenopiles (MAST-1 to examine the possibility of niche differentiation within the stratified water column. Our results strongly suggested that HFL community composition was determined by water mass rather than geographical location across the Beaufort Sea. Future work should focus on the biogeochemical and ecological repercussions of different HFL communities in the face of climate-driven changes to the physical structure of the Arctic Ocean.

  9. Live-cell super-resolution imaging of intrinsically fast moving flagellates

    Science.gov (United States)

    Glogger, M.; Stichler, S.; Subota, I.; Bertlein, S.; Spindler, M.-C.; Teßmar, J.; Groll, J.; Engstler, M.; Fenz, S. F.

    2017-02-01

    Recent developments in super-resolution microscopy make it possible to resolve structures in biological cells at a spatial resolution of a few nm and observe dynamical processes with a temporal resolution of ms to μs. However, the optimal structural resolution requires repeated illumination cycles and is thus limited to chemically fixed cells. For live cell applications substantial improvement over classical Abbe-limited imaging can already be obtained in adherent or slow moving cells. Nonetheless, a large group of cells are fast moving and thus could not yet be addressed with live cell super-resolution microscopy. These include flagellate pathogens like African trypanosomes, the causative agents of sleeping sickness in humans and nagana in livestock. Here, we present an embedding method based on a in situ forming cytocompatible UV-crosslinked hydrogel. The fast cross-linking hydrogel immobilizes trypanosomes efficiently to allow microscopy on the nanoscale. We characterized both the trypanosomes and the hydrogel with respect to their autofluorescence properties and found them suitable for single-molecule fluorescence microscopy (SMFM). As a proof of principle, SMFM was applied to super-resolve a structure inside the living trypanosome. We present an image of a flagellar axoneme component recorded by using the intrinsic blinking behavior of eYFP. , which features invited work from the best early-career researchers working within the scope of J Phys D. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Susanne Fenz was selected by the Editorial Board of J Phys D as an Emerging Talent/Leader.

  10. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    Science.gov (United States)

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  11. Soil

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2002-01-01

    Environmental soil surveys in each province of Austria have been performed, soils of about 5,000 sites were described and analyzed for nutrients and pollutants, the majority of these data are recorded in the soil information system of Austria (BORIS) soil database, http://www.ubavie.gv.at/umweltsituation/boden/boris), which also contains a soil map of Austria, data from 30 specific investigations mainly in areas with industry and results from the Austria - wide cesium investigation. With respect to the environmental state of soils a short discussion is given, including two geographical charts, one showing which sites have soil data (2001) and the other the cadmium distribution in top soils according land use (forest, grassland, arable land, others). Information related to the soil erosion, Corine land cover (Europe-wide land cover database), evaluation of pollutants in soils (reference values of As, Cd, Co, Cr, Cu, Hg, Mo, Ni, Se, Pb, Tl, Va, Zn, AOX, PAH, PCB, PCDD/pcdf, dioxin), and relevant Austrian and European standards and regulations is provided. Figs. 2, Tables 4. (nevyjel)

  12. Survival of marine heterotrophic flagellates isolated from the surface and the deep sea at high hydrostatic pressure: Literature review and own experiments

    Science.gov (United States)

    Živaljić, Suzana; Schoenle, Alexandra; Nitsche, Frank; Hohlfeld, Manon; Piechocki, Julia; Reif, Farina; Shumo, Marwa; Weiss, Alexandra; Werner, Jennifer; Witt, Madeleine; Voss, Janine; Arndt, Hartmut

    2018-02-01

    Although the abyssal seafloor represents the most common benthic environment on Earth, eukaryotic microbial life at abyssal depths is still an uncharted territory. This is in striking contrast to their potential importance regarding the material flux and bacteria consumption in the deep sea. Flagellate genotypes determined from sedimentary DNA deep-sea samples might originate from vital deep-sea populations or from cysts of organisms sedimented down from surface waters. The latter one may have never been active under deep-sea conditions. We wanted to analyze the principal ability of cultivable heterotrophic flagellates of different phylogenetic groups (choanoflagellates, ancyromonads, euglenids, kinetoplastids, bicosoecids, chrysomonads, and cercozoans) to survive exposure to high hydrostatic pressure (up to 670 bar). We summarized our own studies and the few available data from literature on pressure tolerances of flagellates isolated from different marine habitats. Our results demonstrated that many different flagellate species isolated from the surface waters and deep-sea sediments survived drastic changes in hydrostatic pressure. Barophilic behavior was also recorded for several species isolated from the deep sea indicating their possible genetic adaptation to high pressures. This is in accordance with records of heterotrophic flagellates present in environmental DNA surveys based on clone libraries established for deep-sea environments.

  13. EST analysis of the scaly green flagellate Mesostigma viride (Streptophyta: Implications for the evolution of green plants (Viridiplantae

    Directory of Open Access Journals (Sweden)

    Melkonian Michael

    2006-02-01

    Full Text Available Abstract Background The Viridiplantae (land plants and green algae consist of two monophyletic lineages, the Chlorophyta and the Streptophyta. The Streptophyta include all embryophytes and a small but diverse group of freshwater algae traditionally known as the Charophyceae (e.g. Charales, Coleochaete and the Zygnematales. The only flagellate currently included in the Streptophyta is Mesostigma viride Lauterborn. To gain insight into the genome evolution in streptophytes, we have sequenced 10,395 ESTs from Mesostigma representing 3,300 independent contigs and compared the ESTs of Mesostigma with available plant genomes (Arabidopsis, Oryza, Chlamydomonas, with ESTs from the bryophyte Physcomitrella, the genome of the rhodophyte Cyanidioschyzon, the ESTs from the rhodophyte Porphyra, and the genome of the diatom Thalassiosira. Results The number of expressed genes shared by Mesostigma with the embryophytes (90.3 % of the expressed genes showing similarity to known proteins is higher than with Chlamydomonas (76.1 %. In general, cytosolic metabolic pathways, and proteins involved in vesicular transport, transcription, regulation, DNA-structure and replication, cell cycle control, and RNA-metabolism are more conserved between Mesostigma and the embryophytes than between Mesostigma and Chlamydomonas. However, plastidic and mitochondrial metabolic pathways, cytoskeletal proteins and proteins involved in protein folding are more conserved between Mesostigma and Chlamydomonas than between Mesostigma and the embryophytes. Conclusion Our EST-analysis of Mesostigma supports the notion that this organism should be a suitable unicellular model for the last flagellate common ancestor of the streptophytes. Mesostigma shares more genes with the embryophytes than with the chlorophyte Chlamydomonas reinhardtii, although both organisms are flagellate unicells. Thus, it seems likely that several major physiological changes (e.g. in the regulation of photosynthesis

  14. Soils

    International Nuclear Information System (INIS)

    Freudenschuss, A.; Huber, S.; Riss, A.; Schwarz, S.; Tulipan, M.

    2001-01-01

    For Austria there exists a comprehensive soil data collection, integrated in a GIS (geographical information system). The content values of pollutants (cadmium, mercury, lead, copper, mercury, radio-cesium) are given in geographical charts and in tables by regions and by type of soil (forests, agriculture, greenland, others) for the whole area of Austria. Erosion effects are studied for the Austrian region. Legal regulations and measures for an effective soil protection, reduction of soil degradation and sustainable development in Austria and the European Union are discussed. (a.n.)

  15. Clinical and pathological observations on natural infections of cryptosporidiosis and flagellate protozoa in leopard geckos (Eublepharis macularius).

    Science.gov (United States)

    Taylor, M A; Geach, M R; Cooley, W A

    1999-12-11

    A group of adult leopard geckos (Eublepharis macularius) which had been losing weight for several months were found to be infected with Cryptosporidium species. Histological and electron microscopical investigations on the intestines of five of the lizards revealed the presence of large numbers of the developmental stages of Cryptosporidium species attached to the mucosal surface of the lower intestine, and large numbers of flagellate protozoa, suspected to be predominantly Trichomonas species, in the gut lumen. The clinical signs were attributed to the presence of one or both types of parasites.

  16. Soil fauna communities and microbial respiration in high Arctic tundra soils at Zackenberg, Northeast Greenland

    DEFF Research Database (Denmark)

    Sørensen, Louise I.; Holmstrup, Martin; Maraldo, Kristine

    2006-01-01

    The soil fauna communities were described for three dominant vegetation types in a high arctic site at Zackenberg, Northeast Greenland. Soil samples were extracted to quantify the densities of mites, collembolans, enchytraeids, diptera larvae, nematodes and protozoa. Rates of microbial respiration...... densities (naked amoeba and heterotrophic flagellates) were equal. Respiration rate of unamended soil was similar in soil from the three plots. However, a higher respiration rate increase in carbon + nutrient amended soil and the higher densities of soil fauna (with the exception of mites and protozoa...... were also assessed. Collembolans were found in highest densities in dry heath soil, about 130,000 individuals m-2, more than twice as high as in mesic heath soils. Enchytraeids, diptera larvae and nematodes were also more abundant in the dry heath soil than in mesic heath soils, whereas protozoan...

  17. Trypanosoma cruzi alkaline 2-DE: Optimization and application to comparative proteome analysis of flagellate life stages

    Directory of Open Access Journals (Sweden)

    Santana Jaime M

    2008-09-01

    Full Text Available Abstract Background Trypanosoma cruzi, a flagellate protozoan, is the etiological agent of Chagas disease, a chronic illness that causes irreversible damage to heart and digestive tract in humans. Previous 2-DE analyses of T. cruzi proteome have not focused on basic proteins, possibly because of inherent difficulties for optimizing 2-DE in the alkaline pH range. However, T. cruzi wide pH range 2-DE gels have shown few visible spots in the alkaline region, indicating that the parasite either did not have an appreciable amount of alkaline proteins or that these proteins were underrepresented in the 2-DE gels. Results Different IEF conditions using 6–11 pH gradient strips were tested for separation of T. cruzi alkaline proteins. The optimized methodology described here was performed using anodic "paper bridge" sample loading supplemented by increased concentration of DTT and Triton X-100 on Multiphor II (GE Healthcare equipment and an electrode pad embedded in DTT- containing solution near the cathode in order to avoid depletion of reducing agent during IEF. Landmark proteins were identified by peptide mass fingerprinting allowing the production of an epimastigote 2-DE map. Most identified proteins corresponded to metabolic enzymes, especially those related to amino acid metabolism. The optimized 2-DE protocol was applied in combination with the "two-in-one gel" method to verify the relative expression of the identified proteins between samples from epimastigote and trypomastigote life stages. Conclusion High resolution 2-DE gels of T. cruzi life forms were achieved using the optimized methodology and a partial epimastigote alkaline 2-DE map was built. Among 700 protein spots detected, 422 were alkaline with a pI above 7.0. The "two-in-one gel" method simplified the comparative analysis between T. cruzi life stages since it minimized variations in spot migration and silver-stained spot volumes. The comparative data were in agreement with

  18. Swimming Motility Mediates the Formation of Neutrophil Extracellular Traps Induced by Flagellated Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Madison Floyd

    2016-11-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen causing severe infections often characterized by robust neutrophilic infiltration. Neutrophils provide the first line of defense against P. aeruginosa. Aside from their defense conferred by phagocytic activity, neutrophils also release neutrophil extracellular traps (NETs to immobilize bacteria. Although NET formation is an important antimicrobial process, the details of its mechanism are largely unknown. The identity of the main components of P. aeruginosa responsible for triggering NET formation is unclear. In this study, our focus was to identify the main bacterial factors mediating NET formation and to gain insight into the underlying mechanism. We found that P. aeruginosa in its exponential growth phase promoted strong NET formation in human neutrophils while its NET-inducing ability dramatically decreased at later stages of bacterial growth. We identified the flagellum as the primary component of P. aeruginosa responsible for inducing NET extrusion as flagellum-deficient bacteria remained seriously impaired in triggering NET formation. Purified P. aeruginosa flagellin, the monomeric component of the flagellum, does not stimulate NET formation in human neutrophils. P. aeruginosa-induced NET formation is independent of the flagellum-sensing receptors TLR5 and NLRC4 in both human and mouse neutrophils. Interestingly, we found that flagellar motility, not flagellum binding to neutrophils per se, mediates NET release induced by flagellated bacteria. Immotile, flagellar motor-deficient bacterial strains producing paralyzed flagella did not induce NET formation. Forced contact between immotile P. aeruginosa and neutrophils restored their NET-inducing ability. Both the motAB and motCD genetic loci encoding flagellar motor genes contribute to maximal NET release; however the motCD genes play a more important role. Phagocytosis of P. aeruginosa and superoxide production by neutrophils were also

  19. Formation of large colonies: a defense mechanism of Microcystis aeruginosa under continuous grazing pressure by flagellate Ochromonas sp.

    Directory of Open Access Journals (Sweden)

    Fanxiang Kong

    2012-01-01

    Full Text Available Induced colony formation under grazing pressure has been reported in our previous results. However, the colonies induced in these studies comprised only tens of cells which are far smaller than the naturally occurring colonies. In this work, unicellular Microcystis aeruginosa Kützing were co-cultivated with flagellate Ochromonas sp. for 50 d to investigate colony formation in M. aeruginosa under continuous grazing pressure. Results revealed that colonial M. aeruginosa formed on the 10th d under the grazing pressure of flagellate. These algal colonies resulted from the daughter cells of freshly dividing cells that failed to separate during the reproductive process. The diameters and cell numbers of the colonies increased slowly with time. Under continuous grazing pressure by Ochromonas sp. for 50 d, the diameter of some colonies reached over 180 μm. Analysis showed that the extracellular polysaccharide (EPS content and relative gas vesicle (RGV of each cell increased significantly after colony formation. However, there was no significant difference on the monosaccharide composition between unicellular and colonial M. aeruginosa. The loose aggregation of cells in the floating colonies suggests that a correlation probably exists between cell compactness and colony buoyancy.

  20. Interactions between the intestinal flagellates Giardia muris and Spironucleus muris and the blood parasites Babesia microti, Plasmodium yoelii and Plasmodium berghei in mice.

    Science.gov (United States)

    Brett, S J; Cox, F E

    1982-08-01

    In mice infected with the intestinal flagellates Giardia muris or Spironucleus muris, together with the blood parasites Babesia microti or Plasmodium yoelii, there is a temporary decrease of flagellate cyst output coincident with the peak of the blood parasite infections, followed by a rapid return to normal levels. This decrease in cyst output is correlated with decreased numbers of trophozoites in the small intestine. The effect on S. muris is more marked than that on G. muris. Neither blood parasites has any effect on the total duration of the flagellate infection and the flagellates do not affect the blood parasites. In mice infected with G. muris or S. muris and P. berghei there is also a decrease in cyst output but this is less apparent than in infections with B. microti or P. yoelii because of the fatal nature of the P. berghei infection. It is suggested that the decrease in cyst output is probably due to changes in the contents of the small intestine or to non-specific immunological factors rather than to specific immunological changes.

  1. Description of Pyramimonas diskoicola sp. nov. and the importance of the flagellate Pyramimonas (Prasinophyceae) in Greenland sea ice during the winter–spring transition

    DEFF Research Database (Denmark)

    Harðardóttir, Sara; Lundholm, Nina; Moestrup, Øjvind

    2014-01-01

    Pyramimonas Schmarda is a genus of unicellular green flagellates, recorded in marine water and sea ice samples. Pyramimonas is within the prey size range of the most important protozoan grazers in Disko Bay, West Greenland, where this study took place. Despite the potential ecological importance...

  2. Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature.

    Science.gov (United States)

    Martel, Sylvain; Mohammadi, Mahmood; Felfoul, Ouajdi; Lu, Zhao; Pouponneau, Pierre

    2009-04-01

    Although nanorobots may play critical roles for many applications in the human body such as targeting tumoral lesions for therapeutic purposes, miniaturization of the power source with an effective onboard controllable propulsion and steering system have prevented the implementation of such mobile robots. Here, we show that the flagellated nanomotors combined with the nanometer-sized magnetosomes of a single Magnetotactic Bacterium (MTB) can be used as an effective integrated propulsion and steering system for devices such as nanorobots designed for targeting locations only accessible through the smallest capillaries in humans while being visible for tracking and monitoring purposes using modern medical imaging modalities such as Magnetic Resonance Imaging (MRI). Through directional and magnetic field intensities, the displacement speeds, directions, and behaviors of swarms of these bacterial actuators can be controlled from an external computer.

  3. Diversity and feeding strategies of soil microfauna along elevation gradients in Himalayan cold deserts.

    Directory of Open Access Journals (Sweden)

    Miloslav Devetter

    Full Text Available High-elevation cold deserts in Tibet and Himalaya are one of the most extreme environments. One consequence is that the diversity of macrofauna in this environment is often limited, and soil microorganisms have a more influential role in governing key surface and subsurface bioprocesses. High-elevation soil microfauna represent important components of cold ecosystems and dominant consumers of microbial communities. Still little is known about their diversity and distribution on the edge of their reproductive and metabolic abilities. In this study, we disentangle the impact of elevation and soil chemistry on diversity and distribution of rotifers, nematodes and tardigrades and their most frequent feeding strategies (microbial filter-feeders, bacterivores, fungivores, root-fungal feeders, omnivores along two contrasting altitudinal gradients in Indian NW Himalaya (Zanskar transect from 3805 to 4714 m a.s.l. and southwestern Tibet (Tso Moriri transect from 4477 to 6176 m a.s.l., using a combination of multivariate analysis, variation partitioning and generalized additive models. Zanskar transect had higher precipitation, soil moisture, organic matter and available nutrients than dry Tso Moriri transect. In total, 40 species of nematodes, 19 rotifers and 1 tardigrade were discovered. Species richness and total abundance of rotifers and nematodes showed mid-elevation peaks in both investigated transects. The optimum for rotifers was found at higher elevation than for nematodes. Diversity and distribution of soil microfauna was best explained by soil nitrogen, phosphorus and organic matter. More fertile soils hosted more diverse and abundant faunal communities. In Tso Moriri, bacterivores represented 60% of all nematodes, fungivores 35%, root-fungal feeders 1% and omnivores 3%. For Zanskar the respective proportions were 21%, 13%, 56% and 9%. Elevational optima of different feeding strategies occurred in Zanskar in one elevation zone (4400-4500 m

  4. Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological control and productivity

    DEFF Research Database (Denmark)

    Birkhofer, K.; Bezemer, TM; Bloem, J

    2008-01-01

     Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological...... with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity...... parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems...

  5. Gravitaxis in the flagellate Euglena gracilis--results from NiZeMi, clinostat and sounding rocket flights.

    Science.gov (United States)

    Häder, D P

    1994-05-01

    Many motile microorganisms including flagellates such as the green Euglena gracilis move up and down within the water column and use a number of external clues for their orientation, the most important of which may be light and gravity. The cells use positive phototaxis and negative gravitaxis to move closer to the surface of the water column which for energetic reasons is vital for their survival. However, most phytoplankton organisms cannot tolerate the bright irradiance of unfiltered solar radiation at the surface which also bleaches the photosynthetic pigments, disables the photosynthetic apparatus and impairs phototaxis, gravitaxis and motility in Euglena. Thus, it is not surprising that at higher irradiances negative phototaxis operates antagonistically to the responses described above to guide the cells into deeper water where they are protected from excessive radiation. Phototaxis and gravitaxis are not independent from one another: in a vertically positioned cuvette negative gravitaxis can be "titrated" by light impinging from above and is compensated at about 30 W m-2. While the photoreceptor for phototaxis has been identified in Euglena gracilis biochemically and spectroscopically, the gravireceptor is not yet known. Young cultures of Euglena gracilis show a positive gravitaxis, the ecological signficance of which is not yet understood while older cultures show negative gravitaxis. One hypothesis concerning the nature of graviperception is based on a passive physical process such as an asymmetric distribution of the mass within the cell. However, the observation that short term UV irradiation decreases the precision of negative gravitaxis rather indicates the involvement of an active physiological gravireceptor. Furthermore, some heavy metal ions have been found to change the direction of movement from positive to negative gravitaxis in young cells.

  6. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter

    International Nuclear Information System (INIS)

    Kottuparambil, Sreejith; Kim, Youn-Jung; Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae; Shin, Woongghi; Han, Taejun

    2014-01-01

    Highlights: • Rapid phenol toxicity tests (1 h) were developed based on Chl a fluorescence and the movement parameters of Euglena agilis. • Phenol significantly reduced F v /F m of PS II and rETRmax with EC50 values of 8.94 and 4.67 mM, respectively. • Among the movement parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. • The EC50 values for F v /F m , motility, and velocity appear to overlap the environmental permissible levels of phenol. - Abstract: Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1 h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (F v /F m ) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETR max ) with median effective concentration (EC 50 ) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC 50 of 3.17 mM. The EC 50 values for F v /F m , motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents

  7. High genetic diversity and fine-scale spatial structure in the marine flagellate Oxyrrhis marina (Dinophyceae uncovered by microsatellite loci.

    Directory of Open Access Journals (Sweden)

    Chris D Lowe

    2010-12-01

    Full Text Available Free-living marine protists are often assumed to be broadly distributed and genetically homogeneous on large spatial scales. However, an increasing application of highly polymorphic genetic markers (e.g., microsatellites has provided evidence for high genetic diversity and population structuring on small spatial scales in many free-living protists. Here we characterise a panel of new microsatellite markers for the common marine flagellate Oxyrrhis marina. Nine microsatellite loci were used to assess genotypic diversity at two spatial scales by genotyping 200 isolates of O. marina from 6 broad geographic regions around Great Britain and Ireland; in one region, a single 2 km shore line was sampled intensively to assess fine-scale genetic diversity. Microsatellite loci resolved between 1-6 and 7-23 distinct alleles per region in the least and most variable loci respectively, with corresponding variation in expected heterozygosities (H(e of 0.00-0.30 and 0.81-0.93. Across the dataset, genotypic diversity was high with 183 genotypes detected from 200 isolates. Bayesian analysis of population structure supported two model populations. One population was distributed across all sampled regions; the other was confined to the intensively sampled shore, and thus two distinct populations co-occurred at this site. Whilst model-based analysis inferred a single UK-wide population, pairwise regional F(ST values indicated weak to moderate population sub-division (0.01-0.12, but no clear correlation between spatial and genetic distance was evident. Data presented in this study highlight extensive genetic diversity for O. marina; however, it remains a substantial challenge to uncover the mechanisms that drive genetic diversity in free-living microorganisms.

  8. A rapid phenol toxicity test based on photosynthesis and movement of the freshwater flagellate, Euglena agilis Carter

    Energy Technology Data Exchange (ETDEWEB)

    Kottuparambil, Sreejith [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Kim, Youn-Jung [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of); Choi, Hoon; Kim, Mi-Sung; Park, Areum; Park, Jihae [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Shin, Woongghi [Department of Biology, Chungnam University, Daejeon 306 764 (Korea, Republic of); Han, Taejun, E-mail: hanalgae@hanmail.net [Institute of Green Environmental Research Center, Incheon National University, Incheon 406 840 (Korea, Republic of); Department of Marine Science, Incheon National University, Incheon 406 840 (Korea, Republic of); Green-Pioneer (Ltd.), Incheon National University, Incheon 406 840 (Korea, Republic of)

    2014-10-15

    Highlights: • Rapid phenol toxicity tests (1 h) were developed based on Chl a fluorescence and the movement parameters of Euglena agilis. • Phenol significantly reduced F{sub v}/F{sub m} of PS II and rETRmax with EC50 values of 8.94 and 4.67 mM, respectively. • Among the movement parameters tested, velocity was the most sensitive biomarker with an EC50 of 3.17 mM. • The EC50 values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the environmental permissible levels of phenol. - Abstract: Phenol, a monosubstituted aromatic hydrocarbon with various commercial uses, is a major organic constituent in industrial wastewaters. The ecotoxic action of phenol for aquatic environment is well known. In this study, rapid phenol toxicity tests (1 h) were developed based on chlorophyll a (Chl a) fluorescence and the movement parameters of the freshwater flagellate, Euglena agilis Carter. Phenol significantly reduced the maximum quantum yield (F{sub v}/F{sub m}) of photosystem II (PS II) and the maximum photosynthetic electron transport rate (rETR{sub max}) with median effective concentration (EC{sub 50}) values of 8.94 and 4.67 mM, respectively. Phenol reduced the motility and triggered change in the swimming velocity of the test organism. Among the parameters tested, velocity was the most sensitive biomarker with an EC{sub 50} of 3.17 mM. The EC{sub 50} values for F{sub v}/F{sub m}, motility, and velocity appear to overlap the permitted levels of phenol. In conclusion, the photosynthesis and movement of E. agilis can be fast and sensitive risk assessment parameters for the evaluation of phenol toxicity in municipal and industrial effluents.

  9. Engineering of Soil Biological Quality from Nickel Mining Stockpile Using Two Earthworm Ecological Groups

    Directory of Open Access Journals (Sweden)

    L M H Kilowasid

    2015-04-01

    Full Text Available Earthworms have the ability in modifying soil biological quality for plant growth. Their ability is mostly depending on its ecological groups. The objectives of the research were to study the influence of two ecological groups of earthworms on soil microbial activity and soil micro-fauna abundance, and to know the potential of soil modified by earthworms as plant growth medium. Eight combination of individual earthworm from epigeic and endogeic groups was applied into pot that was filled by soil from two years of nickel stockpile and each treatment was repeated by five times. The experiment was following complete randomize design procedure. After sixteen days of research, the soil sample from each pot was analyzed for soil FDA activity, number of flagellate and nematodes. Furthermore, one kg of the soil from each pot was taken and every pot was grown by Paraserianthes falcataria seedling with the age of five days and continued its growth for two months. The results indicated that the soil FDA activity, number of flagellate and nematodes among treatments were significantly differences. In addition, it indicated the significant differences in dry weight of shoot, root, total plant, and root to shoot ratio of P. falcataria seedlings. It concluded that the combination of an individual number of epigeic and endogeic earthworms improved soil biological quality of stock pile, amd most suitable for seedlings growth in nickel mining area.

  10. Persistent Flagellate Hyperpigmentation

    Science.gov (United States)

    2017-04-28

    medical research or technical information as a publication/presentation, a new 59 MOW Form 3039 must be submitted for review and approval.) IA 6...directives.) D DISAPPROVED 40. PRINTED NAME. RANK/GRADE, TITLE OF REVIEWER 41 . REVIEWER SIGNATURE 42 . DATE Kevin linuma, SSgt/E-5, 59 MDW Public

  11. [Diversity of soil nematode communities in the subalpine and alpine forests of western Sichuan, China.

    Science.gov (United States)

    Chen, Ya; Yang, Wan Qin; Wu, Fu Zhong; Yang, Fan; Lan, Li Ying; Liu, Yu Wei; Guo, Cai Hong; Tan, Bo

    2017-10-01

    In order to understand the diversity of soil nematodes in the subalpine/alpine forests of the eastern Qinghai-Tibet Plateau, soil nematodes in the primary forest, mixed forest and secondary forest of Abies faxoniana were extracted by elutriation and sugar-centrifugation method in July 2015, and the composition and structure characteristics of soil nematode communities were studied in the three forests at different altitudes. A total of 37950 soil nematodes were collected, which belonged to 20 families and 27 genera, and the mean density was 4217 ind·100 g -1 dry soil. Filenchus was the dominant genus in the primary forest, and Filenchus and Pararotylenchus in the mixed forest and secondary forest, respectively. The individual number of each dominant genus was significantly affected by forest type. All nematode individuals were classified into the four trophic groups of bacterivores, fungivores, plant-parasites and omnivore-predators. The fungivores were dominant in the primary and secondary forest and the bacterivores in the mixed forest. The number of soil nematode c-p (colonizer-persister) groups of c-p 1, c-p 2, c-p 3 and c-p 4 accounted for 6.1%, 51.1%, 30.0% and 12.7% of the total nematode abundance, respectively. The maturity index (MI), the total maturity index (∑MI) and the plant parasitic index (PPI) of soil nematodes decreased gradually with the increase of altitude. The nematode channel ratio in the mixed forest was higher than 0.5, but that in the primary forest and secondary forest was below 0.5. The forest type significantly affected the soil nematode maturity index and channel ratio, but the forest type, soil layer and their interaction had no significant effect on the diversity index. There were obvious diffe-rences in the composition, nutrient structure and energy flow channel of soil nematodes in the subalpine/alpine forests of western Sichuan, providing an important reference for understanding the function of soil nematodes in soil processes

  12. Protist community in soil: Effects of different land-use types

    DEFF Research Database (Denmark)

    Santos, Susana; Schöler, Anne; Winding, Anne

    Soil protist microorganisms represent an important part of the soil microbial community being major players in providing ecosystem services. Changes in their community structure and dynamics may influence the rate and kind of soil formation and fertility. Corroborative studies indicate that protist...... microorganisms exhibit high levels of molecular and functional diversity in soils. However, studies questioning the protist diversity in soil and their variability across different soil land-use types, have received far less attention. The purpose of our study was to obtain relative abundances of flagellate......, cilliates and amoeboid soil protists, and to relate the expected changes in community composition to space and land-use. Within the EU FP7 project EcoFINDERS, soils were collected from six long-term observatories (LTO’s) scattered around Europe, covering different climatic zones and different vegetation...

  13. Using of ants and earthworm to modify of soil biological quality and its effect on cocoa seedlings growth

    Science.gov (United States)

    Kilowasid, Laode Muhammad Harjoni; Budianto, Wayan; Syaf, Hasbullah; Tufaila, Muhammad; Safuan, La Ode

    2015-09-01

    Ant and earthworm can act as soil ecosystem engineers. Ant and earthworm are very dominant in smallholder cocoa plantation. The first experiment aimed to study the effect of the abundance of ants and earthworms on soil microbial activity and microfauna, and the second experiment to analyse the effect of soil modified by ants and earthworms on the cocoa seedlings growth. Ant (Ponera sp.) and earthworm (Pontoscolex sp.) collected from smallholder cocoa plantation, and kept in a container up to applied. In the first experiment, nine combinations of the abundance of ants and earthworms applied to each pot containing 3 kg of soil from smallholder cocoa plantation, and each combination of the abundance was repeated five times in a completely randomized design. After the soil was incubated for thirty days, ants and earthworms removed from the soil using hand sorting techniques. Soil from each pot was analysed for soil microbial activity, abundance of flagellates and nematodes. In the second experiment, the soil in each pot was planted with cocoa seedlings and maintained up to ninety days. The results showed the FDA hydrolytic activity of microbes, the abundance of flagellates and nematodes between the combination of the abundance of ants and earthworms have been significantly different. Dry weight of root, shoot and seedling cacao have been significantly different between the combination of the abundance of ants and earthworms. It was concluded that the combination of the abundance of ants and earthworms can be used in ecological engineering to improve soil quality.

  14. Trophic position of soil nematodes in boreal forests as indicated by stable isotope analysis

    Science.gov (United States)

    Kudrin, Alexey; Tsurikov, Sergey

    2016-04-01

    Despite the well-developed trophic classification of soil nematodes, their position in soil food webs is still little understood. Observed deviations from the typical feeding strategy indicate that a simplified trophic classification probably does not fully reflect actual trophic interactions. Furthermore, the extent and functional significance of nematodes as prey for other soil animals remains unknown. Stable isotope analysis (SIA) is powerful tool for investigating the structure of soil food webs, but its application to the study of soil nematodes has been limited to only a few studies. We used stable isotope analysis to gain a better understanding of trophic links of several groups of soil nematodes in two boreal forests on albeluvisol. We investigated four taxonomic groups of nematodes: Mononchida, Dorylaimida, Plectidae and Tylenchidae (mostly from the genus Filenchus), that according to the conventional trophic classification represent predators, omnivores, bacterivores and root-fungal feeders, respectively. To assess the trophic position of nematodes, we used a comparison against a set of reference species including herbivorous, saprophagous and predatory macro-invertebrates, oribatid and mesostigmatid mites, and collembolans. Our results suggest that trophic position of the investigated groups of soil nematodes generally corresponds to the conventional classification. All nematodes were enriched in 13C relative to Picea abies roots and litter, and mycorrhizal fungal mycelium. Root-fungal feeders Tylenchidae had δ15N values similar to those of earthworms, enchytraeids and Entomobrya collembolans, but slightly lower δ13C values. Bacterivorous Plectidae were either equal or enriched in 15N compared with saprophagous macroinvertebrates and most mesofauna species. Omnivorous Dorylaimida and predatory Mononchida were further enriched in 15N and their isotopic signature was similar to that of predatory arthropods. These data confirm a clear separation of

  15. Community diversity, structure and carbon footprint of nematode food web following reforestation on degraded Karst soil.

    Science.gov (United States)

    Hu, Ning; Li, Hui; Tang, Zheng; Li, Zhongfang; Tian, Jing; Lou, Yilai; Li, Jianwei; Li, Guichun; Hu, Xiaomin

    2016-06-17

    We examined community diversity, structure and carbon footprint of nematode food web along a chronosequence of T. Sinensis reforestation on degraded Karst. In general, after the reforestation: a serious of diversity parameters and community indices (Shannon-Weinier index (H'), structure index (SI), etc.) were elevated; biomass ratio of fungivores to bacterivores (FFC/BFC), and fungi to bacteria (F/B) were increased, and nematode channel ratio (NCR) were decreased; carbon footprints of all nematode trophic groups, and biomass of bacteria and fungi were increased. Our results indicate that the Karst aboveground vegetation restoration was accompanied with belowground nematode food web development: increasing community complexity, function and fungal dominance in decomposition pathway, and the driving forces included the bottom-up effect (resource control), connectedness of functional groups, as well as soil environments.

  16. Daytime warming has stronger negative effects on soil nematodes than night-time warming

    Science.gov (United States)

    Yan, Xiumin; Wang, Kehong; Song, Lihong; Wang, Xuefeng; Wu, Donghui

    2017-03-01

    Warming of the climate system is unequivocal, that is, stronger warming during night-time than during daytime. Here we focus on how soil nematodes respond to the current asymmetric warming. A field infrared heating experiment was performed in the western of the Songnen Plain, Northeast China. Three warming modes, i.e. daytime warming, night-time warming and diurnal warming, were taken to perform the asymmetric warming condition. Our results showed that the daytime and diurnal warming treatment significantly decreased soil nematodes density, and night-time warming treatment marginally affected the density. The response of bacterivorous nematode and fungivorous nematode to experimental warming showed the same trend with the total density. Redundancy analysis revealed an opposite effect of soil moisture and soil temperature, and the most important of soil moisture and temperature in night-time among the measured environment factors, affecting soil nematode community. Our findings suggested that daily minimum temperature and warming induced drying are most important factors affecting soil nematode community under the current global asymmetric warming.

  17. Extra-chromosomal DNA maintenance in Bacillus subtilis, dependence on flagellation factor FliF and moonlighting mediator EdmS.

    Science.gov (United States)

    Hakumai, Yuichi; Shimomoto, Kouko; Ashiuchi, Makoto

    2015-05-15

    Extra-chromosomal DNA maintenance (EDM) as an important process in the propagation and genetic engineering of microbes. Bacillus subtilis EdmS (formerly PgsE), a protein comprising 55 amino acids, is a mediator of the EDM process. In this study, the effect of mutation of global regulators on B. subtilis EDM was examined. Mutation of the swrA gene abolished EdmS-mediated EDM. It is known that swrA predominantly regulates expression of the fla/che operon in B. subtilis. We therefore performed EDM analysis using fla/che-deletion mutants and identified an EDM-mediated EDM cooperator in the flgB-fliL region. Further genetic investigation identified the flagellation factor FliF is a crucial EDM cooperator. To our knowledge, this is the first observation of the moonlighting function of FliF in DNA maintenance. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Soil Fertility, Salinity and Nematode Diversity Influenced by Tamarix ramosissima in Different Habitats in an Arid Desert Oasis

    Science.gov (United States)

    Yong-zhong, Su; Xue-fen, Wang; Rong, Yang; Xiao, Yang; Wen-jie, Liu

    2012-08-01

    The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The

  19. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  20. [Mutants of bacterium Azospirillum brasilense Sp245 with Omegon insertion in mmsB or fabG genes of lipid metabolism are defective in motility and flagellation].

    Science.gov (United States)

    Kovtunov, E A; Shelud'ko, A V; Chernyshova, M P; Petrova, L P; Katsy, E I

    2013-11-01

    Bacteria Azospirillum brasilense have mixed flagellation: in addition to the polar flagellum, numerous lateral flagella are formed in their cells on medium with increased density. Flagella determine the active swimming and swarming capacities of azospirilla. Using A. brasilense Sp245 as an example, we showed that the Omegon-Km artificial transposon insertion into the chromosomal gene for 3-hydroxyisobutyrate dehydrogenase (mmsB) was concurrent with the appearance of significant defects in the formation of polar flagella and with the paralysis of lateral flagella. The Sp245 mutant with the Omegon insertion into the plasmid AZOBR_p1-borne gene for 3-oxoacyl-[acyl-carrier protein]-reductase (fabG) showed the complete loss of flagella and the swarming capacity, as well as significant defects in polar flagellar assembly (though some cells are still motile in liquid medium). The viability of the A. brasilense Sp245 mutants with the Omegon insertion into the mmsB or fabG gene was not reduced. No considerable differences in the fatty acid composition of whole cell lipid extracts were found for the A. brasilense Sp245 strain and its mmsB and fabG mutants.

  1. Minimum Requirements of Flagellation and Motility for Infection of Agrobacterium sp. Strain H13-3 by Flagellotropic Bacteriophage 7-7-1

    Science.gov (United States)

    Yen, Jiun Y.; Broadway, Katherine M.

    2012-01-01

    The flagellotropic phage 7-7-1 specifically adsorbs to Agrobacterium sp. strain H13-3 (formerly Rhizobium lupini H13-3) flagella for efficient host infection. The Agrobacterium sp. H13-3 flagellum is complex and consists of three flagellin proteins: the primary flagellin FlaA, which is essential for motility, and the secondary flagellins FlaB and FlaD, which have minor functions in motility. Using quantitative infectivity assays, we showed that absence of FlaD had no effect on phage infection, while absence of FlaB resulted in a 2.5-fold increase in infectivity. A flaA deletion strain, which produces straight and severely truncated flagella, experienced a significantly reduced infectivity, similar to that of a flaB flaD strain, which produces a low number of straight flagella. A strain lacking all three flagellin genes is phage resistant. In addition to flagellation, flagellar rotation is required for infection. A strain that is nonmotile due to an in-frame deletion in the gene encoding the motor component MotA is resistant to phage infection. We also generated two strains with point mutations in the motA gene resulting in replacement of the conserved charged residue Glu98, which is important for modulation of rotary speed. A change to the neutral Gln caused the flagellar motor to rotate at a constant high speed, allowing a 2.2-fold-enhanced infectivity. A change to the positively charged Lys caused a jiggly motility phenotype with very slow flagellar rotation, which significantly reduced the efficiency of infection. In conclusion, flagellar number and length, as well as speed of flagellar rotation, are important determinants for infection by phage 7-7-1. PMID:22865074

  2. Effects of a copper-tolerant grass (Agrostis capillaris) on the ecosystem of a copper-contaminated arable soil

    Energy Technology Data Exchange (ETDEWEB)

    Boon, G.T. [State Univ. Groningen (Netherlands); Bouwman, L.A.; Bloem, J.; Roemkens, P.F.A.M. [Research Inst. for Agrobiology and Soil Fertility, Haren (Netherlands)

    1998-10-01

    To test how a dysfunctioning ecosystem of a severely metal-polluted soil responds to renewed plant growth, a pot experiment was conducted with soil from an experimental arable field with pH and copper gradients imposed 13 years ago. In this experiment, four pH/copper combinations from this field were either planted with a pH- and copper-resistant grass cultivar or remained fallow. During a 10-week period, the dynamics of the microbial activity and of the abundances of bacteria, protozoa. and nematodes were measured, as were the dynamics of several chemical soil parameters. After 13 years of copper, which had resulted in severely reduced crop growth, no effects were observed on bacterial numbers, respiration, or protozoan numbers, but bacterial growth was strongly reduced in the low pH plots, and even more so in low pH plots enriched with copper. Of the organisms, only nematodes were negatively affected under conditions of high copper load at low pH. In these plots, numbers belonging to all feeding categories were strongly reduced. Planting of a copper-tolerant grass variety, Agrostis capillaris L. var. Parys Mountain, resulted within 10 weeks in faster bacterial growth and more protozoa and bacterivorous nematodes in comparison with fallow controls; these effects were markedly strongest in the acidic, copper-enriched soils. During incubation, fungivorous nematodes increased in all treatments, in fallow and in planted pots and in the pots with high-copper, low-pH soil. The results of this experiment suggest that introduction of plant growth is one of the major causes of increased biological activity in acidic contaminated soils. Planting such soils with metal-tolerant plant species can reestablish the necessary food base to support soil organism growth, and this can lead to numerous positive effects, reversing the loss of soil functions due to the high copper levels under acidic conditions.

  3. Isolation of Antagonistic Endophytes from Banana Roots against Meloidogyne javanica and Their Effects on Soil Nematode Community

    Directory of Open Access Journals (Sweden)

    Lanxi Su

    2017-10-01

    Full Text Available Banana production is seriously hindered by Meloidogyne spp. all over the world. Endophytes are ideal candidates compared to pesticides as an environmentally benign agent. In the present study, endophytes isolated from banana roots infected by Meloidogyne spp. with different disease levels were tested in vitro, and in sterile and nature banana monoculture soils against Meloidogyne javanica. The proportion of antagonistic endophytes were higher in the roots of middle and high disease levels. Among those, bacteria were dominant, and Pseudomonas spp., Bacillus spp. and Streptomyces spp. showed more abundant populations. One strain, named as SA, with definite root inner-colonization ability was isolated and identified as Streptomyces sp. This strain showed an inhibiting rate of >50% in vitro and biocontrol efficiency of 70.7% in sterile soil against Meloidogyne javanica, compared to the control. Greenhouse experiment results showed that the strain SA exhibits excellent biological control ability for plant-parasites both in roots and in root-knot nematode infested soil. SA treatment showed a higher number of bacterivores, especially Mesorhabditis and Cephalobus. The maturity index was significantly lower, while enrichment index (EI was significantly higher in the SA treatment. In conclusion, this study presents an important potential application of the endophytic strain Streptomyces sp. for the control of plant-parasitic nematodes, especially Meloidogyne javanica, and presents the effects on the associated variation of the nematode community.

