WorldWideScience

Sample records for bacterium vibrio gazogenes

  1. Aflatoxin-exposure of Vibrio gazogenes as a novel system for the generation of aflatoxin synthesis inhibitors

    Directory of Open Access Journals (Sweden)

    Phani M Gummadidala

    2016-06-01

    Full Text Available Aflatoxin is a mycotoxin and a secondary metabolite, and the most potent known liver carcinogen that contaminates several important crops, and represents a significant threat to public health and the economy. Available approaches reported thus far have been insufficient to eliminate this threat, and therefore provide the rational to explore novel methods for preventing aflatoxin accumulation in the environment. Many terrestrial plants and microbes that share ecological niches and encounter the aflatoxin producers have the ability to synthesize compounds that inhibit aflatoxin synthesis. However, reports of natural aflatoxin inhibitors from marine ecosystem components that do not share ecological niches with the aflatoxin producers are rare. Here we show that a non-pathogenic marine bacterium, Vibrio gazogenes, when exposed to low non-toxic doses of aflatoxin B1, demonstrates a shift in its metabolic output and synthesizes a metabolite fraction that inhibits aflatoxin synthesis without affecting hyphal growth in the model aflatoxin producer, Aspergillus parasiticus. The molecular mass of the predominant metabolite in this fraction was also different from the known prodigiosins, which are the known antifungal secondary metabolites synthesized by this Vibrio. Gene expression analyses using RT-PCR demonstrate that this metabolite fraction inhibits aflatoxin synthesis by down-regulating the expression of early-, middle- and late- growth stage aflatoxin genes, the aflatoxin pathway regulator, aflR and one global regulator of secondary metabolism, LaeA. Our study establishes a novel system for generation of aflatoxin synthesis inhibitors, and emphasizes the potential of the under-explored Vibrio’s silent genome for generating new modulators of fungal secondary metabolism.

  2. Vibrio palustris sp. nov. and Vibrio spartinae sp. nov., two novel members of the Gazogenes clade, isolated from salt-marsh plants (Arthrocnemum macrostachyum and Spartina maritima).

    Science.gov (United States)

    Lucena, Teresa; Arahal, David R; Ruvira, María A; Navarro-Torre, Salvadora; Mesa, Jennifer; Pajuelo, Eloísa; Rodriguez-Llorente, Ignacio D; Rodrigo-Torres, Lidia; Piñar, María J; Pujalte, María J

    2017-09-01

    Two bacterial strains, EAod9T and SMJ21T, isolated from salt-marsh plants, were determined to be related to species of the genus Vibriofrom from 16S rRNA sequence comparisons. Their closest phylogenetic relatives are members of the Gazogenes clade, Vibrio mangrovi and Vibrio rhizosphaerae , which show the greatest similarity to the SMJ21TrRNA sequence (97.3 and 97.1 %, respectively), while EAod9T had less than 97.0 % similarity to any other species of the genus Vibrio. Both strains share the basic characteristics of the genus Vibrio, as they are Gram-stain negative, motile, slightly halophilic, facultatively anaerobic bacteria. In addition, they are oxidase-negative and unable to grow on TCBS Agar; they grow between 15 to 26 °C, pH 6 to 8 and in up to 10 % (w/v) total salinity. They produce indol, are positive in the Voges-Proskauer test and are negative for arginine dihydrolase, lysine and ornithine decarboxylases. Strain SMJ21T is aerogenic and red-pigmented, due to prodigiosin production, while strain EAod9T ferments glucose without gas and is not pigmented. The major cellular fatty acids of both novel strains were C16 : 1ω7c/C16 : 1ω6c and C16 : 0. WGSobtained for both strains, along with the other five members of the clade, allowed the determination of ANI indexes and in silico estimations of DDH values, which confirmed that the two strains represent two novel species of the genus Vibrio: Vibriopalustris sp. nov. (with EAod9T=CECT 9027T=LMG 29724T as the proposed type strain) and Vibrio spartinae sp. nov. (with SMJ21T=CECT 9026T=LMG 29723T as the proposed type strain).

  3. An ultraviolet light induced bacteriophage in Beneckea gazogenes. [organism growth on precambrian earth

    Science.gov (United States)

    Rambler, M.; Margulis, L.

    1979-01-01

    The effects of UV and high intensity irradiation on microorganisms growing under conditions prevalent during the early Precambrian Aeon are examined. The study employed the anaerobic red pigmented marine vibrio, Beneckea gazogenes (Harwood, 1978), using an extreme UV sensitivity of 2537 A, extensive cell lysis, and commitant production of bacteriophage induced by the UV light. Three types of white mutant, pink colony mutant, and red wild type isolates of B gazogenes were grown showing differential irradiation sensitivity and phage particles from all three lysates were collected and examined.

  4. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    OpenAIRE

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), pro...

  5. The complete genome sequence and analysis of vB_VorS-PVo5, a Vibrio phage infectious to the pathogenic bacterium Vibrio ordalii ATCC-33509.

    Science.gov (United States)

    Echeverría-Vega, Alex; Morales-Vicencio, Pablo; Saez-Saavedra, Camila; Ceh, Janja; Araya, Rubén

    2016-01-01

    The bacterium Vibrio ordalii is best known as the causative agent of vibriosis outbreaks in fish and thus recognized for generating serious production losses in aquaculture systems. Here we report for the first time on the isolation and the genome sequencing of phage vB_VorS-PVo5, infectious to Vibrio ordalii ATCC 33509. The features as well as the complete genome sequence and annotation of the Vibrio phage are described; vB_VorS-PVo5 consists of a lineal double stranded DNA totaling ~ 80.6 Kb in length. Considering its ability to lyse Vibrio ordalii ATCC 33509, the phage is likely to gain importance in future aquaculture applications by controlling the pathogen and as such replacing antibiotics as the treatment of choice.

  6. Role of Chitin-Binding Proteins in the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    OpenAIRE

    Montgomery, Michael T.; Kirchman, David L.

    1993-01-01

    We examined the mechanism of attachment of the marine bacterium Vibrio harveyi to chitin. Wheat germ agglutinin and chitinase bind to chitin and competitively inhibited the attachment of V. harveyi to chitin, but not to cellulose. Bovine serum albumin and cellulase do not bind to chitin and had no effect on bacterial attachment to chitin. These data suggest that this bacterium recognizes specific attachment sites on the chitin particle. The level of attachment of a chitinase-overproducing mut...

  7. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin.

    Science.gov (United States)

    Svitil, A L; Chadhain, S; Moore, J A; Kirchman, D L

    1997-02-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products.

  8. Vibrio xiamenensis sp. nov., a cellulase-producing bacterium isolated from mangrove soil.

    Science.gov (United States)

    Gao, Zhao-Ming; Xiao, Jing; Wang, Xing-Na; Ruan, Ling-Wei; Chen, Xiu-Lan; Zhang, Yu-Zhong

    2012-08-01

    A taxonomic study was carried out on a cellulase-producing bacterium, strain G21(T), isolated from mangrove soil in Xiamen, Fujian province, China. Cells were Gram-negative, slightly curved rods, motile with a single polar flagellum. The strain grew at 15-40 °C and in 0.5-10% (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain G21(T) belonged to the genus Vibrio and formed a clade with Vibrio furnissii ATCC 350116(T) (97.4% sequence similarity), V. fluvialis LMG 7894(T) (97.1%) and V. ponticus CECT 5869(T) (96.1%). However, multilocus sequence analysis (using rpoA, recA, mreB, gapA, gyrB and pyrH sequences) and DNA-DNA hybridization experiments indicated that the strain was distinct from the closest related Vibrio species. Additionally, strain G21(T) could be differentiated from them phenotypically by the ability to grow in 10% NaCl but not on TCBS plates, its enzyme activity spectrum, citrate utilization, oxidization of various carbon sources, hydrolysis of several substrates and its cellular fatty acid profile. The G+C content of the genomic DNA was 46.0 mol%. The major cellular fatty acids were summed feature 3 (C(16:1)ω7c and/or iso-C(15:0) 2-OH), C(16:0) and C(18:1)ω7c. The major polar lipids were phosphatidylethanolamine and phosphatidylglycerol, with trace amounts of diphosphatidylglycerol. The predominant quinones were Q-8 and Q-7. Based on phylogenetic, phenotypic and chemotaxonomic characteristics and DNA-DNA hybridization analysis, it is concluded that strain G21(T) represents a novel species of the genus Vibrio, for which the name Vibrio xiamenensis sp. nov. is proposed. The type strain is G21(T) ( = DSM 22851(T)  = CGMCC 1.10228(T)).

  9. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    International Nuclear Information System (INIS)

    Cheng Sha; Tian Jintao; Chen Shougang; Lei Yanhua; Chang Xueting; Liu Tao; Yin Yansheng

    2009-01-01

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R ct ) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  10. Homologues of insecticidal toxin complex genes within a genomic island in the marine bacterium Vibrio parahaemolyticus.

    Science.gov (United States)

    Tang, Kathy F J; Lightner, Donald V

    2014-12-01

    Three insecticidal toxin complex (tc)-like genes were identified in Vibrio parahaemolyticus 13-028/A3, which can cause acute hepatopancreatic necrosis disease in penaeid shrimp. The three genes are a tcdA-like gene (7710 bp), predicted to code for a 284-kDa protein; a tcdB-like gene (4272 bp), predicted to code for a 158-kDa protein; and a tccC3-like gene (2916 bp), predicted to encode a 107-kDa protein. All three predicted proteins contain conserved domains that are characteristic of their respective Tc proteins. By RT-PCR, all three tc-like genes were found to be expressed in this bacterium. Through genome walking and the use of PCR to join contigs surrounding these three genes, a genomic island (87 712 bp, named tc-GIvp) was found on chromosome II localized next to the tRNA Gly. The GC content of this island, which is not found in other Vibrio species, is 40%. The tc-GIvp is characterized to have 60 ORFs encoding regulatory or virulence factors. These include a type 6 secretion protein VgrG, EAL domain-containing proteins, fimbriae subunits and assembly proteins, invasin-like proteins, peptidoglycan-binding proteins, and Tc proteins. The tc-GIvp also contains 21 transposase genes, suggesting that it was acquired through horizontal transfer from other organisms. © 2014 Federation of European Microbiological Societies.

  11. Vibrio oceanisediminis sp. nov., a nitrogen-fixing bacterium isolated from an artificial oil-spill marine sediment.

    Science.gov (United States)

    Kang, Sang Rim; Srinivasan, Sathiyaraj; Lee, Sang-Seob

    2015-10-01

    A Gram-staining-negative, halophilic, facultatively anaerobic, motile, rod-shaped and nitrogen-fixing bacterium, designated strain S37T, was isolated from an artificial oil-spill sediment sample from the coast of Taean, South Korea. Cells grew at 10-37 °C and pH 5.0-9.0, with optimal growth at 28 °C and pH 6.0-8.0. Growth was observed with 1-9 % (w/v) NaCl in marine broth, with optimal growth with 3-5 % NaCl, but no growth was observed in the absence of NaCl. According to the results of 16S rRNA gene sequence analysis, strain S37T represents a member of the genus Vibrio of the class Gammaproteobacteria and forms a clade with Vibrio plantisponsor MSSRF60T (97.38 %), Vibrio diazotrophicus ATCC 33466T (97.31 %), Vibrio aestuarianus ATCC 35048T (97.07 %) Vibrio areninigrae J74T (96.76 %) and Vibrio hispanicus LMG 13240T (96.76 %). The major fatty acids were C16 : 0, C16 : 1ω7c/C16 : 1ω6c and C18 : 1ω7c/C18 : 1ω6c. The DNA G+C content was 41.9 %. The DNA-DNA hybridization analysis results showed a 30.2 % association value with the closely related type strain V. plantisponsor DSM 21026T. On the basis of phenotypic and chemotaxonomic characteristics, strain S37T represents a novel species of the genus Vibrio, for which the name Vibrio oceanisediminis sp. nov., is proposed with the type strain S37T ( = KEMB 2255-005T = JCM 30409T).

  12. Assessment of mixture toxicity of copper, cadmium, and phenanthrenequinone to the marine bacterium Vibrio fischeri.

    Science.gov (United States)

    Wang, Wenxi; Lampi, Mark A; Huang, Xiao-Dong; Gerhardt, Karen; Dixon, D George; Greenberg, Bruce M

    2009-04-01

    Transition metals and polycyclic aromatic hydrocarbons (PAHs) are cocontaminants at many sites. Contaminants in mixtures are known to interact with biological systems in ways that can greatly alter the toxicity of individual compounds. The toxicities (individually and as mixtures) of copper (Cu), a redox-active metal; cadmium (Cd), a nonredox active metal; and phenanthrenequinone (PHQ), a redox-active oxygenated PAH, were examined using the bioluminescent bacterium Vibrio fischeri. We found that the cotoxicity of Cu/PHQ was dependent on the ratio of concentrations of each chemical in the mixture. Different interaction types (synergism, antagonism, and additivity) were observed with different combinations of these toxicants. The interaction types changed from antagonism at a low Cu to PHQ ratio (1:4), to additive at an intermediate Cu to PHQ ratio (2:3), to synergistic at higher Cu to PHQ ratios (3:2 and 4:1). In contrast to Cu/PHQ mixtures, the cotoxicity of Cd/PHQ did not change at different mixture ratios and was found for the most part to be additive. For the individual chemicals and their mixtures, reactive oxygen species (ROS) production was observed in V. fischeri, suggesting that individual and mixture toxicity of Cu, Cd, and PHQ to V. fischeri involves ROS-related mechanisms. This study shows that mixture ratios can alter individual chemical toxicity, and should be taken into account in risk assessment. Copyright 2008 Wiley Periodicals, Inc.

  13. Vibrio parahaemolyticus a causative bacterium for tail rot disease in ornamental fish, Amphiprion sebae

    Directory of Open Access Journals (Sweden)

    Thangapandi Marudhupandi

    2017-11-01

    Full Text Available The present study was performed to identify the tail rot disease causing bacterium in marine ornamental fish, Amphiprion sebae. Bacteria were isolated from the infected immune organs and tail region of A. sebae. Five different bacterial isolates (S1-S5 with different shape, size and colour were chosen for the infection study. The isolated strains were individually challenged with A. sebae at a constant dose of 1 × 107 CFU/fish. The virulent strain was found to be S-3, which showed maximum reproducing ability in A. sebae by causing typical tail rot disease and mortality. Furthermore, S-3 strain was identified as Vibrio parahaemolyticus by 16S rRNA gene sequencing (KF738005, biochemical analysis and amplification of tox R gene. Subsequently, extracellular products (ECPs of V. parahaemolyticus were prepared by cellophane overlay method. The LD50 value of V. parahaemolyticus and its ECPS were found to be 1 × 105 CFU and 5 μg/fish. The histology results revealed that V. parahaemolyticus and its ECPS are the major cause of tail rot disease in A. sebae.

  14. Interactions between the pathogenic bacterium Vibrio parahaemolyticus and red-tide dinoflagellates

    Science.gov (United States)

    Seong, Kyeong Ah; Jeong, Hae Jin

    2011-06-01

    Vibrio parahaemolyticus is a common pathogenic bacterium in marine and estuarine waters. To investigate interactions between V. parahaemolyticus and co-occurring redtide dinoflagellates, we monitored the daily abundance of 5 common red tide dinoflagellates in laboratory culture; Amphidinium carterae, Cochlodinium ploykrikoides, Gymnodinium impudicum, Prorocentrum micans, and P. minimum. Additionally, we measured the ingestion rate of each dinoflagellate on V. parahaemolyticus as a function of prey concentration. Each of the dinoflagellates responded differently to the abundance of V. parahaemolyticus. The abundances of A. carterae and P. micans were not lowered by V. parahaemolyticus, whereas that of C. polykrikodes was lowered considerably. The harmful effect depended on bacterial concentration and incubation time. Most C. polykrikoides cells died after 1 hour incubation when the V. parahaemolyticus concentration was 1.4×107 cells ml-1, while cells died within 2 days of incubation when the bacterial concentration was 1.5×106 cells ml-1. With increasing V. parahaemolyticus concentration, ingestion rates of P. micans, P. minimum, and A. carterae on the prey increased, whereas that on C. polykrikoides decreased. The maximum or highest ingestion rates of P. micans, P. minimum, and A. carterae on V. parahaemolyticus were 55, 5, and 2 cells alga-1 h-1, respectively. The results of the present study suggest that V. parahaemolyticus can be both the killer and prey for some red tide dinoflagellates.

  15. Vibrio panuliri sp. nov., a marine bacterium isolated from spiny lobster, Panulirus penicillatus and transfer of Vibrio ponticus from Scophthalmi clade to the newly proposed Ponticus clade.

    Science.gov (United States)

    Kumari, Prabla; Poddar, Abhijit; Schumann, Peter; Das, Subrata K

    2014-12-01

    A novel marine bacterium, strain LBS2(T) was isolated from eggs carried on pleopods of the spiny lobster collected from Andaman Sea. Heterotrophic growth occurred at 1-7% NaCl. 16S rRNA gene sequence similarity revealed the strain LBS2(T) belonged to the genus Vibrio and showed above 97% similarity with eight type strains of the genus Vibrio. Multilocus analysis based on ftsZ, gapA, gyrB, mreB, pyrH recA, rpoA, and topA revealed LBS2(T) formed a separate cluster with Vibrio ponticus DSM 16217(T) with 89.8% multilocus gene sequence similarity. However, strain LBS2(T) is distantly related with other members of the Scophthalmi clade in terms of 16S rRNA signatures, phenotypic variations and multilocus gene sequence similarity, for which we propose LBS2(T) belongs to a new clade i.e. Ponticus clade with V. ponticus DSM 16217(T) as the representative type strain of the clade. DNA-DNA homologies between strain LBS2(T) and closely related strains were well below 70%. DNA G + C content was 45.3 mol%. On the basis of our polyphasic study, strain LBS2(T) represents a novel species of the genus Vibrio, for which the name Vibrio panuliri sp. nov. is proposed. The type strain is LBS2(T) (= JCM 19500(T) = DSM 27724(T) = LMG 27902(T)). Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA. The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena

  17. Antibiofilm activity of an exopolysaccharide from marine bacterium Vibrio sp. QY101.

    Directory of Open Access Journals (Sweden)

    Peng Jiang

    Full Text Available Bacterial exopolysaccharides have always been suggested to play crucial roles in the bacterial initial adhesion and the development of complex architecture in the later stages of bacterial biofilm formation. However, Escherichia coli group II capsular polysaccharide was characterized to exert broad-spectrum biofilm inhibition activity. In this study, we firstly reported that a bacterial exopolysaccharide (A101 not only inhibits biofilm formation of many bacteria but also disrupts established biofilm of some strains. A101 with an average molecular weight of up to 546 KDa, was isolated and purified from the culture supernatant of the marine bacterium Vibrio sp. QY101 by ethanol precipitation, iron-exchange chromatography and gel filtration chromatography. High performance liquid chromatography traces of the hydrolyzed polysaccharides showed that A101 is primarily consisted of galacturonic acid, glucuronic acid, rhamnose and glucosamine. A101 was demonstrated to inhibit biofilm formation by a wide range of Gram-negative and Gram-positive bacteria without antibacterial activity. Furthermore, A101 displayed a significant disruption on the established biofilm produced by Pseudomonas aeruginosa, but not by Staphylococcus aureus. Importantly, A101 increased the aminoglycosides antibiotics' capability of killing P. aeruginosa biofilm. Cell primary attachment to surfaces and intercellular aggregates assays suggested that A101 inhibited cell aggregates of both P. aeruginosa and S. aureus, while the cell-surface interactions inhibition only occurred in S. aureus, and the pre-formed cell aggregates dispersion induced by A101 only occurred in P. aeruginosa. Taken together, these data identify the antibiofilm activity of A101, which may make it potential in the design of new therapeutic strategies for bacterial biofilm-associated infections and limiting biofilm formation on medical indwelling devices. The found of A101 antibiofilm activity may also promote a

  18. Pumilacidin-Like Lipopeptides Derived from Marine Bacterium Bacillus sp. Strain 176 Suppress the Motility of Vibrio alginolyticus.

    Science.gov (United States)

    Xiu, Pengyuan; Liu, Rui; Zhang, Dechao; Sun, Chaomin

    2017-06-15

    Bacterial motility is a crucial factor during the invasion and colonization processes of pathogens, which makes it an attractive therapeutic drug target. Here, we isolated a marine bacterium ( Vibrio alginolyticus strain 178) from a seamount in the tropical West Pacific that exhibits vigorous motility on agar plates and severe pathogenicity to zebrafish. We found that V. alginolyticus 178 motility was significantly suppressed by another marine bacterium, Bacillus sp. strain 176, isolated from the same niche. We isolated, purified, and characterized two different cyclic lipopeptides (CLPs) from Bacillus sp. 176 using high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. The two related CLPs have a pumilacidin-like structure and were both effective inhibitors of V. alginolyticus 178 motility. The CLPs differ by only one methylene group in their fatty acid chains. In addition to motility suppression, the CLPs also induced cell aggregation in the medium and reduced adherence of V. alginolyticus 178 to glass substrates. Notably, upon CLP treatment, the expression levels of two V. alginolyticus flagellar assembly genes ( flgA and flgP ) dropped dramatically. Moreover, the CLPs inhibited biofilm formation in several other strains of pathogenic bacteria without inducing cell death. This study indicates that CLPs from Bacillus sp. 176 show promise as antimicrobial lead compounds targeting bacterial motility and biofilm formation with a low potential for eliciting antibiotic resistance. IMPORTANCE Pathogenic bacteria often require motility to establish infections and subsequently spread within host organisms. Thus, motility is an attractive therapeutic target for the development of novel antibiotics. We found that cyclic lipopeptides (CLPs) produced by marine bacterium Bacillus sp. strain 176 dramatically suppress the motility of the pathogenic bacterium Vibrio alginolyticus strain 178, reduce biofilm formation, and promote

  19. Complete genome sequencing of the luminescent bacterium, Vibrio qinghaiensis sp. Q67 using PacBio technology

    Science.gov (United States)

    Gong, Liang; Wu, Yu; Jian, Qijie; Yin, Chunxiao; Li, Taotao; Gupta, Vijai Kumar; Duan, Xuewu; Jiang, Yueming

    2018-01-01

    Vibrio qinghaiensis sp.-Q67 (Vqin-Q67) is a freshwater luminescent bacterium that continuously emits blue-green light (485 nm). The bacterium has been widely used for detecting toxic contaminants. Here, we report the complete genome sequence of Vqin-Q67, obtained using third-generation PacBio sequencing technology. Continuous long reads were attained from three PacBio sequencing runs and reads >500 bp with a quality value of >0.75 were merged together into a single dataset. This resultant highly-contiguous de novo assembly has no genome gaps, and comprises two chromosomes with substantial genetic information, including protein-coding genes, non-coding RNA, transposon and gene islands. Our dataset can be useful as a comparative genome for evolution and speciation studies, as well as for the analysis of protein-coding gene families, the pathogenicity of different Vibrio species in fish, the evolution of non-coding RNA and transposon, and the regulation of gene expression in relation to the bioluminescence of Vqin-Q67.

