WorldWideScience

Sample records for bacterium wolbachia induces

  1. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    2010-04-01

    Full Text Available Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement.

  2. The endosymbiotic bacterium Wolbachia induces resistance to dengue virus in Aedes aegypti.

    Science.gov (United States)

    Bian, Guowu; Xu, Yao; Lu, Peng; Xie, Yan; Xi, Zhiyong

    2010-04-01

    Genetic strategies that reduce or block pathogen transmission by mosquitoes have been proposed as a means of augmenting current control measures to reduce the growing burden of vector-borne diseases. The endosymbiotic bacterium Wolbachia has long been promoted as a potential vehicle for introducing disease-resistance genes into mosquitoes, thereby making them refractory to the human pathogens they transmit. Given the large overlap in tissue distribution and intracellular localization between Wolbachia and dengue virus in mosquitoes, we conducted experiments to characterize their interactions. Our results show that Wolbachia inhibits viral replication and dissemination in the main dengue vector, Aedes aegypti. Moreover, the virus transmission potential of Wolbachia-infected Ae. aegypti was significantly diminished when compared to wild-type mosquitoes that did not harbor Wolbachia. At 14 days post-infection, Wolbachia completely blocked dengue transmission in at least 37.5% of Ae. aegypti mosquitoes. We also observed that this Wolbachia-mediated viral interference was associated with an elevated basal immunity and increased longevity in the mosquitoes. These results underscore the potential usefulness of Wolbachia-based control strategies for population replacement. PMID:20368968

  3. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.

    Directory of Open Access Journals (Sweden)

    Megan Woolfit

    Full Text Available Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in its insect hosts, including manipulation of reproduction and protection against pathogens. Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction, though it is likely to be mediated via the secretion of proteins or other factors. There is an increasing amount of evidence that bacteria regulate many cellular processes, including secretion of virulence factors, using small non-coding RNAs (sRNAs, but sRNAs have not previously been described from Wolbachia. We have used two independent approaches, one based on comparative genomics and the other using RNA-Seq data generated for gene expression studies, to identify candidate sRNAs in Wolbachia. We experimentally characterized the expression of one of these candidates in four Wolbachia strains, and showed that it is differentially regulated in different host tissues and sexes. Given the roles played by sRNAs in other host-associated bacteria, the conservation of the candidate sRNAs between different Wolbachia strains, and the sex- and tissue-specific differential regulation we have identified, we hypothesise that sRNAs may play a significant role in the biology of Wolbachia, and in particular in its interactions with its host.

  4. Wolbachia induces density-dependent inhibition to dengue virus in mosquito cells.

    Directory of Open Access Journals (Sweden)

    Peng Lu

    Full Text Available Wolbachia is a maternal transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce viral interference and spread into mosquito vector population makes it possible to develop Wolbachia as a biological control agent for dengue control. While Wolbachia induces resistance to dengue virus in the transinfected Aedes aegypti mosquitoes, a similar effect was not observed in Aedes albopictus, which naturally carries Wolbachia infection but still serves as a dengue vector. In order to understand the mechanism of this lack of Wolbachia-mediated viral interference, we used both Ae. albopictus cell line (Aa23 and mosquitoes to characterize the impact of Wolbachia on dengue infection. A serial of sub-lethal doses of antibiotic treatment was used to partially remove Wolbachia in Aa23 cells and generate cell cultures with Wolbachia at different densities. We show that there is a strong negative linear correlation between the genome copy of Wolbachia and dengue virus with a dengue infection completely removed when Wolbacha density reaches a certain level. We then compared Wolbachia density between transinfected Ae. aegypti and naturally infected Ae. albopictus. The results show that Wolbachia density in midgut, fatbody and salivary gland of Ae. albopictus is 80-, 18-, and 24-fold less than that of Ae. aegypti, respectively. We provide evidence that Wolbachia density in somatic tissues of Ae. albopictus is too low to induce resistance to dengue virus. Our results will aid in understanding the mechanism of Wolbachia-mediated pathogen interference and developing novel methods to block disease transmission by mosquitoes carrying native Wolbachia infections.

  5. Physiological cost induced by the maternally-transmitted endosymbiont Wolbachia in the Drosophila parasitoid Leptopilina heterotoma.

    Science.gov (United States)

    Fleury, F; Vavre, F; Ris, N; Fouillet, P; Boulétreau, M

    2000-11-01

    Endosymbiotic bacteria of the genus Wolbachia infect a number of invertebrate species in which they induce various alterations in host reproduction, mainly cytoplasmic incompatibility (CI). In contrast to most other maternally transmitted parasites, manipulation of host reproduction makes the spread of Wolbachia possible even if they induce a physiological cost on their hosts. Current studies have shown that fitness consequences of Wolbachia infection could range from positive (mutualist) to negative (parasitic) but, in most cases, Wolbachia do not have strong deleterious effects on host fitness and the status of association remains unclear. Here, we show that in the Drosophila parasitoid wasp Leptopilina heterotoma, Wolbachia infection has a negative impact on several host fitness traits of both sexes. Fecundity, adult survival and locomotor performance are significantly reduced, whereas circadian rhythm, development time and offspring sex-ratio are not affected. Although the cost of bacterial infection can be overcome by effects on host reproduction i.e. cytoplasmic incompatibility, it could influence the spread of the bacterium at the early stages of the invasion process. Clearly, results underline the wide spectrum of phenotypic effects of Wolbachia infection and, to our knowledge, Wolbachia infection of L. heterotoma appears to be one of the most virulent that has ever been observed in insects. PMID:11128800

  6. Within- and between-population variation for Wolbachia-induced reproductive incompatibility in a haplodiploid mite

    NARCIS (Netherlands)

    F. de Freitas Vala Salvador; A. Weeks; D. Claessen; J.A.J. Breeuwer; M.W. Sabelis

    2002-01-01

    Wolbachia pipientis is a bacterium that induces cytoplasmic incompatibility (CI), the phenomenon in which infected males are reproductively incompatible with uninfected females. CI spreads in a population of hosts because it reduces the fitness of uninfected females relative to infected females. CI

  7. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont

    Directory of Open Access Journals (Sweden)

    Amelia R. I. Lindsey

    2016-07-01

    Full Text Available Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre infecting the minute parasitoid wasp Trichogramma pretiosum. The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain.

  8. Comparative Genomics of a Parthenogenesis-Inducing Wolbachia Symbiont.

    Science.gov (United States)

    Lindsey, Amelia R I; Werren, John H; Richards, Stephen; Stouthamer, Richard

    2016-01-01

    Wolbachia is an intracellular symbiont of invertebrates responsible for inducing a wide variety of phenotypes in its host. These host-Wolbachia relationships span the continuum from reproductive parasitism to obligate mutualism, and provide a unique system to study genomic changes associated with the evolution of symbiosis. We present the genome sequence from a parthenogenesis-inducing Wolbachia strain (wTpre) infecting the minute parasitoid wasp Trichogramma pretiosum The wTpre genome is the most complete parthenogenesis-inducing Wolbachia genome available to date. We used comparative genomics across 16 Wolbachia strains, representing five supergroups, to identify a core Wolbachia genome of 496 sets of orthologous genes. Only 14 of these sets are unique to Wolbachia when compared to other bacteria from the Rickettsiales. We show that the B supergroup of Wolbachia, of which wTpre is a member, contains a significantly higher number of ankyrin repeat-containing genes than other supergroups. In the wTpre genome, there is evidence for truncation of the protein coding sequences in 20% of ORFs, mostly as a result of frameshift mutations. The wTpre strain represents a conversion from cytoplasmic incompatibility to a parthenogenesis-inducing lifestyle, and is required for reproduction in the Trichogramma host it infects. We hypothesize that the large number of coding frame truncations has accompanied the change in reproductive mode of the wTpre strain. PMID:27194801

  9. Wolbachia-induced cytoplasmic incompatibility as a novel and environment-friendly tool for insect pest population control

    International Nuclear Information System (INIS)

    Full text: Wolbachia is a group of intracellular maternally inherited bacteria of arthropods, which have recently attracted attention for their potential as new biocontrol agents. Wolbachia are able to invade and maintain themselves in an enormous range of invertebrate species, including insects, mites, spiders, crustaceans and nematodes. Recent PCR surveys suggest that perhaps over 20% of the arthropod species may be Wolbachia-infected, rendering this bacterium the most ubiquitous intracellular symbiont as yet described. Wolbachia can manipulate host reproduction by using several strategies one of which is Cytoplasmic Incompatibility (CI). Wolbachia-induced CI can be used in several ways: a) to directly suppress natural arthropod populations of economic and health importance, b) as a tool to spread genetically modified strains into wild arthropod populations and c) as an expression vector, once a genetic transformation system for this bacterium is developed. One of our research aims was to introduce Wolbachia into pest and vector species of economic and hygienic relevance and, through the expression of Wolbachia-induced CI, to suppress or modify natural populations. The first goal has been achieved for the Mediterranean fruit fly, Ceratitis capitata, and our next target species is the olive fruit fly, Bactrocera oleae. In parallel, our major goal was the identification and characterisation of Wolbachia and host genes, which are involved in the induction of CI through an integrated genomics, proteomics and post-genomics approach. Identification of these genes will be a major breakthrough towards the goal of using them for applied purposes. Such candidate genes have been identified. (author)

  10. Phylogeny and host-symbiont interactions of thelytoky inducing Wolbachia in Hymenoptera

    NARCIS (Netherlands)

    Meer, van M.M.M.

    1999-01-01

    Summary and conclusions

    Bacteria of the genus Wolbachia (α-Proteobacteria, Rickettsia) are widespread in arthropods and can induce thelytoky (T) in parasitoids (Hymenoptera). Infection with thelytoky inducing Wolbachia (T- Wolbachia ) enables infected females to produce daughters from unfert

  11. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    Directory of Open Access Journals (Sweden)

    Carlow Clotilde KS

    2009-11-01

    Full Text Available Abstract Background Wolbachia (wBm is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. Results wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS, was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS, was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. Conclusion Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes, those highly conserved across Rickettsiales (299 genes, those similar to distant essential genes (8 genes, and those with low confidence of essentiality (253 genes. These data facilitate

  12. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control

    Science.gov (United States)

    Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; Stauffer, Christian; Savakis, Charalambos; Bourtzis, Kostas

    2004-01-01

    Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71–102]. We established Wolbachia-infected lines of the medfly Ceratitis capitata using the infected cherry fruit fly Rhagoletis cerasi as donor. Wolbachia induced complete CI in the novel host. Laboratory cage populations were completely suppressed by single releases of infected males, suggesting that Wolbachia-induced CI could be used as a novel environmentally friendly tool for the control of medfly populations. The results also encourage the introduction of Wolbachia into pest and vector species of economic and hygenic relevance to suppress or modify natural populations. PMID:15469918

  13. The intracellular bacterium Wolbachia uses parasitoid wasps as phoretic vectors for efficient horizontal transmission.

    Directory of Open Access Journals (Sweden)

    Muhammad Z Ahmed

    2015-02-01

    Full Text Available Facultative bacterial endosymbionts are associated with many arthropods and are primarily transmitted vertically from mother to offspring. However, phylogenetic affiliations suggest that horizontal transmission must also occur. Such horizontal transfer can have important biological and agricultural consequences when endosymbionts increase host fitness. So far horizontal transmission is considered rare and has been difficult to document. Here, we use fluorescence in situ hybridization (FISH and multi locus sequence typing (MLST to reveal a potentially common pathway of horizontal transmission of endosymbionts via parasitoids of insects. We illustrate that the mouthparts and ovipositors of an aphelinid parasitoid become contaminated with Wolbachia when this wasp feeds on or probes Wolbachia-infected Bemisia tabaci AsiaII7, and non-lethal probing of uninfected B. tabaci AsiaII7 nymphs by parasitoids carrying Wolbachia resulted in newly and stably infected B. tabaci matrilines. After they were exposed to infected whitefly, the parasitoids were able to transmit Wolbachia efficiently for the following 48 h. Whitefly infected with Wolbachia by parasitoids had increased survival and reduced development times. Overall, our study provides evidence for the horizontal transmission of Wolbachia between insect hosts by parasitic wasps, and the enhanced survival and reproductive abilities of insect hosts may adversely affect biological control programs.

  14. Stochastic spread of Wolbachia

    OpenAIRE

    Jansen, Vincent A A; Turelli, Michael; Godfray, H. Charles J.

    2008-01-01

    Wolbachia are very common, maternally transmitted endosymbionts of insects. They often spread by a mechanism termed cytoplasmic incompatibility (CI) that involves reduced egg hatch when Wolbachia-free ova are fertilized by sperm from Wolbachia-infected males. Because the progeny of Wolbachia-infected females generally do not suffer CI-induced mortality, infected females are often at a reproductive advantage in polymorphic populations. Deterministic models show that Wolbachia that impose no co...

  15. Infection with Wolbachia protects mosquitoes against Plasmodium-induced mortality in a natural system.

    Science.gov (United States)

    Zélé, F; Nicot, A; Duron, O; Rivero, A

    2012-07-01

    In recent years, there has been a shift in the one host-one parasite paradigm with the realization that, in the field, most hosts are coinfected with multiple parasites. Coinfections are particularly relevant when the host is a vector of diseases, because multiple infections can have drastic consequences for parasite transmission at both the ecological and evolutionary timescales. Wolbachia pipientis is the most common parasitic microorganism in insects, and as such, it is of special interest for understanding the role of coinfections in the outcome of parasite infections. Here, we investigate whether Wolbachia can modulate the effect of Plasmodium on what is, arguably, the most important component of the vectorial capacity of mosquitoes: their longevity. For this purpose, and in contrast to recent studies that have focused on mosquito-Plasmodium and/or mosquito-Wolbachia combinations not found in nature, we work on a Wolbachia-mosquito-Plasmodium triad with a common evolutionary history. Our results show that Wolbachia protects mosquitoes from Plasmodium-induced mortality. The results are consistent across two different strains of Wolbachia and repeatable across two different experimental blocks. To our knowledge, this is the first time that such an effect has been shown for Plasmodium-infected mosquitoes and, in particular, in a natural Wolbachia-host combination. We discuss different mechanistic and evolutionary explanations for these results as well as their consequences for Plasmodium transmission. PMID:22533729

  16. Wolbachia-induced cytoplasmic incompatibility is associated with decreased Hira expression in male Drosophila.

    Directory of Open Access Journals (Sweden)

    Ya Zheng

    Full Text Available BACKGROUND: Wolbachia are obligate endosymbiotic bacteria that infect numerous species of arthropods and nematodes. Wolbachia can induce several reproductive phenotypes in their insect hosts including feminization, male-killing, parthenogenesis and cytoplasmic incompatibility (CI. CI is the most common phenotype and occurs when Wolbachia-infected males mate with uninfected females resulting in no or very low numbers of viable offspring. However, matings between males and females infected with the same strain of Wolbachia result in viable progeny. Despite substantial scientific effort, the molecular mechanisms underlying CI are currently unknown. METHODOLOGY/PRINCIPAL FINDINGS: Gene expression studies were undertaken in Drosophila melanogaster and D. simulans which display differential levels of CI using quantitative RT-PCR. We show that Hira expression is correlated with the induction of CI and occurs in a sex-specific manner. Hira expression is significantly lower in males which induce strong CI when compared to males inducing no CI or Wolbachia-uninfected males. A reduction in Hira expression is also observed in 1-day-old males that induce stronger CI compared to 5-day-old males that induce weak or no CI. In addition, Hira mutated D. melanogaster males mated to uninfected females result in significantly decreased hatch rates comparing with uninfected crosses. Interestingly, wMel-infected females may rescue the hatch rates. An obvious CI phenotype with chromatin bridges are observed in the early embryo resulting from Hira mutant fertilization, which strongly mimics the defects associated with CI. CONCLUSIONS/SIGNIFICANCE: Our results suggest Wolbachia-induced CI in Drosophila occurs due to a reduction in Hira expression in Wolbachia-infected males leading to detrimental effects on sperm fertility resulting in embryo lethality. These results may help determine the underlying mechanism of CI and provide further insight in to the important role

  17. Wolbachia Do Not Induce Reactive Oxygen Species-Dependent Immune Pathway Activation in Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Jennifer C. Molloy

    2015-08-01

    Full Text Available Aedes albopictus is a major vector of dengue (DENV and chikungunya (CHIKV viruses, causing millions of infections annually. It naturally carries, at high frequency, the intracellular inherited bacterial endosymbiont Wolbachia strains wAlbA and wAlbB; transinfection with the higher-density Wolbachia strain wMel from Drosophila melanogaster led to transmission blocking of both arboviruses. The hypothesis that reactive oxygen species (ROS-induced immune activation plays a role in arbovirus inhibition in this species was examined. In contrast to previous observations in Ae. aegypti, elevation of ROS levels was not observed in either cell lines or mosquito lines carrying the wild-type Wolbachia or higher-density Drosophila Wolbachia strains. There was also no upregulation of genes controlling innate immune pathways or with antioxidant/ROS-producing functions. These data suggest that ROS-mediated immune activation is not an important component of the viral transmission-blocking phenotype in this species.

  18. Intragenomic conflict in populations infected by Parthenogenesis Inducing Wolbachia ends with irreversible loss of sexual reproduction

    Directory of Open Access Journals (Sweden)

    Stouthamer Richard

    2010-07-01

    Full Text Available Abstract Background The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI Wolbachia, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-Wolbachia in a previously uninfected population leads to a genomic conflict between PI-Wolbachia and the nuclear genome. In most natural populations infected with PI-Wolbachia the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males. Results The PI Wolbachia infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-Wolbachia infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-Wolbachia infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles" will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont. Conclusions This study shows that dependence among organisms can evolve rapidly due to the resolution

  19. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.

    Directory of Open Access Journals (Sweden)

    Uzma Alam

    2011-12-01

    Full Text Available Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia, without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo females when mated with Wolbachia-infected (Gmm(Wt males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can

  20. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly Glossina morsitans.

    Science.gov (United States)

    Alam, Uzma; Medlock, Jan; Brelsfoard, Corey; Pais, Roshan; Lohs, Claudia; Balmand, Séverine; Carnogursky, Jozef; Heddi, Abdelaziz; Takac, Peter; Galvani, Alison; Aksoy, Serap

    2011-12-01

    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to replace their susceptible natural counterparts, and Sterile Insect technique (SIT) where males sterilized by chemical means are released to suppress female fecundity. The success of genetic modification approaches requires identification of strong drive systems to spread the desirable traits and the efficacy of SIT can be enhanced by identification of natural mating incompatibility. One such drive mechanism results from the cytoplasmic incompatibility (CI) phenomenon induced by the symbiont Wolbachia. CI can also be used to induce natural mating incompatibility between release males and natural populations. Although Wolbachia infections have been reported in tsetse, it has been a challenge to understand their functional biology as attempts to cure tsetse of Wolbachia infections by antibiotic treatment damages the obligate mutualistic symbiont (Wigglesworthia), without which the flies are sterile. Here, we developed aposymbiotic (symbiont-free) and fertile tsetse lines by dietary provisioning of tetracycline supplemented blood meals with yeast extract, which rescues Wigglesworthia-induced sterility. Our results reveal that Wolbachia infections confer strong CI during embryogenesis in Wolbachia-free (Gmm(Apo)) females when mated with Wolbachia-infected (Gmm(Wt)) males. These results are the first demonstration of the biological significance of Wolbachia infections in tsetse. Furthermore, when incorporated into a mathematical model, our results confirm that Wolbachia can be used

  1. The wMelPop strain of Wolbachia interferes with dopamine levels in Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Eyles Darryl W

    2011-02-01

    Full Text Available Abstract Wolbachia is an intracellular bacterium that has been stably transinfected into the mosquito vector of dengue, Aedes aegypti. This inherited infection causes a range of metabolic and phenotypic alterations in the mosquito, which might be related to neuronal abnormalities. In order to determine if these alterations were caused by the manipulation of neuroamines by this bacterium, we studied the expression of genes involved in the dopamine biosynthetic pathway and also measured the amount of dopamine in infected and uninfected mosquitoes of different ages. Wolbachia-infected mosquitoes exhibit greater expression of some genes related to the melanization pathway, but not for those directly linked to dopamine production. Although dopamine levels were higher in Wolbachia-positive mosquitoes this was not consistent across all insect ages nor was it related to the previously described Wolbachia induced "bendy" and "shaky" phenotypes.

  2. Wolbachia-mediated resistance to dengue virus infection and death at the cellular level.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    Full Text Available BACKGROUND: Dengue is currently the most important arthropod-borne viral disease of humans. Recent work has shown dengue virus displays limited replication in its primary vector, the mosquito Aedes aegypti, when the insect harbors the endosymbiotic bacterium Wolbachia pipientis. Wolbachia-mediated inhibition of virus replication may lead to novel methods of arboviral control, yet the functional and cellular mechanisms that underpin it are unknown. METHODOLOGY/PRINCIPAL FINDINGS: Using paired Wolbachia-infected and uninfected Aedes-derived cell lines and dengue virus, we confirm the phenomenon of viral inhibition at the cellular level. Although Wolbachia imposes a fitness cost to cells via reduced proliferation, it also provides a significant degree of protection from virus-induced mortality. The extent of viral inhibition is related to the density of Wolbachia per cell, with highly infected cell lines showing almost complete protection from dengue infection and dramatically reduced virus titers compared to lines not infected with the bacteria. CONCLUSIONS/SIGNIFICANCE: We have shown that cells infected with Wolbachia display inhibition of dengue virus replication, that the extent of inhibition is related to bacterial density and that Wolbachia infection, although costly, will provide a fitness benefit in some circumstances. Our results parallel findings in mosquitoes and flies, indicating that cell line models will provide useful and experimentally tractable models to study the mechanisms underlying Wolbachia-mediated protection from viruses.

  3. Wolbachia utilize host actin for efficient maternal transmission in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    Irene L G Newton

    2015-04-01

    Full Text Available Wolbachia pipientis is a ubiquitous, maternally transmitted bacterium that infects the germline of insect hosts. Estimates are that Wolbachia infect nearly 40% of insect species on the planet, making it the most prevalent infection on Earth. The bacterium, infamous for the reproductive phenotypes it induces in arthropod hosts, has risen to recent prominence due to its use in vector control. Wolbachia infection prevents the colonization of vectors by RNA viruses, including Drosophila C virus and important human pathogens such as Dengue and Chikungunya. Here we present data indicating that Wolbachia utilize the host actin cytoskeleton during oogenesis for persistence within and transmission between Drosophila melanogaster generations. We show that phenotypically wild type flies heterozygous for cytoskeletal mutations in Drosophila profilin (chic(221/+ and chic(1320/+ or villin (qua(6-396/+ either clear a Wolbachia infection, or result in significantly reduced infection levels. This reduction of Wolbachia is supported by PCR evidence, Western blot results and cytological examination. This phenotype is unlikely to be the result of maternal loading defects, defects in oocyte polarization, or germline stem cell proliferation, as the flies are phenotypically wild type in egg size, shape, and number. Importantly, however, heterozygous mutant flies exhibit decreased total G-actin in the ovary, compared to control flies and chic(221 heterozygous mutants exhibit decreased expression of profilin. Additionally, RNAi knockdown of profilin during development decreases Wolbachia titers. We analyze evidence in support of alternative theories to explain this Wolbachia phenotype and conclude that our results support the hypothesis that Wolbachia utilize the actin skeleton for efficient transmission and maintenance within Drosophila.

  4. Native Wolbachia from Aedes albopictus Blocks Chikungunya Virus Infection In Cellulo.

    Directory of Open Access Journals (Sweden)

    Vincent Raquin

    Full Text Available Wolbachia, a widespread endosymbiont of terrestrial arthropods, can protect its host against viral and parasitic infections, a phenotype called "pathogen blocking". However, in some cases Wolbachia may have no effect or even enhance pathogen infection, depending on the host-Wolbachia-pathogen combination. The tiger mosquito Aedes albopictus is naturally infected by two strains of Wolbachia, wAlbA and wAlbB, and is a competent vector for different arboviruses such as dengue virus (DENV and chikungunya virus (CHIKV. Interestingly, it was shown in some cases that Ae. albopictus native Wolbachia strains are able to inhibit DENV transmission by limiting viral replication in salivary glands, but no such impact was measured on CHIKV replication in vivo. To better understand the Wolbachia/CHIKV/Ae. albopictus interaction, we generated a cellular model using Ae. albopictus derived C6/36 cells that we infected with the wAlbB strain. Our results indicate that CHIKV infection is negatively impacted at both RNA replication and virus assembly/secretion steps in presence of wAlbB. Using FISH, we observed CHIKV and wAlbB in the same mosquito cells, indicating that the virus is still able to enter the cell in the presence of the bacterium. Further work is needed to decipher molecular pathways involved in Wolbachia-CHIKV interaction at the cellular level, but this cellular model can be a useful tool to study the mechanism behind virus blocking phenotype induced by Wolbachia. More broadly, this put into question the ecological role of Wolbachia symbiont in Ae. albopictus, but also the ability of the CHIKV to counteract Wolbachia's antiviral potential in vivo.

  5. New Wolbachia supergroups detected in quill mites (Acari: Syringophilidae).

    Science.gov (United States)

    Glowska, Eliza; Dragun-Damian, Anna; Dabert, Miroslawa; Gerth, Michael

    2015-03-01

    Wolbachia is the most abundant intracellular bacterial genus infecting a wide range of arthropods and filarial nematodes. Wolbachia have evolved parasitic, mutualistic and commensal relationships with their hosts but in arthropods generally act as reproductive parasites, inducing a wide range of phenotypic effects such as cytoplasmic incompatibility, parthenogenesis, feminization and male-killing. Up to now, the genus has been divided into 14 supergroups successively named A-O. Here, we describe two new Wolbachia supergroups from syringophilid mites (Acari: Cheyletoidea). These obligatory ectoparasites of birds inhabit the quills of feathers in many avian groups. The species of this family reproduce in a haplodiploid mode sensu arrhenotoky and are usually strongly female-biased. Based on the sequences of four protein-coding genes (ftsZ, gltA and groEL and coxA) and the 16S rRNA we identified strains of three Wolbachia supergroups (F and two distinct, yet undescribed ones) in five quill mite species. Our results suggest that in some cases the distribution of the bacteria can be better correlated with the mite's bird host rather than with mite taxonomy as such. The discovery of two new Wolbachia supergroups not only broadens the knowledge of the diversity of this bacterium but also raises questions about potential effects induced in quill mites and transmission mechanisms of the endosymbionts in this peculiar bacteria-quill mite-bird system. PMID:25541519

  6. Wolbachia-induced aae-miR-12 miRNA negatively regulates the expression of MCT1 and MCM6 genes in Wolbachia-infected mosquito cell line.

    Directory of Open Access Journals (Sweden)

    Solomon Osei-Amo

    Full Text Available BACKGROUND: Best recognized for its role in manipulating host reproduction, the parasitic gram-negative Wolbachia pipientis is known to colonize a wide range of invertebrates. The endosymbiotic bacterium has recently been shown to cause a life-shortening effect as well as inhibiting replication of arboviruses in Aedes aegypti; although the molecular mechanisms behind these effects are largely unknown. MicroRNAs (miRNAs have been determined to have a wide range of roles in regulating gene expression in eukaryotes. A recent study showed that several A. aegypti mosquito miRNAs are differentially expressed when infected with Wolbachia. METHODOLOGY/PRINCIPAL FINDINGS: Based on the prior knowledge that one of these miRNAs, aae-miR-12, is differentially expressed in mosquitoes infected with Wolbachia, we aimed to determine any significance of this mediation. We also set out to characterize the target genes of this miRNA in the A. aegpyti genome. Bioinformatic approaches predicted a list of potential target genes and subsequent functional analyses confirmed that two of these, DNA replication licensing (MCM6 and monocarboxylate transporter (MCT1, are under the regulative control of aae-miR-12. We also demonstrated that aae-miR-12 is critical in the persistence of Wolbachia in the host cell. CONCLUSIONS/SIGNIFICANCE: Our study has identified two target genes of aae-miR-12, a differentially expressed mosquito miRNA in Wolbachia-infected cells, and determined that the miRNA affects Wolbachia density in the host cells.

  7. Infection of Wolbachia in Trichogramma cacoeciae

    Institute of Scientific and Technical Information of China (English)

    WANG Wei-hua; GONG Peng; SHEN Zuo-rui

    2003-01-01

    Wolbachia is a symbiotic bacterium that alters reproductive behavior of numerous arthropods.It is the most advanced way to study phylogeny and classification based on sequences of the wsp gene. The presence of Wolbachia in a lab strain of the thelytokous Trichogramma cacoeciae was firstly identified based on amplification and sequencing part of the wsp gene. Aligned the resulting sequence with the published ones,the phylogenetic relationships among Wolbachia which was found in T. cacoeciae, T. dendrolimi and other insects were established. The Wolbachia that found in T. cacoeciae and in T. dendrolimi belong to the Kue group and the Pip group, respectively.

  8. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Directory of Open Access Journals (Sweden)

    Vijayan Kamalakannan

    2015-04-01

    Full Text Available Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60 interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence.

  9. Autophagy protects monocytes from Wolbachia heat shock protein 60-induced apoptosis and senescence.

    Science.gov (United States)

    Kamalakannan, Vijayan; Shiny, Abijit; Babu, Subash; Narayanan, Rangarajan Badri

    2015-04-01

    Monocyte dysfunction by filarial antigens has been a major mechanism underlying immune evasion following hyporesponsiveness during patent lymphatic filariasis. Recent studies have initiated a paradigm shift to comprehend the immunological interactions of Wolbachia and its antigens in inflammation, apoptosis, lymphocyte anergy, etc. Here we showed that recombinant Wolbachia heat shock protein 60 (rWmhsp60) interacts with TLR-4 and induces apoptosis in monocytes of endemic normal but not in chronic patients. Higher levels of reactive oxygen species (ROS) induced after TLR-4 stimulation resulted in loss of mitochondrial membrane potential and caspase cascade activation, which are the plausible reason for apoptosis. Furthermore, release in ROS owing to TLR-4 signaling resulted in the activation of NF-κB p65 nuclear translocation which leads to inflammation and apoptosis via TNF receptor pathway following the increase in IL-6 and TNF-α level. Here for the first time, we report that in addition to apoptosis, rWmhsp60 antigen in filarial pathogenesis also induces molecular senescence in monocytes. Targeting TLR-4, therefore, presents a promising candidate for treating rWmhsp60-induced apoptosis and senescence. Strikingly, induction of autophagy by rapamycin detains TLR-4 in late endosomes and subverts TLR-4-rWmhsp60 interaction, thus protecting TLR-4-mediated apoptosis and senescence. Furthermore, rapamycin-induced monocytes were unresponsive to rWmhsp60, and activated lymphocytes following PHA stimulation. This study demonstrates that autophagy mediates the degradation of TLR-4 signaling and protects monocytes from rWmhsp60 induced apoptosis and senescence. PMID:25849993

  10. Replacing a native Wolbachia with a novel strain results in an increase in endosymbiont load and resistance to dengue virus in a mosquito vector.

    Directory of Open Access Journals (Sweden)

    Guowu Bian

    Full Text Available Wolbachia is a maternally transmitted endosymbiotic bacterium that is estimated to infect up to 65% of insect species. The ability of Wolbachia to both induce pathogen interference and spread into mosquito vector populations makes it possible to develop Wolbachia as a biological control agent for vector-borne disease control. Although Wolbachia induces resistance to dengue virus (DENV, filarial worms, and Plasmodium in mosquitoes, species like Aedes polynesiensis and Aedes albopictus, which carry native Wolbachia infections, are able to transmit dengue and filariasis. In a previous study, the native wPolA in Ae. polynesiensis was replaced with wAlbB from Ae. albopictus, and resulted in the generation of the transinfected "MTB" strain with low susceptibility for filarial worms. In this study, we compare the dynamics of DENV serotype 2 (DENV-2 within the wild type "APM" strain and the MTB strain of Ae. polynesiensis by measuring viral infection in the mosquito whole body, midgut, head, and saliva at different time points post infection. The results show that wAlbB can induce a strong resistance to DENV-2 in the MTB mosquito. Evidence also supports that this resistance is related to a dramatic increase in Wolbachia density in the MTB's somatic tissues, including the midgut and salivary gland. Our results suggests that replacement of a native Wolbachia with a novel infection could serve as a strategy for developing a Wolbachia-based approach to target naturally infected insects for vector-borne disease control.

  11. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Directory of Open Access Journals (Sweden)

    Stephanie M Rainey

    2016-04-01

    Full Text Available The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus. Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3´ open reading frame than the 5´ non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed

  12. Wolbachia Blocks Viral Genome Replication Early in Infection without a Transcriptional Response by the Endosymbiont or Host Small RNA Pathways.

    Science.gov (United States)

    Rainey, Stephanie M; Martinez, Julien; McFarlane, Melanie; Juneja, Punita; Sarkies, Peter; Lulla, Aleksei; Schnettler, Esther; Varjak, Margus; Merits, Andres; Miska, Eric A; Jiggins, Francis M; Kohl, Alain

    2016-04-01

    The intracellular endosymbiotic bacterium Wolbachia can protect insects against viral infection, and is being introduced into mosquito populations in the wild to block the transmission of arboviruses that infect humans and are a major public health concern. To investigate the mechanisms underlying this antiviral protection, we have developed a new model system combining Wolbachia-infected Drosophila melanogaster cell culture with the model mosquito-borne Semliki Forest virus (SFV; Togaviridae, Alphavirus). Wolbachia provides strong antiviral protection rapidly after infection, suggesting that an early stage post-infection is being blocked. Wolbachia does appear to have major effects on events distinct from entry, assembly or exit as it inhibits the replication of an SFV replicon transfected into the cells. Furthermore, it causes a far greater reduction in the expression of proteins from the 3´ open reading frame than the 5´ non-structural protein open reading frame, indicating that it is blocking the replication of viral RNA. Further to this separation of the replicase proteins and viral RNA in transreplication assays shows that uncoupling of viral RNA and replicase proteins does not overcome Wolbachia's antiviral activity. This further suggests that replicative processes are disrupted, such as translation or replication, by Wolbachia infection. This may occur by Wolbachia mounting an active antiviral response, but the virus did not cause any transcriptional response by the bacterium, suggesting that this is not the case. Host microRNAs (miRNAs) have been implicated in protection, but again we found that host cell miRNA expression was unaffected by the bacterium and neither do our findings suggest any involvement of the antiviral siRNA pathway. We conclude that Wolbachia may directly interfere with early events in virus replication such as translation of incoming viral RNA or RNA transcription, and this likely involves an intrinsic (as opposed to an induced

  13. The effect of virus-blocking Wolbachia on male competitiveness of the dengue vector mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Michal Segoli

    2014-12-01

    Full Text Available The bacterial endosymbiont Wolbachia blocks the transmission of dengue virus by its vector mosquito Aedes aegypti, and is currently being evaluated for control of dengue outbreaks. Wolbachia induces cytoplasmic incompatibility (CI that results in the developmental failure of offspring in the cross between Wolbachia-infected males and uninfected females. This increases the relative success of infected females in the population, thereby enhancing the spread of the beneficial bacterium. However, Wolbachia spread via CI will only be feasible if infected males are sufficiently competitive in obtaining a mate under field conditions. We tested the effect of Wolbachia on the competitiveness of A. aegypti males under semi-field conditions.In a series of experiments we exposed uninfected females to Wolbachia-infected and uninfected males simultaneously. We scored the competitiveness of infected males according to the proportion of females producing non-viable eggs due to incompatibility. We found that infected males were equally successful to uninfected males in securing a mate within experimental tents and semi-field cages. This was true for males infected by the benign wMel Wolbachia strain, but also for males infected by the virulent wMelPop (popcorn strain. By manipulating male size we found that larger males had a higher success than smaller underfed males in the semi-field cages, regardless of their infection status.The results indicate that Wolbachia infection does not reduce the competitiveness of A. aegypti males. Moreover, the body size effect suggests a potential advantage for lab-reared Wolbachia-males during a field release episode, due to their better nutrition and larger size. This may promote Wolbachia spread via CI in wild mosquito populations and underscores its potential use for disease control.

  14. Wolbachia-induced cytoplasmic incompatibility as a means for insect pest population control

    OpenAIRE

    Zabalou, Sofia; Riegler, Markus; Theodorakopoulou, Marianna; STAUFFER, CHRISTIAN; Savakis, Charalambos; Bourtzis,Kostas

    2004-01-01

    Biological control is the purposeful introduction of parasites, predators, and pathogens to reduce or suppress pest populations. Wolbachia are inherited bacteria of arthropods that have recently attracted attention for their potential as new biocontrol agents. Wolbachia manipulate host reproduction by using several strategies, one of which is cytoplasmic incompatibility (CI) [Stouthamer, R., Breeuwer, J. A. J. & Hurst, G. D. D. (1999) Annu. Rev. Microbiol. 53, 71–102]. We established Wolbachi...

  15. A novel Wolbachia strain from the rice moth Corcyra cephalonica induces reproductive incompatibility in the whitefly Bemisia tabaci: sequence typing combined with phenotypic evidence.

    Science.gov (United States)

    Hu, Hong-Yan; Li, Zheng-Xi

    2015-06-01

    Wolbachia are a group of maternally inherited bacteria frequently found in arthropods and filarial nematodes. They have recently attracted attention for their ecological roles in manipulating host reproduction, their potential use in biological control of pest insects and medical significance. Classification of Wolbachia strains is currently solely based on molecular methods. However, the strains even with identical sequence types may induce different host phenotypes. Here we isolated a Wolbachia strain from the rice moth Corcyra cephalonica (designated as wCcep_B_BJ), which was shown to share multilocus sequence typing and Wolbachia surface protein hypervariable region profiles with a cytoplasmic incompatibility (CI)-inducing strain in supergroup B, but the phenotype wCcep_B_BJ may induce needs to be determined. We thus transinfected it into the whitefly Bemisia tabaci harbouring an A-Wolbachia through nymphal microinjection. Fluorescent in situ hybridization demonstrated that wCcep_B_BJ was successfully transinfected into B. tabaci and transmitted to offspring through host eggs. Reciprocal cross showed that wCcep_B_BJ induced a strong bidirectional CI in the transinfected host without imposing a significant cost on female fecundity. Our results suggest that wCcep_B_BJ may be a promising strain for biocontrol of B. tabaci, an important agricultural pest insect. PMID:25683566

  16. Wolbachia versus dengue: Evolutionary forecasts.

    Science.gov (United States)

    Bull, James J; Turelli, Michael

    2013-01-01

    A novel form of biological control is being applied to the dengue virus. The agent is the maternally transmitted bacterium Wolbachia, naturally absent from the main dengue vector, the mosquito Aedes aegypti. Three Wolbachia-based control strategies have been proposed. One is suppression of mosquito populations by large-scale releases of males incompatible with native females; this intervention requires ongoing releases. The other interventions transform wild mosquito populations with Wolbachia that spread via the frequency-dependent fitness advantage of Wolbachia-infected females; those interventions potentially require just a single, local release for area-wide disease control. One of these latter strategies uses Wolbachia that shortens mosquito life, indirectly preventing viral maturation/transmission. The other strategy uses Wolbachia that block viral transmission. All interventions can be undermined by viral, bacterial or mosquito evolution; viral virulence in humans may also evolve. We examine existing theory, experiments and comparative evidence to motivate predictions about evolutionary outcomes. (i) The life-shortening strategy seems the most likely to be thwarted by evolution. (ii) Mosquito suppression has a reasonable chance of working locally, at least in the short term, but long-term success over large areas is challenging. (iii) Dengue blocking faces strong selection for viral resistance but may well persist indefinitely at some level. Virulence evolution is not mathematically predictable, but comparative data provide no precedent for Wolbachia increasing dengue virulence. On balance, our analysis suggests that the considerable possible benefits of these technologies outweigh the known negatives, but the actual risk is largely unknown. PMID:24481199

  17. Cloning and characterization of a gene encoding phage-related tail protein (PrTP) of endosymbiont Wolbachia

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wolbachia is an obligatory, maternally inherited intracellular bacterium, known to infect a wide range of arthropods. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, the feminization of genetic males and male-killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these reproductive abnormalities have not yet been determined. In this study, we report on the cloning and characterization of the gene encoding phage-related tail protein (PrTP) from Wolbachia in Drosophila melanogaster CantonS (wMelCS) and from Wolbachia in Drosophila melanogaster yw67c23 (wMel) by representational difference analysis (RDA) and ligation-mediated PCR (LM-PCR). The functionality of a bipartite nuclear localization signal sequence (NLS) of the gene was also successfully tested in Drosophila S2 cells. PrTP expression in various strains of Wolbachia was investigated. Our results suggest that PrTP may not induce CI directly. However, the existence of prtp provided direct evidence of phage-mediated horizontal gene transfer (HGT) that might play an important role in a variety of reproductive abnormalities of Wolbachia.

  18. Wolbachia in European Populations of the Invasive Pest Drosophila suzukii: Regional Variation in Infection Frequencies.

    Science.gov (United States)

    Cattel, Julien; Kaur, Rupinder; Gibert, Patricia; Martinez, Julien; Fraimout, Antoine; Jiggins, Francis; Andrieux, Thibault; Siozios, Stefanos; Anfora, Gianfranco; Miller, Wolfgang; Rota-Stabelli, Omar; Mouton, Laurence

    2016-01-01

    The invasive pest Drosophila suzukii is characterized by a specific fresh-fruit targeting behavior and has quickly become a menace for the fruit economy of newly infested North American and European regions. D. suzukii carries a strain of the endosymbiotic bacterium Wolbachia, named wSuz, which has a low infection frequency and no reproductive manipulation capabilities in American populations of D. suzukii. To further understand the nature of wSuz biology and assess its utility as a tool for controlling this pest's populations, we investigated the prevalence of Wolbachia in 23 European D. suzukii populations, and compared our results with those available in American populations. Our data showed a highly variable infection frequency with a mean prevalence of 46%, which is significantly higher than the 17% found in American populations. Based on Multilocus Sequence Typing analysis, a single wSuz strain was diagnosed in all European populations of D. suzukii. In agreement with American data, we found no evidence of cytoplasmic incompatibility induced by wSuz. These findings raise two questions: a) why Wolbachia is maintained in field populations of D. suzukii and b) what are the selective forces responsible for the variation in prevalence within populations, particularly between European and American continents? Our results provide new insights into the D. suzukii-Wolbachia association and highlight regional variations that await further investigation and that should be taken into account for using Wolbachia-based pest management programs. PMID:26809119

  19. Wolbachia in European Populations of the Invasive Pest Drosophila suzukii: Regional Variation in Infection Frequencies.

    Directory of Open Access Journals (Sweden)

    Julien Cattel

    Full Text Available The invasive pest Drosophila suzukii is characterized by a specific fresh-fruit targeting behavior and has quickly become a menace for the fruit economy of newly infested North American and European regions. D. suzukii carries a strain of the endosymbiotic bacterium Wolbachia, named wSuz, which has a low infection frequency and no reproductive manipulation capabilities in American populations of D. suzukii. To further understand the nature of wSuz biology and assess its utility as a tool for controlling this pest's populations, we investigated the prevalence of Wolbachia in 23 European D. suzukii populations, and compared our results with those available in American populations. Our data showed a highly variable infection frequency with a mean prevalence of 46%, which is significantly higher than the 17% found in American populations. Based on Multilocus Sequence Typing analysis, a single wSuz strain was diagnosed in all European populations of D. suzukii. In agreement with American data, we found no evidence of cytoplasmic incompatibility induced by wSuz. These findings raise two questions: a why Wolbachia is maintained in field populations of D. suzukii and b what are the selective forces responsible for the variation in prevalence within populations, particularly between European and American continents? Our results provide new insights into the D. suzukii-Wolbachia association and highlight regional variations that await further investigation and that should be taken into account for using Wolbachia-based pest management programs.

  20. Tandem repeat markers as novel diagnostic tools for high resolution fingerprinting of Wolbachia

    Directory of Open Access Journals (Sweden)

    Riegler Markus

    2012-01-01

    Full Text Available Abstract Background Strains of the endosymbiotic bacterium Wolbachia pipientis are extremely diverse both genotypically and in terms of their induced phenotypes in invertebrate hosts. Despite extensive molecular characterisation of Wolbachia diversity, little is known about the actual genomic diversity within or between closely related strains that group tightly on the basis of existing gene marker systems, including Multiple Locus Sequence Typing (MLST. There is an urgent need for higher resolution fingerprinting markers of Wolbachia for studies of population genetics, horizontal transmission and experimental evolution. Results The genome of the wMel Wolbachia strain that infects Drosophila melanogaster contains inter- and intragenic tandem repeats that may evolve through expansion or contraction. We identified hypervariable regions in wMel, including intergenic Variable Number Tandem Repeats (VNTRs, and genes encoding ankyrin (ANK repeat domains. We amplified these markers from 14 related Wolbachia strains belonging to supergroup A and were successful in differentiating size polymorphic alleles. Because of their tandemly repeated structure and length polymorphism, the markers can be used in a PCR-diagnostic multilocus typing approach, analogous to the Multiple Locus VNTR Analysis (MLVA established for many other bacteria and organisms. The isolated markers are highly specific for supergroup A and not informative for other supergroups. However, in silico analysis of completed genomes from other supergroups revealed the presence of tandem repeats that are variable and could therefore be useful for typing target strains. Conclusions Wolbachia genomes contain inter- and intragenic tandem repeats that evolve through expansion or contraction. A selection of polymorphic tandem repeats is a novel and useful PCR diagnostic extension to the existing MLST typing system of Wolbachia, as it allows rapid and inexpensive high-throughput fingerprinting of

  1. Iron necessity: the secret of Wolbachia's success?

    Science.gov (United States)

    Gill, Alessandra Christina; Darby, Alistair C; Makepeace, Benjamin L

    2014-10-01

    The bacterium Wolbachia (order Rickettsiales) is probably the world's most successful vertically-transmitted symbiont, distributed among a staggering 40% of terrestrial arthropod species. Wolbachia has great potential in vector control due to its ability to manipulate its hosts' reproduction and to impede the replication and dissemination of arboviruses and other pathogens within haematophagous arthropods. In addition, the unexpected presence of Wolbachia in filarial nematodes of medical and veterinary importance has provided an opportunity to target the adult worms of Wuchereria bancrofti, Onchocerca volvulus, and Dirofilaria immitis with safe drugs such as doxycycline. A striking feature of Wolbachia is its phenotypic plasticity between (and sometimes within) hosts, which may be underpinned by its ability to integrate itself into several key processes within eukaryotic cells: oxidative stress, autophagy, and apoptosis. Importantly, despite significant differences in the genomes of arthropod and filarial Wolbachia strains, these nexuses appear to lie on a continuum in different hosts. Here, we consider how iron metabolism may represent a fundamental aspect of host homeostasis that is impacted by Wolbachia infection, connecting disparate pathways ranging from the provision of haem and ATP to programmed cell death, aging, and the recycling of intracellular resources. Depending on how Wolbachia and host cells interact across networks that depend on iron, the gradient between parasitism and mutualism may shift dynamically in some systems, or alternatively, stabilise on one or the other end of the spectrum. PMID:25329055

  2. Proinflammatory Cytokine Gene Expression by Murine Macrophages in Response to Brugia malayi Wolbachia Surface Protein

    Directory of Open Access Journals (Sweden)

    Chantima Porksakorn

    2007-01-01

    Full Text Available Wolbachia, an endosymbiotic bacterium found in most species of filarial parasites, is thought to play a significant role in inducing innate inflammatory responses in lymphatic filariasis patients. However, the Wolbachia-derived molecules that are recognized by the innate immune system have not yet been identified. In this study, we exposed the murine macrophage cell line RAW 264.7 to a recombinant form of the major Wolbachia surface protein (rWSP to determine if WSP is capable of innately inducing cytokine transcription. Interleukin (IL-1β, IL-6, and tumor necrosis factor (TNF mRNAs were all upregulated by the rWSP stimulation in a dose-dependant manner. TNF transcription peaked at 3 hours, whereas IL-1β and IL-6 transcription peaked at 6 hours post-rWSP exposure. The levels of innate cytokine expression induced by a high-dose (9.0 μg/mL rWSP in the RAW 264.7 cells were comparable to the levels induced by 0.1 μg/mL E. coli-derived lipopolysaccharides. Pretreatment of the rWSP with proteinase-K drastically reduced IL-1β, IL-6, and TNF transcription. However, the proinflammatory response was not inhibited by polymyxin B treatment. These results strongly suggest that the major Wolbachia surface protein molecule WSP is an important inducer of innate immune responses during filarial infections.

  3. The Impact of Wolbachia on Virus Infection in Mosquitoes

    Directory of Open Access Journals (Sweden)

    Karyn N. Johnson

    2015-11-01

    Full Text Available Mosquito-borne viruses such as dengue, West Nile and chikungunya viruses cause significant morbidity and mortality in human populations. Since current methods are not sufficient to control disease occurrence, novel methods to control transmission of arboviruses would be beneficial. Recent studies have shown that virus infection and transmission in insects can be impeded by co-infection with the bacterium Wolbachia pipientis. Wolbachia is a maternally inherited endosymbiont that is commonly found in insects, including a number of mosquito vector species. In Drosophila, Wolbachia mediates antiviral protection against a broad range of RNA viruses. This discovery pointed to a potential strategy to interfere with mosquito transmission of arboviruses by artificially infecting mosquitoes with Wolbachia. This review outlines research on the prevalence of Wolbachia in mosquito vector species and the impact of antiviral effects in both naturally and artificially Wolbachia-infected mosquitoes.

  4. Genetic structure and Wolbachia genotyping in naturally occurring populations of Aedes albopictus across contiguous landscapes of Orissa, India.

    Directory of Open Access Journals (Sweden)

    Biswadeep Das

    Full Text Available BACKGROUND: Aedes albopictus has recently been implicated as a major vector in the emergence of dengue and chikungunya in several parts of India, like Orissa, which is gradually gaining endemicity for arboviral diseases. Ae. albopictus is further known to be naturally infected with Wolbachia (maternally inherited bacterium, which causes cytoplasmic incompatibility (CI in mosquitoes leading to sperm-egg incompatibility inducing the death of embryo. Knowledge of genetic diversity of Ae. albopictus, along with revealing the type of Wolbachia infection in Ae. albopictus is important to explore the genetic and biological characteristics of Ae. albopictus, prior to exploring the uses of CI-based vector control strategies. In this study, we assessed the population genetic structure and the pattern of Wolbachia infection in Ae. albopictus mosquitoes of Orissa. METHODS AND RESULTS: Ae. albopictus mosquitoes were collected from 15 districts representing the four physiographical regions of Orissa from 2010-2012, analyzed for genetic variability at seven microsatellite loci and genotyped for Wolbachia strain detection using wsp gene primers. Most microsatellite markers were successfully amplified and were polymorphic, showing moderate genetic structure among all geographic populations (FST = 0.088. Genetic diversity was high (FST = 0.168 in Coastal Plains populations when compared with other populations, which was also evident from cluster analyses that showed most Coastal Plains populations consisted of a separate genetic cluster. Genotyping analyses revealed that Wolbachia-infected Ae. albopictus field populations of Orissa were mostly superinfected with wAlbA and wAlbB strains. Wolbachia superinfection was more pronounced in the Coastal Plain populations. CONCLUSION: High genetic structure and Wolbachia superinfection, observed in the Coastal Plain populations of Orissa suggested it to be genetically and biologically more unique than other

  5. Cloning and Characterization of a Gene Encoding the Major Surface Protein of the Bacterial Endosymbiont Wolbachia pipientis

    OpenAIRE

    Braig, Henk R.; Zhou, Weiguo; DOBSON, STEPHEN L.; O’Neill, Scott L.

    1998-01-01

    The maternally inherited intracellular symbiont Wolbachia pipientis is well known for inducing a variety of reproductive abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility, parthenogenesis, and the feminization of genetic males in different hosts. The molecular mechanisms by which this fastidious intracellular bacterium causes these reproductive and developmental abnormalities have not yet been determined. In this paper, we r...

  6. Parasitism and mutualism in Wolbachia

    DEFF Research Database (Denmark)

    Bordenstein, Seth R; Paraskevopoulos, Charalampos; Dunning Hotopp, Julie C;

    2009-01-01

    Ecological and evolutionary theories predict that parasitism and mutualism are not fixed endpoints of the symbiotic spectrum. Rather, parasitism and mutualism may be host or environment dependent, induced by the same genetic machinery, and shifted due to selection. These models presume....... Wolbachia is an inherited obligate, intracellular infection of invertebrates containing taxa that act broadly as both parasites in arthropods and mutualists in certain roundworms. Here, we analyze the ancestry of mutualism and parasitism in Wolbachia and the evolutionary trajectory of this variation...... the root lies in the middle of the Wolbachia mutualists and parasites. We show that different inference methods yield different results and high bootstrap support did not equal phylogenetic accuracy. Recombination was rare among this taxonomically diverse data set, indicating that elevated levels...

  7. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems.

    OpenAIRE

    Dobson, Stephen L.; Fox, Charles W; Jiggins, Francis M

    2002-01-01

    Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections ...

  8. Phage WO of Wolbachia: lambda of the endosymbiont world

    OpenAIRE

    Kent, Bethany N.; Bordenstein, Seth R.

    2010-01-01

    The discovery of an extraordinarily high level of mobile elements in the genome of Wolbachia, a widespread arthropod and nematode endosymbiont, suggests that this bacterium could be an excellent model for assessing the evolution and function of mobile DNA in specialized bacteria. Here, we discuss how studies on the temperate bacteriophage WO of Wolbachia have revealed unexpected levels of genomic flux and are challenging previously held views about the clonality of obligate intracellular bact...