  4. Longitudinal variation of attributes from flagellate protozoan community in tropical streams = Variação longitudinal dos atributos da comunidade de protozoários flagelados de riachos tropicais

    Directory of Open Access Journals (Sweden)

    Janielly Carvalho Camargo

    2011-04-01

    Full Text Available This study verified the existence of longitudinal patterns in speciescomposition, richness, density and biomass of flagellate protozoan in tropical streams and investigated whether the possible zonation patterns are different between two periods of the year. For this, samplings were carried out in three regions from 10 streams, during the summer and winter. The flagellate community may be considered species-rich, because it was represented by 106 taxa, belonging to 8 orders and 1 residual group. The values of density and biomass are greater than those commonly found in other lotic environments, with mean values close to 2.3x104 cels. mL-1 and 150.8 ƒÊgC L-1. We did not observe any conspicuous and significant longitudinal pattern of the attributes from flagellates community. Only temporal variations of these attributes were verified. The Pearson Correlation evidenced that this temporal patterns was mainly driven by the nutrients availability, temperature and dissolved oxygen, since, the higher values of species richness, density and biomass were recorded during the winter, when the higher concentrations of nutrients and dissolved oxygen and lower temperatures were registered. In summary, the absence of patterns may be ascribed to the unidirectional and continuous flow from lotic environments.O presente estudo objetivou verificar a existencia de padroes longitudinais de composicao, riqueza de especies, densidade e biomassa da comunidade de protozoarios flagelados de riachos tropicais e, ainda, investigar se os possiveis padroes de zonacao sao diferentes entre dois periodos do ano. Foram realizadas coletas em tres regioes ao longo de dez riachos, durante os periodos de verao e inverno. A comunidade de protozoarios flagelados pode ser considerada bastante rica, sendo representada por 106 taxons pertencentes a oito ordens e um grupo residual. Os valores de densidade e biomassa registrados encontram-se acima dos valores comumente encontradosem

  5. Forest soils

    Science.gov (United States)

    Charles H. (Hobie) Perry; Michael C. Amacher

    2009-01-01

    Productive soils are the foundation of sustainable forests throughout the United States. Forest soils are generally subjected to fewer disturbances than agricultural soils, particularly those that are tilled, so forest soils tend to have better preserved A-horizons than agricultural soils. Another major contrast between forest and agricultural soils is the addition of...

  6. Soil and Soil Water Relationships

    OpenAIRE

    Easton, Zachary M.; Bock, Emily

    2017-01-01

    Discusses the relationships between soil, water and plants. Discusses different types of soil, and how these soils hold water. Provides information about differences in soil drainage. Discusses the concept of water balance.

  7. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    International Nuclear Information System (INIS)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs

  8. Bioremediation of petroleum hydrocarbons in soil: Activated sludge treatability study

    Energy Technology Data Exchange (ETDEWEB)

    Rue-Van Es, J.E. La.

    1993-05-01

    Batch activated sludge treatability studies utilizing petroleum hydrocarbon contaminated soils (diesel oil and leaded gasoline) were conducted to determine: initial indigenous biological activity in hydrocarbon-contaminated soils; limiting factors of microbiological growth by investigating nutrient addition, chemical emulsifiers, and co-substrate; acclimation of indigenous population of microorganisms to utilize hydrocarbons as sole carbon source; and temperature effects. Soil samples were taken from three different contaminated sites and sequencing batch reactors were run. Substrate (diesel fuel) and nutrient were added as determined by laboratory analysis of orthophosphate, ammonia nitrogen, chemical oxygen demand, and total organic carbon. Substrate was made available to the bacterial mass by experimenting with four different chemical emulsifiers. Indigenous microorganisms capable of biotransforming hydrocarbons seem to be present in all the contaminated soil samples received from all sites. Microscopic analysis revealed no visible activity at the beginning of the study and presence of flagellated protozoa, paramecium, rotifers, and nematodes at the end of the year. Nutrient requirements and the limiting factors in microorganism growth were determined for each site. An emulsifier was initially necessary to make the substrate available to the microbial population. Decreases in removal were found with lowered temperature. Removal efficiencies ranged from 50-90%. 95 refs., 11 figs., 13 tabs.

  9. Windstorms as mediator of soil nematode community changes: Evidence from European spruce forest

    Directory of Open Access Journals (Sweden)

    Renčo M.

    2017-03-01

    Full Text Available Nematode communities in a Norway spruce forest in High Tatra National Park, Slovakia were monitored for the period of several years (2006 and 2013. Unfortunately, in May 2014 natural windstorm damaged the forest. This disastrous event, together with preliminary obtained results allowed us to compare the direct impact of windstorm damage of forest habitat on soil nematode assemblages. The forest destruction by windstorm had a significant effect on the total nematode abundance, the abundance of omnivores and herbivores, as well as the nematode species diversity. The most dominant species, representing 55 % of the total nematode fauna, in the plot studied were Acrobeloides nanus followed by Malenchus exiguus, Filenchus vulgaris, Plectus communis, Plectus parvus and Tylencholaimus mirabilis. The abundance of bacterivorous signifi cantly increased after the windstorm, meanwhile the abundance of omnivores, fungivores, and herbivores ectoparasites and epidermal/root hair feeders showed an opposite trend. Of the evaluative indicators, Shannon species diversity (H’spp, maturity index (MI, maturity index 2-5 (MI2-5, sigma maturity index (ΣMI, enrichment index (EI and structure index (SI decreased significantly after windstorm. The EI and SI indexes characterized soil ecosystems before windstorm (2006 - 2013 as maturing with low or moderate disturbance, but soil ecosystems shortly after the windstorm (2014 were degraded and nutrient depleted. This also corresponded with graphical display of metabolic footprints characteristics of soil food web. Overall, the nematode communities differed significantly before and after forest damage. These results suggest the role of nematode communities as indicators of environment condition quality or its disruption.

  10. Soil algae

    African Journals Online (AJOL)

    Timothy Ademakinwa

    Also, the importance of algae in soil formation and soil fertility improvement cannot be over ... The presence of nitrogen fixing microalgae (Nostoc azollae) in the top soil of both vegetable ..... dung, fish food and dirty water from fish ponds on.

  11. Bacterial Feeders, the Nematode Caenorhabditis elegans and the Flagellate Cercomonas longicauda, have different Effects on Outcome of Competition among the Pseudomonas Biocontrol Strains CHA0 and DSS73

    DEFF Research Database (Denmark)

    Pedersen, Annette; Nybroe, Ole; Winding, Anne

    2009-01-01

    How bacterial feeding fauna affects colonization and survival of bacteria in soil is not well understood, which constrains the applicability of bacterial inoculants in agriculture. This study aimed to unravel how food quality of bacteria and bacterial feeders with different feeding habits (the......50090 or one of two biocontrol strains P. fluorescens CHA0 or Pseudomonas sp. DSS73) or combinations of two bacterial strains. DSM50090 is a suitable food bacterium, DSS73 is of intermediate food quality, and CHA0 is inedible to the bacterial feeders. Bacterial and protozoan cell numbers were measured...... predation pressure. Hence, the results suggested that the outcome of competition among bacteria depended on their ability to cope with the prevailing bacterial predator....

  12. Some aspects of interrelations between fungi and other biota in forest soil.

    Science.gov (United States)

    Krivtsov, Vladimir; Griffiths, Bryan S; Salmond, Ross; Liddell, Keith; Garside, Adam; Bezginova, Tanya; Thompson, Jacqueline A; Staines, Harry J; Watling, Roy; Palfreyman, John W

    2004-08-01

    Interrelations of fungal mycelium with other soil biota are of paramount importance in forestry and soil ecology. Here we present the results of statistical analysis of a comprehensive data set collected in the first (and the only) British fungus sanctuary over a period of four months. The variables studied included a number of soil properties, bacteria, protozoan flagellates, ciliates and amoebae, microbial and plant feeding nematodes, various microarthropods, and two fungal biomarkers--glomalin and ergosterol. One way ANOVA showed that the dynamics of the microbiota studied was influenced by seasonal changes. Superimposed on these changes, however, was variability due to biological interactions and habitat characteristics. Two fungal biomarkers, ergosterol and glomalin, were differently influenced by other biota and abiotic variables. The results indicate that the dynamics of soil fungi is influenced not only by soil microarthropods, but also by those found in forest litter. The overall outcome, therefore, is likely to be very complex and will depend upon specific conditions of any particular ecosystem.

  13. Soil pollution and soil protection

    OpenAIRE

    Haan, de, F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international Training Centre (PHLO) of Wageningen Agricultural University.Of the three environmental compartments air, water and soil, it is soil that varies most in composition under natural conditions. The effects o...

  14. Solarization soil

    International Nuclear Information System (INIS)

    Abou Ghraibe, W.

    1995-01-01

    Solar energy could be used in pest control, in soil sterilization technology. The technique consists of covering humid soils by plastic films steadily fixed to the soil. Timing must be in summer during 4-8 weeks, where soil temperature increases to degrees high enough to control pests or to produce biological and chemical changes. The technique could be applied on many pests soil, mainly fungi, bacteria, nematods, weeds and pest insects. The technique could be used in greenhouses as well as in plastic film covers or in orchards where plastic films present double benefits: soil sterilization and production of black mulch. Mechanism of soil solarization is explained. Results show that soil solarization can be used in pest control after fruit crops cultivation and could be a method for an integrated pest control. 9 refs

  15. Soils - Volusia County Soils (Polygons)

    Data.gov (United States)

    NSGIC Local Govt | GIS Inventory — Soils: 1:24000 SSURGO Map. Polygon boundaries of Soils in Volusia County, downloaded from SJRWMD and created by NRCS and SJRWMD. This data set is a digital version...

  16. Soil microbiology and soil health assessment

    Science.gov (United States)

    Soil scientists have long recognized the importance of soil biology in ecological health. In particular, soil microbes are crucial for many soil functions including decomposition, nutrient cycling, synthesis of plant growth regulators, and degradation of synthetic chemicals. Currently, soil biologis...

  17. Soil metagenomics and tropical soil productivity

    OpenAIRE

    Garrett, Karen A.

    2009-01-01

    This presentation summarizes research in the soil metagenomics cross cutting research activity. Soil metagenomics studies soil microbial communities as contributors to soil health.C CCRA-4 (Soil Metagenomics)

  18. Soil pollution and soil protection

    NARCIS (Netherlands)

    Haan, de F.A.M.; Visser-Reijneveld, M.I.

    1996-01-01

    This book was compiled from lecture handouts prepared for the international postgraduate course on soil quality, entitled 'Soil Pollution and Soil Protection' given jointly by the universities of Wageningen (The Netherlands), Gent and Leuven (Belgium), under the auspices of the international

  19. Estrutura da população de nematoides do solo em uma unidade de produção agroecológica no Estado do Rio de Janeiro, Brasil = Structure of soil nematode population under an organically managed crop in Rio de Janeiro State, Brazil.

    Directory of Open Access Journals (Sweden)

    Adriana França Figueira

    2011-04-01

    bacterivores and herbivore nematodes was high in all areas. Omnivores were found in lower abundance in all systems. The highest diversity of nematode families was found on pasture. In forests, the values of richness and abundance were always lower but constant in time, suggesting an ecosystem of higher stability. Soil management induced the proliferation of bacterivores usually associated with higher decomposition rates of organic matter. Herbivores and bacterivores were dominant in all systems, suggesting it is important to have high root (for pasture or high decomposition rates (for horticulture system. The relative distribution of trophic groups of soil nematodes proved to be a good way to determine the level of perturbation of ecosystems.

  20. Soil friability

    DEFF Research Database (Denmark)

    Munkholm, Lars Juhl

    2011-01-01

    This review gathers and synthesizes literature on soil friability produced during the last three decades. Soil friability is of vital importance for crop production and the impact of crop production on the environment. A friable soil is characterized by an ease of fragmentation of undesirably large...... aggregates/clods and a difficulty in fragmentation of minor aggregates into undesirable small elements. Soil friability has been assessed using qualitative field methods as well as quantitative field and laboratory methods at different scales of observation. The qualitative field methods are broadly used...... by scientists, advisors and farmers, whereas the quantitative laboratory methods demand specialized skills and more or less sophisticated equipment. Most methods address only one aspect of soil friability, i.e. either the strength of unconfined soil or the fragment size distribution after applying a stress. All...

  1. Soil Mechanics

    OpenAIRE

    Verruijt, A.

    2010-01-01

    This book is the text for the introductory course of Soil Mechanics in the Department of Civil Engineering of the Delft University of Technology, as I have given from 1980 until my retirement in 2002. It contains an introduction into the major principles and methods of soil mechanics, such as the analysis of stresses, deformations, and stability. The most important methods of determining soil parameters, in the laboratory and in situ, are also described. Some basic principles of applied mecha...

  2. Soil Solution

    NARCIS (Netherlands)

    Sonneveld, C.; Voogt, W.

    2009-01-01

    The characteristics of the soil solution in the root environment in the greenhouse industry differ much from those for field grown crops. This is caused firstly by the growing conditions in the greenhouse, which strongly differ from those in the field and secondly the function attributed to the soil

  3. Effects of altered temperature and precipitation on desert protozoa associated with biological soil crusts.

    Science.gov (United States)

    Darby, Brian J; Housman, David C; Zaki, Amr M; Shamout, Yassein; Adl, Sina M; Belnap, Jayne; Neher, Deborah A

    2006-01-01

    Biological soil crusts are diverse assemblages of bacteria, cyanobacteria, algae, fungi, lichens, and mosses that cover much of arid land soils. The objective of this study was to quantify protozoa associated with biological soil crusts and test the response of protozoa to increased temperature and precipitation as is predicted by some global climate models. Protozoa were more abundant when associated with cyanobacteria/lichen crusts than with cyanobacteria crusts alone. Amoebae, flagellates, and ciliates originating from the Colorado Plateau desert (cool desert, primarily winter precipitation) declined 50-, 10-, and 100-fold, respectively, when moved in field mesocosms to the Chihuahuan Desert (hot desert, primarily summer rain). However, this was not observed in protozoa collected from the Chihuahuan Desert and moved to the Sonoran desert (hot desert, also summer rain, but warmer than Chihuahuan Desert). Protozoa in culture began to encyst at 37 degrees C. Cysts survived the upper end of daily temperatures (37-55 degrees C), and could be stimulated to excyst if temperatures were reduced to 15 degrees C or lower. Results from this study suggest that cool desert protozoa are influenced negatively by increased summer precipitation during excessive summer temperatures, and that desert protozoa may be adapted to a specific desert's temperature and precipitation regime.

  4. Soil washing

    International Nuclear Information System (INIS)

    Neuman, R.S.; Diel, B.N.; Halpern, Y.

    1992-01-01

    Disposal of soils or sludges contaminated with organic and inorganic compounds is a major problem for environmental remedial activities, hazardous waste generators, and the disposal industry. This paper reports that many of these wastes can be effectively treated utilizing soil washing technology. CWM has been developing soil washing technology over the past few years, with extensive work being conducted on the bench scale. These studies have demonstrated consistently high removal efficiencies (95-99%) for a wide variety of PCB and petroleum hydrocarbon contaminated waste. Recently, a comprehensive study examining the removal of both organic and inorganic contraminants from two different types of surrogate soil matrices was completed. In addition to establishing the range of contaminants that can be removed from soil, a method for surfactant/water separation was evaluated. For example, using a thermal phase separation method, approximately 90% of the surfactant could be recovered from the water

  5. Evolution of parasitism in kinetoplastid flagellates

    Czech Academy of Sciences Publication Activity Database

    Lukeš, Julius; Skalický, Tomáš; Týč, Jiří; Votýpka, Jan; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 195, č. 2 (2014), s. 115-122 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Evolution * Phylogeny * Vectors * Diversity * Parasitism * Trypanosome Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  6. 124 Prevalence of Henneguya Chrysichthys (Flagellated Protozoa ...

    African Journals Online (AJOL)

    User

    oil immersion objectives (XL 00) of the microscope. Also a drop of whole blood was placed on a slide and allowed to clot, contraction of the clot left a circle of .... parasites invading fish body during wet season. The length of fish is usually.

  7. Soil Forming Factors

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil Forming Factors 2 A Top to Bottom Guide 3 Making a Soil Monolith 4 Soil Orders 5 State Soil Monoliths 6 Where in the Soil World Are You? >> A Top to

  8. What is Soil?

    Science.gov (United States)

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It All Wise Choices A World of Soils Soil? 2 The Skin of the Earth 3 Soil Ingredients 4 Soil Recipes 5 CLORPT for Short >> What Is Soil? Soils Make Life Plants grow in and from

  9. Agriculture: Soils

    Science.gov (United States)

    Productive soils, a favorable climate, and clean and abundant water resources are essential for growing crops, raising livestock, and for ecosystems to continue to provide the critical provisioning services that humans need.

  10. Soil Survey Geographic (SSURGO) - Magnesic Soils

    Data.gov (United States)

    California Natural Resource Agency — Magnesic soils is a subset of the SSURGO dataset containing soil family selected based on the magnesic content and serpentinite parent material. The following soil...

  11. Soil shrinkage characteristics in swelling soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to understand soil swelling and shrinkage mechanisms, and the development of desiccation cracks, to distinguish between soils having different magnitude of swelling, as well as the consequences on soil structural behaviour, to know methods to characterize soil swell/shrink potential and to construct soil shrinkage curves, and derive shrinkage indices, as well to apply them to assess soil management effects

  12. Soil moisture

    Science.gov (United States)

    L. L. Boersma; D. Kirkham; D. Norum; R. Ziemer; J. C. Guitjens; J. Davidson; J. N. Luthin

    1971-01-01

    Infiltration continues to occupy the attention of soil physicists and engineers. A theoretical and experimental analysis of the effect of surface sealing on infiltration by Edwards and Larson [1969] showed that raindrops reduced the infiltration rate by as much as 50% for a two-hour period of infiltration. The effect of raindrops on the surface infiltration rate of...

  13. Soil microbiology

    International Nuclear Information System (INIS)

    Wolf, D.C.; Legg, J.O.

    1984-01-01

    The major areas of soil microbiological and biochemical research which have involved both stable and radioactive isotopes are summarized. These include microbial decomposition of naturally occurring materials, microbial biomass, interactions of plants and microbes, denitrification, mineralization and immobilization of nitrogen and biological nitrogen fixation. (U.K.)

  14. Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation.

    NARCIS (Netherlands)

    Ayuke, F.O.; Brussaard, L.; Vanlauwe, B.; Six, J.; Lelei, D.K.; Kibunja, C.N.; Pulleman, M.M.

    2011-01-01

    Maintenance of soil organic matter through integrated soil fertility management is important for soil quality and agricultural productivity, and for the persistence of soil faunal diversity and biomass. Little is known about the interactive effects of soil fertility management and soil macrofauna

  15. Basic Soils. Revision.

    Science.gov (United States)

    Montana State Univ., Bozeman. Dept. of Agricultural and Industrial Education.

    This curriculum guide is designed for use in teaching a course in basic soils that is intended for college freshmen. Addressed in the individual lessons of the unit are the following topics: the way in which soil is formed, the physical properties of soil, the chemical properties of soil, the biotic properties of soil, plant-soil-water…

  16. Soil tillage

    OpenAIRE

    Dierauer, Hansueli

    2013-01-01

    The web platform offers a compilation of various formats and materials dealing with reduced tillage and its challenges regarding weeds. A selection of short movies about mechanical weeding, green manure and tailor-made machinery is listed. Leaflets and publications on reduced tillage can be downloaded. In there, different treatments and machinery are tested and compared to advice farmers on how to conserve soil while keeping weed under control. For Swiss farmers information on the leg...

  17. Soil sampling

    International Nuclear Information System (INIS)

    Fortunati, G.U.; Banfi, C.; Pasturenzi, M.

    1994-01-01

    This study attempts to survey the problems associated with techniques and strategies of soil sampling. Keeping in mind the well defined objectives of a sampling campaign, the aim was to highlight the most important aspect of representativeness of samples as a function of the available resources. Particular emphasis was given to the techniques and particularly to a description of the many types of samplers which are in use. The procedures and techniques employed during the investigations following the Seveso accident are described. (orig.)

  18. Soil use and management

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Volume 3 on Soil Use and Management covers: - Soil evaluation and land use planning - Soil and

  19. Soil properties and processes

    NARCIS (Netherlands)

    Hartemink, A.E.; McBratney, A.B.; White, R.E.

    2009-01-01

    This four-volume set, edited by leading experts in soil science, brings together in one collection a series of papers that have been fundamental to the development of soil science as a defined discipline. Tis volume 2 on Soil Properties and Processes covers: - Soil physics - Soil (bio)chemistry -

  20. Soil and Pesticides

    Science.gov (United States)

    ; Environment Human Health Animal Health Safe Use Practices Food Safety Environment Air Water Soil Wildlife Home Page Pesticides and the Environment Soil and Pesticides Related Topics: What Happens to Pesticides español Soil and Pesticides Soil can be degraded and the community of organisms living in the soil can

  1. Detailed Soils 24K

    Data.gov (United States)

    Kansas Data Access and Support Center — This data set is a digital soil survey and is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The information was...

  2. Indicators: Soil Chemistry

    Science.gov (United States)

    The chemical makeup of the soil can provide information on wetland condition, wetland water quality and services being provided by the wetland ecosystem. Analyzing soil chemistry reveals if the soil is contaminated with a toxic chemical or heavy metal.

  3. Tropical Soil Chemistry

    DEFF Research Database (Denmark)

    Borggaard, Ole K.

    and environmental protection. Tropical Soil Chemistry by Ole K. Borggaard provides an overview of the composition, occurrence, properties, processes, formation, and environmental vulnerability of various tropical soil types (using American Soil Taxonomy for classification). The processes and the external factors...... soil chemical issues are also presented to assess when, why, and how tropical soils differ from soils in other regions. This knowledge can help agricultural specialists in the tropics establish sustainable crop production. Readers are assumed to be familiar with basic chemistry, physics...

  4. Sorters for soil cleanup

    International Nuclear Information System (INIS)

    Bramlitt, E.T.; Johnson, N.R.; Tomicich, M.J.

    1991-01-01

    A soil sorter is a system with conveyor, radiation detectors, and a gate. The system activates the gate based on radiation measurements to sort soil to either clean or contaminated paths. Automatic soil sorters have been perfected for use in the cleanup of plutonium contaminated soil at Johnston Atoll. The cleanup processes soil through a plant which mines plutonium to make soil clean. Sorters at various locations in the plant effectively reduce the volume of soil for mining and they aid in assuring clean soil meets guidelines

  5. Soil-structure interaction including nonlinear soil

    OpenAIRE

    Gicev, Vlado

    2008-01-01

    There are two types of models of soil-structure system depending upon the rigidity of foundation: models with rigid and models with flexible foundation. Main features of the soil-structure interaction phenomenon: -wave scattering, -radiation damping, -reduction of the system frequencies. In this presentation, the influence of interaction on the development of nonlinear zones in the soil is studied.

  6. Soil structural behaviour of flooded soils

    International Nuclear Information System (INIS)

    Taboada, M.A.

    2004-01-01

    The objectives of this presentation are to: identify factors determining of the structural behaviour of flooded soils, as compared to those acting in upland soils; analyse the influence of reductive processes on aggregate stabilising agents; discuss mechanisms of structural deterioration and recovery during the flooding-drying cycle, on the basis of a case study: cattle trampling effects in the flooding Pampa of Argentina. Flooded soils, now known as Hydric soils, are characteristic of wetlands and irrigated fields cropped to rice (paddy soils). In them, water covers the soil, or is present either at or near the surface of the soil all year or for varying periods of time during the year. Hydric soils belong to different taxa of the FAO-UNESCO Soil Map (2000). Fluvisols, Planosols and Gleysols are widespread distributed in the globe. The generation of redoximorphic features is due to different causes in each of them. Fluvisols are covered part of the year by surface water from river overflows; Planosols are soils having an impervious Bt horizon, supporting perched water during short periods; and Gleysols are soils affected by stagnant water tables during long periods

  7. Visual soil evaluation and soil compaction research

    DEFF Research Database (Denmark)

    M.L. Guimarães, Rachel; Keller, Thomas; Munkholm, Lars Juhl

    2017-01-01

    Following on from discussions that took place during the 19th International Conference of the International Soil Tillage Research Organization (ISTRO) in Montevideo, Uruguay, in 2012, the ISTRO working groups “Visual Soil Examination and Evaluation” (VSEE) and “Subsoil Compaction” decided...... to organize a joint workshop. The present special issue is an outcome from the workshop on “Soil structural quality of tropical soils: Visual evaluation methods and soil compaction prevention strategies” that was held 26–29 May 2014 in Maringá, Paraná, Brazil. There has been a long-lasting interest in Visual...... Soil Evaluation (VSE). An ISTRO working group was established more than 30 years ago with the objectives to exchange knowledge and experiences on field methods of visual-tactile soil assessment and to foster international cooperation on new or refined methods. The three previous meeting of the group...

  8. 11 Soil Microbial Biomass

    African Journals Online (AJOL)

    186–198. Insam H. (1990). Are the soil microbial biomass and basal respiration governed by the climatic regime? Soil. Biol. Biochem. 22: 525–532. Insam H. D. and Domsch K. H. (1989). Influence of microclimate on soil microbial biomass. Soil Biol. Biochem. 21: 211–21. Jenkinson D. S. (1988). Determination of microbial.

  9. Hot fire, cool soil

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Fernandes, P.; Stoorvogel, J.J.; Fernandes, R.; Ferreira, A.J.D.; Ritsema, C.J.

    2013-01-01

    Wildfires greatly increase a landscape's vulnerability to flooding and erosion events by removing vegetation and changing soils. Fire damage to soil increases with increasing soil temperature, and, for fires where smoldering combustion is absent, the current understanding is that soil temperatures

  10. Visual soil evaluation

    DEFF Research Database (Denmark)

    Visual Soil Evaluation (VSE) provides land users and environmental authorities with the tools to assess soil quality for crop performance. This book describes the assessment of the various structural conditions of soil, especially after quality degradation such as compaction, erosion or organic...... and nutrient leaching, and for diagnosing and rectifying erosion and compaction in soils....

  11. Restoring Soil Quality to Mitigate Soil Degradation

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2015-05-01

    Full Text Available Feeding the world population, 7.3 billion in 2015 and projected to increase to 9.5 billion by 2050, necessitates an increase in agricultural production of ~70% between 2005 and 2050. Soil degradation, characterized by decline in quality and decrease in ecosystem goods and services, is a major constraint to achieving the required increase in agricultural production. Soil is a non-renewable resource on human time scales with its vulnerability to degradation depending on complex interactions between processes, factors and causes occurring at a range of spatial and temporal scales. Among the major soil degradation processes are accelerated erosion, depletion of the soil organic carbon (SOC pool and loss in biodiversity, loss of soil fertility and elemental imbalance, acidification and salinization. Soil degradation trends can be reversed by conversion to a restorative land use and adoption of recommended management practices. The strategy is to minimize soil erosion, create positive SOC and N budgets, enhance activity and species diversity of soil biota (micro, meso, and macro, and improve structural stability and pore geometry. Improving soil quality (i.e., increasing SOC pool, improving soil structure, enhancing soil fertility can reduce risks of soil degradation (physical, chemical, biological and ecological while improving the environment. Increasing the SOC pool to above the critical level (10 to 15 g/kg is essential to set-in-motion the restorative trends. Site-specific techniques of restoring soil quality include conservation agriculture, integrated nutrient management, continuous vegetative cover such as residue mulch and cover cropping, and controlled grazing at appropriate stocking rates. The strategy is to produce “more from less” by reducing losses and increasing soil, water, and nutrient use efficiency.

  12. Soil organic matter studies

    International Nuclear Information System (INIS)

    1977-01-01

    A total of 77 papers were presented and discussed during this symposium, 37 are included in this Volume II. The topics covered in this volume include: biochemical transformation of organic matter in soils; bitumens in soil organic matter; characterization of humic acids; carbon dating of organic matter in soils; use of modern techniques in soil organic matter research; use of municipal sludge with special reference to heavy metals constituents, soil nitrogen, and physical and chemical properties of soils; relationship of soil organic matter and plant metabolism; interaction between agrochemicals and organic matter; and peat. Separate entries have been prepared for those 20 papers which discuss the use of nuclear techniques in these studies

  13. Soil water management

    International Nuclear Information System (INIS)

    Nielsen, D.R.; Cassel, D.K.

    1984-01-01

    The use of radiation and tracer techniques in investigations into soil water management in agriculture, hydrology etc. is described. These techniques include 1) neutron moisture gauges to monitor soil water content and soil water properties, 2) gamma radiation attenuation for measuring the total density of soil and soil water content, 3) beta radiation attenuation for measuring changes in the water status of crop plants and 4) radioactive and stable tracers for identifying pathways, reactions and retention times of the constituents in soils and groundwater aquifers. The number and spacing of soil observations that should be taken to represent the management unit are also considered. (U.K.)

  14. Soil physical properties affecting soil erosion in tropical soils

    International Nuclear Information System (INIS)

    Lobo Lujan, D.

    2004-01-01

    The total vegetated land area of the earth is about 11,500 hectare. Of this, about 12% is in South America. Of this, about 14% is degraded area. Water erosion, chemical degradation, wind erosion, and physical degradation have been reported as main types of degradation. In South America water erosion is a major process for soil degradation. Nevertheless, water erosion can be a consequence of degradation of the soil structure, especially the functional attributes of soil pores to transmit and retain water, and to facilitate root growth. Climate, soil and topographic characteristics determine runoff and erosion potential from agricultural lands. The main factors causing soil erosion can be divided into three groups: Energy factors: rainfall erosivity, runoff volume, wind strength, relief, slope angle, slope length; Protection factors: population density, plant cover, amenity value (pressure for use) and land management; and resistance factors: soil erodibility, infiltration capacity and soil management. The degree of soil erosion in a particular climatic zone, with particular soils, land use and socioeconomic conditions, will always result from a combination of the above mentioned factors. It is not easy to isolate a single factor. However, the soil physical properties that determine the soil erosion process, because the deterioration of soil physical properties is manifested through interrelated problems of surface sealing, crusting, soil compaction, poor drainage, impeded root growth, excessive runoff and accelerated erosion. When an unprotected soil surface is exposed to the direct impact of raindrops it can produce different responses: Production of smaller aggregates, dispersed particles, particles in suspension and translocation and deposition of particles. When this has occurred, the material is reorganized at the location into a surface seal. Aggregate breakdown under rainfall depends on soil strength and a certain threshold kinetic energy is needed to start

  15. Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores

    Czech Academy of Sciences Publication Activity Database

    Šimek, Karel; Jürgens, K.; Nedoma, Jiří; Comerma, M.; Armengol, J.

    2000-01-01

    Roč. 22, č. 22 (2000), s. 43-56 ISSN 0948-3055 R&D Projects: GA ČR GA206/99/0028; GA ČR GA206/96/0012; GA ČR GA206/98/0727; GA AV ČR KSK2005601 Grant - others:MPS(DE) progrem1036; MPS(DE) P1011802; ES(XC) AT-LC Subject RIV: EE - Microbiology, Virology Impact factor: 2.190, year: 2000

  16. Cross-cutting activities: Soil quality and soil metagenomics

    OpenAIRE

    Motavalli, Peter P.; Garrett, Karen A.

    2008-01-01

    This presentation reports on the work of the SANREM CRSP cross-cutting activities "Assessing and Managing Soil Quality for Sustainable Agricultural Systems" and "Soil Metagenomics to Construct Indicators of Soil Degradation." The introduction gives an overview of the extensiveness of soil degradation globally and defines soil quality. The objectives of the soil quality cross cutting activity are: CCRA-4 (Soil Metagenomics)

  17. Soil stabilization 1982

    Science.gov (United States)

    Barenberg, E. J.; Thompson, M. R.; Tayabji, S. D.; Nussbaum, P. J.; Ciolko, A. T.

    Seven papers cover the following areas: design, construction and performance of lime, fly ash, and slag pavement; evaluation of heavily loaded cement stabilized bases; coal refuse and fly ash compositions; potential highway base course materials; lime soil mixture design considerations for soils of southeastern United States; short term active soil property changes caused by injection of lime and fly ash; soil cement for use in stream channel grade stabilization structures; and reaction products of lime treated southeastern soils.

  18. Soil hydraulic properties of Cuban soils

    International Nuclear Information System (INIS)

    Ruiz, M.E.; Medina, H.

    2004-01-01

    Because soil hydraulic properties are indispensable for determining soil water retention and soil water movement, their input for deterministic crop simulation models is essential. From these models is possible to access the effect of the weather changes, soil type or different irrigation schedules on crop yields. With these models, possibilities are provided to answer questions regarding virtual 'what happen if' experiments with a minimum of fieldwork. Nevertheless, determining soil hydraulic properties can be very difficult owing to unavailability of necessary equipment or the lack of personal with the proper knowledge for those tasks. These deficiencies are a real problem in developing countries, and even more so when there is not enough financial possibilities for research work. This paper briefly presents the way these properties have been accessed for Cuban soils, which methods have been used and the work now in progress. (author)

  19. [Microscopic soil fungi - bioindicators organisms contaminated soil].

    Science.gov (United States)

    Donerian, L G; Vodianova, M A; Tarasova, Zh E

    In the paper there are considered methodological issues for the evaluation of soil biota in terms of oil pollution. Experimental studies have shown that under the exposure of a various levels of oil pollution meeting certain gradations of the state and optimal alteration in microbocenosis in sod-podzolic soils, there is occurred a transformation of structure of the complex of micromycetes and the accumulation of toxic species, hardly typical for podzolic soils - primarily represantatives of the genus Aspergillus (A.niger and A. versicolor), Paecilomyces (P.variotii Bainer), Trichoderma (T.hamatum), the genus of phytopathogens Fusarium (F.oxysporum), dermatophytes of genus Sporothrix (S. schenckii) and dark-colored melanin containing fungi of Dematiaceae family. Besides that there are presented data on the study of microbiocenosis of the urban soil, the urban soil differed from the zone soil, but shaped in similar landscape and climatic conditions, and therefore having a tendency to a similar response from the side of microorganisms inhabiting the soil. Isolated complex of soil microscopic fungi is described by many authors as a complex, characteristic for soils of megalopolises. This allowed authors of this work to suggest that in urban soils the gain in the occurrence of pathogenic species micromycetes also increases against a background of chronic, continuously renewed inflow of petroleum hydrocarbons from various sources of pollution. Because changes in the species composition of micromycetes occurred in accordance with the increasing load of oil, so far as microscopic soil fungi can be recommended as a bioindicator organisms for oil. In the article there is also provided information about the distinctive features of modern DNA identification method of soil microscopic fungi and accepted in our country methodology of isolation of micromycetes with the use of a nutrient Czapek medium.

  20. Bacterivory by a Summer Assemblage of Nanoplankton in the Ross Sea, Antarctica: Mixotrophic Versus Heterotrophic Protists

    Science.gov (United States)

    Sanders, R. W.; Gast, R. J.

    2016-02-01

    Many protists traditionally described as phototrophic have recently been shown to have retained the primitive trait of phagotrophy, and thus function as mixotrophs. Mixotrophic nanoflagellates were identified in every sample examined from a summer cruise in the Ross Sea, Antarctica, where they often were more abundant than heterotrophic nanoflagellates that have previously been considered the major bacterivores in marine waters. Mixotrophs, identified by uptake of fluorescent tracers, comprised similar proportions (9-75%) of the total bacterivorous flagellates in summer as were previously determined for an earlier spring cruise in the Ross Sea. Protist diversity also was linked to functional bacterivores using a culture-independent method in which BrdU-labeled DNA of bacterial prey was incorporated into the DNA of eukaryotic grazers. Immunoprecipitation of the BrdU-labeld DNA was followed by high-throughput sequencing to identify a diverse group of bacterivores, including numerous uncultured eukaryotes. However, its utility for identification of mixotrophs was limited by the availability of sequences from known mixotrophs.

  1. Soil washing technology evaluation

    International Nuclear Information System (INIS)

    Suer, A.

    1995-04-01

    Environmental Restoration Engineering (ERE) continues to review innovative, efficient, and cost effective technologies for SRS soil and/or groundwater remediation. As part of this effort, this technical evaluation provides review and the latest information on the technology for SRS soil remediation. Additional technology evaluation reports will be issued periodically to update these reports. The purpose of this report is to review the soil washing technology and its potential application to SRS soil remediation. To assess whether the Soil Washing technology is a viable option for SRS soil remediation, it is necessary to review the technology/process, technology advantages/limitations, performance, applications, and cost analysis

  2. CONSIDERATIONS ON URBAN SOILS

    Directory of Open Access Journals (Sweden)

    Radu Lacatusu

    2005-10-01

    Full Text Available Urban soil is an material that has been manipulated, disturbed or transported by man’s activities in the urban environment and is used as a medium for plant growth and for constructions. The physical, chemical, and biological properties are generally less favorable as a rooting medium than soil found on the natural landscape. The main characteristics of urban soils are: great vertical and spatial variability; modified soil structure leading to compaction; presence of a surface crust; modified soil reaction, usually elevated; restricted aeration and water drainage; modified abundance of chemical elements, interrupted nutrient cycling and soil organism activity; presence of anthropic materials contaminants and pollutants; modified soil temperature regime. The urbic horizon is designated as U (always capital letter and for indication of processes are used different small letters. It is necessary elaboration a new classification of urban soils for our country.

  3. iSOIL: Interactions between soil related sciences - Linking geophysics, soil science and digital soil mapping

    Science.gov (United States)

    Dietrich, Peter; Werban, Ulrike; Sauer, Uta

    2010-05-01

    High-resolution soil property maps are one major prerequisite for the specific protection of soil functions and restoration of degraded soils as well as sustainable land use, water and environmental management. To generate such maps the combination of digital soil mapping approaches and remote as well as proximal soil sensing techniques is most promising. However, a feasible and reliable combination of these technologies for the investigation of large areas (e.g. catchments and landscapes) and the assessment of soil degradation threats is missing. Furthermore, there is insufficient dissemination of knowledge on digital soil mapping and proximal soil sensing in the scientific community, to relevant authorities as well as prospective users. As one consequence there is inadequate standardization of techniques. At the poster we present the EU collaborative project iSOIL within the 7th framework program of the European Commission. iSOIL focuses on improving fast and reliable mapping methods of soil properties, soil functions and soil degradation risks. This requires the improvement and integration of advanced soil sampling approaches, geophysical and spectroscopic measuring techniques, as well as pedometric and pedophysical approaches. The focus of the iSOIL project is to develop new and to improve existing strategies and innovative methods for generating accurate, high resolution soil property maps. At the same time the developments will reduce costs compared to traditional soil mapping. ISOIL tackles the challenges by the integration of three major components: (i)high resolution, non-destructive geophysical (e.g. Electromagnetic Induction EMI; Ground Penetrating Radar, GPR; magnetics, seismics) and spectroscopic (e.g., Near Surface Infrared, NIR) methods, (ii)Concepts of Digital Soil Mapping (DSM) and pedometrics as well as (iii)optimized soil sampling with respect to profound soil scientific and (geo)statistical strategies. A special focus of iSOIL lies on the

  4. Electrochemical soil remediation - accelerated soil weathering?

    Energy Technology Data Exchange (ETDEWEB)

    Ottosen, L.M.; Villumsen, A.; Hansen, H.K.; Jensen, P.E.; Pedersen, A.J. [Dept. of Civil Engineering, Technical Univ. of Denmark, Lyngby (Denmark); Ribeiro, A.B. [Dept. of Environmental Sciences and Engineering, New Univ. of Lisbon, Monte da Caparica (Portugal)

    2001-07-01

    In electrochemical soil remediation systems, where enhancement solutions and complexing agents are not used, a developing acidic front is mobilizing the heavy metals and the electric current is removing the mobilized elements from the soil. The hypotheses investigated in this paper is whether this process may be comparable to the chemical soil weathering that occurs in the environment due to the acidic rain, where the mobilized elements are removed from the soil by the penetrating water. Even through the weathering process is highly accelerated in the electrochemical cell. This paper shows results from electrodialytic remediation experiments performed with four different Danish heavy metal polluted soils. The main emphasis is laid on the relation between the developing acidic front and electromigration of Cu, Zn, Mn, Mg, Fe and Ca. (orig.)

  5. Soil conservation measures: exercises

    OpenAIRE

    Figueiredo, Tomás de; Fonseca, Felícia

    2009-01-01

    Exercises proposed under the topic of Soil Conservation Measures addresses to the design of structural measure, namely waterways in the context of a soil conservation plan. However, to get a better insight on the actual meaning of soil loss as a resource loss, a prior exercise is proposed to students. It concerns calculations of soil loss due to sheet (interrill) erosion and to gully erosion, and allows the perception through realistic number of the impact of these mechanism...

  6. Phosphorus in agricultural soils:

    NARCIS (Netherlands)

    Ringeval, Bruno; Augusto, Laurent; Monod, Hervé; Apeldoorn, van D.F.; Bouwman, A.F.; Yang, X.; Achat, D.L.; Chini, L.P.; Oost, van K.; Guenet, Bertrand; Wang, R.; Decharme, B.; Nesme, T.; Pellerin, S.

    2017-01-01

    Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we

  7. Thermal Properties of Soils

    Science.gov (United States)

    1981-12-01

    plagio - clase feldspar and pyroxene. The tine fraction may Surface area and its effects contain the clay "sheet" minerals (i.e. kaolinite. illite...Pyroxene, Kaoliniwe Unified By By Ortho. Plagio . amphibole, Basic clay min. Hematite Soil Soil soil petrogr. X.ray clase clase and Igneous and clay and no

  8. Restoration of contaminated soils

    International Nuclear Information System (INIS)

    Miranda J, Jose Eduardo

    2009-01-01

    A great variety of techniques are used for the restoration of contaminated soils. The contamination is present by both organic and inorganic pollutants. Environmental conditions and soil characteristics should take into account in order to implement a remedial technique. The bioremediation technologies are showed as help to remove a variety of soil contaminants. (author) [es

  9. Soil burden by radionuclides

    International Nuclear Information System (INIS)

    Blum, W.E.H.; Wenzel, W.W.