  20. Description of a novel marine bacterium, Vibrio hyugaensis sp. nov., based on genomic and phenotypic characterization.

    Science.gov (United States)

    Urbanczyk, Yoshiko; Ogura, Yoshitoshi; Hayashi, Tetsuya; Urbanczyk, Henryk

    2015-07-01

    Three luminous bacteria strains have been isolated from seawater samples collected in the coastal regions of the Miyazaki prefecture in Japan. Analysis of the 16S rRNA gene sequences identified the three strains as members of the genus Vibrio (Vibrionaceae, Gammaproteobacteria), closely related to bacteria in the so-called 'Harveyi clade.' The genomes of the three strains were estimated to be between 5.49Mbp and 5.95Mbp, with average G+C of 43.91%. The genome sequence data was used to estimate relatedness of the three strains to related Vibrio bacteria, including estimation of frequency of recombination events, calculation of average nucleotide identity (ANI), and a phylogenetic analysis based on concatenated alignment of nucleotide sequences of 135 protein coding genes. Results of these analyses in all cases showed the three strains forming a group clearly separate from previously described Vibrio species. A phenotypic analysis revealed that the three strains have character similar to Vibrio bacteria in the 'Harveyi clade', but can be differentiated from previously described species by testing for hydrolysis of esculin. Based on results of genomic, phylogenetic and phenotypic analyses presented in this study, it can be concluded that the three strains represent a novel species, for which the name Vibrio hyugaensis sp. nov. is proposed. The type strain is 090810a(T) (=LMG 28466(T)=NBRC 110633(T)). Copyright © 2015 Elsevier GmbH. All rights reserved.

  1. Integrating small molecule signalling and H-NS antagonism in Vibrio cholerae, a bacterium with two chromosomes.

    Science.gov (United States)

    Dorman, Charles J

    2015-08-01

    H-NS is a well-established silencer of virulence gene transcription in the human pathogen Vibrio cholerae. Biofilm formation aids V. cholerae in colonizing both its host and its external environments, and H-NS silences biofilm gene expression. Cyclic-di-guanosine monophosphate acts through the DNA binding proteins VpsR and VpsT to overcome H-NS-mediated repression of biofilm genes, driving a transition between a planktonic and a colonial/biofilm lifestyle. The H-NS binding pattern has now been charted on both chromosomes in V. cholerae, but whether or not this abundant DNA-binding-and-bridging protein plays any roles in nucleoid organization in this bacterium remains an open question. © 2015 John Wiley & Sons Ltd.

  2. Purification and Characterization of a New κ-Carrageenase from the Marine Bacterium Vibrio sp. NJ-2.

    Science.gov (United States)

    Zhu, Benwei; Ning, Limin

    2016-02-01

    The carrageenan-degrading marine bacterium Vibrio sp. strain NJ-2 was isolated from rotten red algae, and κ-carrageenase with high activity was purified from the culture supernatant. The purified enzyme with molecular mass of 33 kDa showed the maximal activity of 937 U/mg at 40°C and pH 8.0. It maintained 80% of total activity below 40°C and between pH 6.0 and 10.0. The kinetics experiment showed the Km and Vmax values were 2.54 mg/ml and 138.89 mmol/min/mg, respectively. The thin layer chromatography and ESI-MS analysis of hydrolysates indicated that the enzyme can endolytically depolymerize the kappa-carrageenan into oligosaccharides with degrees of depolymerization of 2-8. Owing to its high activity, it could be a valuable tool to produce κ-carrageenan oligosaccharides with various biological activities.

  3. The γ-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae is potently activated by amines and amino acids.

    Science.gov (United States)

    Angeli, Andrea; Del Prete, Sonia; Donald, William A; Capasso, Clemente; Supuran, Claudiu T

    2018-04-01

    The γ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAγ, was investigated for its activation with a panel of natural and non-natural amino acids and amines. The enzyme was effectively activated by l-tryptophan, 1-(2-minoethyl)-piperazine and 4-(2-aminoethyl)-morpholine, in the low nanomolar range (K A s 8-71 nM). In contrast, l-/d-Phe, l-/d-DOPA, d-Trp, l-/d-Tyr, 4-amino-l-Phe, histamine, dopamine, serotonin, some pyridyl-alkylamines, as well as l-adrenaline were submicromolar activators (K A s between 0.10 and 0.73 µM). l- and d-His were the least effective VchCAγ activators (K A s of 1.01-14.2 µM). The activation of CAs from bacteria have not been considered to date for possible biomedical applications. It would be of interest to study in more details the role of CA activators in processes connected with the virulence and colonization of the host by pathogenic bacteria, such as Vibrio cholerae, which is highly dependent on the concentration of bicarbonate in tissues. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Molecular uptake of chitooligosaccharides through chitoporin from the marine bacterium Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Wipa Suginta

    Full Text Available BACKGROUND: Chitin is the most abundant biopolymer in marine ecosystems. However, there is no accumulation of chitin in the ocean-floor sediments, since marine bacteria Vibrios are mainly responsible for a rapid turnover of chitin biomaterials. The catabolic pathway of chitin by Vibrios is a multi-step process that involves chitin attachment and degradation, followed by chitooligosaccharide uptake across the bacterial membranes, and catabolism of the transport products to fructose-6-phosphate, acetate and NH(3. PRINCIPAL FINDINGS: This study reports the isolation of the gene corresponding to an outer membrane chitoporin from the genome of Vibrio harveyi. This porin, expressed in E. coli, (so called VhChiP was found to be a SDS-resistant, heat-sensitive trimer. Immunoblotting using anti-ChiP polyclonal antibody confirmed the expression of the recombinant ChiP, as well as endogenous expression of the native protein in the V. harveyi cells. The specific function of VhChiP was investigated using planar lipid membrane reconstitution technique. VhChiP nicely inserted into artificial membranes and formed stable, trimeric channels with average single conductance of 1.8±0.13 nS. Single channel recordings at microsecond-time resolution resolved translocation of chitooligosaccharides, with the greatest rate being observed for chitohexaose. Liposome swelling assays showed no permeation of other oligosaccharides, including maltose, sucrose, maltopentaose, maltohexaose and raffinose, indicating that VhChiP is a highly-specific channel for chitooligosaccharides. CONCLUSION/SIGNIFICANCE: We provide the first evidence that chitoporin from V. harveyi is a chitooligosaccharide specific channel. The results obtained from this study help to establish the fundamental role of VhChiP in the chitin catabolic cascade as the molecular gateway that Vibrios employ for chitooligosaccharide uptake for energy production.

  5. Elongation of exogenous fatty acids by the bioluminescent bacterium Vibrio harveyi

    International Nuclear Information System (INIS)

    Byers, D.M.

    1989-01-01

    Bioluminescent bacteria require myristic acid (C14:0) to produce the myristaldehyde substrate of the light-emitting luciferase reaction. Since both endogenous and exogenous C14:0 can be used for this purpose, the metabolism of exogenous fatty acids by luminescent bacteria has been investigated. Both Vibrio harveyi and Vibrio fischeri incorporated label from [1-14C]myristic acid (C14:0) into phospholipid acyl chains as well as into CO2. In contrast, Photobacterium phosphoreum did not exhibit phospholipid acylation or beta-oxidation using exogenous fatty acids. Unlike Escherichia coli, the two Vibrio species can directly elongate fatty acids such as octanoic (C8:0), lauric (C12:0), and myristic acid, as demonstrated by radio-gas liquid chromatography. The induction of bioluminescence in late exponential growth had little effect on the ability of V. harveyi to elongate fatty acids, but it did increase the amount of C14:0 relative to C16:0 labeled from [14C]C8:0. This was not observed in a dark mutant of V. harveyi that is incapable of supplying endogenous C14:0 for luminescence. Cerulenin preferentially decreased the labeling of C16:0 and of unsaturated fatty acids from all 14C-labeled fatty acid precursors as well as from [14C]acetate, suggesting that common mechanisms may be involved in elongation of fatty acids from endogenous and exogenous sources. Fatty acylation of the luminescence-related synthetase and reductase enzymes responsible for aldehyde synthesis exhibited a chain-length preference for C14:0, which also was indicated by reverse-phase thin-layer chromatography of the acyl groups attached to these enzymes. The ability of V. harveyi to activate and elongate exogenous fatty acids may be related to an adaptive requirement to metabolize intracellular C14:0 generated by the luciferase reaction during luminescence development

  6. Ultraviolet sensitivity of Vibrio parahaemolyticus, a causative bacterium of food poisoning

    International Nuclear Information System (INIS)

    Nozu, K.; Ohnishi, T.

    1977-01-01

    A pathogenic strain of Vibrio parahaemolyticus, strain WP1, is about 5 times more sensitive to killing by ultraviolet light than is the non-pathogenic strain WP28, but WP1 cells have an efficient liquid-holding recovery. The cellular DNA of both strains is fragmented shortly after ultraviolet irradiation, but the fragment DNA is converted in a short time to the initial large molecular size in WP28 cells. In WP1 cells, however, the DNA molecules were degraded rapidly without any apparent rejoining in a growth condition. Post-irradiation liquid-holding made the DNA of WP1 cells stable, as supported by the recovery of DNA synthetic activity in these cells. (author)

  7. Characterizing the host and symbiont proteomes in the association between the Bobtail squid, Euprymna scolopes, and the bacterium, Vibrio fischeri.

    Directory of Open Access Journals (Sweden)

    Tyler R Schleicher

    Full Text Available The beneficial symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium, Vibrio fischeri, provides a unique opportunity to study host/microbe interactions within a natural microenvironment. Colonization of the squid light organ by V. fischeri begins a lifelong association with a regulated daily rhythm. Each morning the host expels an exudate from the light organ consisting of 95% of the symbiont population in addition to host hemocytes and shed epithelial cells. We analyzed the host and symbiont proteomes of adult squid exudate and surrounding light organ epithelial tissue using 1D- and 2D-polyacrylamide gel electrophoresis and multidimensional protein identification technology (MudPIT in an effort to understand the contribution of both partners to the maintenance of this association. These proteomic analyses putatively identified 1581 unique proteins, 870 proteins originating from the symbiont and 711 from the host. Identified host proteins indicate a role of the innate immune system and reactive oxygen species (ROS in regulating the symbiosis. Symbiont proteins detected enhance our understanding of the role of quorum sensing, two-component signaling, motility, and detoxification of ROS and reactive nitrogen species (RNS inside the light organ. This study offers the first proteomic analysis of the symbiotic microenvironment of the adult light organ and provides the identification of proteins important to the regulation of this beneficial association.

  8. Vibrio algivorus sp. nov., an alginate- and agarose-assimilating bacterium isolated from the gut flora of a turban shell marine snail.

    Science.gov (United States)

    Doi, Hidetaka; Chinen, Akito; Fukuda, Hiroo; Usuda, Yoshihiro

    2016-08-01

    An agarose- and alginate-assimilating, Gram-reaction-negative, non-motile, rod-shaped bacterium, designated strain SA2T, was isolated from the gut of a turban shell sea snail (Turbo cornutus) collected near Noto Peninsula, Ishikawa Prefecture, Japan. The 16S rRNA gene sequence of strain SA2T was 99.59 % identical to that of Vibrio rumoiensis DSM 19141T and 98.19 % identical to that of Vibrio litoralis DSM 17657T. This suggested that strain SA2T could be a subspecies of V. rumoiensis or V. litoralis. However, DNA-DNA hybridization results showed only 37.5 % relatedness to DSM 19141T and 44.7 % relatedness to DSM 17657T, which was far lower than the 70 % widely accepted to define common species. Strain SA2T could assimilate agarose as a sole carbon source, whereas strains DSM 19141T and DSM 17657T could not assimilate it at all. Furthermore, results using API 20NE and API ZYM kits indicated that their enzymic and physiological phenotypes were also different. These results suggested that strain SA2T represented a novel species within the genus Vibrio. The major isoprenoid quinone in SA2T was Q-8, and its major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The major fatty acids were summed feature 3, (comprising C16 : 1ω6c and/or C16 : 1ω7c), C16 : 0, and summed feature 8 (comprising C18 : 1ω6c and/or C18 : 1ω7c). The DNA G+C content of SA2T was 40.7 mol%. The name proposed for this novel species of the genus Vibrio is Vibrio algivorus sp. nov., with the type strain designated SA2T (=DSM 29824T=NBRC 111146T).

  9. Quorum Sensing in Vibrio fischeri Cell Density-Dependent Activation of Symbiosis-Related Genes in a Marine Bacterium

    National Research Council Canada - National Science Library

    Greenberg, Everett

    1998-01-01

    ... for this phenomenon, autoinduction of lux genes in Vibrio fischeri. This research should continue to reveal general rules governing regulation of bacterial genes used specifically in symbiotic associations with marine animals...

  10. Characterisation of a Marine Bacterium Vibrio Brasiliensis T33 Producing N-acyl Homoserine Lactone Quorum Sensing Molecules

    Directory of Open Access Journals (Sweden)

    Wen-Si Tan

    2014-07-01

    Full Text Available N-acylhomoserine lactones (AHL plays roles as signal molecules in quorum sensing (QS in most Gram-negative bacteria. QS regulates various physiological activities in relation with population density and concentration of signal molecules. With the aim of isolating marine water-borne bacteria that possess QS properties, we report here the preliminary screening of marine bacteria for AHL production using Chromobacterium violaceum CV026 as the AHL biosensor. Strain T33 was isolated based on preliminary AHL screening and further identified by using 16S rDNA sequence analysis as a member of the genus Vibrio closely related to Vibrio brasiliensis. The isolated Vibrio sp. strain T33 was confirmed to produce N-hexanoyl-l-homoserine lactone (C6-HSL and N-(3-oxodecanoyl-l-homoserine lactone (3-oxo-C10 HSL through high resolution tandem mass spectrometry analysis. We demonstrated that this isolate formed biofilms which could be inhibited by catechin. To the best of our knowledge, this is the first report that documents the production of these AHLs by Vibrio brasiliensis strain T33.

  11. D-xylose isomerase from a marine bacterium, Vibrio sp. strain XY-214, and D-xylulose production from β-1,3-xylan.

    Science.gov (United States)

    Umemoto, Yoshiaki; Shibata, Toshiyuki; Araki, Toshiyoshi

    2012-02-01

    The xylA gene from a marine bacterium, Vibrio sp. strain XY-214, encoding D-xylose isomerase (XylA) was cloned and expressed in Escherichia coli. The xylA gene consisted of 1,320-bp nucleotides encoding a protein of 439 amino acids with a predicted molecular weight of 49,264. XylA was classified into group II xylose isomerases. The native XylA was estimated to be a homotetramer with a molecular mass of 190 kDa. The purified recombinant XylA exhibited maximal activity at 60°C and pH 7.5. Its apparent K (m) values for D-xylose and D-glucose were 7.93 and 187 mM, respectively. Furthermore, we carried out D-xylulose production from β-1,3-xylan, a major cell wall polysaccharide component of the killer alga Caulerpa taxifolia. The synergistic action of β-1,3-xylanase (TxyA) and β-1,3-xylosidase (XloA) from Vibrio sp. strain XY-214 enabled efficient saccharification of β-1,3-xylan to D-xylose. D-xylose was then converted to D-xylulose by using XylA from the strain XY-214. The conversion rate of D-xylose to D-xylulose by XylA was found to be approximately 40% in the presence of 4 mM sodium tetraborate after 2 h of incubation. These results demonstrated that TxyA, XloA, and XylA from Vibrio sp. strain XY-214 are useful tools for D-xylulose production from β-1,3-xylan. Because D-xylulose can be used as a source for ethanol fermentation by yeast Saccharomyces cerevisiae, the present study will provide a basis for ethanol production from β-1,3-xylan.

  12. Genome Sequence of Vibrio campbellii Strain UMTGB204, a Marine Bacterium Isolated from a Green Barrel Tunicate

    Science.gov (United States)

    Gan, Huan You; Noor, Mohd Ezhar Mohd; Saari, Nur Azna; Musa, Najiah; Mustapha, Baharim; Usup, Gires

    2015-01-01

    Vibrio campbellii strain UMTGB204 was isolated from a green barrel tunicate. The genome of this strain comprises 5,652,224 bp with 5,014 open reading frames, 9 rRNAs, and 116 tRNAs. It contains genes related to virulence and environmental tolerance. Gene clusters for the biosynthesis of nonribosomal peptides and bacteriocin were also identified. PMID:25814609

  13. Induction of Chitin-Binding Proteins during the Specific Attachment of the Marine Bacterium Vibrio harveyi to Chitin

    OpenAIRE

    Montgomery, Michael T.; Kirchman, David L.

    1994-01-01

    Previous work has shown that attachment of Vibrio harveyi to chitin is specific and involves at least two chitin-binding peptides. However, the roles and regulation of these chitin-binding peptides in attachment are still unclear. Here we show that preincubation with the oligomeric sugars composing chitin stimulated chitinase activity, cellular attachment to chitin, and production of chitin-binding peptides. One of these peptides, a 53-kDa peptide, is produced constitutively and appears to me...

  14. Activation studies of the α- and β-carbonic anhydrases from the pathogenic bacterium Vibrio cholerae with amines and amino acids.

    Science.gov (United States)

    Angeli, Andrea; Del Prete, Sonia; Osman, Sameh M; Alasmary, Fatmah A S; AlOthman, Zeid; Donald, William A; Capasso, Clemente; Supuran, Claudiu T

    2018-12-01

    The α- and β-class carbonic anhydrases (CAs, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae, VchCAα, and VchCAβ, were investigated for their activation with natural and non-natural amino acids and amines. The most effective VchCAα activators were L-tyrosine, histamine, serotonin, and 4-aminoethyl-morpholine, which had K A s in the range of 8.21-12.0 µM. The most effective VchCAβ activators were D-tyrosine, dopamine, serotonin, 2-pyridyl-methylamine, 2-aminoethylpyridine, and 2-aminoethylpiperazine, which had K A s in the submicromolar - low micromolar range (0.18-1.37 µM). The two bacterial enzymes had very different activation profiles with these compounds, between each other, and in comparison to the human isoforms hCA I and II. Some amines were selective activators of VchCAβ, including 2-pyridylmethylamine (K A of 180 nm for VchCAβ, and more than 20 µM for VchCAα and hCA I/II). The activation of CAs from bacteria, such as VchCAα/β has not been considered previously for possible biomedical applications. It would be of interest to study in more detail the extent that CA activators are implicated in the virulence and colonisation of the host by such pathogenic bacteria, which for Vibrio cholerae, is highly dependent on the bicarbonate concentration and pH in the surrounding tissue.

  15. Mutation in flrA and mshA Genes of Vibrio cholerae Inversely Involved in vps-Independent Biofilm Driving Bacterium Toward Nutrients in Lake Water

    Directory of Open Access Journals (Sweden)

    Shrestha Sinha-Ray

    2017-09-01

    Full Text Available Many bacterial pathogens promote biofilms that confer resistance against stressful survival conditions. Likewise Vibrio cholerae O1, the causative agent of cholera, and ubiquitous in aquatic environments, produces vps-dependent biofilm conferring resistance to environmental stressors and predators. Here we show that a 49-bp deletion mutation in the flrA gene of V. cholerae N16961S strain resulted in promotion of vps-independent biofilm in filter sterilized lake water (FSLW, but not in nutrient-rich L-broth. Complementation of flrA mutant with the wild-type flrA gene inhibited vps-independent biofilm formation. Our data demonstrate that mutation in the flrA gene positively contributed to vps-independent biofilm production in FSLW. Furthermore, inactivation of mshA gene, encoding the main pilin of mannose sensitive hemagglutinin (MSHA pilus in the background of a ΔflrA mutant, inhibited vps-independent biofilm formation. Complementation of ΔflrAΔmshA double mutant with wild-type mshA gene restored biofilm formation, suggesting that mshA mutation inhibited ΔflrA-driven biofilm. Taken together, our data suggest that V. cholerae flrA and mshA act inversely in promoting vps-independent biofilm formation in FSLW. Using a standard chemotactic assay, we demonstrated that vps-independent biofilm of V. cholerae, in contrast to vps-dependent biofilm, promoted bacterial movement toward chitin and phosphate in FSLW. A ΔflrAΔmshA double mutant inhibited the bacterium from moving toward nutrients; this phenomenon was reversed with reverted mutants (complemented with wild-type mshA gene. Movement to nutrients was blocked by mutation in a key chemotaxis gene, cheY-3, although, cheY-3 had no effect on vps-independent biofilm. We propose that in fresh water reservoirs, V. cholerae, on repression of flagella, enhances vps-independent biofilm that aids the bacterium in acquiring nutrients, including chitin and phosphate; by doing so, the microorganism enhances

  16. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae.

    Science.gov (United States)

    Al-Saari, Nurhidayu; Gao, Feng; Rohul, Amin A K M; Sato, Kazumichi; Sato, Keisuke; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Meirelles, Pedro M; Thompson, Fabiano L; Thompson, Cristiane; Filho, Gilberto M A; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2015-01-01

    Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20) showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity) and V. agarivorans CECT 5085T (97.3% similarity), respectively. Further multilocus sequence analysis (MLSA) on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA) obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH) data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V. agarivorans CECT

  17. Advanced Microbial Taxonomy Combined with Genome-Based-Approaches Reveals that Vibrio astriarenae sp. nov., an Agarolytic Marine Bacterium, Forms a New Clade in Vibrionaceae.

    Directory of Open Access Journals (Sweden)

    Nurhidayu Al-Saari

    Full Text Available Advances in genomic microbial taxonomy have opened the way to create a more universal and transparent concept of species but is still in a transitional stage towards becoming a defining robust criteria for describing new microbial species with minimum features obtained using both genome and classical polyphasic taxonomies. Here we performed advanced microbial taxonomies combined with both genome-based and classical approaches for new agarolytic vibrio isolates to describe not only a novel Vibrio species but also a member of a new Vibrio clade. Two novel vibrio strains (Vibrio astriarenae sp. nov. C7T and C20 showing agarolytic, halophilic and fermentative metabolic activity were isolated from a seawater sample collected in a coral reef in Okinawa. Intraspecific similarities of the isolates were identical in both sequences on the 16S rRNA and pyrH genes, but the closest relatives on the molecular phylogenetic trees on the basis of 16S rRNA and pyrH gene sequences were V. hangzhouensis JCM 15146T (97.8% similarity and V. agarivorans CECT 5085T (97.3% similarity, respectively. Further multilocus sequence analysis (MLSA on the basis of 8 protein coding genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA, and topA obtained by the genome sequences clearly showed the V. astriarenae strain C7T and C20 formed a distinct new clade protruded next to V. agarivorans CECT 5085T. The singleton V. agarivorans has never been included in previous MLSA of Vibrionaceae due to the lack of some gene sequences. Now the gene sequences are completed and analysis of 100 taxa in total provided a clear picture describing the association of V. agarivorans into pre-existing concatenated network tree and concluded its relationship to our vibrio strains. Experimental DNA-DNA hybridization (DDH data showed that the strains C7T and C20 were conspecific but were separated from all of the other Vibrio species related on the basis of both 16S rRNA and pyrH gene phylogenies (e.g., V

  18. Vibrio population structure - Genetic and population structure analysis of clinical and environmental Vibrio parahaemolyticus strains

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Vibrio parahaemolyticus (Vp) is a marine bacterium capable of causing severe gastroenteritis in humans, usually through the consumption of raw shellfish. Before...