  9. Wolbachia Infection and Lepidoptera of Conservation Concern

    OpenAIRE

    Hamm, C. A.; Handley, C. A.; Pike, A; Forister, M. L.; Fordyce, J. A.; Nice, C. C.

    2014-01-01

    Conservation of at-risk species requires multi-faceted and carefully-considered management approaches to be successful. For arthropods, the presence of endosymbiotic bacteria, such as Wolbachia (Rickettsiales: Rickettsiaceae), may complicate management plans and exacerbate the challenges faced by conservation managers. Wolbachia poses a substantial and underappreciated threat to the conservation of arthropods because infection may induce a number of phenotypic effects, most of which are consi...

  10. The effect of Wolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems.

    Science.gov (United States)

    Dobson, Stephen L; Fox, Charles W; Jiggins, Francis M

    2002-03-01

    Obligate, intracellular bacteria of the genus Wolbachia often behave as reproductive parasites by manipulating host reproduction to enhance their vertical transmission. One of these reproductive manipulations, cytoplasmic incompatibility, causes a reduction in egg-hatch rate in crosses between individuals with differing infections. Applied strategies based upon cytoplasmic incompatibility have been proposed for both the suppression and replacement of host populations. As Wolbachia infections occur within a broad range of invertebrates, these strategies are potentially applicable to a variety of medically and economically important insects. Here, we examine the interaction between Wolbachia infection frequency and host population size. We use a model to describe natural invasions of Wolbachia infections, artificial releases of infected hosts and releases of sterile males, as part of a traditional sterile insect technique programme. Model simulations demonstrate the importance of understanding the reproductive rate and intraspecific competition type of the targeted population, showing that releases of sterile or incompatible individuals may cause an undesired increase in the adult number. In addition, the model suggests a novel applied strategy that employs Wolbachia infections to suppress host populations. Releases of Wolbachia-infected hosts can be used to sustain artificially an unstable coexistence of multiple incompatible infections within a host population, allowing the host population size to be reduced, maintained at low levels, or eliminated. PMID:11886634

  11. Dietary cholesterol modulates pathogen blocking by Wolbachia.

    Directory of Open Access Journals (Sweden)

    Eric P Caragata

    Full Text Available The bacterial endosymbiont Wolbachia pipientis protects its hosts from a range of pathogens by limiting their ability to form infections inside the insect. This "pathogen blocking" could be explained by innate immune priming by the symbiont, competition for host-derived resources between pathogens and Wolbachia, or the direct modification of the cell or cellular environment by Wolbachia. Recent comparative work in Drosophila and the mosquito Aedes aegypti has shown that an immune response is not required for pathogen blocking, implying that there must be an additional component to the mechanism. Here we have examined the involvement of cholesterol in pathogen blocking using a system of dietary manipulation in Drosophila melanogaster in combination with challenge by Drosophila C virus (DCV, a common fly pathogen. We observed that flies reared on cholesterol-enriched diets infected with the Wolbachia strains wMelPop and wMelCS exhibited reduced pathogen blocking, with viral-induced mortality occurring 2-5 days earlier than flies reared on Standard diet. This shift toward greater virulence in the presence of cholesterol also corresponded to higher viral copy numbers in the host. Interestingly, an increase in dietary cholesterol did not have an effect on Wolbachia density except in one case, but this did not directly affect the strength of pathogen blocking. Our results indicate that host cholesterol levels are involved with the ability of Wolbachia-infected flies to resist DCV infections, suggesting that cholesterol contributes to the underlying mechanism of pathogen blocking.

  12. Infection of Wolbachia may improve the olfactory response of Drosophila

    Institute of Scientific and Technical Information of China (English)

    PENG Yu; WANG YuFeng

    2009-01-01

    The endosymbiotic bacterium Wolbachia infects various insects and is primarily known for its ability to manipulate host reproduction.Recent investigations reveal that Wolbachia also affects the activity of somatic cells.We here demonstrated by trap method and T-maze that Wolbachia infection had signifi-cant impact on the olfactory response of Drosophila simulans.Wolbachia-infected flies took shorter time to enter the food trap and were more sensitive to odorant in T-maze than those uninfected controls,The time of olfactory response was relative to Wolbachia density in flies.Wolbachia density in 15-day-old flies that were caught in a shorter time (less than 60 min) by food trap was significantly higher than those taken in a longer time (more than 100 min).Quantitative RT-PCR showed that the transcript of an important odorant receptor gene or83b in flies with fast olfactory response was sig-nificantly more than those with slow olfactory response.These results suggest that Wolbachia might Increase olfactory response of flies by regulating the expression of olfaction-related genes in hosts.

  13. A virulent Wolbachia infection decreases the viability of the dengue vector Aedes aegypti during periods of embryonic quiescence.

    Directory of Open Access Journals (Sweden)

    Conor J McMeniman

    Full Text Available A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this virulent Wolbachia infection on several life-history traits of Ae. aegypti. Minor costs of wMelPop-CLA infection for pre-imaginal survivorship, development and adult size were found. However, we discovered that the wMelPop-CLA infection dramatically decreased the viability of desiccated Ae. aegypti eggs over time. Similarly, the reproductive fitness of wMelPop-CLA infected Ae. aegypti females declined with age. These results reveal a general pattern associated with wMelPop-CLA induced pathogenesis in this mosquito species, where host fitness costs increase during aging of both immature and adult life-history stages. In addition to influencing the invasion dynamics of this particular Wolbachia strain, we suggest that the negative impact of wMelPop-CLA on embryonic quiescence may have applied utility as a tool to reduce mosquito population size in regions with pronounced dry seasons or in regions that experience cool winters.

  14. The advancement of researches on using Wolbachia to control the epidemic of dengue fever%利用Wolbachia控制登革热传播的研究进展

    Institute of Scientific and Technical Information of China (English)

    张东京; 詹希美; 郑小英

    2011-01-01

    沃尔巴克体(Wolbachia)是一类广泛存在于节肢动物中的革兰阴性共生菌,该菌对宿主生殖有多种调控能力,可以诱导细胞质不亲和(cytoplasmic incompatibility,CI)、孤雌生殖(parthenogenesis-inducing,PI)、杀雄作用(male-killing)和雌性化(feminizing)等.近来研究发现Wolbachia对登革病毒的繁殖和传播有控制作用.该文对近年来Wolbachia在控制登革热传播过程的应用价值作一综述.%Wolbachia is a gram-negative endosymbiotic bacterium, which widely exists in arthropods.The bacterium has several effects on controlling host's reproduction, that include inducing cytoplasmic incompatibility, parthenogenesis-inducing, male-killing and feminizing. The recent researches discovered that Wolbachia can control the multiplication and transmission of dengue virus. This review summarized the potential application of Wolbachia in controlling the epidemic process of dengue fever.

  15. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management.

    Science.gov (United States)

    Joubert, D Albert; Walker, Thomas; Carrington, Lauren B; De Bruyne, Jyotika Taneja; Kien, Duong Hue T; Hoang, Nhat Le Thanh; Chau, Nguyen Van Vinh; Iturbe-Ormaetxe, Iñaki; Simmons, Cameron P; O'Neill, Scott L

    2016-02-01

    Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV), is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI) when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains. PMID:26891349

  16. Establishment of a Wolbachia Superinfection in Aedes aegypti Mosquitoes as a Potential Approach for Future Resistance Management.

    Directory of Open Access Journals (Sweden)

    D Albert Joubert

    2016-02-01

    Full Text Available Wolbachia pipientis is an endosymbiotic bacterium estimated to chronically infect between 40-75% of all arthropod species. Aedes aegypti, the principle mosquito vector of dengue virus (DENV, is not a natural host of Wolbachia. The transinfection of Wolbachia strains such as wAlbB, wMel and wMelPop-CLA into Ae. aegypti has been shown to significantly reduce the vector competence of this mosquito for a range of human pathogens in the laboratory. This has led to wMel-transinfected Ae. aegypti currently being released in five countries to evaluate its effectiveness to control dengue disease in human populations. Here we describe the generation of a superinfected Ae. aegypti mosquito line simultaneously infected with two avirulent Wolbachia strains, wMel and wAlbB. The line carries a high overall Wolbachia density and tissue localisation of the individual strains is very similar to each respective single infected parental line. The superinfected line induces unidirectional cytoplasmic incompatibility (CI when crossed to each single infected parental line, suggesting that the superinfection would have the capacity to replace either of the single constituent infections already present in a mosquito population. No significant differences in fitness parameters were observed between the superinfected line and the parental lines under the experimental conditions tested. Finally, the superinfected line blocks DENV replication more efficiently than the single wMel strain when challenged with blood meals from viremic dengue patients. These results suggest that the deployment of superinfections could be used to replace single infections and may represent an effective strategy to help manage potential resistance by DENV to field deployments of single infected strains.

  17. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  18. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti.

    Science.gov (United States)

    Aliota, Matthew T; Peinado, Stephen A; Velez, Ivan Dario; Osorio, Jorge E

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  19. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    Science.gov (United States)

    Aliota, Matthew T.; Peinado, Stephen A.; Velez, Ivan Dario; Osorio, Jorge E.

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against other arboviruses. At present, it is unknown whether or not ZIKV can infect, disseminate, and be transmitted by Wolbachia-infected Ae. aegypti. Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for ZIKV. These results support the use of Wolbachia biocontrol as a multivalent strategy against Ae. aegypti-transmitted viruses. PMID:27364935

  20. Isolation and characterization of a potential transposable element from Wolbachia

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Wolbachia are a group of Rickettsia-like bacteria which parasitize the cells of a wide range of anthropoid. These microorganisms are associated with the reproductive and developmental abnormalities io their hosts. To study the molecular mechanism underlying such phenomena, we analyzed the genomic difference between Wolbachia with different cytoplasmic incompatibility (CI) phenotype using representational difference analysis method. A potential transposable element, which exists in the strong CI-inducing strain wRi, was isolated. This element was designated as Wolbachia insertion sequence element (WISE).

  1. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line

    OpenAIRE

    Baldridge, Gerald D; Baldridge, Abigail S.; Witthuhn, Bruce A.; Higgins, LeeAnn; Markowski, Todd W.; FALLON, ANN M.

    2014-01-01

    Wolbachia pipientis a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein “footprint” ...

  2. Finding Wolbachia in Filarial larvae and Culicidae Mosquitoes in Upper Egypt Governorate.

    Science.gov (United States)

    Dyab, Ahmed K; Galal, Lamia A; Mahmoud, Abeer E; Mokhtar, Yasser

    2016-06-01

    Wolbachia is an obligatory intracellular endosymbiotic bacterium, present in over 20% of all insects altering insect reproductive capabilities and in a wide range of filarial worms which is essential for worm survival and reproduction. In Egypt, no available data were found about Wolbachia searching for it in either mosquitoes or filarial worms. Thus, we aimed to identify the possible concurrent presence of Wolbachia within different mosquitoes and filarial parasites, in Assiut Governorate, Egypt using multiplex PCR. Initially, 6 pools were detected positive for Wolbachia by single PCR. The simultaneous detection of Wolbachia and filarial parasites (Wuchereria bancrofti, Dirofilaria immitis, and Dirofilaria repens) by multiplex PCR was spotted in 5 out of 6 pools, with an overall estimated rate of infection (ERI) of 0.24%. Unexpectedly, the highest ERI (0.53%) was for Anopheles pharoensis with related Wolbachia and W. bancrofti, followed by Aedes (0.42%) and Culex (0.26%). We also observed that Wolbachia altered Culex spp. as a primary vector for W. bancrofti to be replaced by Anopheles sp. Wolbachia within filaria-infected mosquitoes in our locality gives a hope to use bacteria as a new control trend simultaneously targeting the vector and filarial parasites. PMID:27417080

  3. Differentially expressed profiles in the larval testes of Wolbachia infected and uninfected Drosophila

    Directory of Open Access Journals (Sweden)

    Zheng Ya

    2011-12-01

    Full Text Available Abstract Background Wolbachia are endosymbiotic bacteria that are frequently found in arthropods and nematodes. These maternally inherited bacteria manipulate host reproduction by several mechanisms including cytoplasmic incompatibility (CI. CI is the most common phenotype induced by Wolbachia and results in the developmental arrest of embryos derived from crosses between Wolbachia-infected males and uninfected females. Although the molecular mechanisms of CI are currently unknown, several studies suggest that host sperm is modified by Wolbachia during spermatogenesis. Results We compared the gene expression of Drosophila melanogaster larval testes with and without the wMel strain of Wolbachia to identify candidate genes that could be involved in the interaction between Wolbachia and the insect host. Microarray, quantitative RT-PCR and in situ hybridization analyses were carried out on D. melanogaster larval testes to determine the effect of Wolbachia infection on host gene expression. A total of 296 genes were identified by microarray analysis to have at least a 1.5 fold change [q-value Wolbachia-infected flies to uninfected flies, 167 genes were up-regulated and 129 genes down-regulated. Differential expression of genes related to metabolism, immunity, reproduction and other functions were observed. Quantitative RT-PCR (qRT-PCR confirmed 12 genes are differentially expressed in the testes of the 3rd instar larvae of Wolbachia-infected and uninfected flies. In situ hybridization demonstrated that Wolbachia infection changes the expression of several genes putatively associated with spermatogenesis including JH induced protein-26 and Mst84Db, or involved in immune (kenny or metabolism (CG4988-RA. Conclusions Wolbachia change the gene expression of 296 genes in the larval testes of D. melanogaster including genes related to metabolism, immunity and reproduction. Interestingly, most of the genes putatively involved in immunity were up-regulated in

  4. Wolbachia Infection in a Natural Parasitoid Wasp Population

    Science.gov (United States)

    Duplouy, Anne; Couchoux, Christelle; Hanski, Ilkka; van Nouhuys, Saskya

    2015-01-01

    The maternally transmitted bacterium Wolbachia pipientis is well known for spreading and persisting in insect populations through manipulation of the fitness of its host. Here, we identify three new Wolbachia pipientis strains, wHho, wHho2 and wHho3, infecting Hyposoter horticola, a specialist wasp parasitoid of the Glanville fritillary butterfly. The wHho strain (ST435) infects about 50% of the individuals in the Åland islands in Finland, with a different infection rate in the two mitochondrial (COI) haplotypes of the wasp. The vertical transmission rate of Wolbachia is imperfect, and lower in the haplotype with lower infection rate, suggesting a fitness trade-off. We found no association of the wHho infection with fecundity, longevity or dispersal ability of the parasitoid host. However, preliminary results convey spatial associations between Wolbachia infection, host mitochondrial haplotype and parasitism of H. horticola by its hyperparasitoid, Mesochorus cf. stigmaticus. We discuss the possibility that Wolbachia infection protects H. horticola against hyperparasitism. PMID:26244782

  5. Wolbachia filarial interactions.

    Science.gov (United States)

    Taylor, Mark J; Voronin, Denis; Johnston, Kelly L; Ford, Louise

    2013-04-01

    Wolbachia pipientis is a widespread intracellular bacterial symbiont of arthropods and is common in insects. One of their more exotic and unexpected hosts is the filarial nematodes, notable for the parasites responsible for onchocerciasis (river blindness), lymphatic filariasis (elephantiasis) and dirofilariasis (heartworm). Wolbachia are only present in a subgroup of the filarial nematodes and do not extend to other groups of nematodes either parasitic or free-living. In the medically and veterinary important species that host Wolbachia, the symbiont has become an essential partner to key biological processes in the life of the nematode to the point where antibiotic elimination of the bacteria leads to a potent and effective anti-filarial drug treatment. We review the cellular and molecular basis of Wolbachia filarial interactions and highlight the key processes provided by the endosymbiont upon which the nematodes have become entirely dependent. This dependency is primarily restricted to periods of the lifecycle with heavy metabolic demands including growth and development of larval stages and embryogenesis in the adult female. Also, the longevity of filarial parasites is compromised following depletion of the symbiont, which for the first time has delivered a safe and effective treatment to kill adult parasites with antibiotics. PMID:23210448

  6. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus.

    OpenAIRE

    Harwood-Sears, V; Gordon, A S

    1990-01-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds which complex and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuBP2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experi...

  7. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  8. A Virulent Wolbachia Infection Decreases the Viability of the Dengue Vector Aedes aegypti during Periods of Embryonic Quiescence

    OpenAIRE

    McMeniman, Conor J; O' Neill, Scott L

    2010-01-01

    A new approach for dengue control has been proposed that relies on life-shortening strains of the obligate intracellular bacterium Wolbachia pipientis to modify mosquito population age structure and reduce pathogen transmission. Previously we reported the stable transinfection of the major dengue vector Aedes aegypti with a life-shortening Wolbachia strain (wMelPop-CLA) from the vinegar fly Drosophila melanogaster. Here, we report a further characterization of the phenotypic effects of this v...

  9. Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations.

    Science.gov (United States)

    Yeap, H L; Rašić, G; Endersby-Harshman, N M; Lee, S F; Arguni, E; Le Nguyen, H; Hoffmann, A A

    2016-03-01

    Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations. PMID:26531251

  10. Assessing the epidemiological effect of wolbachia for dengue control.

    Science.gov (United States)

    Lambrechts, Louis; Ferguson, Neil M; Harris, Eva; Holmes, Edward C; McGraw, Elizabeth A; O'Neill, Scott L; Ooi, Eng E; Ritchie, Scott A; Ryan, Peter A; Scott, Thomas W; Simmons, Cameron P; Weaver, Scott C

    2015-07-01

    Dengue viruses cause more human morbidity and mortality than any other arthropod-borne virus. Dengue prevention relies mainly on vector control; however, the failure of traditional methods has promoted the development of novel entomological approaches. Although use of the intracellular bacterium wolbachia to control mosquito populations was proposed 50 years ago, only in the past decade has its use as a potential agent of dengue control gained substantial interest. Here, we review evidence that supports a practical approach for dengue reduction through field release of wolbachia-infected mosquitoes and discuss the additional studies that have to be done before the strategy can be validated and implemented. A crucial next step is to assess the efficacy of wolbachia in reducing dengue virus transmission. We argue that a cluster randomised trial is at this time premature because choice of wolbachia strain for release and deployment strategies are still being optimised. We therefore present a pragmatic approach to acquiring preliminary evidence of efficacy through various complementary methods including a prospective cohort study, a geographical cluster investigation, virus phylogenetic analysis, virus surveillance in mosquitoes, and vector competence assays. This multipronged approach could provide valuable intermediate evidence of efficacy to justify a future cluster randomised trial. PMID:26051887

  11. Human filarial Wolbachia lipopeptide directly activates human neutrophils in vitro.

    Science.gov (United States)

    Tamarozzi, F; Wright, H L; Johnston, K L; Edwards, S W; Turner, J D; Taylor, M J

    2014-10-01

    The host inflammatory response to the Onchocerca volvulus endosymbiont, Wolbachia, is a major contributing factor in the development of chronic pathology in humans (onchocerciasis/river blindness). Recently, the toll-like pattern recognition receptor motif of the major inflammatory ligands of filarial Wolbachia, membrane-associated diacylated lipoproteins, was functionally defined in murine models of pathology, including mediation of neutrophil recruitment to the cornea. However, the extent to which human neutrophils can be activated in response to this Wolbachia pattern recognition motif is not known. Therefore, the responses of purified peripheral blood human neutrophils to a synthetic N-terminal diacylated lipopeptide (WoLP) of filarial Wolbachia peptidoglycan-associated lipoprotein (PAL) were characterized. WoLP exposure led to a dose-dependent activation of healthy, human neutrophils that included gross morphological alterations and modulation of surface expressed integrins involved in tethering, rolling and extravasation. WoLP exposure induced chemotaxis but not chemokinesis of neutrophils, and secretion of the major neutrophil chemokine, interleukin 8. WoLP also induced and primed the respiratory burst, and enhanced neutrophil survival by delay of apoptosis. These results indicate that the major inflammatory motif of filarial Wolbachia lipoproteins directly activates human neutrophils in vitro and promotes a molecular pathway by which human neutrophils are recruited to sites of Onchocerca parasitism. PMID:24909063

  12. Wolbachia-associated bacterial protection in the mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    Full Text Available BACKGROUND: Wolbachia infections confer protection for their insect hosts against a range of pathogens including bacteria, viruses, nematodes and the malaria parasite. A single mechanism that might explain this broad-based pathogen protection is immune priming, in which the presence of the symbiont upregulates the basal immune response, preparing the insect to defend against subsequent pathogen infection. A study that compared natural Wolbachia infections in Drosophila melanogaster with the mosquito vector Aedes aegypti artificially transinfected with the same strains has suggested that innate immune priming may only occur in recent host-Wolbachia associations. This same study also revealed that while immune priming may play a role in viral protection it cannot explain the entirety of the effect. METHODOLOGY/FINDINGS: Here we assess whether the level of innate immune priming induced by different Wolbachia strains in A. aegypti is correlated with the degree of protection conferred against bacterial pathogens. We show that Wolbachia strains wMel and wMelPop, currently being tested for field release for dengue biocontrol, differ in their protective abilities. The wMelPop strain provides stronger, more broad-based protection than wMel, and this is likely explained by both the higher induction of immune gene expression and the strain-specific activation of particular genes. We also show that Wolbachia densities themselves decline during pathogen infection, likely as a result of the immune induction. CONCLUSIONS/SIGNIFICANCE: This work shows a correlation between innate immune priming and bacterial protection phenotypes. The ability of the Toll pathway, melanisation and antimicrobial peptides to enhance viral protection or to provide the basis of malaria protection should be further explored in the context of this two-strain comparison. This work raises the questions of whether Wolbachia may improve the ability of wild mosquitoes to survive pathogen

  13. Modeling the indirect effect of Wolbachia on the infection dynamics of horizontally transmitted viruses.

    Science.gov (United States)

    Strauß, Jakob F; Telschow, Arndt

    2015-01-01

    Intracellular bacteria of the genus Wolbachia are widely distributed in arthropods. There is growing empirical evidence that Wolbachia directly interacts with viruses and other parasites inside the arthropod host, sometimes resulting in low or no pathogen replication. Previous theoretical studies showed that this direct effect of Wolbachia can result in a reduced virus prevalence (within the population), suggesting that Wolbachia could be used in the biological control of vector-borne diseases (e.g., dengue fever). However, Wolbachia might also indirectly affect virus dynamics because Wolbachia-induced reproductive phenotypes (cytoplasmic incompatibility or male killing) increase the larval mortality of hosts and thus alter the age structure of populations. We investigated this indirect effect using mathematical models with overlapping generations, and found the results to depend strongly on the host's life history. In general, the indirect effect can result in two different outcomes: (1) reduced virus prevalence and virus invasion ability, and (2) increased virus prevalence and virus invasion ability. The former occurs for host species with larval competition and undercompensation, the latter for hosts with either adult competition or larval competition and overcompensation. These findings suggest that the effect of Wolbachia on a specific virus is sensitive to the host's life history. We discuss the results with respect to biocontrol programs using Wolbachia. PMID:25972858

  14. Effects on male fitness of removing Wolbachia infections from the mosquito Aedes albopictus.

    Science.gov (United States)

    Calvitti, M; Moretti, R; Porretta, D; Bellini, R; Urbanelli, S

    2009-06-01

    Cytoplasmic incompatibility (CI) induced by maternally inherited Wolbachia bacteria is a potential tool for the suppression of insect pest species with appropriate patterns of infection. The Asian tiger mosquito Aedes albopictus (Skuse) (Diptera: Culicidae) is known to be infected by two strains of Wolbachia pipientis Hertig (Rickettsiales: Rickettsiaceae), wAlb A and wAlb B, throughout its geographical distribution. This infection pattern theoretically restricts the application of CI-based control strategies. However, Wolbachia can be horizontally transferred using embryonic microinjection to generate incompatible transfected lines harbouring a single new strain of Wolbachia. In order to assess the feasibility of this approach, the effects of Wolbachia removal on mosquito fitness need to be clearly evaluated as the removal of natural superinfection is an inescapable step of this approach. Previous research has shown that uninfected females, produced by antibiotic treatment, showed a decrease in fitness compared with those infected with Wolbachia. In this study, the effect of Wolbachia removal on male fitness was investigated. Longevity and reproductive potential (mating competitiveness and sperm capacity) were assessed in both laboratory cages and greenhouses. No differences were observed between uninfected and infected males with respect to longevity, mating rate, sperm capacity and mating competitiveness in either laboratory conditions or greenhouses. The preservation of fitness in males of Ae. albopictus deprived of natural Wolbachia infection is discussed in relation to the development of incompatible insect technique suppression strategies. Finally, the potential application of aposymbiotic males in mark-release-recapture studies is suggested. PMID:19292821

  15. Modeling the indirect effect of Wolbachia on the infection dynamics of horizontally transmitted viruses.

    Directory of Open Access Journals (Sweden)

    Jakob Friedrich Strauß

    2015-04-01

    Full Text Available Intracellular bacteria of the genus Wolbachia are widely distributed in arthropods. There is growing empirical evidence that Wolbachia directly interacts with viruses and other parasites inside the arthropod host, sometimes resulting in low or no pathogen replication. Previous theoretical studies showed that this direct effect of Wolbachia can result in a reduced virus prevalence (within the population, suggesting that Wolbachia could be used in the biological control of vector-borne diseases (e.g., dengue fever. However, Wolbachia might also indirectly affect virus dynamics because Wolbachia-induced reproductive phenotypes (cytoplasmic incompatibility or male killing increase the larval mortality of hosts and thus alter the age structure of populations. We investigated this indirect effect using mathematical models with overlapping generations, and found the results to depend strongly on the host's life history. In general, the indirect effect can result in two different outcomes: (1 reduced virus prevalence and virus invasion ability, and (2 increased virus prevalence and virus invasion ability. The former occurs for host species with larval competition and undercompensation, the latter for hosts with either adult competition or larval competition and overcompensation. These findings suggest that the effect of Wolbachia on a specific virus is sensitive to the host's life history. We discuss the results with respect to biocontrol programs using Wolbachia.

  16. Proteomic profiling of a robust Wolbachia infection in an Aedes albopictus mosquito cell line.

    Science.gov (United States)

    Baldridge, Gerald D; Baldridge, Abigail S; Witthuhn, Bruce A; Higgins, LeeAnn; Markowski, Todd W; Fallon, Ann M

    2014-11-01

    Wolbachia pipientis, a widespread vertically transmitted intracellular bacterium, provides a tool for insect control through manipulation of host-microbe interactions. We report proteomic characterization of wStr, a Wolbachia strain associated with a strong cytoplasmic incompatibility phenotype in its native host, Laodelphax striatellus. In the Aedes albopictus C/wStr1 mosquito cell line, wStr maintains a robust, persistent infection. MS/MS analyses of gel bands revealed a protein 'footprint' dominated by Wolbachia-encoded chaperones, stress response and cell membrane proteins, including the surface antigen WspA, a peptidoglycan-associated lipoprotein and a 73 kDa outer membrane protein. Functional classifications and estimated abundance levels of 790 identified proteins suggested that expression, stabilization and secretion of proteins predominate over bacterial genome replication and cell division. High relative abundances of cysteine desulphurase, serine/glycine hydroxymethyl transferase, and components of the α-ketoglutarate dehydrogenase complex in conjunction with above average abundances of glutamate dehydrogenase and proline utilization protein A support Wolbachia genome-based predictions for amino acid metabolism as a primary energy source. wStr expresses 15 Vir proteins of a Type IV secretion system and its transcriptional regulator. Proteomic characterization of a robust insect-associated Wolbachia strain provides baseline information that will inform further development of in vitro protocols for Wolbachia manipulation. PMID:25155417

  17. Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool.

    Science.gov (United States)

    Calvitti, Maurizio; Marini, Francesca; Desiderio, Angiola; Puggioli, Arianna; Moretti, Riccardo

    2015-01-01

    The mosquito Aedes albopictusi is a competent vector of harmful human pathogens, including viruses causing dengue and chikungunya. Cytoplasmic incompatibility (CI) induced by endosymbiotic Wolbachia can be used to produce functionally sterile males that can be released in the field as a suppression tool against this mosquito. Because the available sexing methods are not efficient enough to avoid unintentional release of a few transinfected females, we assessed the CI pattern in crosses between wPip Wolbachia-transinfected (ARwP) females and wild-type males of Ae. albopictus in this study. Quantitative polymerase chain reaction was used to monitor the titer of the Wolbachia strains that naturally infect Ae. albopictus, that is, wAlbA and wAlbB, in age-controlled males and females. Data were coupled with incompatibility level detected when the above-mentioned males were crossed with ARwP females. Wolbachia infection titer was also monitored in samples of wild caught males. Incompatibility level was positively correlated only with wAlbA density. Crosses between wild-type males having very low wAlbA density (incompatible insect technique. Various alternative strategies have been discussed to prevent this risk and to exploit Wolbachia as a tool to control Ae. albopictus. PMID:25812130

  18. First record of Wolbachia in South American terrestrial isopods: prevalence and diversity in two species of Balloniscus (Crustacea, Oniscidea

    Directory of Open Access Journals (Sweden)

    Mauricio Pereira Almerão

    2012-01-01

    Full Text Available Wolbachia are endosymbiotic bacteria that commonly infect arthropods, inducing certain phenotypes in their hosts. So far, no endemic South American species of terrestrial isopods have been investigated for Wolbachia infection. In this work, populations from two species of Balloniscus (B. sellowii and B. glaber were studied through a diagnostic PCR assay. Fifteen new Wolbachia 16S rDNA sequences were detected. Wolbachia found in both species were generally specific to one population, and five populations hosted two different Wolbachia 16S rDNA sequences. Prevalence was higher in B. glaber than in B. sellowii, but uninfected populations could be found in both species. Wolbachia strains from B. sellowii had a higher genetic variation than those isolated from B. glaber. AMOVA analyses showed that most of the genetic variance was distributed among populations of each species rather than between species, and the phylogenetic analysis suggested that Wolbachia strains from Balloniscus cluster within Supergroup B, but do not form a single monophyletic clade, suggesting multiple infections for this group. Our results highlight the importance of studying Wolbachia prevalence and genetic diversity in Neotropical species and suggest that South American arthropods may harbor a great number of diverse strains, providing an interesting model to investigate the evolution of Wolbachia and its hosts.

  19. Wolbachia endosymbiont infection in two Indian butterflies and female-biased sex ratio in the Red Pierrot, Talicada nyseus

    Indian Academy of Sciences (India)

    Kunal Ankola; Dorothea Brueckner; H P Puttaraju

    2011-12-01

    The maternally inherited obligate bacteria Wolbachia is known to infect various lepidopteran insects. However, so far only a few butterfly species harbouring this bacterium have been thoroughly studied. The current study aims to identify the infection status of these bacteria in some of the commonly found butterfly species in India. A total of nine butterfly species belonging to four different families were screened using PCR with Wolbachia-specific wsp and ftsZ primers. The presence of the Wolbachia super group ‘B’ in the butterflies Red Pierrot, Talicada nyseus (Guerin) (Lepidoptera: Lycaenidae) and Blue Mormon, Papilio polymnestor Cramer (Papilionidae), is documented for the first time in India. The study also gives an account on the lifetime fecundity and female-biased sex ratio in T. nyseus, suggesting a putative role for Wolbachia in the observed female-biased sex ratio distortion.

  20. From lab to field: the influence of urban landscapes on the invasive potential of Wolbachia in Brazilian Aedes aegypti mosquitoes.

    Directory of Open Access Journals (Sweden)

    Heverton Leandro Carneiro Dutra

    2015-04-01

    Full Text Available The symbiotic bacterium Wolbachia is currently being trialled as a biocontrol agent in several countries to reduce dengue transmission. Wolbachia can invade and spread to infect all individuals within wild mosquito populations, but requires a high rate of maternal transmission, strong cytoplasmic incompatibility and low fitness costs in the host in order to do so. Additionally, extensive differences in climate, field-release protocols, urbanization level and human density amongst the sites where this bacterium has been deployed have limited comparison and analysis of Wolbachia's invasive potential.We examined key phenotypic effects of the wMel Wolbachia strain in laboratory Aedes aegypti mosquitoes with a Brazilian genetic background to characterize its invasive potential. We show that the wMel strain causes strong cytoplasmic incompatibility, a high rate of maternal transmission and has no evident detrimental effect on host fecundity or fertility. Next, to understand the effects of different urban landscapes on the likelihood of mosquito survival, we performed mark-release-recapture experiments using Wolbachia-uninfected Brazilian mosquitoes in two areas of Rio de Janeiro where Wolbachia will be deployed in the future. We characterized the mosquito populations in relation to the socio-demographic conditions at these sites, and at three other future release areas. We then constructed mathematical models using both the laboratory and field data, and used these to describe the influence of urban environmental conditions on the likelihood that the Wolbachia infection frequency could reach 100% following mosquito release. We predict successful invasion at all five field sites, however the conditions by which this occurs vary greatly between sites, and are strongly influenced by the size of the local mosquito population.Through analysis of laboratory, field and mathematical data, we show that the wMel strain of Wolbachia possesses the characteristics

  1. Wolbachia age-sex-specific density in Aedes albopictus: a host evolutionary response to cytoplasmic incompatibility?

    Directory of Open Access Journals (Sweden)

    Pablo Tortosa

    Full Text Available BACKGROUND: Wolbachia bacteria have invaded many arthropod species by inducing Cytoplasmic Incompatibility (CI. These symbionts represent fascinating objects of study for evolutionary biologists, but also powerful potential biocontrol agents. Here, we assess the density dynamics of Wolbachia infections in males and females of the mosquito Aedes albopitcus, an important vector of human pathogens, and interpret the results within an evolutionary framework. METHODOLOGY/PRINCIPAL FINDINGS: Wolbachia densities were measured in natural populations and in age controlled mosquitoes using quantitative PCR. We show that the density dynamics of the wAlbA Wolbachia strain infecting Aedes albopictus drastically differ between males and females, with a very rapid decay of infection in males only. CONCLUSIONS/SIGNIFICANCE: Theory predicts that Wolbachia and its hosts should cooperate to improve the transmission of infection to offspring, because only infected eggs are protected from the effects of CI. However, incompatible matings effectively lower the fertility of infected males, so that selection acting on the host genome should tend to reduce the expression of CI in males, for example, by reducing infection density in males before sexual maturation. The rapid decay of one Wolbachia infection in Aedes albopictus males, but not in females, is consistent with this prediction. We suggest that the commonly observed reduction in CI intensity with male age reflects a similar evolutionary process. Our results also highlight the importance of monitoring infection density dynamics in both males and females to assess the efficiency of Wolbachia-based control strategies.

  2. Wolbachia Endobacteria in Natural Populations of Culex pipiens of Iran and its Phylogenetic Congruence

    Directory of Open Access Journals (Sweden)

    Mohsen Karami

    2016-01-01

    Full Text Available Background: Wolbachia are common intracellular bacteria that infect different groups of arthropods including mos­quitoes. These bacteria modify host biology and may induce feminization, parthenogenesis, male killing and cyto­plasmic incompatibility (CI. Recently Wolbachia is being nominated as a bio-agent and paratransgenic candidate to control mosquito borne diseases.Methods: Here we report the results of a survey for presence, frequency, and phylogenetic congruence of these en­dosymbiont bacteria in Culex pipiens populations in Northern, Central, and Southern parts of Iran using nested-PCR amplification of wsp gene.Results: Wolbachia DNA were found in 227 (87.3% out of 260 wild-caught mosquitoes. The rate of infection in adult females ranged from 61.5% to 100%, while in males were from 80% to 100%. The Blast search and phyloge­netic analysis of the wsp gene sequence revealed that the Wolbachia strain from Iranian Cx. pipiens was identical to the Wolbachia strains of supergroup B previously reported in members of the Cx. pipiens complex. They had also identical sequence homology with the Wolbachia strains from a group of distinct arthropods including lepidopteran, wasps, flies, damselfly, thrips, and mites from remote geographical areas of the world.Conclusion: It is suggested that Wolbachia strains horizontally transfer between unrelated host organisms over evo­lutionary time. Also results of this study indicates that Wolbachia infections were highly prevalent infecting all Cx. pipiens populations throughout the country, however further study needs to define Wolbachia inter-population repro­ductive incompatibility pattern and its usefulness as a bio-agent control measure.

  3. High virulence of Wolbachia after host switching: when autophagy hurts.

    Directory of Open Access Journals (Sweden)

    Winka Le Clec'h

    Full Text Available Wolbachia are widespread endosymbionts found in a large variety of arthropods. While these bacteria are generally transmitted vertically and exhibit weak virulence in their native hosts, a growing number of studies suggests that horizontal transfers of Wolbachia to new host species also occur frequently in nature. In transfer situations, virulence variations can be predicted since hosts and symbionts are not adapted to each other. Here, we describe a situation where a Wolbachia strain (wVulC becomes a pathogen when transfected from its native terrestrial isopod host species (Armadillidium vulgare to another species (Porcellio d. dilatatus. Such transfer of wVulC kills all recipient animals within 75 days. Before death, animals suffer symptoms such as growth slowdown and nervous system disorders. Neither those symptoms nor mortalities were observed after injection of wVulC into its native host A. vulgare. Analyses of wVulC's densities in main organs including Central Nervous System (CNS of both naturally infected A. vulgare and transfected P. d. dilatatus and A. vulgare individuals revealed a similar pattern of host colonization suggesting an overall similar resistance of both host species towards this bacterium. However, for only P. d. dilatatus, we observed drastic accumulations of autophagic vesicles and vacuoles in the nerve cells and adipocytes of the CNS from individuals infected by wVulC. The symptoms and mortalities could therefore be explained by this huge autophagic response against wVulC in P. d. dilatatus cells that is not triggered in A. vulgare. Our results show that Wolbachia (wVulC can lead to a pathogenic interaction when transferred horizontally into species that are phylogenetically close to their native hosts. This change in virulence likely results from the autophagic response of the host, strongly altering its tolerance to the symbiont and turning it into a deadly pathogen.

  4. [How to fight parasitic infectious diseases with bacteria. The case of Wolbachia pipientis].

    Science.gov (United States)

    March-Rosselló, Gabriel Alberto; Eiros-Bouza, José María

    2014-01-01

    In Nature, no individual can live in isolation; hence, living organisms are forced to interact with each other. This necessity has led many organisms to establish heterogeneous relations to enhance their ability to adapt to the environment, thus acquiring evolutionary advantages. These relationships are sometimes so intense, that on the long term the organisms may lose their individual identity. An example of these associations is the endosymbiotic ones, where eukaryote organisms generally harbor different prokaryote organisms. The endosymbiotic bacterium Wolbachia pipientis is a species described by Hertig and Wolbach in 1924. This microorganism can be isolated in a large variety of eukaryote organisms, with which it maintains different links. Until now, this species has only been described with 11 serogroups numbered from A to K within the Wolbachia genus. This work is intended to illustrate the relationship of Wolbachia pipientis with human pathogenic filaria and with arthropods, as well as to describe the implications of this bacterium in the treatment of filariasis. Finally, this work tries to describe recent studies that have targeted the use of artificially-created Wolbachia pipientis virulent strains that, once inoculated in infectious diseases-transmitting vectors, develop negative effects within them in order to, in this way, erradicate mosquito-transmitted infectious diseases for which no treatment is available at the moment or the prevention of its transmissibility has not been achieved. PMID:25354059

  5. Temperature alters Plasmodium blocking by Wolbachia

    Science.gov (United States)

    Murdock, Courtney C.; Blanford, Simon; Hughes, Grant L.; Rasgon, Jason L.; Thomas, Matthew B.

    2014-02-01

    Very recently, the Asian malaria vector (Anopheles stephensi) was stably transinfected with the wAlbB strain of Wolbachia, inducing refractoriness to the human malaria parasite Plasmodium falciparum. However, conditions in the field can differ substantially from those in the laboratory. We use the rodent malaria P. yoelii, and somatically transinfected An. stephensi as a model system to investigate whether the transmission blocking potential of wAlbB is likely to be robust across different thermal environments. wAlbB reduced malaria parasite prevalence and oocyst intensity at 28°C. At 24°C there was no effect on prevalence but a marked increase in oocyst intensity. At 20°C, wAlbB had no effect on prevalence or intensity. Additionally, we identified a novel effect of wAlbB that resulted in reduced sporozoite development across temperatures, counterbalancing the oocyst enhancement at 24°C. Our results demonstrate complex effects of temperature on the Wolbachia-malaria interaction, and suggest the impacts of transinfection might vary across diverse environments.

  6. Wolbachia symbiosis and insect immune response

    Institute of Scientific and Technical Information of China (English)

    Stefanos Siozios; Panagiotis Sapountzis; Panagiotis Ioannidis; Kostas Bourtzis

    2008-01-01

    Bacterial intracellular symbiosis is very common in insects, having significant consequences in promoting the evolution of life and biodiversity. The bacterial group that has recently attracted particular attention is Wolbachia pipientis which probably represents the most ubiquitous endosymbiont on the planet. W. pipientis is a Gram-negative obligatory intracellular and maternally transmitted α-proteobacterium, that is able to establish symbiotic associations with arthropods and nematodes. In arthropods, Wolbachia pipientis infections have been described in Arachnida, in Isopoda and mainly in Insecta. They have been reported in almost all major insect orders including Diptera, Coleoptera, Hemiptera,Hymenoptera, Orthoptera and Lepidoptera. To enhance its transmission, W. pipientis can manipulate host reproduction by inducing parthenogenesis, feminization, male killing and cytoplasmic incompatibility. Several polymerase chain reaction surveys have indicated that up to 70% of all insect species may be infected with W. pipientis. How does W. pipientis manage to get established in diverse insect host species? How is this intracellular bacterial symbiont species so successful in escaping the host immune response? The present review presents recent advances and ongoing scientific efforts in the field. The current body of knowledge in the field is summarized, revelations from the available genomic information are presented and as yet unanswered questions are discussed in an attempt to present a comprehensive picture of the unique ability of W. pipientis to establish symbiosis and to manipulate reproduction while evading the host's immune system.

  7. The modulation of the symbiont/host interaction between Wolbachia pipientis and Aedes fluviatilis embryos by glycogen metabolism.

    Directory of Open Access Journals (Sweden)

    Mariana da Rocha Fernandes

    Full Text Available Wolbachia pipientis, a maternally transmitted bacterium that colonizes arthropods, may affect the general aspects of insect physiology, particularly reproduction. Wolbachia is a natural endosymbiont of Aedes fluviatilis, whose effects in embryogenesis and reproduction have not been addressed so far. In this context, we investigated the correlation between glucose metabolism and morphological alterations during A. fluviatilis embryo development in Wolbachia-positive (W+ and Wolbachia-negative (W- mosquito strains. While both strains do not display significant morphological and larval hatching differences, larger differences were observed in hexokinase activity and glycogen contents during early and mid-stages of embryogenesis, respectively. To investigate if glycogen would be required for parasite-host interaction, we reduced Glycogen Synthase Kinase-3 (GSK-3 levels in adult females and their eggs by RNAi. GSK-3 knock-down leads to embryonic lethality, lower levels of glycogen and total protein and Wolbachia reduction. Therefore, our results suggest that the relationship between A. fluviatilis and Wolbachia may be modulated by glycogen metabolism.

  8. Survey of Endosymbionts in the Diaphorina citri Metagenome and Assembly of a Wolbachia wDi Draft Genome

    Science.gov (United States)

    Saha, Surya; Hunter, Wayne B.; Reese, Justin; Morgan, J. Kent; Marutani-Hert, Mizuri; Huang, Hong; Lindeberg, Magdalen

    2012-01-01

    Diaphorina citri (Hemiptera: Psyllidae), the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China. PMID:23166822

  9. Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome.

    Directory of Open Access Journals (Sweden)

    Surya Saha

    Full Text Available Diaphorina citri (Hemiptera: Psyllidae, the Asian citrus psyllid, is the insect vector of Ca. Liberibacter asiaticus, the causal agent of citrus greening disease. Sequencing of the D. citri metagenome has been initiated to gain better understanding of the biology of this organism and the potential roles of its bacterial endosymbionts. To corroborate candidate endosymbionts previously identified by rDNA amplification, raw reads from the D. citri metagenome sequence were mapped to reference genome sequences. Results of the read mapping provided the most support for Wolbachia and an enteric bacterium most similar to Salmonella. Wolbachia-derived reads were extracted using the complete genome sequences for four Wolbachia strains. Reads were assembled into a draft genome sequence, and the annotation assessed for the presence of features potentially involved in host interaction. Genome alignment with the complete sequences reveals membership of Wolbachia wDi in supergroup B, further supported by phylogenetic analysis of FtsZ. FtsZ and Wsp phylogenies additionally indicate that the Wolbachia strain in the Florida D. citri isolate falls into a sub-clade of supergroup B, distinct from Wolbachia present in Chinese D. citri isolates, supporting the hypothesis that the D. citri introduced into Florida did not originate from China.

  10. Absence of the Filarial Endosymbiont Wolbachia in Seal Heartworm (Acanthocheilonema spirocauda) but Evidence of Ancient Lateral Gene Transfer.

    Science.gov (United States)

    Keroack, Caroline D; Wurster, Jenna I; Decker, Caroline G; Williams, Kalani M; Slatko, Barton E; Foster, Jeremy M; Williams, Steven A

    2016-06-01

    The symbiotic relationship of Wolbachia spp. was first observed in insects and subsequently in many parasitic filarial nematodes. This bacterium is believed to provide metabolic and developmental assistance to filarial parasitic nematodes, although the exact nature of this relationship remains to be fully elucidated. While Wolbachia is present in most filarial nematodes in the family Onchocercidae, it is absent in several disparate species such as the human parasite Loa loa . All tested members of the genus Acanthocheilonema, such as Acanthocheilonema viteae, have been shown to lack Wolbachia. Consistent with this, we show that Wolbachia is absent from the seal heartworm (Acanthocheilonema spirocauda), but lateral gene transfer (LGT) of DNA sequences between Wolbachia and A. spirocauda has occurred, indicating a past evolutionary association. Seal heartworm is an important pathogen of phocid seals and understanding its basic biology is essential for conservation of the host. The findings presented here may allow for the development of future treatments or diagnostics for the disease and also aid in clarification of the complicated nematode-Wolbachia relationship. PMID:26859724

  11. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew F van den Hurk

    Full Text Available Incidence of disease due to dengue (DENV, chikungunya (CHIKV and yellow fever (YFV viruses is increasing in many parts of the world. The viruses are primarily transmitted by Aedes aegypti, a highly domesticated mosquito species that is notoriously difficult to control. When transinfected into Ae. aegypti, the intracellular bacterium Wolbachia has recently been shown to inhibit replication of DENVs, CHIKV, malaria parasites and filarial nematodes, providing a potentially powerful biocontrol strategy for human pathogens. Because the extent of pathogen reduction can be influenced by the strain of bacterium, we examined whether the wMel strain of Wolbachia influenced CHIKV and YFV infection in Ae. aegypti. Following exposure to viremic blood meals, CHIKV infection and dissemination rates were significantly reduced in mosquitoes with the wMel strain of Wolbachia compared to Wolbachia-uninfected controls. However, similar rates of infection and dissemination were observed in wMel infected and non-infected Ae. aegypti when intrathoracic inoculation was used to deliver virus. YFV infection, dissemination and replication were similar in wMel-infected and control mosquitoes following intrathoracic inoculations. In contrast, mosquitoes with the wMelPop strain of Wolbachia showed at least a 10(4 times reduction in YFV RNA copies compared to controls. The extent of reduction in virus infection depended on Wolbachia strain, titer and strain of the virus, and mode of exposure. Although originally proposed for dengue biocontrol, our results indicate a Wolbachia-based strategy also holds considerable promise for YFV and CHIKV suppression.

  12. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x102 erg/mm2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  13. The wMel strain of Wolbachia Reduces Transmission of Zika virus by Aedes aegypti

    OpenAIRE

    Aliota, Matthew T; Peinado, Stephen A.; Ivan Dario Velez; Jorge E Osorio

    2016-01-01

    Zika virus (ZIKV) is causing an explosive outbreak of febrile disease in the Americas. There are no effective antiviral therapies or licensed vaccines for this virus, and mosquito control strategies have not been adequate to contain the virus. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however...

  14. Wolbachia in European Populations of the Invasive Pest Drosophila suzukii: Regional Variation in Infection Frequencies

    OpenAIRE

    Cattel, Julien; Kaur, Rupinder; Gibert, Patricia; Martinez, Julien; Fraimout, Antoine; Jiggins, Francis; Andrieux, Thibault; Siozios, Stefanos; Anfora, Gianfranco; Miller, Wolfgang; Rota-Stabelli, Omar; Mouton, Laurence

    2016-01-01

    The invasive pest Drosophila suzukii is characterized by a specific fresh-fruit targeting behavior and has quickly become a menace for the fruit economy of newly infested North American and European regions. D. suzukii carries a strain of the endosymbiotic bacterium Wolbachia, named wSuz, which has a low infection frequency and no reproductive manipulation capabilities in American populations of D. suzukii. To further understand the nature of wSuz biology and assess its utility as a tool for ...

  15. Na+-induced structural change of a soil bacterium, S34, and Ca2+ requirement for preserving its original structure.

    OpenAIRE

    Mitsui, H.; Hattori, R.; Watanabe, H.(Max-Planck-Institut für Kernphysik, 69117, Heidelberg, Germany); Tonosaki, A; Hattori, T.

    1997-01-01

    A drastic change in the outer membrane structure of a salt-sensitive soil bacterium, S34, related to the genus Deinococcus was induced by 0.2 to 0.4% (wt/vol) NaCl. The change was relieved by 6 mM CaCl2 and induced by 1 mM EGTA. The results indicate the strong dependence of the organism on calcium.

  16. Wolbachia Density and Cytoplasmic Incompatibility in Aedes albopictus: Concerns with Using Artificial Wolbachia Infection as a Vector Suppression Tool

    OpenAIRE

    Maurizio Calvitti; Francesca Marini; Angiola Desiderio; Arianna Puggioli; Riccardo Moretti

    2015-01-01

    The mosquito Aedes albopictusi is a competent vector of harmful human pathogens, including viruses causing dengue and chikungunya. Cytoplasmic incompatibility (CI) induced by endosymbiotic Wolbachia can be used to produce functionally sterile males that can be released in the field as a suppression tool against this mosquito. Because the available sexing methods are not efficient enough to avoid unintentional release of a few transinfected females, we assessed the CI pattern in crosses betwee...

  17. Evolution of Wolbachia cytoplasmic incompatibility types.

    Science.gov (United States)

    Dobson, Stephen L

    2004-10-01

    The success of obligate endosymbiotic Wolbachia infections in insects is due in part to cytoplasmic incompatibility (CI), whereby Wolbachia bacteria manipulate host reproduction to promote their invasion and persistence within insect populations. The observed diversity of CI types raises the question of what the evolutionary pathways are by which a new CI type can evolve from an ancestral type. Prior evolutionary models assume that Wolbachia exists within a host individual as a clonal infection. While endosymbiotic theory predicts a general trend toward clonality, Wolbachia provides an exception in which there is selection to maintain diversity. Here, evolutionary trajectories are discussed that assume that a novel Wolbachia variant will co-exist with the original infection type within a host individual as a superinfection. Relative to prior models, this assumption relaxes requirements and allows additional pathways for the evolution of novel CI types. In addition to describing changes in the Wolbachia infection frequency associated with the hypothesized evolutionary events, the predicted impact of novel CI variants on the host population is also described. This impact, resulting from discordant evolutionary interests of symbiont and host, is discussed as a possible cause of Wolbachia loss from the host population or host population extinction. The latter is also discussed as the basis for an applied strategy for the suppression of insect pest populations. Model predictions are discussed relative to a recently published Wolbachia genome sequence and prior characterization of CI in naturally and artificially infected insects. PMID:15562682

  18. Persistence of a Wolbachia infection frequency cline in Drosophila melanogaster and the possible role of reproductive dormancy.

    Science.gov (United States)

    Kriesner, Peter; Conner, William R; Weeks, Andrew R; Turelli, Michael; Hoffmann, Ary A

    2016-05-01

    Field populations of arthropods are often polymorphic for Wolbachia but the factors maintaining intermediate Wolbachia frequencies are generally not understood. In Drosophila melanogaster, Wolbachia frequencies are highly variable across the globe. We document the persistence of a Wolbachia infection frequency cline in D. melanogaster populations from eastern Australia across at least 20 years, with frequencies generally high in the tropics but lower in cool temperate regions. The results are interpreted using a model of frequency dynamics incorporating cytoplasmic incompatibility (CI), imperfect maternal transmission and Wolbachia effects on fitness. Clinal variation is less pronounced in eastern North America which may reflect annual recolonization at higher latitudes. Limited samples from Africa from latitudes matching our tropical and subtropical samples from Australia and North America show comparably high infection frequencies, but some equatorial samples show lower frequencies. Adult dormancy across cold periods may contribute to the Australian Wolbachia cline. Infected flies exposed to cold conditions for an extended period had reduced fecundity and viability, an effect not evident in unexposed controls. These fitness costs may contribute to the relatively low Wolbachia frequencies in Australian temperate areas; whereas different processes, including CI induced by young males, may contribute to higher frequencies in tropical locations. PMID:27076356

  19. Can Wolbachia be used to control malaria?

    Directory of Open Access Journals (Sweden)

    Thomas Walker

    2011-08-01

    Full Text Available Malaria is a mosquito-borne infectious disease caused by Plasmodium parasites transmitted by the infectious bite of Anopheles mosquitoes. Vector control of malaria has predominantly focused on targeting the adult mosquito through insecticides and bed nets. However, current vector control methods are often not sustainable for long periods so alternative methods are needed. A novel biocontrol approach for mosquito-borne diseases has recently been proposed, it uses maternally inherited endosymbiotic Wolbachia bacteria transinfected into mosquitoes in order to interfere with pathogen transmission. Transinfected Wolbachia strains in Aedes aegypti mosquitoes, the primary vector of dengue fever, directly inhibit pathogen replication, including Plasmodium gallinaceum, and also affect mosquito reproduction to allow Wolbachia to spread through mosquito populations. In addition, transient Wolbachia infections in Anopheles gambiae significantly reduce Plasmodium levels. Here we review the prospects of using a Wolbachia-based approach to reduce human malaria transmission through transinfection of Anopheles mosquitoes.