    1989-01-01

    Natural radioactivity - half-lifes and radiation type of man-made nuclides, radionuclide behaviour in soils, effects on soil condition and soil functions are described. The only mode of decontamination is by decay and thus primarily dependent on the half-life of nuclides

  10. Soil life under stress

    NARCIS (Netherlands)

    Tobor-Kaplon, Maria Agnieszka

    2006-01-01

    In this thesis I studied how long-term soil contamination affects microbial populations and processes, ecosystem properties and functional stability. I also investigated which parameters are suitable as indicators of soil quality in long-term contaminated soils. I found that contamination had a

  11. Biogeochemistry of paddy soils

    NARCIS (Netherlands)

    Kögel-Knabner, I.; Amelung, W.; Cao, Z.; Fiedler, S.; Frenzel, P.; Jahn, R.; Kalbitz, K.; Kölbl, A.; Schloter, M.

    2010-01-01

    Paddy soils make up the largest anthropogenic wetlands on earth. They may originate from any type of soil in pedological terms, but are highly modified by anthropogenic activities. The formation of these Anthrosols is induced by tilling the wet soil (puddling), and the flooding and drainage regime

  12. ISRIC - World Soil Information

    NARCIS (Netherlands)

    Dent, D.L.

    2006-01-01

    ISRICWorld Soil Information is an independent foundation, funded by the Netherlands Government with a mandate to increase knowledge of the land, its soils in particular, and to support the sustainable use of land resources; in short, to help people understand soils. Its aims are to -Inform and

  13. Harvesting soil with potatoes

    DEFF Research Database (Denmark)

    Egelyng, Henrik

    2017-01-01

    Norwegian authorities demand soil leaving potato packing plants to be deposited as waste. Depositing soil from potato processing plants is associated with significant cost for Norwegian producers. Therefore CYCLE investigated potato soil harvesting from an innovation and socio-economic perspective....

  14. Bioindication with soil microfauna

    International Nuclear Information System (INIS)

    Aescht, E.; Foissner, W.

    1992-01-01

    The state of a soil can be characterised through its inhabitant micro-, meso-, and macrofauna. For an appropriate assessment of soil quality at least one representative of each of these size categories should be studied (e.g. testacea, mites, earthworms). This contribution summarizes the insights gained from microscopic soil fauna in this context. The following practical examples are discussed: pesticides, organic and artificial fertilisers, soil compaction, ecological and conventional farming, recolonisation. The 'weighted cenosis index' represents a quantitative measure for the influence of anthropogenic activity on a soil. (orig.) [de

  15. Soil heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sherameti, Irena [Jena Univ. (Germany). Inst. fuer Allgemeine Botanik und Pflanzenphysiologie; Varma, Ajit (eds.) [Amity Univ., Uttar Pradesh (India). Amity Inst. of Microbial Technology; Amity Science, Technology and Innovation Foundation, Noida, UP (India)

    2010-07-01

    Human activities have dramatically changed the composition and organisation of soils. Industrial and urban wastes, agricultural application and also mining activities resulted in an increased concentration of heavy metals in soils. How plants and soil microorganisms cope with this situation and the sophisticated techniques developed for survival in contaminated soils is discussed in this volume. The topics presented include: the general role of heavy metals in biological soil systems; the relation of inorganic and organic pollutions; heavy metal, salt tolerance and combined effects with salinity; effects on abuscular mycorrhizal and on saprophytic soil fungi; heavy metal resistance by streptomycetes; trace element determination of environmental samples; the use of microbiological communities as indicators; phytostabilization of lead polluted sites by native plants; effects of soil earthworms on removal of heavy metals and the remediation of heavy metal contaminated tropical land. (orig.)

  16. From soil in art towards Soil Art

    Science.gov (United States)

    Feller, C.; Landa, E. R.; Toland, A.; Wessolek, G.

    2015-02-01

    The range of art forms and genres dealing with soil is wide and diverse, spanning many centuries and artistic traditions, from prehistoric painting and ceramics to early Renaissance works in Western literature, poetry, paintings, and sculpture, to recent developments in cinema, architecture and contemporary art. Case studies focused on painting, installation, and cinema are presented with the view of encouraging further exploration of art about, in, with, or featuring soil or soil conservation issues, created by artists, and occasionally scientists, educators or collaborative efforts thereof.

  17. Soil Organic Carbon in the Soil Scapes of Southeastern Tanzania

    OpenAIRE

    Rossi, Joni

    2009-01-01

    Soil organic carbon (SOC) is well known to maintain several functions. On the one hand, being the major component of soil organic matter (SOM),it is a determinant of soil physical and chemical properties, an important proxy for soil biological activity and a measure of soil productivity. Land use management that will enhance soil carbon (C) levels is therefore important for farmers and land use planners, particularly in semiarid and sub-humid Africa where severe soil degradation and desertifi...

  18. Mass Transport within Soils

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.

    2009-03-01

    Contaminants in soil can impact human health and the environment through a complex web of interactions. Soils exist where the atmosphere, hydrosphere, geosphere, and biosphere converge. Soil is the thin outer zone of the earth's crust that supports rooted plants and is the product of climate and living organisms acting on rock. A true soil is a mixture of air, water, mineral, and organic components. The relative proportions of these components determine the value of the soil for agricultural and for other human uses. These proportions also determine, to a large extent, how a substance added to soil is transported and/or transformed within the soil (Spositio, 2004). In mass-balance models, soil compartments play a major role, functioning both as reservoirs and as the principal media for transport among air, vegetation, surface water, deeper soil, and ground water (Mackay, 2001). Quantifying the mass transport of chemicals within soil and between soil and atmosphere is important for understanding the role soil plays in controlling fate, transport, and exposure to multimedia pollutants. Soils are characteristically heterogeneous. A trench dug into soil typically reveals several horizontal layers having different colors and textures. As illustrated in Figure 1, these multiple layers are often divided into three major horizons: (1) the A horizon, which encompasses the root zone and contains a high concentration of organic matter; (2) the B horizon, which is unsaturated, lies below the roots of most plants, and contains a much lower organic carbon content; and (3) the C horizon, which is the unsaturated zone of weathered parent rock consisting of bedrock, alluvial material, glacial material, and/or soil of an earlier geological period. Below these three horizons lies the saturated zone - a zone that encompasses the area below ground surface in which all interconnected openings within the geologic media are completely filled with water. Similarly to the unsaturated

  19. Assessment the effect of homogenized soil on soil hydraulic properties and soil water transport

    Science.gov (United States)

    Mohawesh, O.; Janssen, M.; Maaitah, O.; Lennartz, B.

    2017-09-01

    Soil hydraulic properties play a crucial role in simulating water flow and contaminant transport. Soil hydraulic properties are commonly measured using homogenized soil samples. However, soil structure has a significant effect on the soil ability to retain and to conduct water, particularly in aggregated soils. In order to determine the effect of soil homogenization on soil hydraulic properties and soil water transport, undisturbed soil samples were carefully collected. Five different soil structures were identified: Angular-blocky, Crumble, Angular-blocky (different soil texture), Granular, and subangular-blocky. The soil hydraulic properties were determined for undisturbed and homogenized soil samples for each soil structure. The soil hydraulic properties were used to model soil water transport using HYDRUS-1D.The homogenized soil samples showed a significant increase in wide pores (wCP) and a decrease in narrow pores (nCP). The wCP increased by 95.6, 141.2, 391.6, 3.9, 261.3%, and nCP decreased by 69.5, 10.5, 33.8, 72.7, and 39.3% for homogenized soil samples compared to undisturbed soil samples. The soil water retention curves exhibited a significant decrease in water holding capacity for homogenized soil samples compared with the undisturbed soil samples. The homogenized soil samples showed also a decrease in soil hydraulic conductivity. The simulated results showed that water movement and distribution were affected by soil homogenizing. Moreover, soil homogenizing affected soil hydraulic properties and soil water transport. However, field studies are being needed to find the effect of these differences on water, chemical, and pollutant transport under several scenarios.

  20. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  1. Modelling soil anaerobiosis from water retention characteristics and soil respiration

    NARCIS (Netherlands)

    Schurgers, G.; Dörsch, P.; Bakken, L.; Leffelaar, P.A.; Egil Haugen, L.

    2006-01-01

    Oxygen is a prerequisite for some and an inhibitor to other microbial functions in soils, hence the temporal and spatial distribution of oxygen within the soil matrix is crucial in soil biogeochemistry and soil biology. Various attempts have been made to model the anaerobic fraction of the soil

  2. Advances in soil dynamics

    DEFF Research Database (Denmark)

    Advances in Soil Dynamics, Volume 3, represents the culmination of the work undertaken by the Advances in Soil Dynamics Monograph Committee, PM-45-01, about 15 years ago to summarize important developments in this field over the last 35 years. When this project was initiated, the main goal...... was to abridge major strides made in the general area of soil dynamics during the sixties, seventies, and eighties. However, by about the mid-nineties soil dynamics research in the US and much of the developed world had come to a virtual standstill. Although significant progress was made prior to the mid......-nineties, we still do not have a sound fundamental knowledge of soil-machine and soil-plant interactions. It is the hope of the editors that these three volumes will provide a ready reference for much needed future research in this area....

  3. Soil-dithiocarbamate interactions

    International Nuclear Information System (INIS)

    Raghu, K.

    1980-01-01

    Soil is the ultimate repository of the pesticides applied for the control of plant pests and diseases. A variety of interactions like leaching, adsorption, chemical and microbial degradation etc take place between soil and pesticide. Results on work on two dialkyldithiocarbamates viz. thiram (tetramethylthiuram disulfide) and ziram (zinc dimethyldithiocarbamate) with respect to above interactions in soil are discussed and summarised. 35 S-labelled thiram and ziram were used in the studies. (author)

  4. Soil Management for Hardwood Production

    Science.gov (United States)

    W. M. Broadfoot; B. G. Blackmon; J. B. Baker

    1971-01-01

    Soil management is the key to successful hardwood management because soil properties are probably the most important determinants of forest productivity. Because of the lack of soil uniformity, however, many foresters have become frustrated with attempts to relate soil to satisfactory growth. Since soil scientists have been unable to predict site quality for trees in...

  5. Earthworms and Soil Pollutants

    Directory of Open Access Journals (Sweden)

    Kazuyoshi Tamae

    2011-11-01

    Full Text Available Although the toxicity of metal contaminated soils has been assessed with various bioassays, more information is needed about the biochemical responses, which may help to elucidate the mechanisms involved in metal toxicity. We previously reported that the earthworm, Eisenia fetida, accumulates cadmium in its seminal vesicles. The bio-accumulative ability of earthworms is well known, and thus the earthworm could be a useful living organism for the bio-monitoring of soil pollution. In this short review, we describe recent studies concerning the relationship between earthworms and soil pollutants, and discuss the possibility of using the earthworm as a bio-monitoring organism for soil pollution.

  6. Radioisotopes in soil science

    International Nuclear Information System (INIS)

    Kotur, S.C.

    2004-01-01

    Soils form a thin veneer of the Earth that sustain the entire flora and fauna of the terra firma. To that extent the soil as a natural resource is very precious and needs to be managed in a sustainable manner. The fate of degradation of pesticides in soil and build-up of heavy metals in the overall biosafety scenario is also studied gainfully using radioisotopes. Radioisotopes are a very potent tool in the hands of the Soil Scientists, perhaps, the most important among the peaceful applications in service of the mankind

  7. Microbiological soil regeneration

    International Nuclear Information System (INIS)

    Behrens, D.; Wiesner, J.

    1992-01-01

    The Interdiciplinary Task Force ''Environmental Biotechnology - Soil'' of DECHEMA aims to pool the knowledge potential of the Dechema study committees on environmental biotechnology and soil protection with a view to the advancement of microbiological soil decontamination techniques. This conference volume on the 9th expert meeting of Dechema on environmental protection subjects entitled ''Microbiological Soil Regeneration'', held on February 27th and 28th, 1991, and the subsequent compilation of results give an intermediate account of the ongoing work of the Dechema Task Force. (orig.) [de

  8. Soil physics and agriculture

    International Nuclear Information System (INIS)

    Dourado Neto, Durval; Reichardt, K.; Sparovek, G.

    2004-01-01

    The approach that integrates knowledge is very important in Agriculture, including farmers, extensionists, researchers and professors. The specialists, including the soil physicists, must have a global view of the crop production system. Therefore, their expertise can be useful for the society. The Essence of scientific knowledge is its practical application. The soil physics is a sub area of Agronomy. There are many examples of this specific subject related to Agriculture. This paper will focus, in general, the following cases: (i) erosion, environmental pollution and human health, (ii) plant population and distribution, soil fertility, evapo-transpiration and soil water flux density, and (iii) productivity, effective root depth, water deficit and yield

  9. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Hansen, Henrik K.; Ottosen, Lisbeth M.; Hansen, Lene

    1997-01-01

    It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective......It is not possible for all heavy metal polluted soils to remediate it by an applied electric field alone. A desorbing agent must in different cases be added to the soil in order to make the process possible or to make it cost effective...

  10. Soil microbial activities and its relationship with soil chemical ...

    African Journals Online (AJOL)

    The fields assessed are organically managed Soils (OMS), Inorganically Managed Soils (IMS) and an Uncultivated Land having grass coverage (ULS). Soil Microbial Respiration (SMR), Microbial Biomass Carbon (MBC), Microbial Biomass Nitrogen (MBN) and Microbial Biomass Phosphorus (MBP) were analyzed.

  11. Soil Survey Geographic (SSURGO) - Kinds and Distribution of Soils

    Data.gov (United States)

    California Natural Resource Agency — This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil Survey. The...

  12. Soil treatment engineering

    Science.gov (United States)

    Ivica, Kisic; Zeljka, Zgorelec; Aleksandra, Percin

    2017-10-01

    Soil is loose skin of the Earth, located between the lithosphere and atmosphere, which originated from parent material under the influence of pedogenetic processes. As a conditionally renewable natural resource, soil has a decisive influence on sustainable development of global economy, especially on sustainable agriculture and environmental protection. In recent decades, a growing interest prevails for non-production soil functions, primarily those relating to environmental protection. It especially refers to protection of natural resources whose quality depends directly on soil and soil management. Soil contamination is one of the most dangerous forms of soil degradation with the consequences that are reflected in virtually the entire biosphere, primarily at heterotrophic organisms, and also at mankind as a food consumer. Contamination is correlated with the degree of industrialization and intensity of agrochemical usage. It is typically caused by industrial activity, agricultural chemicals or improper disposal of waste. The negative effects caused by pollution are undeniable: reduced agricultural productivity, polluted water sources and raw materials for food are only a few of the effects of soil degradation, while almost all human diseases (excluding AIDS) may be partly related to the transport of contaminants, in the food chain or the air, to the final recipients - people, plants and animals. The remediation of contaminated soil is a relatively new scientific field which is strongly developing in the last 30 years and becoming a more important subject. In order to achieve quality remediation of contaminated soil it is very important to conduct an inventory as accurately as possible, that is, to determine the current state of soil contamination.

  13. Soil/Rock Properties Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Soil/Rock Properties LaboratoryLocation: Spokane SiteThe Soil/Rock Properties Laboratory is contained in the soils bay, a 4,700 sq. ft. facility that provides space...

  14. Soil-wood interactions

    NARCIS (Netherlands)

    Wal, van der Annemieke; klein Gunnewiek, Paulien; Boer, de Wietse

    2017-01-01

    Wood-inhabiting fungi may affect soil fungal communities directly underneath decaying wood via their exploratory hyphae. In addition, differences in wood leachates between decaying tree species may influence soil fungal communities. We determined the composition of fungi in 4-yr old decaying logs

  15. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  16. Soils, peatlands, and biomonitoring

    Science.gov (United States)

    James Doolittle

    2009-01-01

    Soils are three-dimensional (3D) natural bodies conSlStmg of unconsolidated mineral and organic materials that form a continuous blanket over most of the earth's land sUlface. At all sca les of measurements, soils are exceedingly complex and variable in biological, chemical, physical, mineralogical, and electromagnetic properties....

  17. Scour in cohesive soils

    Science.gov (United States)

    2015-05-01

    This study of scour in cohesive soils had two objectives. The first was to introduce and demonstrate a new ex situ erosion testing device (ESTD) that can mimic the near-bed flow of open channels to erode cohesive soils within a specified range of she...

  18. Contaminated soil concrete blocks

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Limbachiya, Mukesh C.; Kew, Hsein Y.

    2009-01-01

    According to Dutch law the contaminated soil needs to be remediated or immobilised. The main focus in this article is the design of concrete blocks, containing contaminated soil, that are suitable for large production, financial feasible and meets all technical and environmental requirements. In

  19. The Global Soil Partnership

    Science.gov (United States)

    Montanarella, Luca

    2015-07-01

    The Global Soil Partnership (GSP) has been established, following an intensive preparatory work of the Food and Agriculture Organization of the United Nations (FAO) in collaboration with the European Commission (EC), as a voluntary partnership coordinated by the FAO in September 2011 [1]. The GSP is open to all interested stakeholders: Governments (FAO Member States), Universities, Research Organizations, Civil Society Organizations, Industry and private companies. It is a voluntary partnership aiming towards providing a platform for active engagement in sustainable soil management and soil protection at all scales: local, national, regional and global. As a “coalition of the willing” towards soil protection, it attempts to make progress in reversing soil degradation with those partners that have a genuine will of protecting soils for our future generations. It openly aims towards creating an enabling environment, despite the resistance of a minority of national governments, for effective soil protection in the large majority of the countries that are genuinely concerned about the rapid depletion of their limited soil resources.

  20. Complex conductivity of soils

    NARCIS (Netherlands)

    Revil, A.; Coperey, A.; Shao, Z.; Florsch, N.; Fabricus, I.L.; Deng, Y.; Delsman, J.R.; Pauw, P.S.; Karaoulis, M.; Louw, P.G.B. de; Baaren, E.S. van; Dabekaussen, W.; Menkovic, A.; Gunnink, J.L.

    2017-01-01

    The complex conductivity of soils remains poorly known despite the growing importance of this method in hydrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including four peat samples) and one clean sand in the frequency range 0.1 Hz

  1. Soil Health Educational Resources

    Science.gov (United States)

    Hoorman, James J.

    2015-01-01

    Soil health and cover crops are topics of interest to farmers, gardeners, and students. Three soil health and cover crop demonstrations provide educational resources. Demonstrations one outlines two educational cover crop seed displays, including the advantages and disadvantages. Demonstration two shows how to construct and grow a cover crop root…

  2. The soil life cycle

    NARCIS (Netherlands)

    Leeuwen, van J.P.

    2016-01-01

    Soil is one of the most important natural resource for life on Earth and provides important ecosystem services, such as food production, carbon sequestration, water regulation and contaminant attenuation. Soil quality, defined as the soil’s ability to provide these services, is drastically

  3. Creative Soil Conservation

    Science.gov (United States)

    Smith, Martha

    2010-01-01

    Take plant lessons outdoors with this engaging and inquiry-based activity in which third-grade students learn how to apply soil conservation methods to growing plants. They also collect data and draw conclusions about the effectiveness of their method of soil conservation. An added benefit to this activity is that the third-grade students played…

  4. Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability

    Czech Academy of Sciences Publication Activity Database

    Kořený, Luděk; Sobotka, Roman; Kovářová, Julie; Gnipová, Anna; Flegontov, Pavel; Horváth, A.; Oborník, Miroslav; Ayala, F. J.; Lukeš, Julius

    2012-01-01

    Roč. 109, č. 10 (2012), s. 3808-3813 ISSN 0027-8424 R&D Projects: GA ČR GA204/09/1667; GA ČR GA206/08/1423; GA ČR(CZ) GAP305/11/2179 Institutional research plan: CEZ:AV0Z60220518; CEZ:AV0Z50200510 Keywords : cytochromes * respiration * sterols * protist Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 9.737, year: 2012 http://www.pnas.org/content/109/10/3808.full.pdf+html

  5. Differential response of marine flagellate communities to prokaryotic food quality

    Science.gov (United States)

    De Corte, D.; Paredes, G.; Sintes, E.; Herndl, G. J.

    2016-02-01

    Marine prokaryotes play a major role in the biogeochemical cycles. The main predators of prokaryotes are heterotrophic nanoflagellates (HNF). HNF are thus a major link connecting dissolved organic material through prokaryotic grazing to the higher trophic levels. However, little is known about the grazing specificity of HNF on specific prokaryotic taxa. Bacterial and archaeal microbes may have different nutritive values for the HNF communities, thus affecting growth rates and community composition of HNFs. In this study we investigated the influence of prey food quality on Cafeteria roenbergensis and on a natural HNF community isolated in the northern Adriatic Sea. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains and two fast growing marine Bacteria (Pseudomonas marina and Marinobacter algicola) were fed to the HNFs. The two fast growing bacterial strains resulted in high growth rates of Cafeteria roenbergensis and the mixed HNF community, while the two Nitrosococcus strains did not. Cafeteria roenbergensis fed on N. adriaticus but it did not graze N. piranensis, suggesting that the subtle metabolic and physiological differences between these two closely related thaumarchaeal strains affect the grazing pressure to which they are exposed. Our study also indicates that prokaryotic community composition influences the composition of the HNF community.

  6. Radioiodine in soils

    International Nuclear Information System (INIS)

    Szabova, T.

    1981-01-01

    Behaviour was studied of radioiodine in different soil subtypes sampled in the vicinity of the A-1 nuclear power plant at Jaslovske Bohunice. Radioiodine sorption is mainly affected by the amount of humus and by the clay fraction of soil. The highest sorption was recorded for meadow chernozem and the lowest for rendzina soils. At the same pH, soils with a higher level of organic matter adsorb more radioiodine. Upon applying radioiodate in soil samples, reduction to iodide takes place. Under the action of anions, radioiodine sorption decreases, the effect decreasing as follows: H 2 PO 4 - >SO 2- >Cl - >NO 3 - . The highest desorption was caused by 0.1 N NaOH solution. (author)

  7. Climate-smart soils

    Science.gov (United States)

    Paustian, Keith; Lehmann, Johannes; Ogle, Stephen; Reay, David; Robertson, G. Philip; Smith, Pete

    2016-04-01

    Soils are integral to the function of all terrestrial ecosystems and to food and fibre production. An overlooked aspect of soils is their potential to mitigate greenhouse gas emissions. Although proven practices exist, the implementation of soil-based greenhouse gas mitigation activities are at an early stage and accurately quantifying emissions and reductions remains a substantial challenge. Emerging research and information technology developments provide the potential for a broader inclusion of soils in greenhouse gas policies. Here we highlight ‘state of the art’ soil greenhouse gas research, summarize mitigation practices and potentials, identify gaps in data and understanding and suggest ways to close such gaps through new research, technology and collaboration.

  8. Electrodialytic soil remediation

    DEFF Research Database (Denmark)

    Karlsmose, Bodil; Ottosen, Lisbeth M.; Hansen, Lene

    1999-01-01

    The paper gives an overview of how heavy metals can be found in the soil and the theory of electrodialytic remediation. Basically electrodialytic remediation works by passing electric current through the soil, and the heavy metals in ionic form will carry some of the current. Ion-exchange membranes...... prevents the protons and the hydroxides ions from the electrode processes to enter the soil. The heavy metals are collected in a concentration compartment, which is separated from the soil by ion-exchange membranes. Examples from remediation experiments are shown, and it is demonstrated that it is possible...... to remediate soil polluted with heavy metals be this method. When adding desorbing agents or complexing agents, chosing the right current density, electrolyte and membranes, the proces can be optimised for a given remediation situation. Also electroosmosis is influencing the system, and if extra water...

  9. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  10. The Changing Model of Soil

    Science.gov (United States)

    Richter, D. D.; Yaalon, D.

    2012-12-01

    The contemporary genetic model of soil is changing rapidly in response to advances in soil science and to human and environmental forcings in the 21st century (Richter and Yaalon, 2012). Three ongoing changes in the model of soil include that: (1) lower soil boundaries are much deeper than the solum, historically the O to B horizons, (2) most soils are polygenetic paleosols, products of soil-forming processes that have ranged widely over soils' lifetimes, and (3) soils are globally human-natural bodies, no longer natural bodies. Together, these changes in the model of soil mean that human forcings are a global wave of soil polygenesis altering fluxes of matter and energy and transforming soil thermodynamics as potentially very deep systems. Because soils are non-linear systems resulting from high-order interactions of physics, chemistry, and biology, trajectories of how human forcings alter soils over decades are not readily predictable and require long-term soil observations. There is much to learn about how soils are changing internally as central components of management systems and externally in relation to wider environments. To be critical, research has been remarkably superficial in studies of soil, reductionist in approach, and lacking in time-series observations of responses to soil management. While this criticism may sound negative, it creates significant opportunities for contemporary soil scientists.

  11. Cultural Patterns of Soil Understanding

    Science.gov (United States)

    Patzel, Nikola; Feller, Christian

    2017-04-01

    Living soil supports all terrestrial ecosystems. The only global threat to earth's soils comes from human societies' land use and resource consuming activities. Soil perception and understanding by soil scientists are mainly drawn from biophysical parameters and found within Cartesian rationality, and not, or much less consciously from its rather intangible cultural dimension. But nevertheless, human soil perception, soil awareness, and soil relation are a cultural phenomenon, too. Aiming at soil awareness and education, it is of first order importance for the soil science community and the IUSS to study, discuss and communicate also about the cultural perceptions and representations of soil. For any society, cultural patterns in their relation to soil encompass: (i) General culturally underlying structures like (religious or 'secular') myths and belief systems. (ii) The personal, individual relation to/with and behaviour towards soil. This includes implicit concepts of soil being part integral concepts of landscape because the large majority of humans don't see soil as a distinct object. This communication would be to make evident: (i) the importance of cultural patterns and psychic/psychological background concerning soil, by case studies and overviews on different cultural areas, (ii) the necessity to develop reflections on this topic as well to communicate about soil with large public, as to raise awareness soil scientists to the cultural dimension of soils. A working group was recently founded at IUSS (Division 4) on this topic.

  12. Relaxometry in soil science

    Science.gov (United States)

    Schaumann, G. E.; Jaeger, F.; Bayer, J. V.

    2009-04-01

    NMR relaxometry is a sensitive, informative and promising method to study pore size distribution in soils as well as many kinds of soil physicochemical processes, among which are wetting, swelling or changes in the macromolecular status. Further, it is a very helpful method to study interactions between molecules in soil organic matter and it can serve to study the state of binding of water or organic chemicals to soil organic matter. The method of Relaxometry excite the nuclei of interest and their relaxation kinetics are observed. The relaxation time is the time constant of this first order relaxation process. Most applications of relaxometry concentrate on protons, addressing water molecules or H-containing organic molecules. In this context, 1H-NMR relaxometry may be used as an analysis method to determine water uptake characteristics of soils, thus gaining information about water distribution and mobility as well as pore size distribution in wet and moist samples. Additionally, it can also serve as a tool to study mobility of molecular segments in biopolymers. Principally, relaxometry is not restricted to protons. In soil science, relaxometry is also applied using deuterium, xenon and other nuclei to study pore size distribution and interactions. The relaxation time depends on numerous parameters like surface relaxivity, diffusion and interactions between nuclei as well as between nuclei and the environment. One- and two-dimensional methods address the relation between relaxation time and diffusion coefficients and can give information about the interconnectivity of pores. More specific information can be gained using field cycling techniques. Although proton NMR relaxometry is a very promising method in soil science, it has been applied scarcely up to now. It was used to assess changes in molecular rigidity of humic substances. A very recent study shows the potential of NMR relaxometry to assess the pore size distribution of soils in a fast and non

  13. Soil invertebrates as bioindicators of urban soil quality

    International Nuclear Information System (INIS)

    Santorufo, Lucia; Van Gestel, Cornelis A.M.; Rocco, Annamaria; Maisto, Giulia

    2012-01-01

    This study aimed at relating the abundance and diversity of invertebrate communities of urban soils to chemical and physical soil characteristics and to identify the taxa most sensitive or tolerant to soil stressors. The invertebrate community of five urban soils in Naples, Italy, was sampled. To assess soil quality invertebrate community indices (Shannon, Simpson, Menhinick and Pielou indices), Acarina/Collembola ratios, and the soil biological quality index (QBS) were calculated. The chemical and physical characteristics of the soils strongly differed. Abundance rather than taxa richness of invertebrates were more affected by soil characteristics. The community was more abundant and diverse in the soils with high organic matter and water content and low metal (Cu, Pb, Zn) concentrations. The taxa more resistant to the urban environment included Acarina, Enchytraeids, Collembola and Nematoda. Collembolans appeared particularly sensitive to changing soil properties. Among the investigated indices, QBS seems most appropriate for soil quality assessment. - Highlights: ► The abundance and diversity of invertebrate communities was related to properties and metal contents of urban soils. ► Several (biodiversity) indices were calculated and compared to evaluate soil quality. ► Metal contamination affected invertebrate density and diversity. ► The taxa more tolerant to metal contamination were Acarina, Enchytraeids, Collembola and Nematoda. ► The soil biological quality index QBS index was most appropriate for soil quality assessment. - Soil metal contamination negatively affected soil invertebrate abundance and diversity.

  14. Why is the influence of soil macrofauna on soil structure only considered by soil ecologists ?

    OpenAIRE

    Bottinelli, N.; Jouquet, Pascal; Capowiez, Y.; Podwojewski, Pascal; Grimaldi, Michel; Peng, X.

    2015-01-01

    These last twenty years have seen the development of an abundant literature on the influence of soil macrofauna on soil structure. Amongst these organisms, earthworms, termites and ants are considered to play a key role in regulating the physical, chemical and microbiological properties of soils. Due to these influential impacts, soil ecologists consider these soil macro-invertebrates as ‘soil engineers’ and their diversity and abundance are nowadays considered as relevant bioindi...

  15. Effects of straw mulching on soil evaporation during the soil thawing ...

    Indian Academy of Sciences (India)

    26

    Keywords: straw mulching, soil water evaporation, soil thawing period, freezing depth, soil liquid water .... moisture and the soil water evaporation process. The Songnen Plain ...... soils on soil infiltration and evaporation: Water Sci. Technol.

  16. Soil bacteria for remediation of polluted soils

    Energy Technology Data Exchange (ETDEWEB)

    Springael, D; Bastiaens, L; Carpels, M; Mergaey, M; Diels, L

    1996-09-18

    Soil bacteria, specifically adapted to contaminated soils, may be used for the remediation of polluted soils. The Flemish research institute VITO has established a collection of bacteria, which were isolated from contaminated areas. This collection includes microbacteria degrading mineral oils (Pseudomonas sp., Acinetobacter sp. and others), microbacteria degrading polycyclic aromatic hydrocarbons (genera Sphingomonas and Mycobacterium), microbacteria degrading polychlorobiphenyls (genus Ralstonia and strains related to beta-Proteobacteria), and metal resistant bacteria with plasmid borne resistances to Cd, Zn, Ni, Co, Cu, Hg, and Cr. Bench-scale reactors were developed to investigate the industrial feasibility of bioremediation. Batch Stirred Tank Reactors were used to evaluate the efficiency of oil degraders. Soils, contaminated with non-ferrous metals, were treated using a Bacterial Metal Slurry Reactor. It was found that the reduction of the Cd concentration may vary strongly from sample to sample: reduction factors vary from 95 to 50%. Is was shown that Cd contained in metallic sinter and biologically unavailable Cd could not be removed.

  17. BOREAS TE-01 SSA Soil Lab Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides a set of soil properties for the SSA. The soil samples were collected at sets of soil pits. Major soil properties include soil horizon; dry...

  18. BOREAS TE-01 SSA Soil Lab Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides a set of soil properties for the SSA. The soil samples were collected at sets of soil pits. Major soil properties include soil...

  19. Physical soil quality indicators for monitoring British soils

    Science.gov (United States)

    Corstanje, Ron; Mercer, Theresa G.; Rickson, Jane R.; Deeks, Lynda K.; Newell-Price, Paul; Holman, Ian; Kechavarsi, Cedric; Waine, Toby W.

    2017-09-01

    Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs) for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation) and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  20. Describing Soils: Calibration Tool for Teaching Soil Rupture Resistance

    Science.gov (United States)

    Seybold, C. A.; Harms, D. S.; Grossman, R. B.

    2009-01-01

    Rupture resistance is a measure of the strength of a soil to withstand an applied stress or resist deformation. In soil survey, during routine soil descriptions, rupture resistance is described for each horizon or layer in the soil profile. The lower portion of the rupture resistance classes are assigned based on rupture between thumb and…

  1. Combination of soil classification and some selected soil properties ...

    African Journals Online (AJOL)

    The advantage in the combined use of soil classification and top soil analysis for explaining crop yield variation was examined. Soil properties and yields of maize (Zea mays L) on different soil types were measured on farmers' fields for 2 years. Yield prediction improved from 2 per cent at the Order and Association levels to ...

  2. Physical soil quality indicators for monitoring British soils

    Directory of Open Access Journals (Sweden)

    R. Corstanje

    2017-09-01

    Full Text Available Soil condition or quality determines its ability to deliver a range of functions that support ecosystem services, human health and wellbeing. The increasing policy imperative to implement successful soil monitoring programmes has resulted in the demand for reliable soil quality indicators (SQIs for physical, biological and chemical soil properties. The selection of these indicators needs to ensure that they are sensitive and responsive to pressure and change, e.g. they change across space and time in relation to natural perturbations and land management practices. Using a logical sieve approach based on key policy-related soil functions, this research assessed whether physical soil properties can be used to indicate the quality of British soils in terms of their capacity to deliver ecosystem goods and services. The resultant prioritised list of physical SQIs was tested for robustness, spatial and temporal variability, and expected rate of change using statistical analysis and modelling. Seven SQIs were prioritised: soil packing density, soil water retention characteristics, aggregate stability, rate of soil erosion, depth of soil, soil structure (assessed by visual soil evaluation and soil sealing. These all have direct relevance to current and likely future soil and environmental policy and are appropriate for implementation in soil monitoring programmes.

  3. Iodine in soil

    International Nuclear Information System (INIS)

    Johanson, Karl Johan

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of 129 I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added 129 I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of 129 I in the vertical profile of soil - usually most of the 129 I in the upper layer - which also results in large variations in the 129 I uptake to plants

  4. Climate Strategic Soil Management

    Directory of Open Access Journals (Sweden)

    Rattan Lal

    2014-02-01

    Full Text Available The complex and strong link between soil degradation, climate change and food insecurity is a global challenge. Sustainable agricultural systems must be integral to any agenda to address climate change and variability, improve renewable fresh water supply and quality, restore degraded soils and ecosystems and advance food security. These challenges are being exacerbated by increasing population and decreasing per capita arable land area and renewable fresh water supply, the increasing frequency of extreme events, the decreasing resilience of agroecosystems, an increasing income and affluent lifestyle with growing preference towards meat-based diet and a decreasing soil quality and use efficiency of inputs. Reversing these downward spirals implies the implementation of proven technologies, such as conservation agriculture, integrated nutrient management, precision agriculture, agroforestry systems, etc. Restoration of degraded soil and desertified ecosystems and the creation of positive soil and ecosystem C budgets are important. Urban agriculture and green roofs can reduce the energy footprint of production chains for urban and non-urban areas and enhance the recycling of by-products. Researchable priorities include sustainable land use and soil/water management options, judicious soil governance and modus operandi towards payments to land managers for the provisioning of ecosystem services.

  5. Radon emanation from soils

    International Nuclear Information System (INIS)

    Markkanen, M.; Arvela, H.

    1992-01-01

    The results of gamma spectrometric sample measurements of radon ( 222 Rn) emanation coefficients and radium concentrations ( 226 Ra) from about 800 Finnish soil samples are presented. The radon emanation rate was measured in about 400 soil samples, using radon-tight cans and Lucas cells. The effects of water content and temperature on radon emanation were investigated, using various samples of different soil types. Radon emanation and the effect of water content on radon emanation were investigated separately for different grain sizes (samples of till). The results provide some information on radon emanation in different soil types and relate emanation in laboratory conditions to conditions in ground soil. In routine measurements of radon emanation from soil samples, use of a 5% water content was considered advisable. The correction coefficients of radon emanation varied between 0.3 and 1.5, depending on the water content and soil type. At 5% water content, hardly any difference was found between radon emanation at temperatures of 20 and 1 o C. Radon emanation was found to be an inverse function of grain sizes larger than 0.5 mm in diameter. (author)

  6. Soil washing treatability study

    International Nuclear Information System (INIS)

    Krstich, M.

    1995-12-01

    Soil washing was identified as a viable treatment process option for remediating soil at the FEMP Environmental Management Project (FEMP). Little information relative to the specific application and potential effectiveness of the soil washing process exists that applies to the types of soil at the FEMP. To properly evaluate this process option in conjunction with the ongoing FEMP Remedial Investigation/Feasibility Study (RI/FS), a treatability testing program was necessary to provide a foundation for a detailed technical evaluation of the viability of the process. In August 1991, efforts were initiated to develop a work plan and experimental design for investigating the effectiveness of soil washing on FEMP soil. In August 1992, the final Treatability Study Work Plan for Operable Unit 5: Soil Washing (DOE 1992) was issued. This document shall be referenced throughout the remainder of this report as the Treatability Study Work Plan (TSWP). The purpose of this treatability study was to generate data to support initial screening and the detailed analysis of alternatives for the Operable Unit 5 FS

  7. Iodine in soil

    Energy Technology Data Exchange (ETDEWEB)

    Johanson, Karl Johan [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Mycology and Pathology

    2000-12-01

    A literature study of the migration and the appearance of iodine isotopes in the bio-sphere particularly in soil is presented. Some important papers in the field of iodine appearance in soil and the appearance of {sup 129}I in the surroundings of reprocessing plants are discussed. The most important conclusions are: 1. Iodine binds to organic matter in the soil and also to some oxides of aluminium and iron. 2. If the iodine is not bound to the soil a large fraction of added {sup 129}I is volatilized after a rather short period. 3. The binding and also the volatilisation seems to be due to biological activity in the soil. It may take place within living microorganisms or by external enzymes excreted from microorganisms. 4. Due to variations in the composition of soil there may be a large variation in the distribution of {sup 129}I in the vertical profile of soil - usually most of the {sup 129}I in the upper layer - which also results in large variations in the {sup 129}I uptake to plants.

  8. Parameterization of radiocaesium soil-plant transfer using soil characteristics

    International Nuclear Information System (INIS)

    Konoplev, A. V.; Drissner, J.; Klemt, E.; Konopleva, I. V.; Zibold, G.

    1996-01-01

    A model of radionuclide soil-plant transfer is proposed to parameterize the transfer factor by soil and soil solution characteristics. The model is tested with experimental data on the aggregated transfer factor T ag and soil parameters for 8 forest sites in Baden-Wuerttemberg. It is shown that the integral soil-plant transfer factor can be parameterized through radiocaesium exchangeability, capacity of selective sorption sites and ion composition of the soil solution or the water extract. A modified technique of (FES) measurement for soils with interlayer collapse is proposed. (author)

  9. SOIL Geo-Wiki: A tool for improving soil information

    Science.gov (United States)

    Skalský, Rastislav; Balkovic, Juraj; Fritz, Steffen; See, Linda; van der Velde, Marijn; Obersteiner, Michael

    2014-05-01

    Crowdsourcing is increasingly being used as a way of collecting data for scientific research, e.g. species identification, classification of galaxies and unravelling of protein structures. The WorldSoilProfiles.org database at ISRIC is a global collection of soil profiles, which have been 'crowdsourced' from experts. This system, however, requires contributors to have a priori knowledge about soils. Yet many soil parameters can be observed in the field without specific knowledge or equipment such as stone content, soil depth or color. By crowdsourcing this information over thousands of locations, the uncertainty in current soil datasets could be radically reduced, particularly in areas currently without information or where multiple interpretations are possible from different existing soil maps. Improved information on soils could benefit many research fields and applications. Better soil data could enhance assessments of soil ecosystem services (e.g. soil carbon storage) and facilitate improved process-based ecosystem modeling from local to global scales. Geo-Wiki is a crowdsourcing tool that was developed at IIASA for land cover validation using satellite imagery. Several branches are now available focused on specific aspects of land cover validation, e.g. validating cropland extent or urbanized areas. Geo-Wiki Pictures is a smart phone application for collecting land cover related information on the ground. The extension of Geo-Wiki to a mobile environment provides a tool for experts in land cover validation but is also a way of reaching the general public in the validation of land cover. Here we propose a Soil Geo-Wiki tool that builds on the existing functionality of the Geo-Wiki application, which will be largely designed for the collection and sharing of soil information. Two distinct applications are envisaged: an expert-oriented application mainly for scientific purposes, which will use soil science related language (e.g. WRB or any other global reference

  10. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.; Freeman, H.D.; Baker, E.G.; Riemath, W.F.

    1991-01-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples

  11. Development of soil taxation and soil classification as furthered by the Austrian Soil Science Society

    Science.gov (United States)

    Baumgarten, Andreas

    2013-04-01

    Soil taxation and soil classification are important drivers of soil science in Austria. However, the tasks are quite different: whereas soil taxation aims at the evaluation of the productivity potential of the soil, soil classification focusses on the natural development and - especially nowadays - on functionality of the soil. Since the foundation of the Austrian Soil Science Society (ASSS), representatives both directions of the description of the soil have been involved in the common actions of the society. In the first years it was a main target to improve and standardize field descriptions of the soil. Although both systems differ in the general layout, the experts should comply with identical approaches. According to this work, a lot of effort has been put into the standardization of the soil classification system, thus ensuring a common basis. The development, state of the art and further development of both classification and taxation systems initiated and carried out by the ASSS will be shown.

  12. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    Science.gov (United States)

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. SoilEffects – start characterization of the experimental soil

    OpenAIRE

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun; Riley, Hugh

    2013-01-01

    This report describes the establishment, experimental plan and initial soil characteristics of the field experiment linked to the project “Effects of anaerobically digested manure on soil fertility - establishment of a long-term study under Norwegian conditions” (SoilEffects, 2010-14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on...