  19. Mortalities of eastern and pacific oyster larvae caused by the pathogens Vibrio coralliilyticus and Vibrio tubiashii

    Science.gov (United States)

    Vibrio tubiashii is reported to be a bacterial pathogen of larval Eastern oysters (Crassostrea virginica) and Pacific oysters (Crassostrea gigas) and has been associated with major hatchery crashes, causing shortages in seed oysters for commercial shellfish producers. Another bacterium, Vibrio cora...

  20. Microbial Ecophysiology of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Tjaša Danevčič

    2014-01-01

    Full Text Available Bacteria use different adaptation strategies to survive environmental perturbations. In this minireview, adaptation strategies of new red-pigmented Vibrio ruber isolated from coastal environments to different environmental stresses (i.e. salinity, viscosity, UV light, mitomycin C, nutrient availability and temperature are reviewed. To cope with environmental stresses Vibrio ruber uses several different adaptive strategies. For example, lipid composition as well as phase behaviour are strongly dependent on salt concentration. Vibrio ruber membrane has no hydroxy fatty acids, but exceptionally high lysolipid content compared to other related Vibrio species. Inorganic nutrient uptake by bacteria is selective, depends on environmental conditions and varies several fold with environmental perturbations. Protein composition, carbon flow through the central metabolic pathways, energy generation as well as secondary metabolite production adapt readily to stress conditions. The activity of glucose-6-phosphate dehydrogenase proved to be a good indicator of Vibrio ruber stress. Cells are able to modulate their local viscosity in response to variations of environmental viscosity. The bacterium harbours several viral genetic elements in its genome, which could be induced by mitomycin C. Environmental conditions during growth of bacteria have a significant effect on lysate carbon turnover. Secondary metabolite prodigiosin confers protection against UV in the environment, which adds to the known repertoire of prodigiosin ecophysiological functions. In conclusion, Vibrio ruber in its short acquaintance with the scientific community (less than ten years has proven to be an immensely valuable model system for ecophysiological studies of bacteria.

  1. Organic metabolites produced by Vibrio parahaemolyticus strain ...

    African Journals Online (AJOL)

    Identification and action of several antibacterial metabolites produced by a fish pathogen Vibrio parahaemolyticus strain An3 from marine ecosystem of Goa has been demonstrated. Antibacterial activity of the crude cell extract of the test bacterium has been evaluated against indicator pathogenic bacterial strains such as ...

  2. Molecular phylogenetic analysis of Vibrio cholerae O1 El Tor strains ...

    Indian Academy of Sciences (India)

    Unknown

    23S rRNA intergenic spacer regions; J. Biosci. 30 619–. 625]. 1. Introduction. Vibrio cholerae, a Gram-negative bacterium, is responsi- ble for severe epidemics of cholera. ... cholerae represent a fundamental characteristic of cho-.

  3. Small RNA target genes and regulatory connections in the Vibrio cholerae quorum sensing system

    DEFF Research Database (Denmark)

    Hammer, Brian K; Svenningsen, Sine Lo

    2011-01-01

    The two-component quorum sensing (QS) system, first described in the marine bacterium Vibrio harveyi and evolutionarily conserved among members of the genus Vibrio, has been best studied in the human pathogen Vibrio cholerae (1, 2). In the V. cholerae QS system, the response to the accumulation o...... manner. This mechanism ensures the proper timing of the QS response, which includes the expression of traits critical for virulence and for the formation of biofilms (2-6)....

  4. Cloning and characterization of a beta-1,4-mannanase 5C possessing a family 27 carbohydrate-binding module from a marine bacterium, Vibrio sp. strain MA-138.

    Science.gov (United States)

    Tanaka, Megumi; Umemoto, Yoshiaki; Okamura, Hidenori; Nakano, Daiichirou; Tamaru, Yutaka; Araki, Toshiyoshi

    2009-01-01

    The beta-1,4-mannanase 5C gene (man5C) of Vibrio sp. strain MA-138 was cloned and expressed in Escherichia coli. The man5C gene consisted of 2,010 bp nucleotides encoding a protein of 669 amino acids with a predicted molecular weight of 76,309. beta-1,4-Mannanase (Man5C) is a modular enzyme composed of a catalytic module belonging to glycoside hydrolase family 5, a linker region, and a putative carbohydrate-binding module (CBM) belonging to family 27. Recombinant Man5C exhibited maximal activity at 50 degrees C at pH 7.0, and it had a K(m) of 0.6 mg ml(-1) and a V(max) of 556.2 micromol min(-1) mumol(-1) for glucomannan. Binding studies revealed that the C-terminal putative CBM27 had the ability to bind soluble beta-mannans and contributed to increasing the rate of depolymerization by binding to the polymeric substrate. Man5C of Vibrio sp. MA-138 is the first non-extremophile enzyme to be identified as a beta-mannanase possessing CBM27.

  5. Genomic evidence that Vibrio inhibens is a heterotypic synonym of Vibrio jasicida.

    Science.gov (United States)

    Urbanczyk, Yoshiko; Ogura, Yoshitoshi; Hayashi, Tetsuya; Urbanczyk, Henryk

    2016-08-01

    Vibrio inhibens is a marine bacterium species of the genus Vibrio (Vibrionaceae, Gammaproteobacteria). The species has been shown to be closely related to members of the genus Vibrio in the so-called Harveyi clade. The clade includes at least 11 closely related species with similar physiological and biochemical properties. Due to these similarities, species of the Harveyi clade are difficult to characterize taxonomically. Previously phenotypic and genotypic properties of the V. inhibens type strain were compared with six species of the Harveyi clade, resulting in the possibility that V. inhibens could be a synonym of a previously described species. In this study, the taxonomic status of V. inhibens was analyzed using genomic approaches. The whole-genome sequence of the type strain of V. inhibens, CECT 7692T, was obtained and analyzed. Calculations of average nucleotide identity with the blast algorithm (ANIb) showed that CECT 7692T has an ANIb of 97.5 % or higher to five strains of Vibrio. jasicida, including the type strain, but an ANIb lower than 93.5 % to other members of the Harveyi clade Vibrio. Phylogenetic analysis based on nucleotide sequences of 133 protein-coding genes showed a close evolutionary relationship of CECT 7692T to V. jasicida. Based on these results, Vibrio inhibens is proposed to be a later heterotypic synonym of V. jasicida.

  6. Pseudomonas piscicida kills vibrios by two distinct mechanisms

    Science.gov (United States)

    Pseudoalteromonas piscicida is a naturally-occurring marine bacterium which kills competing bacteria, including vibrios. In studies by Richards et al. (AEM00175-17), three strains of P. piscicida were isolated and characterized. Strains secreted proteolytic enzymes which likely killed competing or...

  7. Chemotactic Behaviors of Vibrio cholerae Cells.

    Science.gov (United States)

    Kawagishi, Ikuro; Nishiyama, So-Ichiro

    2017-01-01

    Vibrio cholerae, the causative agent of cholera, swims in aqueous environments with a single polar flagellum. In a spatial gradient of a chemical, the bacterium can migrate in "favorable" directions, a property that is termed chemotaxis. The chemotaxis of V. cholerae is not only critical for survival in various environments and but also is implicated in pathogenicity. In this chapter, we describe how to characterize the chemotactic behaviors of V. cholerae: these methods include swarm assay, temporal stimulation assay, capillary assay, and receptor methylation assay.

  8. Antibiotic resistance mechanisms of Vibrio cholerae.

    Science.gov (United States)

    Kitaoka, Maya; Miyata, Sarah T; Unterweger, Daniel; Pukatzki, Stefan

    2011-04-01

    As the causative agent of cholera, the bacterium Vibrio cholerae represents an enormous public health burden, especially in developing countries around the world. Cholera is a self-limiting illness; however, antibiotics are commonly administered as part of the treatment regimen. Here we review the initial identification and subsequent evolution of antibiotic-resistant strains of V. cholerae. Antibiotic resistance mechanisms, including efflux pumps, spontaneous chromosomal mutation, conjugative plasmids, SXT elements and integrons, are also discussed. Numerous multidrug-resistant strains of V. cholerae have been isolated from both clinical and environmental settings, indicating that antibiotic use has to be restricted and alternative methods for treating cholera have to be implemented.

  9. Intestinal Colonization Dynamics of Vibrio cholerae

    Science.gov (United States)

    Almagro-Moreno, Salvador; Pruss, Kali; Taylor, Ronald K.

    2015-01-01

    To cause the diarrheal disease cholera, Vibrio cholerae must effectively colonize the small intestine. In order to do so, the bacterium needs to successfully travel through the stomach and withstand the presence of agents such as bile and antimicrobial peptides in the intestinal lumen and mucus. The bacterial cells penetrate the viscous mucus layer covering the epithelium and attach and proliferate on its surface. In this review, we discuss recent developments and known aspects of the early stages of V. cholerae intestinal colonization and highlight areas that remain to be fully understood. We propose mechanisms and postulate a model that covers some of the steps that are required in order for the bacterium to efficiently colonize the human host. A deeper understanding of the colonization dynamics of V. cholerae and other intestinal pathogens will provide us with a variety of novel targets and strategies to avoid the diseases caused by these organisms. PMID:25996593

  10. Natural transformation of Vibrio parahaemolyticus: A rapid method to create genetic deletions.

    Science.gov (United States)

    Chimalapati, Suneeta; de Souza Santos, Marcela; Servage, Kelly; De Nisco, Nicole J; Dalia, Ankur B; Orth, Kim

    2018-03-19

    The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multi-step process. Herein, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counter selection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community. Importance Spreading of Vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches to survive, proliferate and invade. Therefore, genetic manipulation of Vibrios is of utmost importance for studying these species. Herein, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species. Copyright © 2018 American Society for Microbiology.

  11. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus.

    Science.gov (United States)

    Ray, Ann; Kinch, Lisa N; de Souza Santos, Marcela; Grishin, Nick V; Orth, Kim; Salomon, Dor

    2016-07-26

    Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells. The pan-genome of the genus Vibrio is a potential reservoir of unidentified toxins that can provide insight into how members of this genus have successfully risen as emerging pathogens worldwide. We focused on Vibrio proteolyticus, a marine bacterium that was previously implicated in virulence toward marine animals, and characterized its interaction with eukaryotic cells. We found that this bacterium causes actin cytoskeleton rearrangements and leads to cell death. Using a

  12. Small RNA Control of Cell-to-Cell Communication in Vibrio Harveyi and Vibrio Cholerae

    Science.gov (United States)

    Svenningsen, Sine Lo

    Quorum sensing is a process of cell-to-cell communication, by which bacteria coordinate gene expression and behavior on a population-wide scale. Quorum sensing is accomplished through production, secretion, and subsequent detection of chemical signaling molecules termed autoinducers. The human pathogen Vibrio cholerae and the marine bioluminescent bacterium Vibrio harveyi incorporate information from multiple autoinducers, and also environmental signals and metabolic cues into their quorum-sensing pathways. At the core of these pathways lie several homologous small regulatory RNA molecules, the Quorum Regulatory RNAs. Small noncoding RNAs have emerged throughout the bacterial and eukaryotic kingdoms as key regulators of behavioral and developmental processes. Here, I review our present understanding of the role of the Qrr small RNAs in integrating quorum-sensing signals and in regulating the individual cells response to this information.

  13. Halophilic Vibrio species from seafish in Senegal.

    OpenAIRE

    Schandevyl, P; Van Dyck, E; Piot, P

    1984-01-01

    Sucrose-positive and sucrose-negative halophilic Vibrio species at counts of up to 10(7)/100 g were isolated from muscles tissue in 27 and 43%, respectively, of 128 seafish from coastal waters in Senegal. Vibrio parahaemolyticus, including 21% urease-positive strains, was the most common isolate, followed by Vibrio alginolyticus, Vibrio vulnificus, Vibrio damsela, and Vibrio fluvialis.

  14. Proteomics Analysis Reveals Previously Uncharacterized Virulence Factors in Vibrio proteolyticus

    Directory of Open Access Journals (Sweden)

    Ann Ray

    2016-07-01

    Full Text Available Members of the genus Vibrio include many pathogens of humans and marine animals that share genetic information via horizontal gene transfer. Hence, the Vibrio pan-genome carries the potential to establish new pathogenic strains by sharing virulence determinants, many of which have yet to be characterized. Here, we investigated the virulence properties of Vibrio proteolyticus, a Gram-negative marine bacterium previously identified as part of the Vibrio consortium isolated from diseased corals. We found that V. proteolyticus causes actin cytoskeleton rearrangements followed by cell lysis in HeLa cells in a contact-independent manner. In search of the responsible virulence factor involved, we determined the V. proteolyticus secretome. This proteomics approach revealed various putative virulence factors, including active type VI secretion systems and effectors with virulence toxin domains; however, these type VI secretion systems were not responsible for the observed cytotoxic effects. Further examination of the V. proteolyticus secretome led us to hypothesize and subsequently demonstrate that a secreted hemolysin, belonging to a previously uncharacterized clan of the leukocidin superfamily, was the toxin responsible for the V. proteolyticus-mediated cytotoxicity in both HeLa cells and macrophages. Clearly, there remains an armory of yet-to-be-discovered virulence factors in the Vibrio pan-genome that will undoubtedly provide a wealth of knowledge on how a pathogen can manipulate host cells.

  15. Differential Medium for Vibrio cholerae

    Science.gov (United States)

    Schrank, Gordon D.; Stager, Charles E.; Verwey, W. F.

    1973-01-01

    A differential medium designed for rapid presumptive identification of Vibrio cholerae was described and shown to be useful for enumeration of viable cholera vibrios in the presence of other intestinal bacteria. Images PMID:4764406

  16. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Directory of Open Access Journals (Sweden)

    Erika Acosta-Smith

    2018-01-01

    Full Text Available Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species.

  17. Bovine Lactoferrin and Lactoferrin-Derived Peptides Inhibit the Growth of Vibrio cholerae and Other Vibrio species

    Science.gov (United States)

    Acosta-Smith, Erika; Viveros-Jiménez, Karina; Canizalez-Román, Adrian; Reyes-Lopez, Magda; Bolscher, Jan G. M.; Nazmi, Kamran; Flores-Villaseñor, Hector; Alapizco-Castro, Gerardo; de la Garza, Mireya; Martínez-Garcia, Jesús J.; Velazquez-Roman, Jorge; Leon-Sicairos, Nidia

    2018-01-01

    Vibrio is a genus of Gram-negative bacteria, some of which can cause serious infectious diseases. Vibrio infections are associated with the consumption of contaminated food and classified in Vibrio cholera infections and non-cholera Vibrio infections. In the present study, we investigate whether bovine lactoferrin (bLF) and several synthetic peptides corresponding to bLF sequences, are able to inhibit the growth or have bactericidal effect against V. cholerae and other Vibrio species. The antibacterial activity of LF and LF-peptides was assessed by kinetics of growth or determination of colony forming unit in bacteria treated with the peptides and antibiotics. To get insight in the mode of action, the interaction between bLF and bLF-peptides (coupled to FITC) and V. cholera was evaluated. The damage of effector-induced bacterial membrane permeability was measured by inclusion of the fluorescent dye propidium iodide using flow cytometry, whereas the bacterial ultrastructural damage in bacteria treated was observed by transmission electron microscopy. The results showed that bLF and LFchimera inhibited the growth of the V. cholerae strains; LFchimera permeabilized the bacteria which membranes were seriously damaged. Assays with a multidrug-resistant strain of Vibrio species indicated that combination of sub-lethal doses of LFchimera with ampicillin or tetracycline strongly reduced the concentration of the antibiotics to reach 95% growth inhibition. Furthermore, LFchimera were effective to inhibit the V. cholerae counts and damage due to this bacterium in a model mice. These data suggest that LFchimera and bLF are potential candidates to combat the V. cholerae and other multidrug resistant Vibrio species. PMID:29375503

  18. Exopolysaccharide production by Vibrio fischeri, a fouling marine bacterium

    Digital Repository Service at National Institute of Oceanography (India)

    Rodrigues, C.L.; Bhosle, N.B.

    stream_size 8 stream_content_type text/plain stream_name Biofouling_4_301.pdf.txt stream_source_info Biofouling_4_301.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 ...

  19. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shellfish in Shanghai

    Science.gov (United States)

    Vibrio parahaemolyticus is a marine and estuarine bacterium that poses a large threat to human health worldwide. It has been the leading bacterial cause of seafood-borne illness. This study investigated the prevalence and drug resistance of V. parahaemolyticus isolated from retail shellfish in Shang...

  20. Vibrio vulnificus produces quorum sensing signals of the AHL-class

    DEFF Research Database (Denmark)

    Valiente, E.; Bruhn, Jesper Bartholin; Nielsen, Kristian Fog

    2009-01-01

    Vibrio vulnificus is an aquatic pathogenic bacterium that can cause vibriosis in humans and fish. The species is subdivided into three biotypes with the fish-virulent strains belonging to biotype 2. The quorum sensing (QS) phenomenon mediated by furanosyl borate diester or autoinducer 2 (AI-2) has...

  1. Determining Vaccination Frequency in Farmed Rainbow Trout Using Vibrio anguillarum O1 Specific Serum Antibody Measurements

    DEFF Research Database (Denmark)

    Holten-Andersen, Lars; Dalsgaard, Inger; Nylén, Jørgen

    2012-01-01

    Background Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid...

  2. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    Science.gov (United States)

    Lutz, Carla; Erken, Martina; Noorian, Parisa; Sun, Shuyang; McDougald, Diane

    2013-01-01

    It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium can be detected in areas where it has not previously been isolated, indicating a much broader, global distribution of this bacterium outside of endemic regions. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of this bacterium in the environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature, and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists. PMID:24379807

  3. Genomic taxonomy of vibrios

    DEFF Research Database (Denmark)

    Thompson, Cristiane C.; Vicente, Ana Carolina P.; Souza, Rangel C.

    2009-01-01

    BACKGROUND: Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera) from 32 genome sequences of different vibrio species. We use a variety...... > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. CONCLUSION: The combination of different......-based server. This novel approach to microbial systematics will result in a tremendous advance concerning biodiversity discovery, description, and understanding....

  4. Genomic taxonomy of vibrios

    Directory of Open Access Journals (Sweden)

    Iida Tetsuya

    2009-10-01

    Full Text Available Abstract Background Vibrio taxonomy has been based on a polyphasic approach. In this study, we retrieve useful taxonomic information (i.e. data that can be used to distinguish different taxonomic levels, such as species and genera from 32 genome sequences of different vibrio species. We use a variety of tools to explore the taxonomic relationship between the sequenced genomes, including Multilocus Sequence Analysis (MLSA, supertrees, Average Amino Acid Identity (AAI, genomic signatures, and Genome BLAST atlases. Our aim is to analyse the usefulness of these tools for species identification in vibrios. Results We have generated four new genome sequences of three Vibrio species, i.e., V. alginolyticus 40B, V. harveyi-like 1DA3, and V. mimicus strains VM573 and VM603, and present a broad analyses of these genomes along with other sequenced Vibrio species. The genome atlas and pangenome plots provide a tantalizing image of the genomic differences that occur between closely related sister species, e.g. V. cholerae and V. mimicus. The vibrio pangenome contains around 26504 genes. The V. cholerae core genome and pangenome consist of 1520 and 6923 genes, respectively. Pangenomes might allow different strains of V. cholerae to occupy different niches. MLSA and supertree analyses resulted in a similar phylogenetic picture, with a clear distinction of four groups (Vibrio core group, V. cholerae-V. mimicus, Aliivibrio spp., and Photobacterium spp.. A Vibrio species is defined as a group of strains that share > 95% DNA identity in MLSA and supertree analysis, > 96% AAI, ≤ 10 genome signature dissimilarity, and > 61% proteome identity. Strains of the same species and species of the same genus will form monophyletic groups on the basis of MLSA and supertree. Conclusion The combination of different analytical and bioinformatics tools will enable the most accurate species identification through genomic computational analysis. This endeavour will culminate in

  5. Ozone Technology for Pathogenic Bacteria of Shrimp (Vibrio sp.) Disinfection

    Science.gov (United States)

    Wulansarie, Ria; Dyah Pita Rengga, Wara; Rustamadji

    2018-03-01

    One of important marine commodities in Indonesia, shrimps are susceptible with Vibrio sp bacteria infection. That infection must be cleared. One of the technologies for disinfecting Vibrio sp. is ozone technology. In this research, Vibrio sp. is a pathogenic bacterium which infects Penaeus vannamei. Ozone technology is applied for threatening Vibrio sp. In this research, ozonation was performed in different pH. Those are neutral, acid (pH=4), and base (pH=9). The sample was water from shrimp embankment from Balai Besar Perikanan Budidaya Air Payau (BBPBAP) located in Jepara. That water was the habitat of Penaeus vannamei shrimp. The brand of ozonator used in this research was “AQUATIC”. The used ozonator in this research had 0,0325 g/hour concentration. The flow rate of sample used in this research was 2 L/minute. The ozonation process was performed in continuous system. A tank, pipe, pump, which was connected with microfilter, flowmeter and ozone generator were the main tools in this research. It used flowmeter and valve to set the flow rate scalable as desired. The first step was the insert of 5 L sample into the receptacle. Then, by using a pump, a sample supplied to the microfilter to be filtered and passed into the flow meter. The flow rate was set to 2 LPM. Furthermore, gas from ozonator passed to the flow for the disinfection of bacteria and then was recycled to the tank and the process run continuously. Samples of the results of ozonation were taken periodically from time 0, 3, 7, 12, 18, 24 to 30 minutes. The samples of the research were analyzed using Total Plate Count (TPC) test in BBPBAP Jepara to determine the number of Vibrio sp. bacteria. The result of this research was the optimal condition for pathogenic bacteria of shrimp (Vibrio sp.) ozonation was in neutral condition.