  20. Lipoprotein biosynthesis as a target for anti-Wolbachia treatment of filarial nematodes

    Directory of Open Access Journals (Sweden)

    Slatko Barton E

    2010-10-01

    Full Text Available Abstract Background Lymphatic filariasis and onchocerciasis are debilitating diseases caused by filarial nematodes. Disease pathogenesis is induced by inflammatory responses following the death of the parasite. Wolbachia endosymbionts of filariae are potent inducers of innate and adaptive inflammation and bacterial lipoproteins have been identified as the ligands that bind toll-like receptors (TLR 2 and TLR6. Lipoproteins are important structural and functional components of bacteria and therefore enzymes involved in Wolbachia lipoprotein biosynthesis are potential chemotherapeutic targets. Results Globomycin, a signal peptidase II (LspA inhibitor, has activity against Gram-negative bacteria and a putative lspA gene has been identified from the Wolbachia genome of Brugia malayi (wBm. The amino acids required for function are strictly conserved and functionality was verified by complementation tests in a temperature-sensitive Escherichia coli lspA mutant. Also, transformation of wild type E. coli with Wolbachia lspA conferred significant globomycin resistance. A cell-based screen has been developed utilizing a Wolbachia-containing Aedes albopictus cell line to assay novel compounds active against Wolbachia. Globomycin was screened using this assay, which resulted in a dose-dependent reduction in Wolbachia load. Furthermore, globomycin was also effective in reducing the motility and viability of adult B. malayi in vitro. Conclusions These studies validate lipoprotein biosynthesis as a target in an organism for which no genetic tools are available. Further studies to evaluate drugs targeting this pathway are underway as part of the A-WOL drug discovery and development program.

  1. Successful Establishment of Wolbachia in Aedes Populations to Suppress Dengue Transmission

    International Nuclear Information System (INIS)

    Genetic manipulations of insect populations for pest control have been advocated for some time, but there are few cases where manipulated individuals have been released in the field and no cases where they have successfully invaded target populations. Population transformation using the intracellular bacterium Wolbachia is particularly attractive because this maternally-inherited agent provides a powerful mechanism to invade natural populations through cytoplasmic incompatibility. When Wolbachia are introduced into mosquitoes, they interfere with pathogen transmission and influence key life history traits such as lifespan. Here we describe how the wMel Wolbachia infection, introduced into the dengue vector Aedes aegypti from Drosophila melanogaster, successfully invaded two natural A. aegypti populations in Australia, reaching near-fixation in a few months following releases of wMel infected A. aegypti adults. Models with plausible parameter values indicate that Wolbachiainfected mosquitoes suffered relatively small fitness costs, leading to an unstable equilibrium frequency, 30% that must be exceeded for invasion. These findings demonstrate that Wolbachia-based strategies can be deployed as a practical approach to dengue suppression with potential for area-wide implementation. (author)

  2. Effects of Doxycycline on gene expression in Wolbachia and Brugia malayi adult female worms in vivo

    Directory of Open Access Journals (Sweden)

    Rao Ramakrishna U

    2012-02-01

    -transport, metabolism, anti-oxidants, and others with unknown functions had increased expression signals after doxycycline treatment. These results suggest that female worms are able to compensate in part for the loss of Wolbachia so that they can survive, albeit without reproductive capacity. This study of doxycycline induced changes in gene expression has provided new clues regarding the symbiotic relationship between Wolbachia and B. malayi.

  3. Spiders do not escape reproductive manipulations by Wolbachia

    Directory of Open Access Journals (Sweden)

    Hendrickx Frederik

    2011-01-01

    Full Text Available Abstract Background Maternally inherited bacteria that reside obligatorily or facultatively in arthropods can increase their prevalence in the population by altering their hosts' reproduction. Such reproductive manipulations have been reported from the major arthropod groups such as insects (in particular hymenopterans, butterflies, dipterans and beetles, crustaceans (isopods and mites. Despite the observation that endosymbiont bacteria are frequently encountered in spiders and that the sex ratio of particular spider species is strongly female biased, a direct relationship between bacterial infection and sex ratio variation has not yet been demonstrated for this arthropod order. Results Females of the dwarf spider Oedothorax gibbosus exhibit considerable variation in the sex ratio of their clutches and were infected with at least three different endosymbiont bacteria capable of altering host reproduction i.e. Wolbachia, Rickettsia and Cardinium. Breeding experiments show that sex ratio variation in this species is primarily maternally inherited and that removal of the bacteria by antibiotics restores an unbiased sex ratio. Moreover, clutches of females infected with Wolbachia were significantly female biased while uninfected females showed an even sex ratio. As female biased clutches were of significantly smaller size compared to non-distorted clutches, killing of male embryos appears to be the most likely manipulative effect. Conclusions This represents to our knowledge the first direct evidence that endosymbiont bacteria, and in particular Wolbachia, might induce sex ratio variation in spiders. These findings are pivotal to further understand the diversity of reproductive phenotypes observed in this arthropod order.

  4. Wolbachia endosymbionts and human disease control.

    Science.gov (United States)

    Slatko, Barton E; Luck, Ashley N; Dobson, Stephen L; Foster, Jeremy M

    2014-07-01

    Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filaria, Wolbachia are required for normal development, fertility and survival, whereas in arthropods, they are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as Dengue, Chikungunya, Yellow Fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Furthermore, Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus Wolbachia, a pandemic endosymbiont offers great potential for elimination of a wide-variety of devastating human diseases. PMID:25046729

  5. Comparisons of host mitochondrial, nuclear and endosymbiont bacterial genes reveal cryptic fig wasp species and the effects of Wolbachia on host mtDNA evolution and diversity

    Directory of Open Access Journals (Sweden)

    Feng Gui

    2011-04-01

    Full Text Available Abstract Background Figs and fig-pollinating wasp species usually display a highly specific one-to-one association. However, more and more studies have revealed that the "one-to-one" rule has been broken. Co-pollinators have been reported, but we do not yet know how they evolve. They may evolve from insect speciation induced or facilitated by Wolbachia which can manipulate host reproduction and induce reproductive isolation. In addition, Wolbachia can affect host mitochondrial DNA evolution, because of the linkage between Wolbachia and associated mitochondrial haplotypes, and thus confound host phylogeny based on mtDNA. Previous research has shown that fig wasps have the highest incidence of Wolbachia infection in all insect taxa, and Wolbachia may have great influence on fig wasp biology. Therefore, we look forward to understanding the influence of Wolbachia on mitochondrial DNA evolution and speciation in fig wasps. Results We surveyed 76 pollinator wasp specimens from nine Ficus microcarpa trees each growing at a different location in Hainan and Fujian Provinces, China. We found that all wasps were morphologically identified as Eupristina verticillata, but diverged into three clades with 4.22-5.28% mtDNA divergence and 2.29-20.72% nuclear gene divergence. We also found very strong concordance between E. verticillata clades and Wolbachia infection status, and the predicted effects of Wolbachia on both mtDNA diversity and evolution by decreasing mitochondrial haplotypes. Conclusions Our study reveals that the pollinating wasp E. verticillata on F. microcarpa has diverged into three cryptic species, and Wolbachia may have a role in this divergence. The results also indicate that Wolbachia strains infecting E. verticillata have likely resulted in selective sweeps on host mitochondrial DNA.

  6. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti

    Science.gov (United States)

    Aliota, Matthew T.; Walker, Emma C.; Uribe Yepes, Alexander; Dario Velez, Ivan; Christensen, Bruce M.; Osorio, Jorge E.

    2016-01-01

    Background New approaches to preventing chikungunya virus (CHIKV) are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV) transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited. Methodology/Principal Findings Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection. Conclusions/Significance These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this

  7. The wMel Strain of Wolbachia Reduces Transmission of Chikungunya Virus in Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Matthew T Aliota

    2016-04-01

    Full Text Available New approaches to preventing chikungunya virus (CHIKV are needed because current methods are limited to controlling mosquito populations, and they have not prevented the invasion of this virus into new locales, nor have they been sufficient to control the virus upon arrival. A promising candidate for arbovirus control and prevention relies on the introduction of the intracellular bacterium Wolbachia into Aedes aegypti mosquitoes. This primarily has been proposed as a tool to control dengue virus (DENV transmission; however, evidence suggests Wolbachia infections confer protection for Ae. aegypti against CHIKV. Although this approach holds much promise for limiting virus transmission, at present our understanding of the ability of CHIKV to infect, disseminate, and be transmitted by wMel-infected Ae. aegypti currently being used at Wolbachia release sites is limited.Using Ae. aegypti infected with the wMel strain of Wolbachia that are being released in Medellin, Colombia, we report that these mosquitoes have reduced vector competence for CHIKV, even with extremely high viral titers in the bloodmeal. In addition, we examined the dynamics of CHIKV infection over the course of four to seven days post feeding. Wolbachia-infected mosquitoes remained non-infective over the duration of seven days, i.e., no infectious virus was detected in the saliva when exposed to bloodmeals of moderate viremia, but CHIKV-exposed, wild type mosquitoes did have viral loads in the saliva consistent with what has been reported elsewhere. Finally, the presence of wMel infection had no impact on the lifespan of mosquitoes as compared to wild type mosquitoes following CHIKV infection.These results could have an impact on vector control strategies in areas where Ae. aegypti are transmitting both DENV and CHIKV; i.e., they argue for further exploration, both in the laboratory and the field, on the feasibility of expanding this technology beyond DENV.

  8. Wolbachia bacteria reside in host Golgi-related vesicles whose position is regulated by polarity proteins.

    Directory of Open Access Journals (Sweden)

    Kyung-Ok Cho

    Full Text Available Wolbachia pipientis are intracellular symbiotic bacteria extremely common in various organisms including Drosophila melanogaster, and are known for their ability to induce changes in host reproduction. These bacteria are present in astral microtubule-associated vesicular structures in host cytoplasm, but little is known about the identity of these vesicles. We report here that Wolbachia are restricted only to a group of Golgi-related vesicles concentrated near the site of membrane biogenesis and minus-ends of microtubules. The Wolbachia vesicles were significantly mislocalized in mutant embryos defective in cell/planar polarity genes suggesting that cell/tissue polarity genes are required for apical localization of these Golgi-related vesicles. Furthermore, two of the polarity proteins, Van Gogh/Strabismus and Scribble, appeared to be present in these Golgi-related vesicles. Thus, establishment of polarity may be closely linked to the precise insertion of Golgi vesicles into the new membrane addition site.

  9. Tripartite associations among bacteriophage WO, Wolbachia, and host affected by temperature and age in Tetranychus urticae.

    Science.gov (United States)

    Lu, Ming-Hong; Zhang, Kai-Jun; Hong, Xiao-Yue

    2012-11-01

    A phage density model of cytoplasmic incompatibility (CI), which means lytic phages reduce bacterial density associated with CI, significantly enhances our understanding of the tripartite associations among bacteriophage WO, Wolbachia and host. However, WO may alternate between lytic and lysogenic life cycles or change phage production under certain conditions including temperature, host age and host species background. Here, extreme temperatures can induce an alteration in the life cycle of WO and change the tripartite associations among WO, Wolbachia and CI. Based on the accumulation of the WO load, WO can transform into the lytic life cycle with increasing age. These findings confirmed that the environment plays an important role in the associations among WO, Wolbachia and host. PMID:22669278

  10. Incidence of Wolbachia and Cardinium endosymbionts in the Osmia community in Korea.

    Science.gov (United States)

    Jeong, Gilsang; Lee, Kyeongyong; Choi, Jiyoung; Hwang, Seokjo; Park, Byeongdo; Kim, Wontae; Choi, Youngcheol; Park, Ingyun; Kim, Jonggill

    2009-02-01

    Sex ratio distorting endosymbionts induce reproductive anomalies in their arthropod hosts. They have recently been paid much attention as firstly texts of evolution of host-symbiont relationships and secondly potential biological control agents to control arthropod pests. Among such organisms, Wolbachia and Cardinium bacteria are well characterized. This study aims at probing such bacteria in the Osmia community to evaluate their potential utilization to control arthropod pests. Among 17 PCR tested species, Osmia cornifrons and a parasitic fly are infected with Wolbachia and a mite species is infected with Cardinium. Phylogenetic tree analyses suggest that horizontal transfer of the bacteria occurred between phylogenetically distant hosts. PMID:19229488

  11. Wolbachia density and cytoplasmic incompatibility in Aedes albopictus: concerns with using artificial Wolbachia infection as a vector suppression tool.

    Directory of Open Access Journals (Sweden)

    Maurizio Calvitti

    Full Text Available The mosquito Aedes albopictusi is a competent vector of harmful human pathogens, including viruses causing dengue and chikungunya. Cytoplasmic incompatibility (CI induced by endosymbiotic Wolbachia can be used to produce functionally sterile males that can be released in the field as a suppression tool against this mosquito. Because the available sexing methods are not efficient enough to avoid unintentional release of a few transinfected females, we assessed the CI pattern in crosses between wPip Wolbachia-transinfected (ARwP females and wild-type males of Ae. albopictus in this study. Quantitative polymerase chain reaction was used to monitor the titer of the Wolbachia strains that naturally infect Ae. albopictus, that is, wAlbA and wAlbB, in age-controlled males and females. Data were coupled with incompatibility level detected when the above-mentioned males were crossed with ARwP females. Wolbachia infection titer was also monitored in samples of wild caught males. Incompatibility level was positively correlated only with wAlbA density. Crosses between wild-type males having very low wAlbA density (<0.001 wAlbA/actin copy numbers and ARwP females were partially fertile (CIcorr = 68.06 ± 6.20. Individuals with low wAlbA titer were frequently found among sampled wild males (30%-50% depending on the site and period. ARwP males can be as considered as a very promising tool for suppressing Ae. albopictus. However, crosses between wild males having low wAlbA density and ARwP females may be partially fertile. In the case of local establishment of the transinfected mosquito line, this occurrence may favor the replacement of the wild-type mosquitoes with the ARwP line, thus reducing the long-term efficacy of incompatible insect technique. Various alternative strategies have been discussed to prevent this risk and to exploit Wolbachia as a tool to control Ae. albopictus.

  12. The mutualistic side of Wolbachia-Isopod interactions: Wolbachia mediated protection against pathogenic intracellular bacteria

    Directory of Open Access Journals (Sweden)

    Christine eBraquart-Varnier

    2015-12-01

    Full Text Available Wolbachia is a vertically transmitted endosymbiont whose radiative success is mainly related to various host reproductive manipulations that led to consider this symbiont as a conflictual reproductive parasite. However, lately, some Wolbachia have been shown to act as beneficial symbionts by protecting hosts against a broad range of parasites. However this protection has been mostly demonstrated in artificial Wolbachia-host associations between partners that did not co-evolved together. Here, we tested in two terrestrial isopod species Armadillidium vulgare and Porcellio dilatatus whether resident Wolbachia (native or non-native could confer protection during infections with Listeria ivanovii and Salmonella typhimurium and also during a transinfection with a Wolbachia strain that kills the recipient host (i.e. wVulC in P. dilatatus. Survival analyses showed that (i A. vulgare lines hosting their native Wolbachia (wVulC always exhibited higher survival than asymbiotic ones when infected with pathogenic bacteria (ii P. dilatatus lines hosting their native wDil Wolbachia strain survived the S. typhimurium infection better, while lines hosting non-native wCon Wolbachia strain survived the L. ivanovii and also the transinfection with wVulC from A. vulgare better. By studying L. ivanovii and S. typhimurium loads in the hemolymph of the different host-Wolbachia systems, we showed that (i the difference in survival between lines after L. ivanovii infections were not linked to the difference between their pathogenic bacterial loads, and (ii the difference in survival after S. typhimurium infections corresponds to lower loads of pathogenic bacteria. Overall, our results demonstrate a beneficial effect of Wolbachia on survival of terrestrial isopods when infected with pathogenic intracellular bacteria. This protective effect may rely on different mechanisms depending on the resident symbiont and the invasive bacteria interacting together within the hosts.

  13. The death mechanism of the harmful algal bloom species Alexandrium tamarense induced by algicidal bacterium Deinococcus sp. Y35

    Directory of Open Access Journals (Sweden)

    Yi eLi

    2015-09-01

    Full Text Available Abstract: Harmful algal blooms (HABs cause a variety of deleterious effects on aquatic ecosystems, especially the toxic dinoflagellate Alexandrium tamarense, which poses a serious threat to marine economic and human health based on releasing paralytic shellfish poison into the environment. The algicidal bacterium Deinococcus sp. Y35 which can induce growth inhibition on A. tamarense was used to investigate the functional mechanism. The growth status, reactive oxygen species (ROS content, photosynthetic system and the nuclear system of algal cells were determined under algicidal activity. A culture of strain Y35 not only induced overproduction of ROS in algal cells within only 0.5 h of treatment, also decrease the total protein content as well as the response of the antioxidant enzyme. Meanwhile, lipid peroxidation was induced and cell membrane integrity was lost. Photosynthetic pigments including chlorophyll a and carotenoid decreased along with the photosynthetic efficiency being significantly inhibited. At the same time, photosynthesis-related gene expression showed down-regulation. More than, the destruction of cell nuclear structure and inhibition of proliferating cell nuclear antigen related gene expression were confirmed. The potential functional mechanism of the algicidal bacterium on A. tamarense was investigated and provided a novel viewpoint which could be used in HABs control.

  14. Wolbachia strain wPip yields a pattern of cytoplasmic incompatibility enhancing a Wolbachia-based suppression strategy against the disease vector Aedes albopictus

    Directory of Open Access Journals (Sweden)

    Calvitti Maurizio

    2012-11-01

    Full Text Available Abstract Background Cytoplasmic incompatibility (CI is induced in nature by Wolbachia bacteria, resulting in conditional male sterility. Previous research demonstrated that the two Wolbachia strains (wAlbA and wAlbB that naturally co-infect the disease vector mosquito Aedes albopictus (Asian tiger mosquito can be replaced with the wPip Wolbachia strain from Culex pipiens. Since Wolbachia-based vector control strategies depend upon the strength and consistency of CI, a greater understanding is needed on the CI relationships between wPip, wAlbA and wAlbB Wolbachia in Ae. albopictus. Methods This work consisted of a collaborative series of crosses carried out in Italy and in US to study the CI relationships between the “wPip” infected Ae. albopictus strain (ARwP and the superinfected SR strain. The Ae. albopictus strains used in Italian tests are the wPip infected ARwP strain (ARwPIT, the superinfected SR strain and the aposymbiotic AR strain. To understand the observed pattern of CI, crossing experiments carried out in USA focused on the study of the CI relationships between ARwP (ARwPUS and artificially-generated single infected lines, in specific HTA and HTB, harbouring only wAlbA and wAlbB Wolbachia respectively. Results The paper reports an unusual pattern of CI observed in crossing experiments between ARwP and SR lines. Specifically, ARwP males are able to induce full sterility in wild type females throughout most of their lifetime, while crosses between SR males and ARwP females become partially fertile with male aging. We demonstrated that the observed decrease in CI penetrance with SR male age, is related to the previously described decrease in Wolbachia density, in particular of the wAlbA strain, occurring in aged superinfected males. Conclusions The results here reported support the use of the ARwP Ae. albopictus line as source of “ready-made sterile males”, as an alternative to gamma radiation sterilized males, for autocidal

  15. Monitoring long-term evolutionary changes following Wolbachia introduction into a novel host: the Wolbachia popcorn infection in Drosophila simulans

    OpenAIRE

    Lauren B Carrington; Ary A Hoffmann; Weeks, Andrew R

    2010-01-01

    Wolbachia may act as a biological control agent for pest management; in particular, the Wolbachia variant wMelPop (popcorn) shortens host longevity and may be useful for dengue suppression. However, long-term changes in the host and Wolbachia genomes can alter Wolbachia spread and/or host effects that suppress disease. Here, we investigate the phenotypic effects of wMelPop in a non-native host, Drosophila simulans, following artificial transinfection approximately 200 generations ago. Long-te...

  16. Advance in developing Wolbachia-induced cytoplasmic incompatibility models and its molecular mechanism%沃尔巴克氏体诱导细胞质不相容的模型和分子机制研究进展

    Institute of Scientific and Technical Information of China (English)

    徐晓晗; 奚志勇; 郑小英

    2015-01-01

    由蚊媒传播的疾病,如疟疾、登革热、流行性乙型脑炎、黄热病等已严重影响人类健康,但至今尚无有效的防治方法.沃尔巴克氏体是在自然界中广泛存在的、经母系遗传的共生菌,可诱导蚊群产生胞质不相容.迄今为止,胞质不相容的分子机制尚未明确,但“锁-钥匙”模型(lock and key model)、“移除-归还”模型(titration-restitution model)和“减速”模型(slow-motion model)可在一定程度上解释胞质不相容现象.胞质不相容产生的整个过程极为复杂,是多种因子共同作用的结果.该文就胞质不相容的模型及分子机制进行综述.%Mosquito-borne disease such as malaria、dengue fever,epidemic,encephalitis and yellow fever has a serious impact on human health,but so far there is no effective control methods.Wolbachia are widespread in nature and are maternally inherited endosymbiontic bacteria which can induce cytoplasmic incompatibility(CI).To date,the molecular mechanism of CI has not been elucidated,but the "lock-key",the"-titration-restitution" and the "slow-motion" models could explain the phenomenon to a certain extent.The process of inducing CI is extremely complex,including variety of factors.

  17. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    Science.gov (United States)

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences. PMID:25921489

  18. The heme biosynthetic pathway of the obligate Wolbachia endosymbiont of Brugia malayi as a potential anti-filarial drug target.

    Directory of Open Access Journals (Sweden)

    Bo Wu

    Full Text Available BACKGROUND: Filarial parasites (e.g., Brugia malayi, Onchocerca volvulus, and Wuchereria bancrofti are causative agents of lymphatic filariasis and onchocerciasis, which are among the most disabling of neglected tropical diseases. There is an urgent need to develop macro-filaricidal drugs, as current anti-filarial chemotherapy (e.g., diethylcarbamazine [DEC], ivermectin and albendazole can interrupt transmission predominantly by killing microfilariae (mf larvae, but is less effective on adult worms, which can live for decades in the human host. All medically relevant human filarial parasites appear to contain an obligate endosymbiotic bacterium, Wolbachia. This alpha-proteobacterial mutualist has been recognized as a potential target for filarial nematode life cycle intervention, as antibiotic treatments of filarial worms harboring Wolbachia result in the loss of worm fertility and viability upon antibiotic treatments both in vitro and in vivo. Human trials have confirmed this approach, although the length of treatments, high doses required and medical counter-indications for young children and pregnant women warrant the identification of additional anti-Wolbachia drugs. METHODS AND FINDINGS: Genome sequence analysis indicated that enzymes involved in heme biosynthesis might constitute a potential anti-Wolbachia target set. We tested different heme biosynthetic pathway inhibitors in ex vivo B. malayi viability assays and report a specific effect of N-methyl mesoporphyrin (NMMP, which targets ferrochelatase (FC, the last step. Our phylogenetic analysis indicates evolutionarily significant divergence between Wolbachia heme genes and their human homologues. We therefore undertook the cloning, overexpression and analysis of several enzymes of this pathway alongside their human homologues, and prepared proteins for drug targeting. In vitro enzyme assays revealed a approximately 600-fold difference in drug sensitivities to succinyl acetone (SA between

  19. Detection and characterization of Wolbachia infection in silkworm

    Directory of Open Access Journals (Sweden)

    Xingfu Zha

    2014-09-01

    Full Text Available Wolbachia naturally infects a wide variety of arthropods, where it plays important roles in host reproduction. It was previously reported that Wolbachia did not infect silkworm. By means of PCR and sequencing we found in this study that Wolbachia is indeed present in silkworm. Phylogenetic analysis indicates that Wolbachia infection in silkworm may have occurred via transfer from parasitic wasps. Furthermore, Southern blotting results suggest a lateral transfer of the wsp gene into the genomes of some wild silkworms. By antibiotic treatments, we found that tetracycline and ciprofloxacin can eliminate Wolbachia in the silkworm and Wolbachia is important to ovary development of silkworm. These results provide clues towards a more comprehensive understanding of the interaction between Wolbachia and silkworm and possibly other lepidopteran insects.

  20. Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    Full Text Available Dengue viruses (DENV are the causative agents of dengue, the world's most prevalent arthropod-borne disease with around 40% of the world's population at risk of infection annually. Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits replication of the virus in the mosquito. The Wolbachia strain wMel, which has been introduced into the mosquito vector, Aedes aegypti, has been shown to invade and spread to near fixation in field releases. Standard measures of Wolbachia's efficacy for blocking virus replication focus on the detection and quantification of virus in mosquito tissues. Examining the saliva provides a more accurate measure of transmission potential and can reveal the extrinsic incubation period (EIP, that is, the time it takes virus to arrive in the saliva following the consumption of DENV viremic blood. EIP is a key determinant of a mosquito's ability to transmit DENVs, as the earlier the virus appears in the saliva the more opportunities the mosquito will have to infect humans on subsequent bites.We used a non-destructive assay to repeatedly quantify DENV in saliva from wMel-infected and Wolbachia-free wild-type control mosquitoes following the consumption of a DENV-infected blood meal. We show that wMel lengthens the EIP, reduces the frequency at which the virus is expectorated and decreases the dengue copy number in mosquito saliva as compared to wild-type mosquitoes. These observations can at least be partially explained by an overall reduction in saliva produced by wMel mosquitoes. More generally, we found that the concentration of DENV in a blood meal is a determinant of the length of EIP, saliva virus titer and mosquito survival.The saliva-based traits reported here offer more disease-relevant measures of Wolbachia's effects on the vector and the virus. The lengthening of EIP highlights another means, in addition to the reduction of infection

  1. Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis.

    Science.gov (United States)

    Sharma, Raman; Al Jayoussi, Ghaith; Tyrer, Hayley E; Gamble, Joanne; Hayward, Laura; Guimaraes, Ana F; Davies, Jill; Waterhouse, David; Cook, Darren A N; Myhill, Laura J; Clare, Rachel H; Cassidy, Andrew; Steven, Andrew; Johnston, Kelly L; Ford, Louise; Turner, Joseph D; Ward, Stephen A; Taylor, Mark J

    2016-01-01

    Lymphatic filariasis and onchocerciasis are parasitic helminth diseases, which cause severe morbidities such as elephantiasis, skin disease and blindness, presenting a major public health burden in endemic communities. The anti-Wolbachia consortium (A·WOL: http://www.a-wol.com/) has identified a number of registered antibiotics that target the endosymbiotic bacterium, Wolbachia, delivering macrofilaricidal activity. Here we use pharmacokinetics/pharmacodynamics (PK/PD) analysis to rationally develop an anti-Wolbachia chemotherapy by linking drug exposure to pharmacological effect. We compare the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25-40 mg/Kg regimen is bioequivalent to a clinically effective 100-200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis. PMID:26996237

  2. Wolbachia-Based Population Control Strategy Targeting Culex quinquefasciatus Mosquitoes Proves Efficient under Semi-Field Conditions : Wolbachia-Based Control of Culex quinquefasciatus

    OpenAIRE

    Atyame, Célestine M.; Julien Cattel; Cyrille Lebon; Olivier Flores; Jean-Sébastien Dehecq; Mylène Weill; Louis Clément Gouagna; Pablo Tortosa

    2015-01-01

    In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI). This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy). We have previously constructed the LR[wPip(Is)] line representing a good candidate for controlling field populations of the Culex quinquefasciatus mos...

  3. Wolbachia and DNA Barcoding Insects: Patterns, Potential, and Problems

    OpenAIRE

    M. Alex Smith; Claudia Bertrand; Kate Crosby; Eveleigh, Eldon S.; Jose Fernandez-Triana; Fisher, Brian L.; Jason Gibbs; Mehrdad Hajibabaei; Winnie Hallwachs; Katharine Hind; Jan Hrcek; Da-Wei Huang; Milan Janda; Janzen, Daniel H.; Yanwei Li

    2012-01-01

    Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Us...

  4. Phylogenetic relationships of the Wolbachia of nematodes and arthropods.

    Directory of Open Access Journals (Sweden)

    Katelyn Fenn

    2006-10-01

    Full Text Available Wolbachia are well known as bacterial symbionts of arthropods, where they are reproductive parasites, but have also been described from nematode hosts, where the symbiotic interaction has features of mutualism. The majority of arthropod Wolbachia belong to clades A and B, while nematode Wolbachia mostly belong to clades C and D, but these relationships have been based on analysis of a small number of genes. To investigate the evolution and relationships of Wolbachia symbionts we have sequenced over 70 kb of the genome of wOvo, a Wolbachia from the human-parasitic nematode Onchocerca volvulus, and compared the genes identified to orthologues in other sequenced Wolbachia genomes. In comparisons of conserved local synteny, we find that wBm, from the nematode Brugia malayi, and wMel, from Drosophila melanogaster, are more similar to each other than either is to wOvo. Phylogenetic analysis of the protein-coding and ribosomal RNA genes on the sequenced fragments supports reciprocal monophyly of nematode and arthropod Wolbachia. The nematode Wolbachia did not arise from within the A clade of arthropod Wolbachia, and the root of the Wolbachia clade lies between the nematode and arthropod symbionts. Using the wOvo sequence, we identified a lateral transfer event whereby segments of the Wolbachia genome were inserted into the Onchocerca nuclear genome. This event predated the separation of the human parasite O. volvulus from its cattle-parasitic sister species, O. ochengi. The long association between filarial nematodes and Wolbachia symbionts may permit more frequent genetic exchange between their genomes.

  5. Macronutrients mediate the functional relationship between Drosophila and Wolbachia

    OpenAIRE

    Ponton, Fleur; WILSON, KEN; Holmes, Andrew; Raubenheimer, David; Robinson, Katie; Stephen J Simpson

    2015-01-01

    Wolbachia are maternally inherited bacterial endosymbionts that naturally infect a diverse array of arthropods. They are primarily known for their manipulation of host reproductive biology, and recently, infections with Wolbachia have been proposed as a new strategy for controlling insect vectors and subsequent human-transmissible diseases. Yet, Wolbachia abundance has been shown to vary greatly between individuals and the magnitude of the effects of infection on host life-history traits and ...

  6. Distribution and dynamics of Wolbachia infection in Malaysian Aedes albopictus.

    Science.gov (United States)

    Joanne, Sylvia; Vythilingam, Indra; Yugavathy, Nava; Leong, Cherng-Shii; Wong, Meng-Li; AbuBakar, Sazaly

    2015-08-01

    Wolbachia are maternally transmitted bacteria found in most arthropods and nematodes, but little is known about their distribution and reproductive dynamics in the Malaysian dengue vector Aedes albopictus. In this study, polymerase chain reaction (PCR) was used to determine the presence of Wolbachia from field collected Ae. albopictus from various parts of the country using wsp specific primers. Ae. albopictus had Wolbachia infection ranging from 60 to 100%. No sequence diversity of wsp gene was found within all wAlbA and wAlbB sequences. Our findings suggest that Wolbachia infection amongst the Malaysian Ae. albopictus were not homogenously distributed in all districts in Malaysia. The presence of Wolbachia in different organs of Ae. albopictus was also determined. Wolbachia were only found in the ovaries and midguts of the mosquitoes, while absent in the salivary glands. The effects of Wolbachia on Ae. albopictus fecundity, longevity and egg viability were studied using infected and uninfected colonies. The removal of Wolbachia from Ae. albopictus resulted in reduced fecundity, longevity and egg viability, thus. Wolbachia seem to play a vital role in Ae. albopictus reproductive system. PMID:25899523

  7. Modified technique of Wolbachia removal from Malaysian Aedes albopictus

    Institute of Scientific and Technical Information of China (English)

    Sylvia Joanne; Indra Vythilingam; Nava Yugavathy; Jonathan Inbaraj Doss

    2014-01-01

    Objective: To develop an artificial and modified Wolbachia removal technique using tetracycline from naturally Wolbachia infected Aedes albopictus (Ae. albopictus) so as to be able to produce generations of Wolbachia free offsprings.Methods:In this study, seven different tetracycline treatment methods were conducted to obtain the best removal method. Four methods focused on larvae tetracycline treatment, one method on both larvae and adult tetracycline treatment and the last two methods on adult mosquito sucrose treatment.Results:All larval tetracycline treatments resulted in either high larvae mortality, sterile F0 adult mosquitoes or unsuccessful Wolbachia removal. Treatment of both larvae and adults resulted in reduced larvae mortality, successful Wolbachia removal but slow mosquito fecundity. As for the adult treatment, 1.0 mg/mL as previously published was not able to completely remove Wolbachia in F1 generation whereas 1.25 mg/mL successfully removed Wolbachia from F1 and F2 mosquitoes in 2 weeks. Conclusions: This method is different from the previously published methods as it provides an improved Wolbachia removal technique from Ae. albopictus with high egg hatchability, low larvae mortality, increased fecundity and better Wolbachia removal rate.

  8. Molecular Identification of a Wolbachia endosymbiont in Trichogramma dendrolimi

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Wolbachia is a common and widespread group of bacteria found in arthropods. These bacteria have evolved various mechanisms for manipulating reproduction of their host. The presence of Wolbachia in a lab strain of the arrhenotokous species Trichogramma dendrolimi was observed by the amplification and sequencing of part of the wsp gene. Aligning the resulting sequences with already published ones, the phylogenetic relationships between Wolbachia found in Trichogramma dendrolimi and in other Trichogramma wasps was established, and the phylogenetic relationships of Wolbachia in Trichogramma were not congruent with their hosts Trichogramma. Some factors contributing to this uncongruence are discussed here.

  9. Accelerated dysbiosis of gut microbiota during aggravation of DSS-induced colitis by a butyrate-producing bacterium.

    Science.gov (United States)

    Zhang, Qianpeng; Wu, Yanqiu; Wang, Jing; Wu, Guojun; Long, Wenmin; Xue, Zhengsheng; Wang, Linghua; Zhang, Xiaojun; Pang, Xiaoyan; Zhao, Yufeng; Zhao, Liping; Zhang, Chenhong

    2016-01-01

    Butyrate-producing bacteria (BPB) are potential probiotic candidates for inflammatory bowel diseases as they are often depleted in the diseased gut microbiota. However, here we found that augmentation of a human-derived butyrate-producing strain, Anaerostipes hadrus BPB5, significantly aggravated colitis in dextran sulphate sodium (DSS)-treated mice while exerted no detrimental effect in healthy mice. We explored how the interaction between BPB5 and gut microbiota may contribute to this differential impact on the hosts. Butyrate production and severity of colitis were assessed in both healthy and DSS-treated mice, and gut microbiota structural changes were analysed using high-throughput sequencing. BPB5-inoculated healthy mice showed no signs of colitis, but increased butyrate content in the gut. In DSS-treated mice, BPB5 augmentation did not increase butyrate content, but induced significantly more severe disease activity index and much higher mortality. BPB5 didn't induce significant changes of gut microbiota in healthy hosts, but expedited the structural shifts 3 days earlier toward the disease phase in BPB5-augmented than DSS-treated animals. The differential response of gut microbiota in healthy and DSS-treated mice to the same potentially beneficial bacterium with drastically different health consequences suggest that animals with dysbiotic gut microbiota should also be employed for the safety assessment of probiotic candidates. PMID:27264309

  10. Characterization and transcriptional analysis of two gene clusters for type IV secretion machinery in Wolbachia of Armadillidium vulgare

    DEFF Research Database (Denmark)

    Félix, Christine; Pichon, Samuel; Braquart-Varnier, Christine; Braig, Henk; Chen, Lanming; Garrett, Roger A; Martin, Gilbert; Grève, Pierre

    2008-01-01

    Wolbachia are maternally inherited alpha-proteobacteria that induce feminization of genetic males in most terrestrial crustacean isopods. Two clusters of vir genes for a type IV secretion machinery have been identified at two separate loci and characterized for the first time in a feminizing...

  11. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts.

    Science.gov (United States)

    Newton, Irene L G; Clark, Michael E; Kent, Bethany N; Bordenstein, Seth R; Qu, Jiaxin; Richards, Stephen; Kelkar, Yogeshwar D; Werren, John H

    2016-01-01

    Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm-egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and

  12. Comparative Genomics of Two Closely Related Wolbachia with Different Reproductive Effects on Hosts

    Science.gov (United States)

    Newton, Irene L.G.; Clark, Michael E.; Kent, Bethany N.; Bordenstein, Seth R.; Qu, Jiaxin; Richards, Stephen; Kelkar, Yogeshwar D.; Werren, John H.

    2016-01-01

    Wolbachia pipientis are obligate intracellular bacteria commonly found in many arthropods. They can induce various reproductive alterations in hosts, including cytoplasmic incompatibility, male-killing, feminization, and parthenogenetic development, and can provide host protection against some viruses and other pathogens. Wolbachia differ from many other primary endosymbionts in arthropods because they undergo frequent horizontal transmission between hosts and are well known for an abundance of mobile elements and relatively high recombination rates. Here, we compare the genomes of two closely related Wolbachia (with 0.57% genome-wide synonymous divergence) that differ in their reproductive effects on hosts. wVitA induces a sperm–egg incompatibility (also known as cytoplasmic incompatibility) in the parasitoid insect Nasonia vitripennis, whereas wUni causes parthenogenetic development in a different parasitoid, Muscidifurax uniraptor. Although these bacteria are closely related, the genomic comparison reveals rampant rearrangements, protein truncations (particularly in proteins predicted to be secreted), and elevated substitution rates. These changes occur predominantly in the wUni lineage, and may be due in part to adaptations by wUni to a new host environment, or its phenotypic shift to parthenogenesis induction. However, we conclude that the approximately 8-fold elevated synonymous substitution rate in wUni is due to a either an elevated mutation rate or a greater number of generations per year in wUni, which occurs in semitropical host species. We identify a set of genes whose loss or pseudogenization in the wUni lineage implicates them in the phenotypic shift from cytoplasmic incompatibility to parthenogenesis induction. Finally, comparison of these closely related strains allows us to determine the fine-scale mutation patterns in Wolbachia. Although Wolbachia are AT rich, mutation probabilities estimated from 4-fold degenerate sites are not AT biased, and

  13. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii

    OpenAIRE

    Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named “wSuzi” that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii.

  14. Draft Genome Sequence of the Wolbachia Endosymbiont of Drosophila suzukii.

    Science.gov (United States)

    Siozios, Stefanos; Cestaro, Alessandro; Kaur, Rupinder; Pertot, Ilaria; Rota-Stabelli, Omar; Anfora, Gianfranco

    2013-01-01

    Wolbachia is one of the most successful and abundant symbiotic bacteria in nature, infecting more than 40% of the terrestrial arthropod species. Here we report the draft genome sequence of a novel Wolbachia strain named "wSuzi" that was retrieved from the genome sequencing of its host, the invasive pest Drosophila suzukii. PMID:23472225

  15. Detection of Wolbachia from field collected Aedes albopictus Skuse in Malaysia

    OpenAIRE

    A Noor Afizah; Roziah, A.; Nazni, W.A.; Lee, H L

    2015-01-01

    Background & objectives: Wolbachia-based vector control strategies have been proposed as a mean to augment the existing measures for controlling dengue vector. Prior to utilizing Wolbachia in novel vector control strategies, it is crucial to understand the Wolbachia-mosquito interactions. Many studies have only focused on the prevalence of Wolbachia in female Aedes albopictus with lack of attention on Wolbachia infection on the male Ae. albopictus which also affects the effective expression o...

  16. The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots

    Directory of Open Access Journals (Sweden)

    Carmen eGómez-Lama Cabanás

    2014-09-01

    Full Text Available Pseudomonas fluorescens PICF7, a native olive root endophyte and effective biocontrol agent (BCA against Verticillium wilt of olive, is able to trigger a broad range of defense responses in root tissues of this woody plant. In order to elucidate whether strain PICF7 also induces systemic defense responses in above-ground organs, aerial tissues of olive plants grown under non-gnotobiotic conditions were collected at different time points after root bacterization with this endophytic BCA. A suppression subtractive hybridization (SSH cDNA library, enriched in up-regulated genes, was generated. This strategy enabled the identification of 376 ESTs (99 contigs and 277 singlets, many of them related to response to different stresses. Five ESTs, involved in defense responses, were selected to carry out time-course quantitative real-time PCR (qRT-PCR experiments aiming to: (i validate the induction of these genes, and (ii shed light on their expression pattern along time (from 1 to 15 days. Induction of olive genes potentially coding for lypoxigenase 2, catalase, 1-aminocyclopropane-1-carboxylate oxidase and phenylananine ammonia-lyase was thus confirmed at some time points. Computational analysis also revealed that different transcription factors were up-regulated in olive aerial tissues (i.e. jerf, bHLH, WRKYs, as previously reported for roots. Results confirmed that root colonization by this endophytic bacterium does not only trigger defense responses in this organ but also mount a wide array of systemic defense responses in distant tissues (stems, leaves. This sheds light on how olive plants respond to the ‘non-hostile’ colonization by a bacterial endophyte and how induced defense response can contribute to the biocontrol activity of strain PICF7.

  17. Wolbachia prophage DNA adenine methyltransferase genes in different Drosophila-Wolbachia associations

    DEFF Research Database (Denmark)

    Saridaki, Aggeliki; Sapountzis, Panagiotis; Harris, Harriet L;

    2011-01-01

    . The importance of DNA methylation in cell fate and biology calls for in depth studying of putative methylation-related genes. We present a molecular and phylogenetic analysis of a putative DNA adenine methyltransferase encoded by a prophage in the Wolbachia genome. Two slightly different copies of the gene, met1...

  18. Wolbachia in two populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae)

    Energy Technology Data Exchange (ETDEWEB)

    Copeland, Claudia S.; Sivinski, John [United States Dept. of Agriculture, Gainesville, FL (United States). Center for Medical, Agriculture and Veterinary Entomology]. E-mails: cclaudia@bioinf.uni-leipzig.de; john.sivinski@ars.usda.gov; Matthews, Robert W. [University of Georgia, Athens, GA (United States). Dept. of Entomology]. E-mail: rmatthew@uga.edu; Gonzalez, Jorge M. [Texas A and M Univ., College Station, TX (United States). Dept. of Entomology]. E-mail: jmgonzalez@neo.tamu.edu; Aluja, Martin [Instituto de Ecologia A.C., Veracruz (Mexico)]. E-mail: martin.aluja@inecol.edu.mx

    2008-11-15

    We investigated two populations of Melittobia digitata Dahms, a gregarious parasitoid (primarily upon a wide range of solitary bees, wasps, and flies), in search of Wolbachia infection. The first population, from Xalapa, Mexico, was originally collected from and reared on Mexican fruit fly pupae, Anastrepha ludens Loew (Diptera: Tephritidae); the other, from Athens, Georgia, was collected from and reared on prepupae of mud dauber wasps, Trypoxylon politum Say (Hymenoptera: Crabronidae). PCR studies of the ITS2 region corroborated that both parasitoid populations were the same species; this potentially provides a useful molecular taxonomic profile since females of Melittobia species are superficially similar. Amplification of the Wolbachia surface protein gene (wsp) confirmed the presence of this endosymbiont in both populations. Sequencing revealed that the Wolbachia harbored in both populations exhibited a wsp belonging to a unique subgroup (denoted here as Dig) within the B-supergroup of known wsp genes. This new subgroup of wsp may either belong to a different strain of Wolbachia from those previously found to infect Melittobia or may be the result of a recombination event. In either case, known hosts of Wolbachia with a wsp of this subgroup are only distantly related taxonomically. Reasons are advanced as to why Melittobia - an easily reared and managed parasitoid - holds promise as an instructive model organism of Wolbachia infection amenable to the investigation of Wolbachia strains among its diverse hosts. (author)

  19. Wolbachia in two populations of Melittobia digitata Dahms (Hymenoptera: Eulophidae)

    International Nuclear Information System (INIS)

    We investigated two populations of Melittobia digitata Dahms, a gregarious parasitoid (primarily upon a wide range of solitary bees, wasps, and flies), in search of Wolbachia infection. The first population, from Xalapa, Mexico, was originally collected from and reared on Mexican fruit fly pupae, Anastrepha ludens Loew (Diptera: Tephritidae); the other, from Athens, Georgia, was collected from and reared on prepupae of mud dauber wasps, Trypoxylon politum Say (Hymenoptera: Crabronidae). PCR studies of the ITS2 region corroborated that both parasitoid populations were the same species; this potentially provides a useful molecular taxonomic profile since females of Melittobia species are superficially similar. Amplification of the Wolbachia surface protein gene (wsp) confirmed the presence of this endosymbiont in both populations. Sequencing revealed that the Wolbachia harbored in both populations exhibited a wsp belonging to a unique subgroup (denoted here as Dig) within the B-supergroup of known wsp genes. This new subgroup of wsp may either belong to a different strain of Wolbachia from those previously found to infect Melittobia or may be the result of a recombination event. In either case, known hosts of Wolbachia with a wsp of this subgroup are only distantly related taxonomically. Reasons are advanced as to why Melittobia - an easily reared and managed parasitoid - holds promise as an instructive model organism of Wolbachia infection amenable to the investigation of Wolbachia strains among its diverse hosts. (author)

  20. Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti

    Directory of Open Access Journals (Sweden)

    Walker Thomas

    2009-01-01

    Full Text Available Abstract Background The evolutionary importance of horizontal gene transfer (HGT from Wolbachia endosymbiotic bacteria to their eukaryotic hosts is a topic of considerable interest and debate. Recent transfers of genome fragments from Wolbachia into insect chromosomes have been reported, but it has been argued that these fragments may be on an evolutionary trajectory to degradation and loss. Results We have discovered a case of HGT, involving two adjacent genes, between the genomes of Wolbachia and the currently Wolbachia-uninfected mosquito Aedes aegypti, an important human disease vector. The lower level of sequence identity between Wolbachia and insect, the transcription of all the genes involved, and the fact that we have identified homologs of the two genes in another Aedes species (Ae. mascarensis, suggest that these genes are being expressed after an extended evolutionary period since horizontal transfer, and therefore that the transfer has functional significance. The association of these genes with Wolbachia prophage regions also provides a mechanism for the transfer. Conclusion The data support the argument that HGT between Wolbachia endosymbiotic bacteria and their hosts has produced evolutionary innovation.

  1. Correction: Serendipitous discovery of Wolbachia genomes in multiple Drosophila species

    OpenAIRE

    Salzberg, Steven L.; Julie C Dunning Hotopp; Delcher, Arthur L; Pop, Mihai; Smith, Douglas R; Eisen, Michael B; Nelson, William C.

    2005-01-01

    A correction to Serendipitous discovery of Wolbachia genomes in multiple Drosophila species by SL Salzberg, JC Dunning Hotopp, AL Delcher, M Pop, DR Smith, MB Eisen and WC Nelson. Genome Biology 2005, 6:R23

  2. Detection of Wolbachia in wild Tunisian populations of Ceratitis capitata

    International Nuclear Information System (INIS)

    For the pest management programmes, we used the Wolbavhia pipientis, this bacteria caused a hight sterility in the medfly. by the technique of molecular biology, we have detect the Wolbachia pipientis in the wild populations in Tunisia.

  3. Autophagy regulates Wolbachia populations across diverse symbiotic associations

    OpenAIRE

    Voronin, Denis; Cook, Darren A. N.; Steven, Andrew; Taylor, Mark J

    2012-01-01

    Wolbachia are widespread and abundant intracellular symbionts of arthropods and filarial nematodes. Their symbiotic relationships encompass obligate mutualism, commensalism, parasitism, and pathogenicity. A consequence of these diverse associations is that Wolbachia encounter a wide range of host cells and intracellular immune defense mechanisms of invertebrates, which they must evade to maintain their populations and spread to new hosts. Here we show that autophagy, a conserved intracellular...

  4. Addition of wsp sequences to the Wolbachia phylogenetic tree and stability of the classification.

    Science.gov (United States)

    Pintureau, B; Chaudier, S; Lassablière, F; Charles, H; Grenier, S

    2000-10-01

    Wolbachia are symbiotic bacteria altering reproductive characters of numerous arthropods. Their most recent phylogeny and classification are based on sequences of the wsp gene. We sequenced wsp gene from six Wolbachia strains infecting six Trichogramma species that live as egg parasitoids on many insects. This allows us to test the effect of the addition of sequences on the Wolbachia phylogeny and to check the classification of Wolbachia infecting Trichogramma. The six Wolbachia studied are classified in the B supergroup. They confirm the monophyletic structure of the B Wolbachia in Trichogramma but introduce small differences in the Wolbachia classification. Modifications include the definition of a new group, Sem, for Wolbachia of T. semblidis and the merging of the two closely related groups, Sib and Kay. Specific primers were determined and tested for the Sem group. PMID:11040288

  5. Current research trends on the entosymbiont Wolbachia in insects%Wolbachia与昆虫寄主关系研究进展

    Institute of Scientific and Technical Information of China (English)

    王哲; 乔格侠

    2011-01-01

    Wolbachia pipientis是一种广泛存在于节肢动物和线虫生殖组织中的细胞内共生菌,通过母系生殖细胞在寄主种群内垂直传播.据分析,Wolbachia在昆虫中的感染率大约为66%,是昆虫中分布最广泛的胞内共生菌.Wolbachia能够以多种方式调控寄主的生殖行为,包括诱导细胞质不亲和、诱导孤雌生殖、雌性化、杀雄作用等.近10年来,Wolbachia的研究在多个领域都取得了长足进展.本文介绍了Wolbachia的多样性与分布、对寄主生殖行为的影响、基因组结构,以及其与寄主在基因组水平上的相互作用等领域的最新研究成果,并展望了Wolbachia研究的发展趋势.%Wolbachia pipientis is a common and maternally inherited endosymbiont that resides in the reproductive tissues of many arthropods and nematodes. Recent surveys have found Wolbachia in over 66% of insect species. As a microbial manipulator, Wolbachia can cause a number of reproductive alterations in its hosts, such as cytoplasmic incompatibility (CI) , inducing parthenogenesis (PI) , feminization and male-killing. Considerable progress in research on Wolbachia has been made in the past 10 years. In this paper, the biology of Wolbachia is reviewed, including its distribution, diversity, genome, mitochondrial DNA polymorphism, horizontal gene transfer to hosts and phenotypic effects on host. Directions for future research are also discussed.

  6. Application of wMelPop Wolbachia Strain to Crash Local Populations of Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Scott A Ritchie

    Full Text Available The endosymbiotic bacteria Wolbachia pipientis (wMel strain has been successfully established in several populations of Aedes aegypti, the primary dengue vector. The virulent Wolbachia strain wMelPop is known to cause several pathological impacts (increased egg mortality, life shortening, etc. reducing overall fitness in the mosquito Ae. aegypti. Increased egg mortality could substantially reduce egg banks in areas with a lengthy monsoonal dry season, and be employed to eliminate local populations. We tested this application under semi-field cage conditions. First, we determined that wMelPop infection significantly reduced the survival of desiccation-resistant eggs of the dengue vector Ae. aegypti, with shade and temperature having a significant impact; nearly all wMelPop-infected eggs failed to hatch after 6 and 10 weeks in summer and winter conditions, respectively. In laboratory selection experiments we found that egg desiccation resistance can be increased by selection, and that this effect of wMelPop infection is due to the nuclear background of the host rather than Wolbachia. We then conducted an invasion of wMelPop within a semi-field cage using sustained weekly releases of wMelPop infected mosquitoes, with fixation achieved after 9 weeks. The egg populations wMelPop infected and an uninfected control were then subjected to a simulated prolonged monsoonal dry season (2.5 months before flooding to induce hatching. The wMelPop infected eggs suffered significantly greater mortality than the controls, with only 0.67% and 4.35% of respective infected and uninfected eggs held in 99% shade hatching after 80 days. These studies suggest that wMelPop could be used to locally eliminate populations of Ae. aegypti that are exposed to prolonged dry conditions, particularly if combined with vector control.

  7. Temperature-induced dissociation reaction and dynamics of light-harvesting complex Ⅱ isolated from purple photosynthetic bacterium Rps. palustris

    Institute of Scientific and Technical Information of China (English)

    FENG Juan; LI XueFeng; LIU Yuan

    2007-01-01

    Steady-state absorption spectroscopy, circular dichroism, and resonance Raman spectroscopy have been used to investigate the thermal stability of LH2 complex isolated from purple photosynthetic bacterium Rps. Palustris. The results show that: 1) upon increasing the temperature, a transition from B800 and B850 to free bacteriochlorophyll (B780) happens; 2) a gradual decrease and disappearance of CD signal in visible region occur; 3) a shift of the frequency, belonging to C=C and C-C stretching vibration, to higher wavenumber takes place. It is suggested that LH2 complex can be dissociated in the presence of B800, B850 and carotenoids simultaneously. Single-exponential fitting on the dynamic decay curves gives the apparent time constants of hundreds of minutes for various pigments.