  14. Soil Microbes and soil microbial proteins: interactions with clay minerals

    International Nuclear Information System (INIS)

    Spence, A.; Kelleher, B. P.

    2009-01-01

    Bacterial enumeration in soil environments estimates that the population may reach approximately 10 1 0 g - 1 of soil and comprise up to 90% of the total soil microbial biomass. Bacteria are present in soils as single cells or multicell colonies and often strongly adsorb onto mineral surfaces such as sand and clay. The interactions of microbes and microbial biomolecules with these minerals have profound impacts on the physical, chemical and biological properties of soils. (Author)

  15. Trace elements in brazilian soils

    International Nuclear Information System (INIS)

    Rocha, Geraldo Cesar

    1995-01-01

    A literature revision on trace elements (Zn, B, Mn, Mo, Cu, Fe, and Cl) in Brazilian soils was prepared, with special attention to the chemical form and range in the soil, extraction methods and correlation of the amount in soils with soil properties

  16. Soil variability in mountain areas

    OpenAIRE

    Zanini, E.; Freppaz, M.; Stanchi, S.; Bonifacio, E.; Egli, M.

    2015-01-01

    The high spatial variability of soils is a relevant issue at local and global scales, and determines the complexity of soil ecosystem functions and services. This variability derives from strong dependencies of soil ecosystems on parent materials, climate, relief and biosphere, including human impact. Although present in all environments, the interactions of soils with these forming factors are particularly striking in mountain areas.

  17. Mycotoxins in the soil environment

    OpenAIRE

    Elmholt, S.

    2008-01-01

    The paper outlines the current knowledge concerning fate of mycotoxins in the soil environment, including - outline of mycotoxins addressed (trichothecenes, zearalenone, fumonisins, aflatoxins, ochratoxins and patulin) - routes by which the mycotoxins enter the soil environment - routes by which they are immobilised or removed from the soil environment - mycotoxigenic fungi and mycotoxins in the soil environment

  18. Diel hysteresis between soil respiration and soil temperature in a biological soil crust covered desert ecosystem.

    Science.gov (United States)

    Guan, Chao; Li, Xinrong; Zhang, Peng; Chen, Yongle

    2018-01-01

    Soil respiration induced by biological soil crusts (BSCs) is an important process in the carbon (C) cycle in arid and semi-arid ecosystems, where vascular plants are restricted by the harsh environment, particularly the limited soil moisture. However, the interaction between temperature and soil respiration remains uncertain because of the number of factors that control soil respiration, including temperature and soil moisture, especially in BSC-dominated areas. In this study, the soil respiration in moss-dominated crusts and lichen-dominated crusts was continuously measured using an automated soil respiration system over a one-year period from November 2015 to October 2016 in the Shapotou region of the Tengger Desert, northern China. The results indicated that over daily cycles, the half-hourly soil respiration rates in both types of BSC-covered areas were commonly related to the soil temperature. The observed diel hysteresis between the half-hourly soil respiration rates and soil temperature in the BSC-covered areas was limited by nonlinearity loops with semielliptical shapes, and soil temperature often peaked later than the half-hourly soil respiration rates in the BSC-covered areas. The average lag times between the half-hourly soil respiration rates and soil temperature for both types of BSC-covered areas were two hours over the diel cycles, and they were negatively and linearly related to the volumetric soil water content. Our results highlight the diel hysteresis phenomenon that occurs between soil respiration rates and soil temperatures in BSC-covered areas and the negative response of this phenomenon to soil moisture, which may influence total C budget evaluations. Therefore, the interactive effects of soil temperature and moisture on soil respiration in BSC-covered areas should be considered in global carbon cycle models of desert ecosystems.

  19. Soil treatment technologies combined

    International Nuclear Information System (INIS)

    Davis, K.J.; Russell, D.J.

    1993-01-01

    The Superfund Amendments and Reauthorization Act (SARA) presents a legislative mandate to select effective and long-term remediation options. SARA has spurred the development of innovative technologies and other remedial alternatives that can be applied to the diverse contaminated media at hazardous waste sites. Even though many treatment technologies have been investigated for use at hazardous waste sites, only a few have been used successfully. Soil vapor extraction and soil composting have achieved cleanup goals at sites with soils contaminated with solvents, aromatic hydrocarbons and petroleum derivatives. With the increased use of innovative on-site technologies, the integration of multiple technologies to remediate sites with complex contaminants becomes a viable and cost-effective remedial alternative. Soil vapor extraction and composting have been applied successfully as individual technologies at hazardous waste sites. An integration of these two technologies also has been used to remediate a complex contaminated site

  20. Soils - Mean Permeability

    Data.gov (United States)

    Kansas Data Access and Support Center — This digital spatial data set provides information on the magnitude and spatial pattern of depth-weighted, mean soil permeability throughout the State of Kansas. The...

  1. Chemically stabilized soils.

    Science.gov (United States)

    2009-12-01

    The objective of this study was to conduct laboratory evaluations to quantify the effects of compaction and moisture conditions on the strength of chemically treated soils typical utilized in pavement construction in Mississippi.

  2. CPC Soil Moisture

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of a file containing 1/2 degree monthly averaged soil moisture water height equivalents for the globe from 1948 onwards. Values are...

  3. The Soil Mobilome

    DEFF Research Database (Denmark)

    Luo, Wenting

    Soil is considered a reservoir of diverse bacterial cellular functions, of which resistance mechanisms towards biological antimicrobial agents are of substantial interest to us. Previous findings report that the long-term accumulation of copper in an agricultural soil significantly affects......-selected for among natural bacterial populations. One possible explanation is the horizontal transfer of resistance genes among soil bacteria mediated by mobile genetic elements, such as plasmids, integrons, transposons and bacteriophages, of which copper and antibiotic resistance genes can be linked on the same...... mobile elements. To test this hypothesis, we collected non-polluted and CuSO4- contaminated soil samples and attempted to describe the co-selection of plasmid-encoded copper and antimicrobial resistance via both an endogenous plasmid isolation approach as well as a plasmid metagenomic approach...

  4. Thermal soil remediation

    International Nuclear Information System (INIS)

    Nelson, D.

    1999-01-01

    The environmental properties and business aspects of thermal soil remediation are described. Thermal soil remediation is considered as being the best option in cleaning contaminated soil for reuse. The thermal desorption process can remove hydrocarbons such as gasoline, kerosene and crude oil, from contaminated soil. Nelson Environmental Remediation (NER) Ltd. uses a mobile thermal desorption unit (TDU) with high temperature capabilities. NER has successfully applied the technology to target heavy end hydrocarbon removal from Alberta's gumbo clay in all seasons. The TDU consist of a feed system, a counter flow rotary drum kiln, a baghouse particulate removal system, and a secondary combustion chamber known as an afterburner. The technology has proven to be cost effective and more efficient than bioremediation and landfarming

  5. Soil degradation in Pakistan

    International Nuclear Information System (INIS)

    Khan, M.R.

    2005-01-01

    This paper diagnoses the issues involved behind the current state, usage, interactions and linkages in the soils in Pakistan. The condition of soils is deteriorating due to developmental and environmental factors such as soil degradation, water pollution, fauna degeneration etc. Issues, problems and constraints faced in the management and usage of soils are diagnosed at different levels in the ecosystems predominant in Pakistan. The research questions propose effective solutions, types of instruments, methods or processes to resolve the issues within the various areas or ecosystems in the most sustainable and effective manner [23]. Biological solutions and methods can be applied at the sub-system level by private individuals or communities at a lower cost, and at a more localized level than engineering methods. Engineering methods may be suited for interventions at a system level rather than at a sub-system level; but even at this level they will be complementary with biological methods. (author)

  6. Attenuation coefficients of soils

    International Nuclear Information System (INIS)

    Martini, E.; Naziry, M.J.

    1989-01-01

    As a prerequisite to the interpretation of gamma-spectrometric in situ measurements of activity concentrations of soil radionuclides the attenuation of 60 to 1332 keV gamma radiation by soil samples varying in water content and density has been investigated. A useful empirical equation could be set up to describe the dependence of the mass attenuation coefficient upon photon energy for soil with a mean water content of 10%, with the results comparing well with data in the literature. The mean density of soil in the GDR was estimated at 1.6 g/cm 3 . This value was used to derive the linear attenuation coefficients, their range of variation being 10%. 7 figs., 5 tabs. (author)

  7. THE DIRT ON SOILS

    Science.gov (United States)

    This keynote presentation will provide basic information regarding the physical, chemical, and biological importance of soils to 50 second grade teachers within the Cincinnati Public School System as part of a Hamilton County Department of Environmenatl Services Sois Workshop.

  8. Soil Gas Sampling

    Science.gov (United States)

    Field Branches Quality System and Technical Procedures: This document describes general and specific procedures, methods and considerations to be used and observed when collecting soil gas samples for field screening or laboratory analysis.

  9. Soil Sampling Operating Procedure

    Science.gov (United States)

    EPA Region 4 Science and Ecosystem Support Division (SESD) document that describes general and specific procedures, methods, and considerations when collecting soil samples for field screening or laboratory analysis.

  10. Soil strength and forest operations

    OpenAIRE

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management discussed. The study is largely restricted to sandy and loamy soils because of their importance for Dutch forestry.

    Soil strength, defined as the resistance of soil structure against the impa...

  11. Effect of rainfall infiltration into unsaturated soil using soil column

    Science.gov (United States)

    Ibrahim, A.; Mukhlisin, M.; Jaafar, O.

    2018-02-01

    Rainfall especially in tropical region caused infiltration to the soil slope. The infiltration may change pore water pressure or matric suction of the soil. The event of rainfall infiltration into soil is a complex mechanism. Therefore, the main objectives of this research paper is to study the influence of rainfall intensity and duration that changed pore water pressure to soil. There are two types of soils used in this study; forest soil and kaolin. Soil column apparatus is used for experiments. Rainfall were applied to the soil and result for 3, 6, 12, 24, 72, 120 and 168 hours were retrieved. Result shows that for the both types of soil, the negative pore water pressures were increased during wetting process and gradually decreased towards drying process. The results also show that pore water pressure at top part was increased greatly as the wetting process started compared to the middle and bottom part of the column.

  12. Apparent soil electrical conductivity in two different soil types

    Directory of Open Access Journals (Sweden)

    Wilker Nunes Medeiros

    Full Text Available ABSTRACT Mapping the apparent soil electrical conductivity (ECa has become important for the characterization of the soil variability in precision agriculture systems. Could the ECa be used to locate the soil sampling points for mapping the chemical and physical soil attributes? The objective of this work was to examine the relations between ECa and soil attributes in two fields presenting different soil textures. In each field, 50 sampling points were chosen using a path that presented a high variability of ECa obtained from a preliminary ECa map. At each sampling point, the ECa was measured in soil depths of 0-20, 0-40 and 0-60 cm. In addition, at each point, soil samples were collected for the determination of physical and chemical attributes in the laboratory. The ECa data obtained for different soil depths was very similar. A large number of significant correlations between ECa and the soil attributes were found. In the sandy clay loam texture field there was no correlation between ECa and organic matter or between ECa and soil clay and sand content. However, a significant positive correlation was shown for the remaining phosphorus. In the sandy loam texture field the ECa had a significant positive correlation with clay content and a significant negative correlation with sand content. The results suggest that the mapping of apparent soil electrical conductivity does not replace traditional soil sampling, however, it can be used as information to delimit regions in a field that have similar soil attributes.

  13. Soil degradation effect on biological activity in Mediterranean calcareous soils

    Science.gov (United States)

    Roca-Pérez, L.; Alcover-Sáez, S.; Mormeneo, S.; Boluda, R.

    2009-04-01

    Soil degradation processes include erosion, organic matter decline, compaction, salinization, landslides, contamination, sealing and biodiversity decline. In the Mediterranean region the climatological and lithological conditions, together with relief on the landscape and anthropological activity are responsible for increasing desertification process. It is therefore considered to be extreme importance to be able to measure soil degradation quantitatively. We studied soil characteristics, microbiological and biochemical parameters in different calcareous soil sequences from Valencia Community (Easter Spain), in an attempt to assess the suitability of the parameters measured to reflect the state of soil degradation and the possibility of using the parameters to assess microbiological decline and soil quality. For this purpose, forest, scrubland and agricultural soil in three soil sequences were sampled in different areas. Several sensors of the soil biochemistry and microbiology related with total organic carbon, microbial biomass carbon, soil respiration, microorganism number and enzyme activities were determined. The results show that, except microorganism number, these parameters are good indicators of a soil biological activity and soil quality. The best enzymatic activities to use like indicators were phosphatases, esterases, amino-peptidases. Thus, the enzymes test can be used as indicators of soil degradation when this degradation is related with organic matter losses. There was a statistically significant difference in cumulative O2 uptake and extracellular enzymes among the soils with different degree of degradation. We would like to thank Spanish government-MICINN for funding and support (MICINN, project CGL2006-09776).

  14. Soil physics and the water management of spatially variable soils

    International Nuclear Information System (INIS)

    Youngs, E.G.

    1983-01-01

    The physics of macroscopic soil-water behaviour in inert porous materials has been developed by considering water flow to take place in a continuum. This requires the flow region to consist of an assembly of representative elementary volumes, repeated throughout space and small compared with the scale of observations. Soil-water behaviour in swelling soils may also be considered as a continuum phenomenon so long as the soil is saturated and swells and shrinks in the normal range. Macroscale heterogeneity superimposed on the inherent microscale heterogeneity can take many forms and may pose difficulties in the definition and measurement of soil physical properties and also in the development and use of predictive theories of soil-water behaviour. Thus, measurement techniques appropriate for uniform soils are often inappropriate, and criteria for soil-water management, obtained from theoretical considerations of behaviour in equivalent uniform soils, are not applicable without modification when there is soil heterogeneity. The spatial variability of soil-water properties is shown in results from field experiments concerned with water flow measurements; these illustrate both stochastic and deterministic heterogeneity in soil-water properties. Problems of water management of spatially variable soils when there is stochastic heterogeneity appear to present an insuperable problem in the application of theory. However, for soils showing deterministic heterogeneity, soil-water theory has been used in the solution of soil-water management problems. Thus, scaling using similar media theory has been applied to the infiltration of water into soils that vary over a catchment area. Also, the drain spacing to control the water-table height in soils in which the hydraulic conductivity varies with depth has been calculated using groundwater seepage theory. (author)

  15. Predicting Soil-Air and Soil-Water Transport Properties During Soil Vapor Extraction

    DEFF Research Database (Denmark)

    Poulsen, Tjalfe

    Increased application of in-situ technology for control and removal of volatile organic compounds (VOC) in the subsurface has made the understanding of soil physical properties and their impact upon contaminant transport even more important. Knowledge of contaminant transport is important when...... properties of undisturbed soil from more easily measurable soil properties are developed. The importance of soil properties with respect to contaminant migration during remediation by soil vapor extraction (SVE) in the unsaturated zone was investigated using numerical simulations....

  16. The Influence of Soil Particle on Soil Condensation Water

    OpenAIRE

    Hou Xinwei; Chen Hao; Li Xiangquan; Cui Xiaomei; Liu Lingxia; Wang Zhenxing

    2013-01-01

    The experiment results showed that the indoor experiment formed from the volume of soil hygroscopic water increased gradually with decreasing size of soil particles. In the outdoor experiments, the results showed that the formed condensation water in medium sand was greater than it was in fine sand; the soil hot condensation water was mainly formed in the top layer of soil between 0-5 cm. We also found that covering the soil surface with stones can increase the volume of formed soil condensat...

  17. Pesticide-soil microflora interactions in flooded rice soils

    International Nuclear Information System (INIS)

    Sethunathan, N.; Siddaramappa, R.; Siddarame Gowda, T.K.; Rajaram, K.P.; Barik, S.; Rao, V.R.

    1976-01-01

    Isotope studies revealed that gamma and beta isomers of HCH (hexachlorocyclohexane) decomposed rapidly in nonsterile soils capable of attaining redox potentials of -40 to -100mV within 20 days after flooding. Degradation was slow, however, in soils low in organic matter and in soils with extremely low pH and positive potentials, even after several weeks of flooding. Under flooded conditions, endrin decomposed to six metabolites in most soils. There is evidence that biological hydrolysis of parathion is more widespread than hitherto believed, particularly under flooded soil conditions. Applications of benomyl (fungicide) to a simulated-oxidized zone of flooded soils favoured heterotrophic nitrification. (author)

  18. Soil functional types: surveying the biophysical dimensions of soil security

    Science.gov (United States)

    Cécillon, Lauric; Barré, Pierre

    2015-04-01

    Soil is a natural capital that can deliver key ecosystem services (ES) to humans through the realization of a series of soil processes controlling ecosystem functioning. Soil is also a diverse and endangered natural resource. A huge pedodiversity has been described at all scales, which is strongly altered by global change. The multidimensional concept soil security, encompassing biophysical, economic, social, policy and legal frameworks of soils has recently been proposed, recognizing the role of soils in global environmental sustainability challenges. The biophysical dimensions of soil security focus on the functionality of a given soil that can be viewed as the combination of its capability and its condition [1]. Indeed, all soils are not equal in term of functionality. They show different processes, provide different ES to humans and respond specifically to global change. Knowledge of soil functionality in space and time is thus a crucial step towards the achievement soil security. All soil classification systems incorporate some functional information, but soil taxonomy alone cannot fully describe the functioning, limitations, resistance and resilience of soils. Droogers and Bouma [2] introduced functional variants (phenoforms) for each soil type (genoform) so as to fit more closely to soil functionality. However, different genoforms can have the same functionality. As stated by McBratney and colleagues [1], there is a great need of an agreed methodology for defining the reference state of soil functionality. Here, we propose soil functional types (SFT) as a relevant classification system for the biophysical dimensions of soil security. Following the definition of plant functional types widely used in ecology, we define a soil functional type as "a set of soil taxons or phenoforms sharing similar processes (e.g. soil respiration), similar effects on ecosystem functioning (e.g. primary productivity) and similar responses to global change (land-use, management or

  19. European Atlas of Soil Biodiversity

    DEFF Research Database (Denmark)

    Krogh (contributor), Paul Henning

    Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species on...... Biodiversity is an essential reference to the many and varied aspects of soil. The overall goal of this work is to convey the fundamental necessity to safeguard soil biodiversity in order to guarantee life on this planet.......Soil is one of the fundamental components for supporting life on Earth. Most ecosystem processes and global functions that occur within soil are driven by living organisms that, in turn, sustain life above ground. However, despite the fact that soils are home to a quarter of all living species...... on Earth, life within the soil is often hidden away and suffers by being 'out of sight and out of mind'. What kind of life is there in soil? What do we mean by soil biodiversity? What is special about soil biology? How do our activities affect soil ecosystems? What are the links between soil biota...

  20. Modelling the Impact of Soil Management on Soil Functions

    Science.gov (United States)

    Vogel, H. J.; Weller, U.; Rabot, E.; Stößel, B.; Lang, B.; Wiesmeier, M.; Urbanski, L.; Wollschläger, U.

    2017-12-01

    Due to an increasing soil loss and an increasing demand for food and energy there is an enormous pressure on soils as the central resource for agricultural production. Besides the importance of soils for biomass production there are other essential soil functions, i.e. filter and buffer for water, carbon sequestration, provision and recycling of nutrients, and habitat for biological activity. All these functions have a direct feed back to biogeochemical cycles and climate. To render agricultural production efficient and sustainable we need to develop model tools that are capable to predict quantitatively the impact of a multitude of management measures on these soil functions. These functions are considered as emergent properties produced by soils as complex systems. The major challenge is to handle the multitude of physical, chemical and biological processes interacting in a non-linear manner. A large number of validated models for specific soil processes are available. However, it is not possible to simulate soil functions by coupling all the relevant processes at the detailed (i.e. molecular) level where they are well understood. A new systems perspective is required to evaluate the ensemble of soil functions and their sensitivity to external forcing. Another challenge is that soils are spatially heterogeneous systems by nature. Soil processes are highly dependent on the local soil properties and, hence, any model to predict soil functions needs to account for the site-specific conditions. For upscaling towards regional scales the spatial distribution of functional soil types need to be taken into account. We propose a new systemic model approach based on a thorough analysis of the interactions between physical, chemical and biological processes considering their site-specific characteristics. It is demonstrated for the example of soil compaction and the recovery of soil structure, water capacity and carbon stocks as a result of plant growth and biological

  1. Soil mechanics and analysis of soils overlying cavitose bedrock

    International Nuclear Information System (INIS)

    Drumm, E.C.

    1987-08-01

    The stability of the residual soils existing at the West Chestnut Ridge Site, Oak Ridge Reservation, Tennessee, was evaluated. The weathered bedrock below this residual soil contains numerous solution cavities, and several karst features were identified. The West Chestnut Ridge site was evaluated with respect to deformation and collapse of the residual soil into the bedrock cavities. A finite element analysis investigated the effects of bedrock cavity radius, thickness of soil overburden, and surface surcharge upon the deformational and stability characteristics of the residual soil. The results indicate that for small cavity radii, the thickness of the soil cover has little effect on the zone of yielded soil. For large cavity radii, a smaller zone of distressed soil occurs under thick soil cover than under thin soil cover. Dimensionless curves are presented to enable the prediction of the vertical extent of the zone of yielded soil for a range of site geometries. Although the thick soil deposits (100 feet or greater) typically found on the ridges result in high stresses adjacent to the cavity, the area of the distressed or yielded soil is small and unlikely to extend to the surface. In addition, the surface deformation or subsidence is expected to be minimal. Thus, the siting of waste facilities on the ridges where the overburden is maximum would tend to reduce the effects of deformation into the cavities. 29 refs., 37 figs., 7 tabs

  2. Spice In Martian Soil

    Science.gov (United States)

    Seiferlin, K.; Spohn, T.; Spice Team

    The Netlander mission offers a unique opportunity to study the surface and the inte- rior of Mars at four different locations at the same time. In addition to real "network"- science, where the presence of four stations is a 'must' to address global science as- pects, local, landing site-related instruments can more than double our knowledge of the surface of Mars, compared to the three landing sites (Viking 1 and 2, Pathfinder) we are currently familiar with. The SPICE instrument will characterize the soil at the landing sites. Force sensors integrated into the seismometer legs (three per station) will determine the mechanical strength of the soil. Thermal sensors will measure the local soil temperature, the thermal inertia and the thermal diffusivity independently, thus allowing us to determine the thermal conductivity and the volumetric heat capac- ity of the soil. These properties will tell us about (1) soil cementation ("duricrust"), (2) volatile exchange with the atmosphere, (3) grain size, (4) near-surface stratigra- phy, and (5) will finally provide ground truth for remote sensing data such as that from Mars Global Surveyor's thermal emission spectrometer.

  3. Soil organic matter

    International Nuclear Information System (INIS)

    1976-01-01

    The nature, content and behaviour of the organic matter, or humus, in soil are factors of fundamental importance for soil productivity and the development of optimum conditions for growth of crops under diverse temperate, tropical and arid climatic conditions. In the recent symposium on soil organic matter studies - as in the two preceding ones in 1963 and 1969 - due consideration was given to studies involving the use of radioactive and stable isotopes. However, the latest symposium was a departure from previous efforts in that non-isotopic approaches to research on soil organic matter were included. A number of papers dealt with the behaviour and functions of organic matter and suggested improved management practices, the use of which would contribute to increasing agricultural production. Other papers discussed the turnover of plant residues, the release of plant nutrients through the biodegradation of organic compounds, the nitrogen economy and the dynamics of transformation of organic forms of nitrogen. In addition, consideration was given to studies on the biochemical transformation of organic matter, characterization of humic acids, carbon-14 dating and the development of modern techniques and their impact on soil organic matter research

  4. Lasagna trademark soil remediation

    International Nuclear Information System (INIS)

    1996-04-01

    Lasagna trademark is an integrated, in situ remediation technology being developed which remediates soils and soil pore water contaminated with soluble organic compounds. Lasagna trademark is especially suited to sites with low permeability soils where electroosmosis can move water faster and more uniformly than hydraulic methods, with very low power consumption. The process uses electrokinetics to move contaminants in soil pore water into treatment zones where the contaminants can be captured and decomposed. Initial focus is on trichloroethylene (TCE), a major contaminant at many DOE and industrial sites. Both vertical and horizontal configurations have been conceptualized, but fieldwork to date is more advanced for the vertical configuration. Major features of the technology are electrodes energized by direct current, which causes water and soluble contaminants to move into or through the treatment layers and also heats the soil; treatment zones containing reagents that decompose the soluble organic contaminants or adsorb contaminants for immobilization or subsequent removal and disposal; and a water management system that recycles the water that accumulates at the cathode (high pH) back to the anode (low pH) for acid-base neutralization. Alternatively, electrode polarity can be reversed periodically to reverse electroosmotic flow and neutralize pH

  5. A light-induced shortcut in the planktonic microbial loop

    Science.gov (United States)

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martínez, Rodrigo A.; Schabhüttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-07-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  6. A light-induced shortcut in the planktonic microbial loop

    KAUST Repository

    Ptacnik, Robert

    2016-07-11

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  7. A light-induced shortcut in the planktonic microbial loop

    KAUST Repository

    Ptacnik, Robert; Gomes, Ana; Royer, Sarah-Jeanne; Berger, Stella A.; Calbet, Albert; Nejstgaard, Jens C.; Gasol, Josep M.; Isari, Stamatina; Moorthi, Stefanie D.; Ptacnikova, Radka; Striebel, Maren; Sazhin, Andrey F.; Tsagaraki, Tatiana M.; Zervoudaki, Soultana; Altoja, Kristi; Dimitriou, Panagiotis D.; Laas, Peeter; Gazihan, Ayse; Martí nez, Rodrigo A.; Schabhü ttl, Stefanie; Santi, Ioulia; Sousoni, Despoina; Pitta, Paraskevi

    2016-01-01

    Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.

  8. Water repellent soils: the case for unsaturated soil mechanics

    Directory of Open Access Journals (Sweden)

    Beckett Christopher

    2016-01-01

    Full Text Available Water repellent (or “hydrophobic” or “non-wetting” soils have been studied by soil scientists for well over a century. These soils are typified by poor water infiltration, which leads to increased soil erosion and poor crop growth. However, the importance of water repellence on determining soil properties is now becoming recognised by geotechnical engineers. Water repellent soils may, for example, offer novel solutions for the design of cover systems overlying municipal or mine waste storage facilities. However, investigations into factors affecting their mechanical properties have only recently been initiated. This purpose of this paper is to introduce geotechnical engineers to the concept of water repellent soils and to discuss how their properties can be evaluated under an unsaturated soils framework. Scenarios in which water repellent properties might be relevant in geotechnical applications are presented and methods to quantify these properties in the laboratory and in the field examined.

  9. SOIL WASHING TREATABILITY TESTS FOR PESTICIDE- CONTAMINATED SOIL

    Science.gov (United States)

    The 1987 Sand Creek Operable Unit 5 record of decision (ROD) identified soil washing as the selected technology to remediate soils contaminated with high levels of organochlorine pesticides, herbicides, and metals. Initial treatability tests conducted to assess the applicability...

  10. Soil Spectroscopy: An Alternative to Wet Chemistry for Soil Monitoring

    DEFF Research Database (Denmark)

    Nocita, M.; Stevens, A.; van Wesemael, Bas

    2015-01-01

    The soil science community is facing a growing demand of regional, continental, and worldwide databases in order to monitor the status of the soil. However, the availability of such data is very scarce. Cost-effective tools to measure soil properties for large areas (e.g., Europe) are required....... Soil spectroscopy has shown to be a fast, cost-effective, envi-ronmental-friendly, nondestructive, reproducible, and repeatable analytical technique. The main aim of this paper is to describe the state of the art of soil spectroscopy as well as its potential to facilitating soil monitoring. The factors...... constraining the application of soil spectroscopy as an alternative to traditional laboratory analyses, together with the limits of the technique, are addressed. The paper also highlights that the widespread use of spectroscopy to monitor the status of the soil should be encouraged by (1) the creation...

  11. Shaping an Optimal Soil by Root-Soil Interaction.

    Science.gov (United States)

    Jin, Kemo; White, Philip J; Whalley, William R; Shen, Jianbo; Shi, Lei

    2017-10-01

    Crop production depends on the availability of water and mineral nutrients, and increased yields might be facilitated by a greater focus on roots-soil interactions. Soil properties affecting plant growth include drought, compaction, nutrient deficiency, mineral toxicity, salinity, and submergence. Plant roots respond to the soil environment both spatially and temporally by avoiding stressful soil environments and proliferating in more favorable environments. We observe that crops can be bred for specific root architectural and biochemical traits that facilitate soil exploration and resource acquisition, enabling greater crop yields. These root traits affect soil physical and chemical properties and might be utilized to improve the soil for subsequent crops. We argue that optimizing root-soil interactions is a prerequisite for future food security. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Soil biogeochemistry, plant physiology and phytoremediation of cadmium contaminated soils

    Science.gov (United States)

    Cadmium (Cd) loading in soil and the environment has been accelerated worldwide due to enhanced industrialization and intensified agricultural production, particularly in the developing countries. Soil Cd pollution, resulting from both anthropogenic and geogenic sources, has posed an increasing chal...

  13. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material

    Science.gov (United States)

    Steven, Blaire; Gallegos-Graves, La Verne; Belnap, Jayne; Kuske, Cheryl R.

    2013-01-01

    Biological soil crusts (biocrusts) are common to drylands worldwide. We employed replicated, spatially nested sampling and 16S rRNA gene sequencing to describe the soil microbial communities in three soils derived from different parent material (sandstone, shale, and gypsum). For each soil type, two depths (biocrusts, 0–1 cm; below-crust soils, 2–5 cm) and two horizontal spatial scales (15 cm and 5 m) were sampled. In all three soils, Cyanobacteria and Proteobacteria demonstrated significantly higher relative abundance in the biocrusts, while Chloroflexi and Archaea were significantly enriched in the below-crust soils. Biomass and diversity of the communities in biocrusts or below-crust soils did not differ with soil type. However, biocrusts on gypsum soil harbored significantly larger populations of Actinobacteria and Proteobacteria and lower populations of Cyanobacteria. Numerically dominant operational taxonomic units (OTU; 97% sequence identity) in the biocrusts were conserved across the soil types, whereas two dominant OTUs in the below-crust sand and shale soils were not identified in the gypsum soil. The uniformity with which small-scale vertical community differences are maintained across larger horizontal spatial scales and soil types is a feature of dryland ecosystems that should be considered when designing management plans and determining the response of biocrusts to environmental disturbances.

  14. Stress transmission in soil

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per

    We urgently need increased quantitative knowledge on stress transmission in real soils loaded with agricultural machinery. 3D measurements of vertical stresses under tracked wheels were performed in situ in a Stagnic Luvisol (clay content 20 %) continuously cropped with small grain cereals......). Seven load cells were inserted horizontally from a pit with minimal disturbance of soil in each of three depths (0.3, 0.6 and 0.9 m), covering the width of the wheeled area. The position of the wheel relative to the transducers was recorded using a laser sensor. Finally, the vertical stresses near...... the soil-tyre interface were measured in separate tests by 17 stress transducers across the width of the tyres. The results showed that the inflation pressure controlled the level of maximum stresses at 0.3 m depth, while the wheel load was correlated to the measured stresses at 0.9 m depth. This supports...

  15. Cleaning the soil

    International Nuclear Information System (INIS)

    Stegmann, R.

    1993-01-01

    Volume 6 of the Hamburg Reports contains contributions from scientists from the Special Research Field 188 'Cleaning up Contaminated Soils' of the Technical University of Hamburg-Harburg and the University of Hamburg and of experts from science and from the practical field. The soil science and analytical aspects of the biological and chemical/physical treatment processes are shown and open questions specific to processes are dealt with. Scientific results are compared with practical experience here. The evaluation of treated soils for reuse in the environment is a very important question, which is explained in the first articles here. Examples of case studies are shown in the last part of the volume. (orig.) [de

  16. Complex conductivity of soils

    DEFF Research Database (Denmark)

    Revil, A.; Coperey, A.; Shao, Z.

    2017-01-01

    The complex conductivity of soil remains poorly known despite the growing importance of this method in hyrogeophysics. In order to fill this gap of knowledge, we investigate the complex conductivity of 71 soils samples (including 4 peat samples) and one clean sand in the frequency range 0.1 Hertz...... to 45 kHz. The soil samples are saturated with 6 different NaCl brines with conductivities (0.031, 0.53, 1.15, 5.7, 14.7, and 22 S m-1, NaCl, 25°C) in order to determine their intrinsic formation factor and surface conductivity. This dataset is used to test the predictions of the dynamic Stern...

  17. Bioremediation of contaminated soil

    International Nuclear Information System (INIS)

    Balba, M.T.; Ying, A.C.; McNeice, T.G.

    1992-01-01

    Microorganisms, especially bacteria, yeast and fungi are capable of degrading many kinds of xenobiotic compounds and toxic chemicals such as petroleum hydrocarbon compounds. These microorganisms are ubiquitous in nature and, despite their enormous versatility, there are numerous cases in which long-term contamination of soil and groundwater has been observed. The persistence of the contamination is usually caused by the inability of microorganisms to metabolize these compounds under the prevailing environmental condition. This paper reports on biological remediation of contaminated sites which can be accomplished by using naturally-occurring microorganisms to treat the contaminants. The development of a bioremediation program for a specific contaminated soil system usually includes: A thorough site/soil/waste characterization; Treatability studies

  18. Soil warming increases metabolic quotients of soil microorganisms without changes in temperature sensitivity of soil respiration

    Science.gov (United States)

    Marañón-Jiménez, Sara; Soong, Jenniffer L.; Leblans, Niki I. W.; Sigurdsson, Bjarni D.; Dauwe, Steven; Fransen, Erik; Janssens, Ivan A.

    2017-04-01

    Increasing temperatures can accelerate soil organic matter (SOM) decomposition and release large amounts of CO2 to the atmosphere, potentially inducing climate change feedbacks. Alterations to the temperature sensitivity and metabolic pathways of soil microorganisms in response to soil warming can play a key role in these soil carbon (C) losses. Here, we present results of an incubation experiment using soils from a geothermal gradient in Iceland that have been subjected to different intensities of soil warming (+0, +1, +3, +5, +10 and +20 °C above ambient) over seven years. We hypothesized that 7 years of soil warming would led to a depletion of labile organic substrates, with a subsequent decrease of the "apparent" temperature sensitivity of soil respiration. Associated to this C limitation and more sub-optimal conditions for microbial growth, we also hypothesized increased microbial metabolic quotients (soil respiration per unit of microbial biomass), which is associated with increases in the relative amount of C invested into catabolic pathways along the warming gradient. Soil respiration and basal respiration rates decreased with soil warming intensity, in parallel with a decline in soil C availability. Contrasting to our first hypothesis, we did not detect changes in the temperature sensitivity of soil respiration with soil warming or on the availability of nutrients and of labile C substrates at the time of incubation. However, in agreement to our second hypothesis, microbial metabolic quotients (soil respiration per unit of microbial biomass) increased at warmer temperatures, while the C retained in biomass decreased as substrate became limiting. Long-term (7 years) temperature increases thus triggered a change in the metabolic functioning of the soil microbial communities towards increasing energy costs for maintenance or resource acquisition, thereby lowering the capacity of C retention and stabilization of warmed soils. These results highlight the need

  19. Soils, time, and primate paleoenvironments

    Science.gov (United States)

    Bown, T.M.; Kraus, M.J.

    1993-01-01

    Soils are the skin of the earth. From both poles to the equator, wherever rocks or sediment are exposed at the surface, soils are forming through the physical and chemical action of climate and living organisms. The physical attributes (color, texture, thickness) and chemical makeup of soils vary considerably, depending on the composition of the parent material and other variables: temperature, rainfall and soil moisture, vegetation, soil fauna, and the length of time that soil-forming processes have been at work. United States soil scientists1 have classified modern soils into ten major groups and numerous subgroups, each reflecting the composition and architecture of the soils and, to some extent, the processes that led to their formation. The physical and chemical processes of soil formation have been active throughout geologic time; the organic processes have been active at least since the Ordovician.2 Consequently, nearly all sedimentary rocks that were deposited in nonmarine settings and exposed to the elements contain a record of ancient, buried soils or paleosols. A sequence of these rocks, such as most ancient fluvial (stream) deposits, provides a record of soil paleoenvironments through time. Paleosols are also repositories of the fossils of organisms (body fossils) and the traces of those organisms burrowing, food-seeking, and dwelling activities (ichnofossils). Indeed, most fossil primates are found in paleosols. Careful study of ancient soils gives new, valuable insights into the correct temporal reconstruction of the primate fossil record and the nature of primate paleoenvironments. ?? 1993 Wiley-Liss, Inc.

  20. Fixation of Soil Using PEC and Separation of Fixed Soil

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Suk; Yang, Hee-Man; Lee, Kune Woo; Seo, Bum-Kyoung; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Radioactive cesium (Cs-137) is the most apprehensive element due to its long half-lives, high solubility in water, and strong radiation emission in the form of gamma rays. Because the radioactivity is localized within topsoil, soil surface on topsoil should be fixed to prevent the spreading of the contaminated soils by wind and water erosion. Many methods have been developing for soil fixation to remove radioactive contaminants in soil and prevent to diffuse radioactive materials. Various materials have been used as fixatives such as clays, molecular sieves, polymer, and petroleum based products. One of the methods is a soil fixation or solidification using polyelectrolyte. Polyelectrolytes have many ionic groups and form the polyelectrolyte complex (PEC) due to electrostatic interaction of anion and cation in an aqueous solution. polyelectrolyte complex can fix soil particles by flocculation and formation of crust between soil. The method can prevent a spread of radioactive material by floating on a soil surface. The decontamination efficiency of the surface soils reached about 90%, and dust release was effectively suppressed during the removal of surface soils. However it has a problem that the removed soil must separate soil and polymer to treat as the waste. In this study, the fixation of soil by polyelectrolyte complex to suppress the spread of contaminant and the separation method of soil and polymer was investigated. The properties of polyelectrolyte complex solution and the stability of fixed soil by polyelectrolyte complex were investigated. The concentration of salt in the polyelectrolyte complex solution is a very important parameter for the soil fixation.

  1. Developing and using artificial soils to analyze soil microbial processes

    Science.gov (United States)

    Gao, X.; Cheng, H. Y.; Boynton, L.; Masiello, C. A.; Silberg, J. J.

    2017-12-01

    Microbial diversity and function in soils are governed by soil characteristics such as mineral composition, particles size and aggregations, soil organic matter (SOM), and availability of nutrients and H2O. The spatial and temporal heterogeneity of soils creates a range of niches (hotspots) differing in the availability of O2, H2O, and nutrients, which shapes microbial activities at scales ranging from nanometer to landscape. Synthetic biologists often examine microbial response trigged by their environment conditions in nutrient-rich aqueous media using single strain microbes. While these studies provided useful insight in the role of soil microbes in important soil biogeochemical processes (e.g., C cycling, N cycling, etc.), the results obtained from the over-simplified model systems are often not applicable natural soil systems. On the contrary, soil microbiologists examine microbial processes in natural soils using longer incubation time. However, due to its physical, chemical and biological complexity of natural soils, it is often difficult to examine soil characteristics independently and understand how each characteristic influences soil microbial activities and their corresponding soil functioning. Therefore, it is necessary to bridge the gap and develop a model matrix to exclude unpredictable influences from the environment while still reliably mimicking real environmental conditions. The objective of this study is to design a range of ecologically-relevant artificial soils with varying texture (particle size distribution), structure, mineralogy, SOM content, and nutrient heterogeneity. We thoroughly characterize the artificial soils for pH, active surface area and surface morphology, cation exchange capacity (CEC), and water retention curve. We demonstrate the effectiveness of the artificial soils as useful matrix for microbial processes, such as microbial growth and horizontal gene transfer (HGT), using the gas-reporting biosensors recently developed in

  2. Soil and ground cover

    International Nuclear Information System (INIS)

    Wiechen, A.; Heine, K.; Bundesanstalt fuer Milchforschung, Kiel

    1985-01-01

    The monitoring programmes set up in accordance with the directives for the surveillance of effluents from nuclear installations oblige operators of such installations to take samples of vegetation (grass) and soil twice a year at the least favourable place in the industrial plant's environment, and at a reference site, for radioactivity monitoring by gamma spectroscopy. In addition, the samples are to be examined for their Sr-90 content. Data recorded over the years show that nuclear facilities do not significantly contribute to soil and vegetation contamination with Sr-90 or Cs-137. The directives require regular interlaboratory comparisons, which are coordinated by the directing centre at Kiel. (DG) [de

  3. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities as well as wastes from old waste burial ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. Because of the topic of this workshop, only the assay instrumentation applied specifically to soil monitoring will be discussed here. Four types of soil monitors are described

  4. Soil contamination studies

    International Nuclear Information System (INIS)

    1997-06-01

    The objective of this project was to develop a quick screening method that accurately identifies and quantifies the amount of alpha-emitting radionuclides in infinitely-thick soil samples using a Frisch grid ionization chamber. An additional objective of the work was to provide the US Department of Energy, Nevada Operations Office and its contractors with information on the theoretical and actual measured results of atmospheric testing contamination of soil and water at the Nevada Test Site through a comprehensive search of existing literature

  5. Soil reinforcement with geosynthetics

    Directory of Open Access Journals (Sweden)

    Bessaim Mohammed Mustapha

    2018-01-01

    Full Text Available The proportionality of existence of land with good bearing to erect any building or building is very small, to remedy this deficiency it is necessary to resort to techniques of reinforcement of the soils which can constitute a very important development. Among these methods of remediation, there is reinforcement by the geosynthetics which constitute an effective solution to these constraints. This process tends to stabilize the soil in question with increased load bearing capacity in civil engineering and geotechnical works such as embankments, slopes, embankments and hydraulic structures, with an inestimable gain in time, economy and durability while preserving the natural and environmental aspect.

  6. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  7. Soil invertebrate fauna affect N2O emissions from soil

    NARCIS (Netherlands)

    Kuiper, I.; Deyn, de G.B.; Thakur, M.P.; Groenigen, van J.W.