  6. Efek Antibakteri Ekstrak Daun Mimba (Azadirachta indica A. Juss terhadap Bakteri Vibrio algynoliticus Secara In Vitro

    Directory of Open Access Journals (Sweden)

    Uli Ayini

    2014-03-01

    Full Text Available Budidaya udang windu di Indonesia telah berkembang pesat. Salah satu kendala budidaya udang adalah penyakit Vibriosis yang disebabkan oleh bakteri Vibrio algynoliticus. Tujuan penelitian ini adalah untuk mengetahui efek antibakeri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus. Penelitian ini menggunakan metode dilusi untuk mengetahui efek antibakteri ekstrak daun mimba terhadap bakteri Vibrio algynoliticus secara in vitro. Konsentrasi ekstrak yang digunakan (% yaitu: 0; 2,5; 5; 7,5; 10; 12,5 dan sebagai kontrol terdiri dari kontrol positif, dan kontrol negatif. Pengumpulan data untuk menentukan MIC (Minimum Inhibitory Concentration dilakukan dengan membandingkan kejernihan kultur di medium TSB 2% pada berbagai konsentrasi yang berbeda, dengan kontrol positif dan kontrol negatif. Penentuan MBC (Minimum Bacterisidal Concentration dilakukan dengan melihat ada tidaknya dan jumlah koloni bakteri Vibrio alginolyticus yang muncul pada medium subkultur TSA 2% setelah inkubasi 24 jam. Hasil penelitian menunjukkan nilai MIC yaitu konsentrasi 5%, hal ini ditunjukkan dengan tabung yang mulai jernih. Nilai MBC ekstrak daun mimba terhadap bakteri Vibrio alginolyticus adalah konsentrasi 12,5% ditandai dengan sudah tidak munculnya  koloni bakteri Vibrio alginolyticus. Berdasarkan penelitian ini dapat disimpulkan bahwa ekstrak daun mimba dapat memberikan efek antibakteri terhadap bakteri Vibrio alginolyticus secara in vitro.Tiger shrimp cultivation in Indonesia has been growing rapidly. The main obstacle is the shrimp farming vibriosis disease caused by the bacterium Vibrio algynoliticus. The aim of this research was to determine the effects of neem leaf extract antibakeri against Vibrio algynoliticus. This study used a dilution method to determine the antibacterial effect of neem leaf extract against Vibrio algynoliticus bacteria in vitro. The concentration of the extract used (%: 0; 2.5; 5; 7.5; 10; 12.5 and as a control consisting of a positive

  7. Vibrio vulnificus: An Environmental and Clinical Burden

    Directory of Open Access Journals (Sweden)

    Sing-Peng Heng

    2017-05-01

    Full Text Available Vibrio vulnificus is a Gram negative, rod shaped bacterium that belongs to the family Vibrionaceae. It is a deadly, opportunistic human pathogen which is responsible for the majority of seafood-associated deaths worldwide. V. vulnificus infection can be fatal as it may cause severe wound infections potentially requiring amputation or lead to sepsis in susceptible individuals. Treatment is increasingly challenging as V. vulnificus has begun to develop resistance against certain antibiotics due to their indiscriminate use. This article aims to provide insight into the antibiotic resistance of V. vulnificus in different parts of the world as well as an overall review of its clinical manifestations, treatment, and prevention. Understanding the organism's antibiotic resistance profile is vital in order to select appropriate treatment and initiate appropriate prevention measures to treat and control V. vulnificus infections, which should eventually help lower the mortality rate associated with this pathogen worldwide.

  8. Proposal of a utilization of a luminous bacterium in the teaching and learning of radiation safety

    International Nuclear Information System (INIS)

    Hanafusa, Tadashi; Nagamatsu, Tomohiro; Kinno, Ikuo; Ono, Toshiro; Sakoda, Akihiro

    2011-01-01

    We isolated the luminous bacterium Vibrio phosphoreum H1 as a tool for education in radiation safety. It emits strong and steady luminescence. It is nonpathogenic, cannot be grown under normal low-salt conditions, and can be handled without any special equipment or reagents. We can cultivate it on a desk at room temperature, and can use a home-made broth containing a high salt concentration. Heat treatment at 37°C kills the bacterium, leading to its loss of luminescence. Although X-ray irradiation clearly kills it as the exposure dose increases, luminescence remains intact for some time, suggesting a delayed appearance of the biological effect of radiation exposure. We showed that the luminous bacterium Vibrio phosphoreum H1 can be used as a tool for teaching and learning about the effects of radiation. We proposed a practical plan that can be employed at high schools as well as universities. (author)

  9. Comparative Genome Analyses of Vibrio anguillarum Strains Reveal a Link with Pathogenicity Traits

    DEFF Research Database (Denmark)

    Castillo, Daniel; D'Alvise, Paul; Xu, Ruiqi

    2017-01-01

    Vibrio anguillarum is a marine bacterium that can cause vibriosis in many fish and shellfish species, leading to high mortalities and economic losses in aquaculture. Although putative virulence factors have been identified, the mechanism of pathogenesis of V. anguillarum is not fully understood...... a link between genotype and virulence characteristics of Vibrio anguillarum, which can be used to unravel the molecular evolution of V. anguillarum and can also be important from survey and diagnostic perspectives. Importance : Comparative genome analysis of strains of a pathogenic bacterial species can...

  10. Vibrio chromosome-specific families

    DEFF Research Database (Denmark)

    Lukjancenko, Oksana; Ussery, David

    2014-01-01

    We have compared chromosome-specific genes in a set of 18 finished Vibrio genomes, and, in addition, also calculated the pan- and core-genomes from a data set of more than 250 draft Vibrio genome sequences. These genomes come from 9 known species and 2 unknown species. Within the finished...

  11. Extended serotyping scheme for Vibrio anguillarum with the definition and characterization of seven provisional O-serogroups

    DEFF Research Database (Denmark)

    Pedersen, Karl; Grisez, L.; van Houdt, R.

    1999-01-01

    The present paper summarizes the serotyping scheme of the fish pathogenic bacterium Vibrio anguillarum and defines seven additional O-serogroups. Strains, collected in our laboratories that were nontypable with antisera against the previously defined 16 O-serotypes, were used for generating new...

  12. RAPID TETRAZOLIUM DYE REDUCTION ASSAY TO ASSESS THE BACTERICIDAL ACTIVITY OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES AGAINST VIBRIO PARAHAEMOLYTICUS

    Science.gov (United States)

    An assay was developed to assess the ability of oyster, Crassostrea virginica, hemocytes to kill the human pathogenic bacterium, Vibrio parahaemolyticus (ATCC 17802). Bacterial killing was estimated colorimetrically by the enzymatic reduction of a tetrazolium dye, 3-(4,5-dimethyl...

  13. Passive transfer of serum from tilapia vaccinated with a Vibrio vulnificus vaccine provides protection from specific pathogen challenge

    Science.gov (United States)

    Vibrio vulnificus is a Gram-negative bacterium that has been associated with disease losses in some aquaculture reared fish species. Vaccination has proven effective for reducing the impact of this disease and research has suggested that specific antibodies are important for protective immunity. The...

  14. Prevalence and molecular typing of Vibrio parahaemolyticus isolated from seafood in Shanghai using multilocus sequence typing (MLST)

    Science.gov (United States)

    Vibrio parahaemolyticus is a gram-negative bacterium that inhabits coastal and marine environments. Thermostable direct hemolysin (tdh), tdh-related hemolysin (trh) and the type III secretion system are considered the potential virulent factors of pathogenic V. parahaemolyticus. The frequency of str...

  15. Biosensing Vibrio cholerae with Genetically Engineered Escherichia coli.

    Science.gov (United States)

    Holowko, Maciej B; Wang, Huijuan; Jayaraman, Premkumar; Poh, Chueh Loo

    2016-11-18

    Cholera is a potentially mortal, infectious disease caused by Vibrio cholerae bacterium. Current treatment methods of cholera still have limitations. Beneficial microbes that could sense and kill the V. cholerae could offer potential alternative to preventing and treating cholera. However, such V. cholerae targeting microbe is still not available. This microbe requires a sensing system to be able to detect the presence of V. cholera bacterium. To this end, we designed and created a synthetic genetic sensing system using nonpathogenic Escherichia coli as the host. To achieve the system, we have moved proteins used by V. cholerae for quorum sensing into E. coli. These sensor proteins have been further layered with a genetic inverter based on CRISPRi technology. Our design process was aided by computer models simulating in vivo behavior of the system. Our sensor shows high sensitivity to presence of V. cholerae supernatant with tight control of expression of output GFP protein.

  16. Vibrio cholerae infection, novel drug targets and phage therapy.

    Science.gov (United States)

    Fazil, Mobashar Hussain Urf Turabe; Singh, Durg V

    2011-10-01

    Vibrio cholerae is the causative agent of the diarrheal disease cholera. Although antibiotic therapy shortens the duration of diarrhea, excessive use has contributed to the emergence of antibiotic resistance in V. cholerae. Mobile genetic elements have been shown to be largely responsible for the shift of drug resistance genes in bacteria, including some V. cholerae strains. Quorum sensing communication systems are used for interaction among bacteria and for sensing environmental signals. Sequence analysis of the ctxB gene of toxigenic V. cholerae strains demonstrated its presence in multiple cholera toxin genotypes. Moreover, bacteriophage that lyse the bacterium have been reported to modulate epidemics by decreasing the required infectious dose of the bacterium. In this article, we will briefly discuss the disease, its clinical manifestation, antimicrobial resistance and the novel approaches to locate drug targets to treat cholera.

  17. Vibrio japonicus sp. nov., a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan.

    Science.gov (United States)

    Doi, Hiroyasu; Osawa, Ikuko; Adachi, Hayamitsu; Kawada, Manabu

    2017-01-01

    A novel Vibrio strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai), Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of Vibrio brasiliensis (LMG 20546T, 98.2% identity), V. harveyi (NBRC 15634T, 98.2%), V. caribbeanicus (ATCC BAA-2122T, 97.8%) and V. proteolyticus (NBRC 13287T, 97.8%). The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA) of eight loci (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; 5535bp) further clustered strain JCM 31412T in the Nereis clade, genus Vibrio. Phenotypically, strain JCM 31412T differed from the closest related Vibrio species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:03OH and summed features, which were significantly different from those of V. brasiliensis, V. nigripulchritudo and V. caribbeanicus type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus Vibrio. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel Vibrio species, for which the name Vibrio japonicus sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T) as the type strain.

  18. Vibrio japonicus sp. nov., a novel member of the Nereis clade in the genus Vibrio isolated from the coast of Japan.

    Directory of Open Access Journals (Sweden)

    Hiroyasu Doi

    Full Text Available A novel Vibrio strain, JCM 31412T, was isolated from seawater collected from the Inland Sea (Setonaikai, Japan, and characterized as a Gram-negative, oxidase-positive, catalase-negative, facultatively anaerobic, motile, ovoid-shaped bacterium with one polar flagellum. Based on 16S rDNA gene identity, strain JCM 31412T showed a close relationship with type strains of Vibrio brasiliensis (LMG 20546T, 98.2% identity, V. harveyi (NBRC 15634T, 98.2%, V. caribbeanicus (ATCC BAA-2122T, 97.8% and V. proteolyticus (NBRC 13287T, 97.8%. The G+C content of strain JCM 31412T DNA was 46.8%. Multi-locus sequence analysis (MLSA of eight loci (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; 5535bp further clustered strain JCM 31412T in the Nereis clade, genus Vibrio. Phenotypically, strain JCM 31412T differed from the closest related Vibrio species in its utilization of melibiose and raffinose, and its lack of casein and gelatin hydrolysis. It was further differentiated based on its fatty acid composition, specifically properties of C12:03OH and summed features, which were significantly different from those of V. brasiliensis, V. nigripulchritudo and V. caribbeanicus type strains. Overall, the results of DNA-DNA hybridization, and physiological and biochemical analysis differentiated strain JCM 31412T from other described species of the genus Vibrio. Based on these polyphasic taxonomic findings, it was therefore concluded that JCM 31412T was a novel Vibrio species, for which the name Vibrio japonicus sp. nov. was proposed, with JCM 31412T (= LMG 29636T = ATCC TSD-62T as the type strain.

  19. The Vibrio parahaemolyticus Type III Secretion Systems manipulate host cell MAPK for critical steps in pathogenesis.

    LENUS (Irish Health Repository)

    Matlawska-Wasowska, Ksenia

    2010-12-01

    Vibrio parahaemolyticus is a food-borne pathogen causing inflammation of the gastrointestinal epithelium. Pathogenic strains of this bacterium possess two Type III Secretion Systems (TTSS) that deliver effector proteins into host cells. In order to better understand human host cell responses to V. parahaemolyticus, the modulation of Mitogen Activated Protein Kinase (MAPK) activation in epithelial cells by an O3:K6 clinical isolate, RIMD2210633, was investigated. The importance of MAPK activation for the ability of the bacterium to be cytotoxic and to induce secretion of Interleukin-8 (IL-8) was determined.

  20. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics.

    Science.gov (United States)

    Kim, Hyun-Joong; Ryu, Ji-Oh; Lee, Shin-Young; Kim, Ei-Seul; Kim, Hae-Yeong

    2015-10-26

    The genus Vibrio is clinically significant and major pathogenic Vibrio species causing human Vibrio infections are V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. mimicus. In this study, we screened for novel genetic markers using comparative genomics and developed a Vibrio multiplex PCR for the reliable diagnosis of the Vibrio genus and the associated major pathogenic Vibrio species. A total of 30 Vibrio genome sequences were subjected to comparative genomics, and specific genes of the Vibrio genus and five major pathogenic Vibrio species were screened. The designed primer sets from the screened genes were evaluated by single PCR using DNAs from various Vibrio spp. and other non-Vibrio bacterial strains. A sextuplet multiplex PCR using six primer sets was developed to enable detection of the Vibrio genus and five pathogenic Vibrio species. The designed primer sets from the screened genes yielded specific diagnostic results for target the Vibrio genus and Vibrio species. The specificity of the developed multiplex PCR was confirmed with various Vibrio and non-Vibrio strains. This Vibrio multiplex PCR was evaluated using 117 Vibrio strains isolated from the south seashore areas in Korea and Vibrio isolates were identified as Vibrio spp., V. parahaemolyticus, V. vulnificus and V. alginolyticus, demonstrating the specificity and discriminative ability of the assay towards Vibrio species. This novel multiplex PCR method could provide reliable and informative identification of the Vibrio genus and major pathogenic Vibrio species in the food safety industry and in early clinical treatment, thereby protecting humans against Vibrio infection.

  1. Environmental determinants of Vibrio parahaemolyticus in the Chesapeake Bay.

    Science.gov (United States)

    Davis, Benjamin J K; Jacobs, John M; Davis, Meghan F; Schwab, Kellogg J; DePaola, Angelo; Curriero, Frank C

    2017-08-25

    Vibrio parahaemolyticus naturally-occurs in brackish and marine waters and is one of the leading causes of seafood-borne illness. Previous work studying the ecology of V. parahaemolyticus is often limited in geographic extent and lacking a full range of environmental measures. This study used a unique, large dataset of surface water samples in the Chesapeake Bay ( n =1,385) collected from 148 monitoring stations from 2007 to 2010. Water was analyzed for over 20 environmental parameters with additional meteorological and surrounding land use data. V. parahaemolyticus -specific genetic markers thermolabile hemolysin ( tlh ), thermostable direct hemolysin ( tdh ), and tdh -related hemolysin ( trh ) were assayed using quantitative PCR (qPCR), and interval-censored regression models with non-linear effects were estimated to account for limits of detection and quantitation. tlh was detected in 19.6% of water samples; tdh or trh markers were not detected. Results confirmed previously reported positive associations for V. parahaemolyticus abundance with temperature and turbidity and negative associations with high salinity (> 10-23‰). Furthermore, the salinity relationship was determined to be a function of both low temperature and turbidity, with an increase of either nullifying the high salinity effect. Associations with dissolved oxygen and phosphate also appeared stronger when samples were taken nearby human developments. Renewed focus on the V. parahaemolyticus ecological paradigm is warranted to protect public health. Importance Vibrio parahaemolyticus is one of the leading causes of seafood-borne illness in the United States and across the globe. Exposure is often through consuming raw or undercooked shellfish. Given the natural presence of the bacterium in the marine environment, improved understanding of its environmental determinants is necessary for future preventative measures. This analysis of environmental Vibrio parahaemolyticus is one of only a few that

  2. Distribution of Putative Virulence Genes and Antimicrobial Drug Resistance in Vibrio harveyi

    OpenAIRE

    Parvathi, Ammini; Mendez, Dafini; Anto, Ciana

    2011-01-01

    The marine-estuarine bacterium Vibrio harveyi is an important pathogen of invertebrates, most significantly, the larvae of commercially important shrimp Penaeus monodon. In this study, we analyzed V. harveyi isolated from shrimp hatchery environments for understanding the distribution of putative virulence genes and antimicrobial drug resistance. The putative genes targeted for PCR detection included four reversible toxin (Rtx)/hemolysin genes, a gene encoding homologue of Vibriocholerae zonu...

  3. Predatory bacteria as natural modulators of Vibrio parahaemolyticus and Vibrio vulnificus in seawater and oysters

    Science.gov (United States)

    This study shows that naturally occurring Vibrio predatory bacteria (VPB) exert a major role in controlling pathogenic vibrios in seawater and shellfish. The growth and persistence of Vibrio parahaemolyticus (Vp) and Vibrio vulnificus (Vv) were assessed in natural seawater and in the Eastern oyster...

  4. Identification of capsule, biofilm, lateral flagellum, and type IV pili in Vibrio mimicus strains.

    Science.gov (United States)

    Tercero-Alburo, J J; González-Márquez, H; Bonilla-González, E; Quiñones-Ramírez, E I; Vázquez-Salinas, C

    2014-11-01

    Vibrio mimicus is a bacterium that causes gastroenteritis; it is closely related to Vibrio cholerae, and can cause acute diarrhea like cholera- or dysentery-type diarrhea. It is distributed worldwide. Factors associated with virulence (such as hemolysins, enterotoxins, proteases, phospholipases, aerobactin, and hemagglutinin) have been identified; however, its pathogenicity mechanism is still unknown. In pathogenic Vibrio species such as V. cholerae, Vibrio. parahaemolyticus and Vibrio vulnificus, capsule, biofilms, lateral flagellum, and type IV pili are structures described as essential for pathogenicity. These structures had not been described in V. mimicus until this work. We used 20 V. mimicus strains isolated from water (6), oyster (9), and fish (5) samples and we were able to identify the capsule, biofilm, lateral flagellum, and type IV pili through phenotypic tests, electron microscopy, PCR, and sequencing. In all tested strains, we observed and identified the presence of capsular exopolysaccharide, biofilm formation in an in vitro model, as well as swarming, multiple flagellation, and pili. In addition, we identified homologous genes to those described in other bacteria of the genus in which these structures have been found. Identification of these structures in V. mimicus is a contribution to the biology of this organism and can help to reveal its pathogenic behavior. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Surface-attachment sequence in Vibrio Cholerae

    Science.gov (United States)

    Utada, Andrew; Gibiansky, Maxsim; Wong, Gerard

    2013-03-01

    Vibrio cholerae is a gram-negative bacterium that causes the human disease cholera. It is found natively in brackish costal waters in temperate climates, where it attaches to the surfaces of a variety of different aquatic life. V. cholerae has a single polar flagellum making it highly motile, as well as a number of different pili types, enabling it to attach to both biotic and abiotic surfaces. Using in-house built tracking software we track all surface-attaching bacteria from high-speed movies to examine the early-time attachment profile of v. cholerae onto a smooth glass surface. Similar to previous work, we observe right-handed circular swimming trajectories near surfaces; however, in addition we see a host of distinct motility mechanisms that enable rapid exploration of the surface before forming a more permanent attachment. Using isogenic mutants we show that the motility mechanisms observed are due to a complex combination of hydrodynamics and pili-surface interactions. Lauga, E., DiLuzio, W. R., Whitesides, G. M., Stone, H. A. Biophys. J. 90, 400 (2006).

  6. Multiplex PCR for detection of the Vibrio genus and five pathogenic Vibrio species with primer sets designed using comparative genomics

    OpenAIRE

    Kim, Hyun-Joong; Ryu, Ji-Oh; Lee, Shin-Young; Kim, Ei-Seul; Kim, Hae-Yeong

    2015-01-01

    Background The genus Vibrio is clinically significant and major pathogenic Vibrio species causing human Vibrio infections are V. cholerae, V. parahaemolyticus, V. vulnificus, V. alginolyticus and V. mimicus. In this study, we screened for novel genetic markers using comparative genomics and developed a Vibrio multiplex PCR for the reliable diagnosis of the Vibrio genus and the associated major pathogenic Vibrio species. Methods A total of 30 Vibrio genome sequences were subjected to comparati...

  7. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Carla eLutz

    2013-12-01

    Full Text Available It is now well accepted that Vibrio cholerae, the causative agent of the water-borne disease cholera, is acquired from environmental sources where it persists between outbreaks of the disease. Recent advances in molecular technology have demonstrated that this bacterium could be detected in areas where it had not been isolated from before, indicating a much broader, global distribution of this bacterium rather than specifically within regions where cholera is endemic. The environmental persistence of V. cholerae in the aquatic environment can be attributed to multiple intra- and interspecific strategies such as responsive gene regulation and biofilm formation on biotic and abiotic surfaces, as well as interactions with a multitude of other organisms. This review will discuss some of the mechanisms that enable the persistence of the bacterium in the sometimes hostile environment. In particular, we will discuss how V. cholerae can survive stressors such as starvation, temperature and salinity fluctuations as well as how the organism persists under constant predation by heterotrophic protists.

  8. Ethanolamine utilization in Vibrio alginolyticus

    Science.gov (United States)

    2012-01-01

    Abstract Ethanolamine is used as an energy source by phylogenetically diverse bacteria including pathogens, by the concerted action of proteins from the eut-operon. Previous studies have revealed the presence of eutBC genes encoding ethanolamine-ammonia lyase, a key enzyme that breaks ethanolamine into acetaldehyde and ammonia, in about 100 bacterial genomes including members of gamma-proteobacteria. However, ethanolamine utilization has not been reported for any member of the Vibrio genus. Our comparative genomics study reveals the presence of genes that are involved in ethanolamine utilization in several Vibrio species. Using Vibrio alginolyticus as a model system we demonstrate that ethanolamine is better utilized as a nitrogen source than as a carbon source. Reviewers This article was reviewed by Dr. Lakshminarayan Iyer and Dr. Vivek Anantharaman (nominated by Dr. L Aravind). PMID:23234435

  9. Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques

    Science.gov (United States)

    Letchumanan, Vengadesh; Chan, Kok-Gan; Lee, Learn-Han

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium that is found in estuarine, marine and coastal environments. V. parahaemolyticus is the leading causal agent of human acute gastroenteritis following the consumption of raw, undercooked, or mishandled marine products. In rare cases, V. parahaemolyticus causes wound infection, ear infection or septicaemia in individuals with pre-existing medical conditions. V. parahaemolyticus has two hemolysins virulence factors that are thermostable direct hemolysin (tdh)-a pore-forming protein that contributes to the invasiveness of the bacterium in humans, and TDH-related hemolysin (trh), which plays a similar role as tdh in the disease pathogenesis. In addition, the bacterium is also encodes for adhesions and type III secretion systems (T3SS1 and T3SS2) to ensure its survival in the environment. This review aims at discussing the V. parahaemolyticus growth and characteristics, pathogenesis, prevalence and advances in molecular identification techniques. PMID:25566219

  10. Sensitivity of the vibrios to ultraviolet-radiation

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1977-01-01

    The ultraviolet-inactivation kinetics of a number of strains of Vibrio cholerae (classical), Vibrio cholerae (el tor), NAG vibrios and Vibrio parahaemolyticus were investigated. Statistical analyses revealed significant differences between any two of the four types of vibrio in respect of their sensitivity to U.V. (author)

  11. Abundance and Multilocus Sequence Analysis of Vibrio Bacteria Associated with Diseased Elkhorn Coral (Acropora palmata) of the Florida Keys.