  8. Evolutionary history of Wolbachia infections in the fire ant Solenopsis invicta

    Directory of Open Access Journals (Sweden)

    Shoemaker Dewayne

    2005-05-01

    Full Text Available Abstract Background Wolbachia are endosymbiotic bacteria that commonly infect numerous arthropods. Despite their broad taxonomic distribution, the transmission patterns of these bacteria within and among host species are not well understood. We sequenced a portion of the wsp gene from the Wolbachia genome infecting 138 individuals from eleven geographically distributed native populations of the fire ant Solenopsis invicta. We then compared these wsp sequence data to patterns of mitochondrial DNA (mtDNA variation of both infected and uninfected host individuals to infer the transmission patterns of Wolbachia in S. invicta. Results Three different Wolbachia (wsp variants occur within S. invicta, all of which are identical to previously described strains in fire ants. A comparison of the distribution of Wolbachia variants within S. invicta to a phylogeny of mtDNA haplotypes suggests S. invicta has acquired Wolbachia infections on at least three independent occasions. One common Wolbachia variant in S. invicta (wSinvictaB is associated with two divergent mtDNA haplotype clades. Further, within each of these clades, Wolbachia-infected and uninfected individuals possess virtually identical subsets of mtDNA haplotypes, including both putative derived and ancestral mtDNA haplotypes. The same pattern also holds for wSinvictaA, where at least one and as many as three invasions into S. invicta have occurred. These data suggest that the initial invasions of Wolbachia into host ant populations may be relatively ancient and have been followed by multiple secondary losses of Wolbachia in different infected lineages over time. Finally, our data also provide additional insights into the factors responsible for previously reported variation in Wolbachia prevalence among S. invicta populations. Conclusion The history of Wolbachia infections in S. invicta is rather complex and involves multiple invasions or horizontal transmission events of Wolbachia into this

  9. The diversity and evolution of Wolbachia ankyrin repeat domain genes.

    Directory of Open Access Journals (Sweden)

    Stefanos Siozios

    Full Text Available Ankyrin repeat domain-encoding genes are common in the eukaryotic and viral domains of life, but they are rare in bacteria, the exception being a few obligate or facultative intracellular Proteobacteria species. Despite having a reduced genome, the arthropod strains of the alphaproteobacterium Wolbachia contain an unusually high number of ankyrin repeat domain-encoding genes ranging from 23 in wMel to 60 in wPip strain. This group of genes has attracted considerable attention for their astonishing large number as well as for the fact that ankyrin proteins are known to participate in protein-protein interactions, suggesting that they play a critical role in the molecular mechanism that determines host-Wolbachia symbiotic interactions. We present a comparative evolutionary analysis of the wMel-related ankyrin repeat domain-encoding genes present in different Drosophila-Wolbachia associations. Our results show that the ankyrin repeat domain-encoding genes change in size by expansion and contraction mediated by short directly repeated sequences. We provide examples of intra-genic recombination events and show that these genes are likely to be horizontally transferred between strains with the aid of bacteriophages. These results confirm previous findings that the Wolbachia genomes are evolutionary mosaics and illustrate the potential that these bacteria have to generate diversity in proteins potentially involved in the symbiotic interactions.

  10. Conservation of the Type IV secretion system throughout Wolbachia evolution

    DEFF Research Database (Denmark)

    Pichon, Samuel; Bouchon, Didier; Cordaux, Richard;

    2009-01-01

    The Type IV Secretion System (T4SS) is an efficient pathway with which bacteria can mediate the transfer of DNA and/or proteins to eukaryotic cells. In Wolbachia pipientis, a maternally inherited obligate endosymbiont of arthropods and nematodes, two operons of vir genes, virB3-B6 and virB8-D4...

  11. The research progress in Wolbachia bacteria in the parasitic wasps%寄生蜂体内共生菌Wolbachia研究进展

    Institute of Scientific and Technical Information of China (English)

    刘淑平; 徐红星; 郑许松; 吕仲贤

    2011-01-01

    Wolbachia is a kind of cytoplasmically inherited bacteria and widely found in reproductive tissues of arthropods. Wolbachia have evolved various mechanisms on manipulating reproduction of their hosts, including induction of cytoplasmic incompatipility (CI), parthenogenesis inducing (PI), genetic male feminization and male killing. Wolbachia species distribution and differentiation, transmission ways in or between host parasitoids and their impact in the biological characteristics of infested parasitoids were summarized, meanwhile the effect of temperature on the performances of parasitic wasps through Wolbachia bacteria was expounded. The potential capacities of parasitoids in insect pest natural control enhanced by genetically manipulating Wolbachia bacteria in parasitic wasps were discussed also.%Wolbachia是广泛分布在节肢动物生殖组织中的细胞质遗传细菌,在寄生蜂中可以通过诱导胞质不亲和、孤雌生殖、雄性雌性化和杀雄等多种方式调节寄主的生殖.本文在综述了寄生蜂体内共生菌Wolbachia的类群和分化、传播方式及其对寄主生物学特性的影响、温度通过对Wolbachia的作用而影响寄生蜂的表现等基础上,讨论了如何利用寄生蜂体内Wolbachia提高寄生蜂自然控制害虫的能力.

  12. Wolbachia-mediated sperm modification is dependent on the host genotype in Drosophila.

    OpenAIRE

    McGraw, E.A.; MERRITT, D. J.; Droller, J. N.; O'Neill, S. L.

    2001-01-01

    Estimates of Wolbachia density in the eggs, testes and whole flies of drosophilid hosts have been unable to predict the lack of cytoplasmic incompatibility (CI) expression in so-called mod(-) variants. Consequently, the working hypothesis has been that CI expression, although related to Wolbachia density, is also governed by unknown factors that are influenced by both host and bacterial genomes. Here, we compare the behaviour of the mod(-) over-replicating Wolbachia popcorn strain in its nati...

  13. Wolbachia Associations with Insects: Winning or Losing Against a Master Manipulator

    OpenAIRE

    Correa, Claudia C.; Ballard, J. W. O.

    2016-01-01

    Wolbachia are intracellular, maternally inherited bacteria with an impressive history of adaptation to intracellular lifestyles. Instead of adapting to a single host lineage, Wolbachia evolved ways to jump across host species and establish relatively stable associations maintained through vertical transmission. Wolbachia are capable of manipulating the reproduction of infected hosts in a remarkable way. Traditionally, such reproductive manipulations have been regarded as the general mechanism...

  14. Wolbachia pipientis is associated with different mitochondrial haplotypes in natural populations of Drosophila willistoni.

    Science.gov (United States)

    Müller, Mário Josias; von Mühlen, Carine; Valiati, Victor Hugo; da Silva Valente, Vera Lúcia

    2012-01-01

    The prevalence of the endosymbiont Wolbachia pipientis and its effects on mitochondrial genetic diversity were analyzed in natural populations of Drosophila willistoni, a neotropical species recently infected. Total infection rate was 55% and no evidence was found that the Wolbachia infection decreased the diversity of mtDNA. Wolbachia was seen to be associated with different mitochondria, suggesting multiple horizontal transmission events and/or transmission paternal leakage of mitochondrial and/or Wolbachia. These hypotheses are evaluated in the context of the present study and other research. PMID:21945051

  15. Fourier transform infrared spectroscopic characterisation of heavy metal-induced metabolic changes in the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Antonyuk, L. P.; Tugarova, A. V.; Tarantilis, P. A.; Polissiou, M. G.; Gardiner, P. H. E.

    2002-06-01

    Structural and compositional features of whole cells of the plant-growth-promoting rhizobacterium Azospirillum brasilense Sp7 under standard and heavy metal-stressed conditions are analysed using Fourier transform infrared (FTIR) spectroscopy and compared with the FT-Raman spectroscopic data obtained previously [J. Mol. Struct. 563-564 (2001) 199]. The structural spectroscopic information is considered together with inductively coupled plasma-mass spectrometric (ICP-MS) analytical data on the content of the heavy metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells. As a bacterial response to heavy metal stress, all the three metals, being taken up by bacterial cells from the culture medium (0.2 mM) in significant amounts (ca. 0.12, 0.48 and 4.2 mg per gram of dry biomass for Co, Cu and Zn, respectively), are shown to induce essential metabolic changes in the bacterium revealed in the spectra, including the accumulation of polyester compounds in bacterial cells and their enhanced hydration affecting certain IR vibrational modes of functional groups involved.

  16. Genetic responses induced in olive roots upon colonization by the biocontrol endophytic bacterium Pseudomonas fluorescens PICF7.

    Directory of Open Access Journals (Sweden)

    Elisabetta Schilirò

    Full Text Available Knowledge on the genetic basis underlying interactions between beneficial bacteria and woody plants is still very limited, and totally absent in the case of olive. We aimed to elucidate genetic responses taking place during the colonization of olive roots by the native endophyte Pseudomonas fluorescens PICF7, an effective biocontrol agent against Verticillium wilt of olive. Roots of olive plants grown under non-gnotobiotic conditions were collected at different time points after PICF7 inoculation. A Suppression Subtractive Hybridization cDNA library enriched in induced genes was generated. Quantitative real time PCR (qRT-PCR analysis validated the induction of selected olive genes. Computational analysis of 445 olive ESTs showed that plant defence and response to different stresses represented nearly 45% of genes induced in PICF7-colonized olive roots. Moreover, quantitative real-time PCR (qRT-PCR analysis confirmed induction of lipoxygenase, phenylpropanoid, terpenoids and plant hormones biosynthesis transcripts. Different classes of transcription factors (i.e., bHLH, WRKYs, GRAS1 were also induced. This work highlights for the first time the ability of an endophytic Pseudomonas spp. strain to mount a wide array of defence responses in an economically-relevant woody crop such as olive, helping to explain its biocontrol activity.

  17. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome.

    Science.gov (United States)

    Roopchand, Diana E; Carmody, Rachel N; Kuhn, Peter; Moskal, Kristin; Rojas-Silva, Patricio; Turnbaugh, Peter J; Raskin, Ilya

    2015-08-01

    Dietary polyphenols protect against metabolic syndrome, despite limited absorption and digestion, raising questions about their mechanism of action. We hypothesized that one mechanism may involve the gut microbiota. To test this hypothesis, C57BL/6J mice were fed a high-fat diet (HFD) containing 1% Concord grape polyphenols (GP). Relative to vehicle controls, GP attenuated several effects of HFD feeding, including weight gain, adiposity, serum inflammatory markers (tumor necrosis factor [TNF]α, interleukin [IL]-6, and lipopolysaccharide), and glucose intolerance. GP lowered intestinal expression of inflammatory markers (TNFα, IL-6, inducible nitric oxide synthase) and a gene for glucose absorption (Glut2). GP increased intestinal expression of genes involved in barrier function (occludin) and limiting triglyceride storage (fasting-induced adipocyte factor). GP also increased intestinal gene expression of proglucagon, a precursor of proteins that promote insulin production and gut barrier integrity. 16S rRNA gene sequencing and quantitative PCR of cecal and fecal samples demonstrated that GP dramatically increased the growth of Akkermansia muciniphila and decreased the proportion of Firmicutes to Bacteroidetes, consistent with prior reports that similar changes in microbial community structure can protect from diet-induced obesity and metabolic disease. These data suggest that GP act in the intestine to modify gut microbial community structure, resulting in lower intestinal and systemic inflammation and improved metabolic outcomes. The gut microbiota may thus provide the missing link in the mechanism of action of poorly absorbed dietary polyphenols. PMID:25845659

  18. Acetone extract from Streptoverticillium sp., a bacterium isolated from Brazilian Cerrado soil, induces anti-inflammatory activity in mice.

    Science.gov (United States)

    Da Cruz, Rodrigo B; Galdino, Pablinny M; Penna, Karlla G B D; Hoffmann, Karen; Costa, Elson A; Bataus, Luiz A M

    2013-01-01

    The Streptoverticillium sp. Z1 is an actinomycete isolated from the soil under Cerrado vegetation, the extract of this strain was investigated in nociceptive and inflammatory models. The Streptoverticillium extract (ExS) 50 and 100 mg/kg (s.c.) produced a significant inhibition of acetic acid-induced abdominal writhings thereby demonstrating an anti-nociceptive effect. In the tail flick test the ExS (s.c.) was inactive. This result implited that ExS does not contain opioid-like compounds with central analgesic properties. In the inflammatory models, ExS 100 and 200 mg/kg (s.c.) were able to inhibit the croton oil-induced ear edema and, ExS 200 and 500 mg/kg (s.c.) inhibited the leukocyte migration on the carrageenan-induced peritonitis. The phospholipase A2 enzymatic assay showed that the anti-inflammatory activity of ExS was not due to direct effect on phospholipase A2 activity. These data suggest that Streptoverticillium sp. produces metabolites with anti-inflammatory effect and that these metabolites are unable to directly inhibit phospholipase A2 enzyme. PMID:23828355

  19. Diversity and recombination in Wolbachia and Cardinium from Bryobia spider mites

    Directory of Open Access Journals (Sweden)

    Ros Vera I D

    2012-01-01

    Full Text Available Abstract Background Wolbachia and Cardinium are endosymbiotic bacteria infecting many arthropods and manipulating host reproduction. Although these bacteria are maternally transmitted, incongruencies between phylogenies of host and parasite suggest an additional role for occasional horizontal transmission. Consistent with this view is the strong evidence for recombination in Wolbachia, although it is less clear to what extent recombination drives diversification within single host species and genera. Furthermore, little is known concerning the population structures of other insect endosymbionts which co-infect with Wolbachia, such as Cardinium. Here, we explore Wolbachia and Cardinium strain diversity within nine spider mite species (Tetranychidae from 38 populations, and quantify the contribution of recombination compared to point mutation in generating Wolbachia diversity. Results We found a high level of genetic diversity for Wolbachia, with 36 unique strains detected (64 investigated mite individuals. Sequence data from four Wolbachia genes suggest that new alleles are 7.5 to 11 times more likely to be generated by recombination than point mutation. Consistent with previous reports on more diverse host samples, our data did not reveal evidence for co-evolution of Wolbachia with its host. Cardinium was less frequently found in the mites, but also showed a high level of diversity, with eight unique strains detected in 15 individuals on the basis of only two genes. A lack of congruence among host and Cardinium phylogenies was observed. Conclusions We found a high rate of recombination for Wolbachia strains obtained from host species of the spider mite family Tetranychidae, comparable to rates found for horizontally transmitted bacteria. This suggests frequent horizontal transmission of Wolbachia and/or frequent horizontal transfer of single genes. Our findings strengthens earlier reports of recombination for Wolbachia, and shows that high

  20. Detection of Wolbachia endobacteria in Culex quinquefasciatus by Gimenez staining and confirmation by PCR

    Directory of Open Access Journals (Sweden)

    M. Muniaraj, R. Paramasivan, I.P. Sunish, N. Arunachalam, T. Mariappan, S. Victor Jerald Leo & K.J. Dhananjeyan

    2012-12-01

    Full Text Available Background & objectives: Wolbachia are common intracellular bacteria that are found in arthropods and nematodes.These endosymbionts are transmitted vertically through host eggs and alter host biology in diverse ways, includingthe induction of reproductive manipulations, such as feminization, parthenogenesis, male killing and sperm-eggincompatibility. Since they can also move horizontally across species boundaries, Wolbachia is gaining importancein recent days as it could be used as a biological control agent to control vector mosquitoes or for paratransgenicapproaches. However, the study of Wolbachia requires sophisticated techniques such as PCR and cell culturefacilities which cannot be affordable for many laboratories where the diseases transmitted by arthropod vectorsare common. Hence, it would be beneficial to develop a simple method to detect the presence of Wolbachia inarthropods.Method: In this study, we described a method of staining Wolbachia endobacteria, present in the reproductivetissues of mosquitoes. The reliability of this method was compared with Gram staining and PCR based detection.Results: The microscopic observation of the Gimenez stained smear prepared from the teased ovary of wildcaught and Wolbachia (+ Cx. quinquefasciatus revealed the presence of pink coloured pleomorphic cells ofWolbachia ranging from cocci, comma shaped cells to bacillus and chain forms. The ovaries of Wolbachia (–cured mosquito did not show any cell. Although Gram’s staining is a reliable differential staining for the otherbacteria, the bacterial cells in the smears from the ovaries of wild caught mosquitoes did not take the stain properlyand the cells were not clearly visible. The PCR amplified product from the pooled remains of wild caught andWolbachia (+ Cx. quinquefasciatus showed clear banding, whereas, no banding was observed for the negativecontrol (distilled water and Wolbachia (– Cx. quinquefasciatus.Interpretation & conclusion: The

  1. The native Wolbachia symbionts limit transmission of dengue virus in Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Laurence Mousson

    Full Text Available BACKGROUND: The chikungunya (CHIK outbreak that struck La Reunion Island in 2005 was preceded by few human cases of Dengue (DEN, but which surprisingly did not lead to an epidemic as might have been expected in a non-immune population. Both arboviral diseases are transmitted to humans by two main mosquito species, Aedes aegypti and Aedes albopictus. In the absence of the former, Ae. albopictus was the only species responsible for viral transmission on La Reunion Island. This mosquito is naturally super-infected with two Wolbachia strains, wAlbA and wAlbB. While Wolbachia does not affect replication of CHIK virus (CHIKV in Ae. albopictus, a similar effect was not observed with DEN virus (DENV. METHODS/PRINCIPAL FINDINGS: To understand the weak vectorial status of Ae. albopictus towards DENV, we used experimental oral infections of mosquitoes from La Reunion Island to characterize the impact of Wolbachia on DENV infection. Viral loads and Wolbachia densities were measured by quantitative PCR in different organs of Ae. albopictus where DENV replication takes place after ingestion. We found that: (i Wolbachia does not affect viral replication, (ii Wolbachia restricts viral density in salivary glands, and (iii Wolbachia limits transmission of DENV, as infectious viral particles were only detected in the saliva of Wolbachia-uninfected Ae. albopictus, 14 days after the infectious blood-meal. CONCLUSIONS: We show that Wolbachia does not affect the replication of DENV in Ae. albopictus. However, Wolbachia is able to reduce viral infection of salivary glands and limit transmission, suggesting a role of Wolbachia in naturally restricting the transmission of DENV in Ae. albopictus from La Reunion Island. The extension of this conclusion to other Ae. albopictus populations should be investigated.

  2. Shigella IpaB and IpaD displayed on L. lactis bacterium-like particles induce protective immunity in adult and infant mice.

    Science.gov (United States)

    Heine, Shannon J; Franco-Mahecha, Olga L; Chen, Xiaotong; Choudhari, Shyamal; Blackwelder, William C; van Roosmalen, Maarten L; Leenhouts, Kees; Picking, Wendy L; Pasetti, Marcela F

    2015-08-01

    Shigella spp. are among the enteric pathogens with the highest attributable incidence of moderate-to-severe diarrhea in children under 5 years of age living in endemic areas. There are no vaccines available to prevent this disease. In this work, we investigated a new Shigella vaccine concept consisting of nonliving, self-adjuvanted, Lactococcus lactis bacterium-like particles (BLP) displaying Shigella invasion plasmid antigen (Ipa) B and IpaD and examined its immunogenicity and protective efficacy in adult and newborn/infant mice immunized via the nasal route. Unique advantages of this approach include the potential for broad protection due to the highly conserved structure of the Ipas and the safety and practicality of a probiotic-based mucosal/adjuvant delivery platform. Immunization of adult mice with BLP-IpaB and BLP-IpaD (BLP-IpaB/D) induced high levels of Ipa-specific serum IgG and stool IgA in a dose-dependent manner. Immune responses and protection were enhanced by BLP delivery. Vaccine-induced serum antibodies exhibited opsonophagocytic and cytotoxic neutralizing activity, and IpaB/D IgG titers correlated with increased survival post-challenge. Ipa-specific antibody secreting cells were detected in nasal tissue and lungs, as well as IgG in bronchoalveolar lavage. Bone marrow cells produced IpaB/D-specific antibodies and contributed to protection after adoptive transfer. The BLP-IpaB/D vaccine conferred 90% and 80% protection against S. flexneri and S. sonnei, respectively. Mice immunized with BLP-IpaB/D as newborns also developed IpaB and IpaD serum antibodies; 90% were protected against S. flexneri and 44% against S. sonnei. The BLP-IpaB/D vaccine is a promising candidate for safe, practical and potentially effective immunization of children against shigellosis. PMID:25776843

  3. Lutzomyia sand fly diversity and rates of infection by Wolbachia and an exotic Leishmania species on Barro Colorado Island, Panama.

    Directory of Open Access Journals (Sweden)

    Jorge Azpurua

    Full Text Available BACKGROUND: Sand flies (Diptera, Psychodidae, Phlebotominae in the genus Lutzomyia are the predominant vectors of the protozoan disease leishmaniasis in the New World. Within the watershed of the Panama Canal, the cutaneous form of leishmaniasis is a continuous health threat for residents, tourists and members of an international research community. Here we report the results of screening a tropical forest assemblage of sand fly species for infection by both Leishmania and a microbe that can potentially serve in vector population control, the cytoplasmically transmitted rickettsia, Wolbachia pipientis. Knowing accurately which Lutzomyia species are present, what their evolutionary relationships are, and how they are infected by strains of both Leishmania and Wolbachia is of critical value for building strategies to mitigate the impact of this disease in humans. METHODOLOGY AND FINDINGS: We collected, sorted and then used DNA sequences to determine the diversity and probable phylogenetic relationships of the Phlebotominae occurring in the understory of Barro Colorado Island in the Republic of Panama. Sequence from CO1, the DNA barcoding gene, supported 18 morphology-based species determinations while revealing the presence of two possible "cryptic" species, one (Lu. sp. nr vespertilionis within the Vespertilionis group, the other (Lu. gomezi within the Lutzomyia-cruciata series. Using ITS-1 and "minicircle" primers we detected Leishmania DNA in 43.3% of Lu. trapidoi, 26.3% of Lu. gomezi individuals and in 0% of the other 18 sand fly species. Identical ITS-1 sequence was obtained from the Leishmania infecting Lu. trapidoi and Lu. gomezi, sequence which was 93% similar to Leishmania (viannia naiffi in GenBank, a species previously unknown in Panama, but recognized as a type of cutaneous leishmaniasis vectored broadly across northern and central South America. Distinct strains of the intracellular bacterium Wolbachia were detected in three of 20

  4. Modified technique of Wolbachia removal from Malaysian Aedes albopictus

    Institute of Scientific and Technical Information of China (English)

    Sylvia; Joanne; Indra; Vythilingam; Nava; Yugavathy; Jonathan; Inbaraj; Doss

    2014-01-01

    Objective:To develop an artificial and modified Wolbaehia removal technique using tetracycline from naturally Wolbachia infected Aedes albopictus(Ae.albopictus)so as to be able to produce generations of Wolbaehia free offsprings.Methods:In this study,seven different tetracycline treatment methods were conducted to obtain the best removal method.Four methods focused on larvae tetracycline treatment,one method on both larvae and adult tetracycline treatment and the last two methods on adult mosquito sucrose treatment.Results:All larval tetracycline treatments resulted in either high larvae mortality,sterile F_o adult mosquitoes or unsuccessful Wolbaehia removal.Treatment of both larvae and adults resulted in reduced larvae mortality,successful Wolbachia removal but slow mosquito fecundity.As for the adult treatment,1.0 mg/mL as previously published was not aisle to completely remove Wolbaehia in F,generation whereas 1.25 mg/mL successfully removed Wolbachia from F,and F,mosquitoes in 2 weeks.Conclusions:This method is different from the previously published methods as it provides an improved Watbachia removal technique from Ae.albopictus with high egg hatchability.low larvae mortality,increased fecundity and better Wolbaehia removal rate.

  5. Survey on the Ability of Wolbachia to Control Human Viral, Protozoan, and Filarial Disease Pathogens

    Directory of Open Access Journals (Sweden)

    Garedaghi Yagoob

    2014-04-01

    Full Text Available Objective: Most human filarial nematode parasites and arthropods are hosts for a bacterial endosymbiont, Wolbachia. In filariasis, Wolbachia are required for normal development, fertility, and survival. However, in arthropods, Wolbachia are largely parasitic and can influence development and reproduction, but are generally not required for host survival. Materials and Methods: Due to their obligate nature in filarial parasites, Wolbachia have been a target for drug discovery initiatives using several approaches including diversity and focused library screening and genomic sequence analysis. Results: In vitro and in vivo anti-Wolbachia antibiotic treatments have been shown to have adulticidal activity, a long sought goal of filarial parasite drug discovery. In mosquitoes, it has been shown that the presence of Wolbachia can inhibit the transmission of certain viruses, such as dengue, chikungunya, yellow fever, West Nile, as well as the infectivity of the malaria-causing protozoan, Plasmodium and filarial nematodes. Conclusion: Wolbachia can cause a form of conditional sterility that can be used to suppress populations of mosquitoes and additional medically important insects. Thus, Wolbachia, a pandemic endosymbiont, offers great potential for elimination of a wide-variety of devastating human diseases.

  6. Influence of oxidative homeostasis on bacterial density and cost of infection in Drosophila-Wolbachia symbioses.

    Science.gov (United States)

    Monnin, D; Kremer, N; Berny, C; Henri, H; Dumet, A; Voituron, Y; Desouhant, E; Vavre, F

    2016-06-01

    The evolution of symbioses along the continuum between parasitism and mutualism can be influenced by the oxidative homeostasis, that is the balance between reactive oxygen species (ROS) and antioxidant molecules. Indeed, ROS can contribute to the host immune defence to regulate symbiont populations, but are also toxic. This interplay between ROS and symbiosis is notably exemplified by recent results in arthropod-Wolbachia interactions. Wolbachia are symbiotic bacteria involved in a wide range of interactions with their arthropods hosts, from facultative, parasitic associations to obligatory, mutualistic ones. In this study, we used Drosophila-Wolbachia associations to determine whether the oxidative homeostasis plays a role in explaining the differences between phenotypically distinct arthropod-Wolbachia symbioses. We used Drosophila lines with different Wolbachia infections and measured the effects of pro-oxidant (paraquat) and antioxidant (glutathione) treatments on the Wolbachia density and the host survival. We show that experimental manipulations of the oxidative homeostasis can reduce the cost of the infection through its effect on Wolbachia density. We discuss the implication of this result from an evolutionary perspective and argue that the oxidative homeostasis could underlie the evolution of tolerance and dependence on Wolbachia. PMID:26999590

  7. Wolbachia infection does not alter attraction of the mosquito Aedes (Stegomyia) aegypti to human odours

    NARCIS (Netherlands)

    Turley, A.P.; Smallegange, R.C.; Takken, W.; Zalucki, M.P.; O'Neill, S.L.; McGraw, E.A.

    2014-01-01

    The insect endosymbiont Wolbachia pipientis (Rickettsiales: Rickettsiaceae) is undergoing field trials around the world to determine if it can reduce transmission of dengue virus from the mosquito Stegomyia aegypti to humans. Two different Wolbachia strains have been released to date. The primary ef

  8. Comparing the mitochondrial genomes of Wolbachia-dependent and independent filarial nematode species

    Directory of Open Access Journals (Sweden)

    McNulty Samantha N

    2012-04-01

    Full Text Available Abstract Background Many species of filarial nematodes depend on Wolbachia endobacteria to carry out their life cycle. Other species are naturally Wolbachia-free. The biological mechanisms underpinning Wolbachia-dependence and independence in filarial nematodes are not known. Previous studies have indicated that Wolbachia have an impact on mitochondrial gene expression, which may suggest a role in energy metabolism. If Wolbachia can supplement host energy metabolism, reduced mitochondrial function in infected filarial species may account for Wolbachia-dependence. Wolbachia also have a strong influence on mitochondrial evolution due to vertical co-transmission. This could drive alterations in mitochondrial genome sequence in infected species. Comparisons between the mitochondrial genome sequences of Wolbachia-dependent and independent filarial worms may reveal differences indicative of altered mitochondrial function. Results The mitochondrial genomes of 5 species of filarial nematodes, Acanthocheilonema viteae, Chandlerella quiscali, Loa loa, Onchocerca flexuosa, and Wuchereria bancrofti, were sequenced, annotated and compared with available mitochondrial genome sequences from Brugia malayi, Dirofilaria immitis, Onchocerca volvulus and Setaria digitata. B. malayi, D. immitis, O. volvulus and W. bancrofti are Wolbachia-dependent while A. viteae, C. quiscali, L. loa, O. flexuosa and S. digitata are Wolbachia-free. The 9 mitochondrial genomes were similar in size and AT content and encoded the same 12 protein-coding genes, 22 tRNAs and 2 rRNAs. Synteny was perfectly preserved in all species except C. quiscali, which had a different order for 5 tRNA genes. Protein-coding genes were expressed at the RNA level in all examined species. In phylogenetic trees based on mitochondrial protein-coding sequences, species did not cluster according to Wolbachia dependence. Conclusions Thus far, no discernable differences were detected between the mitochondrial

  9. Effect of Wolbachia on insecticide susceptibility in lines of Aedes aegypti.

    Science.gov (United States)

    Endersby, N M; Hoffmann, A A

    2013-06-01

    Two stable infections of Wolbachia pipientis, wMelPop and wMel, now established in Aedes aegypti, are being used in a biocontrol program to suppress the transmission of dengue. Any effects of Wolbachia infection on insecticide resistance of mosquitoes may undermine the success of this program. Bioassays of Ae. aegypti were conducted to test for differences in response to insecticides between Wolbachia infected (wMelPop, wMel) and uninfected lines. Insecticides screened were bifenthrin, the pyrethroid commonly used for adult knockdown, as well as larvicides: Bacillus thuringiensis var. israelensis, the organophosphate, temephos and the insect growth regulator, s-methoprene. While differences in response between lines were detected for some insecticides, no obvious or consistent effects related to presence of Wolbachia infection were observed. Spreading Wolbachia infections are, therefore, unlikely to affect the efficacy of traditional chemical control of mosquito outbreaks. PMID:23149015

  10. Glucose and Glycogen Metabolism in Brugia malayi Is Associated with Wolbachia Symbiont Fitness.

    Science.gov (United States)

    Voronin, Denis; Bachu, Saheed; Shlossman, Michael; Unnasch, Thomas R; Ghedin, Elodie; Lustigman, Sara

    2016-01-01

    Wolbachia are endosymbiotic bacteria found in the majority of arthropods and filarial nematodes of medical and veterinary importance. They have evolved a wide range of symbiotic associations. In filarial nematodes that cause human lymphatic filariasis (Wuchereria bancrofti, Brugia malayi) or onchocerciasis (Onchocerca volvulus), Wolbachia are important for parasite development, reproduction and survival. The symbiotic bacteria rely in part on nutrients and energy sources provided by the host. Genomic analyses suggest that the strain of Wolbachia found in B. malayi (wBm) lacks the genes for two glycolytic enzymes--6-phosphofructokinase and pyruvate kinase--and is thus potentially unable to convert glucose into pyruvate, an important substrate for energy generation. The Wolbachia surface protein, wBm00432, is complexed to six B. malayi glycolytic enzymes, including aldolase. In this study we characterized two B. malayi aldolase isozymes and found that their expression is dependent on Wolbachia fitness and number. We confirmed by immuno-transmission electron microscopy that aldolase is associated with the Wolbachia surface. RNAi experiments suggested that aldolase-2 plays a significant role in both Wolbachia survival and embryogenesis in B. malayi. Treatment with doxycycline reduced Wolbachia fitness and increased the amount of both glucose and glycogen detected in the filarial parasite, indicating that glucose metabolism and glycogen storage in B. malayi are associated with Wolbachia fitness. This metabolic co-dependency between Wolbachia and its filarial nematode indicates that glycolysis could be a shared metabolic pathway between the bacteria and B. malayi, and thus a potential new target for anti-filarial therapy. PMID:27078260

  11. Discovery of a new Wolbachia supergroup in cave spider species and the lateral transfer of phage WO among distant hosts.

    Science.gov (United States)

    Wang, Guan-Hong; Jia, Ling-Yi; Xiao, Jin-Hua; Huang, Da-Wei

    2016-07-01

    Wolbachia are widespread intracellular bacteria infecting the major classes of arthropods and some filarial nematodes. In arthropods, Wolbachia have evolved various intriguing reproductive manipulations, including cytoplasmic incompatibility, parthenogenesis, feminization, and male killing. Sixteen supergroups of Wolbachia have been identified, named A-Q (except G). Though Wolbachia present great diversity in arthropods, spiders, especially cave spiders, are still a poorly surveyed group of Wolbachia hosts. Here, we report a novel Wolbachia supergroup from nine Telema cave spiders (Araneae: Telemidae) based on five molecular markers (16S rRNA, ftsZ, gltA, groEL, and coxA). In addition, phage WO, which was previously reported only in Wolbachia supergroups A, B, and F, infects this new Wolbachia supergroup. We detected a 100% infection rate for phage WO and Wolbachia in Telema species. The phylogenetic trees of phage WO and Wolbachia are not congruent, which suggests that horizontal transfer of phage WO has occurred in these secluded species. Additionally, these data indicate Telema-Wolbachia-phage WO may be a good model for exploring the horizontal transfer history of WO among different host species. PMID:26997548

  12. Frequency of infection with A and B supergroup Wolbachia in insects and pests associated with mulberry and silkworm

    Indian Academy of Sciences (India)

    B M Prakash; H P Puttaraju

    2007-06-01

    Wolbachia is a ubiquitous, Gram-negative, vertically transmitted, alpha-proteobacterium that causes an array of reproductive abnormalities including cytoplasmic incompatibility, feminization of genetic males, parthenogenesis in a number of insect species, among others. Wolbachia is now being exploited as an agent for pest and vector control. Previous surveys indicated that it is commonly seen in 16–76% of arthropods. In this paper, using polymerase chain reaction assay based on specific amplification of the ftsZ-A and -B supergroup Wolbachia gene fragments, we found that 30% of insects and pests screened were positive for Wolbachia. Among them 66.7% harbour double Wolbachia infection, while 33.3% harbour single Wolbachia infection. These results indicate widespread infection with both double and single Wolbachia, and provide a wealth of information to exploit this endobacterium for the management of pests and vectors.

  13. A comparative study of the dynamics of Wolbachia infection in different populations of Tetranychus urticae (Acari : Tetranychidae)%共生菌Wolbachia在中国二斑叶螨种群中的扩散规律

    Institute of Scientific and Technical Information of China (English)

    谢蓉蓉; 陈小琳; 孙荆涛; 洪晓月

    2013-01-01

    generation. The infection rate in the LN population reached 100% by the F12 generation but took until the F20 generation to do so in the JS population. Wolbachia appeared to use different strategies to invade and spread in the different populations. In the LN population, Wolbachia invaded and spread by inducing cytoplasmic incompatibility (CI). In the JS population, Wolbachia invaded and spread by enhancing mite survival and host fitness. In the HN population, inducing CI was the dominant strategy. The enhanced fecundity associated with Wolbachia helped to promote the spread of infection. These results could provide a foundation for using Wolbachia-based strategies to control insect pests and disease vectors.

  14. Infection with a Virulent Strain of Wolbachia Disrupts Genome Wide-Patterns of Cytosine Methylation in the Mosquito Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Yixin H Ye

    Full Text Available Cytosine methylation is one of several reversible epigenetic modifications of DNA that allow a greater flexibility in the relationship between genotype and phenotype. Methylation in the simplest models dampens gene expression by modifying regions of DNA critical for transcription factor binding. The capacity to methylate DNA is variable in the insects due to diverse histories of gene loss and duplication of DNA methylases. Mosquitoes like Drosophila melanogaster possess only a single methylase, DNMT2.Here we characterise the methylome of the mosquito Aedes aegypti and examine its relationship to transcription and test the effects of infection with a virulent strain of the endosymbiont Wolbachia on the stability of methylation patterns.We see that methylation in the A. aegypti genome is associated with reduced transcription and is most common in the promoters of genes relating to regulation of transcription and metabolism. Similar gene classes are also methylated in aphids and honeybees, suggesting either conservation or convergence of methylation patterns. In addition to this evidence of evolutionary stability, we also show that infection with the virulent wMelPop Wolbachia strain induces additional methylation and demethylation events in the genome. While most of these changes seem random with respect to gene function and have no detected effect on transcription, there does appear to be enrichment of genes associated with membrane function. Given that Wolbachia lives within a membrane-bound vacuole of host origin and retains a large number of genes for transporting host amino acids, inorganic ions and ATP despite a severely reduced genome, these changes might represent an evolved strategy for manipulating the host environments for its own gain. Testing for a direct link between these methylation changes and expression, however, will require study across a broader range of developmental stages and tissues with methods that detect splice variants.

  15. Molecular characterization of Wolbachia infection in bed bugs (Cimex lectularius collected from several localities in France

    Directory of Open Access Journals (Sweden)

    Akhoundi Mohammad

    2016-01-01

    Full Text Available Wolbachia symbionts are maternally inherited intracellular bacteria that have been detected in numerous insects including bed bugs. The objective of this study, the first epidemiological study in Europe, was to screen Wolbachia infection among Cimex lectularius collected in the field, using PCR targeting the surface protein gene (wsp, and to compare obtained Wolbachia strains with those reported from laboratory colonies of C. lectularius as well as other Wolbachia groups. For this purpose, 284 bed bug specimens were caught and studied from eight different regions of France including the suburbs of Paris, Bouches-du-Rhône, Lot-et-Garonne, and five localities in Alpes-Maritimes. Among the samples, 166 were adults and the remaining 118 were considered nymphs. In all, 47 out of 118 nymphs (40% and 61 out of 166 adults (37% were found positive on wsp screening. Among the positive cases, 10 samples were selected randomly for sequencing. The sequences had 100% homology with wsp sequences belonging to the F-supergroup strains of Wolbachia. Therefore, we confirm the similarity of Wolbachia strains detected in this epidemiological study to Wolbachia spp. reported from laboratory colonies of C. lectularius.

  16. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development

    Science.gov (United States)

    Beier, John C.; Devine, Gregor J.; Hugo, Leon E.

    2016-01-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30–40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20–30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20–30°C for 4–7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  17. Strategies for introducing Wolbachia to reduce transmission of mosquito-borne diseases.

    Directory of Open Access Journals (Sweden)

    Penelope A Hancock

    Full Text Available Certain strains of the endosymbiont Wolbachia have the potential to lower the vectorial capacity of mosquito populations and assist in controlling a number of mosquito-borne diseases. An important consideration when introducing Wolbachia-carrying mosquitoes into natural populations is the minimisation of any transient increase in disease risk or biting nuisance. This may be achieved by predominantly releasing male mosquitoes. To explore this, we use a sex-structured model of Wolbachia-mosquito interactions. We first show that Wolbachia spread can be initiated with very few infected females provided the infection frequency in males exceeds a threshold. We then consider realistic introduction scenarios involving the release of batches of infected mosquitoes, incorporating seasonal fluctuations in population size. For a range of assumptions about mosquito population dynamics we find that male-biased releases allow the infection to spread after the introduction of low numbers of females, many fewer than with equal sex-ratio releases. We extend the model to estimate the transmission rate of a mosquito-borne pathogen over the course of Wolbachia establishment. For a range of release strategies we demonstrate that male-biased release of Wolbachia-infected mosquitoes can cause substantial transmission reductions without transiently increasing disease risk. The results show the importance of including mosquito population dynamics in studying Wolbachia spread and that male-biased releases can be an effective and safe way of rapidly establishing the symbiont in mosquito populations.

  18. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Science.gov (United States)

    Ulrich, Jill N; Beier, John C; Devine, Gregor J; Hugo, Leon E

    2016-07-01

    The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal. PMID:27459519

  19. Supergroup C Wolbachia, mutualist symbionts of filarial nematodes, have a distinct genome structure.

    Science.gov (United States)

    Comandatore, Francesco; Cordaux, Richard; Bandi, Claudio; Blaxter, Mark; Darby, Alistair; Makepeace, Benjamin L; Montagna, Matteo; Sassera, Davide

    2015-12-01

    Wolbachia pipientis is possibly the most widespread endosymbiont of arthropods and nematodes. While all Wolbachia strains have historically been defined as a single species, 16 monophyletic clusters of diversity (called supergroups) have been described. Different supergroups have distinct host ranges and symbiotic relationships, ranging from mutualism to reproductive manipulation. In filarial nematodes, which include parasites responsible for major diseases of humans (such as Onchocerca volvulus, agent of river blindness) and companion animals (Dirofilaria immitis, the dog heartworm), Wolbachia has an obligate mutualist role and is the target of new treatment regimens. Here, we compare the genomes of eight Wolbachia strains, spanning the diversity of the major supergroups (A-F), analysing synteny, transposable element content, GC skew and gene loss or gain. We detected genomic features that differ between Wolbachia supergroups, most notably in the C and D clades from filarial nematodes. In particular, strains from supergroup C (symbionts of O. volvulus and D. immitis) present a pattern of GC skew, conserved synteny and lack of transposable elements, unique in the Wolbachia genus. These features could be the consequence of a distinct symbiotic relationship between C Wolbachia strains and their hosts, highlighting underappreciated differences between the mutualistic supergroups found within filarial nematodes. PMID:26631376

  20. Heat Sensitivity of wMel Wolbachia during Aedes aegypti Development.

    Directory of Open Access Journals (Sweden)

    Jill N Ulrich

    2016-07-01

    Full Text Available The wMel strain of Wolbachia bacteria is known to prevent dengue and Zika virus transmission in the mosquito vector Aedes aegypti. Accordingly, the release of wMel-infected A. aegypti in endemic regions has been recommended by the World Health Organization as a potential strategy for controlling dengue and Zika outbreaks. However, the utility of this approach could be limited if high temperatures in the aquatic habitats where A. aegypti develop are detrimental to Wolbachia. We exposed wMel-infected A. aegypti eggs and larvae to fluctuating daily temperatures of 30-40°C for three, five, or seven days during their development. We found that Wolbachia levels in females emerging from heat treatments were significantly lower than in the controls that had developed at 20-30°C. Notably, seven days of high temperatures starting at the egg stage reduced Wolbachia levels in emerging females to less than 0.1% of the wMel control levels. However, after adult females returned to 20-30°C for 4-7 days, they experienced differing degrees of Wolbachia recovery. Our findings suggest that the spread of Wolbachia in wild A. aegypti populations and any consequent protection from dengue and Zika viruses might be limited in ecosystems that experience periods of extreme heat, but Wolbachia levels recover partially after temperatures return to normal.

  1. Structural and functional characterization of the oxidoreductase alpha-DsbA1 from Wolbachia pipientis.

    Science.gov (United States)

    Kurz, Mareike; Iturbe-Ormaetxe, Iñaki; Jarrott, Russell; Shouldice, Stephen R; Wouters, Merridee A; Frei, Patrick; Glockshuber, Rudi; O'Neill, Scott L; Heras, Begoña; Martin, Jennifer L

    2009-07-01

    The alpha-proteobacterium Wolbachia pipientis is a highly successful intracellular endosymbiont of invertebrates that manipulates its host's reproductive biology to facilitate its own maternal transmission. The fastidious nature of Wolbachia and the lack of genetic transformation have hampered analysis of the molecular basis of these manipulations. Structure determination of key Wolbachia proteins will enable the development of inhibitors for chemical genetics studies. Wolbachia encodes a homologue (alpha-DsbA1) of the Escherichia coli dithiol oxidase enzyme EcDsbA, essential for the oxidative folding of many exported proteins. We found that the active-site cysteine pair of Wolbachia alpha-DsbA1 has the most reducing redox potential of any characterized DsbA. In addition, Wolbachia alpha-DsbA1 possesses a second disulfide that is highly conserved in alpha-proteobacterial DsbAs but not in other DsbAs. The alpha-DsbA1 structure lacks the characteristic hydrophobic features of EcDsbA, and the protein neither complements EcDsbA deletion mutants in E. coli nor interacts with EcDsbB, the redox partner of EcDsbA. The surface characteristics and redox profile of alpha-DsbA1 indicate that it probably plays a specialized oxidative folding role with a narrow substrate specificity. This first report of a Wolbachia protein structure provides the basis for future chemical genetics studies. PMID:19265485

  2. Wolbachia infection reduces blood-feeding success in the dengue fever mosquito, Aedes aegypti.

    Directory of Open Access Journals (Sweden)

    Andrew P Turley

    Full Text Available BACKGROUND: The mosquito Aedes aegypti was recently transinfected with a life-shortening strain of the endosymbiont Wolbachia pipientis (wMelPop as the first step in developing a biocontrol strategy for dengue virus transmission. In addition to life-shortening, the wMelPop-infected mosquitoes also exhibit increased daytime activity and metabolic rates. Here we sought to quantify the blood-feeding behaviour of Wolbachia-infected females as an indicator of any virulence or energetic drain associated with Wolbachia infection. METHODOLOGY/PRINCIPAL FINDINGS: In a series of blood-feeding trials in response to humans, we have shown that Wolbachia-infected mosquitoes do not differ in their response time to humans, but that as they age they obtain fewer and smaller blood meals than Wolbachia-uninfected controls. Lastly, we observed a behavioural characteristic in the Wolbachia infected mosquitoes best described as a "bendy" proboscis that may explain the decreased biting success. CONCLUSIONS/SIGNIFICANCE: Taken together the evidence suggests that wMelPop infection may be causing tissue damage in a manner that intensifies with mosquito age and that leads to reduced blood-feeding success. These behavioural changes require further investigation with respect to a possible physiological mechanism and their role in vectorial capacity of the insect. The selective decrease of feeding success in older mosquitoes may act synergistically with other Wolbachia-associated traits including life-shortening and viral protection in biocontrol strategies.

  3. Presence of extensive Wolbachia symbiont insertions discovered in the genome of its host Glossina morsitans morsitans.

    Directory of Open Access Journals (Sweden)

    Corey Brelsfoard

    2014-04-01

    Full Text Available Tsetse flies (Glossina spp. are the cyclical vectors of Trypanosoma spp., which are unicellular parasites responsible for multiple diseases, including nagana in livestock and sleeping sickness in humans in Africa. Glossina species, including Glossina morsitans morsitans (Gmm, for which the Whole Genome Sequence (WGS is now available, have established symbiotic associations with three endosymbionts: Wigglesworthia glossinidia, Sodalis glossinidius and Wolbachia pipientis (Wolbachia. The presence of Wolbachia in both natural and laboratory populations of Glossina species, including the presence of horizontal gene transfer (HGT events in a laboratory colony of Gmm, has already been shown. We herein report on the draft genome sequence of the cytoplasmic Wolbachia endosymbiont (cytWol associated with Gmm. By in silico and molecular and cytogenetic analysis, we discovered and validated the presence of multiple insertions of Wolbachia (chrWol in the host Gmm genome. We identified at least two large insertions of chrWol, 527,507 and 484,123 bp in size, from Gmm WGS data. Southern hybridizations confirmed the presence of Wolbachia insertions in Gmm genome, and FISH revealed multiple insertions located on the two sex chromosomes (X and Y, as well as on the supernumerary B-chromosomes. We compare the chrWol insertions to the cytWol draft genome in an attempt to clarify the evolutionary history of the HGT events. We discuss our findings in light of the evolution of Wolbachia infections in the tsetse fly and their potential impacts on the control of tsetse populations and trypanosomiasis.

  4. Localization of a filarial phosphate permease that is up-regulated in response to depletion of essential Wolbachia endobacteria.

    Science.gov (United States)

    Arumugam, Sridhar; Hoerauf, Achim; Pfarr, Kenneth M

    2014-03-01

    Wolbachia of filarial nematodes are essential, obligate endobacteria. When depleted by doxycycline worm embryogenesis, larval development and worm survival are inhibited. The molecular basis governing the endosymbiosis between Wolbachia and their filarial host is still being deciphered. In rodent filarial nematode Litomosoides sigmodontis, a nematode encoded phosphate permease gene (Ls-ppe-1) was up-regulated at the mRNA level in response to Wolbachia depletion and this gene promises to have an important role in Wolbachia-nematode endosymbiosis. To further characterize this gene, the regulation of phosphate permease during Wolbachia depletion was studied at the protein level in L. sigmodontis and in the human filaria Onchocerca volvulus. And the localization of phosphate permease (PPE) and Wolbachia in L. sigmodontis and O. volvulus was investigated in untreated and antibiotic treated worms. Depletion of Wolbachia by tetracycline (Tet) resulted in up-regulation of Ls-ppe-1 in L. sigmodontis. On day 36 of Tet treatment, compared to controls (Con), >98% of Wolbachia were depleted with a 3-fold increase in mRNA levels of Ls-ppe-1. Anti-Ls-PPE serum used in Western blots showed up-regulation of Ls-PPE at the protein level in Tet worms on day 15 and 36 of treatment. Immunohistology revealed the localization of Wolbachia and Ls-PPE in the embryos, microfilariae and hypodermis of L. sigmodontis female worms and up-regulation of Ls-PPE in response to Wolbachia depletion. Expression of O. volvulus phosphate permease (Ov-PPE) studied using anti-Ov-PPE serum, showed up-regulation of Ov-PPE at the protein level in doxycycline treated Wolbachia depleted O. volvulus worms and immunohistology revealed localization of Ov-PPE and Wolbachia and up-regulation of Ov-PPE in the hypodermis and embryos of doxycycline treated worms. Ls-PPE and Ov-PPE are upregulated upon Wolbachia depletion in same tissues and regions where Wolbachia are located in untreated worms, reinforcing a link

  5. Costs of Three Wolbachia Infections on the Survival of Aedes aegypti Larvae under Starvation Conditions.

    Directory of Open Access Journals (Sweden)

    Perran A Ross

    2016-01-01

    Full Text Available The mosquito Aedes aegypti, the principal vector of dengue virus, has recently been infected experimentally with Wolbachia: intracellular bacteria that possess potential as dengue biological control agents. Wolbachia depend on their hosts for nutrients they are unable to synthesize themselves. Consequently, competition between Wolbachia and their host for resources could reduce host fitness under the competitive conditions commonly experienced by larvae of Ae. aegypti in the field, hampering the invasion of Wolbachia into natural mosquito populations. We assess the survival and development of Ae. aegypti larvae under starvation conditions when infected with each of three experimentally-generated Wolbachia strains: wMel, wMelPop and wAlbB, and compare their fitness to wild-type uninfected larvae. We find that all three Wolbachia infections reduce the survival of larvae relative to those that are uninfected, and the severity of the effect is concordant with previously characterized fitness costs to other life stages. We also investigate the ability of larvae to recover from extended food deprivation and find no effect of Wolbachia on this trait. Aedes aegypti larvae of all infection types were able to resume their development after one month of no food, pupate rapidly, emerge at a large size, and exhibit complete cytoplasmic incompatibility and maternal transmission. A lowered ability of Wolbachia-infected larvae to survive under starvation conditions will increase the threshold infection frequency required for Wolbachia to establish in highly competitive natural Ae. aegypti populations and will also reduce the speed of invasion. This study also provides insights into survival strategies of larvae when developing in stressful environments.

  6. The Effect of Temperature on Wolbachia-Mediated Dengue Virus Blocking in Aedes aegypti.

    Science.gov (United States)

    Ye, Yixin H; Carrasco, Alison M; Dong, Yi; Sgrò, Carla M; McGraw, Elizabeth A

    2016-04-01

    Dengue fever, caused by dengue virus (DENV), is endemic in more than 100 countries. The lack of effective treatment of patients and the suboptimal efficacies of the tetravalent vaccine in trials highlight the urgent need to develop alternative strategies to lessen the burden of dengue fever.Wolbachia pipientis, an obligate intracellular bacterium, is being developed as a biocontrol strategy against dengue because it limits the replication of the DENV in the mosquito vector,Aedes aegypti However, several recent studies have demonstrated the sensitivity of pathogens, vectors, and their symbionts to temperature. To understand how the tripartite interactions between the mosquito, DENV, andWolbachiamay change under different temperature regimes, we assessed the vector competence and transmission potential of DENV-infected mosquitoes reared at a common laboratory setting of a constant 25°C and at two diurnal temperature settings with mean of 25°C and 28°C and a fluctuating range of 8°C (±4°C). Temperature significantly affected DENV infection rate in the mosquitoes. Furthermore, temperature significantly influenced the proportion of mosquitoes that achieved transmission potential as measured by the presence of virus in the saliva. Regardless of the temperature regimes,Wolbachiasignificantly and efficiently reduced the proportion of mosquitoes achieving infection and transmission potential across all the temperature regimes studied. This work reinforces the robustness of theWolbachiabiocontrol strategy to field conditions in Cairns, Australia, and suggests that similar studies are required for local mosquito genotypes and field relevant temperatures for emerging field release sites globally. PMID:26856916

  7. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species.