    2013-01-01

    Nitrous oxide (N2O) emissions from soils contribute significantly to global warming. Mitigation of N2O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses – a possible role for soil fauna

  8. Hysteresis of soil temperature under different soil moisture and ...

    African Journals Online (AJOL)

    ... in a solar greenhouse. The objective of this study was to find a simple method to estimate the hysteresis of soil temperature under three soil moisture and two fertilizer levels in solar greenhouse conditions with tomato crop (Lycopersicon esculentum Mill). The results show that the soil moisture had no significant effects on ...

  9. Soils in Schools: Embedding Soil Science in STEM

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Soil science, though relevant to a variety of subjects including science, geography, mathematics, social sciences and history, is typically perceived as a subgenre of agriculture. With a global need for soil scientists, and declining numbers in university soil courses, there's a growing gap between science needs and providers. One way to promote…

  10. Soil texture classification algorithm using RGB characteristics of soil images

    Science.gov (United States)

    Soil texture has an important influence on agriculture, affecting crop selection, movement of nutrients and water, soil electrical conductivity, and crop growth. Soil texture has traditionally been determined in the laboratory using pipette and hydrometer methods that require a considerable amount o...

  11. Soil microbial community response to land use and various soil ...

    African Journals Online (AJOL)

    Soil microbial community response to land use and various soil elements in a city landscape of north China. ... African Journal of Biotechnology ... Legumes played an important role in stimulating the growth and reproduction of various soil microbial populations, accordingly promoting the microbial catabolic activity.

  12. Impacts of prescribed fire on soil loss and soil quality

    NARCIS (Netherlands)

    Shakesby, Richard A.; Martins Bento, Celia; Ferreira, Carla S.S.; Ferreira, António J.D.; Stoof, C.R.; Urbanek, Emilia; Walsh, Rory P.D.

    2015-01-01

    Prescribed (controlled) fire has recently been adopted as an important wildfire-fighting strategy in the Mediterranean. Relatively little research, however, has assessed its impacts on soil erosion and soil quality. This paper investigates hillslope-scale losses of soil, organic matter and

  13. Soil tension mediates isotope fractionation during soil water evaporation

    Science.gov (United States)

    Gaj, Marcel; McDonnell, Jeffrey

    2017-04-01

    Isotope tracing of the water cycle is increasing in its use and usefulness. Many new studies are extracting soil waters and relating these to streamflow, groundwater recharge and plant transpiration. Nevertheless, unlike isotope fractionation factors from open water bodies, soil water fractionation factors are poorly understood and until now, only empirically derived. In contrast to open water evaporation where temperature, humidity and vapor pressure gradient define fractionation (as codified in the well-known Craig and Gordon model), soil water evaporation includes additionally, fractionation by matrix effects. There is yet no physical explanation of kinetic and equilibrium fraction from soil water within the soil profile. Here we present a simple laboratory experiment with four admixtures of soil grain size (from sand to silt to clay). Oven-dried samples were spiked with water of known isotopic composition at different soil water contents. Soils were then stored in sealed bags and the headspace filled with dry air and allowed to equilibrate for 24hours. Isotopic analysis of the headspace vapor was done with a Los Gatos Inc. water vapor isotope analyzer. Soil water potential of subsamples were measured with a water potential meter. We show for the first time that soil tension controls isotope fractionation in the resident soil water. Below a Pf 3.5 the δ-values of 18O and 2H of the headspace vapor is more positive and increases with increasing soil water potential. Surprisingly, we find that the relationship between soil tension and equilibrium fractionation is independent of soil type. However, δ-values of each soil type plot along a distinct evaporation line. These results indicate that equilibrium fractionation is affected by soil tension in addition to temperature. Therefore, at high soil water tension (under dry conditions) equilibrium fractionation is not consistent with current empirical formulations that ignore these effects. These findings may have

  14. Allegheny County Soil Type Areas

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — This dataset contains soil type and soil classification, by area. Additional info at: http://mcdc.cas.psu.edu/datawiz.htm;...

  15. St Francis Hydro, Soils data

    Data.gov (United States)

    U.S. Environmental Protection Agency — We collected data 2012-2016 covering spatially-explicit, soil layering, bulk density, drainage rate (2012, 2015) infiltration into rain garden mulch and mineral soil...

  16. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen; Majumdar, Apala; Style, Robert; Sander, Graham

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates

  17. Collapse settlement in compacted soils

    CSIR Research Space (South Africa)

    Booth, AR

    1977-01-01

    Full Text Available Research into collapse settlement in compacted soils is described, with special reference to recent cases in Southern Africa where collapse settlement occurred in road embankments following wetting of the soil. The laboratory work described...

  18. Soil! Get the Scoop - The Soil Science Society of America's International Year of Soils Campaign

    Science.gov (United States)

    Lindbo, David L.; Hopmans, Jan; Olson, Carolyn; Fisk, Susan; Chapman, Susan; van Es, Harold

    2015-04-01

    Soils are a finite natural resource and are nonrenewable on a human time scale. Soils are the foundation for food, animal feed, fuel and natural fiber production, the supply of clean water, nutrient cycling and a range of ecosystem functions. The area of fertile soils covering the world's surface is limited and increasingly subject to degradation, poor management and loss to urbanization. Increased awareness of the life-supporting functions of soil is called for if this trend is to be reversed and so enable the levels of food production necessary to meet the demands of population levels predicted for 2050. The Soil Science Society of America is coordinating with the Global Soil Partnership and other organizations around the world to celebrate the 2015 International Year of Soils and raise awareness and promote the sustainability of our limited soil resources. We all have a valuable role in communicating vital information on soils, a life sustaining natural resource. Therefore, we will provide resources to learn about soils and help us tell the story of soils. We will promote IYS on social media by sharing our posts from Facebook and Twitter. Additionally SSSA developed 12 monthly themes that reflect the diverse value of soils to our natural environment and society. Each month has information on the theme, a lesson plan, and other outreach activities. All information is available on a dedicated website www.soil.org/IYS. The site will be updated constantly throughout the year.

  19. Sustainable Soil Water Management Systems

    OpenAIRE

    Basch, G.; Kassam, A.; Friedrich, T.; Santos, F.L.; Gubiani, P.I.; Calegari, A.; Reichert, J.M.; dos Santos, D.R.

    2012-01-01

    Soil quality and its management must be considered as key elements for an effective management of water resources, given that the hydrological cycle and land management are intimately linked (Bossio et al. 2007). Soil degradation has been described by Bossio et al. (2010) as the starting point of a negative cycle of soil-water relationships, creating a positive, self-accelerating feedback loop with important negative impacts on water cycling and water productivity. Therefore, sustainable soil...

  20. Soil, a sponge for pollutants

    OpenAIRE

    Lichtfouse , Eric

    1997-01-01

    This article is written both in English and French; International audience; This preface of the special issue entitled "Soil Pollutants" (Analusis Magazine 25, M16-M72, 1997) highlights major basic and applied issues about the sources and fate of organic, mineral and radioactive pollutants in soils. Soils have long been considered as a closed and inert medium where wastes can be dumped without impact on living organisms. This is false and we know now that soils play a vital role in ecosystems...

  1. Engineering Significant of Swelling Soils

    OpenAIRE

    Behzad Kalantari

    2012-01-01

    This study describes some of the most important swelling characters of expansive soils when used as foundation materials to support various types of civil engineering structures. Expansive soils are considered among difficult foundation materials and expand upon wetting and shrink upon losing moisture. They are considered problematic soils for architectural and civil engineers. These types of soils may cause minor to major structural damages to pavements as well as buildings. It is therefore ...

  2. Soil gas radon response to environmental and soil physics variables

    International Nuclear Information System (INIS)

    Thomas, D.M.; Chen, C.; Holford, D.

    1991-01-01

    During the last three years a field study of soil gas radon activities conducted at Poamoho, Oahu, has shown that the primary environmental variables that control radon transport in shallow tropical soils are synoptic and diurnal barometric pressure changes and soil moisture levels. Barometric pressure changes drive advective transport and mixing of soil gas with atmospheric air; soil moisture appears to control soil porosity and permeability to enhance or inhibit advective and diffusive radon transport. An advective barrier test/control experiment has shown that advective exchange of soil gas and air may account for a substantial proportion of the radon loss from shallow soils but does not significantly affect radon activities at depths greater than 2.3 m. An irrigation test/control experiment also suggests that, at soil moisture levels approaching field capacity, saturation of soil macroporosity can halt all advective transport of radon and limit diffusive mobility to that occurring in the liquid phase. The results of the authors field study have been used to further refine and extend a numerical model, RN3D, that has been developed by Pacific Northwest Laboratories to simulate subsurface transport of radon. The field data have allowed them to accurately simulate the steady state soil gas radon profile at their field site and to track transient radon activities under the influence of barometric pressure changes and in response to changes in soil permeability that result from variations in soil moisture levels. Further work is continuing on the model to enable it to properly account for the relative effects of advective transport of soil gas through cracks and diffusive mobility in the bulk soils

  3. Soil structural quality assessment for soil protection regulation

    Science.gov (United States)

    Johannes, Alice; Boivin, Pascal

    2017-04-01

    Soil quality assessment is rapidly developing worldwide, though mostly focused on the monitoring of arable land and soil fertility. Soil protection regulations assess soil quality differently, focusing on priority pollutants and threshold values. The soil physical properties are weakly considered, due to lack of consensus and experimental difficulties faced with characterization. Non-disputable, easy to perform and inexpensive methods should be available for environmental regulation to be applied, which is unfortunately not the case. As a consequence, quantitative soil physical protection regulation is not applied, and inexpensive soil physical quality indicators for arable soil management are not available. Overcoming these limitations was the objective of a research project funded by the Swiss federal office for environment (FOEN). The main results and the perspectives of application are given in this presentation. A first step of the research was to characterize soils in a good structural state (reference soils) under different land use. The structural quality was assessed with field expertise and Visual Evaluation of the Soil Structure (VESS), and the physical properties were assessed with Shrinkage analysis. The relationships between the physical properties and the soil constituents were linear and highly determined. They represent the reference properties of the corresponding soils. In a second step, the properties of physically degraded soils were analysed and compared to the reference properties. This allowed defining the most discriminant parameters departing the different structure qualities and their threshold limits. Equivalent properties corresponding to these parameters but inexpensive and easy to determine were defined and tested. More than 90% of the samples were correctly classed with this method, which meets, therefore, the requirements for practical application in regulation. Moreover, result-oriented agri-environmental schemes for soil quality

  4. Soils [Chapter 4.2

    Science.gov (United States)

    Daniel G. Neary; Johannes W. A. Langeveld

    2015-01-01

    Soils are crucial for profitable and sustainable biomass feedstock production. They provide nutrients and water, give support for plants, and provide habitat for enormous numbers of biota. There are several systems for soil classification. FAO has provided a generic classification system that was used for a global soil map (Bot et al., 2000). The USDA Natural Resources...

  5. Soil carbon 4 per mille

    NARCIS (Netherlands)

    Mulder, V.L.

    2017-01-01

    The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil

  6. A study on soil structure

    NARCIS (Netherlands)

    Schuylenborgh, van J.

    1947-01-01

    As soils differ in capacity to form a structure, it is necessary to distinguish between intrinsic structure and actual structure. Intrinsic structure is the capacity of a soil to form a certain structure. Actual structure is the structure of the soil at a certain moment.

    Using experiments and

  7. Mycorrhizas and tropical soil fertility

    NARCIS (Netherlands)

    Cardoso, I.M.; Kuyper, T.W.

    2006-01-01

    Major factors that constrain tropical soil fertility and sustainable agriculture are low nutrient capital, moisture stress, erosion, high P fixation, high acidity with aluminium toxicity, and low soil biodiversity. The fragility of many tropical soils limits food production in annual cropping

  8. The threat of soil salinity

    NARCIS (Netherlands)

    Daliakopoulos, I.N.; Tsanis, I.K.; Koutroulis, A.; Kourgialas, N.N.; Varouchakis, A.E.; Karatzas, G.P.; Ritsema, C.J.

    2016-01-01

    Soil salinisation is one of the major soil degradation threats occurring in Europe. The effects of salinisation can be observed in numerous vital ecological and non-ecological soil functions. Drivers of salinisation can be detected both in the natural and man-made environment, with climate and

  9. Minnesota's Soils and Their Uses.

    Science.gov (United States)

    Halsey, Clifton

    There is an increasing need for land planning and understanding soil is one step toward assuring proper land use. This publication, written by soil scientists and teachers, is designed as a reference for high school teachers. It is designed to be a comprehensive collection about Minnesota soils (although the information can be applied to other…

  10. Biological Soil Crust Web Site

    Science.gov (United States)

    www.soilcrust.org Crust 101 Advanced Gallery References CCERS site Links Biological Soil Crusts Textbook Corrections Level of Development Index Biological soil crusts are the community of organisms , mosses, liverworts and lichens. A Field Guide to Biological Soil Crusts of Western U.S. Drylands: Common

  11. Soil threats and soil protection: the role of biotechnology

    International Nuclear Information System (INIS)

    Rubio, J. L.

    2009-01-01

    The concept of soil conservation/soil protection in its wider sense has undergone important changes through history. Perceptions of soil as a crucial base of life in ancient cultures progressively evolved to a more pragmatic vision, with close connection to food production for survival. For centuries, agrarian production and the provision of food for humankind remained the main and crucial vision of the interaction of societies with soil. However, there are also some other new and important concepts related to soil which have progressively developed. (Author)

  12. SoilInfo App: global soil information on your palm

    Science.gov (United States)

    Hengl, Tomislav; Mendes de Jesus, Jorge

    2015-04-01

    ISRIC ' World Soil Information has released in 2014 and app for mobile de- vices called 'SoilInfo' (http://soilinfo-app.org) and which aims at providing free access to the global soil data. SoilInfo App (available for Android v.4.0 Ice Cream Sandwhich or higher, and Apple v.6.x and v.7.x iOS) currently serves the Soil- Grids1km data ' a stack of soil property and class maps at six standard depths at a resolution of 1 km (30 arc second) predicted using automated geostatistical mapping and global soil data models. The list of served soil data includes: soil organic carbon (), soil pH, sand, silt and clay fractions (%), bulk density (kg/m3), cation exchange capacity of the fine earth fraction (cmol+/kg), coarse fragments (%), World Reference Base soil groups, and USDA Soil Taxonomy suborders (DOI: 10.1371/journal.pone.0105992). New soil properties and classes will be continuously added to the system. SoilGrids1km are available for download under a Creative Commons non-commercial license via http://soilgrids.org. They are also accessible via a Representational State Transfer API (http://rest.soilgrids.org) service. SoilInfo App mimics common weather apps, but is also largely inspired by the crowdsourcing systems such as the OpenStreetMap, Geo-wiki and similar. Two development aspects of the SoilInfo App and SoilGrids are constantly being worked on: Data quality in terms of accuracy of spatial predictions and derived information, and Data usability in terms of ease of access and ease of use (i.e. flexibility of the cyberinfrastructure / functionalities such as the REST SoilGrids API, SoilInfo App etc). The development focus in 2015 is on improving the thematic and spatial accuracy of SoilGrids predictions, primarily by using finer resolution covariates (250 m) and machine learning algorithms (such as random forests) to improve spatial predictions.

  13. Soil-ecological risks for soil degradation estimation

    Science.gov (United States)

    Trifonova, Tatiana; Shirkin, Leonid; Kust, German; Andreeva, Olga

    2016-04-01

    Soil degradation includes the processes of soil properties and quality worsening, primarily from the point of view of their productivity and decrease of ecosystem services quality. Complete soil cover destruction and/or functioning termination of soil forms of organic life are considered as extreme stages of soil degradation, and for the fragile ecosystems they are normally considered in the network of their desertification, land degradation and droughts /DLDD/ concept. Block-model of ecotoxic effects, generating soil and ecosystem degradation, has been developed as a result of the long-term field and laboratory research of sod-podzol soils, contaminated with waste, containing heavy metals. The model highlights soil degradation mechanisms, caused by direct and indirect impact of ecotoxicants on "phytocenosis- soil" system and their combination, frequently causing synergistic effect. The sequence of occurring changes here can be formalized as a theory of change (succession of interrelated events). Several stages are distinguished here - from heavy metals leaching (releasing) in waste and their migration downward the soil profile to phytoproductivity decrease and certain phytocenosis composition changes. Phytoproductivity decrease leads to the reduction of cellulose content introduced into the soil. The described feedback mechanism acts as a factor of sod-podzolic soil self-purification and stability. It has been shown, that using phytomass productivity index, integrally reflecting the worsening of soil properties complex, it is possible to solve the problems dealing with the dose-reflecting reactions creation and determination of critical levels of load for phytocenosis and corresponding soil-ecological risks. Soil-ecological risk in "phytocenosis- soil" system means probable negative changes and the loss of some ecosystem functions during the transformation process of dead organic substance energy for the new biomass composition. Soil-ecological risks estimation is

  14. Infiltration in Unsaturated Soils

    DEFF Research Database (Denmark)

    Ghotbi, Abdoul R.; Omidvar, M.; Barari, Amin

    2011-01-01

    An approximate analytical solution has been established for the well known Richards’ equation for unsaturated flow of transports in soils. Despite the importance of Richards’ equation in geotechnical and geoenvironmental applications, most solutions to the problem are generally based on numerical...

  15. stabilized lateritic soil

    African Journals Online (AJOL)

    user

    this work to optimize the amount of bagasse ash content in cement-stabilized lateritic soil. Geometric .... can handle or consider all the properties involved at the same time to ...... Bearig Ratio of Used oil contaminated Lateritic soils” Nigerian ...

  16. Hydrology and soil erosion

    Science.gov (United States)

    Leonard J. Lane; Mary R. Kidwell

    2003-01-01

    We review research on surface water hydrology and soil erosion at the Santa Rita Experimental Range (SRER). Almost all of the research was associated with eight small experimental watersheds established from 1974 to 1975 and operated until the present. Analysis of climatic features of the SRER supports extending research findings from the SRER to broad areas of the...

  17. Improved Biosensors for Soils

    Science.gov (United States)

    Silberg, J. J.; Masiello, C. A.; Cheng, H. Y.

    2014-12-01

    Microbes drive processes in the Earth system far exceeding their physical scale, affecting crop yields, water quality, the mobilization of toxic materials, and fundamental aspects of soil biogeochemistry. The tools of synthetic biology have the potential to significantly improve our understanding of microbial Earth system processes: for example, synthetic microbes can be be programmed to report on environmental conditions that stimulate greenhouse gas production, metal oxidation, biofilm formation, pollutant degradation, and microbe-plant symbioses. However, these tools are only rarely deployed in the lab. This research gap arises because synthetically programmed microbes typically report on their environment by producing molecules that are detected optically (e.g., fluorescent proteins). Fluorescent reporters are ideal for petri-dish applications and have fundamentally changed how we study human health, but their usefulness is quite limited in soils where detecting fluorescence is challenging. Here we describe the construction of gas-reporting biosensors, which release nonpolar gases that can be detected in the headspace of incubation experiments. These constructs can be used to probe microbial processes within soils in real-time noninvasive lab experiments. These biosensors can be combined with traditional omics-based approaches to reveal processes controlling soil microbial behavior and lead to improved environmental management decisions.

  18. When soils become sediments

    NARCIS (Netherlands)

    Vink, Jos P.M.; Zomeren, van Andre; Dijkstra, Joris J.; Comans, Rob N.J.

    2017-01-01

    Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the

  19. Soil and fertilizer nitrogen

    International Nuclear Information System (INIS)

    Winteringham, F.P.W.

    1984-01-01

    As a result of the intensified practices and effectively diminishing land resources per capita, increasing weights of both native soil- and added fertilizer-nitrogen will be lost to agriculture and its products, and will find their way into the environment. Soil-nitrogen levels and contingent productivity can nevertheless be maintained in the face of these losses on the basis of improved soil-N management. In some local situations nitrate levels in water for drinking purposes are likely to continue rising. In some cases agriculture and clearance practices are only one of several sources. In others they are clearly mainly responsible. In developing countries these losses represent those of a relatively increasingly costly input. This is due to the fact that industrial fertilizer nitrogen production is a particularly high energy-consuming process. In the more advanced industrialized countries they represent an addition to the problems and costs of environmental quality and health protection. The programmes, information and data reviewed here suggest that these problems can be contained by improved and extended soil and water management in agriculture on the basis of existing technology. In particular there appears to be enormous scope for the better exploitation of existing legumes both as non-legume crop alternatives or as biofertilizers which also possess more desirable C:N ratios than chemical fertilizer

  20. Surface soil contamination standards

    International Nuclear Information System (INIS)

    Boothe, G.F.

    1979-01-01

    The purpose of this document is to define surface soil contamination limits for radioactive materials below which posting, restrictions and environmental controls are not necessary in order to protect personnel and the environment. The standards can also be used to determine if solid waste or other material is contaminated relative to disposal requirements. The derivation of the standards is given

  1. Humus and soil fertility

    Science.gov (United States)

    Kevin T. Smith

    2010-01-01

    Humus is a Latin word, meaning on or in the ground, but what is humus in the context of tree and landscape care? Is humus the same as soil organic matter? With the increased emphasis on biologically-based products for sustainable landscapes and tree care, the sources and quality of humus products have greatly increased in recent years.

  2. Soil Science Forensic Application

    OpenAIRE

    Rēpele, M; Alksne, M

    2009-01-01

    The forensic potential of soil and geological evidence has been recognized for more than a century, but in the last 15 years these types of evidence have been used much more widely both as an investigative intelligence tool and as evidence in court.

  3. Assessing Niche Separation among Coexisting Limnohabitans Strains through Interactions with a Competitor, Viruses, and a Bacterivore

    OpenAIRE

    Šimek, Karel; Kasalický, Vojtěch; Horňák, Karel; Hahn, Martin W.; Weinbauer, Markus G.

    2009-01-01

    We investigated potential niche separation in two closely related (99.1% 16S rRNA gene sequence similarity) syntopic bacterial strains affiliated with the R-BT065 cluster, which represents a subgroup of the genus Limnohabitans. The two strains, designated B4 and D5, were isolated concurrently from a freshwater reservoir. Differences between the strains were examined through monitoring interactions with a bacterial competitor, Flectobacillus sp. (FL), and virus- and predator-induced mortality....

  4. Physical soil degradation in the Netherlands

    NARCIS (Netherlands)

    Boels, D.; Havinga, L.

    1980-01-01

    Soils used in agriculture are subjected to a wide variety of human activities. Soil tillage and soil impravement operations may loose the soil, while soil wetting due to rainfall, and farming operations as sowing, spraying, weed control and harvesting but also grazing cattle may compact the soil.

  5. Impact of Soil Texture on Soil Ciliate Communities

    Science.gov (United States)

    Chau, J. F.; Brown, S.; Habtom, E.; Brinson, F.; Epps, M.; Scott, R.

    2014-12-01

    Soil water content and connectivity strongly influence microbial activities in soil, controlling access to nutrients and electron acceptors, and mediating interactions between microbes within and between trophic levels. These interactions occur at or below the pore scale, and are influenced by soil texture and structure, which determine the microscale architecture of soil pores. Soil protozoa are relatively understudied, especially given the strong control they exert on bacterial communities through predation. Here, ciliate communities in soils of contrasting textures were investigated. Two ciliate-specific primer sets targeting the 18S rRNA gene were used to amplify DNA extracted from eight soil samples collected from Sumter National Forest in western South Carolina. Primer sets 121F-384F-1147R (semi-nested) and 315F-959R were used to amplify soil ciliate DNA via polymerase chain reaction (PCR), and the resulting PCR products were analyzed by gel electrophoresis to obtain quantity and band size. Approximately two hundred ciliate 18S rRNA sequences were obtained were obtained from each of two contrasting soils. Sequences were aligned against the NCBI GenBank database for identification, and the taxonomic classification of best-matched sequences was determined. The ultimate goal of the work is to quantify changes in the ciliate community under short-timescale changes in hydrologic conditions for varying soil textures, elucidating dynamic responses to desiccation stress in major soil ciliate taxa.

  6. Soil washing results for mixed waste pond soils at Hanford

    International Nuclear Information System (INIS)

    Gerber, M.A.

    1991-09-01

    Soil washing technology was assessed as a means for remediating soil contaminated with mixed wastes primarily composed of heavy metals and radionuclides. The soils at the US Department of Energy's Hanford Site are considered suitable for soil washing because of their relatively low quantities of silt and clay. However, in a limited number of soil washing experiments using soils from different locations in the north pond of the 300 Area, the degree of decontamination achieved for the coarse fraction of the soil varied considerably. Part of this variation appears to be due to the presence of a discrete layer of contaminated sediment found in some of the samples. 7 refs., 2 figs., 4 tabs

  7. Spatiotemporal Dynamics of Soil Penetration Resistance of Recultivated Soil

    Directory of Open Access Journals (Sweden)

    Zadorozhnaya Galina

    2018-03-01

    Full Text Available This article examines changes in the spatial distribution of soil penetration resistance in ordinary chernozem (Calcic Chernozem and in the recultivated soil in 2012 and 2014. The measurements were carried out in the field using an Eijkelkamp penetrometer on a regular grid. The depth of measurement was 50 cm, the interval was 5 cm. The indices of variation of soil penetration resistance in space and time have been determined. The degree of spatial dependence of soil penetration resistance has been determined layer by layer. The nature of temporal dynamics of soil penetration resistance of chernozem and technical soil has been described. A significant positive relationship of the structure of chernozem in the two years of the research has been shown. Significant correlations between the data of different years in the technical soil were found to be mostly negative.

  8. How does soil management affect carbon losses from soils?

    Science.gov (United States)

    Klik, A.; Trümper, G.

    2009-04-01

    Agricultural soils are a major source as well as a sink of organic carbon (OC). Amount and distribution of OC within the soil and within the landscape are driven by land management but also by erosion and deposition processes. At the other hand the type of soil management influences mineralization and atmospheric carbon dioxide losses by soil respiration. In a long-term field experiment the impacts of soil tillage systems on soil erosion processes were investigated. Following treatments were compared: 1) conventional tillage (CT), 2) conservation tillage with cover crop during the winter period (CS), and 3) no-till with cover crop during winter period (NT). The studies were carried out at three sites in the Eastern part of Austria with annual precipitation amounts from 650 to 900 mm. The soil texture ranged from silt loam to loam. Since 2007 soil CO2 emissions are measured with a portable soil respiration system in intervals of about one week, but also in relation to management events. Concurrent soil temperature and soil water content are measured and soil samples are taken for chemical and microbiological analyses. An overall 14-yr. average soil loss between 1.0 t.ha-1.yr-1 for NT and 6.1 t.ha-1.yr-1 for CT resulted in on-site OC losses from 18 to 79 kg ha-1.yr-1. The measurements of the carbon dioxide emissions from the different treatments indicate a high spatial variation even within one plot. Referred to CT plots calculated carbon losses amounted to 65-94% for NT plots while for the different RT plots they ranged between 84 and 128%. Nevertheless site specific considerations have to be taken into account. Preliminary results show that the adaptation of reduced or no-till management strategies has enormous potential in reducing organic carbon losses from agricultural used soils.

  9. Bioavailability of radiocaesium in soil: parameterization using soil characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Syssoeva, A.A.; Konopleva, I.V. [Russian Institute of Agricultural Radiology and Agroecology, Obninsk (Russian Federation)

    2004-07-01

    It has been shown that radiocaesium availability to plants strongly influenced by soil properties. For the best evaluation of TFs it necessary to use mechanistic models that predict radionuclide uptake by plants based on consideration of sorption-desorption and fixation-remobilization of the radionuclide in the soil as well as root uptake processes controlled by the plant. The aim of the research was to characterise typical Russian soils on the basis of the radiocaesium availability. The parameter of the radiocaesium availability in soils (A) has been developed which consist on radiocaesium exchangeability; CF -concentration factor which is the ratio of the radiocaesium in plant to that in soil solution; K{sub Dex} - exchangeable solid-liquid distribution coefficient of radiocaesium. The approach was tested for a wide range of Russian soils using radiocaesium uptake data from a barley pot trial and parameters of the radiocaesium bioavailability. Soils were collected from the arable horizons in different soil climatic zones of Russia and artificially contaminated by {sup 137}Cs. The classification of soils in terms of the radiocaesium availability corresponds quite well to observed linear relationship between {sup 137}Cs TF for barley and A. K{sub Dex} is related to the soil radiocaesium interception potential (RIP), which was found to be positively and strongly related to clay and physical clay (<0,01 mm) content. The {sup 137}Cs exchangeability were found to be in close relation to the soil vermiculite content, which was estimated by the method of Cs{sup +} fixation. It's shown radiocaesium availability to plants in soils under study can be parameterized through mineralogical soil characteristics: % clay and the soil vermiculite content. (author)

  10. Modelling soil organic carbon concentration of mineral soils in arable lands using legacy soil data

    DEFF Research Database (Denmark)

    Suuster, E; Ritz, Christian; Roostalu, H

    2012-01-01

    is appropriate if the study design has a hierarchical structure as in our scenario. We used the Estonian National Soil Monitoring data on arable lands to predict SOC concentrations of mineral soils. Subsequently, the model with the best prediction accuracy was applied to the Estonian digital soil map...

  11. Using USDA's National Cooperative Soil Survey Soil Characterization Data to detect soil change: A cautionary tale

    Science.gov (United States)

    Recently, the USDA-NRCS National Cooperative Soil Survey Soil Characterization Database (NSCD) was reported to provide evidence that total nitrogen (TN) stocks of agricultural soils have increased across the Mississippi basin since 1985. Unfortunately, due to omission of metadata from the NSCD, hist...

  12. Diurnal hysteresis between soil CO2 and soil temperature is controlled by soil water content

    Science.gov (United States)

    Diego A. Riveros-Iregui; Ryan E. Emanuel; Daniel J. Muth; L. McGlynn Brian; Howard E. Epstein; Daniel L. Welsch; Vincent J. Pacific; Jon M. Wraith

    2007-01-01

    Recent years have seen a growing interest in measuring and modeling soil CO2 efflux, as this flux represents a large component of ecosystem respiration and is a key determinant of ecosystem carbon balance. Process-based models of soil CO2 production and efflux, commonly based on soil temperature, are limited by nonlinearities such as the observed diurnal hysteresis...

  13. Degradation of thiram in soil

    International Nuclear Information System (INIS)

    Raghu, K.; Murthy, N.B.K.; Kumarsamy, R.

    1975-01-01

    Determination of the residual 35 S labelled tetramethylthiuram disulfide showed that the fungicide persisted longer in sterilized than in unsterilized soil, while the chloroform extractable radioactivity decreased, the water extractable radioactivity increased with increase in time. However, in sterilized soil the water extractable radioactivity remained more or less constant. Degradation of the fungicide was further demonstrated by the release of C 35 S 2 from soil treated with labelled thiram. Dimethylamine was found to be one of the degradation products. A bacterium isolated from thiram-enriched soil could degrade the fungicide in shake culture. The degradation pathways of thiram in sterilized and unsterilized soils are discussed. (author)

  14. Soil Erosion and Agricultural Sustainability

    Science.gov (United States)

    Montgomery, D. R.

    2009-04-01

    Data drawn from a global compilation of studies support the long articulated contention that erosion rates from conventionally plowed agricultural fields greatly exceed rates of soil production, erosion under native vegetation, and long-term geological erosion. Whereas data compiled from around the world show that soil erosion under conventional agriculture exceeds both rates of soil production and geological erosion rates by up to several orders of magnitude, similar global distributions of soil production and geological erosion rates suggest an approximate balance. Net soil erosion rates in conventionally plowed fields on the order of 1 mm/yr can erode typical hillslope soil profiles over centuries to millennia, time-scales comparable to the longevity of major civilizations. Well-documented episodes of soil loss associated with agricultural activities date back to the introduction of erosive agricultural methods in regions around the world, and stratigraphic records of accelerated anthropogenic soil erosion have been recovered from lake, fluvial, and colluvial stratigraphy, as well as truncation of soil stratigraphy (such as truncated A horizons). A broad convergence in the results from studies based on various approaches employed to study ancient soil loss and rates of downstream sedimentation implies that widespread soil loss has accompanied human agricultural intensification in examples drawn from around the world. While a broad range of factors, including climate variability and society-specific social and economic contexts — such as wars or colonial relationships — all naturally influence the longevity of human societies, the ongoing loss of topsoil inferred from studies of soil erosion rates in conventional agricultural systems has obvious long-term implications for agricultural sustainability. Consequently, modern agriculture — and therefore global society — faces a fundamental question over the upcoming centuries. Can an agricultural system

  15. Soil Security Assessment of Tasmania

    Science.gov (United States)

    Field, Damien; Kidd, Darren; McBratney, Alex

    2017-04-01

    The concept of soil security aligns well with the aspirational and marketing policies of the Tasmanian Government, where increased agricultural expansion through new irrigation schemes and multiple-use State managed production forests co-exists beside pristine World Heritage conservation land, a major drawcard of the economically important tourism industry . Regarding the Sustainable Development Gaols (SDG's) this could be seen as a exemplar of the emerging tool for quantification of spatial soil security to effectively protect our soil resource in terms of food (SDG 2.4, 3.9) and water security (SDG 6.4, 6.6), biodiversity maintenance and safeguarding fragile ecosystems (SDG 15.3, 15.9). The recent development and application of Digital Soil Mapping and Assessment capacities in Tasmania to stimulate agricultural production and better target appropriate soil resources has formed the foundational systems that can enable the first efforts in quantifying and mapping Tasmanian Soil Security, in particular the five Soil Security dimensions (Capability, Condition, Capital, Codification and Connectivity). However, to provide a measure of overall soil security, it was necessary to separately assess the State's three major soil uses; Agriculture, Conservation and Forestry. These products will provide an indication of where different activities are sustainable or at risk, where more soil data is needed, and provide a tool to better plan for a State requiring optimal food and fibre production, without depleting its natural soil resources and impacting on the fragile ecosystems supporting environmental benefits and the tourism industry.

  16. NCRP soil contamination task group

    International Nuclear Information System (INIS)

    Jacobs, D.G.

    1987-01-01

    The National Council of Radiation Protection and Measurements (NCRP) has recently established a Task Group on Soil Contamination to describe and evaluate the migration pathways and modes of radiation exposure that can potentially arise due to radioactive contamination of soil. The purpose of this paper is to describe the scientific principles for evaluation of soil contamination which can be used as a basis for derivation of soil contamination limits for specific situations. This paper describes scenarios that can lead to soil contamination, important characteristics of soil contamination, the subsequent migration pathways and exposure modes, and the application of principles in the report in deriving soil contamination limits. The migration pathways and exposure modes discussed in this paper include: direct radiation exposure; and exhalation of gases

  17. Applications of visual soil evaluation

    DEFF Research Database (Denmark)

    Ball, Bruce C; Munkholm, Lars Juhl; Batey, Tom

    2013-01-01

    Working Group F “Visual Soil Examination and Evaluation” (VSEE) was formed over 30 years ago within the International Soil & Tillage Research Organisation (ISTRO) on the initiative of Tom Batey. The objectives of the Working Group are to stimulate interest in field methods of visual-tactile soil...... assessment, to encourage their wider use and to foster international cooperation. The previous main meeting of the group in 2005 at Peronne, France, brought together, for the first time, a group of soil scientists who had each developed a method to evaluate soil structure directly in the field (Boizard et al...... to the re-development of the Peerlkamp numeric method of assessment of soil structure into the Visual Evaluation of Soil Structure (VESS) spade test (Ball et al., 2007 and Guimarães et al., 2011). The meeting also recommended further cooperation between members of the Working Group. The evaluation...

  18. Effects of environmental factors and soil properties on topographic variations of soil respiration

    OpenAIRE

    Tamai, K.

    2010-01-01

    Soil respiration rates were measured along different parts of a slope in (a) an evergreen forest with common brown forest soil and (b) a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soi...

  19. Soil Water Retention Curve

    Science.gov (United States)

    Johnson, L. E.; Kim, J.; Cifelli, R.; Chandra, C. V.

    2016-12-01

    Potential water retention, S, is one of parameters commonly used in hydrologic modeling for soil moisture accounting. Physically, S indicates total amount of water which can be stored in soil and is expressed in units of depth. S can be represented as a change of soil moisture content and in this context is commonly used to estimate direct runoff, especially in the Soil Conservation Service (SCS) curve number (CN) method. Generally, the lumped and the distributed hydrologic models can easily use the SCS-CN method to estimate direct runoff. Changes in potential water retention have been used in previous SCS-CN studies; however, these studies have focused on long-term hydrologic simulations where S is allowed to vary at the daily time scale. While useful for hydrologic events that span multiple days, the resolution is too coarse for short-term applications such as flash flood events where S may not recover its full potential. In this study, a new method for estimating a time-variable potential water retention at hourly time-scales is presented. The methodology is applied for the Napa River basin, California. The streamflow gage at St Helena, located in the upper reaches of the basin, is used as the control gage site to evaluate the model performance as it is has minimal influences by reservoirs and diversions. Rainfall events from 2011 to 2012 are used for estimating the event-based SCS CN to transfer to S. As a result, we have derived the potential water retention curve and it is classified into three sections depending on the relative change in S. The first is a negative slope section arising from the difference in the rate of moving water through the soil column, the second is a zero change section representing the initial recovery the potential water retention, and the third is a positive change section representing the full recovery of the potential water retention. Also, we found that the soil water moving has traffic jam within 24 hours after finished first

  20. Dynamical soil-structure interactions: influence of soil behaviour nonlinearities

    International Nuclear Information System (INIS)

    Gandomzadeh, Ali

    2011-01-01

    The interaction of the soil with the structure has been largely explored the assumption of material and geometrical linearity of the soil. Nevertheless, for moderate or strong seismic events, the maximum shear strain can easily reach the elastic limit of the soil behavior. Considering soil-structure interaction, the nonlinear effects may change the soil stiffness at the base of the structure and therefore energy dissipation into the soil. Consequently, ignoring the nonlinear characteristics of the dynamic soil-structure interaction (DSSI) this phenomenon could lead to erroneous predictions of structural response. The goal of this work is to implement a fully nonlinear constitutive model for soils into a numerical code in order to investigate the effect of soil nonlinearity on dynamic soil structure interaction. Moreover, different issues are taken into account such as the effect of confining stress on the shear modulus of the soil, initial static condition, contact elements in the soil-structure interface, etc. During this work, a simple absorbing layer method based on a Rayleigh/Caughey damping formulation, which is often already available in existing Finite Element softwares, is also presented. The stability conditions of the wave propagation problems are studied and it is shown that the linear and nonlinear behavior are very different when dealing with numerical dispersion. It is shown that the 10 points per wavelength rule, recommended in the literature for the elastic media is not sufficient for the nonlinear case. The implemented model is first numerically verified by comparing the results with other known numerical codes. Afterward, a parametric study is carried out for different types of structures and various soil profiles to characterize nonlinear effects. Different features of the DSSI are compared to the linear case: modification of the amplitude and frequency content of the waves propagated into the soil, fundamental frequency, energy dissipation in

  1. Soils in art as a teaching tool in soil science

    Science.gov (United States)

    Poch, Rosa M.

    2017-04-01

    The representation of soils in the different artistic expressions occurs much less often than that of other naturalistic scientific disciplines, like botany or zoology, due to the minor perception of soils as a natural body since the humans started to express themselves through art. Nevertheless, painters, writers and even musicians and film directors have been forced to deal with soils in their works, as a component of the landscape and as the main actor of the various soil functions. Even if the artists are not aware of soils in the sense of soil science - a study object - their observation of nature invariably leads to express their properties, the problems due to their misuse or degradation and their management practices. These art works have a great value when teaching soil science to students, because the latter can learn to intepret and go beyond the artist's observation and therefore they can appreciate the perception of soils and soil properties along the history of humankind. Paintings from various periods can be used as exercises, mainly those depicting landscapes or agricultural works. Some examples are Dutch landscape painters, as Brueghel the Young showing detailed soil erosion features; or Wijnants (XVII century) depicting very clear podzols on sand dunes. Also the impressionists (Van Gogh, Cézanne, Gaugin), or the landscapes of the romantic nationalists (XIX- early XX century) show forest or agricultural soils that can be used either to deduce soil forming processes and describe horizons, or to discuss the effectivity of soil management practices (deforestation, burning, plowing, terracing). Also some pieces of literature can be used either for illustrating real soil landscapes and soil-water relationships (Steinbeck's "The Grapes of Wrath") or in case of fiction literature, as exercice for soil mapping (Tolkien's Middle Earth in "The Hobbit" and "The Lord of the Rings"). Films as "The field" (Jim Sheridan, 1990) or "Corn Island" (George Ovasvili

  2. Soil organic matter and soil biodiversity spots in urban and semi urban soils of southeast Mexico

    Science.gov (United States)

    Huerta, Esperanza

    2015-04-01

    We have observed how the constant use of compost or vermicompost has created spots of soil restoration in urban and semiurban soils of Chiapas (Huitepec and Teopisca), increasing soil organic matter amount, soil moisture and soil porosity, and enhancing then the presence of soil biodiversity; for example, in a Milpa with vermicompost (polyculture of Zea mays with Curcubita pepo, and Fasolius vulgaris) we have found a high density of an epigeic earthworm (640 ind.m2), Dichogaster bolahui, not present in the same type of soil just some meters of distance, in an Oak forest, where soil macroinvertebrates abundance decreased drastically. In another ecosystem within a Persea Americana culture, we found how above and below ground soil biodiversity is affected by the use of vermicompost, having clearly different microcosmos with and without vermicompost (30-50% more micro and macro invertebrates with vermicompost). So now in Campeche, within those soils that are classified by the mayas as tzequel, soils not use for agriculture, we have implemented home gardens and school gardens by the use of compost of vermicomposts in urban and semiurban soils. In school gardens (mainly primary schools) students have cultivated several plants with alimentary purposes; teachers have observed how the increase of soil biodiversity by the use of compost or vermicompost has enhanced the curiosity of children, even has promoted a more friendly behavior among students, they have learned how to do compost and how to apply it. Urban and semiurban soils can be modified by the use of compost and vermicompost, and soil biodiversity has extremely increased.