    Science.gov (United States)

    Kemp, Keri M; Westrich, Jason R; Alabady, Magdy S; Edwards, Martinique L; Lipp, Erin K

    2018-01-15

    The critically endangered elkhorn coral ( Acropora palmata ) is affected by white pox disease (WPX) throughout the Florida Reef Tract and wider Caribbean. The bacterium Serratia marcescens was previously identified as one etiologic agent of WPX but is no longer consistently detected in contemporary outbreaks. It is now believed that multiple etiologic agents cause WPX; however, to date, no other potential pathogens have been thoroughly investigated. This study examined the association of Vibrio bacteria with WPX occurrence from August 2012 to 2014 at Looe Key Reef in the Florida Keys, USA. The concentration of cultivable Vibrio was consistently greater in WPX samples than in healthy samples. The abundance of Vibrio bacteria relative to total bacteria was four times higher in samples from WPX lesions than in adjacent apparently healthy regions of diseased corals based on quantitative PCR (qPCR). Multilocus sequence analysis (MLSA) was used to assess the diversity of 69 Vibrio isolates collected from diseased and apparently healthy A. palmata colonies and the surrounding seawater. Vibrio species with known pathogenicity to corals were detected in both apparently healthy and diseased samples. While the causative agent(s) of contemporary WPX outbreaks remains elusive, our results suggest that Vibrio spp. may be part of a nonspecific heterotrophic bacterial bloom rather than acting as primary pathogens. This study highlights the need for highly resolved temporal sampling in situ to further elucidate the role of Vibrio during WPX onset and progression. IMPORTANCE Coral diseases are increasing worldwide and are now considered a major contributor to coral reef decline. In particular, the Caribbean has been noted as a coral disease hot spot, owing to the dramatic loss of framework-building acroporid corals due to tissue loss diseases. The pathogenesis of contemporary white pox disease (WPX) outbreaks in Acropora palmata remains poorly understood. This study investigates the

  12. Prevalence of Vibrio vulnificus and Vibrio parahaemolyticus in the Maryland Coastal Bays

    Science.gov (United States)

    De Pascuale, V. O.

    2016-02-01

    The bacterial family of Vibrionaceae is indigenous in the marine estuarine environments such as the Maryland Coastal Bays. Vibrio vulnificus and Vibrio parahaemolyticus are both pathogenic bacteria. Understanding the distribution of Vibrio species is crucial because of the health concerns associated with the bacteria. The aim of this study was to evaluate the overall abundance of bacteria with a focus on Vibrio species in the Maryland Coastal Bays. Seawater samples were collected from 10 different sites that differ with regard to water quality. The total bacteria count (TBC) was determined by two methods: Total plate count and Epifluorescence microscopy. The most-probable-number (MPN) methodology was used to estimate the population of Vibrio parahaemolyticus and Vibrio vulnificus. In addition to the bacteriological analysis, the environmental parameters of temperature and salinity were measured using YSI 6600 multiparameter meter. The average total bacteria count was 2.21 log CFU ml-1. Vibrio vulnificus comprised 5% of the total bacteria count while Vibrio parahaemolyticus comprised only 2% of the total bacteria count. Vibrio vulnificus ranged from 0.30 to 2.48 log MPN ml-1 at the sites tested. Lower Vibrio parahaemolyticus count was observed at the sites with a range of 0.30 to 1.97 log MPN ml-1. There was no significant correlation between the environmental parameters and the Vibrio spp. Since both Vibrio vulnificus and Vibrio parahaemolyticus peak in the summer, there is a potential for a risk of wound infections and gastrointestinal illness based on this data.

  13. Zoonose Vibrio vulnificus: meldingsplicht raadzaam

    NARCIS (Netherlands)

    Dijkstra, A.; Haenen, O.L.M.; Moller, L.

    2010-01-01

    Op de lijst van meldingsplichtige infectieziekten komen een aantal zoönosen voor, zoals pest, rabiës en leptospirose. De relatief onbekende zoönotische Vibrio vulnificus valt opmerkelijk genoeg niet onder de meldingsplichtige infectieziekten. Juist vanwege het zeer agressieve beloop van een

  14. Detection of quorum-sensing-related molecules in Vibrio scophthalmi

    Directory of Open Access Journals (Sweden)

    Riedel Kathrin

    2008-08-01

    Full Text Available Abstract Background Cell-to-cell communication (also referred to as quorum sensing based on N-acyl-homoserine lactones (AHLs is a widespread response to environmental change in Gram-negative bacteria. AHLs seem to be highly variable, both in terms of the acyl chain length and in the chemical structure of the radicals. Another quorum sensing pathway, the autoinducer-2-based system, is present both in Gram-positive and Gram-negative bacteria. In this study the presence of signal molecules belonging to both quorum sensing signalling pathways was analysed in the marine symbiotic species Vibrio scophthalmi. Results Three AHL-like signal molecules were detected in V. scophthalmi supernatants with the Agrobacterium tumefaciens sensor assay. This observation was further supported by the decrease in the presence of these signal molecules after cloning and expression of lactonase AiiA from Bacillus cereus in the V. scophthalmi strains. One of the signal molecules was identified as N-(3-hydroxy dodecanoyl-L-homoserine lactone. V. scophthalmi was also shown to carry a functional LuxS synthase. The coding sequence for a luxS-like gene was obtained showing a maximum similarity of 78% with Vibrio vulnificus. Analysis of the translated sequence revealed that the sequenced luxS gene carried the conserved domain, which is common to luxS sequences found in other species, and which is essential for LuxS enzymatic activity. Conclusion The data are consistent with the presence of quorum-sensing signal molecules from both AHL- and autoinducer 2-based quorum sensing systems in V. scophthalmi, which are homologous to others previously described in various Vibrio species. How this bacterium interacts with other bacteria and eukaryotic cells to compete ecologically with other intestinal bacteria present in the fish Scophthalmus maximus warrants further investigation.

  15. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    OpenAIRE

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Mu...

  16. Vibrio vulnificus as a health hazard for shrimp consumers

    Directory of Open Access Journals (Sweden)

    NASCIMENTO Susy Margella Melo do

    2001-01-01

    Full Text Available Over the last 30 years, a number of Vibrio species found in the aquatic environment have been indicated as cause of disease in human beings. Vibrio vulnificus is an emergent pathogen, an invasive and lethal marine bacterium related to wound infection and held accountable for gastroenteritis and primary septicemia. It occurs quite frequently in marine organisms, mainly in mollusks. This study aimed at isolating and identifying strains of V. vulnificus based upon the analysis of twenty samples of seabob shrimp, Xiphopenaeus kroyeri (Heller, purchased at the Mucuripe fish market (Fortaleza, Brazil. TCBS agar was used to isolate suspect strains. Seven of twenty-nine strains isolated from six different samples were confirmed as such by means of biochemical evidence and thus submitted to biological assays to determine their virulence. The susceptibility of the V. vulnificus strains to a number of antibiotics was tested. None of the V. vulnificus strains showed signs of virulence during a 24-hour observation period, possibly due to the shedding of the capsules by the cells. As to the results of the antimicrobial susceptibility tests, the seven above-mentioned V. vulnificus strains were found to be sensitive to nitrofurantoin (NT, ciprofloxacin (CIP, gentamicin (GN and chloramphenicol (CO and resistant to clindamycin (CI, penicillin (PN and ampicillin (AP.

  17. Vibrio Parahaemolyticus: The Threat of Another Vibrio Acquiring Pandemic Potential

    Digital Repository Service at National Institute of Oceanography (India)

    Ramamurthy, T.; Nair, G.B.

    and pandemics mainly due to poor water supply and personal hygiene. The other important and most common seafood-borne halophilic Vibrio is V. parahaemolyticus. Since its discovery in 1953 (Fujino et al., 1953), many aspects on this pathogen were explored... that include 13 different O antigens and 71 different K antigens (Iguchi et al., 1995). Unlike V. cholerae, infection caused by V. parahaemolyticus has no relation with socioeconomic status, meteorological changes, quality of the water supply and general...

  18. Repair of ultraviolet-light-induced DNA damage in Vibrio cholerae

    International Nuclear Information System (INIS)

    Das, G.; Sil, K.; Das, J.

    1981-01-01

    Repair of ultraviolet-light-induced DNA damage in a highly pathogenic Gram-negative bacterium, Vibrio cholerae, has been examined. All three strains of V. cholerae belonging to two serotypes, Inaba and Ogawa, are very sensitive to ultraviolet irradiation, having inactivation cross-sections ranging from 0.18 to 0.24 m 2 /J. Although these cells are proficient in repairing the DNA damage by a photoreactivation mechanism, they do not possess efficient dark repair systems. The mild toxinogenic strain 154 of classical Vibrios presumably lacks any excision repair mechanism and studies of irradiated cell DNA indicate that the ultraviolet-induced pyrimidine dimers may not be excised. Ultraviolet-irradiated cells after saturation of dark repair can be further photoreactivated. (Auth.)

  19. The Effect of Magnetic Fields on the Quorum Sensing-Regulated Luminescence of Vibrio fischeri

    Science.gov (United States)

    Barron, Addie; Hagen, Steve; Son, Minjun

    2015-03-01

    Quorum sensing (QS) is a mechanism by which bacteria communicate through the secretion and detection of extracellular signaling molecules known as autoinducers. This research focuses on the quorum sensing regulated bioluminescence of Vibrio fischeri, a marine bacterium that lives in symbiosis with certain fish and squid species. Previous studies of V. harveyi, a close relative of V. fisheri, indicate that a strong magnetic field has a positive effect on V.harveyi bioluminescence. However the effect of magnetic fields on quorum sensing-regulated luminescence is in general poorly understood. We grew V. fischeri in solid and liquid growth media, subject to strong static magnetic fields, and imaged the bioluminescence over a period of forty-eight hours. Luminescence patterns were analyzed in both the spatial and time dimensions. We find no indication that a magnetic field influences Vibrio fischeri luminescence either positively or negatively. This research was funded by the Grant Number NSF DMR-1156737.

  20. Vibrio coralliirubri sp. nov., a new species isolated from mucus of red coral (Corallium rubrum) collected at Procida island, Italy.

    Science.gov (United States)

    Poli, Annarita; Romano, Ida; Mastascusa, Vincenza; Buono, Lorena; Orlando, Pierangelo; Nicolaus, Barbara; Leone, Luigi; Hong, Kar Wai; Chan, Kok-Gan; Goh, Kian Mau; Pascual, Javier

    2018-01-03

    Strain Corallo1 T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1 T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1 T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1 T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1 T . A draft genome sequence of strain Corallo1 T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1 T are C 16:1 , n-C 16:0 and C 18:1 , and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1 T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1 T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1 T (= DSM 27495 T  = CIP 110630 T ).

  1. Insights into Vibrio parahaemolyticus CHN25 Response to Artificial Gastric Fluid Stress by Transcriptomic Analysis

    Directory of Open Access Journals (Sweden)

    Xuejiao Sun

    2014-12-01

    Full Text Available Vibrio parahaemolyticus is the causative agent of food-borne gastroenteritis disease. Once consumed, human acid gastric fluid is perhaps one of the most important environmental stresses imposed on the bacterium. Herein, for the first time, we investigated Vibrio parahaemolyticus CHN25 response to artificial gastric fluid (AGF stress by transcriptomic analysis. The bacterium at logarithmic growth phase (LGP displayed lower survival rates than that at stationary growth phase (SGP under a sub-lethal acid condition (pH 4.9. Transcriptome data revealed that 11.6% of the expressed genes in Vibrio parahaemolyticus CHN25 was up-regulated in LGP cells after exposed to AGF (pH 4.9 for 30 min, including those involved in sugar transport, nitrogen metabolism, energy production and protein biosynthesis, whereas 14.0% of the genes was down-regulated, such as ATP-binding cassette (ABC transporter and flagellar biosynthesis genes. In contrast, the AGF stress only elicited 3.4% of the genes from SGP cells, the majority of which were attenuated in expression. Moreover, the number of expressed regulator genes was also substantially reduced in SGP cells. Comparison of transcriptome profiles further revealed forty-one growth-phase independent genes in the AGF stress, however, half of which displayed distinct expression features between the two growth phases. Vibrio parahaemolyticus seemed to have evolved a number of molecular strategies for coping with the acid stress. The data here will facilitate future studies for environmental stresses and pathogenicity of the leading seafood-borne pathogen worldwide.

  2. [Identification of Vibrio mimicus bacteriophages].

    Science.gov (United States)

    Gaevskaia, N E; Kudriakova, T A; Avdeeva, E P; Makedonova, L D; Kachkina, G V

    2011-03-01

    Lysogeny was studied in Vibrio mimicus; the indicator V. cholerae El Tor strain was selected to identify phages. New V. mimicus phages were obtained and identified, which had a morphological similarity and an antigen affinity for morphological group I cholerae phages. Phage differentiation revealed that morphological group I V. mimicus phages showed certain differences manifested as their lytic activity against V. cholerae strain 1322-69 of serovar 37 while this property was absent in cholerae phages.

  3. Phage therapy treatment of the coral pathogen Vibrio coralliilyticus.

    Science.gov (United States)

    Cohen, Yossi; Joseph Pollock, F; Rosenberg, Eugene; Bourne, David G

    2013-02-01

    Vibrio coralliilyticus is an important coral pathogen demonstrated to cause disease outbreaks worldwide. This study investigated the feasibility of applying bacteriophage therapy to treat the coral pathogen V. coralliilyticus. A specific bacteriophage for V. coralliilyticus strain P1 (LMG23696), referred to here as bacteriophage YC, was isolated from the seawater above corals at Nelly Bay, Magnetic Island, central Great Barrier Reef (GBR), the same location where the bacterium was first isolated. Bacteriophage YC was shown to be a lytic phage belonging to the Myoviridae family, with a rapid replication rate, high burst size, and high affinity to its host. By infecting its host bacterium, bacteriophage YC was able to prevent bacterial-induced photosystem inhibition in pure cultures of Symbiodinium, the photosymbiont partner of coral and a target for virulence factors produced by the bacterial pathogen. Phage therapy experiments using coral juveniles in microtiter plates as a model system revealed that bacteriophage YC was able to prevent V. coralliilyticus-induced photoinactivation and tissue lysis. These results demonstrate that bacteriophage YC has the potential to treat coral disease outbreaks caused by the bacterial pathogen V. coralliilyticus, making it a good candidate for phage therapy treatment of coral disease. © 2012 The Authors. Published by Blackwell Publishing Ltd. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

  4. The effect of solar irradiated Vibrio cholera on the secretion of pro-inflammatory cytokines and chemokines by the JAWS II dendritic cell line in vitro

    CSIR Research Space (South Africa)

    Ssemakalu, CC

    2015-06-01

    Full Text Available results from infection with pathogenic members of the species of a motile Gram-negative bacterium called Vibrio cholerae. Vibrio cholerae naturally exists within the aquatic environment [5]. The consumption of untreated environmental water contaminated... scientific (Waltham, MA); the rough form lipopoly- saccharide (LPS) from E. coli serotype J5 and the cholera toxin beta-subunit (CTB) were pur- chased from ENZO Life Sciences (Farmingdale, NY); 2-mercaptoethanol (2-ME) and 0.25% Trypsin-0.02% EDTA were...

  5. Prevalence and antimicrobial susceptibility of Vibrio parahaemolyticus isolated from retail shrimps in Malaysia

    Directory of Open Access Journals (Sweden)

    Vengadesh eLetchumanan

    2015-01-01

    Full Text Available Vibrio parahaemolyticus is a marine and estuarine bacterium that has been the leading cause of foodborne outbreaks which leads to a significant threat to human health worldwide. Consumption of seafood contaminated with Vibrio parahaemolyticus causes acute gastroenteritis in individuals. The bacterium poses two main virulence factor including the thermostable direct hemolysin (tdh which is a pore-forming protein that contributes to the invasiveness of the bacterium in humans and TDH-related hemolysin (trh, which plays a similar role as thermostable direct hemolysin (tdh in the disease pathogenesis. This study aimed to investigate the antimicrobial resistance Vibrio parahaemolyticus strains in shrimps purchased from wetmarkets and supermarkets. The toxR-based PCR assay indicated that a total of 57.8% (185/320 isolates were positive for V. parahaemolyticus. Only 10% (19/185 toxR-positive isolate exhibit the TDH-related hemolysin (trh gene and none of the isolates were tested positive for thermostable direct hemolysin (tdh. The MAR index was measured for 14 common antimicrobial agents. The results indicated 98% of the isolates were highly susceptible to imipenem, ampicillin sulbactam (96%, chloramphenicol (95%, trimethoprim-sulfamet (93%, gentamicin (85%, levofloxacin (83% and tetracycline (82%. The chloramphenicol (catA2 and kanamycin (aphA-3 resistance genes were detected in the resistant V. parahaemolyticus isolates. Our results demonstrate that shrimps are contaminated with V. parahaemolyticus, some of which carry the trh-gene thus being potential to cause food borne illness. The occurrence of multidrug resistance strains in the environment could be an indication of excessive usage of antibiotics in agriculture and aquaculture fields.

  6. Structural and regulatory mutations in Vibrio parahaemolyticus type III secretion systems display variable effects on virulence

    OpenAIRE

    Calder, Thomas; de Souza Santos, Marcela; Attah, Victoria; Klimko, John; Fernandez, Jessie; Salomon, Dor; Krachler, Anne-Marie; Orth, Kim

    2014-01-01

    The Gram-negative bacterium, Vibrio parahaemolyticus, is a major cause of sea-food-derived food poisoning throughout the world. The pathogenicity of V. parahaemolyticus is attributed to several virulence factors, including two type III secretion systems (T3SS), T3SS1 and T3SS2. Herein, we compare the virulence of V. parahaemolyticus POR strains, which harbor a mutation in the T3SS needle apparatus of either system, to V. parahaemolyticus CAB strains, which harbor mutations in positive transcr...

  7. Identification of Two Translocon Proteins of Vibrio parahaemolyticus Type III Secretion System 2▿

    OpenAIRE

    Kodama, Toshio; Hiyoshi, Hirotaka; Gotoh, Kazuyoshi; Akeda, Yukihiro; Matsuda, Shigeaki; Park, Kwon-Sam; Cantarelli, Vlademir V.; Iida, Tetsuya; Honda, Takeshi

    2008-01-01

    The type III secretion system (T3SS) translocon complex is composed of several associated proteins, which form a translocation channel through the host cell plasma membrane. These proteins are key molecules that are involved in the pathogenicity of many T3SS-positive bacteria, because they are necessary to deliver effector proteins into host cells. A T3SS designated T3SS2 of Vibrio parahaemolyticus is thought to be related to the enterotoxicity of this bacterium in humans, but the effector tr...

  8. Subversion of the cytoskeleton by intracellular bacteria: lessons from Listeria, Salmonella, and Vibrio

    Science.gov (United States)

    de Souza Santos, Marcela; Orth, Kim

    2018-01-01

    Summary Entry into host cells and intracellular persistence by invasive bacteria are tightly coupled to the ability of the bacterium to disrupt the eukaryotic cytoskeletal machinery. Herein we review the main strategies used by three intracellular pathogens to harness key modulators of the cytoskeleton. Two of these bacteria, namely Listeria monocytogenes and Salmonella enterica serovar Typhimurium, exhibit quite distinct intracellular lifestyles, and therefore, provide a comprehensive panel for the understanding of the intricate bacteria-cytoskeleton interplay during infections. The emerging intracellular pathogen Vibrio parahaemolyticus is depicted as a developing model for the uncovering of novel mechanisms used to hijack the cytoskeleton. PMID:25440316

  9. Septic arthritis and subsequent fatal septic shock caused by Vibrio vulnificus infection

    DEFF Research Database (Denmark)

    Emamifar, Amir; Asmussen Andreasen, Rikke; Andersen, Nanna Skaarup

    2015-01-01

    Vibrio vulnificus is a rare but potential fatal bacterium that can cause severe infections. Wound infections, primary sepsis and gastroenteritis are the most common clinical features. Septic arthritis caused by V. vulnificus is an atypical presentation that has been reported in only two case...... reports; however, it has not been previously noted in Denmark. The authors report a case of septic arthritis caused by V. vulnificus in an immunocompromised patient. The disease progressed to severe sepsis and subsequent death within 10 h of admission....

  10. Occurrences of pathogenic Vibrio parahaemolyticus from Vellar ...

    African Journals Online (AJOL)

    Vibrio parahaemolyticus is the predominant seafood pathogen associated with human gastroenteritis. Samples were collected from Vellar estuary, shrimp ponds and shrimp for characterization of V. parahaemolyticus. A total of 26 blue green centre (BG) Vibrio strains were isolated and characterized through biochemical ...

  11. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii.

    Science.gov (United States)

    Van der Henst, Charles; Scrignari, Tiziana; Maclachlan, Catherine; Blokesch, Melanie

    2016-04-01

    Vibrio cholerae is a human pathogen and the causative agent of cholera. The persistence of this bacterium in aquatic environments is a key epidemiological concern, as cholera is transmitted through contaminated water. Predatory protists, such as amoebae, are major regulators of bacterial populations in such environments. Therefore, we investigated the interaction between V. cholerae and the amoeba Acanthamoeba castellanii at the single-cell level. We observed that V. cholerae can resist intracellular killing. The non-digested bacteria were either released or, alternatively, established a replication niche within the contractile vacuole of A. castellanii. V. cholerae was maintained within this compartment even upon encystment. The pathogen ultimately returned to its aquatic habitat through lysis of A. castellanii, a process that was dependent on the production of extracellular polysaccharide by the pathogen. This study reinforces the concept that V. cholerae is a facultative intracellular bacterium and describes a new host-pathogen interaction.

  12. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus

    OpenAIRE

    Lal, Tamrin M.; Sano, Motohiko; Hatai, Kishio; Ransangan, Julian

    2016-01-01

    This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC® 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  13. Complete genome sequence of a giant Vibrio phage ValKK3 infecting Vibrio alginolyticus

    Directory of Open Access Journals (Sweden)

    Tamrin M. Lal

    2016-06-01

    Full Text Available This paper describes the complete sequence of a giant lytic marine myophage, Vibrio phage ValKK3 that is specific to Vibrio alginolyticus ATCC® 17749™. Vibrio phage ValKK3 was subjected to whole genome sequencing on MiSeq sequencing platform and annotated using Blast2Go. The complete sequence of ValKK3 genome was deposited in DBBJ/EMBL/GenBank under accession number KP671755.