    Directory of Open Access Journals (Sweden)

    Emanuele Ferri

    Full Text Available BACKGROUND: Wolbachia are intriguing symbiotic endobacteria with a peculiar host range that includes arthropods and a single nematode family, the Onchocercidae encompassing agents of filariases. This raises the question of the origin of infection in filariae. Wolbachia infect the female germline and the hypodermis. Some evidences lead to the theory that Wolbachia act as mutualist and coevolved with filariae from one infection event: their removal sterilizes female filariae; all the specimens of a positive species are infected; Wolbachia are vertically inherited; a few species lost the symbiont. However, most data on Wolbachia and filaria relationships derive from studies on few species of Onchocercinae and Dirofilariinae, from mammals. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the Wolbachia distribution testing 35 filarial species, including 28 species and 7 genera and/or subgenera newly screened, using PCR, immunohistochemical staining, whole mount fluorescent analysis, and cocladogenesis analysis. (i Among the newly screened Onchocercinae from mammals eight species harbour Wolbachia but for some of them, bacteria are absent in the hypodermis, or in variable density. (ii Wolbachia are not detected in the pathological model Monanema martini and in 8, upon 9, species of Cercopithifilaria. (iii Supergroup F Wolbachia is identified in two newly screened Mansonella species and in Cercopithifilaria japonica. (iv Type F Wolbachia infect the intestinal cells and somatic female genital tract. (v Among Oswaldofilariinae, Waltonellinae and Splendidofilariinae, from saurian, anuran and bird respectively, Wolbachia are not detected. CONCLUSIONS/SIGNIFICANCE: The absence of Wolbachia in 63% of onchocercids, notably in the ancestral Oswaldofilariinae estimated 140 mya old, the diverse tissues or specimens distribution, and a recent lateral transfer in supergroup F Wolbachia, modify the current view on the role and evolution of the endosymbiont and their

  8. 人和动物丝虫共生菌--沃尔巴克氏体研究进展%Progress onWolbachia ---Symbiotic Bacteria in Human and Animal Filariae

    Institute of Scientific and Technical Information of China (English)

    刘梅; 杨光友

    2015-01-01

    Wolbachia is a symbiotic bacteria found in filariae,which induces immune-pathology inflamma-tion and is one of the main reasons that cause diseases after filariae infection.This paper reviewed the clas-sification,structure and distribution,reproduction and route of transmission,genome of the Wolbadhia in filariae,and the interaction relationship between Wolbachia and filariae.It mainly described that the Wol-bachia with filarial pathogenicity and the role of the drugs in depletion ofWolbachia in treatment of human and animal filariasis,which provides references for research about controlling human and animal filariasis.%沃尔巴克氏体(Wolbachia ,Wb)是在丝虫体内发现的一类共生菌,它诱导的免疫病理引起的炎症反应是丝虫感染后致病的主要原因之一。论文论述了丝虫沃尔巴克氏体的分类、结构与分布、生殖及传播方式、基因组和沃尔巴克氏体与丝虫之间的相互作用关系,重点阐述了沃尔巴克氏体与丝虫致病性和清除沃尔巴克氏体药物在人和动物丝虫病治疗中的作用,为人和动物丝虫病的防治研究提供参考。

  9. 蚊虫Wolbachia 野外试验的研究进展%Advancement of studies on utilizing mosquito Wolbachia in field experiment

    Institute of Scientific and Technical Information of China (English)

    张东京; 梁格豪; 郑展图; 刘秀婷; 何石萍; 叶慧珍; 李卓雅; 詹希美; 郑小英

    2013-01-01

    沃尔巴克氏体(Wolbachia),该共生菌利用引起宿主产生细胞质不亲和(cytoplasmic incompatibility)而快速入侵野生宿主种群,或压制种群数量,或干扰 RNA 病毒在宿主体内复制,对人类、动物、环境和生物链没有影响,从而运用到防治登革热,这已被越来越多的科学家所认可.本文就近年来蚊虫 Wolbachia 野外试验技术条件、生物安全情况和存在问题与展望作一综述.%Wolbachia can invade wild host population quickly via cytoplasmic incompatibility, which can suppress population size or interfere with RNA virus replication in their hosts. However, they have no influence on humans, animals, environment and biologic chain. More and more scientists are convinced that Wolbachia can be used to prevent dengue fever. This review is about the technical conditions of field experiment, the situation of biological safety and the existing problems and prospects by using Wolbachia.

  10. New names for old strains? Wolbachia wSim is actually wRi

    OpenAIRE

    Iturbe-Ormaetxe, Iñaki; Riegler, Markus; O'Neill, Scott L.

    2005-01-01

    A response to Serendipitous discovery of Wolbachia genomes in multiple Drosophila species by SL Salzberg, JC Dunning Hotopp, AL Delcher, M Pop, DR Smith, MB Eisen and WC Nelson. Genome Biology 2005, 6:R23

  11. Evidence for metabolic provisioning by a common invertebrate endosymbiont, Wolbachia pipientis, during periods of nutritional stress.

    Directory of Open Access Journals (Sweden)

    Jeremy C Brownlie

    2009-04-01

    Full Text Available Wolbachia are ubiquitous inherited endosymbionts of invertebrates that invade host populations by modifying host reproductive systems. However, some strains lack the ability to impose reproductive modification and yet are still capable of successfully invading host populations. To explain this paradox, theory predicts that such strains should provide a fitness benefit, but to date none has been detected. Recently completed genome sequences of different Wolbachia strains show that these bacteria may have the genetic machinery to influence iron utilization of hosts. Here we show that Wolbachia infection can confer a positive fecundity benefit for Drosophila melanogaster reared on iron-restricted or -overloaded diets. Furthermore, iron levels measured from field-collected flies indicated that nutritional conditions in the field were overall comparable to those of flies reared in the laboratory on restricted diets. These data suggest that Wolbachia may play a previously unrecognized role as nutritional mutualists in insects.

  12. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes.

    Science.gov (United States)

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-06-01

    The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epidemic. Wolbachia-harboring mosquitoes displayed lower viral prevalence and intensity and decreased disseminated infection and, critically, did not carry infectious virus in the saliva, suggesting that viral transmission was blocked. Our data indicate that the use of Wolbachia-harboring mosquitoes could represent an effective mechanism to reduce Zika virus transmission and should be included as part of Zika control strategies. PMID:27156023

  13. The α-Proteobacteria Wolbachia pipientis Protein Disulfide Machinery Has a Regulatory Mechanism Absent in γ-Proteobacteria

    OpenAIRE

    Walden, Patricia M.; Maria A Halili; Archbold, Julia K.; Lindahl, Fredrik; Fairlie, David P.; Inaba, Kenji; Martin, Jennifer L.

    2013-01-01

    The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two Ds...

  14. Invasion of Wolbachia into Anopheles and Other Insect Germlines in an Ex vivo Organ Culture System

    OpenAIRE

    Hughes, Grant L.; Andrew D Pike; Ping Xue; Jason L Rasgon

    2012-01-01

    The common bacterial endosymbiont Wolbachia manipulates its host's reproduction to promote its own maternal transmission, and can interfere with pathogen development in many insects making it an attractive agent for the control of arthropod-borne disease. However, many important species, including Anopheles mosquitoes, are uninfected. Wolbachia can be artificially transferred between insects in the laboratory but this can be a laborious and sometimes fruitless process. We used a simple ex viv...

  15. Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia

    OpenAIRE

    Sara Lustigman; Elena Melnikow; Setty Balakrishnan Anand; Aroha Contreras; Vijay Nandi; Jing Liu; Aaron Bell; UNNASCH, THOMAS R.; Rogers, Mathew B.; Elodie Ghedin

    2014-01-01

    Brugia malayi, a parasitic nematode that causes lymphatic filariasis, harbors endosymbiotic intracellular bacteria, Wolbachia, that are required for the development and reproduction of the worm. The essential nature of this endosymbiosis led to the development of anti-Wolbachia chemotherapeutic approaches for the treatment of human filarial infections. Our study is aimed at identifying specific proteins that play a critical role in this endosymbiotic relationship leading to the identification...

  16. The Role of Endosymbiotic Wolbachia Bacteria in the Pathogenesis of River Blindness

    OpenAIRE

    von Saint André - von Arnim, Amélie

    2008-01-01

    Introduction: This study investigates the role of Wolbachia bacteria in the pathogenesis of O. volvulus keratitis in a mouse model. Wolbachia bacteria are essential symbionts of most filarial nematodes of importance for mankind. Methods: Using a mouse model for river blindness in which soluble extracts of filarial nematodes are injected in the corneal stroma, changes in stromal thickness and haze of the cornea are observed by in vivo confocal microscopy, followed by immunohistochemical staini...

  17. The relative importance of innate immune priming in Wolbachia-mediated dengue interference.

    Directory of Open Access Journals (Sweden)

    Edwige Rancès

    2012-02-01

    Full Text Available The non-virulent Wolbachia strain wMel and the life-shortening strain wMelPop-CLA, both originally from Drosophila melanogaster, have been stably introduced into the mosquito vector of dengue fever, Aedes aegypti. Each of these Wolbachia strains interferes with viral pathogenicity and/or dissemination in both their natural Drosophila host and in their new mosquito host, and it has been suggested that this virus interference may be due to host immune priming by Wolbachia. In order to identify aspects of the mosquito immune response that might underpin virus interference, we used whole-genome microarrays to analyse the transcriptional response of A. aegypti to the wMel and wMelPop-CLA Wolbachia strains. While wMel affected the transcription of far fewer host genes than wMelPop-CLA, both strains activated the expression of some immune genes including anti-microbial peptides, Toll pathway genes and genes involved in melanization. Because the induction of these immune genes might be associated with the very recent introduction of Wolbachia into the mosquito, we also examined the same Wolbachia strains in their original host D. melanogaster. First we demonstrated that when dengue viruses were injected into D. melanogaster, virus accumulation was significantly reduced in the presence of Wolbachia, just as in A. aegypti. Second, when we carried out transcriptional analyses of the same immune genes up-regulated in the new heterologous mosquito host in response to Wolbachia we found no over-expression of these genes in D. melanogaster, infected with either wMel or wMelPop. These results reinforce the idea that the fundamental mechanism involved in viral interference in Drosophila and Aedes is not dependent on the up-regulation of the immune effectors examined, although it cannot be excluded that immune priming in the heterologous mosquito host might enhance the virus interference trait.

  18. Wolbachia Blocks Currently Circulating Zika Virus Isolates in Brazilian Aedes aegypti Mosquitoes

    OpenAIRE

    Dutra, Heverton Leandro Carneiro; Rocha, Marcele Neves; Dias, Fernando Braga Stehling; Mansur, Simone Brutman; Caragata, Eric Pearce; Moreira, Luciano Andrade

    2016-01-01

    Summary The recent association of Zika virus with cases of microcephaly has sparked a global health crisis and highlighted the need for mechanisms to combat the Zika vector, Aedes aegypti mosquitoes. Wolbachia pipientis, a bacterial endosymbiont of insect, has recently garnered attention as a mechanism for arbovirus control. Here we report that Aedes aegypti harboring Wolbachia are highly resistant to infection with two currently circulating Zika virus isolates from the recent Brazilian epide...

  19. Dynamics of Wolbachia pipientis Gene Expression Across the Drosophila melanogaster Life Cycle.

    Science.gov (United States)

    Gutzwiller, Florence; Carmo, Catarina R; Miller, Danny E; Rice, Danny W; Newton, Irene L G; Hawley, R Scott; Teixeira, Luis; Bergman, Casey M

    2015-12-01

    Symbiotic interactions between microbes and their multicellular hosts have manifold biological consequences. To better understand how bacteria maintain symbiotic associations with animal hosts, we analyzed genome-wide gene expression for the endosymbiotic α-proteobacteria Wolbachia pipientis across the entire life cycle of Drosophila melanogaster. We found that the majority of Wolbachia genes are expressed stably across the D. melanogaster life cycle, but that 7.8% of Wolbachia genes exhibit robust stage- or sex-specific expression differences when studied in the whole-organism context. Differentially-expressed Wolbachia genes are typically up-regulated after Drosophila embryogenesis and include many bacterial membrane, secretion system, and ankyrin repeat-containing proteins. Sex-biased genes are often organized as small operons of uncharacterized genes and are mainly up-regulated in adult Drosophila males in an age-dependent manner. We also systematically investigated expression levels of previously-reported candidate genes thought to be involved in host-microbe interaction, including those in the WO-A and WO-B prophages and in the Octomom region, which has been implicated in regulating bacterial titer and pathogenicity. Our work provides comprehensive insight into the developmental dynamics of gene expression for a widespread endosymbiont in its natural host context, and shows that public gene expression data harbor rich resources to probe the functional basis of the Wolbachia-Drosophila symbiosis and annotate the transcriptional outputs of the Wolbachia genome. PMID:26497146

  20. The effects of host age, host nuclear background and temperature on phenotypic effects of the virulent Wolbachia strain popcorn in Drosophila melanogaster.

    OpenAIRE

    Reynolds, K Tracy; Thomson, Linda J; Ary A Hoffmann

    2003-01-01

    Because of their obligate endosymbiotic nature, Wolbachia strains by necessity are defined by their phenotypic effects upon their host. Nevertheless, studies on the influence of host background and environmental conditions upon the manifestation of Wolbachia effects are relatively uncommon. Here we examine the behavior of the overreplicating Wolbachia strain popcorn in four different Drosophila melanogaster backgrounds at two temperatures. Unlike other strains of Wolbachia in Drosophila, popc...

  1. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes

    OpenAIRE

    Frédéric Landmann; Odile Bain; Coralie Martin; Shigehiko Uni; Taylor, Mark J.; William Sullivan

    2012-01-01

    Summary Parasitic filarial nematodes that belong to the Onchocercidae family live in mutualism with Wolbachia endosymbionts. We developed whole-mount techniques to follow the segregation patterns of Wolbachia through the somatic and germline lineages of four filarial species. These studies reveal multiple evolutionarily conserved mechanisms that are required for Wolbachia localization to the germline. During the initial embryonic divisions, Wolbachia segregate asymmetrically such that they...

  2. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II- A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release

    OpenAIRE

    Dongjing Zhang; Rosemary Susan Lees; Zhiyong Xi; Gilles, Jeremie R. L.; Kostas Bourtzis

    2015-01-01

    Due to the absence of a perfect method for mosquito sex separation, the combination of the sterile insect technique and the incompatible insect technique is now being considered as a potentially effective method to control Aedes albopictus. In this present study first we examine the minimum pupal irradiation dose required to induce complete sterility in Wolbachia triple-infected (HC), double-infected (GUA) and uninfected (GT) female Ae. albopictus. The HC line is a candidate for Ae. albopictu...

  3. Wolbachia and DNA barcoding Insects: Patterns, potential, and problems

    Czech Academy of Sciences Publication Activity Database

    Smith, M. A.; Bertrand, C.; Crosby, K.; Eveleigh, E. S.; Fernandez-Triana, J.; Fisher, B. L.; Gibbs, J.; Hajibabaei, M.; Hallwachs, W.; Hind, K.; Hrček, Jan; Huang, D.-W.; Janda, M.; Janzen, D. H.; Li, Y.; Miller, S. E.; Packer, L.; Quicke, D.; Ratnasingham, S.; Rodriguez, J.; Rougerie, R.; Shaw, M. R.; Sheffield, C.; Stahlhut, J. K.; Steinke, D.; Whitfield, J.; Wood, M.; Zhou, X.

    2012-01-01

    Roč. 7, č. 5 (2012), e36514. E-ISSN 1932-6203 R&D Projects: GA ČR GAP505/10/0673 Grant ostatní: Marie Currie Fellowship(CZ) PIOFGA2009-25448; National Science Foundation(US) DEB 0072713; National Science Foundation(US) DEB 0344731; National Science Foundation(US) DEB 0842395; National Science Foundation(US) DEB 1020510; USDA(US) RC293-359; National Science Foundation(US) DEB 0841885; National Natural Science Foundation of China(CN) 31090253; National Science Foundation(US) EF-0553768; National Science Foundation(US) DEB 0515699 Institutional research plan: CEZ:AV0Z50070508 Institutional support: RVO:60077344 Keywords : Wolbachia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0036514

  4. High pressure freezing/freeze substitution fixation improves the ultrastructural assessment of Wolbachia endosymbiont-filarial nematode host interaction.

    Directory of Open Access Journals (Sweden)

    Kerstin Fischer

    Full Text Available BACKGROUND: Wolbachia α-proteobacteria are essential for growth, reproduction and survival for many filarial nematode parasites of medical and veterinary importance. Endobacteria were discovered in filarial parasites by transmission electron microscopy in the 1970's using chemically fixed specimens. Despite improvements of fixation and electron microscopy techniques during the last decades, methods to study the Wolbachia/filaria interaction on the ultrastructural level remained unchanged and the mechanisms for exchange of materials and for motility of endobacteria are not known. METHODOLOGY/PRINCIPAL FINDING: We used high pressure freezing/freeze substitution to improve fixation of Brugia malayi and its endosymbiont, and this led to improved visualization of different morphological forms of Wolbachia. The three concentric, bilayer membranes that surround the endobacterial cytoplasm were well preserved. Vesicles with identical membrane structures were identified close to the endobacteria, and multiple bacteria were sometimes enclosed within a single outer membrane. Immunogold electron microscopy using a monoclonal antibody directed against Wolbachia surface protein-1 labeled the membranes that enclose Wolbachia and Wolbachia-associated vesicles. High densities of Wolbachia were observed in the lateral chords of L4 larvae, immature, and mature adult worms. Extracellular Wolbachia were sometimes present in the pseudocoelomic cavity near the developing female reproductive organs. Wolbachia-associated actin tails were not observed. Wolbachia motility may be explained by their residence within vacuoles, as they may co-opt the host cell's secretory pathway to move within and between cells. CONCLUSIONS/SIGNIFICANCE: High pressure freezing/freeze substitution significantly improved the preservation of filarial tissues for electron microscopy to reveal membranes and sub cellular structures that could be crucial for exchange of materials between Wolbachia

  5. Wolbachia do not live by reproductive manipulation alone: infection polymorphism in Drosophila suzukii and D. subpulchrella.

    Science.gov (United States)

    Hamm, Christopher A; Begun, David J; Vo, Alexandre; Smith, Chris C R; Saelao, Perot; Shaver, Amanda O; Jaenike, John; Turelli, Michael

    2014-10-01

    Drosophila suzukii recently invaded North America and Europe. Populations in Hawaii, California, New York and Nova Scotia are polymorphic for Wolbachia, typically with suzukii, denoted wSuz, is closely related to wRi, the variant prevalent in continental populations of D. simulans. wSuz is also nearly identical to Wolbachia found in D. subpulchrella, plausibly D. suzukii's sister species. This suggests vertical Wolbachia transmission through cladogenesis ('cladogenic transmission'). The widespread occurrence of 7-20% infection frequencies indicates a stable polymorphism. wSuz is imperfectly maternally transmitted, with wild infected females producing on average 5-10% uninfected progeny. As expected from its low frequency, wSuz produces no cytoplasmic incompatibility (CI), that is, no increased embryo mortality when infected males mate with uninfected females, and no appreciable sex-ratio distortion. The persistence of wSuz despite imperfect maternal transmission suggests positive fitness effects. Assuming a balance between selection and imperfect transmission, we expect a fitness advantage on the order of 20%. Unexpectedly, Wolbachia-infected females produce fewer progeny than do uninfected females. We do not yet understand the maintenance of wSuz in D. suzukii. The absence of detectable CI in D. suzukii and D. subpulchrella makes it unlikely that CI-based mechanisms could be used to control this species without transinfection using novel Wolbachia. Contrary to their reputation as horizontally transmitted reproductive parasites, many Wolbachia infections are acquired through introgression or cladogenesis and many cause no appreciable reproductive manipulation. Such infections, likely to be mutualistic, may be central to understanding the pervasiveness of Wolbachia among arthropods. PMID:25156506

  6. Absence of Wolbachia endobacteria in the non-filariid nematodes Angiostrongylus cantonensis and A. costaricensis

    Directory of Open Access Journals (Sweden)

    Graeff-Teixeira Carlos

    2008-09-01

    Full Text Available Abstract The majority of filarial nematodes harbour Wolbachia endobacteria, including the major pathogenic species in humans, Onchocerca volvulus, Brugia malayi and Wuchereria bancrofti. These obligate endosymbionts have never been demonstrated unequivocally in any non-filariid nematode. However, a recent report described the detection by PCR of Wolbachia in the metastrongylid nematode, Angiostrongylus cantonensis (rat lungworm, a leading cause of eosinophilic meningitis in humans. To address the intriguing possibility of Wolbachia infection in nematode species distinct from the Family Onchocercidae, we used both PCR and immunohistochemistry to screen samples of A. cantonensis and A. costaricensis for the presence of this endosymbiont. We were unable to detect Wolbachia in either species using these methodologies. In addition, bioinformatic and phylogenetic analyses of the Wolbachia gene sequences reported previously from A. cantonensis indicate that they most likely result from contamination with DNA from arthropods and filarial nematodes. This study demonstrates the need for caution in relying solely on PCR for identification of new endosymbiont strains from invertebrate DNA samples.

  7. Wolbachia infections in mosquitoes and their predators inhabiting rice field communities in Thailand and China.

    Science.gov (United States)

    Wiwatanaratanabutr, Itsanun; Zhang, Chongxing

    2016-07-01

    Wolbachia are inherited, endocytoplasmic bacteria that infect a wide range of arthropods. Here is the first systematic report on the study of Wolbachia infection in mosquitoes and their predators from both Thailand and China. In Thailand, 632 mosquito specimens (20 spp.) and 424 insect predators (23 spp.) were collected from the rice agroecosystem, mostly from the Central region, followed by the Northeast, the North and the South and were inhabiting rice fields, wetlands and ditches. In China, 928 mosquitoes (15 spp.) and 149 insect predators (16 spp.) were collected from rice fields along the Weishan Lake in Shandong province. Specimens were classified in the orders Diptera, Coleoptera, Odonata and Hemiptera. Using wsp, ftsZ, 16S rRNA and groE gene amplifications, Wolbachia were detected in 12 mosquito spp. and 6 predator spp. from Thailand and 11 mosquito spp. and 5 predator spp. from China. The relative Wolbachia densities of these species were determined using quantitative real-time PCR. The mosquito, Aedes albopictus, and the predator, Agriocnemis femina, had the highest bacterial densities. These results imply that Wolbachia of supergroup B are distributed throughout these insects, probably via horizontal transmission in rice agroecosystems. PMID:27012719

  8. Evidence for Wolbachia symbiosis in microfilariae of Wuchereria bancrofti from West Bengal, India

    Indian Academy of Sciences (India)

    Prajna Gayen; Sudipta Maitra; Sutapa Datta; Santi P Sinha Babu

    2010-03-01

    Wolbachia are symbiotic endobacteria that infect the majority of filarial nematodes, including Wuchereria bancrofti, Brugia malayi and Onchocerca volvulus. Recent studies have suggested that Wolbachia are necessary for the reproduction and survival of filarial nematodes and have highlighted the use of antibiotic therapy such as tetracycline/doxycycline as a novel method of treatment for infections caused by these organisms. Before such therapy is conceived and implemented on a large scale, it is necessary to assess the prevalence of the endosymbiont in W. bancrofti from different geographical locations. We present data from molecular and electron microscopic studies to provide evidence for Wolbachia symbiosis in W. bancrofti microfilariae collected from two districts (Bankura and Birbhum) of West Bengal, India.

  9. A consolidated analysis of the physiologic and molecular responses induced under acid stress in the legume-symbiont model-soil bacterium Sinorhizobium meliloti.

    Science.gov (United States)

    Draghi, W O; Del Papa, M F; Hellweg, C; Watt, S A; Watt, T F; Barsch, A; Lozano, M J; Lagares, A; Salas, M E; López, J L; Albicoro, F J; Nilsson, J F; Torres Tejerizo, G A; Luna, M F; Pistorio, M; Boiardi, J L; Pühler, A; Weidner, S; Niehaus, K; Lagares, A

    2016-01-01

    Abiotic stresses in general and extracellular acidity in particular disturb and limit nitrogen-fixing symbioses between rhizobia and their host legumes. Except for valuable molecular-biological studies on different rhizobia, no consolidated models have been formulated to describe the central physiologic changes that occur in acid-stressed bacteria. We present here an integrated analysis entailing the main cultural, metabolic, and molecular responses of the model bacterium Sinorhizobium meliloti growing under controlled acid stress in a chemostat. A stepwise extracellular acidification of the culture medium had indicated that S. meliloti stopped growing at ca. pH 6.0-6.1. Under such stress the rhizobia increased the O2 consumption per cell by more than 5-fold. This phenotype, together with an increase in the transcripts for several membrane cytochromes, entails a higher aerobic-respiration rate in the acid-stressed rhizobia. Multivariate analysis of global metabolome data served to unequivocally correlate specific-metabolite profiles with the extracellular pH, showing that at low pH the pentose-phosphate pathway exhibited increases in several transcripts, enzymes, and metabolites. Further analyses should be focused on the time course of the observed changes, its associated intracellular signaling, and on the comparison with the changes that operate during the sub lethal acid-adaptive response (ATR) in rhizobia. PMID:27404346

  10. Dynamic Wolbachia prevalence in Acromyrmex leaf‐cutting ants: potential for a nutritional symbiosis

    DEFF Research Database (Denmark)

    Andersen, S. B.; Boye, Mette; Nash, D. R.;

    2012-01-01

    ‐cutting ant Acromyrmex octospinosus across developmental stages of sterile workers. We confirm that workers are infected with one or two widespread wsp genotypes of Wolbachia, show that colony prevalence is always 100% and characterize two rare recombinant genotypes. One dominant genotype is always present...... and most abundant, whereas another only proliferates in adult workers of some colonies and is barely detectable in larvae and pupae. An explanation may be that Wolbachia genotypes compete for host resources in immature stages while adult tissues provide substantially more niche space. Tissue...

  11. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia

    Directory of Open Access Journals (Sweden)

    Patricelli Dario

    2013-01-01

    Full Text Available Abstract Background Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland, which fully represent the ecological and morphological variation occurring across the continent. Results We sequenced the COI mitochondrial DNA gene (the ‘barcoding gene’ and the EF-1α nuclear gene and found substantial genetic differentiation among M. arion Italian populations in both markers. Eleven mtDNA haplotypes were present in Italy. In contrast, almost no mtDNA polymorphisms was found in the Polish M. arion populations, where genetic differentiation at the nuclear gene was low to moderate. Interestingly, the within-population diversity levels in the EF-1α gene observed in Italy and in Poland were comparable. The genetic data did not support any subspecies divisions or any ecological specialisations. All of the populations studied were infected with a single strain of Wolbachia and our screening suggested 100% prevalence of the bacterium. Conclusions Differences in the genetic structure of M. arion observed in Italy and in Poland may be explained by the rear edge theory. Although we were not able to pinpoint any specific evolutionarily significant units, we suggest that the Italian peninsula should be considered as a region of special conservation concern and one that is important for maintaining the genetic diversity of M. arion in Europe. The observed pattern of mtDNA differentiation among the populations could not be explained by an

  12. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Célestine M Atyame

    Full Text Available The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT and the Wolbachia-based Incompatible Insect Technique (IIT are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to

  13. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus.

    Science.gov (United States)

    Atyame, Célestine M; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  14. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus

    Science.gov (United States)

    Atyame, Célestine M.; Labbé, Pierrick; Lebon, Cyrille; Weill, Mylène; Moretti, Riccardo; Marini, Francesca; Gouagna, Louis Clément; Calvitti, Maurizio; Tortosa, Pablo

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in several laboratories worldwide. So far however, there is a lack of comparative assessment of these strategies under the same controlled conditions. Here, we compared the mating capacities, i.e. insemination capacity, sterilization capacity and mating competitiveness of irradiated (35 Gy) and incompatible Ae. albopictus males at different ages and ratios under laboratory controlled conditions. Our data show that there was no significant difference in insemination capacity of irradiated and incompatible males, both male types showing lower capacities than untreated males at 1 day but recovering full capacity within 5 days following emergence. Regarding mating competitiveness trials, a global observed trend is that incompatible males tend to induce a lower hatching rate than irradiated males in cage controlled confrontations. More specifically, incompatible males were found more competitive than irradiated males in 5:1 ratio regardless of age, while irradiated males were only found more competitive than incompatible males in the 1:1 ratio at 10 days old. Overall, under the tested conditions, IIT seemed to be slightly more effective than SIT. However, considering that a single strategy will likely not be adapted to all environments, our data stimulates the need for comparative assessments of distinct strategies in up-scaled conditions in order to identify the most suitable and safe sterilizing technology to be implemented in a specific environmental setting and to identify the

  15. Multiple infections with Cardinium and two strains of Wolbachia in the spider mite Tetranychus phaselus Ehara: revealing new forces driving the spread of Wolbachia.

    Directory of Open Access Journals (Sweden)

    Dong-Xiao Zhao

    Full Text Available Cytoplasmic incompatibility (CI has been proposed as a major mechanism by which certain strains of Wolbachia to invade and persist in host populations. However, mechanisms that underlie the invasion and persistence of non-CI strains are less well understood. Here, we established a spider mite Tetranychus phaselus population multiply infected by Cardinium as well as two distinct lineages of Wolbachia, designated wCon and wOri, to study the forces driving the spread of the non-CI strain of Wolbachia wOri. Interestingly, we found that wOri provided a longevity advantage to its female hosts under ideal conditions, making wOri stay longer in this population, and then being transmitted to more offspring. Furthermore, the lifespan of uninfected females was reduced when mated with multiple-infected males. As a result, the uninfected population is attenuated by the multiple-infected males. Thus, we infer that the host age effects of multiple infection may represent sufficient forces driving the spread of wOri through the host population.

  16. Targeting the Wolbachia cell division protein FtsZ as a new approach for antifilarial therapy.

    Directory of Open Access Journals (Sweden)

    Zhiru Li

    2011-11-01

    Full Text Available The use of antibiotics targeting the obligate bacterial endosymbiont Wolbachia of filarial parasites has been validated as an approach for controlling filarial infection in animals and humans. Availability of genomic sequences for the Wolbachia (wBm present in the human filarial parasite Brugia malayi has enabled genome-wide searching for new potential drug targets. In the present study, we investigated the cell division machinery of wBm and determined that it possesses the essential cell division gene ftsZ which was expressed in all developmental stages of B. malayi examined. FtsZ is a GTPase thereby making the protein an attractive Wolbachia drug target. We described the molecular characterization and catalytic properties of Wolbachia FtsZ. We also demonstrated that the GTPase activity was inhibited by the natural product, berberine, and small molecule inhibitors identified from a high-throughput screen. Furthermore, berberine was also effective in reducing motility and reproduction in B. malayi parasites in vitro. Our results should facilitate the discovery of selective inhibitors of FtsZ as a novel anti-symbiotic approach for controlling filarial infection. NOTE: The nucleotide sequences reported in this paper are available in GenBank™ Data Bank under the accession number wAlB-FtsZ (JN616286.

  17. Time to Empower Release of Insects Carrying a Dominant Lethal and Wolbachia Against Zika

    OpenAIRE

    Dickens, Borame L; Yang, Jie; Cook, Alex R.; Carrasco, Luis R.

    2016-01-01

    RIDL (release of insects with dominant lethality) and Wolbachia are 2 potentially powerful tools in the fight against Zika, but their technological advancement is being hampered by policy barriers. In this study, we discuss what could be done to overcome these regulatory deadlocks.

  18. Influence of antibiotics on the offspring production of the Wolbachia-infected parthenogenetic parasitoid Encarsia formosa

    NARCIS (Netherlands)

    Stouthamer, R.; Mak, F.

    2002-01-01

    Three different concentrations of the antibiotic tetracycline in honey were tested for their influence on the offspring production and longevity of the parasitoid wasp Encarsia formosa. Several earlier publications did not provide a conclusive answer on the effect that the Wolbachia have on these wa

  19. Wolbachia Occurrence in Planthopper (Hemiptera: Delphacidae) Vectors of Cereal Viruses in Argentina.

    Science.gov (United States)

    Mattio, M F; Argüello Caro, E B; Rodriguero, M S; Dumón, A D; Alemandri, V M; Truol, G

    2015-08-01

    Maize (Zea mays L.) and wheat (Triticum aestivum L.) are the most important cereal crops for the Argentinean economy and are affected by several diseases. Different planthopper species transmit causal agents of some of those diseases, including Mal de Río Cuarto virus, barley yellow striate mosaic virus, and the recently proposed maize yellow striate virus. Many planthopper species are sap feeders and therefore are expected to host bacteria providing essential nutrients lacking in the diet. Previous studies have evidenced that some of these bacterial symbionts are involved in the virus transmission. Wolbachia is a group of obligate intracellular bacteria infecting numerous arthropod species and causing reproductive alterations in their hosts. These bacteria have been detected in planthopper species, considered rice pests in various regions of the world. To date, Wolbachia infection status of planthopper species of Argentina is unknown. Amplification by PCR and sequencing of 16S rDNA, wsp- and ftsZ-specific genes demonstrated Wolbachia infection in Caenodelphax teapae (Fowler), Delphacodes kuscheli Fennah, Pyrophagus tigrinus Remes Lenicov & Varela, Tagosodes orizicolus (Muir), and Toya propinqua (Fieber). This is the first report of Wolbachia in delphacid vectors of viruses affecting maize and wheat. An understanding of the bacterial diversity harbored by these insect vectors could lead to new options for future management of diseases of economically important crops in a developing country. PMID:26470291

  20. Detection of Wolbachia from field collected Aedes albopictus Skuse in Malaysia

    Directory of Open Access Journals (Sweden)

    A Noor Afizah

    2015-01-01

    Interpretation & conclusions: The results indicated that Wolbachia infection was widespread in Ae. albopictus population both in female and male Ae. albopictus. All the infected females were superinfected with both A and B strains while the infected males showed a combination of superinfection of A and B strains and single infection of B strain.

  1. Insilico modeling of Wolbachia and its potentials in combating mosquito borne diseases Chikungunya and Dengue

    Directory of Open Access Journals (Sweden)

    N.M.Guruprasad

    2013-09-01

    Full Text Available Mosquito borne diseases are major health burden both in tropical and subtropical regions. The enormous use of insecticides to control mosquitoes causes biomagnification of chemicals in environment and mosquitoes have developed resistance to insecticides. The inefficiency of insecticides to combat mosquitoes prompted researchers to develop efficient alternative methods. Wolbachia endosymbiont is a one of efficient new approach to control mosquitoes. Wolbachia strain invade mosquitoes biology by reducing host lifespan, phenotype and inhibit virus replication. In the present study, insilico modeling and docking of Wolbachia and human pathogens Chikungunya (CHIK and Dengue (DEN virus was done. Docking is the method to find the binding affinity of protein and ligand complex molecules for finding potential inhibitor. Using Hex, we obtained energy total (e-total values in kcal/mol for all docked complex. In the contest of overall analyzing the docking E-total values of docked complexes reveals that WSP-B has show strong binding affinity than WSP-A to both DEN and CHIK. Based on obtained result, we suggest WSP-B has potential inhibitor for both DEN and CHIK virus. Further, biophysical characterization of Wolbachia will help to develop a drug to combat CHIK and DEN viruses.

  2. Dynamics of the "popcorn" Wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control.

    Science.gov (United States)

    Yeap, H L; Mee, P; Walker, T; Weeks, A R; O'Neill, S L; Johnson, P; Ritchie, S A; Richardson, K M; Doig, C; Endersby, N M; Hoffmann, A A

    2011-02-01

    Forty percent of the world's population is at risk of contracting dengue virus, which produces dengue fever with a potentially fatal hemorrhagic form. The wMelPop Wolbachia infection of Drosophila melanogaster reduces life span and interferes with viral transmission when introduced into the mosquito Aedes aegypti, the primary vector of dengue virus. Wolbachia has been proposed as an agent for preventing transmission of dengue virus. Population invasion by Wolbachia depends on levels of cytoplasmic incompatibility, fitness effects, and maternal transmission. Here we characterized these traits in an outbred genetic background of a potential target population of Ae. aegypti using two crossing schemes. Cytoplasmic incompatibility was strong in this background, and the maternal transmission rate of Wolbachia was high. The infection substantially reduced longevity of infected adult females, regardless of whether adults came from larvae cultured under high or low levels of nutrition or density. The infection reduced the viability of diapausing and nondiapausing eggs. Viability was particularly low when eggs were laid by older females and when diapausing eggs had been stored for a few weeks. The infection affected mosquito larval development time and adult body size under different larval nutrition levels and densities. The results were used to assess the potential for wMelPop-CLA to invade natural populations of Ae. aegypti and to develop recommendations for the maintenance of fitness in infected mosquitoes that need to compete against field insects. PMID:21135075

  3. Time to Empower Release of Insects Carrying a Dominant Lethal and Wolbachia Against Zika

    Science.gov (United States)

    Dickens, Borame L.; Yang, Jie; Cook, Alex R.; Carrasco, Luis R.

    2016-01-01

    RIDL (release of insects with dominant lethality) and Wolbachia are 2 potentially powerful tools in the fight against Zika, but their technological advancement is being hampered by policy barriers. In this study, we discuss what could be done to overcome these regulatory deadlocks. PMID:27419175

  4. Reproductive effects and localization of Wolbachia and Cardinium in the spider mite Tetranychus piercei ( Acari: Tetranychidae)%Wolbachia和Cardinium对皮氏叶螨生殖的影响及在寄主体内的定位

    Institute of Scientific and Technical Information of China (English)

    朱路雨; 蒋欣雨; 杨思霞; 徐敏; 洪晓月

    2012-01-01

    Wolbachia和Cardinium均为母系遗传的胞内共生菌,它们能够通过诱导胞质不亲和(cytoplasmic incompatibility,CI)以调控寄主的生殖.目前,关于Wolbachia和Cardinium共同对同一寄主进行生殖操控的机制还不清楚.本研究以皮氏叶螨Tetranychus piercei McGregor广州种群为实验材料,通过杂交实验和荧光原位杂交的方法,研究Wolbachia和Cardinium单感染和双感染对寄主生殖的影响.结果表明:单感染Wolbachia诱导较弱的CI,不亲和组合的未孵化率为17.8%±1.6%.单感染Cardinium及双感染Wolbachia和Cardinium能诱导高强度的CI,不亲和组合的未孵化率分别为70.3%±1.3%和72.9%±1.2%.同时双感染Wolbachia和Cardinium雌螨的平均产卵量为35.2±1.2,显著高于单感染和不感染的雌螨的产卵量.Wolbachia和Cardinium分别诱导以及共同诱导CI的水平与精子形成过程中的感染情况有关.Wolbachia和Cardinium的垂直传播模式结果显示,在卵的不同发育阶段,Wolbachia和Cardinium主要伴随着营养物质从滋养细胞、中肠、输卵管进入发育中的卵.研究结果为进一步了解Wolbachia和Cardinium的母系遗传机制提供了重要依据.%Wolbachia and Cardinium, with the ability to induce cytoplasmic incompatibility ( CI) , are maternally inherited intracellular bacteria known to manipulate the reproduction of their hosts. The exact mechanisms of CI which is induced by these two endosymbionts in the same host are unknown. This study tried to investigate the reproductive manipulation of Wolbachia or/ and Cardinium infected spider mite Tetranychus piercei McGregor by crossing experiment and fluorescence in situ hybridization ( FISH). The results indicated that Wolbachia-infected males induced weak CI. In Guangzhou population of the spider mite, approximate 17. 8% ± 1.6% of all eggs did not hatch in the incompatible cross U/Iw. Cardinium-infected and Wolbachia and Cardinium doubly infected males caused

  5. Potential involvement of Brugia malayi cysteine proteases in the maintenance of the endosymbiotic relationship with Wolbachia

    Directory of Open Access Journals (Sweden)

    Sara Lustigman

    2014-12-01

    Full Text Available Brugia malayi, a parasitic nematode that causes lymphatic filariasis, harbors endosymbiotic intracellular bacteria, Wolbachia, that are required for the development and reproduction of the worm. The essential nature of this endosymbiosis led to the development of anti-Wolbachia chemotherapeutic approaches for the treatment of human filarial infections. Our study is aimed at identifying specific proteins that play a critical role in this endosymbiotic relationship leading to the identification of potential targets in the adult worms. Filarial cysteine proteases are known to be involved in molting and embryogenesis, processes shown to also be Wolbachia dependent. Based on the observation that cysteine protease transcripts are differentially regulated in response to tetracycline treatment, we focused on defining their role in symbiosis. We observe a bimodal regulation pattern of transcripts encoding cysteine proteases when in vitro tetracycline treated worms were examined. Using tetracycline-treated infertile female worms and purified embryos we established that the first peak of the bimodal pattern corresponds to embryonic transcripts while the second takes place within the hypodermis of the adult worms. Localization studies of the native proteins corresponding to Bm-cpl-3 and Bm-cpl-6 indicate that they are present in the area surrounding Wolbachia, and, in some cases, the proteins appear localized within the bacteria. Both proteins were also found in the inner bodies of microfilariae. The possible role of these cysteine proteases during development and endosymbiosis was further characterized using RNAi. Reduction in Bm-cpl-3 and Bm-cpl-6 transcript levels was accompanied by hindered microfilarial development and release, and reduced Wolbachia DNA levels, making these enzymes strong drug target candidates.

  6. Light-induced reactivation of O2-tolerant membrane-bound [Ni-Fe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus under turnover conditions.

    OpenAIRE

    Ciaccafava, Alexandre; Hamon, Cyrille; Infossi, Pascale; Marchi, Valérie; Giudici-Orticoni, Marie-Thérèse; Lojou, Elisabeth

    2013-01-01

    We report the effect of UV-Vis light on the membrane-bound [Ni-Fe] hydrogenase from Aquifex aeolicus under turnover conditions. Using electrochemistry, we show a potential dependent light sensitivity and propose that a light-induced structural change of the [Ni-Fe] active site is related to an enhanced reactivation of the hydrogenase under illumination at high potentials.

  7. Light-induced reactivation of O2-tolerant membrane-bound [Ni-Fe] hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus under turnover conditions.

    Science.gov (United States)

    Ciaccafava, Alexandre; Hamon, Cyrille; Infossi, Pascale; Marchi, Valérie; Giudici-Orticoni, Marie-Thérèse; Lojou, Elisabeth

    2013-10-21

    We report the effect of UV-Vis light on the membrane-bound [Ni-Fe] hydrogenase from Aquifex aeolicus under turnover conditions. Using electrochemistry, we show a potential dependent light sensitivity and propose that a light-induced structural change of the [Ni-Fe] active site is related to an enhanced reactivation of the hydrogenase under illumination at high potentials. PMID:23999766

  8. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  9. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  10. Cytoplasmic Incompatibility as a Means of Controlling Culex pipiens quinquefasciatus Mosquito in the Islands of the South-Western Indian Ocean

    OpenAIRE

    Atyame, Célestine M.; Nicole Pasteur; Emilie Dumas; Pablo Tortosa; Michaël Luciano Tantely; Nicolas Pocquet; Séverine Licciardi; Ambicadutt Bheecarry; Betty Zumbo; Mylène Weill; Olivier Duron

    2011-01-01

    The use of the bacterium Wolbachia is an attractive alternative method to control vector populations. In mosquitoes, as in members of the Culex pipiens complex, Wolbachia induces a form of embryonic lethality called cytoplasmic incompatibility, a sperm-egg incompatibility occurring when infected males mate either with uninfected females or with females infected with incompatible Wolbachia strain(s). Here we explore the feasibility of the Incompatible Insect Technique (IIT), a species-specific...

  11. Bacillus oryzicola sp. nov., an Endophytic Bacterium Isolated from the Roots of Rice with Antimicrobial, Plant Growth Promoting, and Systemic Resistance Inducing Activities in Rice

    Directory of Open Access Journals (Sweden)

    Eu Jin Chung

    2015-06-01

    Full Text Available Biological control of major rice diseases has been attempted in several rice-growing countries in Asia during the last few decades and its application using antagonistic bacteria has proved to be somewhat successful for controlling various fungal diseases in field trials. Two novel endophytic Bacillus species, designated strains YC7007 and YC7010T, with anti-microbial, plant growth-promoting, and systemic resistance-inducing activities were isolated from the roots of rice in paddy fields at Jinju, Korea, and their multifunctional activities were analyzed. Strain YC7007 inhibited mycelial growth of major rice fungal pathogens strongly in vitro. Bacterial blight and panicle blight caused by Xanthomonas oryzae pv. oryzae (KACC 10208 and Burkholderia glumae (KACC 44022, respectively, were also suppressed effectively by drenching a bacterial suspension (10⁷ cfu/ml of strain YC7007 on the rhizosphere of rice. Additionally, strain YC7007 promoted the growth of rice seedlings with higher germination rates and more tillers than the untreated control. The taxonomic position of the strains was also investigated. Phylogenetic analyses based on 16S rRNA gene sequences indicated that both strains belong to the genus Bacillus, with high similarity to the closely related strains, Bacillus siamensis KACC 15859T (99.67%, Bacillus methylotrophicus KACC 13105T (99.65%, Bacillus amyloliquefaciens subsp. plantarum KACC 17177T (99.60%, and Bacillus tequilensis KACC 15944T (99.45%. The DNA-DNA relatedness value between strain YC7010T and the most closely related strain, B. siamensis KACC 15859T was 50.4±3.5%, but it was 91.5±11.0% between two strains YC7007 and YC7010T, indicating the same species. The major fatty acids of two strains were anteiso-C15:0 and iso C15:0. Both strains contained MK-7 as a major respiratory quinone system. The G+C contents of the genomic DNA of two strains were 50.5 mol% and 51.2 mol%, respectively. Based on these polyphasic studies, the

  12. Genomics of Loa loa, a Wolbachia-free filarial parasite of humans

    OpenAIRE

    Desjardins, Christopher A.; Cerqueira, Gustavo C.; Goldberg, Jonathan M.; Hotopp, Julie C Dunning; Haas, Brian J.; Zucker, Jeremy; Ribeiro, Jose’ M.C.; Saif, Sakina; Levin, Joshua Z.; Fan, Lin; Zeng, Qiandong; Russ, Carsten; Wortman, Jennifer R.; Fink, Doran L.; Birren, Bruce W.

    2014-01-01

    Loa loa, the African eyeworm, is a major filarial pathogen of humans. Unlike most filariae, Loa loa does not contain the obligate intracellular Wolbachia endosymbiont. We describe the 91.4 Mb genome of Loa loa, and the genome of the related filarial parasite Wuchereria bancrofti, and predict 14,907 Loa loa genes based on microfilarial RNA sequencing. By comparing these genomes to that of another filarial parasite, Brugia malayi, and to several other nematode genomes, we demonstrate synteny am...

  13. Comparison of Irradiation and Wolbachia Based Approaches for Sterile-Male Strategies Targeting Aedes albopictus

    OpenAIRE

    Atyame, Célestine M.; Pierrick Labbé; Cyrille Lebon; Mylène Weill; Riccardo Moretti; Francesca Marini; Louis Clément Gouagna; Maurizio Calvitti; Pablo Tortosa

    2016-01-01

    The global expansion of Aedes albopictus together with the absence of vaccines for most of the arboviruses transmitted by this mosquito has stimulated the development of sterile-male strategies aiming at controlling disease transmission through the suppression of natural vector populations. In this context, two environmentally friendly control strategies, namely the Sterile Insect Technique (SIT) and the Wolbachia-based Incompatible Insect Technique (IIT) are currently being developed in seve...

  14. Anti-Wolbachia drug discovery and development: safe macrofilaricides for onchocerciasis and lymphatic filariasis

    OpenAIRE

    Taylor, Mark J; Hoerauf, Achim; TOWNSON, SIMON; Slatko, Barton E; Ward, Stephen A.

    2013-01-01

    SUMMARY Anti-Wolbachia therapy delivers safe macrofilaricidal activity with superior therapeutic outcomes compared to all standard anti-filarial treatments, with the added benefit of substantial improvements in clinical pathology. These outcomes can be achieved, in principle, with existing registered drugs, e.g. doxycycline, that are affordable, available to endemic communities and have well known, albeit population-limiting, safety profiles. The key barriers to using doxycycline as an mass d...

  15. From Parasite to Mutualist: Rapid Evolution of Wolbachia in Natural Populations of Drosophila

    OpenAIRE

    Weeks, Andrew R; Turelli, Michael; Harcombe, William R.; Reynolds, K Tracy; Hoffmann, Ary A.

    2007-01-01

    Author Summary Wolbachia are endosymbiotic bacteria that live inside the cells of their invertebrate hosts. They are transmitted directly from mother to offspring, and spread through populations by manipulating the reproduction of their hosts. The most common reproductive manipulation responsible for the spread of these bacteria, called “cytoplasmic incompatibility,” arises when infected males mate with uninfected females, resulting in fewer offspring than normal. There are fitness costs for ...

  16. Drosophila melanogaster brain invasion: pathogenic Wolbachia in central nervous system of the fly.

    Science.gov (United States)

    Strunov, Anton; Kiseleva, Elena

    2016-04-01

    The pathogenic Wolbachia strain wMelPop rapidly over-replicates in the brain, muscles, and retina of Drosophila melanogaster, causing severe tissue degeneration and premature death of the host. The unique features of this endosymbiont make it an excellent tool to be used for biological control of insects, pests, and vectors of human diseases. To follow the dynamics of bacterial morphology and titer in the nerve cells we used transmission electron microscopy of 3-d-old female brains. The neurons and glial cells from central brain of the fly had different Wolbachia titers ranging from single bacteria to large accumulations, tearing cell apart and invading extracellular space. The neuropile regions of the brain were free of wMelPop. Wolbachia tightly interacted with host cell organelles and underwent several morphological changes in nerve cells. Based on different morphological types of bacteria described we propose for the first time a scheme of wMelPop dynamics within the somatic tissue of the host. PMID:25394184

  17. Introduction to the alpha-proteobacteria: Wolbachia and Bartonella, Rickettsia, Brucella, Ehrlichia, and Anaplasma.

    Science.gov (United States)

    Bowman, Dwight D

    2011-11-01

    Wolbachia is an obligate intracellular endosymbiont and likely mutualist living within the heartworm Dirofilaria immitis and a number of other filarial nematodes in the family Onchocercidae. The bacterial infection is passed from worm to worm transovarially; the organisms are in ovarian cells, the developing microfilariae, and multiply and persist in all later developmental stages through the mosquito and into the next host. Besides being present in the ovaries of the adult worms, they also are present in large numbers within the hypodermal tissues of the nematode. It is now know that these bacteria that were first observed in heartworms more than 30 years ago are actually related to similar Wolbachia bacteria that are found in arthropods. Wolbachia is an alpha-proteobacteria, and this group includes a number of important arthropod-transmitted bacterial agents of dogs and cats: Rickettsia rickettsii, R. felis, Anaplasma platys, Ehrlichia canis, E. chaffeensis, and E. ewingii. Alpha-proteobacteria are also important as obligate intracellular mutualists in plants in which they are responsible for nitrogen fixation. Recent work on the treatment of heartworms in dogs with doxycycline stems from related work with the human filarial nematode Onchocerca volvulus that causes river blindness in people. PMID:22152604

  18. Limited dengue virus replication in field-collected Aedes aegypti mosquitoes infected with Wolbachia.

    Directory of Open Access Journals (Sweden)

    Francesca D Frentiu

    2014-02-01

    Full Text Available INTRODUCTION: Dengue is one of the most widespread mosquito-borne diseases in the world. The causative agent, dengue virus (DENV, is primarily transmitted by the mosquito Aedes aegypti, a species that has proved difficult to control using conventional methods. The discovery that A. aegypti transinfected with the wMel strain of Wolbachia showed limited DENV replication led to trial field releases of these mosquitoes in Cairns, Australia as a biocontrol strategy for the virus. METHODOLOGY/PRINCIPAL FINDINGS: Field collected wMel mosquitoes that were challenged with three DENV serotypes displayed limited rates of body infection, viral replication and dissemination to the head compared to uninfected controls. Rates of dengue infection, replication and dissemination in field wMel mosquitoes were similar to those observed in the original transinfected wMel line that had been maintained in the laboratory. We found that wMel was distributed in similar body tissues in field mosquitoes as in laboratory ones, but, at seven days following blood-feeding, wMel densities increased to a greater extent in field mosquitoes. CONCLUSIONS/SIGNIFICANCE: Our results indicate that virus-blocking is likely to persist in Wolbachia-infected mosquitoes after their release and establishment in wild populations, suggesting that Wolbachia biocontrol may be a successful strategy for reducing dengue transmission in the field.

  19. Accelerated microevolution in an outer membrane protein (OMP of the intracellular bacteria Wolbachia

    Directory of Open Access Journals (Sweden)

    Russell Jacob A

    2010-02-01

    Full Text Available Abstract Background Outer membrane proteins (OMPs of Gram-negative bacteria are key players in the biology of bacterial-host interactions. However, while considerable attention has been given to OMPs of vertebrate pathogens, relatively little is known about the role of these proteins in bacteria that primarily infect invertebrates. One such OMP is found in the intracellular bacteria Wolbachia, which are widespread symbionts of arthropods and filarial nematodes. Recent experimental studies have shown that the Wolbachia surface protein (WSP can trigger host immune responses and control cell death programming in humans, suggesting a key role of WSP for establishment and persistence of the symbiosis in arthropods. Results Here we performed an analysis of 515 unique alleles found in 831 Wolbachia isolates, to investigate WSP structure, microevolution and population genetics. WSP shows an eight-strand transmembrane β-barrel structure with four extracellular loops containing hypervariable regions (HVRs. A clustering approach based upon patterns of HVR haplotype diversity was used to group similar WSP sequences and to estimate the relative contribution of mutation and recombination during early stages of protein divergence. Results indicate that although point mutations generate most of the new protein haplotypes, recombination is a predominant force triggering diversity since the very first steps of protein evolution, causing at least 50% of the total amino acid variation observed in recently diverged proteins. Analysis of synonymous variants indicates that individual WSP protein types are subject to a very rapid turnover and that HVRs can accommodate a virtually unlimited repertoire of peptides. Overall distribution of WSP across hosts supports a non-random association of WSP with the host genus, although extensive horizontal transfer has occurred also in recent times. Conclusions In OMPs of vertebrate pathogens, large recombination impact, positive

  20. The Potential Use of Wolbachia-Based Mosquito Biocontrol Strategies for Japanese Encephalitis.

    Directory of Open Access Journals (Sweden)

    Claire L Jeffries

    Full Text Available Japanese encephalitis virus (JEV is a zoonotic pathogen transmitted by the infectious bite of Culex mosquitoes. The virus causes the development of the disease Japanese encephalitis (JE in a small proportion of those infected, predominantly affecting children in eastern and southern Asia. Annual JE incidence estimates range from 50,000-175,000, with 25%-30% of cases resulting in mortality. It is estimated that 3 billion people live in countries in which JEV is endemic. The virus exists in an enzootic transmission cycle, with mosquitoes transmitting JEV between birds as reservoir hosts and pigs as amplifying hosts. Zoonotic infection occurs as a result of spillover events from the main transmission cycle. The reservoir avian hosts include cattle egrets, pond herons, and other species of water birds belonging to the family Ardeidae. Irrigated rice fields provide an ideal breeding ground for mosquitoes and attract migratory birds, maintaining the transmission of JEV. Although multiple vaccines have been developed for JEV, they are expensive and require multiple doses to maintain efficacy and immunity. As humans are a "dead-end" host for the virus, vaccination of the human population is unlikely to result in eradication. Therefore, vector control of the principal mosquito vector, Culex tritaeniorhynchus, represents a more promising strategy for reducing transmission. Current vector control strategies include intermittent irrigation of rice fields and space spraying of insecticides during outbreaks. However, Cx. Tritaeniorhynchus is subject to heavy exposure to pesticides in rice fields, and as a result, insecticide resistance has developed. In recent years, significant advancements have been made in the potential use of the bacterial endosymbiont Wolbachia for mosquito biocontrol. The successful transinfection of Wolbachia strains from Drosophila flies to Aedes (Stegomyia mosquitoes has resulted in the generation of "dengue-refractory" mosquito

  1. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol...