  3. Discovering the essence of soil

    Science.gov (United States)

    Frink, D.

    2012-04-01

    Science, and what it can learn, is constrained by its paradigms and premises. Similarly, teaching and what topics can be addressed are constrained by the paradigms and premises of the subject matter. Modern soil science is founded on the five-factor model of Dokuchaev and Jenny. Combined with Retallack's universal definition of soil as geologic detritus affected by weathering and/or biology, modern soil science emphasizes a descriptive rather than an interpretive approach. Modern soil science however, emerged from the study of plants and the need to improve crop yields in the face of chronic and wide spread famine in Europe. In order to teach that dirt is fascinating we must first see soils in their own right, understand their behavior and expand soil science towards an interpretive approach rather than limited as a descriptive one. Following the advice of James Hutton given over two centuries ago, I look at soils from a physiological perspective. Digestive processes are mechanical and chemical weathering, the resulting constituents reformed into new soil constituents (e.g. clay and humus), translocated to different regions of the soil body to serve other physiological processes (e.g. lamellae, argillic and stone-line horizons), or eliminated as wastes (e.g. leachates and evolved gasses). Respiration is described by the ongoing and diurnal exchange of gasses between the soil and its environment. Circulatory processes are evident in soil pore space, drainage capacity and capillary capability. Reproduction of soil is evident at two different scales: the growth of clay crystals (with their capacity for mutation) and repair of disturbed areas such as result from the various pedo-perturbations. The interactions between biotic and abiotic soil components provide examples of both neurological and endocrine systems in soil physiology. Through this change in perspective, both biotic and abiotic soil processes become evident, providing insight into the possible behavior of

  4. Soil biodiversity and soil community composition determine ecosystem multifunctionality

    Science.gov (United States)

    Wagg, Cameron; Bender, S. Franz; Widmer, Franco; van der Heijden, Marcel G. A.

    2014-01-01

    Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability. PMID:24639507

  5. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Radon in soil gas

    International Nuclear Information System (INIS)

    Rector, H.E.

    1990-01-01

    This paper presents the results of a technology review conducted to identify and organize the range of options for measuring radon in soil gas as a means to evaluate radon exposure potential in buildings. The main focus of the review includes identifying the following: Measurement of objectives - the specific parameter(s) that each technology is designed to measure( e.g., soil gas concentration, flux density, etc.); Equipment needs -commercial availability of systems and/or components, specifications for fabricated components; Procedural information - documented elements of field and laboratory methodology and quality assurance; Underlying assumptions - conceptual and mathematical models utilized to convert analytical outcomes to estimators of radon. Basic technologies and field data were examined from a generic perspective (e.g., the common denominators of passive detectors, hollow sampling probes, flux monitors)( as well as specific configurations developed by individual investigators (e.g., sample volume, depth) to develop the basis for separating analytical uncertainties form sampling uncertainties

  7. Pneumatic soil removal tool

    International Nuclear Information System (INIS)

    Neuhaus, J.E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw. 3 figs

  8. Pneumatic soil removal tool

    Science.gov (United States)

    Neuhaus, John E.

    1992-01-01

    A soil removal tool is provided for removing radioactive soil, rock and other debris from the bottom of an excavation, while permitting the operator to be located outside of a containment for that excavation. The tool includes a fixed jaw, secured to one end of an elongate pipe, which cooperates with a movable jaw pivotably mounted on the pipe. Movement of the movable jaw is controlled by a pneumatic cylinder mounted on the pipe. The actuator rod of the pneumatic cylinder is connected to a collar which is slidably mounted on the pipe and forms part of the pivotable mounting assembly for the movable jaw. Air is supplied to the pneumatic cylinder through a handle connected to the pipe, under the control of an actuator valve mounted on the handle, to provide movement of the movable jaw.

  9. Sustainable Soil Management

    DEFF Research Database (Denmark)

    Green, Ole; Evgrafova, Alevtina; Kirkegaard Nielsen, Søren

    management strategies, which consider the site- and field-specific parameters and agricultural machinery’s improvements, it is possible to maximize production and income, while reducing negative environmental impacts and human health issues induced by agricultural activities as well as improving food......Linket til højre henviser til rapporten i trykt format til download. This report provides an overview on new technologies for integrate sustainable and resilient management practices in arable ecosystems for advanced farmers, consultants, NGOs and policy makers. By following sustainable soil...... and soil quality in short- and long-terms. This report also illustrates the importance to combine a system approach for plant production by assessing field readiness, managing in-field traffic management, implementing the sitespecific controlled as well as sensor-controlled seedbed preparation, seeding...

  10. Bioremediation of soils

    International Nuclear Information System (INIS)

    Woodward, D.

    1991-01-01

    Bioremediation of hydrocarbon contaminated soils has evolved from the refinery land treatment units of thirty years ago to the modern slurry reactors of today. Modifications in the process include engineering controls designed to prevent the migration of hydrocarbons into the unsaturated zone, the saturated zone and groundwater, and the atmosphere. Engineering innovations in the area of composting and bioaugmentation that have focused on further process control and the acceleration of the treatment process will form the basis for future improvements in bioremediation technology. Case studies for established methods that have survived this development process and continue to be used as cost effective biological treatments like engineered land farms, soil heap treatment and in situ treatment will be discussed

  11. Isolation and identification of soil fungi isolates from forest soil for flooded soil recovery

    Science.gov (United States)

    Hazwani Aziz, Nor; Zainol, Norazwina

    2018-04-01

    Soil fungi have been evaluated for their ability in increasing and recovering nitrogen, phosphorus and potassium content in flooded soil and in promoting the growth of the host plant. Host plant was cultivated in a mixture of fertile forest soil (nutrient-rich soil) and simulated flooded soil (nutrient-poor soil) in an optimized soil condition for two weeks. The soil sample was harvested every day until two weeks of planting and was tested for nitrogen, phosphorus and potassium concentration. Soil fungi were isolated by using dilution plating technique and was identified by Biolog’s Microbial Systems. The concentration of nitrogen, phosphorus, and potassium was found to be increasing after two weeks by two to three times approximately from the initial concentration recorded. Two fungi species were identified with probability more than 90% namely Aspergillus aculeatus and Paecilomyces lilacinus. Both identified fungi were found to be beneficial in enhancing plant growth and increasing the availability of nutrient content in the soil and thus recovering the nutrient content in the flooded soil.

  12. Stripping away the soil

    OpenAIRE

    Bartelme, Ryan P.; Oyserman, Ben O.; Blom, Jesse E.; Sepulveda-Villet, Osvaldo J.; Newton, Ryan J.

    2018-01-01

    As the processes facilitated by plant growth promoting microorganisms (PGPMs) become better characterized, it is evident that PGPMs may be critical for successful sustainable agricultural practices. Microbes enrich plant growth through various mechanisms, such as enhancing resistance to disease and drought, producing beneficial molecules, and supplying nutrients and trace metals to the plant rhizosphere. Previous studies of PGPMs have focused primarily on soil-based crops. In contrast, aquapo...

  13. Food, soil, and agriculture

    International Nuclear Information System (INIS)

    Bommer, D.F.R.; Hrabovszky, J.P.

    1981-01-01

    The growing pressures on the world's land resources will result in problems requiring a major research effort.The first group of problems relates to increased soil degradation. The research to alleviate this will have to incorporate not only physical and biological solutions, but also pay much more attention to the socio-economic context in which the conservation programmes need to succeed.The second major area for research on land resource is to make better use of low-capacity or problem soils.This could be by reducing the existing limitations, such as changing physical or chemical characteristics of the soil, or by developing plants and production techniques which reduce the detrimental effects of constraints. Example of these are acidity, salinity, and aluminium toxicity. Finally the broadest and more important area is that of research to enable more intensive use of better-quality land. Research topics here may relate to optimal plant nutrient management, soil moisture management, and developing cultivation techniques with minimum commercial energy requirements. Making plants more productive will involve research aimed at increasing photosynthetic efficiency, nitrogen fixation, disease and pest resistance, improved weed control, and bio-engineering to adjust plant types to maximize production potentials. Improved rotational systems for the achievement of many of the above goals will become increasingly important, as the potential problems or inappropriate cultivation practices become evident. In conclusion, food supplies of the world could meet the rapidly rising demands that are made on them, if agriculture receives sufficient attention and resources. Even with most modern development, land remains the base for agriculture, and optimal use of the world's land resources is thus crucial for future agricultural production

  14. Soil physical properties on Venezuelan steeplands: Applications to soil conservation planning

    International Nuclear Information System (INIS)

    Delgado, F.

    2004-01-01

    This paper presents a framework to support decision making for soil conservation on Venezuelan steeplands. The general approach is based on the evaluation of two important land qualities: soil productivity and soil erosion risk, both closely related to soil physical properties. Soil productivity can be estimated from soil characteristics such as soil air-water relationships, soil impedances and soil fertility. On the other hand, soil erosion risk depends basically on soil hydrologic properties, rainfall aggressiveness and terrain slope. Two indexes are obtained from soil and land characteristics: soil productivity index (PI) and erosion risk index (ERI), each one evaluates the respective land quality. Subsequently, a matrix with these two qualities shows different land classes as well as soil conservation priorities, conservation requirements and proposed land uses. The paper shows also some applications of the soil productivity index as an approach to evaluate soil loss tolerance for soil conservation programs on tropical steeplands. (author)

  15. Impacts of soil moisture content on visual soil evaluation

    Science.gov (United States)

    Emmet-Booth, Jeremy; Forristal, Dermot; Fenton, Owen; Bondi, Giulia; Creamer, Rachel; Holden, Nick

    2017-04-01

    Visual Soil Examination and Evaluation (VSE) techniques offer tools for soil quality assessment. They involve the visual and tactile assessment of soil properties such as aggregate size and shape, porosity, redox morphology, soil colour and smell. An increasing body of research has demonstrated the reliability and utility of VSE techniques. However a number of limitations have been identified, including the potential impact of soil moisture variation during sampling. As part of a national survey of grassland soil quality in Ireland, an evaluation of the impact of soil moisture on two widely used VSE techniques was conducted. The techniques were Visual Evaluation of Soil Structure (VESS) (Guimarães et al., 2011) and Visual Soil Assessment (VSA) (Shepherd, 2009). Both generate summarising numeric scores that indicate soil structural quality, though employ different scoring mechanisms. The former requires the assessment of properties concurrently and the latter separately. Both methods were deployed on 20 sites across Ireland representing a range of soils. Additional samples were taken for soil volumetric water (θ) determination at 5-10 and 10-20 cm depth. No significant correlation was observed between θ 5-10 cm and either VSE technique. However, VESS scores were significantly related to θ 10-20 cm (rs = 0.40, sig = 0.02) while VSA scores were not (rs = -0.33, sig = 0.06). VESS and VSA scores can be grouped into quality classifications (good, moderate and poor). No significant mean difference was observed between θ 5-10 cm or θ 10-20 cm according to quality classification by either method. It was concluded that VESS scores may be affected by soil moisture variation while VSA appear unaffected. The different scoring mechanisms, where the separate assessment and scoring of individual properties employed by VSA, may limit soil moisture effects. However, moisture content appears not to affect overall structural quality classification by either method. References

  16. Radionuclide migration in soils

    Energy Technology Data Exchange (ETDEWEB)

    Demir, M [Ingenieurgesellschaft Bonnenberg und Drescher, Juelich (Germany, F.R.)

    1979-01-01

    Unplanned releases from a nuclear installation - e.g., leakage from a storage tank or other incident - can result in the escape of contaminants such as U, Pu, Cs, Sr, T etc. Nuclide transport through the ground is governed by characteristics of the subsurface hydrology and the specific nuclides under consideration. Unsaturated soil layers result in a transport rate so low as to negligible. Radionuclides reaching the ground water are assumed to endanger human life because of potential uncontrolled ingestion. The most dangerous nuclides are long-lived and not absorbed, or very poorly absorbed, in the soil. During migration of nuclides through saturated soil layers, the concentration can be reduced by dilution. Preliminary results indicate that tritium is spread with ground water velocity. Its concentration can be reduced only by diffusion, dispersion and radioactive decay. Alpha-emitters are strongly retained velocities of alpha-emitters are approximately one thousandth (10/sup -3/) that of T. Transport velocities of Cs and Sr are approximately one hundreth (10/sup -2/) and one tenth (10/sup -1/) that of T respectively.

  17. Radionuclide migration in soils

    International Nuclear Information System (INIS)

    Demir, M.

    1979-01-01

    Unplanned releases from a nuclear installation - e.g., leakage from a storage tank or other incident - can result in the escape of contaminants such as U, Pu, Cs, Sr, T etc. Nuclide transport through the ground is governed by characteristics of the subsurface hydrology and the specific nuclides under consideration. Unsaturated soil layers result in a transport rate so low as to negligible. Radionuclides reaching the ground water are assumed to endanger human life because of potential uncontrolled ingestion. The most dangerous nuclides are long-lived and not absorbed, or very poorly absorbed, in the soil. During migration of nuclides through saturated soil layers, the concentration can be reduced by dilution. Preliminary results indicate that tritium is spread with ground water velocity. Its concentration can be reduced only by diffusion, dispersion and radioactive decay. Alpha-emitters are strongly retained velocities of alpha-emitters are approximately one thousandth (10 -3 ) that of T. Transport velocities of Cs and Sr are approximately one hundreth (10 -2 ) and one tenth (10 -1 ) that of T respectively. (orig./HP) [de

  18. GEOPHYSICAL PROPERTIES OF SOILS

    KAUST Repository

    Santamarina, Carlos

    2016-12-01

    Low energy perturbations used in geophysical methods provide insightful information about constant-fabric soil properties and their spatial variability. There are causal links between soil type, index properties, elastic wave velocity, electromagnetic wave parameters and thermal properties. Soil type relates to the stress-dependent S-wave velocity, thermal and electrical conductivity and permittivity. The small strain stiffness reflects the state of stress, the extent of diagenetic cementation and/or freezing. Pore fluid chemistry, fluid phase and changes in either fluid chemistry or phase manifest through electromagnetic measurements. The volumetric water content measured with electromagnetic techniques is the best predictor of porosity if the water saturation is 100%. Changes in water saturation alter the P-wave velocity when Srà100%, the S-wave velocity at intermediate saturations, and the thermal conductivity when the saturation is low Srà0%. Finally, tabulated values suffice to estimate heat capacity and latent heat for engineering design, however thermal conductivity requires measurements under proper field conditions.

  19. Soils and organic sediments

    International Nuclear Information System (INIS)

    Head, M.J.

    1999-01-01

    The organic component of soils is basically made up of substances of an individual nature (fats, waxes, resins, proteins, tannic substances, and many others), and humic substances (Kononova, 1966). These are complex polymers formed from breakdown products of the chemical and biological degradation of plant and animal residues. They are dark coloured, acidic, predominantly aromatic compounds ranging in molecular weight from less than one thousand to tens of thousands (Schnitzer, 1977). They can be partitioned into three main fractions:(i) Humic acid, which is soluble in dilute alkaline solution, but can be precipitated by acidification of the alkaline extract.(ii) Fulvic acid, which is soluble in alkaline solution, but is also soluble on acidification.(iii) Humin that cannot be extracted from the soil or sediment by dilute acid or alkaline solutions. It has mostly been assumed that the humic and fulvic acid components of the soil are part of the mobile, or 'active' component, and the humin component is part of the 'passive' component. Other types of organic sediments are likely to contain chemical breakdown products of plant material, plant fragments and material brought in from outside sources. The outside material can be contemporaneous with sediment deposition, can be older material, or younger material incorporated into the sediment long after deposition. Recognition of 'foreign' material is essential for dating, but is not an easy task. Examples of separation techniques for humic and non humic components are evaluated for their efficiency

  20. Soil compaction: Evaluation of stress transmission and resulting soil structure

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas

    strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous......, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied...... and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate...

  1. Pedotransfer functions estimating soil hydraulic properties using different soil parameters

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Iversen, Bo Vangsø; Jacobsen, Ole Hørbye

    2008-01-01

    Estimates of soil hydraulic properties using pedotransfer functions (PTF) are useful in many studies such as hydrochemical modelling and soil mapping. The objective of this study was to calibrate and test parametric PTFs that predict soil water retention and unsaturated hydraulic conductivity...... parameters. The PTFs are based on neural networks and the Bootstrap method using different sets of predictors and predict the van Genuchten/Mualem parameters. A Danish soil data set (152 horizons) dominated by sandy and sandy loamy soils was used in the development of PTFs to predict the Mualem hydraulic...... conductivity parameters. A larger data set (1618 horizons) with a broader textural range was used in the development of PTFs to predict the van Genuchten parameters. The PTFs using either three or seven textural classes combined with soil organic mater and bulk density gave the most reliable predictions...

  2. Making sense of soil ecotoxicology

    Science.gov (United States)

    Beyer, W. Nelson; Linder, Greg L.; Hoffman, David J.; Rattner, Barnett A.; Burton, G. Allen; Cairns, John

    1995-01-01

    The toxicity of pesticides and environmental contaminants to soil organisms has been measured in studies on earthworms,1 soil arthropods,3-6 soil microorganisms,7 and other soil organisms.8 Toxicity data on earthworms produced in the pesticide registration procedure required by the OECD (Organization for economic cooperation and Development) will provide data on many additional chemicals.9 Deciding how to use the data generated is troublesome. In 1965, Edwards10 suggested that the effects of soil insecticides on soils may remain long after the pesticides have disappeared, and that it was clear that pesticides could drastically change the populations of soil organisms; Edwards noted, however, that the effects did not seem to be serious when compared with the benefits to crop production of using pesticides. Since 1965, many studies have been conducted on changes in soil ecosystems caused by environmental contaminants, but we still know little about what the toxicity to particular groups of soil organisms means to the functioning of the soil ecosystem. the problem was illustrated in discussions at the International Conference on Earthworm Ecotoxicology in Sheffield, England, in 1991. there was general agreement that earthworms ahould be taken into account when evaluating pesticides. However, it was unclear what level of reduction in earthworm populations would reduce soil quality or crop yeild. Because populations of earthworms naturally fluctuate greatly even in the absence of pesticides, and because some soils are fertile without any earthworms, it is difficult to equate their population decreases with damage to the soil ecosystem. Broadbent and Tomlin found that the insecticide carbofuran caused fluctuations in the populations of some microarthropods in a cornfield but, in comparing the effects to those of cultivation or adding compost, they concluded that it was unlikely that litter decomposition was significantly affected.3

  3. A Handbook on Artificial Soils for Indoor Photovoltaic Soiling Tests

    Energy Technology Data Exchange (ETDEWEB)

    Burton, Patrick D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-10-01

    This manuscript is intended to serve as a practical guide to conducting repeatable indoor soiling experiments for PV applications. An outline of techniques, materials and equipment used in prior studies [1-3] is presented. Additional recommendations and practical guidance has been presented. Major sections include techniques to formulate soil simulants, ('standard grime') and feedstocks from traceable components, spray application, and quantitative measurement methodologies at heavy and minimal soil loadings.

  4. Soil compaction: Evaluation of stress transmission and resulting soil structure

    Science.gov (United States)

    Naveed, Muhammad; Schjønning, Per; Keller, Thomas; Lamande, Mathieu

    2016-04-01

    Accurate estimation of stress transmission and resultant deformation in soil profiles is a prerequisite for the development of predictive models and decision support tools for preventing soil compaction. Numerous studies have been carried out on the effects of soil compaction, whilst relatively few studies have focused on the cause (mode of stress transmission in the soil). We have coupled both cause and effects together in the present study by carrying out partially confined compression tests on (1) wet aggregates, (2) air dry aggregates, and (3) intact soils to quantify stress transmission and compaction-resulted soil structure at the same time. Stress transmission was quantified using both X-ray CT and Tactilus sensor mat, and soil-pore structure was quantified using X-ray CT. Our results imply that stress transmission through soil highly depends on the magnitude of applied load and aggregate strength. As soon as the applied load is lower than the aggregate strength, the mode of stress transmission is discrete as stresses were mainly transmitted through chain of aggregates. With increasing applied load soil aggregates start deforming that transformed heterogeneous soil into homogenous, as a result stress transmission mode was shifted from discrete towards more like a continuum. Continuum-like stress transmission mode was better simulated with Boussinesq (1885) model based on theory of elasticity compared to discrete. The soil-pore structure was greatly affected by increasing applied stresses. Total porosity was reduced 5-16% and macroporosity 50-85% at 620 kPa applied stress for the intact soils. Similarly, significant changes in the morphological indices of the macropore space were also observed with increasing applied stresses.

  5. Complex linkage between soil, soil water, atmosphere and Eucalyptus Plantations

    Science.gov (United States)

    Shukla, C.; Tiwari, K. N.

    2017-12-01

    Eucalyptus is most widely planted genus grown in waste land of eastern region of India to meet the pulp industry requirements. Sustainability of these plantations is of concern because in spite of higher demand water and nutrients of plantations, they are mostly planted on low-fertility soils. This study has been conducted to quantify effect of 25 years old, a fully established eucalyptus plantations on i.) Alteration in physico-chemical and hydrological properties of soil of eucalyptus plantation in comparison to soil of natural grassland and ii.) Spatio-temporal variation in soil moisture under eucalyptus plantations. Soil physico-chemical properties of two adjacent plots covered with eucatuptus and natural grasses were analyzed for three consecutive depths (i.e. 0-30 cm, 30-60 cm and 60-90 cm) with five replications in each plot. Soil infiltration rate and saturated hydraulic conductivity (Ks) were measured in-situ to incorporate the influence of macro porosity caused due to roots of plantations. Daily soil moisture at an interval of 10 cm upto 160 cm depth with 3 replications and Leaf Area Index (LAI) at an interval of 15 days with 5 replications were recorded over the year. Significant variations found at level of 0.05 between soil properties of eucalyptus and natural grass land confirm the effect of plantations on soil properties. Comparative results of soil properties show significant alteration in soil texture such as percent of sand, organic matter and Ks found more by 20%, 9% and 22% respectively in eucalyptus plot as compare to natural grass land. Available soil moisture (ASM) was found constantly minimum in top soil excluding rainy season indicate upward movement of water and nutrients during dry season. Seasonal variation in temperature (T), relative humidity (RH) and leaf area index (LAI) influenced the soil moisture extraction phenomenon. This study clearly stated the impact of long term establishment of eucalyptus plantations make considerable

  6. The effect of intrinsic soil properties on soil quality assessments

    Directory of Open Access Journals (Sweden)

    Alessandro Samuel-Rosa

    2013-10-01

    Full Text Available The assessment of soil quality is based on indicators and indices derived from soil properties. However, intrinsic soil properties may interfere with other soil properties that vary under different land uses and are used to calculate the indices. The aim of this study was to assess the extent to which intrinsic soil properties (clay and iron oxide contents explain variable soil properties (sum of bases, potential acidity, organic carbon, total porosity, and bulk density under different land uses (native forest, no-tillage and conventional agriculture on small family farms in Southern Brazil. The results showed that the five properties evaluated can be included in soil quality assessments and are not influenced by the clay and iron oxide contents. It was concluded that for little weathered 1:1 and 2:1 phyllosilicate rich-soils, if the difference between the maximum and the minimum clay content under the different land uses is less than about 200 g kg-1 and the iron oxide content less than about 15 g kg-1, the physico-chemical soil properties in the surface layer are determined mostly by the land use.

  7. Remediation of soils combining soil vapor extraction and bioremediation: benzene.

    Science.gov (United States)

    Soares, António Alves; Albergaria, José Tomás; Domingues, Valentina Fernandes; Alvim-Ferraz, Maria da Conceição M; Delerue-Matos, Cristina

    2010-08-01

    This work reports the study of the combination of soil vapor extraction (SVE) with bioremediation (BR) to remediate soils contaminated with benzene. Soils contaminated with benzene with different water and natural organic matter contents were studied. The main goals were: (i) evaluate the performance of SVE regarding the remediation time and the process efficiency; (ii) study the combination of both technologies in order to identify the best option capable to achieve the legal clean up goals; and (iii) evaluate the influence of soil water content (SWC) and natural organic matter (NOM) on SVE and BR. The remediation experiments performed in soils contaminated with benzene allowed concluding that: (i) SVE presented (a) efficiencies above 92% for sandy soils and above 78% for humic soils; (b) and remediation times from 2 to 45 h, depending on the soil; (ii) BR showed to be an efficient technology to complement SVE; (iii) (a) SWC showed minimum impact on SVE when high airflow rates were used and led to higher remediation times for lower flow rates; (b) NOM as source of microorganisms and nutrients enhanced BR but hindered the SVE due the limitation on the mass transfer of benzene from the soil to the gas phase. (c) 2010 Elsevier Ltd. All rights reserved.

  8. Derivation of Soil Ecological Criteria for Copper in Chinese Soils.

    Science.gov (United States)

    Wang, Xiaoqing; Wei, Dongpu; Ma, Yibing; McLaughlin, Mike J

    2015-01-01

    Considerable information on copper (Cu) ecotoxicity as affected by biological species and abiotic properties of soils has been collected from the last decade in the present study. The information on bioavailability/ecotoxicity, species sensitivity and differences in laboratory and field ecotoxicity of Cu in different soils was collated and integrated to derive soil ecological criteria for Cu in Chinese soils, which were expressed as predicted no effect concentrations (PNEC). First, all ecotoxicity data of Cu from bioassays based on Chinese soils were collected and screened with given criteria to compile a database. Second, the compiled data were corrected with leaching and aging factors to minimize the differences between laboratory and field conditions. Before Cu ecotoxicity data were entered into a species sensitivity distribution (SSD), they were normalized with Cu ecotoxicity predictive models to modify the effects of soil properties on Cu ecotoxicity. The PNEC value was set equal to the hazardous concentration for x% of the species (HCx), which could be calculated from the SSD curves, without an additional assessment factor. Finally, predictive models for HCx based on soil properties were developed. The soil properties had a significant effect on the magnitude of HCx, with HC5 varying from 13.1 mg/kg in acidic soils to 51.9 mg/kg in alkaline non-calcareous soils. The two-factor predictive models based on soil pH and cation exchange capacity could predict HCx with determination coefficients (R2) of 0.82-0.91. The three-factor predictive models--that took into account the effect of soil organic carbon--were more accurate than two-factor models, with R2 of 0.85-0.99. The predictive models obtained here could be used to calculate soil-specific criteria. All results obtained here could provide a scientific basis for revision of current Chinese soil environmental quality standards, and the approach adopted in this study could be used as a pragmatic framework for

  9. Soil Properties Database of Spanish Soils Volume III.- Extremadura

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Roquero, C; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalized and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Extremadura. (Author) 50 refs

  10. Soil protists: a fertile frontier in soil biology research.

    Science.gov (United States)

    Geisen, Stefan; Mitchell, Edward A D; Adl, Sina; Bonkowski, Michael; Dunthorn, Micah; Ekelund, Flemming; Fernández, Leonardo D; Jousset, Alexandre; Krashevska, Valentyna; Singer, David; Spiegel, Frederick W; Walochnik, Julia; Lara, Enrique

    2018-05-01

    Protists include all eukaryotes except plants, fungi and animals. They are an essential, yet often forgotten, component of the soil microbiome. Method developments have now furthered our understanding of the real taxonomic and functional diversity of soil protists. They occupy key roles in microbial foodwebs as consumers of bacteria, fungi and other small eukaryotes. As parasites of plants, animals and even of larger protists, they regulate populations and shape communities. Pathogenic forms play a major role in public health issues as human parasites, or act as agricultural pests. Predatory soil protists release nutrients enhancing plant growth. Soil protists are of key importance for our understanding of eukaryotic evolution and microbial biogeography. Soil protists are also useful in applied research as bioindicators of soil quality, as models in ecotoxicology and as potential biofertilizers and biocontrol agents. In this review, we provide an overview of the enormous morphological, taxonomical and functional diversity of soil protists, and discuss current challenges and opportunities in soil protistology. Research in soil biology would clearly benefit from incorporating more protistology alongside the study of bacteria, fungi and animals.

  11. Soil Properties Database of Spanish Soils. Volume V.- Madrid

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Madrid. (Author) 39 refs

  12. Soil Properties Database of Spanish Soils. Volume XV.- Aragon

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Aragon. (Author) 47 refs

  13. Soil Properties Database of Spanish Soils Volume I.-Galicia

    International Nuclear Information System (INIS)

    Trueba, C.; Millan, R.; Schmid, T.; Roquero, C.; Magister, M.

    1998-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-13 7 and Sr-90. The Department de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim. a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary)' source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma de Galicia

  14. Soil Properties Database of Spanish Soils. Volume XIV.- Cataluna

    International Nuclear Information System (INIS)

    Trueba, C; Millan, R.; Schmid, T.; Lago, C.; Roquero, C; Magister, M.

    1999-01-01

    The soil vulnerability determines the sensitivity of the soil after an accidental radioactive contamination due to Cs-137 and Sr-90. The Departamento de Impacto Ambiental de la Energia of CIEMAT is carrying out an assessment of the radiological vulnerability of the different Spanish soils found on the Iberian Peninsula. This requires the knowledge of the soil properties for the various types of existing soils. In order to achieve this aim, a bibliographical compilation of soil profiles has been made to characterize the different soil types and create a database of their properties. Depending on the year of publication and the type of documentary source, the information compiled from the available bibliography is very heterogeneous. Therefore, an important effort has been made to normalize and process the information prior to its incorporation to the database. This volume presents the criteria applied to normalize and process the data as well as the soil properties of the various soil types belonging to the Comunidad Autonoma of Cataluna. (Author) 57 refs

  15. Silvicultural practices and soil protection

    International Nuclear Information System (INIS)

    Ranger, Jacques; Nys, Claude; Legout, Arnaud; Dambrine, Etienne; Augusto, Laurent; Berthelot, Alain; Bouchon, Jean; Ottorini, Jean-Marc; Cacot, Emmanuel; Gavaland, Andre; Laclau, Jean-Paul; Saint-Andre, Laurent; Nicolas, Manuel; Ponette, Quentin

    2011-01-01

    The purpose of this work is to assess the risks deriving from current forestry practices on the sustainability of soil function and ecosystems. The relationship between the production function and the soil conservation function translates as a certain conflict between these two options. Stresses on the chemical fertility of the soil were analysed from the least intensive to the most intensive treatments, i.e. from forest reserves to very short rotation, treated lignocellulosic crops. Under the extensive systems, high grade biological recycling is sustainable if logging is confined to trunks alone. Dressings can correct the slow but inevitable acidification of soils. When treatments are intensive, the natural fertility of forest soils cannot sustain production; only soils with suitable physical qualities combined with application of appropriate inputs enable sustained high levels of output to be achieved, in particular under the short rotation systems. (authors)

  16. Sustainable agriculture and soil conservation

    DEFF Research Database (Denmark)

    Olsen, Preben; Dubgaard, Alex

    , sandy soils in the West, (that had not been covered by ice) from more fertile soils being mostly sandy loams and finer textured soils covering the Eastern part of the study area. Several geological features such as pitting due to dead ice formation, smaller, terminal moraines in association with melt......, separate the moraine plateau. From the plateau several, minor erosion valleys, formed at the end of the glaciation some 10,000 years ago, feed into the two valleys. Very accurate soil type information is available for the area as intensive measurements within the area has formed the basis for a new...... methodology for soil classification in Denmark. The soil survey included a detailed mapping at field level, using the electromagnetic sensor, EM38. A high-resolution digital elevation model, obtained by use of laser scanning, is available for the study area. The original scanning has a horizontal resolution...

  17. Physical root-soil interactions

    Science.gov (United States)

    Kolb, Evelyne; Legué, Valérie; Bogeat-Triboulot, Marie-Béatrice

    2017-12-01

    Plant root system development is highly modulated by the physical properties of the soil and especially by its mechanical resistance to penetration. The interplay between the mechanical stresses exerted by the soil and root growth is of particular interest for many communities, in agronomy and soil science as well as in biomechanics and plant morphogenesis. In contrast to aerial organs, roots apices must exert a growth pressure to penetrate strong soils and reorient their growth trajectory to cope with obstacles like stones or hardpans or to follow the tortuous paths of the soil porosity. In this review, we present the main macroscopic investigations of soil-root physical interactions in the field and combine them with simple mechanistic modeling derived from model experiments at the scale of the individual root apex.

  18. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  19. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  20. Soil Science and Global Issues

    Science.gov (United States)

    Lal, Rattan

    2015-04-01

    Sustainable management of soil is integral to any rational approach to addressing global issues of the 21st century. A high quality soil is essential to: i) advancing food and nutritional security, ii) mitigating and adapting to climate change, iii) improving quality and renewability of water, iv) enriching biodiversity, v) producing biofuel feedstocks for reducing dependence on fossil fuel, and vi) providing cultural, aesthetical and recreational opportunities. Being the essence of all terrestrial life, soil functions and ecosystem services are essential to wellbeing of all species of plants and animals. Yet, soil resources are finite, unequally distributed geographically, and vulnerable to degradation by natural and anthropogenic perturbations. Nonetheless, soil has inherent resilience, and its ecosystem functions and services can be restored over time. However, soil resilience depends on several key soil properties including soil organic carbon (SOC) concentration and pool, plant-available water capacity (PWAC), nutrient reserves, effective rooting depth, texture and clay mineralogy, pH, cation exchange capacity (CEC) etc. There is a close inter-dependence among these properties. For example, SOC concentration strongly affects, PWAC, nutrient reserve, activity and species diversity of soil flora and fauna, CEC etc. Thus, judicious management of SOC concentration to maintain it above the threshold level (~1.5-2%) in the root zone is critical to sustaining essential functions and ecosystem services. Yet, soils of some agroecosystems (e.g., those managed by resources-poor farmers and small landholders in the tropics and sub-tropics) are severely depleted of their SOC reserves. Consequently. Agronomic productivity and wellbeing of people dependent on degraded soils is jeopardized. The ecosystem C pool of the terrestrial biosphere has been mined by extractive practices, the nature demands recarbonization of its biosphere for maintenance of its functions and

  1. 9 Nitrogen Uptake in Soils

    African Journals Online (AJOL)

    User

    + depletion zone and. L. C the mean concentration in solution. D is the soil NH4. + diffusion coefficient, and b is the soil NH. 4. + buffer power. D = DLθ fL / b. (5) where D. L is the NH. 4. + diffusion coefficient in water, θ is the soil water fraction by volume, and fL is the diffusion impedance factor. Kirk & Soliva (1997) assumed ...

  2. Soil classes and acceleration response

    International Nuclear Information System (INIS)

    Kalyoncuoglu, U.Y.

    2007-01-01

    It could not enough for determination of only geotechnical properties (soil classification, soil type, bearing capacity etc.) in order to define assessment of areas being settle in terms of suitability of settlement or how settled area is affected from natural disaster and to get necessary precautions. Damages on the engineering structure in the region posses an earthquake hazard are affected one or more site condition from source point to soil of engineering structure

  3. Soil sampling in emergency situations

    International Nuclear Information System (INIS)

    Carvalho, Zenildo Lara de; Ramos Junior, Anthenor Costa

    1997-01-01

    The soil sampling methods used in Goiania's accident (1987) by the environmental team of Brazilian Nuclear Energy Commission (CNEN) are described. The development of this method of soil sampling to a emergency sampling method used in a Nuclear Emergency Exercise in Angra dos Reis Reactor Site (1991) is presented. A new method for soil sampling based on a Chernobyl environmental monitoring experience (1995) is suggested. (author)

  4. In-situ vitrification of soil

    International Nuclear Information System (INIS)

    Buelt, J.L.; Brouns, R.A.; Bonner, W.F.

    1982-01-01

    A method of vitrifying soil at or below a soil surface location. Two or more conductive electrodes are inserted into the soil for heating of the soil mass between them to a temperature above its melting temperature. Materials in the soil, such as buried radioactive waste, can thereby be effectively immobilized. (author)

  5. Do invasive plant species alter soil health?

    Science.gov (United States)

    Invasive species may alter soil characteristics or interact with the soil microbial community to yield a competitive advantage. Our objectives were to determine: if invasive plant species alter soil properties important to soil health; and the long-term effects of invasive plant species on soil pro...

  6. Vital soil; function, value and properties

    NARCIS (Netherlands)

    Doelman, P.; Eijsackers, H.J.P.

    2004-01-01

    Healthy soil, with active soil life, deters long-term soil degradation and ensures that geo-physical processes are undisturbed. Is the vitality of soil under threat due to human civilization? Or is it due to contamination, intensification, and deforestation? Vital Soil aims to look at the effects

  7. Effect of soil solarization on soil-borne pathogens

    International Nuclear Information System (INIS)

    Sobh, Hana

    1995-01-01

    Author.Soil solarization was conducted at three locations on the Lebanese coast. Maximum soil temperatures recorded were 53 and 48 celsius degrees at Jiyeh, 48.9, 46 and 43 celsius degrees at Naameh and 48, 45 and 43.5 celsius degrees at Khaldeh at 5, 15 and 25cm soil depths respectively. Mean soil temperatures recorded at 3pm were at Jiyeh 51.6, 47 and 46 celsius degrees compared to Naameh 47, 45 and 41 celsius degrees and Khaldeh 44, 42 and 41 celsius degrees at 5, 15 and 25 cm respectively. The mean temperature in solarized soils were 7.3 to 15 celsius degrees higher than those of the nonsolarized soils indicating a sustained increase of soil temperature in the solarized soils. The effect of soil solarization on artificially introduced fungal pathogens in the soil at Khaldeh, resulted in complete destruction of sclerotia of Sclerotinia spp. at three depths studied. However, with respect to the two other pathogens tested, solarization resulted in reduction of the viability of microsclerotia of Verticillium spp. by 99-79% and of Fusarium oxysporum f. sp. melonis inoculum by 88-54% at 5 and 15 cm respectively, but only by 45% and 14% reduction at 25 cm. This level of control is significant when it is compared to the percentage of control where the level of reduction of inoculum viability did not exceed 10% at any soil depth. As there were contradicting reports in the literature on nematodes, two field trials in greenhouses were conducted to study the possibility of integrating 2 methods for management on nematodes. Soil solarization alone or in combination with biological control of nematodes using Arthrobotrys spp. and Dactyl ella brocophaga to control the root-knot nematodes on two crops, tomato at Naameh and cucumber at Jiyeh were compared to Methyl Bromide treatment. It was evident that, even on a very susceptible crop like cucumber, the integration of biological control and soil solarization gave a good level of control similar to methyl bromide. Neither root

  8. Measuring Soil Moisture in Skeletal Soils Using a COSMOS Rover

    Science.gov (United States)

    Medina, C.; Neely, H.; Desilets, D.; Mohanty, B.; Moore, G. W.

    2017-12-01

    The presence of coarse fragments directly influences the volumetric water content of the soil. Current surface soil moisture sensors often do not account for the presence of coarse fragments, and little research has been done to calibrate these sensors under such conditions. The cosmic-ray soil moisture observation system (COSMOS) rover is a passive, non-invasive surface soil moisture sensor with a footprint greater than 100 m. Despite its potential, the COSMOS rover has yet to be validated in skeletal soils. The goal of this study was to validate measurements of surface soil moisture as taken by a COSMOS rover on a Texas skeletal soil. Data was collected for two soils, a Marfla clay loam and Chinati-Boracho-Berrend association, in West Texas. Three levels of data were collected: 1) COSMOS surveys at three different soil moistures, 2) electrical conductivity surveys within those COSMOS surveys, and 3) ground-truth measurements. Surveys with the COSMOS rover covered an 8000-h area and were taken both after large rain events (>2") and a long dry period. Within the COSMOS surveys, the EM38-MK2 was used to estimate the spatial distribution of coarse fragments in the soil around two COSMOS points. Ground truth measurements included coarse fragment mass and volume, bulk density, and water content at 3 locations within each EM38 survey. Ground-truth measurements were weighted using EM38 data, and COSMOS measurements were validated by their distance from the samples. There was a decrease in water content as the percent volume of coarse fragment increased. COSMOS estimations responded to both changes in coarse fragment percent volume and the ground-truth volumetric water content. Further research will focus on creating digital soil maps using landform data and water content estimations from the COSMOS rover.

  9. Puerto Rico Soil Erodibility (Kffact)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Puerto Rico soil erodibility (Kffactor) - low values indicate low vulnerability to erosion, higher values mean higher susceptibility to runoff.

  10. Micromorphology of pelletized soil conditioners

    Science.gov (United States)

    Hirsch, Florian; Dietrich, Nils; Knoop, Christine; Raab, Thomas

    2017-04-01

    Soil conditioners produced by anaerobic digestion and subsequent composting of organic household waste, bear the potential to improve unproductive farmland together with a reduced input risk of unwanted pollutants into the soils. Within the VeNGA project (http://www.biogas-network.de/venga), soil conditioners from anaerobically digested organic household waste are tested for their potential to increase plant growth in glasshouse and field experiments. Because the production techniques of these soil conditioners may influence their physical and chemical behaviour in the soil, two different techniques for pelletizing the soil conditioners where applied. We present findings from a pot experiment with cereal that has been sampled after two months for micromorphological analyses. We visualize the decomposition and the physical behaviour of the soil conditioners. Pellets produced in an agglomeration mixer result in dense balls, that are only slightly decomposed after the trial. But the soil conditioners created under pressure in a screw extruder are rich in voids and have the potential of retaining more soil water.

  11. Frost Heave in Colloidal Soils

    KAUST Repository

    Peppin, Stephen

    2011-01-01

    We develop a mathematical model of frost heave in colloidal soils. The theory accountsfor heave and consolidation while not requiring a frozen fringe assumption. Two solidificationregimes occur: a compaction regime in which the soil consolidates to accommodate the ice lenses, and a heave regime during which liquid is sucked into the consolidated soil from an external reservoir, and the added volume causes the soil to heave. The ice fraction is found to vary inversely with thefreezing velocity V , while the rate of heave is independent of V , consistent with field and laboratoryobservations. © 2011 Society for Industrial and Applied Mathematics.

  12. Indicators for Monitoring Soil Biodiversity

    DEFF Research Database (Denmark)

    Bispo, A.; Cluzeau, D.; Creamer, R.