  14. Genomic and functional analysis of Vibrio phage SIO-2 reveals novel insights into ecology and evolution of marine siphoviruses.

    Science.gov (United States)

    Baudoux, A-C; Hendrix, R W; Lander, G C; Bailly, X; Podell, S; Paillard, C; Johnson, J E; Potter, C S; Carragher, B; Azam, F

    2012-08-01

    We report on a genomic and functional analysis of a novel marine siphovirus, the Vibrio phage SIO-2. This phage is lytic for related Vibrio species of great ecological interest including the broadly antagonistic bacterium Vibrio sp. SWAT3 as well as notable members of the Harveyi clade (V.harveyi ATTC BAA-1116 and V.campbellii ATCC 25920). Vibrio phage SIO-2 has a circularly permuted genome of 80598 bp, which displays unusual features. This genome is larger than that of most known siphoviruses and only 38 of the 116 predicted proteins had homologues in databases. Another divergence is manifest by the origin of core genes, most of which share robust similarities with unrelated viruses and bacteria spanning a wide range of phyla. These core genes are arranged in the same order as in most bacteriophages but they are unusually interspaced at two places with insertions of DNA comprising a high density of uncharacterized genes. The acquisition of these DNA inserts is associated with morphological variation of SIO-2 capsid, which assembles as a large (80 nm) shell with a novel T=12 symmetry. These atypical structural features confer on SIO-2 a remarkable stability to a variety of physical, chemical and environmental factors. Given this high level of functional and genomic novelty, SIO-2 emerges as a model of considerable interest in ecological and evolutionary studies. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  15. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    Incidents of Vibrio-associated diseases in marine aquaculture are increasingly reported on a global scale, incited also by the world’s rising temperature. Administration of antibiotics has been the most commonly applied remedy used for facing vibriosis outbreaks, giving rise to concerns about...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... to studying the interactions between marine pathogenic Vibrio and their corresponding bacteriophages, while discussing the potential and limitations of phage therapy application in the biological control of vibriosis....

  16. Bacteriophages in the control of pathogenic vibrios

    Directory of Open Access Journals (Sweden)

    Nicolás Plaza

    2018-01-01

    Full Text Available Vibrios are common inhabitants of marine and estuarine environments. Some of them can be pathogenic to humans and/or marine animals using a broad repertory of virulence factors. Lately, several reports have indicated that the incidence of Vibrio infections in humans is rising and also in animals constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control.

  17. Occurrences of pathogenic Vibrio parahaemolyticus from Vellar ...

    African Journals Online (AJOL)

    user

    2013-04-03

    2001). Vibrio vulnificus as a health hazard for shrimp consumers. Revista do Instituto de Medicina Tropical de Sao Paulo. 43: 263- 266. Sambrook J, Fritsch EF, Maniatis T (1989). Molecular Cloning: A. Laboratory Manual, 2nd ed.

  18. Vibrio variabilis sp. nov. and Vibrio maritimus sp. nov., isolated from Palythoa caribaeorum.

    Science.gov (United States)

    Chimetto, Luciane A; Cleenwerck, Ilse; Moreira, Ana Paula B; Brocchi, Marcelo; Willems, Anne; De Vos, Paul; Thompson, Fabiano L

    2011-12-01

    Two novel vibrio isolates (R-40492(T) and R-40493(T)) originating from the zoanthid Palythoa caribaeorum in Brazil in 2005 were taxonomically characterized by means of a polyphasic approach comprising multilocus sequence analysis (MLSA), DNA-DNA hybridization (DDH), ΔT(m) analysis and phenotypic characterization. Phylogenetic analysis based on 16S rRNA gene sequences showed that R-40492(T) and R-40493(T) fell within the genus Vibrio and were most closely related to each other with 99% similarity; similarities of these two novel isolates towards Vibrio neptunius LMG 20536(T), Vibrio coralliilyticus LMG 20984(T), Vibrio nigripulchritudo LMG 3896(T), Vibrio sinaloensis LMG 25238(T) and Vibrio brasiliensis LMG 20546(T) varied between 97.1 and 98.5%. DDH experiments showed that the two isolates had less than 15% relatedness to the phylogenetically most closely related Vibrio species. R-40492(T) and R-40493(T) had 55-57% relatedness to each other. The ΔT(m) between R-40492(T) and R-40493(T) was 6.12 °C. In addition, MLSA of concatenated sequences (16S rRNA, ftsZ, gyrB, recA, rpoA, topA, pyrH and mreB; 6035 bp in length) showed that the two novel isolates formed a separate branch with less than 92% concatenated gene sequence similarity towards known species of vibrios. Two novel species are proposed to accommodate these novel isolates, namely Vibrio variabilis sp. nov. (type strain, R-40492(T)=LMG 25438(T)=CAIM 1454(T)) and Vibrio maritimus sp. nov. (type strain, R-40493(T)=LMG 25439(T)=CAIM 1455(T)).

  19. Molecular characterizations of Vibrio parahaemolyticus in seafood from the Black Sea, Turkey.

    Science.gov (United States)

    Terzi Gulel, G; Martinez-Urtaza, J

    2016-06-01

    Vibrio parahaemolyticus is a marine bacterium that is considered as one of the major causes of bacterial food-borne outbreaks at a global scale. A total of 114 samples including mussel (n = 42), seawater (n = 22) and fish (n = 50) samples were collected and subjected to investigation. Vibrio parahaemolyticus was detected in 45 (39%) of 114 samples with an occurrence in mussel, seawater and fish samples of 76, 40·9 and 8% respectively. A total of 96 isolates were positive for the species-specific genes toxR and tlh and confirmed as V. parahaemolyticus. Presence of the virulence marker gene tdh was not identified in any of the strains investigated; however, four of strains were positive for the trh gene. Serological analysis of eight randomly selected trh-negative isolates identified three different serotypes: O4:K untypeable (KUT), O2:KUT, O3:KUT. Conversely, all four trh-positive strains belonged to a single serotype (O1:K1) and share an undistinguishable genetic profile by PFGE analysis, suggesting the existence of a dominant clone for the trh-positive strains in the region. Vibrio parahaemolyticus is the most prevalent food-poisoning bacterium associated with seafood consumption. The number of infections is increasing worldwide and is being reported in areas with no previous incidence. This study provides the first instance of the occurrence of V. parahaemolyticus strains with virulence traits in the Black Sea, contributing to gain a better understanding about potential risk associated with this pathogen in the region. © 2016 The Society for Applied Microbiology.

  20. Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity

    OpenAIRE

    Muras, Andrea; Mayer, Celia; Romero, Manuel; Camino, Tamara; Ferrer, Maria D.; Mira, Alex; Otero, Ana

    2018-01-01

    ABSTRACT Background: Previous studies have suggested the quorum sensing signal AI-2 as a potential target to prevent the biofilm formation by Streptococcus mutans, a pathogen involved in tooth decay. Objective: To obtain inhibition of biofilm formation by S. mutans by extracts obtained from the marine bacterium Tenacibaculum sp. 20J interfering with the AI-2 quorum sensing system. Design: The AI-2 inhibitory activity was tested with the biosensors Vibrio harveyi BB170 and JMH597. S. mutans AT...

  1. Hatchery mortalities of larval oysters caused by Vibrio tubiashii and Vibrio coralliilyticus

    Science.gov (United States)

    Hatchery production of bivalve shellfish has been hampered by the occasional presence of opportunistic pathogens, particularly Vibrio coralliilyticus and Vibrio tubiashii. The present study reports the results of several avenues of research to better define these pathogens and the roles they play i...

  2. Rapid proliferation of Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae during freshwater flash floods in French Mediterranean coastal lagoons.

    Science.gov (United States)

    Esteves, Kevin; Hervio-Heath, Dominique; Mosser, Thomas; Rodier, Claire; Tournoud, Marie-George; Jumas-Bilak, Estelle; Colwell, Rita R; Monfort, Patrick

    2015-11-01

    Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio cholerae of the non-O1/non-O139 serotype are present in coastal lagoons of southern France. In these Mediterranean regions, the rivers have long low-flow periods followed by short-duration or flash floods during and after heavy intense rainstorms, particularly at the end of the summer and in autumn. These floods bring large volumes of freshwater into the lagoons, reducing their salinity. Water temperatures recorded during sampling (15 to 24°C) were favorable for the presence and multiplication of vibrios. In autumn 2011, before heavy rainfalls and flash floods, salinities ranged from 31.4 to 36.1‰ and concentrations of V. parahaemolyticus, V. vulnificus, and V. cholerae varied from 0 to 1.5 × 10(3) most probable number (MPN)/liter, 0.7 to 2.1 × 10(3) MPN/liter, and 0 to 93 MPN/liter, respectively. Following heavy rainstorms that generated severe flash flooding and heavy discharge of freshwater, salinity decreased, reaching 2.2 to 16.4‰ within 15 days, depending on the site, with a concomitant increase in Vibrio concentration to ca. 10(4) MPN/liter. The highest concentrations were reached with salinities between 10 and 20‰ for V. parahaemolyticus, 10 and 15‰ for V. vulnificus, and 5 and 12‰ for V. cholerae. Thus, an abrupt decrease in salinity caused by heavy rainfall and major flooding favored growth of human-pathogenic Vibrio spp. and their proliferation in the Languedocian lagoons. Based on these results, it is recommended that temperature and salinity monitoring be done to predict the presence of these Vibrio spp. in shellfish-harvesting areas of the lagoons. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Exposure to Static Magnetic Field Stimulates Quorum Sensing Circuit in Luminescent Vibrio Strains of the Harveyi Clade

    Science.gov (United States)

    Talà, Adelfia; Delle Side, Domenico; Buccolieri, Giovanni; Tredici, Salvatore Maurizio; Velardi, Luciano; Paladini, Fabio; De Stefano, Mario; Nassisi, Vincenzo; Alifano, Pietro

    2014-01-01

    In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi) and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule. PMID:24960170

  4. Exposure to static magnetic field stimulates quorum sensing circuit in luminescent Vibrio strains of the Harveyi clade.

    Directory of Open Access Journals (Sweden)

    Adelfia Talà

    Full Text Available In this study, the evidence of electron-dense magnetic inclusions with polyhedral shape in the cytoplasm of Harveyi clade Vibrio strain PS1, a bioluminescent bacterium living in symbiosis with marine organisms, led us to investigate the behavior of this bacterium under exposure to static magnetic fields ranging between 20 and 2000 Gauss. When compared to sham-exposed, the light emission of magnetic field-exposed bacteria growing on solid medium at 18°C ±0.1°C was increased up to two-fold as a function of dose and growth phase. Stimulation of bioluminescence by magnetic field was more pronounced during the post-exponential growth and stationary phase, and was lost when bacteria were grown in the presence of the iron chelator deferoxamine, which caused disassembly of the magnetic inclusions suggesting their involvement in magnetic response. As in luminescent Vibrio spp. bioluminescence is regulated by quorum sensing, possible effects of magnetic field exposure on quorum sensing were investigated. Measurement of mRNA levels by reverse transcriptase real time-PCR demonstrated that luxR regulatory gene and luxCDABE operon coding for luciferase and fatty acid reductase complex were significantly up-regulated in magnetic field-exposed bacteria. In contrast, genes coding for a type III secretion system, whose expression was negatively affected by LuxR, were down-regulated. Up-regulation of luxR paralleled with down-regulation of small RNAs that mediate destabilization of luxR mRNA in quorum sensing signaling pathways. The results of experiments with the well-studied Vibrio campbellii strain BB120 (originally classified as Vibrio harveyi and derivative mutants unable to synthesize autoinducers suggest that the effects of magnetic fields on quorum sensing may be mediated by AI-2, the interspecies quorum sensing signal molecule.

  5. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...... milk products, is born with two complete non-replicating chromosomes. L. lactis therefore remain diploid throughout its entire life cycle....

  6. The pathogenesis, detection and prevention of Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Rongzhi eWang

    2015-03-01

    Full Text Available Vibrio parahaemolyticus, a Gram-negative motile bacterium that inhabits marine and estuarine environments throughout the world, is a major food-borne pathogen that causes life-threatening diseases in humans after the consumption of raw or undercooked seafood. The global occurrence of V. parahaemaolyticus accentuates the importance of investigating its virulence factors and their effects on the human host. This review describes the virulence factors of V. parahaemolyticus reported to date, including hemolysin, urease, two type III secretion systems (T3SS and two type VI secretion systems (T6SS, which both cause both cytotoxicity in cultured cells and enterotoxicity in animal models. We describe various types of detection methods, based on virulence factors, that are used for quantitative detection of V. parahaemolyticus in seafood. We also discuss some useful preventive measures and therapeutic strategies for the diseases mediated by V. parahaemolyticus, which can reduce, to some extent, the damage to humans and aquatic animals attributable to V. parahaemolyticus. This review extends our understanding of the pathogenic mechanisms of V. parahaemolyticus mediated by virulence factors and the diseases it causes in its human host. It should provide new insights for the diagnosis, treatment, and prevention of V. parahaemolyticus infection.

  7. Evaluation of in vitro Vibrio static activity of Shewanella algae ...

    African Journals Online (AJOL)

    To conquer disease problem in shrimp industries, probiotic biocontrol is a well known remedy now. The antagonistic ability of separated isolates from different parts of juvenile Penaeus monodon were screened against shrimp Vibrio pathogens; Vibrio parahaemolyticus and Vibrio alginolyticus. The most antagonistic effect ...

  8. RECA EXPRESSION IN RESPONSE TO SOLAR UVR IN THE MARINE BACTERIUM VIBRIO NATRIEGENS.

    Science.gov (United States)

    Medicinal plants may carry residuals of environmentally persistent pesticides or assimilate heavy metals in varying degrees. Several factors may influence contaminant accumulation, including species, level and duration of contaminant exposure, and topography. As part of a program...

  9. Effects of Global Warming on Vibrio Ecology.

    Science.gov (United States)

    Vezzulli, Luigi; Pezzati, Elisabetta; Brettar, Ingrid; Höfle, Manfred; Pruzzo, Carla

    2015-06-01

    Vibrio-related infections are increasing worldwide both in humans and aquatic animals. Rise in global sea surface temperature (SST), which is approximately 1 °C higher now than 140 years ago and is one of the primary physical impacts of global warming, has been linked to such increases. In this chapter, major known effects of increasing SST on the biology and ecology of vibrios are described. They include the effects on bacterial growth rate, both in the field and in laboratory, culturability, expression of pathogenicity traits, and interactions with aquatic organisms and abiotic surfaces. Special emphasis is given to the effect of ocean warming on Vibrio interactions with zooplankters, which represent one of the most important aquatic reservoirs for these bacteria. The reported findings highlight the biocomplexity of the interactions between vibrios and their natural environment in a climate change scenario, posing the need for interdisciplinary studies to properly understand the connection between ocean warming and persistence and spread of vibrios in sea waters and the epidemiology of the diseases they cause.

  10. Survival behaviour and virulence of the fish pathogen Vibrio ordalii in seawater microcosms.

    Science.gov (United States)

    Ruiz, Pamela; Poblete-Morales, Matías; Irgang, Rute; Toranzo, Alicia E; Avendaño-Herrera, Ruben

    2016-06-15

    Vibrio ordalii, the causative agent of atypical vibriosis, is a Gram-negative, motile, rod-shaped bacterium that severely affects the salmonid aquaculture industry. V. ordalii has been biochemically, antigenically and genetically characterized. However, studies on the survival behaviour of this bacterium in aquatic environments are scarce, and there is no information regarding its disease transmission and infectious abilities outside of the fish host or regarding water as a possible reservoir. The present study investigated the survival behaviour of V. ordalii Vo-LM-06 and Vo-LM-18 in sterile and non-sterile seawater microcosms. After a year in sterile seawater without nutrients, 1% of both V. ordalii strains survived (~10(3) colony-forming units ml(-1)), and long-term maintenance did not affect bacterial biochemical or genetic properties. Additionally, V. ordalii maintained for 60 d in sterile seawater remained infective in rainbow trout Oncorhynchus mykiss. However, after 2 d of natural seawater exposure, this bacterium became non-culturable, indicating that autochthonous microbiota may play an important role in survival. Recuperation assays that added fresh medium to non-sterile microcosms did not favour V. ordalii recovery on solid media. Our results contribute towards a better understanding of V. ordalii survival behaviour in seawater ecosystems.

  11. Inhibition of the α-carbonic anhydrase from Vibrio cholerae with amides and sulfonamides incorporating imidazole moieties.

    Science.gov (United States)

    De Vita, Daniela; Angeli, Andrea; Pandolfi, Fabiana; Bortolami, Martina; Costi, Roberta; Di Santo, Roberto; Suffredini, Elisabetta; Ceruso, Mariangela; Del Prete, Sonia; Capasso, Clemente; Scipione, Luigi; Supuran, Claudiu T

    2017-12-01

    We discovered novel and selective sulfonamides/amides acting as inhibitors of the α-carbonic anhydrase (CA, EC 4.2.1.1) from the pathogenic bacterium Vibrio cholerae (VchCA). This Gram-negative bacterium is the causative agent of cholera and colonises the upper small intestine where sodium bicarbonate is present at a high concentration. The secondary sulfonamides and amides investigated here were potent, low nanomolar VchCA inhibitors whereas their inhibition of the human cytosolic isoforms CA I and II was in the micromolar range or higher. The molecules represent an interesting lead for antibacterial agents with a possibly new mechanism of action, although their CA inhibition mechanism is unknown for the moment.

  12. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  13. Vibrio ecology - Identifying Environmental Determinants Favorable for the Presence and Transmission of Pathogenic Vibrios

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In a tri-coastal collaborative study, the population densities of vibrios are being determined in the Mississippi Sound, Puget Sound, Chesapeake Bay, and Timbalier...

  14. PHAGE TYPING OF VIBRIO "EL TOR"

    Directory of Open Access Journals (Sweden)

    P. ADIBFAR

    1973-07-01

    Full Text Available 33 Stools from 518 patients suspected of having cholera were examined. From 174 of these patients Vibrio EI Tor was isolated. PO of these strains belonged to phage type IV, 53 to phage type V and one strain was untypable. It is suggested that these strains originated from two different sources.

  15. AKTIVITAS ANTIBAKTERI EKSTRAK BUAH ADAS (Foeniculum vulgare, Mill PADA Vibrio harveyi DAN Vibrio alginolyticus Antibacterial Activity of Fennel (Foeniculum vulgare Mill Extract on Vibrio alginolyticus and Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Budianto Budianto

    2015-10-01

    Pada penelitian ini menggunakan ekstrak air dari buah adas untuk mengetahui aktivitas antibakteri terhadap Vibrio harveyi dan Vibrio alginolyticus dengan menggunakan metode uji Minimum Inhibitory Concentration (MIC dan difusi cakram kertas. Hasil yang diperoleh pada uji MIC, konsentrasi terkecil untuk menghambat pertumbuhan adalah 0,060 g/ml, untuk kedua spesies bakteri. Variasi perlakuan pada uji cakram kertas yaitu konsentrasi A (0,065 g/ml, B (0,070 g/ml, C (0,075 g/ml, D (0,080 g/ml, E (0,085 g/ml, F (0,090 g/ml dan kontrol (0,000 g/ml, hasil yang diperoleh adalah konsentrasi 0,090 g/ml memiliki diameter zona hambat tertinggi sebesar 11,17 ± 0,5 mm (V. harveyi dan 12,53 ± 1,14 mm (V. alginolyticus, sehingga dapat disimpulkan bahwa buah adas (F. vulgare Mill memiliki peranan ekologi yang sangat penting sebagai bahan pengobatan alternatif dalam pengendalian penyebaran penyakit Vibriosis yang disebabkan oleh V. harveyi dan V. alginolyticus. Kata kunci: Foeniculum vulgare Mill, Vibrio harveyi, Vibrio alginolyticus, uji MIC dan difusi cakram kertas

  16. EFFECT OF AGGREGATION ON VIBRIO CHOLERAE INACTIVATION

    Science.gov (United States)

    Extensive research has shown that microorganisms exhibit increased resistance due to clumping, aggregation, particle association, or modification of antecedent growth conditions. During the course of investigating a major water-borne Vibrio cholerae outbreak in Peru, U.S. EPA inv...

  17. Antimicrobial susceptibilty of potentially pathogenic halophilic Vibrio ...

    African Journals Online (AJOL)

    Surveillance of antimicrobial resistance is indispensable for empirical treatment of infections and in preventing the spread of antimicrobial resistant microorganisms. This study is aimed at determining the antibiotic susceptibility of potentially pathogenic halophylic Vibrio species isolated in Lagos, Nigeria. Susceptibility ...

  18. Comparison of classifications of aptamers against Vibrio ...

    African Journals Online (AJOL)

    As a novel method to detect the pathogen Vibrio alginolyticus, 45 aptamers were previously selected and tested. In order to better understand the properties of these aptamers, it was essential to classify these aptamers based on appropriate criteria. The primary structure of 45 aptamers against V. alginolyticus was analyzed ...

  19. H-NS: an overarching regulator of the Vibrio cholerae life cycle.

    Science.gov (United States)

    Ayala, Julio C; Silva, Anisia J; Benitez, Jorge A

    2017-01-01

    Vibrio cholerae has become a model organism for studies connecting virulence, pathogen evolution and infectious disease ecology. The coordinate expression of motility, virulence and biofilm enhances its pathogenicity, environmental fitness and fecal-oral transmission. The histone-like nucleoid structuring protein negatively regulates gene expression at multiple phases of the V. cholerae life cycle. Here we discuss: (i) the regulatory and structural implications of H-NS chromatin-binding in the two-chromosome cholera bacterium; (ii) the factors that counteract H-NS repression; and (iii) a model for the regulation of the V. cholerae life cycle that integrates H-NS repression, cyclic diguanylic acid signaling and the general stress response. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  20. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  1. Factors affecting the uptake and retention of Vibrio vulnificus in oysters.