  2. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II--A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release.

    Science.gov (United States)

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Gilles, Jeremie R L; Bourtzis, Kostas

    2015-01-01

    Due to the absence of a perfect method for mosquito sex separation, the combination of the sterile insect technique and the incompatible insect technique is now being considered as a potentially effective method to control Aedes albopictus. In this present study first we examine the minimum pupal irradiation dose required to induce complete sterility in Wolbachia triple-infected (HC), double-infected (GUA) and uninfected (GT) female Ae. albopictus. The HC line is a candidate for Ae. albopictus population suppression programmes, but due to the risk of population replacement which characterizes this triple infected line, the individuals to be released need to be additionally irradiated. After determining the minimum irradiation dose required for complete female sterility, we test whether sterilization is sufficient to prevent invasion of the triple infection from the HC females into double-infected (GUA) populations. Our results indicate that irradiated Ae. albopictus HC, GUA and GT strain females have decreased fecundity and egg hatch rate when irradiated, inversely proportional to the dose, and the complete sterilization of females can be acquired by pupal irradiation with doses above 28 Gy. PCR-based analysis of F1 and F2 progeny indicate that the irradiated HC females, cannot spread the new Wolbachia wPip strain into a small cage GUA population, released at a 1:5 ratio. Considering the above results, we conclude that irradiation can be used to reduce the risk of population replacement caused by an unintentional release of Wolbachia triple-infected Ae. albopictus HC strain females during male release for population suppression. PMID:26252474

  3. Combining the Sterile Insect Technique with Wolbachia-Based Approaches: II--A Safer Approach to Aedes albopictus Population Suppression Programmes, Designed to Minimize the Consequences of Inadvertent Female Release.

    Directory of Open Access Journals (Sweden)

    Dongjing Zhang

    Full Text Available Due to the absence of a perfect method for mosquito sex separation, the combination of the sterile insect technique and the incompatible insect technique is now being considered as a potentially effective method to control Aedes albopictus. In this present study first we examine the minimum pupal irradiation dose required to induce complete sterility in Wolbachia triple-infected (HC, double-infected (GUA and uninfected (GT female Ae. albopictus. The HC line is a candidate for Ae. albopictus population suppression programmes, but due to the risk of population replacement which characterizes this triple infected line, the individuals to be released need to be additionally irradiated. After determining the minimum irradiation dose required for complete female sterility, we test whether sterilization is sufficient to prevent invasion of the triple infection from the HC females into double-infected (GUA populations. Our results indicate that irradiated Ae. albopictus HC, GUA and GT strain females have decreased fecundity and egg hatch rate when irradiated, inversely proportional to the dose, and the complete sterilization of females can be acquired by pupal irradiation with doses above 28 Gy. PCR-based analysis of F1 and F2 progeny indicate that the irradiated HC females, cannot spread the new Wolbachia wPip strain into a small cage GUA population, released at a 1:5 ratio. Considering the above results, we conclude that irradiation can be used to reduce the risk of population replacement caused by an unintentional release of Wolbachia triple-infected Ae. albopictus HC strain females during male release for population suppression.

  4. Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae from different geographical regions in India

    Directory of Open Access Journals (Sweden)

    Hoti SL

    2003-01-01

    Full Text Available In view of the recent discovery of rickettsial endosymbionts, Wolbachia in lymphatic filarial parasites, Wuchereria bancrofti and Brugia malayi and subsequently of their vital role in the survival and development of the latter, antibiotics such as tetracycline are being suggested for the treatment of lymphatic filariasis, by way of eliminating the endosymbiont. But, it is essential to assess their presence in parasites from areas endemic for lymphatic filariasis before such a new control tool is employed. In the present communication, we report the detection of Wolbachia endosymbionts in microfilariae of W. bancrofti parasites collected from geographically distant locations of India, such as Pondicherry (Union Territory, Calicut (Kerala, Jagadalpur (Madhya Pradesh, Thirukoilur (TamilNadu, Chinnanergunam (TamilNadu, Rajahmundry (Andhra Pradesh, and Varanasi (Uttar Pradesh, using Wolbachia specific 16S rDNA polymerase chain reaction.

  5. Loss of Wolbachia infection during colonisation in the invasive Argentine ant Linepithema humile

    DEFF Research Database (Denmark)

    Reuter, M.; Pedersen, Jes Søe; Keller, L.

    2005-01-01

    the phylogenies of Wolbachia and its arthropod hosts indicate that infection is frequently lost, but the causes of symbiont extinction have so far remained elusive. Here, we report data showing that colonisation of new habitats is a possible mechanism leading to the loss of infection. The presence and...... loss of infection associated with colonisation of new habitats may result from drift (founder effect) or altered selection pressures in the new habitat. Furthermore, a molecular phylogeny based on sequences of the Wolbachia wsp gene indicates that L. humile has been infected by a single strain...

  6. Both asymmetric mitotic segregation and cell-to-cell invasion are required for stable germline transmission of Wolbachia in filarial nematodes

    Directory of Open Access Journals (Sweden)

    Frédéric Landmann

    2012-04-01

    Parasitic filarial nematodes that belong to the Onchocercidae family live in mutualism with Wolbachia endosymbionts. We developed whole-mount techniques to follow the segregation patterns of Wolbachia through the somatic and germline lineages of four filarial species. These studies reveal multiple evolutionarily conserved mechanisms that are required for Wolbachia localization to the germline. During the initial embryonic divisions, Wolbachia segregate asymmetrically such that they concentrate in the posteriorly localized P2 blastomere, a precursor to the adult germline and hypodermal lineages. Surprisingly, in the next division they are excluded from the germline precursor lineage. Rather, they preferentially segregate to the C blastomere, a source of posterior hypodermal cells. Localization to the germline is accomplished by a distinct mechanism in which Wolbachia invade first the somatic gonadal cells close to the ovarian distal tip cell, the nematode stem cell niche, from the hypodermis. This tropism is associated with a cortical F-actin disruption, suggesting an active engulfment. Significantly, germline invasion occurs only in females, explaining the lack of Wolbachia in the male germline. Once in the syncytial environment of the ovaries, Wolbachia rely on the rachis to multiply and disperse into the germ cells. The utilization of cell-to-cell invasion for germline colonization may indicate an ancestral mode of horizontal transfer that preceded the acquisition of the mutualism.

  7. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis.

    Science.gov (United States)

    Darby, Alistair C; Armstrong, Stuart D; Bah, Germanus S; Kaur, Gaganjot; Hughes, Margaret A; Kay, Suzanne M; Koldkjær, Pia; Rainbow, Lucille; Radford, Alan D; Blaxter, Mark L; Tanya, Vincent N; Trees, Alexander J; Cordaux, Richard; Wastling, Jonathan M; Makepeace, Benjamin L

    2012-12-01

    The α-proteobacterium Wolbachia is probably the most prevalent, vertically transmitted symbiont on Earth. In contrast with its wide distribution in arthropods, Wolbachia is restricted to one family of animal-parasitic nematodes, the Onchocercidae. This includes filarial pathogens such as Onchocerca volvulus, the cause of human onchocerciasis, or river blindness. The symbiosis between filariae and Wolbachia is obligate, although the basis of this dependency is not fully understood. Previous studies suggested that Wolbachia may provision metabolites (e.g., haem, riboflavin, and nucleotides) and/or contribute to immune defense. Importantly, Wolbachia is restricted to somatic tissues in adult male worms, whereas females also harbor bacteria in the germline. We sought to characterize the nature of the symbiosis between Wolbachia and O. ochengi, a bovine parasite representing the closest relative of O. volvulus. First, we sequenced the complete genome of Wolbachia strain wOo, which revealed an inability to synthesize riboflavin de novo. Using RNA-seq, we also generated endobacterial transcriptomes from male soma and female germline. In the soma, transcripts for membrane transport and respiration were up-regulated, while the gonad exhibited enrichment for DNA replication and translation. The most abundant Wolbachia proteins, as determined by geLC-MS, included ligands for mammalian Toll-like receptors. Enzymes involved in nucleotide synthesis were dominant among metabolism-related proteins, whereas the haem biosynthetic pathway was poorly represented. We conclude that Wolbachia may have a mitochondrion-like function in the soma, generating ATP for its host. Moreover, the abundance of immunogenic proteins in wOo suggests a role in diverting the immune system toward an ineffective antibacterial response. PMID:22919073

  8. Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions.

    Directory of Open Access Journals (Sweden)

    Célestine M Atyame

    Full Text Available In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI. This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy. We have previously constructed the LR[wPip(Is] line representing a good candidate for controlling field populations of the Culex quinquefasciatus mosquito in the islands of the south-western Indian Ocean. The main purpose of the present study was to fill the gap between laboratory experiments and field implementation, i.e. assessing mating competitiveness of these incompatible males under semi-field conditions. In a first set of experiments, we analyzed crossing relationships between LR[wPip(Is] males and La Réunion field females collected as larvae in 19 distinct localities throughout the island. This investigation revealed total embryonic mortality, confirming the strong sterilizing capacity of LR[wPip(Is] males. Subsequently, mating competitiveness of LR[wPip(Is] males was assessed under semi-field conditions in the presence of field males and females from La Réunion. Confrontations were carried out in April and December using different ratios of LR[wPip(Is] to field males. The results indicated that the LR[wPip(Is] males successfully compete with field males in mating with field females, displaying even higher competitiveness than field males in April. Our results support the implementation of small-scale field tests in order to assess the feasibility of IIT against Cx. quinquefasciatus in the islands of southwestern Indian Ocean where this mosquito species is a proven competent vector for human pathogens.

  9. Wolbachia-based population control strategy targeting Culex quinquefasciatus mosquitoes proves efficient under semi-field conditions.

    Science.gov (United States)

    Atyame, Célestine M; Cattel, Julien; Lebon, Cyrille; Flores, Olivier; Dehecq, Jean-Sébastien; Weill, Mylène; Gouagna, Louis Clément; Tortosa, Pablo

    2015-01-01

    In mosquitoes, the maternally inherited bacterial Wolbachia induce a form of embryonic lethality called cytoplasmic incompatibility (CI). This property can be used to reduce the density of mosquito field populations through inundative releases of incompatible males in order to sterilize females (Incompatible Insect Technique, or IIT, strategy). We have previously constructed the LR[wPip(Is)] line representing a good candidate for controlling field populations of the Culex quinquefasciatus mosquito in the islands of the south-western Indian Ocean. The main purpose of the present study was to fill the gap between laboratory experiments and field implementation, i.e. assessing mating competitiveness of these incompatible males under semi-field conditions. In a first set of experiments, we analyzed crossing relationships between LR[wPip(Is)] males and La Réunion field females collected as larvae in 19 distinct localities throughout the island. This investigation revealed total embryonic mortality, confirming the strong sterilizing capacity of LR[wPip(Is)] males. Subsequently, mating competitiveness of LR[wPip(Is)] males was assessed under semi-field conditions in the presence of field males and females from La Réunion. Confrontations were carried out in April and December using different ratios of LR[wPip(Is)] to field males. The results indicated that the LR[wPip(Is)] males successfully compete with field males in mating with field females, displaying even higher competitiveness than field males in April. Our results support the implementation of small-scale field tests in order to assess the feasibility of IIT against Cx. quinquefasciatus in the islands of southwestern Indian Ocean where this mosquito species is a proven competent vector for human pathogens. PMID:25768841

  10. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae)

    Czech Academy of Sciences Publication Activity Database

    Ritter, S.; Michalski, S. G.; Settele, J.; Wiemers, M.; Fric, Zdeněk; Sielezniew, M.; Šašić, M.; Rozier, Y.; Durka, W.

    2013-01-01

    Roč. 8, č. 11 (2013), e78107. E-ISSN 1932-6203 Institutional support: RVO:60077344 Keywords : Wolbachia Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.534, year: 2013 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0078107

  11. Variations of immune parameters in terrestrial isopods: a matter of gender, aging and Wolbachia

    Science.gov (United States)

    Sicard, Mathieu; Chevalier, Frédéric; de Vlechouver, Mickaël; Bouchon, Didier; Grève, Pierre; Braquart-Varnier, Christine

    2010-09-01

    Ecological factors modulate animal immunocompetence and potentially shape the evolution of their immune systems. Not only environmental parameters impact on immunocompetence: Aging is one major cause of variability of immunocompetence between individuals, and sex-specific levels of immunocompetence have also been frequently described. Moreover, a growing core of data put in light that vertically transmitted symbionts can dramatically modulate the immunocompetence of their hosts. In this study, we addressed the influence of gender, age and the feminising endosymbiont Wolbachia ( wVulC) on variations in haemocyte density, total PO activity and bacterial load in the haemolymph of the terrestrial isopod Armadillidium vulgare. This host-symbiont system is of particular interest to address this question since: (1) wVulC was previously shown as immunosuppressive in middle-aged females and (2) wVulC influences sex determination. We show that age, gender and Wolbachia modulate together immune parameters in A. vulgare. However, wVulC, which interacts with aging, appears to be the prominent factor interfering with both PO activity and haemocyte density. This interference with immune parameters is not the only aspect of wVulC virulence on its host, as reproduction and survival are also altered.

  12. Stability of the wMel Wolbachia Infection following invasion into Aedes aegypti populations.

    Directory of Open Access Journals (Sweden)

    Ary A Hoffmann

    2014-09-01

    Full Text Available The wMel infection of Drosophila melanogaster was successfully transferred into Aedes aegypti mosquitoes where it has the potential to suppress dengue and other arboviruses. The infection was subsequently spread into two natural populations at Yorkeys Knob and Gordonvale near Cairns, Queensland in 2011. Here we report on the stability of the infection following introduction and we characterize factors influencing the ongoing dynamics of the infection in these two populations. While the Wolbachia infection always remained high and near fixation in both locations, there was a persistent low frequency of uninfected mosquitoes. These uninfected mosquitoes showed weak spatial structure at both release sites although there was some clustering around two areas in Gordonvale. Infected females from both locations showed perfect maternal transmission consistent with patterns previously established pre-release in laboratory tests. After >2 years under field conditions, the infection continued to show complete cytoplasmic incompatibility across multiple gonotrophic cycles but persistent deleterious fitness effects, suggesting that host effects were stable over time. These results point to the stability of Wolbachia infections and their impact on hosts following local invasion, and also highlight the continued persistence of uninfected individuals at a low frequency most likely due to immigration.

  13. Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae.

    Directory of Open Access Journals (Sweden)

    Sylvia Ritter

    Full Text Available Deep mitochondrial divergence within species may result from cryptic speciation, from phylogeographic isolation or from endosymbiotic bacteria like Wolbachia that manipulate host reproduction. Phengaris butterflies are social parasites that spend most of their life in close relationship with ants. Previously, cryptic speciation has been hypothesised for two Phengaris species based on divergent mtDNA sequences. Since Phengaris species are highly endangered, the existence of cryptic species would have drastic consequences for conservation and management. We tested for cryptic speciation and alternative scenarios in P. teleius and P. nausithous based on a comprehensive sample across their Palaearctic ranges using COI gene sequences, nuclear microsatellites and tests for Wolbachia. In both species a deep mitochondrial split occurring 0.65-1.97 myrs ago was observed that did not correspond with microsatellite data but was concordant with Wolbachia infection. Haplotypes previously attributed to cryptic species were part of the Wolbachia-infected clades. In both species remaining phylogeographic structure was largely consistent between mitochondrial and nuclear genomes. In P. teleius several mitochondrial and nuclear groups were observed in East Asia while a single haplogroup and nuclear cluster prevailed across continental Eurasia. Neutrality tests suggested rapid demographic expansion into that area. In contrast, P. nausithous had several mitochondrial and nuclear groups in Europe, suggesting a complex phylogeographic history in the western part of the species range. We conclude that deep intraspecific divergences found in DNA barcode studies do not necessarily need to represent cryptic speciation but instead can be due to both infection by Wolbachia and phylogeographic structure.

  14. The Wolbachia WO bacteriophage proteome in the Aedes albopictus C/wStr1 cell line: evidence for lytic activity?

    Science.gov (United States)

    Baldridge, Gerald D; Markowski, Todd W; Witthuhn, Bruce A; Higgins, LeeAnn; Baldridge, Abigail S; Fallon, Ann M

    2016-01-01

    Wolbachia pipientis (Rickettsiales), an obligate intracellular alphaproteobacterium in insects, manipulates host reproduction to maximize invasion of uninfected insect populations. Modification of host population structure has potential applications for control of pest species, particularly if Wolbachia can be maintained, manipulated, and genetically engineered in vitro. Although Wolbachia maintains an obligate mutualism with genome stability in nematodes, arthropods can be co-infected with distinct Wolbachia strains, and horizontal gene transfer between strains is potentially mediated by WO phages encoded within Wolbachia genomes. Proteomic analysis of a robust, persistent infection of a mosquito cell line with wStr from the planthopper, Laodelphax striatellus, revealed expression of a full array of WO phage genes, as well as nine of ten non-phage genes that occur between two distinct clusters of WOMelB genes in the genome of wMel, which infects Drosophila melanogaster. These non-phage genes encode potential host-adaptive proteins and are expressed in wStr at higher levels than phage structural proteins. A subset of seven of the non-phage genes is flanked by highly conserved non-coding sequences, including a putative promoter element, that are not present in a syntenically arranged array of homologs in plasmids from three tick-associated Rickettsia spp. These studies expand our understanding of wStr in a host cell line derived from the mosquito, Aedes albopictus, and provide a basis for investigating conditions that favor the lytic phase of the WO phage life cycle and recovery of infectious phage particles. PMID:26427709

  15. Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements.

    Directory of Open Access Journals (Sweden)

    Martin Wu

    2004-03-01

    Full Text Available The complete sequence of the 1,267,782 bp genome of Wolbachia pipientis wMel, an obligate intracellular bacteria of Drosophila melanogaster, has been determined. Wolbachia, which are found in a variety of invertebrate species, are of great interest due to their diverse interactions with different hosts, which range from many forms of reproductive parasitism to mutualistic symbioses. Analysis of the wMel genome, in particular phylogenomic comparisons with other intracellular bacteria, has revealed many insights into the biology and evolution of wMel and Wolbachia in general. For example, the wMel genome is unique among sequenced obligate intracellular species in both being highly streamlined and containing very high levels of repetitive DNA and mobile DNA elements. This observation, coupled with multiple evolutionary reconstructions, suggests that natural selection is somewhat inefficient in wMel, most likely owing to the occurrence of repeated population bottlenecks. Genome analysis predicts many metabolic differences with the closely related Rickettsia species, including the presence of intact glycolysis and purine synthesis, which may compensate for an inability to obtain ATP directly from its host, as Rickettsia can. Other discoveries include the apparent inability of wMel to synthesize lipopolysaccharide and the presence of the most genes encoding proteins with ankyrin repeat domains of any prokaryotic genome yet sequenced. Despite the ability of wMel to infect the germline of its host, we find no evidence for either recent lateral gene transfer between wMel and D. melanogaster or older transfers between Wolbachia and any host. Evolutionary analysis further supports the hypothesis that mitochondria share a common ancestor with the alpha-Proteobacteria, but shows little support for the grouping of mitochondria with species in the order Rickettsiales. With the availability of the complete genomes of both species and excellent genetic tools for

  16. Persistent Wolbachia and cultivable bacteria infection in the reproductive and somatic tissues of the mosquito vector Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Karima Zouache

    Full Text Available BACKGROUND: Commensal and symbiotic microbes have a considerable impact on the behavior of many arthropod hosts, including hematophagous species that transmit pathogens causing infectious diseases to human and animals. Little is known about the bacteria associated with mosquitoes other than the vectorized pathogens. This study investigated Wolbachia and cultivable bacteria that persist through generations in Ae. albopictus organs known to host transmitted arboviruses, such as dengue and chikungunya. METHODOLOGY/PRINCIPAL FINDINGS: We used culturing, diagnostic and quantitative PCR, as well as in situ hybridization, to detect and locate bacteria in whole individual mosquitoes and in dissected tissues. Wolbachia, cultivable bacteria of the genera Acinetobacter, Comamonas, Delftia and Pseudomonas co-occurred and persisted in the bodies of both males and females of Ae. albopictus initially collected in La Réunion during the chikungunya outbreak, and maintained as colonies in insectaries. In dissected tissues, Wolbachia and the cultivable Acinetobacter can be detected in the salivary glands. The other bacteria are commonly found in the gut. Quantitative PCR estimates suggest that Wolbachia densities are highest in ovaries, lower than those of Acinetobacter in the gut, and approximately equal to those of Acinetobacter in the salivary glands. Hybridization using specific fluorescent probes successfully localized Wolbachia in all germ cells, including the oocytes, and in the salivary glands, whereas the Acinetobacter hybridizing signal was mostly located in the foregut and in the anterior midgut. CONCLUSIONS/SIGNIFICANCE: Our results show that Proteobacteria are distributed in the somatic and reproductive tissues of mosquito where transmissible pathogens reside and replicate. This location may portend the coexistence of symbionts and pathogens, and thus the possibility that competition or cooperation phenomena may occur in the mosquito vector Ae

  17. Sequencing and annotation of the Wolbachia endosymbiont of Diaphorina citri by the CG-HLB Genome Resources group reveals candidate sources of interaction with the insect host

    OpenAIRE

    Saha, Surya; Hunter, Wayne; Lindeberg, Magdalen

    2014-01-01

    The Citrus Greening – Huanglongbing (CG-HLB) Genome Resources group serves as a bioinformatics resource for diverse projects related to the biology of CG-HLB.  A major recent project concerns the generation and annotation of a draft genome sequence for the Wolbachia endosymbiont (wDi) of the Asian citrus psyllid, of particular interest given the potential for control of psyllid behavior through manipulation of its bacterial endosymbionts.   The Wolbachia draft genome was assembled and contigs...

  18. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  19. Assessing key safety concerns of a Wolbachia-based strategy to control dengue transmission by Aedes mosquitoes

    Directory of Open Access Journals (Sweden)

    Jean Popovici

    2010-12-01

    Full Text Available Mosquito-borne diseases such as dengue fever, chikungunya or malaria affect millions of people each year and control solutions are urgently needed. An international research program is currently being developed that relies on the introduction of the bacterial endosymbiont Wolbachia pipientis into Aedes aegypti to control dengue transmission. In order to prepare for open-field testing releases of Wolbachia-infected mosquitoes, an intensive social research and community engagement program was undertaken in Cairns, Northern Australia. The most common concern expressed by the diverse range of community members and stakeholders surveyed was the necessity of assuring the safety of the proposed approach for humans, animals and the environment. To address these concerns a series of safety experiments were undertaken. We report in this paper on the experimental data obtained, discuss the limitations of experimental risk assessment and focus on the necessity of including community concerns in scientific research.

  20. Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti

    Science.gov (United States)

    Dhamodharan, R; Hoti, SL; Sivapragasam, G; Das, MK

    2011-01-01

    Background: Periplasmic serine proteases of HtrA type of Wolbachia have been shown to play a role in the pathogenesis of filarial disease. Aims: This study was aimed to sequence Wb-HtrA serine protease and analyze its phylogenetic position by comparing with other filarial and non-filarial nematode homologs. Materials and Methods: Partial HtrA gene fragment was amplified from DNA isolated from periodic and sub-periodic Wuchereria bancrofti parasites collected from Pondicherry and Nicobar islands, respectively. The amplicons were sequenced, and sequence homology and phylogenetic relationship with other filarial and non-filarial nematodes were analyzed. Results: Partial orthologue of HtrA-type serine protease from Wolbachia of W. bancrofti was amplified, cloned and sequenced. The deduced amino acid sequence exhibited 87%, 81% and 74% identity with the homologous Wolbachia proteases identified from Brugia malayi, Onchocerca volvulus and Drosophila melanogaster, respectively. The Wb-HtrA has arthologues in several proteobacteria with very high homology and hence is highly conserved not only among Wolbachia of filarial parasites but also across proteobacteria. The phylogenetic tree constructed using Neighbor-Joining method showed two main clusters: cluster-I containing bacteria that dwell in diverse habitats such as soil, fresh and marine waters and plants and cluster-II comprising Anaplasma sp. and Erlichia, and Wolbachia endosymbionts of insects and nematodes, in distinct groups. Conclusions: HtrA-type serine protease from Wolbachia of W. bancrofti is highly conserved among filarial parasites. It will be of interest to know whether filarial Wolbachia HtrA type of serine protease might influence apoptosis and lymphatic epithelium, thereby playing a role in the filarial pathogenesis. Such information will be useful for identifying targets for the development of newer drugs for filariasis treatment, especially for preventing lymphatic pathology. PMID:23508470

  1. Presence of Wolbachia endosymbionts in microfilariae of Wuchereria bancrofti (Spirurida: Onchocercidae) from different geographical regions in India

    OpenAIRE

    Hoti SL; Sridhar A.; PK Das

    2003-01-01

    In view of the recent discovery of rickettsial endosymbionts, Wolbachia in lymphatic filarial parasites, Wuchereria bancrofti and Brugia malayi and subsequently of their vital role in the survival and development of the latter, antibiotics such as tetracycline are being suggested for the treatment of lymphatic filariasis, by way of eliminating the endosymbiont. But, it is essential to assess their presence in parasites from areas endemic for lymphatic filariasis before such a new control tool...

  2. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    OpenAIRE

    Kelly L. Johnston; Louise Ford; Indira Umareddy; Simon Townson; Sabine Specht; Kenneth Pfarr; Achim Hoerauf; Ralf Altmeyer; Taylor, Mark J

    2014-01-01

    Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial sym...

  3. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis.

    Science.gov (United States)

    Johnston, Kelly L; Ford, Louise; Umareddy, Indira; Townson, Simon; Specht, Sabine; Pfarr, Kenneth; Hoerauf, Achim; Altmeyer, Ralf; Taylor, Mark J

    2014-12-01

    Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA). The anti-Wolbachia (A·WOL) Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs) for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases. PMID:25516838

  4. Repurposing of approved drugs from the human pharmacopoeia to target Wolbachia endosymbionts of onchocerciasis and lymphatic filariasis

    Directory of Open Access Journals (Sweden)

    Kelly L. Johnston

    2014-12-01

    Full Text Available Lymphatic filariasis and onchocerciasis are debilitating diseases caused by parasitic filarial nematodes infecting around 150 million people throughout the tropics with more than 1.5 billion at risk. As with other neglected tropical diseases, classical drug-discovery and development is lacking and a 50 year programme of macrofilaricidal discovery failed to deliver a drug which can be used as a public health tool. Recently, antibiotic targeting of filarial Wolbachia, an essential bacterial symbiont, has provided a novel drug treatment for filariasis with macrofilaricidal activity, although the current gold-standard, doxycycline, is unsuitable for use in mass drug administration (MDA. The anti-Wolbachia (A·WOL Consortium aims to identify novel anti-Wolbachia drugs, compounds or combinations that are suitable for use in MDA. Development of a Wolbachia cell-based assay has enabled the screening of the approved human drug-pharmacopoeia (∼2600 drugs for a potential repurposing. This screening strategy has revealed that approved drugs from various classes show significant bacterial load reduction equal to or superior to the gold-standard doxycycline, with 69 orally available hits from different drug categories being identified. Based on our defined hit criteria, 15 compounds were then selectively screened in a Litomosoides sigmodontis mouse model, 4 of which were active. These came from the tetracycline, fluoroquinolone and rifamycin classes. This strategy of repurposing approved drugs is a promising development in the goal of finding a novel treatment against filariasis and could also be a strategy applicable for other neglected tropical diseases.

  5. Research progress on intracellular bacteria of the genus Wolbachia%细胞内共生菌Wolbachia研究进展

    Institute of Scientific and Technical Information of China (English)

    周丹; 朱颖; 李朋玲; 高琼; 朱昌亮

    2010-01-01

    Intracellular rickettsial bacteria of the genus Wolbachia are found in numerous invertebrates including insects and nematodes. In their insect hosts, Wolbachia often manipulate the reproductive mode of their hosts, causing cytoplasmic incompatibility(CI), parthenogenesis induction(PI), feminization of genetic,or male killing(MK). Many studies have determined that filarial pathogenesis were reliant on this endosymbiont for embryogenesis, growth and survival. Additional researches have also focused on determining the role of Wolbachia in horizontal gene transfer, antiviral responses, potential applications in pest and disease vector control,speciation and so on. This review summarized the significant advances in the study of Wolbachia. Future research directions of this interesting intracellular rickettsial bacteria are also discussed.%Wolbachia是一类广泛共生于节肢动物和线虫体内的立克次体,能够通过细胞质不亲和、孤雌生殖、雄性雌性化和杀雄等多种机制调控节肢动物的生殖行为,并在丝虫发育、生殖和致病过程中发挥重要作用.近年来的研究结果显示Wolbachia在水平基因转移、抗病毒作用、物种进化等方面亦具有重要价值.该文对Wolbachia近年研究成果进行综述,重点介绍其生物学特征、传播方式、对共生宿主的影响作用及其意义,初步探讨了其在媒介生物防治与相关疾病控制中的潜在价值.

  6. A comparative study on the functional response of Wolbachia-infected and uninfected forms of the parasitoid wasp Trichogramma brassicae.

    Science.gov (United States)

    Farrokhi, S; Ashouri, A; Shirazi, J; Allahvari, H; Huigens, M E

    2010-01-01

    Trichogramma species (Hymenoptera: Trichogrammatidae) are haplo-diploid egg parasitoids that are frequently used as biological control agents against lepidopteran pests. These wasps display two reproductive modes, including arrhenotoky (bisexuality) and thelytoky (unisexuality). Thelytokous forms are often associated with the presence of endosymbiotic Wolbachia bacteria. The use of thelytokous wasps has long been considered as a way to enhance the efficacy of biological control. The present study investigates the potential of a thelytokous Wolbachia-infected and an arrhenotokous uninfected Trichogramma brassicae Bezdenko strain as inundative biocontrol agents by evaluating their functional response towards different egg densities of the factitious host, the Angoumois grain moth, Sitotroga cerealella (Olivier) (Lepidoptera: Gelechiidae). The results revealed a type II functional response for both strains in which parasitism efficiency decreases with host egg density because of an increasing host handling time. A model with an indicator variable was used to compare the parameters of Holling's disc equation in different data sets. It was demonstrated that the two strains did not differ in host attack rate. However, the Wolbachia-infected strain did have an increased host handling time when compared to the bisexual strain. Some applied aspects of the findings are discussed. PMID:21062211

  7. A Wolbachia wMel transinfection in Aedes albopictus is not detrimental to host fitness and inhibits Chikungunya virus.

    Directory of Open Access Journals (Sweden)

    Marcus S C Blagrove

    Full Text Available BACKGROUND: Wolbachia inherited intracellular bacteria can manipulate the reproduction of their insect hosts through cytoplasmic incompatibility (CI, and certain strains have also been shown to inhibit the replication or dissemination of viruses. Wolbachia strains also vary in their relative fitness effects on their hosts and this is a particularly important consideration with respect to the potential of newly created transinfections for use in disease control. METHODOLOGY/PRINCIPAL FINDINGS: In Aedes albopictus mosquitoes transinfected with the wMel strain from Drosophila melanogaster, which we previously reported to be unable to transmit dengue in lab challenges, no significant detrimental effects were observed on egg hatch rate, fecundity, adult longevity or male mating competitiveness. All these parameters influence the population dynamics of Wolbachia, and the data presented are favourable with respect to the aim of taking wMel to high population frequency. Challenge with the chikungunya (CHIKV virus, for which Ae. albopictus is an important vector, was conducted and the presence of wMel abolished CHIKV dissemination to the saliva. CONCLUSIONS/SIGNIFICANCE: Taken together, these data suggest that introducing wMel into natural Ae. albopictus populations using bidirectional CI could be an efficient strategy for preventing or reducing the transmission of arboviruses by this species.

  8. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  9. A lack of Wolbachia-specific DNA in samples from apollo butterfly (Parnassius apollo, Lepidoptera: Papilionidae) individuals with deformed or reduced wings.

    Science.gov (United States)

    Łukasiewicz, Kinga; Sanak, Marek; Węgrzyn, Grzegorz

    2016-05-01

    Various insects contain maternally inherited endosymbiotic bacteria which can cause reproductive alterations, modulation of some physiological responses (like immunity, heat shock response, and oxidative stress response), and resistance to viral infections. In butterflies, Wolbachia sp. is the most frequent endosymbiont from this group, occurring in about 30 % of species tested to date. In this report, the presence of Wolbachia-specific DNA has been detected in apollo butterfly (Parnassius apollo). In the isolated population of this insect occurring in Pieniny National Park (Poland), malformed individuals with deformed or reduced wings appear with an exceptionally high frequency. Interestingly, while total DNA isolated from most (about 85 %) normal insects contained Wolbachia-specific sequences detected by PCR, such sequences were absent in a large fraction (70 %) of individuals with deformed wings and in all tested individuals with reduced wings. These results indicate for the first time the correlation between malformation of wings and the absence of Wolbachia sp. in insects. Although the lack of the endosymbiotic bacteria cannot be considered as the sole cause of the deformation or reduction of wings, one might suggest that Wolbachia sp. could play a protective role in the ontogenetic development of apollo butterfly. PMID:26423782

  10. Use of the dynamic gastro-intestinal model TIM to explore the survival of the yogurt bacterium Streptococcus thermophilus and the metabolic activities induced in the simulated human gut.

    Science.gov (United States)

    Uriot, Ophélie; Galia, Wessam; Awussi, Ahoefa Ablavi; Perrin, Clarisse; Denis, Sylvain; Chalancon, Sandrine; Lorson, Emilie; Poirson, Chantal; Junjua, Maira; Le Roux, Yves; Alric, Monique; Dary, Annie; Blanquet-Diot, Stéphanie; Roussel, Yvonne

    2016-02-01

    Streptococcus thermophilus, a lactic acid bacterium used to produce yogurts and cheeses is more and more considered for its potential probiotic properties. This implies that additional information should be obtained regarding its survival and metabolic activity in the human Gastro-Intestinal Tract (GIT). In this study, we screened 30 S. thermophilus strains for urease, small heat shock protein, and amino-acid decarboxylase functions which may play a role in survival in the upper part of the GIT. The survival kinetics of 4 strains was investigated using the TIM, a physiologically relevant in vitro dynamic gastric and small intestinal model. The three strains LMD9, PB18O and EBLST20 showed significantly higher survival than CNRZ21 in all digestive compartments of the TIM, which may be related to the presence of urease and heat shock protein functions. When LMD9 bacterial cells were delivered in a fermented milk formula, a significant improvement of survival in the TIM was observed compared to non-fermented milk. With the RIVET (Recombinase In Vivo Expression Technology) method applied to the LMD9 strain, a promoter located upstream of hisS, responsible for the histidyl-transfer RNA synthesis, was found to be specifically activated in the artificial stomach. The data generated on S. thermophilus survival and its adaptation capacities to the digestive tract are essential to establish a list of biomarkers useful for the selection of probiotic strains. PMID:26611166

  11. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  12. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  13. Wolbachia symbiont infections induce strong cytoplasmic incompatibility in the tsetse fly glossina morsitans

    OpenAIRE

    Uzma Alam; Jan Medlock; Corey Brelsfoard; Roshan Pais; Claudia Lohs; Séverine Balmand; Jozef Carnogursky; Abdelaziz Heddi; Peter Takac; Alison Galvani; Serap Aksoy

    2011-01-01

    Tsetse flies are vectors of the protozoan parasite African trypanosomes, which cause sleeping sickness disease in humans and nagana in livestock. Although there are no effective vaccines and efficacious drugs against this parasite, vector reduction methods have been successful in curbing the disease, especially for nagana. Potential vector control methods that do not involve use of chemicals is a genetic modification approach where flies engineered to be parasite resistant are allowed to repl...

  14. Male mating competitiveness of a Wolbachia-introgressed Aedes polynesiensis strain under semi-field conditions.

    Directory of Open Access Journals (Sweden)

    Eric W Chambers

    2011-08-01

    Full Text Available BACKGROUND: Lymphatic filariasis (LF, a global public health problem affecting approximately 120 million people worldwide, is a leading cause of disability in the developing world including the South Pacific. Despite decades of ongoing mass drug administration (MDA in the region, some island nations have not yet achieved the threshold levels of microfilaremia established by the World Health Organization for eliminating transmission. Previously, the generation of a novel Aedes polynesiensis strain (CP infected with an exogenous type of Wolbachia has been described. The CP mosquito is cytoplasmically incompatible (i.e., effectively sterile when mated with wildtype mosquitoes, and a strategy was proposed for the control of A. polynesiensis populations by repeated, inundative releases of CP males to disrupt fertility of wild females. Such a strategy could lead to suppression of the vector population and subsequently lead to a reduction in the transmission of filarial worms. METHODOLOGY/PRINCIPAL FINDINGS: CP males and F1 male offspring from wild-caught A. polynesiensis females exhibit near equal mating competitiveness with F1 females under semi-field conditions. CONCLUSIONS/SIGNIFICANCE: While laboratory experiments are important, prior projects have demonstrated the need for additional testing under semi-field conditions in order to recognize problems before field implementation. The results reported here from semi-field experiments encourage forward progression toward small-scale field releases.

  15. The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.

    Science.gov (United States)

    Walden, Patricia M; Halili, Maria A; Archbold, Julia K; Lindahl, Fredrik; Fairlie, David P; Inaba, Kenji; Martin, Jennifer L

    2013-01-01

    The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb) proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB. PMID:24282596

  16. The α-proteobacteria Wolbachia pipientis protein disulfide machinery has a regulatory mechanism absent in γ-proteobacteria.

    Directory of Open Access Journals (Sweden)

    Patricia M Walden

    Full Text Available The α-proteobacterium Wolbachia pipientis infects more than 65% of insect species worldwide and manipulates the host reproductive machinery to enable its own survival. It can live in mutualistic relationships with hosts that cause human disease, including mosquitoes that carry the Dengue virus. Like many other bacteria, Wolbachia contains disulfide bond forming (Dsb proteins that introduce disulfide bonds into secreted effector proteins. The genome of the Wolbachia strain wMel encodes two DsbA-like proteins sharing just 21% sequence identity to each other, α-DsbA1 and α-DsbA2, and an integral membrane protein, α-DsbB. α-DsbA1 and α-DsbA2 both have a Cys-X-X-Cys active site that, by analogy with Escherichia coli DsbA, would need to be oxidized to the disulfide form to serve as a disulfide bond donor toward substrate proteins. Here we show that the integral membrane protein α-DsbB oxidizes α-DsbA1, but not α-DsbA2. The interaction between α-DsbA1 and α-DsbB is very specific, involving four essential cysteines located in the two periplasmic loops of α-DsbB. In the electron flow cascade, oxidation of α-DsbA1 by α-DsbB is initiated by an oxidizing quinone cofactor that interacts with the cysteine pair in the first periplasmic loop. Oxidizing power is transferred to the second cysteine pair, which directly interacts with α-DsbA1. This reaction is inhibited by a non-catalytic disulfide present in α-DsbA1, conserved in other α-proteobacterial DsbAs but not in γ-proteobacterial DsbAs. This is the first characterization of the integral membrane protein α-DsbB from Wolbachia and reveals that the non-catalytic cysteines of α-DsbA1 regulate the redox relay system in cooperation with α-DsbB.

  17. Effects of high LET radiation on radioresistant bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    It is known that Deinococcus radiodurans is extremely resistant to ionizing and ultraviolet (UV) radiations, as well as chemical agents and hyperthermia (heat treatment) which cause DNA damage. It was reported in this paper that studies on the synergistic killing effect of high LET (linear energy transfer) radiation and hyperthermia in D. radiodurans were performed in Research Reactor Institute, Kyoto University as the Visiting Researcher's Program. The difference of cellular response in this bacterium against low LET (i.e. gamma) and high LET (i.e. BNC beam and heavy ion beam) radiations was analyzed by using Kyoto University Reactor (KUR) operated at 5 MW and AVF cyclotron in Takasaki Ion Accelerator for Radiation Application (TIARA). Also, The DNA sequence specificity (hot spot) for mutation on supF gene of a shuttle vector plasmid pZ189 induced by BNC beam is being researched using Escherichia coli DNA repair capability. (author)

  18. Development and validation of a high-throughput anti-Wolbachia whole-cell screen: a route to macrofilaricidal drugs against onchocerciasis and lymphatic filariasis.

    Science.gov (United States)

    Clare, Rachel H; Cook, Darren A N; Johnston, Kelly L; Ford, Louise; Ward, Stephen A; Taylor, Mark J

    2015-01-01

    There is an urgent need to develop new, safe, and affordable macrofilaricidal drugs for onchocerciasis and lymphatic filariasis treatment and control. The Anti-Wolbachia Consortium (A·WOL) aims to provide a novel treatment with macrofilaricidal activity by targeting the essential bacterial symbiont Wolbachia. The consortium is currently screening a diverse range of compounds to find new chemical space to drive this drug discovery initiative and address this unmet demand. To increase the throughput and capacity of the A·WOL cell-based screen, we have developed a 384-well format assay using a high-content imaging system (Operetta) in conjunction with optimized Wolbachia growth dynamics in the C6/36 Aedes albopictus mosquito cell line. This assay uses texture analysis of cells stained with SYTO 11 as a direct measure of bacterial load. This validated assay has dramatically increased the capacity and throughput of the A·WOL compound library screening program 25-fold, enriching the number of new anti-Wolbachia hits identified for further development as potential macrofilaricides for onchocerciasis and lymphatic filariasis. PMID:25278497

  19. 白纹伊蚊实验种群感染沃尔巴体Wolbachia的研究%STUDY ON WOLBACHIA INFECTION IN EXPERIMENTAL POPULATION OF AEDES ALBOPICTUS

    Institute of Scientific and Technical Information of China (English)

    张东京; 杨潇; 吴贤生; 陈婧; 李卓雅; 吴瑜; 詹希美; 郑小英

    2012-01-01

    为了了解白纹伊蚊实验种群沃尔巴体Wolbachia感染率、感染品系、组织分布及系统发育,运用引物PCR方法检测实验种群白纹伊蚊Wolbachia 的感染情况.解剖白纹伊蚊,提取头部、卵巢/睾丸、脂肪体、唾液腺/胸部、马氏管、中肠组织的基因组DNA,PCR法扩增Wolbachia表面膜蛋白(wsp),扩增产物进行克隆及测序,并用BLAST软件对其进行系统发育分析.将随机抽取的白纹伊蚊雌雄各50只分别检测,均为阳性.卵巢/睾丸、脂肪体和唾液腺/胸部均存在着Wolbachia A、B组超感染;雌蚊头部、雄蚊马氏管和中肠为B组单感染;雄蚊头部则未检测到Wolbachia.将wsp基因克隆测序后进行系统发育分析显示白纹伊蚊体内Wolbachia与尖音库蚊、菜蛾、宽边黄粉蝶四者同源性较高达99%,这表明四者体内所感染的Wolbachia可能来源于同一个分支.%In order to investigate the infection profiles of Wolbachia in Aedes albopictus rearing in laboratory, we carried out a survey in Ae. Albopictus using polymerase chain reaction ( PCR ) assay to detect Wolbachia to analysis the infection rates, strains, tissue distribution and the phylogeny relationships. Briefly, template DNA was extracted from the head, ovary/ testis, fat body, salivary glands/ thorax, malpighian tubules and midgut respectively to amplify Wolbachia Surface Protein ( wsp ) gene. The amplification product was cloned and sequenced to analyze the phylogenesis with BLAST tools. Of fifty male and female mosquitoes randomly selected, all of them were positively infected with Wolbachia. The ovary/tesis, fat body and salivary glands/thorax of both sexes were superinfected by Wolbachia A and B strains. The malpighian tubules and midgut of male were only infected by B strain. As for the head, the female were found only infected by B strain, the male were not found infection. The identity of Wolbachia in Ae. Albopictus, is 99% as high as Culex pipents, Cotesia

  20. Genetic diversity, population structure and Wolbachia infection status in a worldwide sample of Drosophila melanogaster and D. simulans populations.

    Directory of Open Access Journals (Sweden)

    Rudi L Verspoor

    Full Text Available Drosophila melanogaster and its close relatives have been extremely important model species in the development of population genetic models that serve to explain patterns of diversity in natural populations, a major goal of evolutionary biology. A detailed picture of the evolutionary history of these species is beginning to emerge, as the relative importance of forces including demographic changes and natural selection is established. A continuing aim is to characterise levels of genetic diversity in a large number of populations of these species, covering a wide geographic area. We have used collections from five previously un-sampled wild populations of D. melanogaster and two of D. simulans, across three continents. We estimated levels of genetic diversity within, and divergence between, these populations, and looked for evidence of genetic structure both between ancestral and derived populations, and amongst derived populations. We also investigated the prevalence of infection with the bacterial endosymbiont Wolbachia. We found that D. melanogaster populations from Sub-Saharan Africa are the most diverse, and that divergence is highest between these and non-Sub-Saharan populations. There is strong evidence for structuring of populations between Sub-Saharan Africa and the rest of the world, and some evidence for weak structure amongst derived populations. Populations from Sub-Saharan Africa also differ in the prevalence of Wolbachia infection, with very low levels of infection compared to populations from the rest of the world.

  1. Hidden suppression of sex ratio distortion suggests Red queen dynamics between Wolbachia and its dwarf spider host.

    Science.gov (United States)

    Vanthournout, B; Hendrickx, F

    2016-08-01

    Genetic conflict theory predicts strong selection for host nuclear factors suppressing endosymbiont effects on reproduction; however, evidence of these suppressors is currently scarce. This can either be caused by a low suppressor evolution rate, or if suppressors originate frequently, by rapid spread and concurrent masking of their activity by silencing the endosymbiont effect. To explore this, we use two populations of a dwarf spider with a similar female bias, caused by a Wolbachia infection. Using inter- and intrapopulation crosses, we determine that one of these populations demonstrates a higher suppressing capability towards Wolbachia despite having a similar population sex ratio. This suggests that spider and endosymbiont are locked in so-called red queen dynamics where, despite continuous coevolution, average fitness remains the same, hence hiding the presence of the suppressor. Finding different suppressor activity in populations that even lack phenotypic differentiation (i.e. similar sex ratio) further supports the hypothesis that suppressors originate often, but are often hidden by their own mode of action by countering endosymbiont effects. PMID:26995349

  2. Should Symbionts Be Nice or Selfish? Antiviral Effects of Wolbachia Are Costly but Reproductive Parasitism Is Not.

    Directory of Open Access Journals (Sweden)

    Julien Martinez

    2015-07-01

    Full Text Available Symbionts can have mutualistic effects that increase their host's fitness and/or parasitic effects that reduce it. Which of these strategies evolves depends in part on the balance of their costs and benefits to the symbiont. We have examined these questions in Wolbachia, a vertically transmitted endosymbiont of insects that can provide protection against viral infection and/or parasitically manipulate its hosts' reproduction. Across multiple symbiont strains we find that the parasitic phenotype of cytoplasmic incompatibility and antiviral protection are uncorrelated. Strong antiviral protection is associated with substantial reductions in other fitness-related traits, whereas no such trade-off was detected for cytoplasmic incompatibility. The reason for this difference is likely that antiviral protection requires high symbiont densities but cytoplasmic incompatibility does not. These results are important for the use of Wolbachia to block dengue virus transmission by mosquitoes, as natural selection to reduce these costs may lead to reduced symbiont density and the loss of antiviral protection.

  3. Cloning, expression and characterization of UDP-N-acetylglucosamine enolpyruvyl transferase (MurA from Wolbachia endosymbiont of human lymphatic filarial parasite Brugia malayi.

    Directory of Open Access Journals (Sweden)

    Mohd Shahab

    Full Text Available Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for treatment of lymphatic filariasis. Although functional characterization of the Wolbachia peptidoglycan assembly has not been fully explored, the Wolbachia genome provides evidence for coding all of the genes involved in lipid II biosynthesis, a part of peptidoglycan biosynthesis pathway. UDP-N-acetylglucosamine enolpyruvyl transferase (MurA is one of the lipid II biosynthesis pathway enzymes and it has inevitably been recognized as an antibiotic target. In view of the vital role of MurA in bacterial viability and survival, MurA ortholog from Wolbachia endosymbiont of Brugia malayi (wBm-MurA was cloned, expressed and purified for further molecular characterization. The enzyme kinetics and inhibition studies were undertaken using fosfomycin. wBm-MurA was found to be expressed in all the major life stages of B. malayi and was immunolocalized in Wolbachia within the microfilariae and female adults by the confocal microscopy. Sequence analysis suggests that the amino acids crucial for enzymatic activity are conserved. The purified wBm-MurA was shown to possess the EPSP synthase (3-phosphoshikimate 1-carboxyvinyltransferase like activity at a broad pH range with optimal activity at pH 7.5 and 37°C temperature. The apparent affinity constant (Km for the substrate UDP-N-acetylglucosamine was found to be 0.03149 mM and for phosphoenolpyruvate 0.009198 mM. The relative enzymatic activity was inhibited ∼2 fold in presence of fosfomycin. Superimposition of the wBm-MurA homology model with the structural model of Haemophilus influenzae (Hi-MurA suggests binding of fosfomycin at the same active site. The findings suggest wBm-MurA to be a putative antifilarial drug target for screening of novel compounds.

  4. Sensitivity of ribosomes of the hyperthermophilic bacterium Aquifex pyrophilus to aminoglycoside antibiotics.

    OpenAIRE

    Bocchetta, M; Huber, R.; Cammarano, P

    1996-01-01

    A poly(U)-programmed cell-free system from the hyperthermophilic bacterium Aquifex pyrophilus has been developed, and the susceptibility of Aquifex ribosomes to the miscoding-inducing and inhibitory actions of all known classes of aminoglycoside antibiotics has been assayed at temperatures (75 to 80 degrees C) close to the physiological optimum for cell growth. Unlike Thermotoga maritima ribosomes, which are systematically refractory to all known classes of aminoglycoside compounds (P. Londei...

  5. Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris‡

    OpenAIRE

    Oda, Yasuhiro; Samanta, Sudip K.; Rey, Federico E.; Wu, Liyou; Liu, Xiudan; Yan, Tingfen; Zhou, Jizhong; Harwood, Caroline S.

    2005-01-01

    The photosynthetic bacterium Rhodopseudomonas palustris is one of just a few prokaryotes described so far that has vnf and anf genes for alternative vanadium cofactor (V) and iron cofactor (Fe) nitrogenases in addition to nif genes for a molybdenum cofactor (Mo) nitrogenase. Transcriptome data indicated that the 32 genes in the nif gene cluster, but not the anf or vnf genes, were induced in wild-type and Mo nitrogenase-expressing strains grown under nitrogen-fixing conditions in Mo-containing...

  6. Coregulation of beta-galactoside uptake and hydrolysis by the hyperthermophilic bacterium Thermotoga neapolitana

    OpenAIRE

    Galperin, MY; Noll, KM; Romano, AH

    1997-01-01

    Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of be...

  7. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  8. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  9. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    Science.gov (United States)

    Meneghel, Julie; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  10. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  11. Draft Genome Sequence of the Endophytic Bacterium Enterobacter spp. MR1, Isolated from Drought Tolerant Plant (Butea monosperma)

    OpenAIRE

    Parakhia, Manoj V.; Tomar, Rukam S.; Malaviya, Bipin J.; Dhingani, Rashmin M.; Rathod, Visha M.; Thakkar, Jalpa R.; Golakiya, B. A.

    2013-01-01

    Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and ...

  12. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    Science.gov (United States)

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  13. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  14. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  15. Minocycline as a re-purposed anti-Wolbachia macrofilaricide: superiority compared with doxycycline regimens in a murine infection model of human lymphatic filariasis

    DEFF Research Database (Denmark)

    Sharma, Raman; Al Jayoussi, Ghaith; Tyrer, Hayley E.;

    2016-01-01

    the pharmacokinetics and anti-Wolbachia efficacy in a murine Brugia malayi model of minocycline versus doxycycline. Doxycycline exhibits superior PK in comparison to minocycline resulting in a 3-fold greater exposure in SCID mice. Monte-Carlo simulations confirmed that a bi-daily 25–40 mg/Kg regimen is bioequivalent...... to a clinically effective 100–200 mg/day dose for these tetracyclines. Pharmacodynamic studies showed that minocycline depletes Wolbachia more effectively than doxycycline (99.51% vs. 90.35%) after 28 day 25 mg/Kg bid regimens with a more potent block in microfilarial production. PK/PD analysis predicts...... that minocycline would be expected to be 1.7 fold more effective than doxycycline in man despite lower exposure in our infection models. Our findings warrant onward clinical investigations to examine the clinical efficacy of minocycline treatment regimens against lymphatic filariasis and onchocerciasis....