    2009-01-01

    is made for a set of suitable indicators for monitoring the decline in soil biodiversity (Bispo et al. 2007). These indicators were selected both from a literature review and an inventory of national monitoring programmes. Decline in soil biodiversity was defined as the reduction of forms of life living...... indicators are actually measured.   For monitoring application it was considered in ENVASSO that only three key indicators per soil stress were practical. For indicating biodiversity decline it was difficult to arrive at a small set of indicators due to the complexity of soil biota and functions. Therefore...

  13. Soil and terrestrial biology studies

    International Nuclear Information System (INIS)

    Anon.

    1976-01-01

    Soil and terrestrial biology studies focused on developing an understanding of the uptake of gaseous substances from the atmosphere by plants, biodegradation of oil, and the movement of Pu in the terrestrial ecosystems of the southeastern United States. Mathematical models were developed for SO 2 and tritium uptake from the atmosphere by plants; the uptake of tritium by soil microorganisms was measured; and the relationships among the Pu content of soil, plants, and animals of the Savannah River Plant area were studied. Preliminary results are reported for studies on the biodegradation of waste oil on soil surfaces

  14. Soil washing and post-wash biological treatment of petroleum hydrocarbon contaminated soils

    OpenAIRE

    Bhandari, Alok

    1992-01-01

    A laboratory scale study was conducted to investigate the treatability of petroleum contaminated soils by soil washing and subsequent biological treatment of the different soil fractions. In addition to soils obtained from contaminated sites, studies were also performed on soils contaminated in the laboratory. Soil washing was performed using a bench-scale soil washing system. Washing was carried out with simultaneous fractionation of the bulk soil into sand, silt and clay fractions. Cl...

  15. SOIL moisture data intercomparison

    Science.gov (United States)

    Kerr, Yann; Rodriguez-Frenandez, Nemesio; Al-Yaari, Amen; Parens, Marie; Molero, Beatriz; Mahmoodi, Ali; Mialon, Arnaud; Richaume, Philippe; Bindlish, Rajat; Mecklenburg, Susanne; Wigneron, Jean-Pierre

    2016-04-01

    The Soil Moisture and Ocean Salinity satellite (SMOS) was launched in November 2009 and started delivering data in January 2010. Subsequently, the satellite has been in operation for over 6 years while the retrieval algorithms from Level 1 to Level 2 underwent significant evolutions as knowledge improved. Other approaches for retrieval at Level 2 over land were also investigated while Level 3 and 4 were initiated. In this présentation these improvements are assessed by inter-comparisons of the current Level 2 (V620) against the previous version (V551) and new products either using neural networks or Level 3. In addition a global evaluation of different SMOS soil moisture (SM) products is performed comparing products with those of model simulations and other satellites (AMSR E/ AMSR2 and ASCAT). Finally, all products were evaluated against in situ measurements of soil moisture (SM). The study demonstrated that the V620 shows a significant improvement (including those at level1 improving level2)) with respect to the earlier version V551. Results also show that neural network based approaches can yield excellent results over areas where other products are poor. Finally, global comparison indicates that SMOS behaves very well when compared to other sensors/approaches and gives consistent results over all surfaces from very dry (African Sahel, Arizona), to wet (tropical rain forests). RFI (Radio Frequency Interference) is still an issue even though detection has been greatly improved while RFI sources in several areas of the world are significantly reduced. When compared to other satellite products, the analysis shows that SMOS achieves its expected goals and is globally consistent over different eco climate regions from low to high latitudes and throughout the seasons.

  16. Solos urbanos Urban soils

    Directory of Open Access Journals (Sweden)

    Fabrício de Araújo Pedron

    2004-10-01

    Full Text Available A forte pressão provocada pela expansão urbana desordenada sobre os recursos naturais, principalmente os solos, tem provocado danos, muitas vezes de difícil reparo. A grande concentração populacional em centros urbanos cada vez maiores tem dirigido a atenção de diferentes profissionais para o recurso solo, no sentido de entender sua dinâmica para minimizar sua degradação. No entanto, a falta de conhecimento sobre as propriedades, bem como sobre a aptidão dos solos sob uso urbano tem provocado o seu mau uso, resultando em processos como compactação, erosão, deslizamentos e inundações, assim como poluição com substâncias orgânicas, inorgânicas e patógenos, aumentando os custos do desenvolvimento afetando toda a sociedade. Neste sentido, este texto discute como o conhecimento pedológico pode diminuir os efeitos negativos provocados pelo processo de urbanização.The strong pressure caused by the disordered urban expansion over the natural resources, mainly the soils, has caused damages, many times difficult to repair. The great population concentration in urban centers getting larger and larger has been driving the attention of different professionals to soil resource, in the sense of understanding its dynamics to minimize its degradation. The lack of knowledge related to the soils properties and capability promote their inappropriate use, resultig in degrading processes as compaction, erosion, sliding, floods, and organic, inorganic and patogenic pollution, increasing the cost of development and affecting the whole society. This text discusses how pedologic knowledge can reduce the negative effects caused by the urbanization process.

  17. Estimation of soil-soil solution distribution coefficient of radiostrontium using soil properties.

    Science.gov (United States)

    Ishikawa, Nao K; Uchida, Shigeo; Tagami, Keiko

    2009-02-01

    We propose a new approach for estimation of soil-soil solution distribution coefficient (K(d)) of radiostrontium using some selected soil properties. We used 142 Japanese agricultural soil samples (35 Andosol, 25 Cambisol, 77 Fluvisol, and 5 others) for which Sr-K(d) values had been determined by a batch sorption test and listed in our database. Spearman's rank correlation test was carried out to investigate correlations between Sr-K(d) values and soil properties. Electrical conductivity and water soluble Ca had good correlations with Sr-K(d) values for all soil groups. Then, we found a high correlation between the ratio of exchangeable Ca to Ca concentration in water soluble fraction and Sr-K(d) values with correlation coefficient R=0.72. This pointed us toward a relatively easy way to estimate Sr-K(d) values.

  18. Soil monitoring instrumentation

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1981-01-01

    The Los Alamos Scientific Laboratory (LASL) has an extensive program for the development of nondestructive assay instrumentation for the quantitative analysis of transuranic (TRU) materials found in bulk solid wastes generated by Department of Energy facilities and by the commercial nuclear power industry. Included are wastes generated in decontamination and decommissioning of outdated nuclear facilities, as well as from old waste-burial-ground exhumation programs. The assay instrumentation is designed to have detection limits below 10 nCi/g wherever practicable. The assay instrumentation that is applied specifically to soil monitoring is discussed

  19. Changes in photosynthesis and soil moisture drive the seasonal soil respiration-temperature hysteresis relationship

    Science.gov (United States)

    In nearly all large-scale models, CO2 efflux from soil (i.e., soil respiration) is represented as a function of soil temperature. However, the relationship between soil respiration and soil temperature is highly variable at the local scale, and there is often a pronounced hysteresis in the soil resp...

  20. Reduction of soil tare by improved uprooting of sugar beet : a soil dynamic approach

    NARCIS (Netherlands)

    Vermeulen, G.D.

    2001-01-01

    The relative amount of soil in sugar beet lots, called soil tare, should be reduced to curtail the cost and negative aspects of soil tare. Highest soil tare occurs in beet lots harvested out of wet clay soil. The main problem is that commonly-used share lifters press the soil against the

  1. Soil Organic Matter and Soil Productivity: Searching for the Missing Link

    Science.gov (United States)

    Felipe G. Sanchez

    1998-01-01

    Soil-organic matter (SOM) is a complex array of components including soil fauna and flora at different stages of decomposition (Berg et al., 1982). Its concentration in soils can vary from 0.5% in mineral soils to almost 100% in peat soils (Brady, 1974). Organic matter (OM) in the surface mineral soil is considered a major determinant of forest ecosystem productivity...

  2. New perspectives on the soil erosion-soil quality relationship

    International Nuclear Information System (INIS)

    Pennock, D.J.

    1998-01-01

    The redistribution of soil has a profound impact on its quality (defined as its ability to function within its ecosystem and within adjacent ecosystems) and ultimately on its productivity for crop growth. The application of 137 Cs-redistribution techniques to the study of erosion has yielded major new insights into the soil erosion-soil quality relationship. In highly mechanized agricultural systems, tillage erosion can be the dominant cause of soil redistribution; in other agroecosystems, wind and water erosion dominate. Each causal factor results in characteristic landscape-scale patterns of redistribution. In landscapes dominated by tillage redistribution, highest losses occur in shoulder positions (those with convex downslope curvatures); in water-erosion-dominated landscapes, highest losses occur where slope gradient and length are at a maximum. Major impacts occur through the loss of organically-enriched surface material and through the incorporation of possibly yield-limiting subsoils into the rooting zone of the soil column. The potential impact of surface soil losses and concomitant subsoil incorporation on productivity may be assessed by examining the pedological nature of the affected soils and their position in the landscape. The development of sound conservation policies requires that the soil erosion-quality relationship be rigorously examined in the full range of pedogenic environments, and future applications of the 137 Cs technique hold considerable promise for providing this comprehensive global database. (author)

  3. Soil loss prediction using universal soil loss equation (USLE ...

    African Journals Online (AJOL)

    Soil loss prediction using universal soil loss equation (USLE) simulation model in a mountainous area in Ag lasun district, Turkey. ... The need for sufficient knowledge and data for decision makers is obvious hence the present study was carried out. The study area, the Alasun district, is in the middle west of Turkey and is ...

  4. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    Science.gov (United States)

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  5. The effect of soil fauna on carbon sequestration in soil

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Pižl, Václav; Kaneda, Satoshi; Šimek, Miloslav

    2008-01-01

    Roč. 10, - (2008) ISSN 1029-7006. [EGU General Assembly 2008. 13.04.2008-18.04.2008, Vienna] Institutional research plan: CEZ:AV0Z60660521 Keywords : soil fauna * carbon sequestration * soil Subject RIV: EH - Ecology, Behaviour

  6. Hydrolysis of nitriles by soil bacteria: variation with soil origin

    CSIR Research Space (South Africa)

    Rapheeha, OKL

    2017-03-01

    Full Text Available . To achieve this, we needed to compare the efficiency of isolation methods and determine the influence of land use and geographical origin of the soil sample. Nitrile-utilizing bacteria were isolated from various soil environments across a 1000 km long...

  7. Effects of soil and water conservation practices on selected soil ...

    African Journals Online (AJOL)

    Although different types of soil and water conservation practices (SWCPs) were introduced, the sustainable use of these practices is far below expectations, and soil erosion continues to be a severe problem in Ethiopia. Therefore, this study was conducted at Debre Yakobe Micro-Watershed (DYMW), Northwest Ethiopia ...

  8. Increasing cotton stand establishment in soils prone to soil crusting

    Science.gov (United States)

    Many factors can contribute to poor cotton stand establishment, and cotton is notorious for its weak seedling vigor. Soil crusting can be a major factor hindering cotton seedling emergence in many of the cotton production regions of the US and the world. Crusting is mainly an issue in silty soils ...

  9. Inference of soil hydrologic parameters from electronic soil moisture records

    Science.gov (United States)

    Soil moisture is an important control on hydrologic function, as it governs vertical fluxes from and to the atmosphere, groundwater recharge, and lateral fluxes through the soil. Historically, the traditional model parameters of saturation, field capacity, and permanent wilting point have been deter...

  10. Influence of amendments on soil structure and soil loss under ...

    African Journals Online (AJOL)

    Macromolecule polymers are significant types of chemical amendments because of their special structure, useful functions and low cost. Macromolecule polymers as soil amendment provide new territory for studying China's agricultural practices and for soil and water conservation, because polymers have the ability to ...

  11. Soil water balance scenario studies using predicted soil hydraulic parameters

    NARCIS (Netherlands)

    Nemes, A.; Wösten, J.H.M.; Bouma, J.; Várallyay, G.

    2006-01-01

    Pedotransfer functions (PTFs) have become a topic drawing increasing interest within the field of soil and environmental research because they can provide important soil physical data at relatively low cost. Few studies, however, explore which contributions PTFs can make to land-use planning, in

  12. Effects of soil surface management practices on soil and tree ...

    African Journals Online (AJOL)

    Effects on soil, leaf and fruit element concentrations of organic (compost, straw mulch and hand weeding) and integrated (inorganic fertilisers and herbicide usage; IP) soil surface management practices in the tree rows, in combination with weed covers, cover crops and straw mulch in the work rows, were investigated in a ...

  13. Soil forensics: How far can soil clay analysis distinguish between soil vestiges?

    Science.gov (United States)

    Corrêa, R S; Melo, V F; Abreu, G G F; Sousa, M H; Chaker, J A; Gomes, J A

    2018-03-01

    Soil traces are useful as forensic evidences because they frequently adhere to individuals and objects associated with crimes and can place or discard a suspect at/from a crime scene. Soil is a mixture of organic and inorganic components and among them soil clay contains signatures that make it reliable as forensic evidence. In this study, we hypothesized that soils can be forensically distinguished through the analysis of their clay fraction alone, and that samples of the same soil type can be consistently distinguished according to the distance they were collected from each other. To test these hypotheses 16 Oxisol samples were collected at distances of between 2m and 1.000m, and 16 Inceptisol samples were collected at distances of between 2m and 300m from each other. Clay fractions were extracted from soil samples and analyzed for hyperspectral color reflectance (HSI), X-ray diffraction crystallographic (XRD), and for contents of iron oxides, kaolinite and gibbsite. The dataset was submitted to multivariate analysis and results were from 65% to 100% effective to distinguish between samples from the two soil types. Both soil types could be consistently distinguished for forensic purposes according to the distance that samples were collected from each other: 1000m for Oxisol and 10m for Inceptisol. Clay color and XRD analysis were the most effective techniques to distinguish clay samples, and Inceptisol samples were more easily distinguished than Oxisol samples. Soil forensics seems a promising field for soil scientists as soil clay can be useful as forensic evidence by using routine analytical techniques from soil science. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  14. Underestimation of boreal soil carbon stocks by mathematical soil carbon models linked to soil nutrient status

    Science.gov (United States)

    Ťupek, Boris; Ortiz, Carina A.; Hashimoto, Shoji; Stendahl, Johan; Dahlgren, Jonas; Karltun, Erik; Lehtonen, Aleksi

    2016-08-01

    Inaccurate estimate of the largest terrestrial carbon pool, soil organic carbon (SOC) stock, is the major source of uncertainty in simulating feedback of climate warming on ecosystem-atmosphere carbon dioxide exchange by process-based ecosystem and soil carbon models. Although the models need to simplify complex environmental processes of soil carbon sequestration, in a large mosaic of environments a missing key driver could lead to a modeling bias in predictions of SOC stock change.We aimed to evaluate SOC stock estimates of process-based models (Yasso07, Q, and CENTURY soil sub-model v4) against a massive Swedish forest soil inventory data set (3230 samples) organized by a recursive partitioning method into distinct soil groups with underlying SOC stock development linked to physicochemical conditions.For two-thirds of measurements all models predicted accurate SOC stock levels regardless of the detail of input data, e.g., whether they ignored or included soil properties. However, in fertile sites with high N deposition, high cation exchange capacity, or moderately increased soil water content, Yasso07 and Q models underestimated SOC stocks. In comparison to Yasso07 and Q, accounting for the site-specific soil characteristics (e. g. clay content and topsoil mineral N) by CENTURY improved SOC stock estimates for sites with high clay content, but not for sites with high N deposition.Our analysis suggested that the soils with poorly predicted SOC stocks, as characterized by the high nutrient status and well-sorted parent material, indeed have had other predominant drivers of SOC stabilization lacking in the models, presumably the mycorrhizal organic uptake and organo-mineral stabilization processes. Our results imply that the role of soil nutrient status as regulator of organic matter mineralization has to be re-evaluated, since correct SOC stocks are decisive for predicting future SOC change and soil CO2 efflux.

  15. Spectral Assessment of Soil Properties: Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat

    Science.gov (United States)

    2017-08-01

    Soil Properties Standoff Quantification of Soil Organic Matter Content in Surface Mineral Soils and Alaskan Peat En gi ne er R es ea rc h an d D...ERDC 6.2 GRE ARTEMIS STO-R DRTSPORE ERDC TR-17-9 August 2017 Spectral Assessment of Soil Properties Standoff Quantification of Soil Organic...Matter Content in Surface Mineral Soils and Alaskan Peat Stacey L. Jarvis, Karen L. Foley, Robert M. Jones, Stephen D. Newman, and Robyn A. Barbato

  16. Anthropogenic effects on soil micromycetes

    Directory of Open Access Journals (Sweden)

    Đukić Dragutin A.

    2007-01-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different authropogenic pollutants (mineral and organic fertilizers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Čačak on smonitza and alluvium soils in field and under greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Čapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season, and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg x ha-1 and organic fertilizers stimulated the development of soil fungi, unlike the rate of 150 kg x ha-1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor, inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  17. Soil sampling for environmental contaminants

    International Nuclear Information System (INIS)

    2004-10-01

    The Consultants Meeting on Sampling Strategies, Sampling and Storage of Soil for Environmental Monitoring of Contaminants was organized by the International Atomic Energy Agency to evaluate methods for soil sampling in radionuclide monitoring and heavy metal surveys for identification of punctual contamination (hot particles) in large area surveys and screening experiments. A group of experts was invited by the IAEA to discuss and recommend methods for representative soil sampling for different kinds of environmental issues. The ultimate sinks for all kinds of contaminants dispersed within the natural environment through human activities are sediment and soil. Soil is a particularly difficult matrix for environmental pollution studies as it is generally composed of a multitude of geological and biological materials resulting from weathering and degradation, including particles of different sizes with varying surface and chemical properties. There are so many different soil types categorized according to their content of biological matter, from sandy soils to loam and peat soils, which make analytical characterization even more complicated. Soil sampling for environmental monitoring of pollutants, therefore, is still a matter of debate in the community of soil, environmental and analytical sciences. The scope of the consultants meeting included evaluating existing techniques with regard to their practicability, reliability and applicability to different purposes, developing strategies of representative soil sampling for cases not yet considered by current techniques and recommending validated techniques applicable to laboratories in developing Member States. This TECDOC includes a critical survey of existing approaches and their feasibility to be applied in developing countries. The report is valuable for radioanalytical laboratories in Member States. It would assist them in quality control and accreditation process

  18. ANTHROPOGENIC EFFECTS ON SOIL MICROMYCETES

    Directory of Open Access Journals (Sweden)

    Dragutin A. Đukić

    2007-09-01

    Full Text Available This paper is a synthesis of long-term investigations based on the effect of different (mineral and organic fertilisers, heavy metals, contaminated irrigation water, nitrification inhibitor and detergents on the dynamics of soil fungi number. The investigations were performed at the Microbiology Department and trial fields of the Faculty of Agronomy in Cacak on smonitza and alluvium soils in field and greenhouse conditions. Maize, wheat, barley and red clover were used as test plants in these studies. The quantitative composition of the fungi in the soils investigated was determined by the Czapek selective agar dilution method. The study results show that the number of soil fungi was dependent on the type and rate of agrochemicals used, on the growing season and the soil zone the samples were taken from for the analysis. Lower nitrogen fertiliser rates (80 and 120 kg?ha-1 and organic fertilisers stimulated the development of soil fungi, unlike the rate of 150 kg?ha- 1. Heavy metals, mercury and cadmium in particular, as well as high rates of the N-serve nitrification inhibitor inhibited the development of this group of soil microorganisms. Generally, the adverse effect of contaminated irrigation water on the soil fungi was recorded in both soil types, and particularly in the smonitza under red clover. Low detergent (Meril concentrations did not have any significant effect on this group of microorganisms. In this respect, it can be concluded that the soil fungi number dynamics can be used in monitoring soils polluted by different toxinogenic substances.

  19. Soil fungi as indicators of pesticide soil pollution

    Directory of Open Access Journals (Sweden)

    Mandić Leka

    2005-01-01

    Full Text Available Soil fungi, with their pronounced enzymic activity and high osmotic potential, represent a significant indicator of negative effects of different pesticides on the agroecosystem as a whole. In that respect, a trial was set up on the alluvium soil type with the aim to investigate the effect of different herbicides (Simazine, Napropamid, Paraquat, fungicides (Captan and Mancozeb and insecticides (Fenitrothion and Dimethoate on a number of soil fungi under apple trees. The number of soil fungi was determined during four growing seasons by an indirect method of dilution addition on the Czapek agar. The study results indicate that the fungi belong to the group of microorganisms that, after an initial sensible response to the presence of pesticides in the soil, very rapidly establish normal metabolism enabling them even to increase their number. The fungicides and insecticides applied were found to be particularly effective in that respect.

  20. Soil properties related to 60Co bioavailability in tropical soils

    International Nuclear Information System (INIS)

    Bartoly, Flavia; Wasserman, Maria Angelica; Rochedo, Elaine Ruas Rodriguez; Viana, Aline Gonzalez; Souza, Rodrigo Camara; Oliveira, Giselle Rodrigues; Reis, Wagner Goncalves Soares; Perez, Daniel Vidal

    2005-01-01

    This work presents the results of field experiments to obtain soil to plants Transfer factor (TF) for 60 Co in reference plants cultivated in Ferralsol, Acrisol and Nitisol. These soils represent the majority of Brazilian agricultural area. Values of TF varied from 0.001 to 0.05 for corn and from 0.001 to 0.81 for cabbage. Results of 60 Co TF were discussed in relation to the physical and chemical properties of the soils and 60 Co geochemical partition. The sequential chemical extraction showed that more than 40% of the 60 Co present in the soils are associated to manganese oxides. These results will provide regional values for parameters used in the environmental radiological modeling aiming to optimize the planning of emergency interventions or the waste management related to tropical soils. (author)

  1. Continuous soil monitoring and inventory of soils as part of the soil information system

    International Nuclear Information System (INIS)

    Schilling, B.

    1993-01-01

    The Bavarian Geological State office conducted a soil inventory and continuous soil monitoring programme. In order to make permanent monitoring feasible the Bavarian Geological State office developed a special concept. This concept of site selection, commissioning, sampling and analysis is described in this paper. The results of first studies of the three permanent soil monitoring areas in the Alpine region shows that only on the Gotzenalm in the national park in Berchtegaden there are significant accumulations of Cs-137 and of some other typically anthropogenic heavy metals in the top soil. Organic pollution is small in all three areas. (orig./EW) [de

  2. Evaluation of soil structure in the framework of an overall soil quality rating

    DEFF Research Database (Denmark)

    Mueller, L; Shepherd, T G; Schindler, U

    2013-01-01

    Soil structure is an important aspect of agricultural soil quality, and its preservation and improvement are key to sustaining soil functions. Methods of overall soil quality assessment which include visual soil structure information can be useful tools for monitoring and managing the global soil...... resource. The aim of the paper is: (i) to demonstrate the role of visual quantification of soil structure within the procedure of the overall soil quality assessment by the Muencheberg Soil Quality Rating (M-SQR), (ii) to quantify the magnitude and variability of soil structure and overall M......-SQR on a number of agricultural research sites and (iii) to analyse the correlations of soil quality rating results with crop yields. We analysed visual soil structure and overall soil quality on a range of 20 experimental sites in seven countries. To assess visual soil structure we utilised the Visual Soil...

  3. [Soil Microbial Respiration Under Different Soil Temperature Conditions and Its Relationship to Soil Dissolved Organic Carbon and Invertase].

    Science.gov (United States)

    Wu, Jing; Chen, Shu-tao; Hu, Zheng-hua; Zhang, Xu

    2015-04-01

    In order to investigate the soil microbial respiration under different temperature conditions and its relationship to soil dissolved organic carbon ( DOC) and invertase, an indoor incubation experiment was performed. The soil samples used for the experiment were taken from Laoshan, Zijinshan, and Baohuashan. The responses of soil microbial respiration to the increasing temperature were studied. The soil DOC content and invertase activity were also measured at the end of incubation. Results showed that relationships between cumulative microbial respiration of different soils and soil temperature could be explained by exponential functions, which had P values lower than 0.001. The coefficient of temperature sensitivity (Q10 value) varied from 1.762 to 1.895. The Q10 value of cumulative microbial respiration decreased with the increase of soil temperature for all soils. The Q10 value of microbial respiration on 27 days after incubation was close to that of 1 day after incubation, indicating that the temperature sensitivity of recalcitrant organic carbon may be similar to that of labile organic carbon. For all soils, a highly significant ( P = 0.003 ) linear relationship between cumulative soil microbial respiration and soil DOC content could be observed. Soil DOC content could explain 31.6% variances of cumulative soil microbial respiration. For the individual soil and all soils, the relationship between cumulative soil microbial respiration and invertase activity could be explained by a highly significant (P soil microbial respiration.

  4. VT Data - NRCS Soil Survey Units

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This data set is a digital soil survey and generally is the most detailed level of soil geographic data developed by the National Cooperative Soil...

  5. VT Data - Agriculturally Important Soil Units

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) GeologicSoils_SOAG includes a pre-selected subset of SSURGO soil data depicting prime agricultural soils in Vermont. The SSURGO county coverages...

  6. Quick test for infiltration of arable soils

    OpenAIRE

    Liebl, Boris; Spiegel, Ann-Kathrin

    2018-01-01

    The quick test makes the consequences of soil compaction on water infiltration and the yield of agricultural crops visible. It promotes an understanding of the effects of soil compaction and the importance of soil-conserving cultivation.

  7. Relating soil biochemistry to sustainable crop production

    Science.gov (United States)

    Amino acids, amino sugars, carbohydrates, phenols, and fatty acids together comprise appreciable proportions of soil organic matter (SOM). Their cycling contribute to soil processes, including nitrogen availability, carbon sequestration and aggregation. For example, soil accumulation of phenols has ...

  8. Soil conservation: Market failure and program performance

    OpenAIRE

    Paul Gary Wyckoff

    1983-01-01

    An examination of the economic rationale behind soil conservation programs, an assessment of the magnitude of the soil erosion problem, and an evaluation of the effectiveness of U.S. soil conservation policies.

  9. Use of soil stabilizers on highway shoulders.

    Science.gov (United States)

    2005-01-01

    This study evaluated soil additives as stabilizers for aggregate and topsoil shoulders. Its purpose was to determine (1) the effect soil stabilizers have on the strength and stability of soil shoulders, and (2) the costs and benefits of using stabili...

  10. Soil management practices for sustainable crop production

    International Nuclear Information System (INIS)

    Abalos, E.B.

    2005-01-01

    In a sustainable system, the soil is viewed as a fragile and living medium that must be protected and nurtured to ensure its long-term productivity and stability. However, due to high demand for food brought about by high population as well as the decline in agricultural lands, the soil is being exploited beyond its limit thus, leading to poor or sick soils. Sound soil management practices in the Philippines is being reviewed. The technologies, including the advantages and disadvantages are hereby presented. This includes proper cropping systems, fertilizer program, soil erosion control and correcting soil acidity. Sound soil management practices which conserve organic matter for long-term sustainability includes addition of compost, maintaining soil cover, increasing aggregates stability, soil tilt and diversity of soil microbial life. A healthy soil is a key component to sustainability as a health soil produce healthy crop plants and have optimum vigor or less susceptible to pests. (author)

  11. Soil invertebrate fauna affect N2 O emissions from soil.

    Science.gov (United States)

    Kuiper, Imke; de Deyn, Gerlinde B; Thakur, Madhav P; van Groenigen, Jan Willem

    2013-09-01

    Nitrous oxide (N2 O) emissions from soils contribute significantly to global warming. Mitigation of N2 O emissions is severely hampered by a lack of understanding of its main controls. Fluxes can only partly be predicted from soil abiotic factors and microbial analyses - a possible role for soil fauna has until now largely been overlooked. We studied the effect of six groups of soil invertebrate fauna and tested the hypothesis that all of them increase N2 O emissions, although to different extents. We conducted three microcosm experiments with sandy soil and hay residue. Faunal groups included in our experiments were as follows: fungal-feeding nematodes, mites, springtails, potworms, earthworms and isopods. In experiment I, involving all six faunal groups, N2 O emissions declined with earthworms and potworms from 78.4 (control) to 37.0 (earthworms) or 53.5 (potworms) mg N2 O-N m(-2) . In experiment II, with a higher soil-to-hay ratio and mites, springtails and potworms as faunal treatments, N2 O emissions increased with potworms from 51.9 (control) to 123.5 mg N2 O-N m(-2) . Experiment III studied the effect of potworm density; we found that higher densities of potworms accelerated the peak of the N2 O emissions by 5 days (P soil aeration by the soil fauna reduced N2 O emissions in experiment I, whereas in experiment II N2 O emissions were driven by increased nitrogen and carbon availability. In experiment III, higher densities of potworms accelerated nitrogen and carbon availability and N2 O emissions, but did not increase them. Overall, our data show that soil fauna can suppress, increase, delay or accelerate N2 O emissions from soil and should therefore be an integral part of future N2 O studies. © 2013 John Wiley & Sons Ltd.

  12. Degradation kinetics of ptaquiloside in soil and soil solution.

    Science.gov (United States)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-02-01

    Ptaquiloside (PTA) is a carcinogenic norsesquiterpene glycoside produced in bracken (Pteridium aquilinum (L.) Kuhn), a widespread, aggressive weed. Transfer of PTA to soil and soil solution eventually may contaminate groundwater and surface water. Degradation rates of PTA were quantified in soil and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction was similar in all horizons, with the rate constant k(1F) ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k(1S) ranging between 0.00067 and 0.029/ h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils. Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA by clay silicates. Ptaquiloside appeared to be stable in all soil solutions, in which no degradation was observed within a period of 28 d, in strong contrast to previous studies of hydrolysis rates in artificial aqueous electrolytes. The present study predicts that the risk of PTA leaching is controlled mainly by the residence time of pore water in soil, soil microbial activity, and content of organic matter and clay silicates.

  13. Soil solid-phase controls lead activity in soil solution.

    Science.gov (United States)

    Badawy, S H; Helal, M I D; Chaudri, A M; Lawlor, K; McGrath, S P

    2002-01-01

    Lead pollution of the environment is synonymous with civilization. It has no known biological function, and is naturally present in soil, but its presence in food crops is deemed undesirable. The concern regarding Pb is mostly due to chronic human and animal health effects, rather then phytotoxicity. However, not much is known about the chemistry and speciation of Pb in soils. We determined the activity of Pb2+, in near neutral and alkaline soils, representative of alluvial, desertic and calcareous soils of Egypt, using the competitive chelation method. Lead activity ranged from 10(-6.73) to 10(-4.83) M, and was negatively correlated with soil and soil solution pH (R2 = -0.92, P soil solution from the equation: log(Pb2+) = 9.9 - 2pH. A solubility diagram for the various Pb minerals found in soil was constructed using published thermodynamic data obtained from the literature, and our measured Pb2+ activities compared with this information. The measured Pb2+ activities were undersaturated with regard to the solubility of PbSiO3 in equilibrium with SiO2 (soil). However, they were supersaturated with regard to the solubilities of the Pb carbonate minerals PbCO3 (cerussite) and Pb3(CO3)2(OH)2 in equilibrium with atmospheric CO2 and hydroxide Pb(OH)2. They were also supersaturated with regard to the solubilities of the Pb phosphate minerals Pb3(PO4)2, Pb5(PO4)3OH, and Pb4O(PO4)2 in equilibrium with tricalcium phosphate and CaCO3. The activity of Pb2+ was not regulated by any mineral of known solubility in our soils, but possibly by a mixture of Pb carbonate and phosphate minerals.

  14. Feedbacks Between Soil Structure and Microbial Activities in Soil

    Science.gov (United States)

    Bailey, V. L.; Smith, A. P.; Fansler, S.; Varga, T.; Kemner, K. M.; McCue, L. A.

    2017-12-01

    Soil structure provides the physical framework for soil microbial habitats. The connectivity and size distribution of soil pores controls the microbial access to nutrient resources for growth and metabolism. Thus, a crucial component of soil research is how a soil's three-dimensional structure and organization influences its biological potential on a multitude of spatial and temporal scales. In an effort to understand microbial processes at scale more consistent with a microbial community, we have used soil aggregates as discrete units of soil microbial habitats. Our research has shown that mean pore diameter (x-ray computed tomography) of soil aggregates varies with the aggregate diameter itself. Analyzing both the bacterial composition (16S) and enzyme activities of individual aggregates showed significant differences in the relative abundances of key members the microbial communities associated with high enzyme activities compared to those with low activities, even though we observed no differences in the size of the biomass, nor in the overall richness or diversity of these communities. We hypothesize that resources and substrates have stimulated key populations in the aggregates identified as highly active, and as such, we conducted further research that explored how such key populations (i.e. fungal or bacterial dominated populations) alter pathways of C accumulation in aggregate size domains and microbial C utilization. Fungi support and stabilize soil structure through both physical and chemical effects of their hyphal networks. In contrast, bacterial-dominated communities are purported to facilitate micro- and fine aggregate stabilization. Here we quantify the direct effects fungal versus bacterial dominated communities on aggregate formation (both the rate of aggregation and the quality, quantity and distribution of SOC contained within aggregates). A quantitative understanding of the different mechanisms through which fungi or bacteria shape aggregate

  15. Soil Radiological Characterisation Methodology

    International Nuclear Information System (INIS)

    Attiogbe, Julien; Aubonnet, Emilie; De Maquille, Laurence; De Moura, Patrick; Desnoyers, Yvon; Dubot, Didier; Feret, Bruno; Fichet, Pascal; Granier, Guy; Iooss, Bertrand; Nokhamzon, Jean-Guy; Ollivier Dehaye, Catherine; Pillette-Cousin, Lucien; Savary, Alain

    2014-12-01

    This report presents the general methodology and best practice approaches which combine proven existing techniques for sampling and characterisation to assess the contamination of soils prior to remediation. It is based on feedback of projects conducted by main French nuclear stakeholders involved in the field of remediation and dismantling (EDF, CEA, AREVA and IRSN). The application of this methodology will enable the project managers to obtain the elements necessary for the drawing up of files associated with remediation operations, as required by the regulatory authorities. It is applicable to each of the steps necessary for the piloting of remediation work-sites, depending on the objectives targeted (release into the public domain, re-use, etc.). The main part describes the applied statistical methodology with the exploratory analysis and variogram data, identification of singular points and their location. The results obtained permit assessment of a mapping to identify the contaminated surface and subsurface areas. It stakes the way for radiological site characterisation since the initial investigations from historical and functional analysis to check that the remediation objectives have been met. It follows an example application from the feedback of the remediation of a contaminated site on the Fontenay aux Roses facility. It is supplemented by a glossary of main terms used in the field from different publications or international standards. This technical report is a support of the ISO Standard ISO ISO/TC 85/SC 5 N 18557 'Sampling and characterisation principles for soils, buildings and infrastructures contaminated by radionuclides for remediation purposes'. (authors) [fr

  16. Carcinogenicity of soil extracts

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbak, N P

    1970-01-01

    A total of 270 3-mo-old mice, hybrids of the C57BL and CBA strains which are highly susceptible to carcinogens, were painted on the skin (2-3 admin./week) with 3-4 drops of (1) a concentrated benzene extract of soil taken near a petroleum refinery with a 3,4 benzpyrene (BP) content of 0.22%; (2) a 0.22% soln of pure BP in benzene; (3) a concentrated benzene extract of soil taken from an old residential area of Moscow (BP content 0.0004%); (4) a 0.0004% BP soln in benzene; and (5) pure benzene. Only mice in the first 2 groups developed tumors. In group (1), 8 mice had papillomas, 46 had skin cancer, 1 had a sarcoma and 2 had plasmocytomas. In group (2) all 60 animals had skin cancer. Lung metastases were present at autopsy in 5 mice in group (1) and in 10 mice in group (2); in some cases, these tumors were multiple. Lymph node metastases were found in 6 mice in group (1) and in 10 mice in group (2). Tumors developed more slowly in group (1) than in group (2).

  17. Soil physical land degradation processes

    Science.gov (United States)

    Horn, Rainer

    2017-04-01

    According to the European Soil Framework Directive (2006) soil compaction is besides water and wind erosion one of the main physical reasons and threats of soil degradation. It is estimated, that 32% of the subsoils in Europe are highly degraded and 18% moderately vulnerable to compaction. The problem is not limited to crop land or forest areas (especially because of non-site adjusted harvesting machines) but is also prevalent in rangelands and grassland, and even in so called natural non-disturbed systems. The main reasons for an intense increase in compacted agricultural or forested regions are the still increasing masses of the machines as well the increased frequency of wheeling under non favorable site conditions. Shear and vibration induced soil deformation enhances the deterioration of soil properties especially if the soil water content is very high and the internal soil strength very low. The same is true for animal trampling in combination with overgrazing of moist to wet pastures which subsequently causes a denser (i.e. reduced proportion of coarse pores with smaller continuity) but still structured soil horizons and will finally end in a compacted platy structure. In combination with high water content and shearing due to trampling therefore results in a complete muddy homogeneous soil with no structure at all. (Krümmelbein et al. 2013) Site managements of arable, forestry or horticulture soils requires a sufficiently rigid pore system which guarantees water, gas and heat exchange, nutrient transport and adsorption as well as an optimal rootability in order to avoid subsoil compaction. Such pore system also guarantees a sufficient microbial activity and composition in order to also decompose the plant etc. debris. It is therefore essential that well structured horizons dominate in soils with at best subangular blocky structure or in the top A- horizons a crumbly structure due to biological activity. In contrast defines the formation of a platy

  18. Migration of 137Cs, 90Sr, 239,240Pu and 241Am in the chain soil-soil solution-plant. The soil-soil solution link

    International Nuclear Information System (INIS)

    Sokolik, G.A.; Ovsyannikova, S.V.; Kil'chitskaya, S.L.; Ehjsmont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.; Duksina, V.V.; Rubinchik, S.Ya.

    1999-01-01

    The mobility of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the link soil-soil solution is analysed for different soil types on the basis of radionuclide distribution coefficients between solid and liquid soil phases. The distribution coefficients allow to differentiate soils in correlation with radionuclide migration rate from the solid phase to the soil solution. The reasons of different radionuclide mobility are considered

  19. Soil strength and forest operations

    NARCIS (Netherlands)

    Beekman, F.

    1987-01-01

    The use of heavy machinery and transport vehicles is an integral part of modern forest operations. This use often causes damage to the standing trees and to the soil. In this study the effects of vehicle traffic on the soil are analysed and the possible consequences for forest management

  20. Soil remediation process and system

    International Nuclear Information System (INIS)

    Monlux, K.J.

    1992-01-01

    This patent describes a process for remediation of soil containing up to about 30,000 ppm hydrocarbon contaminants. It comprises: providing hydrocarbon-contaminated soil in a divided condition of minus 1 1/2 double-prime to a first confined zone where it is exposed to an open flame; heating while agitating the contaminated soil in an oxidizing atmosphere in the first zone to a temperature below soil ignition within a range of from about 375 degrees F. to about 750 degrees F. for a time sufficient to drive off as vapors a substantial percentage of the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon contaminates from the soil; passing hot gases containing the hydrocarbon vapors from the first zone to a second zone; recovering heat from the hot gases in the second zone to condense a substantial percentage of the hydrocarbon vapors as liquid hydrocarbons; recovering the liquid hydrocarbons; and removing the soil from the first zone as remediated soil having below about 1000 ppm hydrocarbon contaminants

  1. Estimating respiration of roots in soil: interactions with soil CO2, soil temperature and soil water content

    NARCIS (Netherlands)

    Bouma, T.J.; Nielsen, K.F.; Eissenstat, D.M.; Lynch, J.P.

    1997-01-01

    Little information is available on the variability of the dynamics of the actual and observed root respiration rate in relation to abiotic factors. In this study, we describe I) interactions between soil CO2 concentration, temperature, soil water content and root respiration, and II) the effect of

  2. Soil decontamination at Rocky Flats

    International Nuclear Information System (INIS)

    Olsen, R.L.; Hayden, J.A.; Alford, C.E.; Kochen, R.L.; Stevens, J.R.

    1979-01-01

    A soils decontamination project was initiated, to remove actinides from soils at Rocky Flats. Wet screening, attrition scrubbing with Calgon at high pH, attrition scrubbing at low pH, and cationic flotation were investigated. Pilot plant studies were carried out. Conceptual designs have been generated for mounting the process in semi-trailers

  3. Soil Microbiology, Ecology, and Biochemistry

    Science.gov (United States)

    The 4th edition of Soil Microbiology, Ecology, and Biochemistry Edited by Eldor Paul continues in the vein of the 3rd edition by providing an excellent, broad-reaching introduction to soil biology. The new edition improves on the previous by providing extensive supplementary materials, links to outs...

  4. Solute diffusivity in undisturbed soil

    DEFF Research Database (Denmark)

    Lægdsmand, Mette; Møldrup, Per; Schjønning, Per

    2012-01-01

    Solute diffusivity in soil plays a major role in many important processes with relation to plant growth and environmental issues. Soil solute diffusivity is affected by the volumetric water content as well as the morphological characteristics of water-filled pores. The solute diffusivity in intact...

  5. Soil biodiversity for agricultural sustainability

    NARCIS (Netherlands)

    Brussaard, L.; Ruiter, de P.C.; Brown, G.G.

    2007-01-01

    We critically highlight some evidence for the importance of soil biodiversity to sustaining (agro-)ecosystem functioning and explore directions for future research. We first deal with resistance and resilience against abiotic disturbance and stress. There is evidence that soil biodiversity does

  6. Monitoring and evaluating soil quality

    NARCIS (Netherlands)

    Bloem, J.; Schouten, A.J.; Sørensen, S.J.; Rutgers, M.; Werf, van der A.K.; Breure, A.M.

    2006-01-01

    This book provides a selection of microbiological methods that are already applied in regional or national soil quality monitoring programs. It is split into two parts: part one gives an overview of approaches to monitoring, evaluating and managing soil quality. Part two provides a selection of

  7. Soils and water [Chapter 18

    Science.gov (United States)

    Goran Berndes; Heather Youngs; Maria Victoria Ramos Ballester; Heitor Cantarella; Annette L. Cowie; Graham Jewitt; Luiz Antonio Martinelli; Dan Neary

    2015-01-01

    Bioenergy production can have positive or negative impacts on soil and water. To best understand these impacts, the effects of bioenergy systems on water and soil resources should be assessed as part of an integrated analysis considering environmental, social and economic dimensions. Bioenergy production systems that are strategically integrated in the landscape to...