    Science.gov (United States)

    Froelich, Brett A; Noble, Rachel T

    2014-12-01

    Vibrio vulnificus, a bacterium ubiquitous in oysters and coastal water, is capable of causing ailments ranging from gastroenteritis to grievous wound infections or septicemia. The uptake of these bacteria into oysters is often examined in vitro by placing oysters in seawater amended with V. vulnificus. Multiple teams have obtained similar results in studies where laboratory-grown bacteria were observed to be rapidly taken up by oysters but quickly eliminated. This technique, along with suggested modifications, is reviewed here. In contrast, the natural microflora within oysters is notoriously difficult to eliminate via depuration. The reason for the transiency of exogenous bacteria is that those bacteria are competitively excluded by the oyster's preexisting microflora. Evidence of this phenomenon is shown using in vitro oyster studies and a multiyear in situ case study. Depuration of the endogenous oyster bacteria occurs naturally and can also be artificially induced, but both of these events require extreme conditions, natural or otherwise, as explained here. Finally, the "viable but nonculturable" (VBNC) state of Vibrio is discussed. This bacterial torpor can easily be confused with a reduction in bacterial abundance, as bacteria in this state fail to grow on culture media. Thus, oysters collected from colder months may appear to be relatively free of Vibrio but in reality harbor VBNC cells that respond to exogenous bacteria and prevent colonization of oyster matrices. Bacterial-uptake experiments combined with studies involving cell-free spent media are detailed that demonstrate this occurrence, which could explain why the microbial community in oysters does not always mirror that of the surrounding water. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. Antibiotic resistance of Vibrio parahaemolyticus isolated from coastal seawater and sediment in Malaysia

    Science.gov (United States)

    Drais, Ashraf Abbas; Usup, Gires; Ahmad, Asmat

    2016-11-01

    Vibrio parahaemolyticus is widely recognized pathogenic Vibrio species due to numerous outbreaks and its' wide occurrence in the marine environment. A total of 50 Vibrio parahaemolyticus isolates were isolated from seawater and sediments in Malaysia were tested for sensitivity to 19 antibiotics using disc diffusion method. It was found that all isolates were resistant towards ampicillin (10 μg), penicillin (10 μg), methicillin (5 μg), and novobiocin (5 μg); but exhibit sensitivity to chloramphenicol (30 μg) and gentamicin (100 μg). The low percentage of sensitivity towards antibiotics was observed with the following antibiotics; amoxicillin 10μg (98%), fluconazole 25μg (98%), erythromycin 15 μg (92%), vancomycin 30 μg (92%), bacitracin 10 μg (84%), carbenicillin 100 μg (84%), cephalothin 30 μg (52%), nitrofurantion 200 μg (52%), ciprofloxacin 5 μg (40%), tetracycline 30 μg (20%), kanamycin 30 μg (10%), nalidixic acid 30 μg (10%) and streptomycin 20 μg (6%). Multiple antibiotic resistance (MAR) index was found to be 0.42-0.78. All the isolates were multi-resistant to these antibiotics. This indicates that the isolates originate from high-risk source of contamination where antibiotics are often used. Thus, there is a need for supervised use of antibiotics and frequent surveillance of V. parahaemolyticus strains for antimicrobial resistance. The presence of V. parahaemolyticus in coastal water with a high value of multiple antibiotic resistance indexes (MARI) can increase the risk of exposure to human and regular monitoring program for this potential human pathogenic bacterium is important.

  3. Molecular identification of phosphate solubilizing bacterium ...

    African Journals Online (AJOL)

    A phosphate solubilizing bacterium was isolated from the rhizosphere soil of upland rice and identified by 16S rRNA gene sequencing. The gene sequence showed 99% homology with Alcaligenes faecalis. Based on the gene sequence homology, it was identified as A. faecalis. Interaction effect of this bacterium on growth ...

  4. The Vibrio harveyi Master Quorum-sensing Regulator, LuxR, a TetR-type Protein is Both an Activator and a Repressor: DNA Recognition and Binding Specificity at Target Promoters

    OpenAIRE

    Pompeani, Audra J; Irgon, Joseph J; Berger, Michael F; Wingreen, Ned S; Bassler, Bonnie L; Bulyk, Martha Leonia

    2008-01-01

    Quorum sensing is the process of cell-to-cell communication by which bacteria communicate via secreted signal molecules called autoinducers. As cell population density increases, the accumulation of autoinducers leads to co-ordinated changes in gene expression across the bacterial community. The marine bacterium, Vibrio harveyi, uses three autoinducers to achieve intra-species, intra-genera and inter-species cell–cell communication. The detection of these autoinducers ultimately leads to the ...

  5. Vibrio cholerae O1 secretes an extracellular matrix in response to antibody-mediated agglutination.

    Directory of Open Access Journals (Sweden)

    Danielle E Baranova

    Full Text Available Vibrio cholerae O1 is one of two serogroups responsible for epidemic cholera, a severe watery diarrhea that occurs after the bacterium colonizes the human small intestine and secretes a potent ADP-ribosylating toxin. Immunity to cholera is associated with intestinal anti-lipopolysaccharide (LPS antibodies, which are known to inhibit V. cholerae motility and promote bacterial cell-cell crosslinking and aggregation. Here we report that V. cholerae O1 classical and El Tor biotypes produce an extracellular matrix (ECM when forcibly immobilized and agglutinated by ZAC-3 IgG, an intestinally-derived monoclonal antibody (MAb against the core/lipid A region of LPS. ECM secretion, as demonstrated by crystal violet staining and scanning electron microscopy, occurred within 30 minutes of antibody exposure and peaked by 3 hours. Non-motile mutants of V. cholerae did not secrete ECM following ZAC-3 IgG exposure, even though they were susceptible to agglutination. The ECM was enriched in O-specific polysaccharide (OSP but not Vibrio polysaccharide (VPS. Finally, we demonstrate that ECM production by V. cholerae in response to ZAC-3 IgG was associated with bacterial resistant to a secondary complement-mediated attack. In summary, we propose that V. cholerae O1, upon encountering anti-LPS antibodies in the intestinal lumen, secretes an ECM (or O-antigen capsule possibly as a strategy to shield itself from additional host immune factors and to exit an otherwise inhospitable host environment.

  6. Vibrio vulnificus Type 6 Secretion System 1 Contains Anti-Bacterial Properties.

    Directory of Open Access Journals (Sweden)

    Selina R Church

    Full Text Available Vibrio vulnificus is a bacterium responsible for severe gastroenteritis, sepsis and wound infections. Gastroenteritis and sepsis are commonly associated with the consumption of raw oysters, whereas wound infection is often associated with the handling of contaminated fish. Although classical virulence factors of this emerging pathogen are well characterised, there remains a paucity of knowledge regarding the general biology of this species. To investigate the presence of previously unreported virulence factors, we applied whole genome sequencing to a panel of ten V. vulnificus strains with varying virulence potentials. This identified two novel type 6 secretion systems (T6SSs, systems that are known to have a role in bacterial virulence and population dynamics. By utilising a range of molecular techniques and assays we have demonstrated the functionality of one of these T6SSs. Furthermore, we have shown that this system is subject to thermoregulation and is negatively regulated by increasing salinity concentrations. This secretion system was also shown to be involved in the killing of V. vulnificus strains that did not possess this system and a model is proposed as to how this interaction may contribute to population dynamics within V. vulnificus strains. In addition to this intra-species killing, this system also contributes to the killing of inter bacterial species and may have a role in the general composition of Vibrio species in the environment.

  7. Broad spectrum pro-quorum-sensing molecules as inhibitors of virulence in vibrios.

    Directory of Open Access Journals (Sweden)

    Wai-Leung Ng

    Full Text Available Quorum sensing (QS is a bacterial cell-cell communication process that relies on the production and detection of extracellular signal molecules called autoinducers. QS allows bacteria to perform collective activities. Vibrio cholerae, a pathogen that causes an acute disease, uses QS to repress virulence factor production and biofilm formation. Thus, molecules that activate QS in V. cholerae have the potential to control pathogenicity in this globally important bacterium. Using a whole-cell high-throughput screen, we identified eleven molecules that activate V. cholerae QS: eight molecules are receptor agonists and three molecules are antagonists of LuxO, the central NtrC-type response regulator that controls the global V. cholerae QS cascade. The LuxO inhibitors act by an uncompetitive mechanism by binding to the pre-formed LuxO-ATP complex to inhibit ATP hydrolysis. Genetic analyses suggest that the inhibitors bind in close proximity to the Walker B motif. The inhibitors display broad-spectrum capability in activation of QS in Vibrio species that employ LuxO. To the best of our knowledge, these are the first molecules identified that inhibit the ATPase activity of a NtrC-type response regulator. Our discovery supports the idea that exploiting pro-QS molecules is a promising strategy for the development of novel anti-infectives.

  8. NMR-based microbial metabolomics and the temperature-dependent coral pathogen Vibrio coralliilyticus.

    Science.gov (United States)

    Boroujerdi, Arezue F B; Vizcaino, Maria I; Meyers, Alexander; Pollock, Elizabeth C; Huynh, Sara Lien; Schock, Tracey B; Morris, Pamela J; Bearden, Daniel W

    2009-10-15

    Coral bleaching occurs when the symbioses between coral animals and their zooxanthellae is disrupted, either as part of a natural cycle or as the result of unusual events. The bacterium Vibrio coralliilyticus (type strain ATCC BAA-450) has been linked to coral disease globally (for example in the Mediterranean, Red Sea, Indian Ocean, and Great Barrier Reef) and like many other Vibrio species exhibits a temperature-dependent pathogenicity. The temperature-dependence of V. corallillyticus in regard to its metabolome was investigated. Nuclear magnetic resonance (NMR) spectra were obtained of methanol-water extracts of intracellula rmetabolites (endometabolome) from multiple samples of the bacteria cultured into late stationary phase at 27 degrees C (virulent form) and 24 degrees C (avirulent form). The spectra were subjected to principal components analysis (PCA), and significant temperature-based separations in PC1, PC2, and PC3 dimensions were observed. Betaine, succinate, and glutamate were identified as metabolites that caused the greatest temperature-based separations in the PC scores plots. With increasing temperature, betaine was shown to be down regulated, while succinate and glutamate were up regulated.

  9. Evidence for the role of horizontal transfer in generating pVT1, a large mosaic conjugative plasmid from the clam pathogen, Vibrio tapetis.

    Directory of Open Access Journals (Sweden)

    Gaël Erauso

    Full Text Available The marine bacterium Vibrio tapetis is the causative agent of the brown ring disease, which affects the clam Ruditapes philippinarum and causes heavy economic losses in North of Europe and in Eastern Asia. Further characterization of V. tapetis isolates showed that all the investigated strains harbored at least one large plasmid. We determined the sequence of the 82,266 bp plasmid pVT1 from the CECT4600(T reference strain and analyzed its genetic content. pVT1 is a mosaic plasmid closely related to several conjugative plasmids isolated from Vibrio vulnificus strains and was shown to be itself conjugative in Vibrios. In addition, it contains DNA regions that have similarity with several other plasmids from marine bacteria (Vibrio sp., Shewanella sp., Listonella anguillarum and Photobacterium profundum. pVT1 contains a number of mobile elements, including twelve Insertion Sequences or inactivated IS genes and an RS1 phage element related to the CTXphi phage of V. cholerae. The genetic organization of pVT1 underscores an important role of horizontal gene transfer through conjugative plasmid shuffling and transposition events in the acquisition of new genetic resources and in generating the pVT1 modular organization. In addition, pVT1 presents a copy number of 9, relatively high for a conjugative plasmid, and appears to belong to a new type of replicon, which may be specific to Vibrionaceae and Shewanelleacae.

  10. Mechanistic Insights Into Filamentous Phage Integration In Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Bhabatosh eDas

    2014-11-01

    Full Text Available Vibrio cholerae, the etiological agent of acute diarrhoeal disease cholera, harbors large numbers of lysogenic filamentous phages, contribute significantly to the host pathogenesis and provide fitness factors to the pathogen that help the bacterium to survive in natural environment. Most of the vibriophage genomes are not equipped with integrase and thus exploit two host-encoded tyrosine recombinases, XerC and XerD, for lysogenic conversion. Integration is site-specific and it occurs at dimer resolution site (dif of either one or both chromosomes of V. cholerae. Each dif sequence contains two recombinase-binding sequences flanking a central region. The integration follows a sequential strand exchanges between dif and attP sites within a DNA-protein complex consisting of one pair of each recombinase and two DNA fragments. During entire process of recombination, both the DNA components and recombinases of the synaptic complex keep transiently interconnected. Within the context of synaptic complex, both of the actuated enzymes mediate cleavage of phosphodiester bonds. First cleavage generates a phosphotyrosyl-linked recombinase-DNA complex at the recombinase binding sequence and free 5’-hydroxyl end at the first base of the central region. Following the cleavage, the exposed bases with 5’-hydroxyl ends of the central region of dif and attP sites melt from their complementary strands and react with the recombinase-DNA phosphotyrosyl linkage of their recombining partner. Subsequent ligation between dif and attP strands requires complementary base pair interactions at the site of phosphodiester bond formation. Integration mechanism is mostly influenced by the compatibility of dif and attP sequences. dif sites are highly conserved across bacterial phyla. Different phage genomes have different attP sequences; therefore they rely on different mechanisms for integration. Here, I review our current understanding of integration mechanisms used by the

  11. T6SS intraspecific competition orchestrates Vibrio cholerae genotypic diversity.

    Science.gov (United States)

    Kostiuk, Benjamin; Unterweger, Daniel; Provenzano, Daniele; Pukatzki, Stefan

    2017-09-01

    Vibrio cholerae is a diverse species that inhabits a wide range of environments from copepods in brackish water to the intestines of humans. In order to remain competitive, V. cholerae uses the versatile type-VI secretion system (T6SS) to secrete anti-prokaryotic and anti-eukaryotic effectors. In addition to competing with other bacterial species, V. cholerae strains also compete with one another. Some strains are able to coexist, and are referred to as belonging to the same compatibility group. Challenged by diverse competitors in various environments, different V. choleare strains secrete different combination of effectors - presumably to best suit their niche. Interestingly, all pandemic V. cholerae strains encode the same three effectors. In addition to the diversity displayed in the encoded effectors, the regulation of V. cholerae also differs between strains. Two main layers of regulation appear to exist. One strategy connects T6SS activity with behavior that is suited to fighting eukaryotic cells, while the other is linked with natural competence - the ability of the bacterium to acquire and incorporate extracellular DNA. This relationship between bacterial killing and natural competence is potentially a source of diversification for V. cholerae as it has been shown to incorporate the DNA of cells recently killed through T6SS activity. It is through this process that we hypothesize the transfer of virulence factors, including T6SS effector modules, to happen. Switching of T6SS effectors has the potential to change the range of competitors V. cholerae can kill and to newly define which strains V. cholerae can co-exist with, two important parameters for survival in diverse environments. Copyright© by the Spanish Society for Microbiology and Institute for Catalan Studies.

  12. Genome assortment, not serogroup, defines Vibrio cholerae pandemic strains

    Energy Technology Data Exchange (ETDEWEB)

    Brettin, Thomas S [Los Alamos National Laboratory; Bruce, David C [Los Alamos National Laboratory; Challacombe, Jean F [Los Alamos National Laboratory; Detter, John C [Los Alamos National Laboratory; Han, Cliff S [Los Alamos National Laboratory; Munik, A C [Los Alamos National Laboratory; Chertkov, Olga [Los Alamos National Laboratory; Meincke, Linda [Los Alamos National Laboratory; Saunders, Elizabeth [Los Alamos National Laboratory; Choi, Seon Y [SEOUL NATL. UNIV.; Haley, Bradd J [U. MARYLAND; Taviani, Elisa [U. MARYLAND; Jeon, Yoon - Seong [INTL. VACCINE INST. SEOUL; Kim, Dong Wook [INTL. VACCINE INST. SEOUL; Lee, Jae - Hak [SEOUL NATL. UNIV.; Walters, Ronald A [PNNL; Hug, Anwar [NATL. INST. CHOLERIC ENTERIC DIS.; Colwell, Rita R [U. MARYLAND

    2009-01-01

    Vibrio cholerae, the causative agent of cholera, is a bacterium autochthonous to the aquatic environment, and a serious public health threat. V. cholerae serogroup O1 is responsible for the previous two cholera pandemics, in which classical and El Tor biotypes were dominant in the 6th and the current 7th pandemics, respectively. Cholera researchers continually face newly emerging and re-emerging pathogenic clones carrying combinations of new serogroups as well as of phenotypic and genotypic properties. These genotype and phenotype changes have hampered control of the disease. Here we compare the complete genome sequences of 23 strains of V. cholerae isolated from a variety of sources and geographical locations over the past 98 years in an effort to elucidate the evolutionary mechanisms governing genetic diversity and genesis of new pathogenic clones. The genome-based phylogeny revealed 12 distinct V. cholerae phyletic lineages, of which one, designated the V. cholerae core genome (CG), comprises both O1 classical and EI Tor biotypes. All 7th pandemic clones share nearly identical gene content, i.e., the same genome backbone. The transition from 6th to 7th pandemic strains is defined here as a 'shift' between pathogenic clones belonging to the same O1 serogroup, but from significantly different phyletic lineages within the CG clade. In contrast, transition among clones during the present 7th pandemic period can be characterized as a 'drift' between clones, differentiated mainly by varying composition of laterally transferred genomic islands, resulting in emergence of variants, exemplified by V.cholerae serogroup O139 and V.cholerae O1 El Tor hybrid clones that produce cholera toxin of classical biotype. Based on the comprehensive comparative genomics presented in this study it is concluded that V. cholerae undergoes extensive genetic recombination via lateral gene transfer, and, therefore, genome assortment, not serogroup, should be used to

  13. Vibrio cholerae Infection of Drosophilamelanogaster Mimics the Human Disease Cholera.

    Directory of Open Access Journals (Sweden)

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  14. DNA-uptake machinery of naturally competent Vibrio cholerae.

    Science.gov (United States)

    Seitz, Patrick; Blokesch, Melanie

    2013-10-29

    Natural competence for transformation is a mode of horizontal gene transfer that is commonly used by bacteria to take up DNA from their environment. As part of this developmental program, so-called competence genes, which encode the components of a DNA-uptake machinery, are expressed. Several models have been proposed for the DNA-uptake complexes of competent bacteria, and most include a type IV (pseudo)pilus as a core component. However, cell-biology-based approaches to visualizing competence proteins have so far been restricted to Gram-positive bacteria. Here, we report the visualization of a competence-induced pilus in the Gram-negative bacterium Vibrio cholerae. We show that piliated cells mostly contain a single pilus that is not biased toward a polar localization and that this pilus colocalizes with the outer membrane secretin PilQ. PilQ, on the other hand, forms several foci around the cell and occasionally colocalizes with the dynamic cytoplasmic-traffic ATPase PilB, which is required for pilus extension. We also determined the minimum competence regulon of V. cholerae, which includes at least 19 genes. Bacteria with mutations in those genes were characterized with respect to the presence of surface-exposed pili, DNA uptake, and natural transformability. Based on these phenotypes, we propose that DNA uptake in naturally competent V. cholerae cells occurs in at least two steps: a pilus-dependent translocation of the incoming DNA across the outer membrane and a pilus-independent shuttling of the DNA through the periplasm and into the cytoplasm.

  15. Copper homeostasis at the host vibrio interface: lessons from intracellular vibrio transcriptomics.

    Science.gov (United States)

    Vanhove, Audrey S; Rubio, Tristan P; Nguyen, An N; Lemire, Astrid; Roche, David; Nicod, Julie; Vergnes, Agnès; Poirier, Aurore C; Disconzi, Elena; Bachère, Evelyne; Le Roux, Frédérique; Jacq, Annick; Charrière, Guillaume M; Destoumieux-Garzón, Delphine

    2016-03-01

    Recent studies revealed that several vibrio species have evolved the capacity to survive inside host cells. However, it is still often ignored if intracellular stages are required for pathogenicity. Virulence of Vibrio tasmaniensis LGP32, a strain pathogenic for Crassostrea gigas oysters, depends on entry into hemocytes, the oyster immune cells. We investigated here the mechanisms of LGP32 intracellular survival and their consequences on the host-pathogen interaction. Entry and survival inside hemocytes were required for LGP32-driven cytolysis of hemocytes, both in vivo and in vitro. LGP32 intracellular stages showed a profound boost in metabolic activity and a major transcription of antioxidant and copper detoxification genes, as revealed by RNA sequencing. LGP32 isogenic mutants showed that resistance to oxidative stress and copper efflux are two main functions required for vibrio intracellular stages and cytotoxicity to hemocytes. Copper efflux was also essential for host colonization and virulence in vivo. Altogether, our results identify copper resistance as a major mechanism to resist killing by phagocytes, induce cytolysis of immune cells and colonize oysters. Selection of such resistance traits could arise from vibrio interactions with copper-rich environmental niches including marine invertebrates, which favour the emergence of pathogenic vibrios resistant to intraphagosomal killing across animal species. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    Science.gov (United States)

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  17. Portrait of a viral infection: The infection cycle of Vibrio vulnificus phage VvAW1 visualized through plaque assay, electron microscopy, and proteomics

    Science.gov (United States)

    Clah, K. E. Y.; Nigro, O. D.; Miranda, J.; Schvarcz, C.; Culley, A.; Saito, M. A.; Steward, G.

    2016-02-01

    The bacterium Vibrio vulnificus is an opportunistic human pathogen that thrives in warm brackish waters. Viral infection is one of several mechanisms influencing the population dynamics of this bacterium in the natural environment. V. vulnificus-specific viruses have been isolated; however, the details of their infection cycle have not been reported. As a result, our current understanding of the interaction between the bacterium and its viruses in the environment is limited. To better understand the infection process, a strain of V. vulnificus (V93D1V) and its bacteriophage, Vibrio phage VvAW1, were isolated from the estuarine waters of the Ala Wai Canal, HI. A time-series infection experiment was conducted with the virus-host pair in which samples were collected every ten minutes for eighty minutes post-infection for analysis by plaque assay, electron microscopy, and proteomics. Using electron microscopy, visibly infected bacteria were observed forty minutes after the introduction of the virus, signaling the end of the eclipse period. The peak of infection occurred at seventy minutes with an average viral load of 78 viruses per bacterium. The percentage of visibly infected bacteria reached a maximum just prior to a rise in free viruses in the culture, indicating the end of the latent period. The percentage of infected cells that lysed was low and there was little effect on the bacterial population growth rate. Analysis of the proteome revealed that protein expression patterns, in particular capsid and other structural proteins, closely follow the timing of the observed infection cycle. Together, these analyses provided the first detailed view of a viral infection in a highly lethal aquatic bacterium. The apparent temperate nature of this virus suggests that it can be a source of mortality to V. vulnificus, but has evolved to avoid total destruction of its host by complete lysis, a characteristic that helps ensure its replication in subsequent generations.

  18. Cholera and other vibrio-associated diarrhoeas*

    OpenAIRE

    1980-01-01

    In recent years, there have been major advances in knowledge of Vibrio species and related organisms that are responsible for diarrhoeal diseases, particularly V. cholerae O-Group 1 (epidemic strains), atypical V. cholerae O-Group 1, non-O-Group 1 V. cholerae (non-epidemic strains), V. parahaemolyticus, V. alginolyticus, and ”Group F vibrios”. This article reviews the important new information, and identifies gaps in our knowledge, on aspects such as the epidemiology and bacteriology of vibri...

  19. Efficacy of potential phage cocktails against Vibrio harveyi and closely related Vibrio species isolated from shrimp aquaculture environment in the south east coast of India.