  16. Cloning and sequence analysis of partial genomic DNA coding for HtrA-type serine protease of Wolbachia from human lymphatic filarial parasite, Wuchereria bancrofti

    OpenAIRE

    Dhamodharan, R.; Hoti, SL; Sivapragasam, G; Das, MK

    2011-01-01

    Background: Periplasmic serine proteases of HtrA type of Wolbachia have been shown to play a role in the pathogenesis of filarial disease. Aims: This study was aimed to sequence Wb-HtrA serine protease and analyze its phylogenetic position by comparing with other filarial and non-filarial nematode homologs. Materials and Methods: Partial HtrA gene fragment was amplified from DNA isolated from periodic and sub-periodic Wuchereria bancrofti parasites collected from Pondicherry and Nicobar islan...

  17. The Coevolutionary Period of Wolbachia pipientis Infecting Drosophila ananassae and Its Impact on the Evolution of the Host Germline Stem Cell Regulating Genes

    OpenAIRE

    Choi, Jae Young; Aquadro, Charles F.

    2014-01-01

    The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal ...

  18. Spatial and Temporal Variation in Aedes aegypti and Aedes albopictus (Diptera: Culicidae) Numbers in the Yogyakarta Area of Java, Indonesia, With Implications for Wolbachia Releases.

    Science.gov (United States)

    Tantowijoyo, W; Arguni, E; Johnson, P; Budiwati, N; Nurhayati, P I; Fitriana, I; Wardana, S; Ardiansyah, H; Turley, A P; Ryan, P; O'Neill, S L; Hoffmann, A A

    2016-01-01

    of mosquito vector populations, particularly through Wolbachia endosymbionts. The success of these strategies depends on understanding the dynamics of vector populations. In preparation for Wolbachia releases around Yogyakarta, we have studied Aedes populations in five hamlets. Adult monitoring with BioGent- Sentinel (BG-S) traps indicated that hamlet populations had different dynamics across the year; while there was an increase in Aedes aegypti (L.) and Aedes albopictus (Skuse) numbers in the wet season, species abundance remained relatively stable in some hamlets but changed markedly (>2 fold) in others. Local rainfall a month prior to monitoring partly predicted numbers of Ae. aegypti but not Ae. albopictus. Site differences in population size indicated by BG-S traps were also evident in ovitrap data. Egg or larval collections with ovitraps repeated at the same location suggested spatial autocorrelation (hamlets where Ae. aegypti numbers were high. Overall, there was a weak negative association (rhamlets where consistently high mosquito densities may influence Wolbachia invasions and other interventions. PMID:26576934

  19. Fitness of wAlbB Wolbachia Infection in Aedes aegypti: Parameter Estimates in an Outcrossed Background and Potential for Population Invasion.

    Science.gov (United States)

    Axford, Jason K; Ross, Perran A; Yeap, Heng Lin; Callahan, Ashley G; Hoffmann, Ary A

    2016-03-01

    Wolbachia endosymbionts are potentially useful tools for suppressing disease transmission by Aedes aegypti mosquitoes because Wolbachia can interfere with the transmission of dengue and other viruses as well as causing deleterious effects on their mosquito hosts. Most recent research has focused on the wMel infection, but other infections also influence viral transmission and may spread in natural populations. Here, we focus on the wAlbB infection in an Australian outbred background and show that this infection has many features that facilitate its invasion into natural populations including strong cytoplasmic incompatibility, a lack of effect on larval development, an equivalent mating success to uninfected males and perfect maternal transmission fidelity. On the other hand, the infection has deleterious effects when eggs are held in a dried state, falling between wMel and the more virulent wMelPop Wolbachia strains. The impact of this infection on lifespan also appears to be intermediate, consistent with the observation that this infection has a titer in adults between wMel and wMelPop. Population cage experiments indicate that the wAlbB infection establishes in cages when introduced at a frequency of 22%, suggesting that this strain could be successfully introduced into populations and subsequently persist and spread. PMID:26711515

  20. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  1. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  2. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  3. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  4. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  5. Role for Vitamin B12 in Light Induction of Gene Expression in the Bacterium Myxococcus xanthus

    OpenAIRE

    Cervantes, María; Murillo, Francisco J.

    2002-01-01

    A light-inducible promoter (PB) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to PB and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the PB promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other...

  6. Isolation and characterization of an Enterococcus-like bacterium causing muscle necrosis and mortality in Macrobrachium rosenbergii in Taiwan.

    Science.gov (United States)

    Cheng, W; Chen, J C

    1998-10-01

    A Gram-positive, ovoid, diplococoid bacterium tentatively identified as Enterococcus-like was isolated from diseased Macrobrachium rosenbergii in Taiwanese aquaculture ponds. The diseased prawns displayed poor growth, anorexia, inactivity, opaque and whitish musculature, and mortality. In histological preparations, melanized hemocytic granulomas were seen in the connective tissue around hemal sinuses together with hemocytic aggregation in necrotic musculature. Five isolates of diplococci were collected from diseased prawns at 4 farms and these were evaluated for 93 characteristics including morphology, physiology, biochemistry and sensitivity to antibiotics. The results indicated that the isolates belonged to a single species. They grew in 0.5 to 6.0% NaCl, at 10 to 40 degrees C, at pH 9.6 and on bile esculin medium, gave positive pyrrolidonylarylamidase, arginine dehydrolase and Voges-Proskauer tests, were resistant to bacitracin and SXT, and were CAMP-negative and non-hemolytic on sheep blood agar. These findings indicated an Enterococcus-like bacterium closely related to Enterococcus seriolicida (recently reduced to synonymy with Lactococcus garvieae). Experimental injection of 3 x 10(5) cells of strain KM002 of this Enterococcus-like bacterium into the ventral sinus of the prawn cephalothorax caused 100% mortality in 11 d, and induced muscular necrosis and hepatopancreatitis, gross signs and histopathology similar to those observed in the naturally infected prawns. It was concluded that this Enterococcus-like bacterium was the etiological agent associated with mortality of the farmed, diseased prawns. PMID:9828405

  7. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia.

    Science.gov (United States)

    Kosmidis, Stylianos; Missirlis, Fanis; Botella, Jose A; Schneuwly, Stephan; Rouault, Tracey A; Skoulakis, Efthimios M C

    2014-01-01

    Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host's innate immune response to various pathogens, for example, in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin overexpression on survival and neurodegeneration we generated flies simultaneously over-expressing transgenes for both ferritin subunits in all neurons. We used two independent recombinant chromosomes bearing UAS-Fer1HCH, UAS-Fer2LCH transgenes and obtained qualitatively different levels of late-onset behavioral and lifespan declines. We subsequently discovered that one parental strain had been infected with a virulent form of the bacterial endosymbiont Wolbachia, causing widespread neuronal apoptosis and premature death. This phenotype was exacerbated by ferritin overexpression and was curable by antibiotic treatment. Neuronal ferritin overexpression in uninfected flies did not cause evident neurodegeneration but resulted in a late-onset behavioral decline, as previously reported for ferritin overexpression in glia. The results suggest that ferritin overexpression in the central nervous system of flies is tolerated well in young individuals with adverse manifestations appearing only late in life or under unrelated pathophysiological conditions. PMID:24772084

  8. Taiwanese Trichogramma of Asian Corn Borer: Morphology, ITS-2 rDNA Characterization, and Natural Wolbachia Infection

    Science.gov (United States)

    Wu, Li-Hsin; Hoffmann, Ary A.; Thomson, Linda J.

    2016-01-01

    Egg parasitoids of the genus Trichogramma are natural enemies of many lepidopteran borers in agricultural areas around the world. It is important to identify the correct species and ideally focus on endemic Trichogramma for pest control in particular crops. In this study, Trichogramma wasps were collected from parasitized eggs of Asian corn borer in Southwestern Taiwan. Three Trichogramma species, Trichogramma ostriniae Pang and Chen, Trichogramma chilonis Ishii, and T. sp. y, were identified based on morphology and the nucleotide sequence of the internal transcribed spacer 2 (ITS-2) region of rDNA. Although T. ostriniae and T. sp. y appear to be morphologically similar, ITS-2 identity between these two taxa is only 89%. Surprisingly, a commercially released Trichogramma colony thought to be T. chilonis possessed 99% identity (ITS-2) with the field T. sp. y individuals. This suggests past contamination leading to subsitution of the laboratory-reared T. chilonis colony by T. sp. y. Natural populations of all three Trichogramma species were found to be infected by a single Wolbachia strain which was identified using a wsp gene sequence. PMID:26896674

  9. Behavioral decline and premature lethality upon pan-neuronal ferritin overexpression in Drosophila infected with a virulent form of Wolbachia.

    Directory of Open Access Journals (Sweden)

    FanisMissirlis

    2014-04-01

    Full Text Available Iron is required for organismal growth. Therefore, limiting iron availability may be a key part of the host’s innate immune response to various pathogens, for example in Drosophila infected with Zygomycetes. One way the host can transiently reduce iron bioavailability is by ferritin overexpression. To study the effects of neuronal-specific ferritin overexpression on survival and neurodegeneration we generated flies simultaneously over-expressing transgenes for both ferritin subunits in all neurons. We used two independent recombinant chromosomes bearing UAS-Fer1HCH, UAS-Fer2LCH transgenes and obtained qualitatively different levels of late-onset behavioral and lifespan declines. We subsequently discovered that one parental strain had been infected with a virulent form of the bacterial endosymbiont Wolbachia, causing widespread neuronal apoptosis and premature death. This phenotype was exacerbated by ferritin overexpression and was curable by antibiotic treatment. Neuronal ferritin overexpression in uninfected flies did not cause evident neurodegeneration but resulted in a late-onset behavioral decline, as previously reported for ferritin overexpression in glia. The results suggest that ferritin overexpression in the central nervous system of flies is tolerated well in young individuals with adverse manifestations appearing only late in life or under unrelated pathophysiological conditions.

  10. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells

    OpenAIRE

    Magot, M; Ravot, G; Campaignolle, X.; Ollivier, Bernard; Patel, B.K.C.; Fardeau, Marie-Laure; Thomas, P; Crolet, J.L.; Garcia, Jean-Louis

    1997-01-01

    A strictly anaerobic thiosulfate-reducing bacterium was isolated from a corroding offshore oil well in Congo and was designated strain SEBR 4207(T). Pure culture of the strain induced a very active pitting corrosion of mild steel, with penetration rates of up to 4 mm per year. This constitutes the first experimental evidence of the involvement of thiosulfate reduction in microbial corrosion of steel. Strain SEBR 4207(T) cells were vibrios (3 to 5 by 1 micrometer), stained gram negative, and p...

  11. Influence of Growth Temperature on Lipid and Phosphate Contents of Surface Polysaccharides from the Antarctic Bacterium Pseudoalteromonas haloplanktis TAC 125

    OpenAIRE

    Corsaro, M. Michela; Lanzetta, Rosa; Parrilli, Ermenegilda; Parrilli, Michelangelo; Tutino, M. Luisa; Ummarino, Salvatore

    2004-01-01

    The chemical structural variations induced by different growth temperatures in the lipooligosaccharide and exopolysaccharide components extracted from the Antarctic bacterium Pseudoalteromonas haloplanktis TAC 125 are described. The increase in phosphorylation with the increase in growth temperature seems to be general, because it happens not only for the lipooligosaccharide but also for the exopolysaccharide. Structural variations in the lipid components of lipid A also occur. In addition, f...

  12. Filamentation temperature-sensitive protein Z (FtsZ) of Wolbachia, endosymbiont of Wuchereria bancrofti: a potential target for anti-filarial chemotherapy.

    Science.gov (United States)

    Sharma, Rohit; Hoti, S L; Vasuki, V; Sankari, T; Meena, R L; Das, P K

    2013-03-01

    Lymphatic filariasis (LF) is a leading cause of morbidity in the tropical world. It is caused by the filarial parasites Wuchereria bancrofti, Brugia malayi and Brugia timori and transmitted by vector mosquitoes. Currently a programme for the elimination of LF, Global programme for Elimination of Lymphatic Filariasis (GPELF), is underway with the strategy of mass administration of single dose of diethylcarbamazine or ivermectin, in combination with an anthelmintic drug, albendazole. However, antifilarial drugs used in the programme are only microfilaricidal but not or only partially macrofilaricidal. Hence, there is a need to identify new targets for developing antifilarial drugs. Filarial parasites harbor rickettsial endosymbionts, Wolbachia sp., which play an important role in their biology and hence are considered as potential targets for antifilarial chemotherapy development. In this study, one of the cell division proteins of Wolbachia of the major lymphatic filarial parasite, W. bancrofti, viz., filamentation temperature-sensitive protein Z (FtsZ), was explored as a drug target. The gene coding for FtsZ protein was amplified from the genomic DNA of W. bancrofti, cloned and sequenced. The derived amino acid sequence of the gene revealed that FtsZ protein is 396 amino acids long and contained the tubulin motif (GGGTGTG) involved in GTP binding and the GTP hydrolyzing motif (NLDFAD). The FtsZ gene of endosymbiont showed limited sequence homology, but exhibited functional homology with β-tubulin of its host, W. bancrofti, as it had both the functional motifs and conserved amino acids that are critical for enzymatic activity. β-tubulin is the target for the anti-helminthic activity of albendazole and since FtsZ shares functional homology with, β-tubulin it may also be sensitive to albendazole. Therefore, the effect of albendazole was tested against Wolbachia occurring in mosquitoes instead of filarial parasites as the drug has lethal effect on the latter. Third

  13. Probiotic Properties of the 2-Substituted (1,3)-β-d-Glucan-Producing Bacterium Pediococcus parvulus 2.6▿

    OpenAIRE

    Fernández de Palencia, Pilar; Werning, María Laura; Sierra-Filardi, Elena; Dueñas, María Teresa; Irastorza, Ana; Corbí, Angel L.; López, Paloma

    2009-01-01

    Exopolysaccharides have prebiotic potential and contribute to the rheology and texture of fermented foods. Here we have analyzed the in vitro bioavailability and immunomodulatory properties of the 2-substituted (1,3)-β-d-glucan-producing bacterium Pediococcus parvulus 2.6. It resists gastrointestinal stress, adheres to Caco-2 cells, and induces the production of inflammation-related cytokines by polarized macrophages.

  14. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  15. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    OpenAIRE

    S. A. Ahmad; Shukor, M. Y.; Shamaan, N. A.; W. P. Mac Cormack; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spe...

  16. Diversity and recombination of Wolbachia strains in spider mites based on analysis of the wsp gene%基于wsp基因的叶螨体内Wolbachia株系的多样性与重组分析

    Institute of Scientific and Technical Information of China (English)

    丁秀蕾; 张艳凯; 荣霞; 张开军; 赵冬晓; 洪晓月

    2013-01-01

    胞内共生菌Wolbachia能对多种叶螨产生生殖调控作用.为更好地筛选有潜在应用价值的Wolbachia株系,本研究应用PCR技术对自然种群的截形叶螨Tetranychus truncatus、二斑叶螨T.urticae、神泽叶螨T.kanzawai 和山楂叶螨Amphitetranychus viennensis体内的Wolbachia感染情况进行检测,并对Wolbachia的wsp基因进行序列分析和基因重组检测.结果表明,叶螨中的Wolbachia株系具有较高的遗传多样性,其中截形叶螨感染两种分化较大的株系.不同叶螨感染特有的Wolbachia株系说明Wolbachia与其宿主存在一定的协同进化关系.二斑叶螨和截形叶螨感染同一株系的Wolbachia,可能由于水平传播造成.同时,不同株系Wolbachia的wsp基因间普遍存在着基因重组现象.%Wolbachia are intracellular bacteria with the ability to manipulate the reproduction of several spider mite species. We used PCR to examine the infection status of four spider mite species ( Tetranychus truncatus, T. urticae, T. kanzawai and Amphitetranychus viennensis) from different wild populations in China. The sequences and recombination of the wsp gene were then analyzed in order to obtain potentially useful Wolbachia strains. The results indicate that there is a high level of Wolbachia diversity in spider mites; for example, two divergent strains were observed in T. truncatus. Distinctive strains of Wolbachia were each only found in a single species of spider mite, suggesting the potential co-divergence of Wolbachia strains with their hosts. One instance of T. truncatus and T. urticae being infected with an identical Wolbachia strain might have been caused by horizontal transmission. Evidence of recombination of the wsp gene was also discovered.

  17. Efficient subtraction of insect rRNA prior to transcriptome analysis of Wolbachia-Drosophila lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Kumar Nikhil

    2012-05-01

    Full Text Available Abstract Background Numerous methods exist for enriching bacterial or mammalian mRNA prior to transcriptome experiments. Yet there persists a need for methods to enrich for mRNA in non-mammalian animal systems. For example, insects contain many important and interesting obligate intracellular bacteria, including endosymbionts and vector-borne pathogens. Such obligate intracellular bacteria are difficult to study by traditional methods. Therefore, genomics has greatly increased our understanding of these bacteria. Efficient subtraction methods are needed for removing both bacteria and insect rRNA in these systems to enable transcriptome-based studies. Findings A method is described that efficiently removes >95% of insect rRNA from total RNA samples, as determined by microfluidics and transcriptome sequencing. This subtraction yielded a 6.2-fold increase in mRNA abundance. Such a host rRNA-depletion strategy, in combination with bacterial rRNA depletion, is necessary to analyze transcription of obligate intracellular bacteria. Here, transcripts were identified that arise from a lateral gene transfer of an entire Wolbachia bacterial genome into a Drosophila ananassae chromosome. In this case, an rRNA depletion strategy is preferred over polyA-based enrichment since transcripts arising from bacteria-to-animal lateral gene transfer may not be poly-adenylated. Conclusions This enrichment method yields a significant increase in mRNA abundance when poly-A selection is not suitable. It can be used in combination with bacterial rRNA subtraction to enable experiments to simultaneously measure bacteria and insect mRNA in vector and endosymbiont biology experiments.

  18. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  19. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  20. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  1. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    Science.gov (United States)

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  2. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  3. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  4. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  5. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  6. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  7. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    OpenAIRE

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the...

  8. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment. PMID:15527418

  9. DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lenthmorbus WJ5

    International Nuclear Information System (INIS)

    This simultaneous expression levels of antifungal activity related was analyzed by DNA microarray. We constructured DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared it squantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation . From the analysis of microarray hybridization by the Gene Cluster, totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX, ywbA, ptsG,yufO, and ftsY were simultaneously down-regulated in all muatants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5

  10. Population genetic structure of Aedes polynesiensis in the Society Islands of French Polynesia: implications for control using a Wolbachia-based autocidal strategy

    Directory of Open Access Journals (Sweden)

    Brelsfoard Corey L

    2012-04-01

    Full Text Available Abstract Background Aedes polynesiensis is the primary vector of Wuchereria bancrofti in the South Pacific and an important vector of dengue virus. An improved understanding of the mosquito population genetics is needed for insight into the population dynamics and dispersal, which can aid in understanding the epidemiology of disease transmission and control of the vector. In light of the potential release of a Wolbachia infected strain for vector control, our objectives were to investigate the microgeographical and temporal population genetic structure of A. polynesiensis within the Society Islands of French Polynesia, and to compare the genetic background of a laboratory strain intended for release into its population of origin. Methods A panel of eight microsatellite loci were used to genotype A. polynesiensis samples collected in French Polynesia from 2005-2008 and introgressed A. polynesiensis and Aedes riversi laboratory strains. Examination of genetic differentiation was performed using F-statistics, STRUCTURE, and an AMOVA. BAYESASS was used to estimate direction and rates of mosquito movement. Results FST values, AMOVA, and STRUCTURE analyses suggest low levels of intra-island differentiation from multiple collection sites on Tahiti, Raiatea, and Maupiti. Significant pair-wise FST values translate to relatively minor levels of inter-island genetic differentiation between more isolated islands and little differentiation between islands with greater commercial traffic (i.e., Tahiti, Raiatea, and Moorea. STRUCTURE analyses also indicate two population groups across the Society Islands, and the genetic makeup of Wolbachia infected strains intended for release is similar to that of wild-type populations from its island of origin, and unlike that of A. riversi. Conclusions The observed panmictic population on Tahiti, Raiatea, and Moorea is consistent with hypothesized gene flow occurring between islands that have relatively high levels of air

  11. Urea Utilization in the Phototrophic Bacterium Rhodobacter capsulatus Is Regulated by the Transcriptional Activator NtrC

    OpenAIRE

    Masepohl, Bernd; Kaiser, Björn; Isakovic, Nazila; Richard, Cynthia L.; Kranz, Robert G.; Klipp, Werner

    2001-01-01

    The phototrophic nonsulfur purple bacterium Rhodobacter capsulatus can use urea as a sole source of nitrogen. Three transposon Tn5-induced mutations (Xan-9, Xan-10, and Xan-19), which led to a Ure− phenotype, were mapped to the ureF and ureC genes, whereas two other Tn5 insertions (Xan-20 and Xan-22) were located within the ntrC and ntrB genes, respectively. As in Klebsiella aerogenes and other bacteria, the genes encoding urease (ureABC) and the genes required for assembly of the nickel meta...

  12. Combining the Sterile Insect Technique with the Incompatible Insect Technique: I-Impact of Wolbachia Infection on the Fitness of Triple- and Double-Infected Strains of Aedes albopictus

    OpenAIRE

    Dongjing Zhang; Xiaoying Zheng; Zhiyong Xi; Kostas Bourtzis; Gilles, Jeremie R. L.

    2015-01-01

    The mosquito species Aedes albopictus is a major vector of the human diseases dengue and chikungunya. Due to the lack of efficient and sustainable methods to control this mosquito species, there is an increasing interest in developing and applying the sterile insect technique (SIT) and the incompatible insect technique (IIT), separately or in combination, as population suppression approaches. Ae. albopictus is naturally double-infected with two Wolbachia strains, wAlbA and wAlbB. A new triple...

  13. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  14. Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus.

    Science.gov (United States)

    Zhang, Dongjing; Zheng, Xiaoying; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L

    2015-01-01

    The mosquito species Aedes albopictus is a major vector of the human diseases dengue and chikungunya. Due to the lack of efficient and sustainable methods to control this mosquito species, there is an increasing interest in developing and applying the sterile insect technique (SIT) and the incompatible insect technique (IIT), separately or in combination, as population suppression approaches. Ae. albopictus is naturally double-infected with two Wolbachia strains, wAlbA and wAlbB. A new triple Wolbachia-infected strain (i.e., a strain infected with wAlbA, wAlbB, and wPip), known as HC and expressing strong cytoplasmic incompatibility (CI) in appropriate matings, was recently developed. In the present study, we compared several fitness traits of three Ae. albopictus strains (triple-infected, double-infected and uninfected), all of which were of the same genetic background ("Guangzhou City, China") and were reared under the same conditions. Investigation of egg-hatching rate, survival of pupae and adults, sex ratio, duration of larval stages (development time from L1 to pupation), time to emergence (development time from L1 to adult emergence), wing length, female fecundity and adult longevity indicated that the presence of Wolbachia had only a minimal effect on host fitness. Based on this evidence, the HC strain is currently under consideration for mass rearing and application in a combined SIT-IIT strategy to control natural populations of Ae. albopictus in mainland China. PMID:25849812

  15. Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Dongjing Zhang

    Full Text Available The mosquito species Aedes albopictus is a major vector of the human diseases dengue and chikungunya. Due to the lack of efficient and sustainable methods to control this mosquito species, there is an increasing interest in developing and applying the sterile insect technique (SIT and the incompatible insect technique (IIT, separately or in combination, as population suppression approaches. Ae. albopictus is naturally double-infected with two Wolbachia strains, wAlbA and wAlbB. A new triple Wolbachia-infected strain (i.e., a strain infected with wAlbA, wAlbB, and wPip, known as HC and expressing strong cytoplasmic incompatibility (CI in appropriate matings, was recently developed. In the present study, we compared several fitness traits of three Ae. albopictus strains (triple-infected, double-infected and uninfected, all of which were of the same genetic background ("Guangzhou City, China" and were reared under the same conditions. Investigation of egg-hatching rate, survival of pupae and adults, sex ratio, duration of larval stages (development time from L1 to pupation, time to emergence (development time from L1 to adult emergence, wing length, female fecundity and adult longevity indicated that the presence of Wolbachia had only a minimal effect on host fitness. Based on this evidence, the HC strain is currently under consideration for mass rearing and application in a combined SIT-IIT strategy to control natural populations of Ae. albopictus in mainland China.

  16. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  17. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    OpenAIRE

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotro...

  18. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  19. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  20. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  1. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  2. Screening, identification and desilication of a silicate bacterium

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; ZENG Xiao-xi; LIU Fei-fei; QIU Guan-zhou; HU Yue-hua

    2006-01-01

    The strain Lv1-2 isolated from the Henan bauxite was characterized by morphological observation, biochemical and physiological identification, and 16S rDNA sequence analysis. The influences of temperature, initial pH value, the volume of medium, shaking speed and illite concentration on the desilicating ability of the strain Lv1-2 were investigated. The results show that the bacterium is a Gram-negative rod-shaped bacterium with oval endspores and thick capsule, but without flagellum. The biochemical and physiological tests indicate that the strain Lv1-2 is similar to Bacillus mucilaginosus. In GenBank the 16S rDNA sequence similarity of the strain Lv1-2 and the B. mucilaginosus YNUCC0001 (AY571332) is more than 99 %. Based on the above results, the strain Lv1-2 is identified as B. mucilaginosus. The optimum conditions for the strain Lv1-2 to remove silicon from illite are as follows: temperature is 30℃ ;initial pH value is 7.5; medium volume in 200 mL bottle is 60 mL; shaking speed of rotary shaker is 220 r/m; illite concentration is 1%.

  3. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  4. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    Science.gov (United States)

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  5. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    Science.gov (United States)

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  6. The Role of Exopolymers in Protection of Ralstonia sp., a Cadmium-resistant Bacterium, from Cadmium Toxicity

    Directory of Open Access Journals (Sweden)

    Anchulee Watcharamusik

    2008-07-01

    Full Text Available Production of exopolymers is one of heavy metal resistance mechanisms in bacteria. Ralstonia sp. TAK1, a cadmium-resistant bacterium, was isolated from a high cadmium (Cd contaminated soil at the zinc mine, Tak province, Thailand. The bacterium was cultivated in LB broth and its growth was monitored. The yields of exopolymers were measured by the phenol-sulfuric method at different growth phases. The levels of Cd resistance were quantitatively determined by survival cell assay. The highest amount of exopolymers (0.69 mg glucose equivalent/ mg dry weight was found at the stationary phase and sharply decreased at the late-stationary phase. In addition to high production of exopolymers at the stationary phase, Ralstonia sp. TAK1 was more resistant to Cd than that of exponential phase cells. These results suggested that the resistance to Cd toxicity in Ralstonia sp. TAK1 at the stationary phase is mediated by exopolymer production. Contradictorily, there was no correlation between Cd resistance level and exopolymer production of cells at exponential phase indicating that other mechanism(s is responsible for Cd resistance of exponential phase cells. In addition, 0.4 mM CdCl2 was able to induce the increasing of exopolymers at the mid-exponential phases compared to uninduced cells. Exopolymer production of Cd-induced cells was constant from the mid-stationary to late-stationary phase. However, the highest exopolymers was found in uninduced cells at the stationary phase.

  7. Filarial and Wolbachia genomics

    OpenAIRE

    Scott, A.L.; Ghedin, E.; Nutman, T B; McReynolds, L A; C. B. Poole; Slatko, B E; Foster, J. M.

    2012-01-01

    Filarial nematode parasites, the causative agents for a spectrum of acute and chronic diseases including lymphatic filariasis and river blindness, threaten the well-being and livelihood of hundreds of millions of people in the developing regions of the world. The 2007 publication on a draft assembly of the 95-Mb genome of the human filarial parasite Brugia malayi – representing the first helminth parasite genome to be sequenced – has been followed in rapid succession by projects that have res...

  8. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  9. Antioxidant and DNA Damage Protecting Activity of Exopolysaccharides from the Endophytic Bacterium Bacillus cereus SZ1

    Directory of Open Access Journals (Sweden)

    Li Ping Zheng

    2016-02-01

    Full Text Available An endophytic bacterium was isolated from the Chinese medicinal plant Artemisia annua L. The phylogenetic and physiological characterization indicated that the isolate, strain SZ-1, was Bacillus cereus. The endophyte could produce an exopolysaccharide (EPS at 46 mg/L. The 1,1-diphenyl-2-picrylhydracyl (DPPH radical scavenging activity of the EPS reached more than 50% at 3–5 mg/mL. The EPS was also effective in scavenging superoxide radical in a concentration dependent fashion with an EC50 value of 2.6 mg/mL. The corresponding EC50 for scavenging hydroxyl radical was 3.1 mg/mL. Moreover, phenanthroline-copper complex-mediated chemiluminescent emission of DNA damage was both inhibited and delayed by EPS. The EPS at 0.7–1.7 mg/mL also protected supercoiled DNA strands in plasmid pBR322 against scission induced by Fenton-mediated hydroxyl radical. The preincubation of PC12 cells with the EPS prior to H2O2 exposure increased the cell survival and glutathione (GSH level and catalase (CAT activities, and decreased the level of malondialdehyde (MDA and lactate dehydrogenase (LDH activity in a dose-dependent manner, suggesting a pronounced protective effect against H2O2-induced cytotoxicity. Our study indicated that the EPS could be useful for preventing oxidative DNA damage and cellular oxidation in pharmaceutical and food industries.

  10. Application of antioxidant indicators to select nicotine-degrading bacterium for bioaugmented treatment of tobacco wastewater

    International Nuclear Information System (INIS)

    To select nicotine-degrading bacterium for bioaugmented treatment of tobacco wastewater, the activities of antioxidant indicators such as superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH), and the ability to treat pollutants including nicotine degradation and chemical oxygen demand (COD) removal, were compared between Acinetobacter sp. TW and Sphingomonas sp. TY. When complicated toxins were present, the activities of SOD induced in strain TY were significantly higher than those in strain TW. However, the activities of CAT were inhibited in strain TY (CAT/CATLB 1). Additionally, the levels of GSH induced in strain TW were significantly higher than those in strain TY. These findings suggest that the antioxidant ability of strain TW was higher than that of strain TY, especially in tobacco wastewater. Moreover, when applied to the treatment of tobacco wastewater, the rate of nicotine degradation at 24 h was 99.50% for TW and 28.76% for TY, while the rate of COD removal at 48 h was 62.69% for TW and 45.80% for TY. Taken together, these findings indicate that the pollution treatment ability of strain TW was stronger than that of TY, and that the stronger the ability of the antioxidant, the higher the potential for treatment of tobacco wastewater. (author)

  11. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    OpenAIRE

    Nilton Nasser

    2012-01-01

    BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatmen...

  12. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG;

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  13. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  14. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties

    NARCIS (Netherlands)

    Sessitsch, A; Coenye, T; Sturz, AV; Vandamme, P; Barka, EA; Salles, JF; Van Elsas, JD; Faure, D; Reiter, B; Glick, BR; Wang-Pruski, G; Nowak, J

    2005-01-01

    A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic popu

  15. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  16. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  17. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

    Directory of Open Access Journals (Sweden)

    Ramona Riclea

    2012-06-01

    Full Text Available Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their mass spectra and unambiguously verified by the synthesis of reference compounds. An enantioselective synthesis of two exemplary lactones was performed to establish the enantiomeric compositions of the natural products by enantioselective GC–MS analyses. The lactones were subjected to biotests to investigate their activity against several bacteria, fungi, and algae. A specific algicidal activity was observed that may be important in the interaction between the bacteria and their algal hosts in fading algal blooms.

  18. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis.

    Science.gov (United States)

    Kondratieva, E N; Zhukov, V G; Ivanovsky, R N; Petushkova, U P; Monosov, E Z

    1976-07-01

    Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10--30s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy. PMID:942280

  19. Study on the Resistance of Tobacco Induced by Two Kinds of Bio-control Bacterium Cooperate with Dry Mycelium of Penicillium chrysogenum%两种生防促生菌与青霉菌灭活菌丝体协同诱导烟草抗病效果研究

    Institute of Scientific and Technical Information of China (English)

    吴剑; 张廷金; 李祥军; 何军; 王继明; 郑元仙; 闫春丽; 尹忠仁; 陈穗云

    2015-01-01

    An application research of dry mycelium of Penicillium chrysogenum (DMP) cooperate with two kinds of bio-control bacterium was carried out in Lincang Tobacco-growing area. The results indicated that,employ DM P in the plant hole before tobacco seedling transplant,then spray trichoderma agent in re-settling stage and before topping,and root-irrigate bacillus agent in the period of vigorous grow th can sig-nificantly improve the length,the width and the area the biggest waist leaf in squaring period and mature period compare with conventional control,blank control and deal with DMP only. The relative control effect of the above mentioned treatment to tobacco mosaic virus amounted to 80.12%,higher than 25.30%of conventional control,higher than 25.90% of treatment deal with DMP. The relative control effect of the above mentioned treatment to tobacco blown spot amounted to 62.24%,higher than 5.83% of the con-ventional control,higher than 13.29% of the treatment deal with DMP only. The relative control effect of the above mentioned treatment to tobacco black shank amounted to 77.42%,15.32 points higher than the conventional control,higher than 26.61% of the treatment deal with DMP. The yield of the above men-tioned treatment is 1886.70kg/hm2,196.80kg/hm2 higher than the blank control,96.60kg/hm2 higher than conventional control. The production value of tobacco leaf reached 49450.41 Yuan per hectare, 6493.15 Yuan per hectare higher than the blank control,3104.72 Yuan per hectare higher than conven-tional control.%本试验开展了青霉菌灭活菌丝体(dry mycelium of Penicillium chrysogenum,DMP)与木霉菌菌剂和芽孢杆菌菌剂在临沧烤烟生产上的协同应用研究.结果表明,移栽时塘施DMP,团棵期和打顶前再喷施木霉菌菌剂,旺长期再灌施芽孢杆菌菌剂的处理现蕾期和成熟期最大腰叶的长、宽和面积均显著大于常规防治处理、空白对照和仅施DMP的处理;该处理现蕾期对烟草

  20. Molecular detection of Wolbachia pipientis in natural populations of mosquito vectors of Dirofilaria immitis from continental Portugal: first detection in Culex theileri.

    Science.gov (United States)

    DE Pinho Mixão, V; Mendes, A M; Maurício, I L; Calado, M M; Novo, M T; Belo, S; Almeida, A P G

    2016-09-01

    Wolbachia pipientis (Rickettsiales: Rickettsiaceae) protects mosquitoes from infections with arboviruses and parasites. However, the effect of its co-infection on vector competence for Dirofilaria immitis (Spirurida: Onchocercidae) in the wild has not been investigated. This study aimed to screen vectors of D. immitis for wPip, to characterize these, and to investigate a possible association between the occurrence of W. pipientis and that of the nematode. The presence of W. pipientis was assessed in the five mosquito potential vectors of D. immitis in Portugal. Polymerase chain reaction (PCR) products were sequenced, and wPip haplotypes were determined by PCR-restricted fragment length polymorphism (RFLP). Results showed that wPip was detected in 61.5% of Culex pipiens (Diptera: Culicidae) pools and 6.3% of Culex theileri pools. wPip 16s rRNA sequences found in Cx. theileri exactly match those from Cx. pipiens, confirming a mosquito origin, rather than a nematode origin, as some specimens were infected with D. immitis. Only wPip haplotype I was found. No association was found between the presence of wPip and D. immitis in mosquitoes and hence a role for this endosymbiont in influencing vectorial competence is yet to be identified. This study contributes to understanding of wPip distribution in mosquito populations and, to the best of the authors' knowledge, is the first report of natural infections by wPip in Cx. theileri. PMID:27279553

  1. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase--a comprehensive drug target database for Lymphatic filariasis.

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  2. Essential proteins and possible therapeutic targets of Wolbachia endosymbiont and development of FiloBase-a comprehensive drug target database for Lymphatic filariasis

    Science.gov (United States)

    Sharma, Om Prakash; Kumar, Muthuvel Suresh

    2016-01-01

    Lymphatic filariasis (Lf) is one of the oldest and most debilitating tropical diseases. Millions of people are suffering from this prevalent disease. It is estimated to infect over 120 million people in at least 80 nations of the world through the tropical and subtropical regions. More than one billion people are in danger of getting affected with this life-threatening disease. Several studies were suggested its emerging limitations and resistance towards the available drugs and therapeutic targets for Lf. Therefore, better medicine and drug targets are in demand. We took an initiative to identify the essential proteins of Wolbachia endosymbiont of Brugia malayi, which are indispensable for their survival and non-homologous to human host proteins. In this current study, we have used proteome subtractive approach to screen the possible therapeutic targets for wBm. In addition, numerous literatures were mined in the hunt for potential drug targets, drugs, epitopes, crystal structures, and expressed sequence tag (EST) sequences for filarial causing nematodes. Data obtained from our study were presented in a user friendly database named FiloBase. We hope that information stored in this database may be used for further research and drug development process against filariasis. URL: http://filobase.bicpu.edu.in. PMID:26806463

  3. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions.

    Directory of Open Access Journals (Sweden)

    Dongjing Zhang

    Full Text Available Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected

  4. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions.

    Science.gov (United States)

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R L

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after

  5. Combining the Sterile Insect Technique with the Incompatible Insect Technique: III-Robust Mating Competitiveness of Irradiated Triple Wolbachia-Infected Aedes albopictus Males under Semi-Field Conditions

    Science.gov (United States)

    Zhang, Dongjing; Lees, Rosemary Susan; Xi, Zhiyong; Bourtzis, Kostas; Gilles, Jeremie R. L.

    2016-01-01

    Combination of the sterile insect technique with the incompatible insect technique is considered to be a safe approach to control Aedes albopictus populations in the absence of an accurate and scalable sex separation system or genetic sexing strain. Our previous study has shown that the triple Wolbachia-infected Ae. albopictus strain (wAlbA, wAlbB and wPip) was suitable for mass rearing and females could be completely sterilized as pupae with a radiation dose of at least 28 Gy. However, whether this radiation dose can influence the mating competitiveness of the triple infected males was still unknown. In this study we aimed to evaluate the effects of irradiation on the male mating competitiveness of the triple infected strain under laboratory and semi-field conditions. The results herein indicate that irradiation with a lower, female-sterilizing dose has no negative impact on the longevity of triple infected males while a reduced lifespan was observed in the wild type males (wAlbA and wAlbB) irradiated with a higher male-sterilizing dose, in small cages. At different sterile: fertile release ratios in small cages, triple-infected males induced 39.8, 81.6 and 87.8% sterility in a wild type female population at 1:1, 5:1 and 10:1 release ratios, respectively, relative to a fertile control population. Similarly, irradiated triple infected males induced 31.3, 70.5 and 89.3% sterility at 1:1, 5:1 and 10:1 release ratios, respectively, again relative to the fertile control. Under semi-field conditions at a 5:1 release ratio, relative to wild type males, the mean male mating competitiveness index of 28 Gy irradiated triple-infected males was significantly higher than 35 Gy irradiated wild type males, while triple infected males showed no difference in mean mating competitiveness to either irradiated triple-infected or irradiated wild type males. An unexpected difference was also observed in the relative male mating competitiveness of the triple infected strain after

  6. A novel radio-tolerant astaxanthin-producing bacterium reveals a new astaxanthin derivative: astaxanthin dirhamnoside.

    Science.gov (United States)

    Asker, Dalal; Awad, Tarek S; Beppu, Teruhiko; Ueda, Kenji

    2012-01-01

    Astaxanthin is a red ketocarotenoid that exhibits extraordinary health-promoting activities such as antioxidant, anti-inflammatory, antitumor, and immune booster. The recent discovery of the beneficial roles of astaxanthin against many degenerative diseases such as cancers, heart diseases, and exercise-induced fatigue has raised its market demand as a nutraceutical and medicinal ingredient in aquaculture, food, and pharmaceutical industries. To satisfy the growing demand for this high-value nutraceuticals ingredient and consumer interest in natural products, many research efforts are being made to discover novel microbial producers with effective biotechnological production of astaxanthin. Using a rapid screening method based on 16S rRNA gene, and effective HPLC-Diodearray-MS methods for carotenoids analysis, we succeeded to isolate a unique astaxanthin-producing bacterium (strain TDMA-17(T)) that belongs to the family Sphingomonadaceae (Asker et al., Appl Microbiol Biotechnol 77: 383-392, 2007). In this chapter, we provide a detailed description of effective HPLC-Diodearray-MS methods for rapid analysis and identification of the carotenoids produced by strain TDMA-17(T). We also describe the methods of isolation and identification for a novel bacterial carotenoid (astaxanthin derivative), a major carotenoid that is produced by strain TDMA-17(T). Finally, we describe the polyphasic taxonomic analysis of strain TDMA-17(T) and the description of a novel species belonging to genus Sphingomonas. PMID:22623297

  7. Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila.

    Science.gov (United States)

    Dey, Rafik; Bodennec, Jacques; Mameri, Mouh Oulhadj; Pernin, Pierre

    2009-01-01

    Legionella pneumophila is known as a facultative intracellular parasite of free-living soil and freshwater amoebae, of which several species have been shown to support the growth of the pathogenic bacteria. We report for the first time the behaviour of two strains (c2c and Z503) of the amoeba Willaertia magna towards different strains of L. pneumophila serogroup 1 and compared it with Acanthamoeba castellanii and Hartmannella vermiformis, known to be L. pneumophila permissive. In contrast to the results seen with other amoebae, W. magna c2c inhibited the growth of one strain of Legionella (L. pneumophila, Paris), but not of others belonging to the same serogroup (L. pneumophila, Philadelphia and L. pneumophila, Lens). Also, the different L. pneumophila inhibited cell growth and induced cell death in A. castellanii, H. vermiformis and W. magna Z503 within 3-4 days while W. magna c2c strain remained unaffected even up to 7 days. Electron microscopy demonstrated that the formation of numerous replicative phagosomes observed within Acanthamoeba and Hartmannella is rarely seen in W. magna c2c cocultured with L. pneumophila. Moreover, the morphological differences were observed between L. pneumophila cultured either with Willaertia or other amoebae. These observations show that amoebae are not all equally permissive to L. pneumophila and highlight W. magna c2c as particularly resistant towards some strains of this bacterium. PMID:19016880

  8. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina sp. PR58-8

    Indian Academy of Sciences (India)

    Sachin Seshadri; Anupama Prakash; Meenal Kowshik

    2012-12-01

    Metal-tolerant microorganisms have been exploited in recent years to synthesize nanoparticles due to their potential to offer better size control through peptide binding and compartmentalization. In this paper, we report the intracellular synthesis of silver nanoparticles (SNPs) by the highly silver-tolerant marine bacterium, Idiomarina sp. PR58-8 on exposure to 5mM silver nitrate. SNPs were characterized by UV-visible spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). UV-visible absorption scan of a 48 h culture exposed to 5mM silver nitrate revealed a broad peak at 450nm indicative of the surface plasmon resonance of SNPs. XRD analysis confirmed the presence of elemental silver and the crystallite size was calculated to be 25nm using Scherrer formula. The average particle size as per TEM analysis was found to be 26 nm. Metal stress is known to induce the production of non-protein thiols (NP–SHs) which sequester metal ions. In this study, the production of NP–SHs was followed from 6–48 h, wherein it was observed that the NP–SH levels in the silver-exposed culture were consistently higher (261% on an average) than in the unexposed culture.

  9. Role for Vitamin B12 in Light Induction of Gene Expression in the Bacterium Myxococcus xanthus

    Science.gov (United States)

    Cervantes, María; Murillo, Francisco J.

    2002-01-01

    A light-inducible promoter (PB) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to PB and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the PB promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other promoters connected with carotenoid synthesis or its regulation in M. xanthus. CarA is a novel protein consisting of a DNA-binding domain of the family of MerR helix-turn-helix transcriptional regulators, directly joined to a cobalamin-binding domain. In support of this, we report here that the presence of vitamin B12 or some other cobalamin derivatives is absolutely required for activation of the PB promoter by light. PMID:11914353

  10. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer......’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...

  11. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O2.L-1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  12. Differential gene expression in Xylella fastidiosa 9a5c during co-cultivation with the endophytic bacterium Methylobacterium mesophilicum SR1.6/6.

    Science.gov (United States)

    Dourado, Manuella Nóbrega; Santos, Daiene Souza; Nunes, Luiz Roberto; Costa de Oliveira, Regina Lúcia Batista da; de Oliveira, Marcus Vinicius; Araújo, Welington Luiz

    2015-12-01

    Xylella fastidiosa, the causal agent of citrus variegated chlorosis (CVC), colonizes plant xylem, reducing sap flow, and inducing internerval chlorosis, leaf size reduction, necrosis, and harder and smaller fruits. This bacterium may be transmitted from plant to plant by sharpshooter insects, including Bucephalogonia xanthopis. The citrus endophytic bacterium Methylobacterium mesophilicum SR1.6/6 colonizes citrus xylem and previous studies showed that this strain is also transferred from plant to plant by B. xanthopis (Insecta), suggesting that this endophytic bacterium may interact with X. fastidiosa in planta and inside the insect vector during co-transmission by the same insect vector. To better understand the X. fastidiosa behavior in the presence of M. mesophilicum, we evaluated the X. fastidiosa transcriptional profile during in vitro interaction with M. mesophilicum SR1.6/6. The results showed that during co-cultivation, X. fastidiosa down-regulated genes related to growth and up-regulated genes related to energy production, stress, transport, and motility, suggesting the existence of a specific adaptive response to the presence of M. mesophilicum in the culture medium. PMID:26218710

  13. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  14. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-08-01

    Full Text Available BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. METHODS: A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. RESULTS: Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. CONCLUSIONS: The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (PFUNDAMENTOS: Verrugas são proliferações epiteliais na pele e mucosas causadas por diversos tipos de HPV. Elas podem involuir espontaneameme ou aumentar em número e tamanho de acordo com estado imunitário do paciente. O Propionium bacterium parvum é urn potente imunoestimulador e imunomodulador e tem efeitos importantes no sistema imune e é capaz de produzir anticorpos na pele. OBJETIVO: Mostrar a eficácia do Propionium bacterium parvum diluído em solução salina no tratamento de verrugas cutâneas. MÊTODOS: Estudo duplo

  15. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  16. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  17. Presence of an unusual methanogenic bacterium in coal gasification waste

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, F.A.; Rouse, D.; Maki, J.S.; Mitchell, R.

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics D-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ..mu..m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. 62 refs., 4 figs.

  18. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  19. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  20. Molecular study on cloned endoglucanase gene from rumen bacterium.

    Science.gov (United States)

    Ozkose, Emin; Akyol, Ismail; Ekinci, Mehmet Sait

    2004-01-01

    An endoglucanase gene was subcloned from anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. To express endoglucanase gene in Escherichia coli and Streptococcus bovis JB1, an endoglucanase gene fragment was inserted into pVA838-based shuttle vectors. Removal of endoglucanase gene promoter and expression of endoglucanase by promoter of S. bovis JB1 alpha-amylase gene (pACMCS) was also achieved. Survival of constructs pVACMCI, pTACMC and pACMCS, which carry endoglucanase gene, and stability of endoglucanase gene in S. bovis JB1, were observed. Maximal endoglucanase activities from S. bovis JB1/pVACMCI were 2- to 3-fold higher than from E. coli/pVACMCI. Specific cell activity of E. coli/pACMCS was found to be approximately 2- to -3 fold higher than the both E. coli/pVACMCI and E. coli/pTACMC. Specific cell activity of S. bovis JB1/pACMCS was also found to be approximately 2-fold higher than the both S. bovis/pVACMCI and S. bovis JB1/pTACMC. PMID:15925902

  1. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  2. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  3. The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity

    Science.gov (United States)

    van Houdt, Rob; de Boever, Patrick; Coninx, Ilse; Janssen, Ann; Benotmane, Rafi; Leys, Natalie; Mergeay, Max

    The stress response of bacterium Cupriavidus metallidurans CH34 into simulated microgravity R. Van Houdt, P. De Boever, I. Coninx, A. Janssen, M.A. Benotmane, N. Leys, and M. Mergeay Expertise group for Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK•CEN), Boeretang 200, B-2400 Mol, Belgium. We have studied the response of Cupriavidus (formerly Ralstonia) metallidurans CH34 to simulated microgravity by culturing in a Rotating Wall Vessel (RWV) bioreactor. This bioreactor technology generates a unique Low-Shear Modeled Microgravity (LSMMG) environment and is exploited as analogue for in vivo medical and space environments. Cupriavidus and Ralstonia species are relevant model bacteria since they are often isolated from the floor, air and surfaces of spacecraft assembly rooms and not only contaminate the clean rooms but have also been found prior-to-flight on surfaces of space robots such as the Mars Odyssey Orbiter and even in-flight in ISS cooling water and Shuttle drinking water. In addition, C. metallidurans CH34 is also being used in fundamental space flight experiments aimed to gain a better insight in the bacterial adaptation to space. The first objective was to elucidate the stress response of C. metallidurans CH34 grown in LSMMG compared to a normal gravity control. Transcriptomic analysis revealed that a significant part of the heat shock response was induced in LSMMG. Transcription of d naK, encoding the major heat-shock protein and a prokaryotic homologue of the eukaryotic Hsp70 protein, was induced 6.4 fold in LSMMG. DnaK is assisted by partner chaperones DnaJ and GrpE for which transcription respectively were induced 2.0 and 2.6 fold. Transcription of other chaperones known to belong to the heat shock response was also induced in LSMMG: hslV and hsl U, encoding the HslVU protease, were induced respectively 5.5 and 3.4 fold; htpG, encoding a Hsp90 family chaperone, was induced 4.6 fold

  4. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  5. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates

    Czech Academy of Sciences Publication Activity Database

    Biebl, H.; Allgaier, M.; Tindall, B. J.; Koblížek, Michal; Lünsdorf, H.; Pukall, R.; Wagner-Döbler, I.

    2005-01-01

    Roč. 55, - (2005), s. 1089-1096. ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dinoroseobacter shibae * phototrophic bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.744, year: 2005

  6. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  7. Fourier transform Raman spectroscopic characterisation of cells of the plant-associated soil bacterium Azospirillum brasilense Sp7

    Science.gov (United States)

    Kamnev, A. A.; Tarantilis, P. A.; Antonyuk, L. P.; Bespalova, L. A.; Polissiou, M. G.; Colina, M.; Gardiner, P. H. E.; Ignatov, V. V.

    2001-05-01

    Structural and compositional features of bacterial cell samples and of lipopolysaccharide-protein complex isolated from the cell surface of the plant-growth-promoting rhizobacterium Azospirillum brasilense (wild-type strain Sp7) were characterised using Fourier transform (FT) Raman spectroscopy. The structural spectroscopic information obtained is analysed and considered together with analytical data on the content of metal cations (Co 2+, Cu 2+ and Zn 2+) in the bacterial cells grown in a standard medium as well as in the presence of each of the cations (0.2 mM). The latter, being taken up by bacterial cells from the culture medium in significant amounts, were shown to induce certain metabolic changes in the bacterium revealed in FT-Raman spectra, which is discussed from the viewpoint of bacterial response to environmental stresses.

  8. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    OpenAIRE

    Vuilleumier, Stéphane; Khmelenina, Valentina N; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op Den Camp, Huub J M; Jetten, Mike S. M.; DiSpirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic...

  9. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  10. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    OpenAIRE

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papi...

  11. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    Science.gov (United States)

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  12. Biosynthesis Of Gold Nanoparticles By Marine Purple Non Sulphur Bacterium, Rhodopseudomonas Sp.

    OpenAIRE

    Abirami. G; Asmathunisha. N; Kathiresan. K

    2013-01-01

    This paper describes for the first time that an anaerobic marine bacterium is capable of producing gold nanoparticles. A marine purple non-sulphur bacterium was isolated from mangrove sediment and identified as Rhodopseudomonas sp. . The bacterial culture was tested for the synthesis of gold nanoparticles by using aqueous HAuCl4 solution as substrate in darkness. The gold nanoparticles synthesized were found to be of cubical structure in the size range of 10–20 nm.

  13. Risk associated with the release of Wolbachia-infected Aedes aegypti mosquitoes into the environment in an effort to control Dengue.

    Directory of Open Access Journals (Sweden)

    Justine V Murray

    2016-03-01

    Full Text Available Background: In an effort to eliminate dengue, a successful technology was developed with the stable introduction of the obligate intracellular bacteria Wolbachia pipientis into the mosquito Aedes aegypti to reduce its ability to transmit dengue fever due to life shortening and inhibition of viral replication effects. An analysis of risk was required before considering release of the modified mosquito into the environment.Methods: Expert knowledge and a risk assessment framework was used to identify risk associated with the release of the modified mosquito. Individual and group expert elicitation was performed to identify potential hazards. A Bayesian network (BN was developed to capture the relationship between hazards and the likelihood of events occurring. Risk was calculated from the expert likelihood estimates populating the BN and the consequence estimates elicited from experts.Results: The risk model for ‘Don’t Achieve Release’ provided an estimated 46% likelihood that the release would not occur by a nominated time, but generated an overall risk rating of very low. The ability to obtain compliance had the greatest influence on the likelihood of release occurring. The risk model for ‘Cause More Harm’ provided a 12.5% likelihood that more harm would result from the release, but the overall risk was considered negligible. The efficacy of mosquito management had the most influence, with the perception that the threat of dengue fever had been eliminated, resulting in less household mosquito control, was scored as the highest ranked individual hazard (albeit low risk.Conclusions: The risk analysis was designed to incorporate the interacting complexity of hazards that may affect the release of the technology into the environment. The risk analysis was a small but important implementation phase in the success of this innovative research introducing a new technology to combat dengue transmission in the environment.