  8. Mapping specific soil functions based on digital soil property maps

    Science.gov (United States)

    Pásztor, László; Fodor, Nándor; Farkas-Iványi, Kinga; Szabó, József; Bakacsi, Zsófia; Koós, Sándor

    2016-04-01

    Quantification of soil functions and services is a great challenge in itself even if the spatial relevance is supposed to be identified and regionalized. Proxies and indicators are widely used in ecosystem service mapping. Soil services could also be approximated by elementary soil features. One solution is the association of soil types with services as basic principle. Soil property maps however provide quantified spatial information, which could be utilized more versatilely for the spatial inference of soil functions and services. In the frame of the activities referred as "Digital, Optimized, Soil Related Maps and Information in Hungary" (DOSoReMI.hu) numerous soil property maps have been compiled so far with proper DSM techniques partly according to GSM.net specifications, partly by slightly or more strictly changing some of its predefined parameters (depth intervals, pixel size, property etc.). The elaborated maps have been further utilized, since even DOSoReMI.hu was intended to take steps toward the regionalization of higher level soil information (secondary properties, functions, services). In the meantime the recently started AGRAGIS project requested spatial soil related information in order to estimate agri-environmental related impacts of climate change and support the associated vulnerability assessment. One of the most vulnerable services of soils in the context of climate change is their provisioning service. In our work it was approximated by productivity, which was estimated by a sequential scenario based crop modelling. It took into consideration long term (50 years) time series of both measured and predicted climatic parameters as well as accounted for the potential differences in agricultural practice and crop production. The flexible parametrization and multiple results of modelling was then applied for the spatial assessment of sensitivity, vulnerability, exposure and adaptive capacity of soils in the context of the forecasted changes in

  9. Soil organic carbon dynamics jointly controlled by climate, carbon inputs, soil properties and soil carbon fractions.

    Science.gov (United States)

    Luo, Zhongkui; Feng, Wenting; Luo, Yiqi; Baldock, Jeff; Wang, Enli

    2017-10-01

    Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (r C , Mg C ha -1  yr -1 ). Among these variables, we found that the most influential variables on r C were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on r C , followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining r C . The direct correlation of r C with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process-based SOC models. © 2017 John Wiley & Sons Ltd.

  10. Soil Erosion Threatens Food Production

    Directory of Open Access Journals (Sweden)

    Michael Burgess

    2013-08-01

    Full Text Available Since humans worldwide obtain more than 99.7% of their food (calories from the land and less than 0.3% from the oceans and aquatic ecosystems, preserving cropland and maintaining soil fertility should be of the highest importance to human welfare. Soil erosion is one of the most serious threats facing world food production. Each year about 10 million ha of cropland are lost due to soil erosion, thus reducing the cropland available for world food production. The loss of cropland is a serious problem because the World Health Organization and the Food and Agricultural Organization report that two-thirds of the world population is malnourished. Overall, soil is being lost from agricultural areas 10 to 40 times faster than the rate of soil formation imperiling humanity’s food security.

  11. Effect of soil saturation on denitrification in a grassland soil

    Directory of Open Access Journals (Sweden)

    L. M. Cardenas

    2017-10-01

    Full Text Available Nitrous oxide (N2O is of major importance as a greenhouse gas and precursor of ozone (O3 destruction in the stratosphere mostly produced in soils. The soil-emitted N2O is generally predominantly derived from denitrification and, to a smaller extent, nitrification, both processes controlled by environmental factors and their interactions, and are influenced by agricultural management. Soil water content expressed as water-filled pore space (WFPS is a major controlling factor of emissions and its interaction with compaction, has not been studied at the micropore scale. A laboratory incubation was carried out at different saturation levels for a grassland soil and emissions of N2O and N2 were measured as well as the isotopocules of N2O. We found that flux variability was larger in the less saturated soils probably due to nutrient distribution heterogeneity created from soil cracks and consequently nutrient hot spots. The results agreed with denitrification as the main source of fluxes at the highest saturations, but nitrification could have occurred at the lower saturation, even though moisture was still high (71 % WFSP. The isotopocules data indicated isotopic similarities in the wettest treatments vs. the two drier ones. The results agreed with previous findings where it is clear there are two N pools with different dynamics: added N producing intense denitrification vs. soil N resulting in less isotopic fractionation.

  12. know Soil Know Life - Getting Kids Excited About Soils

    Science.gov (United States)

    Lindbo, David L.; Robinson, Clay; Kozlowski, Deborah

    2014-05-01

    In the United States soils are often taught in primary school (grade 3-6) but with little excitement or passion. We have been working with schools and teachers to bring our passion about soils to this audience. The methods and message can be conveyed simply and effectively by engaging the students in a dialog and through kinematic learning. Our approach is to begin with a simple question - what are 4 things we cannot live without. The answer - Air, Water, Sunlight, and Soil. Most students say "food, shelter, clothing, plants, animals etc." so we then explain all of those come from soil. This leads us to a quick "dance" illustrating that without soils we would be 'Hungry. Homeless, and Naked". The results are that students and teachers remember this simple message. From this point it is our hope that students will continue to understand the importance of soils and stop treating soils like dirt. Other simple exercises for this younger audience will also be presented.

  13. Determination of chemical availability of cadmium and zinc in soils using inert soil moisture samplers.

    Science.gov (United States)

    Knight, B P; Chaudri, A M; McGrath, S P; Giller, K E

    1998-01-01

    A rapid method for extracting soil solutions using porous plastic soil-moisture samplers was combined with a cation resin equilibration based speciation technique to look at the chemical availability of metals in soil. Industrially polluted, metal sulphate amended and sewage sludge treated soils were used in our study. Cadmium sulphate amended and industrially contaminated soils all had > 65% of the total soil solution Cd present as free Cd2+. However, increasing total soil Cd concentrations by adding CdSO4 resulted in smaller total soil solution Cd. Consequently, the free Cd2+ concentrations in soil solutions extracted from these soils were smaller than in the same soil contaminated by sewage sludge addition. Amendment with ZnSO4 gave much greater concentrations of free Zn2+ in soil solutions compared with the same soil after long-term Zn contamination via sewage sludge additions. Our results demonstrate the difficulty in comparing total soil solution and free metal ion concentrations for soils from different areas with different physiochemical properties and sources of contamination. However, when comparing the same Woburn soil, Cd was much less available as Cd2+ in soil solution from the CdSO4 amended soils compared with soil contaminated by about 36 years of sewage sludge additions. In contrast, much more Zn was available in soil solution as free Zn2+ in the ZnSO4 amended soils compared with the sewage sludge treated soils.

  14. Uncertainty in soil carbon accounting due to unrecognized soil erosion.

    Science.gov (United States)

    Sanderman, Jonathan; Chappell, Adrian

    2013-01-01

    The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15-50% slower when an erosion rate of 15 t soil ha(-1)  yr(-1) was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3-1.0 t CO2  ha(-1)  yr(-1) . This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities. © 2012 Blackwell Publishing Ltd.

  15. Soil decontamination with Extraksol

    International Nuclear Information System (INIS)

    Paquin, J.; Mourato, D.

    1989-01-01

    The Extraksol process is a mobile decontamination technology which treats unconsolidated materials by solvent extraction. Treatment with Extraksol involves material washing, drying and solvent regeneration. Contaminant removal is achieved through desorption/dissolution mechanisms. The treated material is dry and acceptable to be reinstalled in its original location. The process provides a fast, efficient and versatile alternative for decontamination of soil and sludge. The organic contaminants extracted from the matrix are transferred to the extraction fluids. These are thereafter concentrated in the residues of distillation after solvent regeneration. Removal and concentration of the contaminants ensures an important waste volume reduction. This paper presents the process is operational principles and the steps involved in Extraksol's development with results of the pilot tests and full-scale demonstrations

  16. The use of isotopes in soil fertility and soil chemistry

    International Nuclear Information System (INIS)

    Neptune, A.M.L.; Muraoka, T.

    1978-01-01

    The concept of radioactive and enriched stable isotopes is reminded. The main topics studied with isotopes which are pointed out are the following: the isotopic exchange and its application; the E and L values; the determination of CEC; the fixing capacity of some ions by the soil particles; the measurement of the A value; the efficiency of fertilizers utilization, the interaction between nutrients, their movements through the soil, the residual effect of the fertilizers and, finally, the root system and soil organic matter. (author) [pt

  17. Developments and departures in the philosophy of soil science

    Science.gov (United States)

    Traditional soil science curriculums provide comprehensive instruction on soil properties, soil classification, and the physical, chemical, and biological processes that occur in soils. This reductionist perspective is sometimes balanced with a more holistic perspective that focuses on soils as natu...

  18. The Spatial Variability of Soil Dehydrogenase Activity: A Survey in Urban Soils

    OpenAIRE

    Kizilkaya, Ridvan; Aşkin, Tayfun

    2007-01-01

    Information on soil microorganisms and their activity used to determine microbiological characteristics are very important for soil quality and productivity. Studies of enzyme activities provide information on the biochemical processes occurring in soil. There is growing evidence that soil biological parameters may be potential and sensitive indicators of soil ecological conditions and soil management. Soil microbiological parameters may be evaluated statistically due to application of geosta...

  19. Soil carbon dynamics inferred from carbon isotope compositions of soil organic matter and soil respiration

    International Nuclear Information System (INIS)

    Koarashi, Jun; Asano, Tomohiro; Iida, Takao; Moriizumi, Jun

    2004-01-01

    To better understand 14 C cycling in terrestrial ecosystems, 14 C abundances were evaluated for fractionated soil organic matter (SOM) and soil respiration in an urban forest. In 2001 soil profile, Δ 14 C values of litter and bulk SOM increased rapidly from litter surface (62.7 per mille) to uppermost mineral soil layer (244.9 per mille), and then decreased sharply to 6 cm depth of mineral soil (125.0 per mille). Carbon enriched in 14 C by atmospheric nuclear weapons testing had penetrated to at least 16 cm depth of mineral soil. The average Δ 14 C in atmospheric CO 2 was 58.8 per mille in August 2001, suggesting recent carbon input to the topmost litter layer. Although a similar depth distribution was observed for Δ 14 C values of residual SOM after acid hydrolysis, the Δ 14 C values were slightly lower than those in bulk SOM. This indicates input of 'bomb' C into this organic fraction and higher 14 C abundance in acid-soluble SOM. The most of CO 2 may be derived from the microbial decomposition of the acid-soluble, or labile, SOM. Therefore, the labile SOM may become most influential pool for soil carbon cycling. In contrast, carbon in base-insoluble SOM remained considerably low in 14 C abundance at all depths, suggesting no or little incorporation of 'bomb' C to this fraction. Values of Δ 14 C in soil respiration ranged from 91.9 to 146.4 per mille in August 2001, showing a significant contribution from decomposition of SOM fixed over past 2-40 years. These results indicate that the use of bulk SOM as a representative of soil carbon pool would lead to severe misunderstand of the soil C dynamics on decadal and shorter time scales. (author)

  20. Soil CO2 Dynamics in a Tree Island Soil of the Pantanal: The Role of Soil Water Potential

    Science.gov (United States)

    Johnson, Mark S.; Couto, Eduardo Guimarães; Pinto Jr, Osvaldo B.; Milesi, Juliana; Santos Amorim, Ricardo S.; Messias, Indira A. M.; Biudes, Marcelo Sacardi

    2013-01-01

    The Pantanal is a biodiversity hotspot comprised of a mosaic of landforms that differ in vegetative assemblages and flooding dynamics. Tree islands provide refuge for terrestrial fauna during the flooding period and are particularly important to the regional ecosystem structure. Little soil CO2 research has been conducted in this region. We evaluated soil CO2 dynamics in relation to primary controlling environmental parameters (soil temperature and soil water). Soil respiration was computed using the gradient method using in situ infrared gas analyzers to directly measure CO2 concentration within the soil profile. Due to the cost of the sensors and associated equipment, this study was unreplicated. Rather, we focus on the temporal relationships between soil CO2 efflux and related environmental parameters. Soil CO2 efflux during the study averaged 3.53 µmol CO2 m−2 s−1, and was equivalent to an annual soil respiration of 1220 g C m−2 y−1. This efflux value, integrated over a year, is comparable to soil C stocks for 0–20 cm. Soil water potential was the measured parameter most strongly associated with soil CO2 concentrations, with high CO2 values observed only once soil water potential at the 10 cm depth approached zero. This relationship was exhibited across a spectrum of timescales and was found to be significant at a daily timescale across all seasons using conditional nonparametric spectral Granger causality analysis. Hydrology plays a significant role in controlling CO2 efflux from the tree island soil, with soil CO2 dynamics differing by wetting mechanism. During the wet-up period, direct precipitation infiltrates soil from above and results in pulses of CO2 efflux from soil. The annual flood arrives later, and saturates soil from below. While CO2 concentrations in soil grew very high under both wetting mechanisms, the change in soil CO2 efflux was only significant when soils were wet from above. PMID:23762259

  1. Decontamination of hydrocarbon contaminated soil

    International Nuclear Information System (INIS)

    Smith, A.J.

    1991-01-01

    This patent describes the method of treating hydrocarbon contaminated soil. It comprises forming the soil into a flowing particulate stream, forming an aqueous liquid mixture of water and treating substance that reacts with hydrocarbon to form CO 2 and water, dispersing the liquid mixture into the particulate soil stream to wet the particulate, allowing the substance to react with the wetted soil particulate to thereby form CO 2 and water, thereby the resultant soil is beneficially treated, the stream being freely projected to dwell at a level and then fall, and the dispersing includes spraying the liquid mixture into the projected stream at the dwell, the substance consisting of natural bacteria, and at a concentration level in the mixture of between 100 to 3,000 PPM of bacteria to water, the soil forming step including impacting the soil to reduce it to particles less than about 1 inches in cross dimension, and including forming the wetting particulate into a first layer on a surface to allow the substance to react

  2. Sustaining "the Genius of Soils"

    Science.gov (United States)

    Sposito, G.

    2011-12-01

    Soils are weathered porous earth surficial materials that exhibit an approximately vertical stratification reflecting the continual action of percolating water and living organisms. They are complex open, multicomponent, multiphase biogeochemical systems which function as both provisioning and regulatory agents in terrestrial ecosystems while influencing aquatic ecosystems through their impacts on evapotranspiration and runoff. The ability of soils to engage in their supportive ecosystem functions depends on what has been termed metaphorically as their "natural capital," the defining properties that condition soil response to biological, geological, and hydrological processes as well as human-driven activities. Natural capital must necessarily differ among soils depending on how they have developed under the five soil-forming processes, but it also can be determined by land use and by the flows of matter and energy that link the global atmosphere, biosphere, and hydrosphere. These latter two determinants have in recent decades begun to exhibit strong variability that exceeds what has been characteristic of them during the past 10 millennia of earth history, thereby raising the apocalyptic issue of whether a deleterious or even catastrophic undermining of the ability of soils to function supportively in ecosystems is in the offing. Resolving this issue will require deeper understanding of how soils perform their provisioning and regulatory functions, how they respond to land-use changes, and how they mediate the global flows of matter and energy.

  3. Radionuclide diffusion in soils. II

    International Nuclear Information System (INIS)

    Barinkova-Cipakova, A.; Szabova, T.

    1986-01-01

    Specimens of different types of soil, namely chernozem, brown soil and illimerized soil were taken in the environs of the nuclear power plant construction site. 0.0285 MBq of 85 Sr in chloride form was added. Solutions of NaNO 3 , KNO 3 and Ca(NO 3 ) 2 of different concentrations and their mixtures were used in studying the effect of salts on strontium sorption. The sorption was studied under steady-state conditions. The eluate samples were measured with an NZQ 201 spectrometer. The 85 Sr sorption by soils in the presence of the individual salts and their mixtures was found to depend on the type of soil. The highest 85 Sr sorption value was found for chernozem while a low radiostrontium sorption was observed for brown soil. The reducing effect was confirmed of elevated salt content in the soil on 85 Sr sorption. The results obtained are discussed in detail. (E.S.) 1 tab., 2 figs., 6 refs

  4. Finnish Society of Soil Sciences

    Science.gov (United States)

    Rankinen, Katri; Hänninen, Pekka; Soinne, Helena; Leppälammi-Kujansuu, Jaana; Salo, Tapio; Pennanen, Taina

    2017-04-01

    In 1998 the organization of the International Union of Soil Sciences (IUSS) was renewed to better support national activities. That was also the new start in the operation of the Finnish Society of Soil Sciences, which became affiliated to the IUSS. The society was originally established in 1971 but it remained relatively inactive. Currently, there are around 200 members in the Finnish Society of Soil Sciences. The members of the executive board cover different fields of soil science from geology to microbiology. Mission statement of the society is to promote the soil sciences and their application in Finland, to act as a forum for creation of better links between soil scientists, interested end users and the public, and to promote distribution and appreciation of general and Finnish research findings in soil science. Every second year the society organizes a national two-day long conference. In 2017 the theme 'circular economy' collected all together 57 presentations. The members of the incoming student division carried responsibility in practical co-ordination committee, acting also as session chairs. In the intervening years the society organizes a weekend excursion to neighboring areas. Lately we have explored the use of biochar in landscaping of Stockholm.

  5. Decomposition of Diethylstilboestrol in Soil

    DEFF Research Database (Denmark)

    Gregers-Hansen, Birte

    1964-01-01

    The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after the e...... not inhibit the CO2 production from the soil.Experiments with γ-sterilized soil indicated that enzymes present in the soil are able to attack DES.......The rate of decomposition of DES-monoethyl-1-C14 in soil was followed by measurement of C14O2 released. From 1.6 to 16% of the added C14 was recovered as C14O2 during 3 months. After six months as much as 12 to 28 per cent was released as C14O2.Determination of C14 in the soil samples after...

  6. Hillslope Soils and Life (Invited)

    Science.gov (United States)

    Amundson, R.; Owen, J. J.; Heimsath, A. M.; Yoo, K.; Dietrich, W. E.

    2013-12-01

    That hillslope processes are impacted by biology has been long understood, but the complexities of the abiotic-biotic processes and their feedbacks are quantitatively emerging with the growing body of pertinent literature. The concept that plants modulate both the disaggregation and transport of soil particles on hillslopes was clearly articulated by G.K. Gilbert. Yet earlier, James Hutton (starting from very different intellectual boundary conditions) argued that soil, which results from the dynamic balance of rock destruction and removal, is a prerequisite for plants - a concept that underscores the need to more deeply examine the feedback of geomorphic processes on terrestrial ecosystems. We compiled the results of recent studies that have been conducted on gentle convex hillslopes across a broad range of rainfall. We found that vegetated landscapes appear to have strong controls on hillslope soil thickness, landscape denudation rates, and soil residence times. The restricted range in residence times - despite large differences in climate - appear in turn to sustain relatively high levels of both nitrogen (N) and phosphorus (P) fertility, suggesting ecological resilience and resistance to non-anthropogenic environmental perturbations. At the most arid end of Earth's climate vegetation disappears, but not all water. The loss of plants shifts soil erosion to abiotic processes, with a corresponding thinning or loss of the soil mantle. This reinforces the hypothesis that a planet without vegetation, but with a hydrologic cycle, would be largely devoid of soil-mantled hillslopes and would be driven toward hillslope morphologies that differ from the familiar convex-up forms of biotic landscapes. While our synthesis of the effects of vegetation on soil production and soil thickness provides a quantitative view of the suggestions of Gilbert, it also identifies that vegetation itself responds to the geomorphic processes, as believed by Hutton. There is a complex

  7. Hydroxyatrazine in soils and sediments

    Science.gov (United States)

    Lerch, R.N.; Thurman, E.M.; Blanchard, P.E.

    1999-01-01

    Hydroxyatrazine (HA) is the major metabolite of atrazine in most surface soils. Knowledge of HA sorption to soils, and its pattern of stream water contamination suggest that it is persistent in the environment. Soils with different atrazine use histories were collected from four sites, and sediments were collected from an agricultural watershed. Samples were exhaustively extracted with a mixed-mode extractant, and HA was quantitated using high performance liquid chromatography with UV detection. Atrazine, deethylatrazine (DEA), and deisopropylatrazine (DIA) were also measured in all samples. Concentrations of HA were considerably greater than concentrations of atrazine, DEA, and DIA in all soils and sediments studied. Soil concentrations of HA ranged from 14 to 640 ??g/kg with a median concentration of 84 ??g/kg. Sediment concentrations of HA ranged from 11 to 96 ??g/kg, with a median concentration of 14 ??g/kg. Correlations of HA and atrazine concentrations to soil properties indicated that HA levels in soils were controlled by sorption of atrazine. Because atrazine hydrolysis is known to be enhanced by sorption and pH extremes, soils with high organic matter (OM) and clay content and low pH will result in greater atrazine sorption and subsequent hydrolysis. Significant correlation of HA concentrations to OM, pH, and cation exchange capacity of sediments indicated that mixed-mode sorption (i.e., binding by cation exchange and hydrophobic interactions) was the mechanism controlling HA levels in sediment. The presence of HA in soils and stream sediments at the levels observed support existing hypotheses regarding its transport in surface runoff. These results also indicated that persistence of HA in terrestrial and aquatic ecosystems is an additional risk factor associated with atrazine usage.

  8. Uranium soils integrated demonstration: Soil characterization project report

    International Nuclear Information System (INIS)

    Cunnane, J.C.; Gill, V.R.; Lee, S.Y.; Morris, D.E.; Nickelson, M.D.; Perry, D.L.; Tidwell, V.C.

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP

  9. Estimation of soil moisture and its effect on soil thermal ...

    Indian Academy of Sciences (India)

    landscape developed under tropical climate with alternate wet ... nical reasons. The sensing element for soil tem- ... The sensor associated with its signal conditioning, processed ...... formance over Europe, through remote-sensing of vegeta-.

  10. SoilEffects - start characterization of the experimental soil

    DEFF Research Database (Denmark)

    Løes, Anne-Kristin; Johansen, Anders; Pommeresche, Reidun

    -14). The aim of the SoilEffects project is to identify potential risks and benefits for soil fertility when animal manure is anaerobically digested for biogas production. The field experiment was established on Tingvoll research farm in 2011. A biogas plant was built at this farm in 2010, to digest the manure...... in spring, no legumes are grown, and aboveground plant material is removed at harvest. This practice is intended to stress the maintenance of soil organic matter in the arable system, to possibly reveal clearer effects of the experimental treatments. Within each cropping system, five experimental treatments...... by ignition loss was 11.3 % in the grass and 6.6 % in the arable system. Analyzed by total-C measurements, the corresponding SOM values were 11.03 % and 5.97 %. In Norwegian soil, SOM values between 3 and 6 % are regarded as high humus contents (“moldrik”), whereas values between 6 and 12 % are regarded...

  11. Fate of triclocarban during soil aquifer treatment: Soil column studies

    KAUST Repository

    Essandoh, H. M K; Tizaoui, Chedly; Mohamed, Mostafa H A; Amy, Gary L.; Brdjanovic, Damir

    2010-01-01

    There are current concerns about the presence of persistent chemicals in recharge water used in soil aquifer treatment systems. Triclocarban (TCC) has been reported as a persistent, high production volume chemical with the potential to bioaccumulate

  12. Uranium soils integrated demonstration: Soil characterization project report

    Energy Technology Data Exchange (ETDEWEB)

    Cunnane, J.C. [Argonne National Lab., IL (United States); Gill, V.R. [Fernald Environmental Restoration Management Corp., Cincinnati, OH (United States); Lee, S.Y. [Oak Ridge National Lab., TN (United States); Morris, D.E. [Los Alamos National Lab., NM (United States); Nickelson, M.D. [HAZWRAP, Oak Ridge, TN (United States); Perry, D.L. [Lawrence Berkeley Lab., CA (United States); Tidwell, V.C. [Sandia National Labs., Albuquerque, NM (United States)

    1993-08-01

    An Integrated Demonstration Program, hosted by the Fernald Environmental Management Project (FEMP), has been established for investigating technologies applicable to the characterization and remediation of soils contaminated with uranium. Critical to the design of relevant treatment technologies is detailed information on the chemical and physical characteristics of the uranium waste-form. To address this need a soil sampling and characterization program was initiated which makes use of a variety of standard analytical techniques coupled with state-of-the-art microscopy and spectroscopy techniques. Sample representativeness is evaluated through the development of conceptual models in an effort to identify and understand those geochemical processes governing the behavior of uranium in FEMP soils. Many of the initial results have significant implications for the design of soil treatment technologies for application at the FEMP.

  13. Degradation kinetics of ptaquiloside in soil and soil solution

    DEFF Research Database (Denmark)

    Ovesen, Rikke Gleerup; Rasmussen, Lars Holm; Hansen, Hans Christian Bruun

    2008-01-01

    and soil solutions in sandy and clayey soils subjected to high natural PTA loads from bracken stands. Degradation kinetics in moist soil could be fitted with the sum of a fast and a slow first-order reaction; the fast reaction contributed 20 to 50% of the total degradation of PTA. The fast reaction...... was similar in all horizons, with the rate constant k1F ranging between 0.23 and 1.5/h. The slow degradation, with the rate constant k1S ranging between 0.00067 and 0.029/h, was more than twice as fast in topsoils compared to subsoils, which is attributable to higher microbial activity in topsoils....... Experiments with sterile controls confirmed that nonmicrobial degradation processes constituted more than 90% of the fast degradation and 50% of the slow degradation. The lower nonmicrobial degradation rate observed in the clayey compared with the sandy soil is attributed to a stabilizing effect of PTA...

  14. Methods of soil organic carbon determination in Brazilian savannah soils

    Directory of Open Access Journals (Sweden)

    Juliana Hiromi Sato

    2014-08-01

    Full Text Available Several methods exist for determining soil organic carbon, and each one has its own advantages and limitations. Consequently, a comparison of the experimental results obtained when these methods are employed is hampered, causing problems in the comparison of carbon stocks in soils. This study aimed at evaluating the analytical procedures used in the determination of carbon and their relationships with soil mineralogy and texture. Wet combustion methods, including Walkley-Black, Mebius and Colorimetric determination as well as dry combustion methods, such as Elemental and Gravimetric Analysis were used. Quantitative textural and mineralogical (kaolinite, goethite and gibbsite analyses were also carried out. The wet digestion methods underestimated the concentration of organic carbon, while the gravimetric method overestimated. Soil mineralogy interfered with the determination of carbon, with emphasis on the gravimetric method that was greatly influenced by gibbsite.

  15. Radionuclides distribution coefficient of soil to soil-solution

    International Nuclear Information System (INIS)

    1990-06-01

    The present book addresses various issues related with the coefficient of radionuclides distribution between soil and soil solution. It consists of six sections and two appendices. The second section, following an introductory one, describes the definition of the coefficient and a procedures of its calculation. The third section deals with the application of the distribution coefficient to the prediction of movements of radionuclides through soil. Various methods for measuring the coefficient are described in the fourth section. The next section discusses a variety of factors (physical and chemical) that can affect the distribution coefficient. Measurements of the coefficient for different types of oils are listed in the sixth section. An appendix is attached to the book to show various models that can be helpful in applying the coefficient of distribution of radionuclides moving from soil into agricultural plants. (N.K.)

  16. Soil Organic Carbon dynamics in agricultural soils of Veneto Region

    Science.gov (United States)

    Bampa, F. B.; Morari, F. M.; Hiederer, R. H.; Toth, G. T.; Giandon, P. G.; Vinci, I. V.; Montanarella, L. M.; Nocita, M.

    2012-04-01

    One of the eight soil threats expressed in the European Commission's Thematic Strategy for Soil Protection (COM (2006)231 final) it's the decline in Soil Organic Matter (SOM). His preservation is recognized as with the objective to ensure that the soils of Europe remain healthy and capable of supporting human activities and ecosystems. One of the key goals of the strategy is to maintain and improve Soil Organic Carbon (SOC) levels. As climate change is identified as a common element in many of the soil threats, the European Commission (EC) intends to assess the actual contribution of the soil protection to climate change mitigation and the effects of climate change on the possible depletion of SOM. A substantial proportion of European land is occupied by agriculture, and consequently plays a crucial role in maintaining natural resources. Organic carbon preservation and sequestration in the EU's agricultural soils could have some potential to mitigate the effects of climate change, particularly linked to preventing certain land use changes and maintaining SOC stocks. The objective of this study is to assess the SOC dynamics in agricultural soils (cropland and grassland) at regional scale, focusing on changes due to land use. A sub-objective would be the evaluation of the most used land management practices and their effect on SOC content. This assessment aims to determine the geographical distribution of the potential GHG mitigation options, focusing on hot spots in the EU, where mitigation actions would be particularly efficient and is linked with the on-going work in the JRC SOIL Action. The pilot area is Veneto Region. The data available are coming from different sources, timing and involve different variables as: soil texture, climate, soil disturbance, managements and nutrients. The first source of data is the LUCAS project (Land Use/Land Cover Area Frame statistical Survey). Started in 2001, the LUCAS project aims to monitor changes in land cover/use and

  17. Predicting hydrocarbon release from soil

    International Nuclear Information System (INIS)

    Poppendieck, D.; Loehr, R.C.

    2002-01-01

    'Full text:' The remediation of hazardous chemicals from soils can be a lengthy and costly process. As a result, recent regulatory initiatives have focused on risk-based corrective action (RBCA) approaches. Such approaches attempt to identify the amount of chemical that can be left at a site with contaminated soil and still be protective of human health and the environment. For hydrocarbons in soils to pose risk to human heath and the environment, the hydrocarbons must be released from the soil and accessible to microorganisms, earthworms, or other higher level organisms. The sorption of hydrocarbons to soil can reduce the availability of the hydrocarbon to receptors. Typically in soils and sediments, there is an initial fast release of a hydrocarbon from the soil to the aqueous phase followed by a slower release of the remaining hydrocarbon to the aqueous phase. The rate and extent of slow release can influence aqueous hydrocarbon concentrations and the fate and transport of hydrocarbons in the subsurface. Once the fast fraction of the chemical has been removed from the soil, the remaining fraction of a chemical may desorb at a rate that natural mechanisms can attenuate the released hydrocarbon. Hence, active remediation may be needed only until the fast fraction has been removed. However, the fast fraction is a soil and chemical specific parameter. This presentation will present a tier I type protocol that has been developed to quickly estimate the fraction of hydrocarbons that are readily released from the soil matrix to the aqueous phase. Previous research in our laboratory and elsewhere has used long-term desorption (four months) studies to determine the readily released fraction. This research shows that a single short-term (less than two weeks) batch extraction procedure provides a good estimate of the fast released fraction derived from long-term experiments. This procedure can be used as a tool to rapidly evaluate the release and bioavailability of

  18. Soil survey - a basis for european soil protection

    International Nuclear Information System (INIS)

    Hodgson, J.M.

    1991-01-01

    The information available on soils varies greatly from country to country. In view of the fact that, together with water, soils represent the most important natural resource in the EC, it is recommended that steps should be taken to ensure a reasonable level of information for all countries and that emphasis be placed on assembling an adequate database. Such information is fundamental to future land use and environmental protection

  19. A method to detect soil carbon degradation during soil erosion

    OpenAIRE

    F. Conen; M. Schaub; C. Alewell

    2009-01-01

    Soil erosion has been discussed intensively but controversial both as a significant source or a significant sink of atmospheric carbon possibly explaining the gap in the global carbon budget. One of the major points of discussion has been whether or not carbon is degraded and mineralized to CO2 during detachment, transport and deposition of soil material. By combining the caesium-137 (137Cs) approach (quantification of erosion rates) with stable c...

  20. Hyperspectral remote sensing of postfire soil properties

    Science.gov (United States)

    Sarah A. Lewis; Peter R. Robichaud; William J. Elliot; Bruce E. Frazier; Joan Q. Wu

    2004-01-01

    Forest fires may induce changes in soil organic properties that often lead to water repellent conditions within the soil profile that decrease soil infiltration capacity. The remote detection of water repellent soils after forest fires would lead to quicker and more accurate assessment of erosion potential. An airborne hyperspectral image was acquired over the Hayman...

  1. World Reference Base for Soil Resources

    NARCIS (Netherlands)

    Deckers, J.A.; Driessen, P.M.; Nachtergaele, F.O.; Spaargaren, O.C.

    2002-01-01

    In 1998, the International Union of Soil Sciences (IUSS) officially adopted the world reference base for soil resources (WRB) as the Union's system for soil correlation. The structure, concepts, and definitions of the WRB are strongly influenced by the FAO-UNESCO legend of the soil map of the world

  2. Soil Resources Degradation and Conservation Techniques Adopted ...

    African Journals Online (AJOL)

    Soil degradation is increasingly regarded as a major constraint to food production in the tropics. This problem is primarily caused by soil erosion, which particularly damages the soil surfaces. It is therefore the objectives of this paper to study the types of erosion in Gusau area as well as its effects on selected soil properties ...

  3. Soil Erosion. LC Science Tracer Bullet.

    Science.gov (United States)

    Buydos, John F., Comp.

    Soil erosion is the detachment and movement of topsoil or soil material from the upper part of the soil profile. It may occur in the form of rill, gully, sheet, or wind erosion. Agents of erosion may be water, wind, glacial ice, agricultural implements, machinery, and animals. Soil conservation measures require a thorough understanding of the…

  4. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  5. Quantifying and modeling soil structure dynamics

    Science.gov (United States)

    Characterization of soil structure has been a topic of scientific discussions ever since soil structure has been recognized as an important factor affecting soil physical, mechanical, chemical, and biological processes. Beyond semi-quantitative soil morphology classes, it is a challenge to describe ...

  6. Soil erosion in humid regions: a review

    Science.gov (United States)

    Daniel J. Holz; Karl W.J. Williard; Pamela J. Edwards; Jon E. Schoonover

    2015-01-01

    Soil erosion has significant implications for land productivity and surface water quality, as sediment is the leading water pollutant worldwide. Here, erosion processes are defined. The dominant factors influencing soil erosion in humid areas are reviewed, with an emphasis on the roles of precipitation, soil moisture, soil porosity, slope steepness and length,...

  7. Occurrence of entomopathogenic fungi in arable soil

    Directory of Open Access Journals (Sweden)

    Ryszard Miętkiewski

    2014-08-01

    Full Text Available Samples of soil were taken from arable field and from balk. Larvae of Galleria mellonella and Ephestia kühniella were used as an "insect bait" for isolation of entomopathogenic fungi from soil. Metarhizium anisopliae and Paecilomyces fumosoroseus were isolated from both kind of soil. but Beauveria bassiana was present only in soil taken from balk.

  8. Steam and electroheating remediation of tight soils

    Energy Technology Data Exchange (ETDEWEB)

    Balshaw-Biddle, K.; Oubre, C.L.; Ward, C.H. [eds.; Dablow, J.F. III; Pearce, J.A.; Johnson, P.C.

    2000-07-01

    In the past few decades the need for soil remediation has become urgent, even more necessary--innovative, cost effective methods. Steam and Electroheating Remediation of Tight Soils presents the results of a field study testing the cleanup of semi-volatile fuels from tight soils using combination of hydraulic fracturing and soil heating technologies.

  9. Careers in Science: Being a Soil Scientist

    Science.gov (United States)

    Bryce, Alisa

    2015-01-01

    Being a soil scientist is a fascinating and certainly diverse career, which can indeed involve working in a laboratory or diagnosing sick orange trees. However it often involves much, much more. In 2015, as part of the United Nations' "International Year of Soils," Soil Science Australia's (SSA) "Soils in Schools" program…

  10. Interpreting, measuring, and modeling soil respiration

    Science.gov (United States)

    Michael G. Ryan; Beverly E. Law

    2005-01-01

    This paper reviews the role of soil respiration in determining ecosystem carbon balance, and the conceptual basis for measuring and modeling soil respiration. We developed it to provide background and context for this special issue on soil respiration and to synthesize the presentations and discussions at the workshop. Soil respiration is the largest component of...

  11. Nematode survival in relation to soil moisture

    NARCIS (Netherlands)

    Simons, W.R.

    1973-01-01

    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival

  12. Thermal remediation alters soil properties - a review.

    Science.gov (United States)

    O'Brien, Peter L; DeSutter, Thomas M; Casey, Francis X M; Khan, Eakalak; Wick, Abbey F

    2018-01-15

    Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Field-scale apparent soil electrical conductivity

    Science.gov (United States)

    Soils are notoriously spatially heterogeneous and many soil properties (e.g., salinity, water content, trace element concentration, etc.) are temporally variable, making soil a complex media. Spatial variability of soil properties has a profound influence on agricultural and environmental processes ...

  14. On the assessment of root and soil respiration for soils of different textures: interactions with soil moisture contents and soil CO2 concentrations

    NARCIS (Netherlands)

    Bouma, T.J.; Bryla, D.R.

    2000-01-01

    Estimates of root and soil respiration are becoming increasingly important in agricultural and ecological research, but there is little understanding how soil texture and water content may affect these estimates. We examined the effects of soil texture on (i) estimated rates of root and soil

  15. Dig It! The Secrets of Soil

    Science.gov (United States)

    It! The Secrets of Soil Come and Explore! Discover the amazing world of soils with images and information from the Dig It! The Secrets of Soil exhibit from the Smithsonian's National Museum of Natural and new web content will be added over the coming months including a new soil blog. New Interactives

  16. Soil microbes and soil respiration of Mongolian Steppe soils under grazing stress.

    Science.gov (United States)

    Bölter, Manfred; Krümmelbein, Julia; Horn, Rainer; Möller, Rolf; Scheltz, Annette

    2012-04-01

    Soils of Northern China were analysed for their microbiological and soil physical properties with respect to different grazing stress. An important factor for this is soil compaction and related aeration due to pore size shifts. Bulk density increases significantly with increasing grazing intensity and soil carbon contents show decreasing values from top to depth. Organic carbon (LOI) concentrations decrease significantly with increasing grazing intensity. The data on LOI (2-5.8%) approximate 10-30 mg C, our data on glucose show values between 0.4-1.2 mg, i.e. approx. 4% of total carbon. Numbers and biomass of bacteria show generally a decreasing trend of those data at grazed and ungrazed sites, numbers range between 0.4 and 8.7 x10(8) g(-1) d.wt., bacterial biomass between 0.4 and 3.8 microg Cg(-1). This need to be recorded in relation to soil compaction and herewith-hampered aeration and nutrient flow. The temperature-respiration data also allow getting an idea of the Q10-values for soil respiration. The data are between 2.24 (5-15 degrees C) and 1.2 (25-35 degrees C). Our data are presented with a general review of biological properties of Mongolian Steppe soils.

  17. Relationships between soil erosion risk, soil use and soil properties in Mediterranean areas. A comparative study of three typical sceneries

    Science.gov (United States)

    Gil, Juan; Priego-Navas, Mercedes; Zavala, Lorena M.; Jordán, Antonio

    2013-04-01

    Generally, literature shows that the high variability of rainfall-induced soil erosion is related to climatic differences, relief, soil properties and land use. Very different runoff rates and soil loss values have been reported in Mediterranean cropped soils depending on soil management practices, but also in soils under natural vegetation types. OBJECTIVES The aim of this research is to study the relationships between soil erosion risk, soil use and soil properties in three typical Mediterranean areas from southern Spain: olive groves under conventional tillage, minimum tillage and no-till practices, and soils under natural vegetation. METHODS Rainfall simulation experiments have been carried out in order to assess the relationship between soil erosion risk, land use, soil management and soil properties in olive-cropped soils under different types of management and soils under natural vegetation type from Mediterranean areas in southern Spain RESULTS Results show that mean runoff rates decrease from 35% in olive grove soils under conventional tillage to 25% in olive (Olea europaea) grove soils with minimum tillage or no-till practices, and slightly over 22% in soils under natural vegetation. Moreover, considering the different vegetation types, runoff rates vary in a wide range, although runoff rates from soils under holm oak (Quercus rotundifolia), 25.70%, and marginal olive groves , 25.31%, are not significantly different. Results from soils under natural vegetation show that the properties and nature of the organic residues play a role in runoff characteristics, as runoff rates above 50% were observed in less than 10% of the rainfall simulations performed on soils with a organic layer. In contrast, more than half of runoff rates from bare soils reached or surpassed 50%. Quantitatively, average values for runoff water losses increase up to 2.5 times in unprotected soils. This is a key issue in the study area, where mean annual rainfall is above 600 mm

  18. Predicting soil particle density from clay and soil organic matter contents

    DEFF Research Database (Denmark)

    Schjønning, Per; McBride, R.A.; Keller, T.

    2017-01-01

    Soil particle density (Dp) is an important soil property for calculating soil porosity expressions. However, many studies assume a constant value, typically 2.65Mgm−3 for arable, mineral soils. Fewmodels exist for the prediction of Dp from soil organic matter (SOM) content. We hypothesized...

  19. Effects of environmental factors and soil properties on topographic variations of soil respiration

    Directory of Open Access Journals (Sweden)

    K. Tamai

    2010-03-01

    Full Text Available Soil respiration rates were measured along different parts of a slope in (a an evergreen forest with common brown forest soil and (b a deciduous forest with immature soil. The effects of soil temperature, soil moisture and soil properties were estimated individually, and the magnitudes of these effects in the deciduous and evergreen forests were compared. In the evergreen forest with common brown forest soil, soil properties had the greatest effect on soil respiration rates, followed by soil moisture and soil temperature. These results may be explained by the fact that different soil properties matured within different environments. It can be argued that the low soil respiration rates in the low parts of the slope in the evergreen forest resulted from soil properties and not from wet soil conditions. In the deciduous forest, soil respiration rates were more strongly affected by soil moisture and soil temperature than by soil properties. These effects were likely due to the immaturity of the forest soil.

  20. Refining soil survey information for a Dutch soil series using land use history

    NARCIS (Netherlands)

    Sonneveld, M.P.W.; Bouma, J.; Veldkamp, A.

    2002-01-01

    Differences in land-use history within soil series, although not influencing soil classification, lead to variability of non-diagnostic soil properties in soil databases. Regional studies that use soil databases are confronted with this considerable variability. This has, for example, been reported