  14. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  15. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    Science.gov (United States)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  16. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  17. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium.

    Science.gov (United States)

    Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99.3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA-DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C(15 : 0) and C(16 : 0). The DNA G+C content of strain XIL14T was 50.5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and beta-galactosidase. DNA-DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43.3 and 36.3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T=CECT 5839T). PMID:15653909

  18. Complete genome sequence of Deinococcus actinosclerus BM2(T), a bacterium with Gamma-radiation resistance isolated from soil in South Korea.

    Science.gov (United States)

    Kim, Myung Kyum; Kang, Myung Suk; Lee, Do Hee; Joo, Eun Sun; Kim, Eun Bit; Jeon, Seon Hwa; Jung, Hee-Young; Srinivasan, Sathiyaraj

    2016-04-20

    A Gram-positive, short-rod shaped and non-motile bacterium Deinococcus actinosclerus BM2(T), resistant to gamma and UV radiation, was isolated from a soil sample collected in South Korea. Strain BM2(T) showed high resistance to gamma radiation with D10 value of 9 kGy. The complete genome of D. actinosclerus BM2(T) consists of a single chromosome (3,264,334bp). The genome features showed the presence of intracellular proteases that help to eliminate radiation-induced ROS during recovery from ionizing radiation damage. PMID:26953742

  19. Effects of temperature and deltaGo on electron transfer from cytochrome c2 to the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides.

    OpenAIRE

    Venturoli, G; Drepper, F; Williams, J C; Allen, J P; X. Lin; MATHIS,P

    1998-01-01

    The kinetics of electron transfer from cytochrome c2 to the primary donor (P) of the reaction center from the photosynthetic purple bacterium Rhodobacter sphaeroides have been investigated by time-resolved absorption spectroscopy. Rereduction of P+ induced by a laser pulse has been measured at temperatures from 300 K to 220 K in a series of specifically mutated reaction centers characterized by altered midpoint redox potentials of P+/P varying from 410 mV to 765 mV (as compared to 505 mV for ...

  20. Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium.

    Science.gov (United States)

    Paul, Carsten; Pohnert, Georg

    2013-01-01

    Marine lytic bacteria can have a substantial effect on phytoplankton and are even capable to terminate blooms of microalgae. The bacterium Kordia algicida was reported to lyse cells of the diatom Skeletonema costatum and several other diatoms by a quorum sensing controlled excretion of proteases. However the diatom Chaetoceros didymus is fully resistant against the bacterial enzymes. We show that the growth curve of this diatom is essentially unaffected by addition of bacterial filtrates that are active against other diatoms. By monitoring proteases from the medium using zymography and fluorescence based activity assays we demonstrate that C. didymus responds to the presence of the lytic bacteria with the induced production of algal proteases. These proteases exhibit a substantially increased activity compared to the bacterial counterparts. The induction is also triggered by signals in the supernatant of a K. algicida culture. Size fractionation shows that only the >30 kD fraction of the bacterial exudates acts as an inducing cue. Implications for a potential induced defense of the diatom C. didymus are discussed. PMID:23469204

  1. Induction of protease release of the resistant diatom Chaetoceros didymus in response to lytic enzymes from an algicidal bacterium.

    Directory of Open Access Journals (Sweden)

    Carsten Paul

    Full Text Available Marine lytic bacteria can have a substantial effect on phytoplankton and are even capable to terminate blooms of microalgae. The bacterium Kordia algicida was reported to lyse cells of the diatom Skeletonema costatum and several other diatoms by a quorum sensing controlled excretion of proteases. However the diatom Chaetoceros didymus is fully resistant against the bacterial enzymes. We show that the growth curve of this diatom is essentially unaffected by addition of bacterial filtrates that are active against other diatoms. By monitoring proteases from the medium using zymography and fluorescence based activity assays we demonstrate that C. didymus responds to the presence of the lytic bacteria with the induced production of algal proteases. These proteases exhibit a substantially increased activity compared to the bacterial counterparts. The induction is also triggered by signals in the supernatant of a K. algicida culture. Size fractionation shows that only the >30 kD fraction of the bacterial exudates acts as an inducing cue. Implications for a potential induced defense of the diatom C. didymus are discussed.

  2. Ionic liquids increase the catalytic efficiency of a lipase (Lip1) from an antarctic thermophilic bacterium.

    Science.gov (United States)

    Muñoz, Patricio A; Correa-Llantén, Daniela N; Blamey, Jenny M

    2015-01-01

    Lipases catalyze the hydrolysis and synthesis of triglycerides and their reactions are widely used in industry. The use of ionic liquids has been explored in order to improve their catalytic properties. However, the effect of these compounds on kinetic parameters of lipases has been poorly understood. A study of the kinetic parameters of Lip1, the most thermostable lipase from the supernatant of the strain ID17, a thermophilic bacterium isolated from Deception Island, Antarctica, and a member of the genus Geobacillus is presented. Kinetic parameters of Lip1 were modulated by the use of ionic liquids BmimPF6 and BmimBF4. The maximum reaction rate of Lip1 was improved in the presence of both salts. The highest effect was observed when BmimPF6 was added in the reaction mix, resulting in a higher hydrolytic activity and in a modulation of the catalytic efficiency of the enzyme. However, the catalytic efficiency did not change in the presence of BmimBF4. The increase of the reaction rates of Lip1 promoted by these ionic liquids could be related to possible changes in the Lip1 structure. This effect was measured by quenching of tryptophan fluorescence of the enzyme, when it was incubated with each liquid salt. In conclusion, the hydrolytic activity of Lip1 is modulated by the ionic liquids BmimBF4 and BmimPF6, improving the reaction rate and the catalytic efficiency of this enzyme when BmimPF6 was used. This effect is probably due to changes in the structure of Lip1 induced by the presence of these ionic liquids, stimulating its catalytic activity. PMID:25425150

  3. Induction and anisotropy of fluorescence of reaction center from photosynthetic bacterium Rhodobacter sphaeroides.

    Science.gov (United States)

    Sipka, Gábor; Maróti, Péter

    2016-01-01

    Submillisecond dark-light changes of the yield (induction) and anisotropy of fluorescence under laser diode excitation were measured in the photosynthetic reaction center of the purple bacterium Rhodobacter sphaeroides. Narrow band (1-2 nm) laser diodes emitting at 808 and 865 nm were used to selectively excite the accessory bacteriochlorophyll (B, 800 nm) or the upper excitonic state of the bacteriochlorophyll dimer (P-, 810 nm) and the lower excitonic state of the dimer (P+, 865 nm), respectively. The fluorescence spectrum of the wild type showed two bands centered at 850 nm (B) and 910 nm (P-). While the monotonous decay of the fluorescence yield at 910 nm tracked the light-induced oxidation of the dimer, the kinetics of the fluorescence yield at 850 nm showed an initial rise before a decrease. The anisotropy of the fluorescence excited at 865 nm (P-) was very close to the limiting value (0.4) across the whole spectral range. The excitation of both B and P- at 808 nm resulted in wavelength-dependent depolarization of the fluorescence from 0.35 to 0.24 in the wild type and from 0.30 to 0.24 in the reaction center of triple mutant (L131LH-M160LH-M197FH). The additivity law of the anisotropies of the fluorescence species accounts for the wavelength dependence of the anisotropy. The measured fluorescence yields and anisotropies are interpreted in terms of very fast energy transfer from (1)B* to (1)P- (either directly or indirectly by internal conversion from (1)P+) and to the oxidized dimer. PMID:25698106

  4. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    Directory of Open Access Journals (Sweden)

    Xueqian Lei

    2015-01-01

    Full Text Available Harmful algal blooms occur throughout the world, threatening human health and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm and relative electron transport rate (rETR suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD and catalase (CAT, increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD and two target respiration-related genes (cob and cox. The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death.

  5. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium.

    Science.gov (United States)

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemical levels to elucidate the mechanism involved in the inhibition of algal growth by the supernatant of the strain BS02. Reactive oxygen species (ROS) levels increased following exposure to the BS02 supernatant, indicating that the algal cells had suffered from oxidative damage. The levels of cellular pigments, including chlorophyll a and carotenoids, were significantly decreased, which indicated that the accumulation of ROS destroyed pigment synthesis. The decline of the maximum photochemical quantum yield (Fv/Fm) and relative electron transport rate (rETR) suggested that the photosynthesis systems of algal cells were attacked by the BS02 supernatant. To eliminate the ROS, the activities of antioxidant enzymes, including superoxide dismutase (SOD) and catalase (CAT), increased significantly within a short period of time. Real-time PCR revealed changes in the transcript abundances of two target photosynthesis-related genes (psbA and psbD) and two target respiration-related genes (cob and cox). The transcription of the respiration-related genes was significantly inhibited by the treatments, which indicated that the respiratory system was disturbed. Our results demonstrate that the BS02 supernatant can affect the photosynthesis process and might block the PS II electron transport chain, leading to the production of excessive ROS. The increased ROS can further destroy membrane integrity and pigments, ultimately inducing algal cell death. PMID:25667582

  6. Alliance of proteomics and genomics to unravel the specificities of Sahara bacterium Deinococcus deserti.

    Directory of Open Access Journals (Sweden)

    Arjan de Groot

    2009-03-01

    Full Text Available To better understand adaptation to harsh conditions encountered in hot arid deserts, we report the first complete genome sequence and proteome analysis of a bacterium, Deinococcus deserti VCD115, isolated from Sahara surface sand. Its genome consists of a 2.8-Mb chromosome and three large plasmids of 324 kb, 314 kb, and 396 kb. Accurate primary genome annotation of its 3,455 genes was guided by extensive proteome shotgun analysis. From the large corpus of MS/MS spectra recorded, 1,348 proteins were uncovered and semiquantified by spectral counting. Among the highly detected proteins are several orphans and Deinococcus-specific proteins of unknown function. The alliance of proteomics and genomics high-throughput techniques allowed identification of 15 unpredicted genes and, surprisingly, reversal of incorrectly predicted orientation of 11 genes. Reversal of orientation of two Deinococcus-specific radiation-induced genes, ddrC and ddrH, and identification in D. deserti of supplementary genes involved in manganese import extend our knowledge of the radiotolerance toolbox of Deinococcaceae. Additional genes involved in nutrient import and in DNA repair (i.e., two extra recA, three translesion DNA polymerases, a photolyase were also identified and found to be expressed under standard growth conditions, and, for these DNA repair genes, after exposure of the cells to UV. The supplementary nutrient import and DNA repair genes are likely important for survival and adaptation of D. deserti to its nutrient-poor, dry, and UV-exposed extreme environment.

  7. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens.

    Science.gov (United States)

    Quelas, J I; Mesa, S; Mongiardini, E J; Jendrossek, D; Lodeiro, A R

    2016-07-15

    Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer

  8. Photoactive yellow protein from the halophilic bacterium Salinibacter ruber.

    Science.gov (United States)

    Memmi, Samy; Kyndt, John; Meyer, Terry; Devreese, Bart; Cusanovich, Michael; Van Beeumen, Jozef

    2008-02-19

    A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to

  9. The coevolutionary period of Wolbachia pipientis infecting Drosophila ananassae and its impact on the evolution of the host germline stem cell regulating genes.

    Science.gov (United States)

    Choi, Jae Young; Aquadro, Charles F

    2014-09-01

    The endosymbiotic bacteria Wolbachia pipientis is known to infect a wide range of arthropod species yet less is known about the coevolutionary history it has with its hosts. Evidence of highly identical W. pipientis strains in evolutionary divergent hosts suggests horizontal transfer between hosts. For example, Drosophila ananassae is infected with a W. pipientis strain that is nearly identical in sequence to a strain that infects both D. simulans and D. suzukii, suggesting recent horizontal transfer among these three species. However, it is unknown whether the W. pipientis strain had recently invaded all three species or a more complex infectious dynamic underlies the horizontal transfers. Here, we have examined the coevolutionary history of D. ananassae and its resident W. pipientis to infer its period of infection. Phylogenetic analysis of D. ananassae mitochondrial DNA and W. pipientis DNA sequence diversity revealed the current W. pipientis infection is not recent. In addition, we examined the population genetics and molecular evolution of several germline stem cell (GSC) regulating genes of D. ananassae. These studies reveal significant evidence of recent and long-term positive selection at stonewall in D. ananassae, whereas pumillio showed patterns of variation consistent with only recent positive selection. Previous studies had found evidence for adaptive evolution of two key germline differentiation genes, bag of marbles (bam) and benign gonial cell neoplasm (bgcn), in D. melanogaster and D. simulans and proposed that the adaptive evolution at these two genes was driven by arms race between the host GSC and W. pipientis. However, we did not find any statistical departures from a neutral model of evolution for bam and bgcn in D. ananassae despite our new evidence that this species has been infected with W. pipientis for a period longer than the most recent infection in D. melanogaster. In the end, analyzing the GSC regulating genes individually showed two

  10. Wolbachia transcription elongation factor "Wol GreA" interacts with α2ββ'σ subunits of RNA polymerase through its dimeric C-terminal domain.

    Directory of Open Access Journals (Sweden)

    Jeetendra Kumar Nag

    2014-06-01

    Full Text Available OBJECTIVES: Wolbachia, an endosymbiont of filarial nematode, is considered a promising target for therapy against lymphatic filariasis. Transcription elongation factor GreA is an essential factor that mediates transcriptional transition from abortive initiation to productive elongation by stimulating the escape of RNA polymerase (RNAP from native prokaryotic promoters. Upon screening of 6257 essential bacterial genes, 57 were suggested as potential future drug targets, and GreA is among these. The current study emphasized the characterization of Wol GreA with its domains. METHODOLOGY/PRINCIPAL FINDINGS: Biophysical characterization of Wol GreA with its N-terminal domain (NTD and C-terminal domain (CTD was performed with fluorimetry, size exclusion chromatography, and chemical cross-linking. Filter trap and far western blotting were used to determine the domain responsible for the interaction with α2ββ'σ subunits of RNAP. Protein-protein docking studies were done to explore residual interaction of RNAP with Wol GreA. The factor and its domains were found to be biochemically active. Size exclusion and chemical cross-linking studies revealed that Wol GreA and CTD exist in a dimeric conformation while NTD subsists in monomeric conformation. Asp120, Val121, Ser122, Lys123, and Ser134 are the residues of CTD through which monomers of Wol GreA interact and shape into a dimeric conformation. Filter trap, far western blotting, and protein-protein docking studies revealed that dimeric CTD of Wol GreA through Lys82, Ser98, Asp104, Ser105, Glu106, Tyr109, Glu116, Asp120, Val121, Ser122, Ser127, Ser129, Lys140, Glu143, Val147, Ser151, Glu153, and Phe163 residues exclusively participates in binding with α2ββ'σ subunits of polymerase. CONCLUSIONS/SIGNIFICANCE: To the best of our knowledge, this research is the first documentation of the residual mode of action in wolbachial mutualist. Therefore, findings may be crucial to understanding the

  11. Characterizing the Aedes aegypti population in a Vietnamese village in preparation for a Wolbachia-based mosquito control strategy to eliminate dengue.

    Directory of Open Access Journals (Sweden)

    Jason A L Jeffery

    Full Text Available BACKGROUND: A life-shortening strain of the obligate intracellular bacteria Wolbachia, called wMelPop, is seen as a promising new tool for the control of Aedes aegypti. However, developing a vector control strategy based on the release of mosquitoes transinfected with wMelPop requires detailed knowledge of the demographics of the target population. METHODOLOGY/PRINCIPAL FINDINGS: In Tri Nguyen village (611 households on Hon Mieu Island in central Vietnam, we conducted nine quantitative entomologic surveys over 14 months to determine if Ae. aegypti populations were spatially and temporally homogenous, and to estimate population size. There was no obvious relationship between mosquito (larval, pupal or adult abundance and temperature and rainfall, and no area of the village supported consistently high numbers of mosquitoes. In almost all surveys, key premises produced high numbers of Ae. aegypti. However, these premises were not consistent between surveys. For an intervention based on a single release of wMelPop-infected Ae. aegypti, release ratios of infected to uninfected adult mosquitoes of all age classes are estimated to be 1.8-6.7ratio1 for gravid females (and similarly aged males or teneral adults, respectively. We calculated that adult female mosquito abundance in Tri Nguyen village could range from 1.1 to 43.3 individuals of all age classes per house. Thus, an intervention could require the release of 2-78 wMelPop-infected gravid females and similarly aged males per house, or 7-290 infected teneral female and male mosquitoes per house. CONCLUSIONS/SIGNIFICANCE: Given the variability we encountered, this study highlights the importance of multiple entomologic surveys when evaluating the spatial structure of a vector population or estimating population size. If a single release of wMelPop-infected Ae. aegypti were to occur when wild Ae. aegypti abundance was at its maximum, a preintervention control program would be necessary to ensure that

  12. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  13. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  14. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  15. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  17. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    International Nuclear Information System (INIS)

    Highlights: ► Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. ► Protein homology model of NapA from S. gelidimarina and mesophilic homologue. ► Six amino acid residues identified as lead candidates governing NapA cold adaptation. ► Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo–MGD) cofactor and one [4Fe–4S] iron–sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (NapSgel) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (NapSput) was examined at varied temperature. Irreversible deactivation of NapSgel and NapSput occurred at 54.5 and 65 °C, respectively. When NapSgel was preincubated at 21–70 °C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 °C, which suggested that NapSgel was poised for optimal catalysis at modest temperatures and, unlike NapSput, did not benefit from thermally-induced refolding. At 20 °C, NapSgel reduced selenate at 16% of the rate of nitrate reduction. NapSput did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in NapSgel that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the NapSgel cold-adapted phenotype. Protein homology modeling of NapSgel using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo–MGD cofactor. Two mesophilic ↔ psychrophilic substitutions (Asn

  18. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Philippa J.L. [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); Codd, Rachel, E-mail: rachel.codd@sydney.edu.au [School of Chemistry, University of Sydney, New South Wales 2006 (Australia); School of Medical Sciences (Pharmacology) and Bosch Institute, University of New South Wales, New South Wales 2006 (Australia)

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Cold-adapted phenotype of NapA from the Antarctic bacterium Shewanella gelidimarina. Black-Right-Pointing-Pointer Protein homology model of NapA from S. gelidimarina and mesophilic homologue. Black-Right-Pointing-Pointer Six amino acid residues identified as lead candidates governing NapA cold adaptation. Black-Right-Pointing-Pointer Molecular-level understanding of designing cool-temperature in situ oxyanion sensors. -- Abstract: The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap{sub Sgel}) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap{sub Sput}) was examined at varied temperature. Irreversible deactivation of Nap{sub Sgel} and Nap{sub Sput} occurred at 54.5 and 65 Degree-Sign C, respectively. When Nap{sub Sgel} was preincubated at 21-70 Degree-Sign C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54 Degree-Sign C, which suggested that Nap{sub Sgel} was poised for optimal catalysis at modest temperatures and, unlike Nap{sub Sput}, did not benefit from thermally-induced refolding. At 20 Degree-Sign C, Nap{sub Sgel} reduced selenate at 16% of the rate of nitrate reduction. Nap{sub Sput} did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap{sub Sgel} that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap{sub Sgel} cold-adapted phenotype. Protein homology modeling of Nap{sub Sgel} using a

  19. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Lemieszek, Marta Kinga; Golec, Marcin; Milanowski, Janusz

    2016-06-01

    Pantoea agglomerans, a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others) which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of P. agglomerans isolated by them and described as 'Immunopotentiator from Pantoea agglomerans 1 (IP-PA1)' reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that P. agglomerans occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the Plasmodium parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-Plasmodium effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. Pantoea agglomerans has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic production, competition mechanisms or induction of plant resistance. Its use as

  20. Pantoea agglomerans: a mysterious bacterium of evil and good. Part IV. Beneficial effects

    Directory of Open Access Journals (Sweden)

    Jacek Dutkiewicz

    2016-06-01

    Full Text Available [i][/i][i]Pantoea agglomerans[/i], a gammaproteobacterium of plant origin, possesses many beneficial traits that could be used for the prevention and/or treatment of human and animal diseases, combating plant pathogens, promotion of plant growth and bioremediation of the environment. It produces a number of antibiotics (herbicolin, pantocins, microcin, agglomerins, andrimid, phenazine, among others which could be used for combating plant, animal and human pathogens or for food preservation. Japanese researchers have demonstrated that the low-molecular-mass lipopolysaccharide of [i]P. agglomerans[/i] isolated by them and described as ‘Immunopotentiator from [i]Pantoea agglomerans[/i] 1 (IP-PA1’ reveals the extremely wide spectrum of healing properties, mainly due to its ability for the maintenance of homeostasis by macrophage activation. IP-PA1 was proved to be effective in the prevention and treatment of a broad range of human and animal disorders, such as tumours, hyperlipidaemia, diabetes, ulcer, various infectious diseases, atopic allergy and stress-induced immunosuppression; it also showed a strong analgesic effect. It is important that most of these effects could be achieved by the safe oral administration of IP-PA1. Taking into account that [i]P. agglomerans[/i] occurs commonly as a symbiont of many species of insects, including mosquitoes transmitting the [i]Plasmodium[/i] parasites causing malaria, successful attempts were made to apply the strategy of paratransgenesis, in which bacterial symbionts are genetically engineered to express and secrete anti-[i]Plasmodium[/i] effector proteins. This strategy shows prospects for a successful eradication of malaria, a deadly disease killing annually over one million people, as well as of other vector-borne diseases of humans, animals and plants. [i]Pantoea agglomerans[/i] has been identified as an antagonist of many plant pathogens belonging to bacteria and fungi, as a result of antibiotic

  1. Salt Stress Induced Changes in the Exoproteome of the Halotolerant Bacterium Tistlia consotensis Deciphered by Proteogenomics

    Science.gov (United States)

    Rubiano-Labrador, Carolina; Bland, Céline; Miotello, Guylaine; Armengaud, Jean; Baena, Sandra

    2015-01-01

    The ability of bacteria to adapt to external osmotic changes is fundamental for their survival. Halotolerant microorganisms, such as Tistlia consotensis, have to cope with continuous fluctuations in the salinity of their natural environments which require effective adaptation strategies against salt stress. Changes of extracellular protein profiles from Tistlia consotensis in conditions of low and high salinities were monitored by proteogenomics using a bacterial draft genome. At low salinity, we detected greater amounts of the HpnM protein which is involved in the biosynthesis of hopanoids. This may represent a novel, and previously unreported, strategy by halotolerant microorganisms to prevent the entry of water into the cell under conditions of low salinity. At high salinity, proteins associated with osmosensing, exclusion of Na+ and transport of compatible solutes, such as glycine betaine or proline are abundant. We also found that, probably in response to the high salt concentration, T. consotensis activated the synthesis of flagella and triggered a chemotactic response neither of which were observed at the salt concentration which is optimal for growth. Our study demonstrates that the exoproteome is an appropriate indicator of adaptive response of T. consotensis to changes in salinity because it allowed the identification of key proteins within its osmoadaptive mechanism that had not previously been detected in its cell proteome. PMID:26287734

  2. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  3. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002

    OpenAIRE

    Weber, Karrie A; Hedrick, David B.; Peacock, Aaron D.; Thrash, J. Cameron; White, David C.; Achenbach, Laurie A.; Coates, John D.

    2009-01-01

    A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in...

  4. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  5. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism

    OpenAIRE

    Ueda, Kenji; YAMASHITA Atsushi; Ishikawa, Jun; Shimada, Masafumi; Watsuji, Tomo-o; Morimura, Kohji; Ikeda, Haruo; Hattori, Masahira; Beppu, Teruhiko

    2004-01-01

    Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Fir...

  6. Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium

    OpenAIRE

    Li, Rongpeng; Zi, Xiaoli; Wang, Xinfeng; Zhang, Xia; Gao, Haofeng; Hu, Nan

    2013-01-01

    The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated eff...

  7. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    OpenAIRE

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and whe...

  8. Enhanced Cadmium (Cd) Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    OpenAIRE

    Kunchaya Setkit; Acharaporn Kumsopa; Jaruwan Wongthanate; Benjaphorn Prapagdee

    2014-01-01

    A cadmium (Cd)-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also signifi...

  9. Expression of arsenic resistance genes in the obligate anaerobe Bacteroides vulgatus ATCC 8482, a gut microbiome bacterium.

    Science.gov (United States)

    Li, Jiaojiao; Mandal, Goutam; Rosen, Barry P

    2016-06-01

    The response of the obligate anaerobe Bacteroides vulgatus ATCC 8482, a common human gut microbiota, to arsenic was determined. B. vulgatus ATCC 8482 is highly resistant to pentavalent As(V) and methylarsenate (MAs(V)). It is somewhat more sensitive to trivalent inorganic As(III) but 100-fold more sensitive to methylarsenite (MAs(III)) than to As(III). B. vulgatus ATCC 8482 has eight continuous genes in its genome that we demonstrate form an arsenical-inducible transcriptional unit. The first gene of this ars operon, arsR, encodes a putative ArsR As(III)-responsive transcriptional repressor. The next three genes encode proteins of unknown function. The remaining genes, arsDABC, have well-characterized roles in detoxification of inorganic arsenic, but there are no known genes for MAs(III) resistance. Expression of each gene after exposure to trivalent and pentavalent inorganic and methylarsenicals was analyzed. MAs(III) was the most effective inducer. The arsD gene was the most highly expressed of the ars operon genes. These results demonstrate that this anaerobic microbiome bacterium has arsenic-responsive genes that confer resistance to inorganic arsenic and may be responsible for the organism's ability to maintain its prevalence in the gut following dietary exposure to inorganic arsenic. PMID:27040269

  10. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  11. Immunomodulatory effect of halophilic lactic acid bacterium Tetragenococcus halophilus Th221 from soy sauce moromi grown in high-salt medium.

    Science.gov (United States)

    Masuda, Susumu; Yamaguchi, Hitomi; Kurokawa, Toshiko; Shirakami, Tomoyuki; Tsuji, Ryohei F; Nishimura, Ikuko

    2008-02-10

    A halophilic lactic acid bacterium, Tetragenococcus halophilus, was found to possess an immunomodulatory activity that promotes T helper type 1 (Th1) immunity in addition to its important roles in soy sauce brewing. Strain Th221 was selected from 151 strains isolated from soy sauce (shoyu) moromi, since it induced strong interleukin (IL)-12 production by mouse peritoneal macrophages in vitro. The relationship between the salt concentration in the medium and the IL-12 production-inducing activity of this strain was investigated, and the activity was found to be strong when the bacteria were grown in medium containing > or =10% (w/v) salt. The Th1-promoting activity was also manifested in an in vivo mouse study, since Th1-dependant contact sensitivity was augmented and Th2 immunity, as evaluated by specific immunoglobulin E production, was suppressed following oral ingestion of Th221. Based on these findings, Th221 administration may be useful for improving allergic symptoms. PMID:18061297

  12. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  13. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  14. Identification and Characterization of Clostridium paraputrificum, a Chitinolytic Bacterium of Human Digestive Tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Kopečný, Jan; Hodrová, Blanka; Bartoňová, Hana

    2002-01-01

    Roč. 47, č. 5 (2002), s. 559-564. ISSN 0015-5632 R&D Projects: GA AV ČR KSK5020115; GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : Clostridium paraputrificum * Chitinolytic bacterium * digestive tract Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  15. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  16. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    OpenAIRE

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Stephan C Schuster; Steinke, Laurey; Bryant, Donald A.

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  17. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  18. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin;

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  19. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  20. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi;

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  1. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian;

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted......) and that by monocytes after between 15 min and 30 min of incubation (by 66% and 53%, respectively). The attachment of C3b/iC3b to bacterium-bearing RBCs decreased progressively after 15 min, indicating that conversion of C3 fragments into C3dg occurred, decreasing the affinity for CR1 on RBCs. We propose that P...

  2. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  3. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  4. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  5. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten;

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  6. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina;

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans...

  7. Design of semi industrial radium separator by a new bacterium MGF-48

    International Nuclear Information System (INIS)

    Following of a research work which has been recently published in AEOI scientific Bulletin no. 14, a semi industrial bioreactor has been designed for separation of radium using a new bacterium MGF-48. This bioreactor could be utilized for a high rate separation of radium in semi industrial scale. (author)

  8. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  9. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  10. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  11. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    Science.gov (United States)

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  12. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  13. Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

    OpenAIRE

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

    2014-01-01

    Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance.

  14. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    OpenAIRE

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert.

  15. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome.

    Science.gov (United States)

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  16. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    Science.gov (United States)

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  17. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    OpenAIRE

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M. P.

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake.

  18. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    OpenAIRE

    Yi, Langbo; Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong; Chai, Liyuan

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism.

  19. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    Science.gov (United States)

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  20. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  1. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  2. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    OpenAIRE

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  3. Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhu, Ying; Wang, Xinxin; Kong, Xiao; Liu, Huijun; Wang, Yafeng

    2016-01-01

    Sphingobium yanoikuyae TJ is a halotolerant di-n-butyl-phthalate-degrading bacterium, isolated from the Haihe estuary in Bohai Bay, Tianjin, China. Here, we report the 5.1-Mb draft genome sequence of this strain, which will provide insights into the diversity of Sphingobium spp. and the mechanism of phthalate ester degradation in the estuary. PMID:27313307

  4. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  5. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  6. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  7. Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1.

    Science.gov (United States)

    Fang, Lian-Cheng; Chen, Yi-Fei; Zhou, Yan-Long; Wang, Dao-Sheng; Sun, Le-Ni; Tang, Xin-Yun; Hua, Ri-Mao

    2016-06-10

    Cupriavidus nantongensis X1 is a chlorpyrifos degrading bacterium, which was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. It is the first time to report the complete genome sequence of C. nantongensis species, which has been reported as a novel species of Cupriavidus genus. It could provide further pathway information in chlorpyrifos degradation. PMID:27063140

  8. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    OpenAIRE

    Sergio de Oliveira Procópio; Marcelo Ferreira Fernandes; Daniele Araújo Teles; José Guedes Sena Filho; Alberto Cargnelutti Filho; Marcelo Araújo Resende; Leandro Vargas

    2014-01-01

    The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF) by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], gly...

  9. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J.

    OpenAIRE

    Ruby, E G; McCabe, J B

    1986-01-01

    The intracellularly growing bacterium Bdellovibrio bacteriovorus 109J transports intact ATP by a specific, energy-requiring process. ATP transport does not involve either an ADP-ATP or an AMP-ATP exchange mechanism but, instead, has characteristics of an active transport permease. Kinetically distinct systems for ATP transport are expressed by the two developmental stages of the bdellovibrio life cycle.

  10. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  11. Draft Genome Sequence of the Radioresistant Bacterium Deinococcus grandis, Isolated from Freshwater Fish in Japan

    Science.gov (United States)

    Onodera, Takefumi; Omoso, Kota; Takeda-Yano, Kiyoko; Katayama, Takeshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Deinococcus grandis is a radioresistant bacterium isolated from freshwater fish in Japan. Here we reported the draft genome sequence of D. grandis (4.1 Mb), which will be useful for elucidating the common principles of radioresistance in Deinococcus species through the comparative analysis of genomic sequences. PMID:26868384

  12. Genome Sequence of the Spinosyns-Producing Bacterium Saccharopolyspora spinosa NRRL 18395 ▿

    Science.gov (United States)

    Pan, Yuanlong; Yang, Xi; Li, Jing; Zhang, Ruifen; Hu, Yongfei; Zhou, Yuguang; Wang, Jun; Zhu, Baoli

    2011-01-01

    Saccharopolyspora spinosa is a Gram-positive bacterium that produces spinosad, a well-known biodegradable insecticide that is used for agricultural pest control and has an excellent environmental and mammalian toxicological profile. Here, we present the first draft genome sequence of the type strain Saccharopolyspora spinosa NRRL 18395, which consists of 22 scaffolds. PMID:21478350

  13. Genome Sequence of Marichromatium gracile YL-28, a Purple Sulfur Bacterium with Bioremediation Potential

    Science.gov (United States)

    Zhang, Xiaobo; Zhao, Chungui; Hong, Xuan

    2016-01-01

    The draft genome sequence of Marichromatium gracile YL-28 contains 3,840,251 bp, with a G+C content of 68.84%. The annotated genome sequence provides the genetic basis for revealing its role as a purple sulfur bacterium in the harvesting of energy and the development of bioremediation applications. PMID:27151789

  14. Draft Genome Sequence of the Oyster Larval Probiotic Bacterium Vibrio sp. Strain OY15

    OpenAIRE

    Harold J. Schreier; Schott, Eric J.

    2014-01-01

    We report the draft genome sequence of Vibrio sp. strain OY15, a Gram-negative marine bacterium isolated from an oyster (Crassostrea virginica) digestive tract and shown to possess probiotic activity. The availability of this genome sequence will facilitate the study of the mechanisms of probiotic activity as well as virulence capacity.

  15. Genome Sequence of the Highly Efficient Arsenite-Oxidizing Bacterium Achromobacter arsenitoxydans SY8

    OpenAIRE

    Li, Xiangyang; Hu, Yao; Gong, Jing; Lin, Yanbing; Johnstone, Laurel; Rensing, Christopher; Wang, Gejiao

    2012-01-01

    We report the draft genome sequence of Achromobacter arsenitoxydans SY8, the first reported arsenite-oxidizing bacterium belonging to the genus Achromobacter and containing a genomic arsenic island, an intact type III secretion system, and multiple metal(loid) transporters. The genome may be helpful to explore the mechanisms intertwining metal(loid) resistance and pathogenicity.

  16. Identification of a New Marine Steroid-degrading Bacterium S19-1 and Isolation of Estradiol-inducible Genes and a Novel Promoter from this Bacterium

    OpenAIRE

    Zhang, Tingdi

    2012-01-01

    Summary Environmental estrogens in water have been reported to be associated with abnormal sexual development and abnormal feminizing responses in some animals. Estrogen contamination of sea water is an ever growing problem and impacts population dynamics of all kinds of sea animals. Researches about elimination of estrogens from the contaminated environment have become a major issue in environmental research and policy. It has been demonstrated that biological processes play an important...

  17. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  18. Structural and mechanistic characterization of 6S RNA from the hyperthermophilic bacterium Aquifex aeolicus.

    Science.gov (United States)

    Köhler, Karen; Duchardt-Ferner, Elke; Lechner, Marcus; Damm, Katrin; Hoch, Philipp G; Salas, Margarita; Hartmann, Roland K

    2015-10-01

    Bacterial 6S RNAs competitively inhibit binding of RNA polymerase (RNAP) holoenzymes to DNA promoters, thereby globally regulating transcription. RNAP uses 6S RNA itself as a template to synthesize short transcripts, termed pRNAs (product RNAs). Longer pRNAs (approx. ≥ 10 nt) rearrange the 6S RNA structure and thereby disrupt the 6S RNA:RNAP complex, which enables the enzyme to resume transcription at DNA promoters. We studied 6S RNA of the hyperthermophilic bacterium Aquifex aeolicus, representing the thermodynamically most stable 6S RNA known so far. Applying structure probing and NMR, we show that the RNA adopts the canonical rod-shaped 6S RNA architecture with little structure formation in the central bulge (CB) even at moderate temperatures (≤37 °C). 6S RNA:pRNA complex formation triggers an internal structure rearrangement of 6S RNA, i.e. formation of a so-called central bulge collapse (CBC) helix. The persistence of several characteristic NMR imino proton resonances upon pRNA annealing demonstrates that defined helical segments on both sides of the CB are retained in the pRNA-bound state, thus representing a basic framework of the RNA's architecture. RNA-seq analyses revealed pRNA synthesis from 6S RNA in A. aeolicus, identifying 9 to ∼17-mers as the major length species. A. aeolicus 6S RNA can also serve as a template for in vitro pRNA synthesis by RNAP from the mesophile Bacillus subtilis. Binding of a synthetic pRNA to A. aeolicus 6S RNA blocks formation of 6S RNA:RNAP complexes. Our findings indicate that A. aeolicus 6S RNA function in its hyperthermophilic host is mechanistically identical to that of other bacterial 6S RNAs. The use of artificial pRNA variants, designed to disrupt helix P2 from the 3'-CB instead of the 5'-CB but preventing formation of the CBC helix, indicated that the mechanism of pRNA-induced RNAP release has been evolutionarily optimized for transcriptional pRNA initiation in the 5'-CB. PMID:25771336

  19. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.

    Science.gov (United States)

    Simpson, Philippa J L; Codd, Rachel

    2011-11-01

    The reduction of nitrate to nitrite is catalysed in bacteria by periplasmic nitrate reductase (Nap) which describes a system of variable protein subunits encoded by the nap operon. Nitrate reduction occurs in the NapA subunit, which contains a bis-molybdopterin guanine dinucleotide (Mo-MGD) cofactor and one [4Fe-4S] iron-sulfur cluster. The activity of periplasmic nitrate reductase (Nap) isolated as native protein from the cold-adapted (psychrophilic) Antarctic bacterium Shewanella gelidimarina (Nap(Sgel)) and middle-temperature adapted (mesophilic) Shewanella putrefaciens (Nap(Sput)) was examined at varied temperature. Irreversible deactivation of Nap(Sgel) and Nap(Sput) occurred at 54.5 and 65°C, respectively. When Nap(Sgel) was preincubated at 21-70°C for 30 min, the room-temperature nitrate reductase activity was maximal and invariant between 21 and 54°C, which suggested that Nap(Sgel) was poised for optimal catalysis at modest temperatures and, unlike Nap(Sput), did not benefit from thermally-induced refolding. At 20°C, Nap(Sgel) reduced selenate at 16% of the rate of nitrate reduction. Nap(Sput) did not reduce selenate. Sequence alignment showed 46 amino acid residue substitutions in Nap(Sgel) that were conserved in NapA from mesophilic Shewanella, Rhodobacter and Escherichia species and could be associated with the Nap(Sgel) cold-adapted phenotype. Protein homology modeling of Nap(Sgel) using a mesophilic template with 66% amino acid identity showed the majority of substitutions occurred at the protein surface distal to the Mo-MGD cofactor. Two mesophilic↔psychrophilic substitutions (Asn↔His, Val↔Trp) occurred in a region close to the surface of the NapA substrate funnel resulting in potential interdomain π-π and/or cation-π interactions. Three mesophilic↔psychrophilic substitutions occurred within 4.5Å of the Mo-MGD cofactor (Phe↔Met, Ala↔Ser, Ser↔Thr) resulting in local regions that varied in hydrophobicity and hydrogen bonding

  20. Molecular Stress Responses to Nano-Sized Zero-Valent Iron (nZVI) Particles in the Soil Bacterium Pseudomonas stutzeri

    Science.gov (United States)

    Saccà, Maria Ludovica; Fajardo, Carmen; Martinez-Gomariz, Montserrat; Costa, Gonzalo; Nande, Mar; Martin, Margarita

    2014-01-01

    Nanotoxicological studies were performed in vitro using the common soil bacterium Pseudomonas stutzeri to assess the potentially toxic impact of commercial nano-sized zero-valent iron (nZVI) particles, which are currently used for environmental remediation projects. The phenotypic response of P. stutzeri to nZVI toxicity includes an initial insult to the cell wall, as evidenced by TEM micrographs. Transcriptional analyses using genes of particular relevance in cellular activity revealed that no significant changes occurred among the relative expression ratios of narG, nirS, pykA or gyrA following nZVI exposure; however, a significant increase in katB expression was indicative of nZVI-induced oxidative stress in P. stutzeri. A proteomic approach identified two major defence mechanisms that occurred in response to nZVI exposure: a downregulation of membrane proteins and an upregulation of proteins involved in reducing intracellular oxidative stress. These biomarkers served as early indicators of nZVI response in this soil bacterium, and may provide relevant information for environmental hazard assessment. PMID:24586957

  1. Identification and biological activity of potential probiotic bacterium isolated from the stomach mucus of breast-fed lamb

    Directory of Open Access Journals (Sweden)

    H. Kiňová Sepov��

    2011-09-01

    Full Text Available The lactic acid bacterium E isolated from the stomach mucus of breast-fed lamb was identified by sequencing of 16S rDNA fragment and species-specific PCR as Lactobacillus reuteri. Its potential antimicrobial activity and ability to modulate immune system in vitro and in vivo was determined. The growth inhibition of potential pathogens decreased from Staphylococcus aureus, Pseudomonas aeruginosa, Salmonella enterica ser. Minnesota to Escherichia coli. The lowest inhibition activity was observed in the case of Candida albicans. The ability of L. reuteri E to modulate biological activities of human and mouse mononuclear cells was estimated in vitro and in vivo, respectively. The production of IL-1β by monocytes in vitro was significantly induced by L. reuteri E (relative activity 2.47. The ability to modulate biological activities of mononuclear cells by living L. reuteri E cells in vitro in comparison to disintegrated L. reuteri E cells in vivo differed. For example lysozyme activity in vitro was inhibited while in vivo was stimulated (relative activities 0.30 and 1.83, respectively. The peroxidase activity in vitro was stimulated while in vivo was inhibited (relative activities 1.53 and 0.17, respectively. Obtained results indicate that L. reuteri E is potential candidate to be used in probiotic preparations for animals and/or human.

  2. Differential proteome and cellular adhesion analyses of the probiotic bacterium Lactobacillus acidophilus NCFM grown on raffinose - an emerging prebiotic.

    Science.gov (United States)

    Celebioglu, Hasan Ufuk; Ejby, Morten; Majumder, Avishek; Købler, Carsten; Goh, Yong Jun; Thorsen, Kristian; Schmidt, Bjarne; O'Flaherty, Sarah; Abou Hachem, Maher; Lahtinen, Sampo J; Jacobsen, Susanne; Klaenhammer, Todd R; Brix, Susanne; Mølhave, Kristian; Svensson, Birte

    2016-05-01

    Whole cell and surface proteomes were analyzed together with adhesive properties of the probiotic bacterium Lactobacillus acidophilus NCFM (NCFM) grown on the emerging prebiotic raffinose, exemplifying a synbiotic. Adhesion of NCFM to mucin and intestinal HT-29 cells increased three-fold after culture with raffinose versus glucose, as also visualized by scanning electron microscopy. Comparative proteomics using 2D-DIGE showed 43 unique proteins to change in relative abundance in whole cell lysates from NCFM grown on raffinose compared to glucose. Furthermore, 14 unique proteins in 18 spots of the surface subproteome underwent changes identified by differential 2DE, including elongation factor G, thermostable pullulanase, and phosphate starvation inducible stress-related protein increasing in a range of +2.1 - +4.7 fold. By contrast five known moonlighting proteins decreased in relative abundance by up to -2.4 fold. Enzymes involved in raffinose catabolism were elevated in the whole cell proteome; α-galactosidase (+13.9 fold); sucrose phosphorylase (+5.4 fold) together with metabolic enzymes from the Leloir pathway for galactose utilization and the glycolysis; β-galactosidase (+5.7 fold); galactose (+2.9/+3.1 fold) and fructose (+2.8 fold) kinases. The insights at the molecular and cellular levels contributed to the understanding of the interplay of a synbiotic composed of NCFM and raffinose with the host. PMID:26959526

  3. Comprehensive proteomic analysis of canola leaf inoculated with a plant growth-promoting bacterium, Pseudomonas fluorescens, under salt stress.

    Science.gov (United States)

    Banaei-Asl, Farzad; Farajzadeh, Davoud; Bandehagh, Ali; Komatsu, Setsuko

    2016-09-01

    Plant growth-promoting bacteria can improve the tolerance of canola to salt stress. To better understand the effects of plant growth-promoting bacterium on the protein profiles of canola under salt stress condition, proteomics was performed. Salt-sensitive (Sarigol) and -tolerant (Hyola308) canola cultivars were inoculated with Pseudomonas fluorescens FY32, and the protein profiles of canola leaves were compared using a PEG-fractionation method. Cluster analysis of canola cultivars based on a stress tolerance index of several morphological parameters was used to confirm that Sarigol and Hyola308 were salt-sensitive and -tolerant cultivars, respectively. Using a gel-free proteomic technique, 154 and 94 proteins in Hyola308 and 100 and 144 proteins in Sarigol were uniquely identified in non-inoculated and bacterial-inoculated cultivars, respectively. By PEG fractionation, a total of 132 and 207 proteins were identified in non-inoculated and inoculated Hyola308, respectively. Notably, the abundance of copper/zinc superoxide dismutase 1 was significantly increased in inoculated Hyola308 under severe salt stress and decreased under moderate salt stress. In addition, the enzyme activity of delta-1-pyrroline-5-carboxylate synthase was significantly increased non-inoculated Hyola308 and the activity of succinate dehydrogenase was increased in inoculated Hyola308 leaves exposed to salt stress. Taken together, these results suggest that the bacterial inoculation of canola increases salt tolerance by inducing an increase in the abundance of proteins related to glycolysis, tricarboxylic acid cycle, and amino acid metabolism. PMID:27137672

  4. Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants.

    Science.gov (United States)

    Dutkiewicz, Jacek; Mackiewicz, Barbara; Kinga Lemieszek, Marta; Golec, Marcin; Milanowski, Janusz

    2016-06-01

    Pantoea agglomerans, a bacterium associated with plants, is not an obligate infectious agent in humans. However, it could be a cause of opportunistic human infections, mostly by wound infection with plant material, or as a hospital-acquired infection, mostly in immunocompromised individuals. Wound infection with P. agglomerans usually follow piercing or laceration of skin with a plant thorn, wooden splinter or other plant material and subsequent inoculation of the plant-residing bacteria, mostly during performing of agricultural occupations and gardening, or children playing. Septic arthritis or synovitis appears as a common clinical outcome of exogenous infection with P. agglomerans, others include endophthalmitis, periostitis, endocarditis and osteomyelitis. Another major reason for clinical infection with P. agglomerans is exposure of hospitalized, often immunodeficient individuals to medical equipment or fluids contaminated with this bacterium. Epidemics of nosocomial septicemia with fatal cases have been described in several countries, both in adult and paediatric patients. In most cases, however, the clinical course of the hospital-acquired disease was mild and application of the proper antibiotic treatment led to full recovery. Compared to humans, there are only few reports on infectious diseases caused by Pantoea agglomerans in vertebrate animals. This species has been identified as a possible cause of equine abortion and placentitis and a haemorrhagic disease in dolphin fish (Coryphaena hippurus). P. agglomerans strains occur commonly, usually as symbionts, in insects and other arthropods. Pantoea agglomerans usually occurs in plants as an epi- or endophytic symbiont, often as mutualist. Nevertheless, this species has also also been identified as a cause of diseases in a range of cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (Alocasia cucullata), and a grass called onion couch

  5. Cloning, characterization and analysis of cat and ben genes from the phenol degrading halophilic bacterium Halomonas organivorans.

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Moreno

    Full Text Available BACKGROUND: Extensive use of phenolic compounds in industry has resulted in the generation of saline wastewaters that produce significant environmental contamination; however, little information is available on the degradation of phenolic compounds in saline conditions. Halomonas organivorans G-16.1 (CECT 5995(T is a moderately halophilic bacterium that we isolated in a previous work from saline environments of South Spain by enrichment for growth in different pollutants, including phenolic compounds. PCR amplification with degenerate primers revealed the presence of genes encoding ring-cleaving enzymes of the β-ketoadipate pathway for aromatic catabolism in H. organivorans. FINDINGS: The gene cluster catRBCA, involved in catechol degradation, was isolated from H. organivorans. The genes catA, catB, catC and the divergently transcribed catR code for catechol 1,2-dioxygenase (1,2-CTD, cis,cis-muconate cycloisomerase, muconolactone delta-isomerase and a LysR-type transcriptional regulator, respectively. The benzoate catabolic genes (benA and benB are located flanking the cat genes. The expression of cat and ben genes by phenol and benzoic acid was shown by RT-PCR analysis. The induction of catA gene by phenol and benzoic acid was also probed by the measurement of 1,2-CTD activity in H. organivorans growth in presence of these inducers. 16S rRNA and catA gene-based phylogenies were established among different degrading bacteria showing no phylogenetic correlation between both genes. CONCLUSIONS/SIGNIFICANCE: In this work, we isolated and determined the sequence of a gene cluster from a moderately halophilic bacterium encoding ortho-pathway genes involved in the catabolic metabolism of phenol and analyzed the gene organization, constituting the first report characterizing catabolic genes involved in the degradation of phenol in moderate halophiles, providing an ideal model system to investigate the potential use of this group of extremophiles in

  6. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  7. 77 FR 27054 - Wolbachia pipientis;

    Science.gov (United States)

    2012-05-08

    ... receipt of an application 88877- EUP-R from the University of Kentucky, Department of Entomology..., University of Kentucky, Department of Entomology, S-225 Ag. Science Center North, Lexington, KY...

  8. Influence of pH and Oxidant Ozone to Amount of Bacterium Coliform at Hospital Waste

    International Nuclear Information System (INIS)

    Influence of pH and oxidant ozone to amount of bacterium coliform at hospital waste have been done. As sample is liquid waste Public Hospital of town (RSUD) Yogyakarta. Sample waste processed by 3 kinds of treatment, that is first certain ozone waste during, that is waste given by the third and just chalk of waste given by the certain and ozonization chalk during. From third the treatment, in the reality third treatment which can give the maximal result, that is waste given the chalk until pH waste 8.5 and ozonization during 40 minute give the following result : bacterium coliform from 810.000 MPN become 0 MPN ( cell / 100 mL). This result have fulfilled the conditions as according to decision of Governor of DIY no. 65 year 1999 for the waste of faction II, that is waste used for the irrigation of fishery and agriculture. (author)

  9. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    Science.gov (United States)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  10. Isolation and characterization of a new arsenic methylating bacterium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Honschopp, S. [Bremen Univ. (Germany). Abt. Mikrobiologie; Brunken, N. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie; Nehrkorn, A. [Bremen Univ. (Germany). Abt. Mikrobiologie; Breunig, H.J. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie

    1996-12-31

    An arsenic resistant and arsenic methylating bacterium belonging to the Flavobacterium-Cytophaga group was isolated from soil with an arsenic content of 1.5 ppm. The growth of the bacterium is enhanced in the presence of As compounds in concentrations up to 200 ppm in the cultural media with a stronger effect of As(V) than of As(III) compounds. As a volatile product of the methylation of both NaH{sub 2}AsO{sub 3} and NaH{sub 2}AsO{sub 4} exclusively, Me{sub 3}As was formed and detected by mass spectrometry. Quantitative aspects of the methylation were studied with GC/MS. The intracellular accumulation of arsenic in the methylating strain was compared with two non methylating strains from the same soil. (orig.)

  11. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  12. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    Institute of Scientific and Technical Information of China (English)

    GAO Jun; PAN Hongmiao; YUE Haidong; SONG Tao; ZHAO Yong; CHEN Guanjun; Wu Longfei; XIAO Tian

    2006-01-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in dimeter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gran stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  13. Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium

    International Nuclear Information System (INIS)

    Highlights: ► Delftia acidovorans isolated from water treatment pipe system. ► Bacterium attached to the alloy coatings. ► Ecorr exhibited cathodic shift. ► Mass loss reached highest value after inoculation. ► Crevice corrosion was observed on the surface due to bacterium. - Abstract: In this study, Delftia acidovorans was isolated from water treatment pipe system and used to demonstrate microbiologically influenced corrosion of NiZn alloy coatings using electrochemical techniques. The surface morphologies and the corrosion products were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDS) analysis. Results showed that when the metabolic activity reached maximum level, corrosion activity of NiZn alloy coatings significantly increased in correlation with Ecorr, Icorr, QCM and Rct. Furthermore, crevice corrosion which has been seen due to bacterial adhesion confirms that D. acidovorans plays an important role in corrosion of NiZn alloy coating.

  14. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    Science.gov (United States)

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  15. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  16. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  17. Chlorhexidine resistance in a Gram-negative bacterium isolated from an aquatic source

    OpenAIRE

    Sekavec, Jeffrey G.; Moore, William T.; Gillock, Eric T.

    2013-01-01

    Aeromonas hydrophila is a Gram-negative bacterium of considerable importance in both clinical, especially nosocomial infections, and zoonotic respects, both aquatic and terrestrial infections. In addition to the ability to thrive in a wide range of conditions, A. hydrophila is resistant to numerous antibiotics and antimicrobials. In conjunction with Kansas State University and the Kansas Water Office, water samples from various locations within Kansas were screened for organisms resistant to ...

  18. Calcium-ion mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium

    OpenAIRE

    Lefèvre, Christopher T; Santini, Claire-Lise; Bernadac, Alain; Zhang, Wei-Jia; Ying LI; Wu, Long-Fei

    2010-01-01

    Abstract Flagella of some pathogens or marine microbes are sheathed by an apparent extension of the outer cell membrane. Although flagellar sheath has been reported for almost 60 years, little is known about its function and the mechanism of its assembly. Recently, we have observed a novel type of sheath that encloses a flagellar bundle, instead of a single flagellum, in a marine magnetotactic bacterium MO-1. Here, we reported isolation and characterization of the sheath which can ...

  19. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp.

    OpenAIRE

    Romaniuk, P J; Zoltowska, B; Trust, T J; Lane, D J; Olsen, G.J.; Pace, N R; Stahl, D A

    1987-01-01

    Comparison of partial 16S rRNA sequences from representative Campylobacter species indicates that the Campylobacter species form a previously undescribed basic eubacterial group, which is related to the other major groups only by very deep branching. This analysis was extended to include the spiral bacterium associated with human gastritis, Campylobacter pylori (formerly Campylobacter pyloridis). The distance between C. pylori and the other Campylobacter species is sufficient to exclude the p...

  20. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    OpenAIRE

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Bernard R. Glick

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 gen...