    Science.gov (United States)

    Stalin, Nattan; Srinivasan, Pappu

    2017-08-01

    A diverse set of novel phages infecting the marine pathogenic Vibrio harveyi was isolated from shrimp aquaculture environments in the south east coast of India. Based on initial screening, three phages with a broad host range revealed that the growth inhibition of phage is relatively specific to V. harveyi. They were also able to infect V. alginolyticus and V. parahemolyticus that belonged to the Harveyi clade species from shrimp pond and sea coast environment samples. However, the impact of these phages on their host bacterium are well understood; a one-step growth curve experiment and transmission electron microscope (TEM) revealed three phages grouped under the Myoviridae (VHM1 and VHM2); Siphoviridae (VHS1) family. These phages were further molecular characterized with respect to phage genomic DNA isolates. The randomly amplified polymorphic DNA (RAPD), restriction fragment length polymorphism (RFLP) digestion with HindIII, and major structural proteins were distinguished by sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) clearly indicated that all the phage isolates were different, even when they came from the same source, giving an insight into the diversity of phages. Evaluation of microcosm studies of Penaeus monodon larvae infected with V. harveyi (105 CFU mL-1) showed that larvae survival after 96 h in the presence of phage treatment at 109 PFU mL-1 was enhanced when compared with the control. The resolution in over survival highly recommended that this study provides the phage-based therapy which could be an innovative and eco-friendly solution against Vibrio disease in shrimp aquaculture and in the natural environment. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. 21 CFR 866.3930 - Vibrio cholerae serological reagents.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Vibrio cholerae serological reagents. 866.3930 Section 866.3930 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES IMMUNOLOGY AND MICROBIOLOGY DEVICES Serological Reagents § 866.3930 Vibrio cholerae serological reagents. (a)...

  1. AN INVESTIGATION ON PATHOGENIC VIBRIOS DISTRIBUTION IN DOMESTIC WASTEWATER

    Directory of Open Access Journals (Sweden)

    A. Almasi

    2005-07-01

    Full Text Available Municipal wastewater is one of the most important pollution sources for water supply resources. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for controlling and prevention planning of the infectious diseases. This research was carried out to identify the distribution of the recognized pathogenic Vibrios with emphasizing on identification of Vibrio cholera in the wastewater of Kermanshah city western Iran in 2002. The method of study was cross sectional descriptive. There were 8 discharge outlet domestic wastewaters, which had been chosen as sampling sites. Samples were collected weekly in randomized manner in daytime. Three hundred and thirty nine samples were collected and analyzed. The results indicated site 7 with 5 positives, sites 4 and 8 each with 3, site 5 with 2, sites 2, 3 and 6 each with one positive, whereas, there was not any Vibrio detected in site 1. The most positive samples were seen in spring, late summer and early autumn. The positive results were detected on May, June, September, and October. Among positive samples, Vibrio parahemolyticus, could be regarded based on differentiation tests. Vibrio cholera was not seen. It seems that the presence of Vibrio parahemolyticus was due to some food store deal with distribution of seafood. Hence it is suggested that this relationship could be considered through analytical study using PCR for detection of Vibrios.

  2. Carriage of vibrio species by shrimps harvested from the coastal ...

    African Journals Online (AJOL)

    Objectives: To determine the prevalence of Vibrio spp in unprocessed shrimps and their susceptibility to antibiotics. Design: A prospective study of Vibrio spp associated with shrimps harvested from the coastal waters of South West Cameroon. Setting: A laboratory based study at the Department of Life Sciences, University ...

  3. Inactivation of Vibrio anguillarum by attached and planktonic Roseobacter cells

    DEFF Research Database (Denmark)

    D'Alvise, Paul; Melchiorsen, Jette; Porsby, Cisse Hedegaard

    2010-01-01

    The purpose of the present study was to investigate inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (10e7 cfu/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 10e2 – 10e4...

  4. Geovibrio ferrireducens, a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium

    Science.gov (United States)

    Caccavo, F.; Coates, J.D.; Rossello-Mora, R. A.; Ludwig, W.; Schleifer, K.H.; Lovley, D.R.; McInerney, M.J.

    1996-01-01

    A new, phylogenetically distinct, dissimilatory, Fe(III)-reducing bacterium was isolated from surface sediment of a hydrocarbon-contaminated ditch. The isolate, designated strain PAL-1, was an obligately anaerobic, non-fermentative, motile, gram-negative vibrio. PAL-1 grew in a defined medium with acetate as electron donor and ferric pyrophosphate, ferric oxyhydroxide, ferric citrate, Co(III)-EDTA, or elemental sulfur as sole electron acceptor. PAL-1 also used proline, hydrogen, lactate, propionate, succinate, fumarate, pyruvate, or yeast extract as electron donors for Fe(III) reduction. It is the first bacterium known to couple the oxidation of an amino acid to Fe(III) reduction. PAI-1 did not reduce oxygen, Mn(IV), U(VI), Cr(VI), nitrate, sulfate, sulfite, or thiosulfate with acetate as the electron donor. Cell suspensions of PAL-1 exhibited dithionite-reduced minus air-oxidized difference spectra that were characteristic of c-type cytochromes. Analysis of the 16S rRNA gene sequence of PAL-1 showed that the strain is not related to any of the described metal-reducing bacteria in the Proteobacteria and, together with Flexistipes sinusarabici, forms a separate line of descent within the Bacteria. Phenotypically and phylogenetically, strain PAI-1 differs from all other described bacteria, and represents the type strain of a new genus and species. Geovibrio ferrireducens.

  5. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    Science.gov (United States)

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  6. Environmental occurrence and clinical impact of Vibrio vulnificus and Vibrio parahaemolyticus: a European perspective.

    Science.gov (United States)

    Baker-Austin, Craig; Stockley, Louise; Rangdale, Rachel; Martinez-Urtaza, Jaime

    2010-02-01

    Vibrio vulnificus and Vibrio parahaemolyticus are ubiquitous Gram-negative bacterial pathogens found naturally in marine and estuarine waters, and are a leading cause of seafood-associated bacterial illness. These pathogens are commonly reported in the USA and in many Asian countries, including China, Japan and Taiwan; however, there is growing concern that V. vulnificus and V. parahaemolyticus may represent an important and increasing clinical problem in Europe. Several factors underlie the need for a greater understanding of these non-cholera vibrios within a European context. First, there is a growing body of evidence to suggest that V. vulnificus and V. parahaemolyticus infections are increasing, and tend to follow regional climatic trends, with outbreaks typically following episodes of unusually warm weather. Such findings are especially alarming given current predictions regarding warming of marine waters as a result of global climatic change. Second, a myriad of epidemiological factors may greatly increase the incidence as well as clinical burden of these pathogens - including increasing global consumption and trade of seafood produce coupled to an increase in the number of susceptible individuals consuming seafood produce. Finally, there is currently a lack of detailed surveillance information regarding non-cholerae Vibrio infections in Europe, as these pathogens are not notifiable in many countries, which probably masks the true clinical burden of many human infections. This review will present a pertinent overview of both the environmental occurrence and clinical impact of V. vulnificus and V. parahaemolyticus in Europe. © 2010 Crown copyright.

  7. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    Science.gov (United States)

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. IN VITRO ANTAGONISTIC ACTIVITIES OF INDONESIAN MARINE SPONGE AAPTOS AAPTOS AND CALLYSPONGIA PSEUDORETICULATA EXTRACTS AND THEIR TOXICITY AGAINST Vibrio spp.

    Directory of Open Access Journals (Sweden)

    Rosmiati Rosmiati

    2011-12-01

    Full Text Available Vibriosis is one of diseases which often results in mass mortality of Penaeus monodon larval rearing systems. It attacks shrimp of all stages in zoea, mysis and shrimp postlarva stage. This disease is caused by Vibrio spp, particularly Vibrio harveyi (a luminescent bacterium. Several kinds of antibiotics and chemical material have been used to overcome the disease but they have side effects to environment and human. The searching of bioactive compounds as an alternative treatment has been done for multi purposes. In this study diethyl eter, butanol and aqueous extract of Indonesian sponges Aaptos aaptos and Callyspongia pseudoreticulata were tested for in vitro activity against Vibrio spp. and Vibrio harveyi by using disc diffusion method. The result showed that all extracts of Aaptos aaptos gave a positive antibacterial activity towards those pathogenic bacteria. Meanwhile, only butanol extract of Callyspongia pseudoreticulata obtained to exhibit an antibacterial activity on those pathogenic bacteria. The strong anti-vibrio activity were shown by butanol and aqueous extract of Aaptos aaptos with the minimum inhibitory concentration (MIC value of 0.313 and 0.625 mg/mL, respectively. Whilst, the butanol extract of Callyspongia pseudoreticulata indicated a low antibacterial activity with the MIC value of 10 mg/mL. Toxicity of those active extracts was evaluated by Brine Shrimp Lethality Test (BST. Interestingly, butanol and aqueous extracts of Aaptos aaptos did not show any toxic effect in Artemia salina larvae up to 8 x MIC (2.504 mg/mL and 5.000 mg/mL. It is the first report for the anti-vibr io activity of both Aaptos aaptos and Callyspongia pseudoreticulata. This results suggest that Aaptos aaptos has a potential to be used as a source of alternative compound to vibriosis prevention for mariculture.

  9. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments

    Science.gov (United States)

    Mey, Alexandra R.; Wyckoff, Elizabeth E.

    2015-01-01

    SUMMARY Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. PMID:26658001

  10. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments.

    Science.gov (United States)

    Payne, Shelley M; Mey, Alexandra R; Wyckoff, Elizabeth E

    2016-03-01

    Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  11. Vibrio elicits targeted transcriptional responses from copepod hosts.

    Science.gov (United States)

    Almada, Amalia A; Tarrant, Ann M

    2016-06-01

    Copepods are abundant crustaceans that harbor diverse bacterial communities, yet the nature of their interactions with microbiota are poorly understood. Here, we report that Vibrio elicits targeted transcriptional responses in the estuarine copepod Eurytemora affinis We pre-treated E. affinis with an antibiotic cocktail and exposed them to either a zooplankton specialist (Vibrio sp. F10 9ZB36) or a free-living species (Vibrio ordalii 12B09) for 24 h. We then identified via RNA-Seq a total of 78 genes that were differentially expressed following Vibrio exposure, including homologs of C-type lectins, chitin-binding proteins and saposins. The response differed between the two Vibrio treatments, with the greatest changes elicited upon inoculation with V. sp. F10 We suggest that these differentially regulated genes play important roles in cuticle integrity, the innate immune response, and general stress response, and that their expression may enable E. affinis to recognize and regulate symbiotic vibrios. We further report that V. sp. F10 culturability is specifically altered upon colonization of E. affinis These findings suggest that rather than acting as passive environmental vectors, copepods discriminately interact with vibrios, which may ultimately impact the abundance and activity of copepod-associated bacteria. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Biodegradation of endosulfan by a soil bacterium.

    Science.gov (United States)

    Shivaramaiah, H M; Kennedy, I R

    2006-01-01

    A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.

  13. Radiosensitivity of Vibrio parahaemolyticus in seafood

    International Nuclear Information System (INIS)

    Piadang, S.; Kraisorn, K.

    1988-01-01

    The influence of two salt concentration 0.85% and 3% NaCl, on the radiosensitivity of 3 cultures of Vibrio parahaemolyticus K 3 , K 13 , and K 28 , incoulated into sterile crab meat and pealed shrimp homogerntes was investigated. In peeled shrimp, with 0.85% NaCl, its D 10 values for strains K 3 , K 13 and K 28 were 57.1+-0.50, 62.6+-0.79, 47.9+-0.43 Gy, respectively. The variation of the strains was increased in 3% salt concentration with D 10 values of 80.5+-0.88, 73.3+-1.04, 52.8+-0.44 Gy, for strains K 3 , K 13 and K 28 , respectively. For the crab meat honagenate with 0.85% NaCl, its D 10 value for strains K 3 and K 13 were 57.8+-0.72 and 52.1+-0.96 Gy, and the values for 3% NaCl were 70.0+-0.12 and 52.7+-0.82 Gy, respectively. In most cases the complete destruction was obtained with 50-60 kGy. Vibrio parahaemolyticus in seafood could be readily controlled by radicidation

  14. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  15. Whole-Genome Enrichment Provides Deep Insights into Vibrio cholerae Metagenome from an African River.

    Science.gov (United States)

    Vezzulli, L; Grande, C; Tassistro, G; Brettar, I; Höfle, M G; Pereira, R P A; Mushi, D; Pallavicini, A; Vassallo, P; Pruzzo, C

    2017-04-01

    The detection and typing of Vibrio cholerae in natural aquatic environments encounter major methodological challenges related to the fact that the bacterium is often present in environmental matrices at very low abundance in nonculturable state. This study applied, for the first time to our knowledge, a whole-genome enrichment (WGE) and next-generation sequencing (NGS) approach for direct genotyping and metagenomic analysis of low abundant V. cholerae DNA (<50 genome unit/L) from natural water collected in the Morogoro river (Tanzania). The protocol is based on the use of biotinylated RNA baits for target enrichment of V. cholerae metagenomic DNA via hybridization. An enriched V. cholerae metagenome library was generated and sequenced on an Illumina MiSeq platform. Up to 1.8 × 10 7  bp (4.5× mean read depth) were found to map against V. cholerae reference genome sequences representing an increase of about 2500 times in target DNA coverage compared to theoretical calculations of performance for shotgun metagenomics. Analysis of metagenomic data revealed the presence of several V. cholerae virulence and virulence associated genes in river water including major virulence regions (e.g. CTX prophage and Vibrio pathogenicity island-1) and genetic markers of epidemic strains (e.g. O1-antigen biosynthesis gene cluster) that were not detectable by standard culture and molecular techniques. Overall, besides providing a powerful tool for direct genotyping of V. cholerae in complex environmental matrices, this study provides a 'proof of concept' on the methodological gap that might currently preclude a more comprehensive understanding of toxigenic V. cholerae emergence from natural aquatic environments.

  16. Characterization of a new phage, termed ϕA318, which is specific for Vibrio alginolyticus.

    Science.gov (United States)

    Lin, Ying-Rong; Chiu, Chi-Wen; Chang, Feng-Yi; Lin, Chan-Shing

    2012-05-01

    Vibrio alginolyticus is an opportunistic pathogen of animals and humans; its related strains can also produce tetrodotoxin and hemolysins. A new phage, ϕA318, which lysed its host V. alginolyticus with high efficiency, was characterized. The burst size of ϕA318 in V. alginolyticus was 72 PFU/bacterium at an MOI of 1 at room temperature; the plaque size was as large as 5 mm in diameter. Electron microscopy (EM) of the phage particles revealed a 50- to 55-nm isomorphous icosahedral head with a 12-nm non-contractile tail, similar to the T7-like phages of the family Podoviridae. Phylogenetic analysis based on complete sequences of the DNA-directed RNA polymerase gene revealed that ϕA318 had 28-47% amino acid identity to enterobacteria phages T7 and SP6, and other Vibrio phages, and the phylogenetic distance suggested that ϕA318 could be classified as a new T7-like bacteriophage. Nevertheless, several motifs in the ϕA318 phage RNA polymerase were highly conserved, including DFRGR (T7-421 motif), DG (T7-537 motif), PSEKPQDIYGAVS (T7-563 motif), RSMTKKPVMTL PYGS (T7-627 motif), and HDS (T7-811 motif). Genetic analysis indicated that phage ϕA318 is not a thermostable direct hemolysin producer. The results suggest that the MOI should be higher than 0.1 to prevent the chance of hemolysin production by the bacteria before they are lysed by the phage.

  17. Vitroprocines, new antibiotics against Acinetobacter baumannii, discovered from marine Vibrio sp. QWI-06 using mass-spectrometry-based metabolomics approach

    Science.gov (United States)

    Liaw, Chih-Chuang; Chen, Pei-Chin; Shih, Chao-Jen; Tseng, Sung-Pin; Lai, Ying-Mi; Hsu, Chi-Hsin; Dorrestein, Pieter C.; Yang, Yu-Liang

    2015-08-01

    A robust and convenient research strategy integrating state-of-the-art analytical techniques is needed to efficiently discover novel compounds from marine microbial resources. In this study, we identified a series of amino-polyketide derivatives, vitroprocines A-J, from the marine bacterium Vibrio sp. QWI-06 by an integrated approach using imaging mass spectroscopy and molecular networking, as well as conventional bioactivity-guided fractionation and isolation. The structure-activity relationship of vitroprocines against Acinetobacter baumannii is proposed. In addition, feeding experiments with 13C-labeled precursors indicated that a pyridoxal 5‧-phosphate-dependent mechanism is involved in the biosynthesis of vitroprocines. Elucidation of amino-polyketide derivatives from a species of marine bacteria for the first time demonstrates the potential of this integrated metabolomics approach to uncover marine bacterial biodiversity.

  18. Structure of Vibrio cholerae ToxT reveals a mechanism for fatty acid regulation of virulence genes

    Energy Technology Data Exchange (ETDEWEB)

    Lowden, Michael J.; Skorupski, Karen; Pellegrini, Maria; Chiorazzo, Michael G.; Taylor, Ronald K.; Kull, F. Jon (Dartmouth)

    2010-03-04

    Cholera is an acute intestinal infection caused by the bacterium Vibrio cholerae. In order for V. cholerae to cause disease, it must produce two virulence factors, the toxin-coregulated pilus (TCP) and cholera toxin (CT), whose expression is controlled by a transcriptional cascade culminating with the expression of the AraC-family regulator, ToxT. We have solved the 1.9 {angstrom} resolution crystal structure of ToxT, which reveals folds in the N- and C-terminal domains that share a number of features in common with AraC, MarA, and Rob as well as the unexpected presence of a buried 16-carbon fatty acid, cis-palmitoleate. The finding that cis-palmitoleic acid reduces TCP and CT expression in V. cholerae and prevents ToxT from binding to DNA in vitro provides a direct link between the host environment of V. cholerae and regulation of virulence gene expression.

  19. Genome analysis of three novel lytic Vibrio coralliilyticus phages isolated from seawater, Okinawa, Japan.

    Science.gov (United States)

    Ramphul, Chitra; Casareto, Beatriz Estela; Dohra, Hideo; Suzuki, Tomohiro; Yoshimatsu, Katsuhiko; Yoshinaga, Koichi; Suzuki, Yoshimi

    2017-10-01

    Three novel Vibrio phages were isolated from seawater in Okinawa. The Vibrio phage RYC infected Vibrio coralliilyticus SWA 07, while Vibrio phages CKB-S1 and CKB-S2 infected the coral pathogen V. coralliilyticus P1 (LMG 23696). The Vibrio phages CKB-S1 and CKB-S2 displayed head-tail structures whereas the Vibrio phage RYC showed a tailless non-enveloped capsid. All these Vibrio phages contained linear and double-stranded DNA. The whole genome sequencing revealed that Vibrio phage RYC has a larger genome size compared to Vibrio phages CKB-S1 and CKB-S2, and six tRNAs genes were found only in Vibrio phage RYC. Genome-wide comparison showed that Vibrio phage CKB-S1 was closely related, but was not identical, to Vibrio parahaemolyticus phages VP16T and VP16C. Meanwhile, the Vibrio phages RYC and CKB-S2 did not show high genome-wide similarity to any phages. These results suggest that the Vibrio phages CKB-S1, CKB-S2 and RYC are novel phages, which need further exploration, especially for their potential applications in phage therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Glucose- but not rice-based oral rehydration therapy enhances the production of virulence determinants in the human pathogen Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Juliane Kühn

    2014-12-01

    Full Text Available Despite major attempts to prevent cholera transmission, millions of people worldwide still must address this devastating disease. Cholera research has so far mainly focused on the causative agent, the bacterium Vibrio cholerae, or on disease treatment, but rarely were results from both fields interconnected. Indeed, the treatment of this severe diarrheal disease is mostly accomplished by oral rehydration therapy (ORT, whereby water and electrolytes are replenished. Commonly distributed oral rehydration salts also contain glucose. Here, we analyzed the effects of glucose and alternative carbon sources on the production of virulence determinants in the causative agent of cholera, the bacterium Vibrio cholerae during in vitro experimentation. We demonstrate that virulence gene expression and the production of cholera toxin are enhanced in the presence of glucose or similarly transported sugars in a ToxR-, TcpP- and ToxT-dependent manner. The virulence genes were significantly less expressed if alternative non-PTS carbon sources, including rice-based starch, were utilized. Notably, even though glucose-based ORT is commonly used, field studies indicated that rice-based ORT performs better. We therefore used a spatially explicit epidemiological model to demonstrate that the better performing rice-based ORT could have a significant impact on epidemic progression based on the recent outbreak of cholera in Haiti. Our results strongly support a change of carbon source for the treatment of cholera, especially in epidemic settings.

  1. Isolation and experimental infection with Vibrio alginolyticus in the sea horse, Hippocampus reidi Ginsburg, 1933 (Osteichthyes: Syngnathidae in Brazil

    Directory of Open Access Journals (Sweden)

    ML. Martins

    Full Text Available The aim of this study was to evaluate the pathogenicity of Vibrio alginolyticus isolated from an outbreak of sea horse Hippocampus reidi reared in the State of Santa Catarina, Brazil, by experimental infection. Sea horses with necrosis on the mouth epithelium were collected from aquaria at the Aquaculture Department, UFSC and the bacterium isolated from the mouth, liver, heart and blood in tiosulphate citrate bilesalt sucrose agar broth. The strains were identified by API 20E kit with 99.1% probability as Vibrio alginolyticus. Twelve adult sea horses (9.63 ± 2.42 g and 15.12 ± 0.87 cm were distributed in six aquaria of 10 L capacity with aerated sea water. Fish from three aquaria were submitted to an immersion bath in a solution containing 1.0 × 10(7 CFU of V. alginolyticus/mL for 15 minutes. Fish from the other three aquaria received the same procedure without bacteria. Twenty four hours after this challenge, 100% mortality was observed in the animals infected with V. alginolyticus. No mortality was observed in non-infected fish. Hyperplasia, displacement and fusion of secondary lamellae of the gills; leukocyte infiltration and necrotic foci in the kidney; hyperplasia, sinusoidal deformation and necrotic foci in the liver were observed in histopathological analysis. The V. alginolyticus isolated in this study was pathogenic to H. reidi and constitutes an important sanitary problem to its culture.

  2. Salinity-Based Toxicity of CuO Nanoparticles, CuO-Bulk and Cu Ion toVibrio anguillarum.

    Science.gov (United States)

    Rotini, Alice; Tornambè, Andrea; Cossi, Riccardo; Iamunno, Franco; Benvenuto, Giovanna; Berducci, Maria T; Maggi, Chiara; Thaller, Maria C; Cicero, Anna M; Manfra, Loredana; Migliore, Luciana

    2017-01-01

    Bacteria are used in ecotoxicology for their important role in marine ecosystems and their quick, reproducible responses. Here we applied a recently proposed method to assess the ecotoxicity of nanomaterials on the ubiquitous marine bacterium Vibrio anguillarum , as representative of brackish and marine ecosystems. The test allows the determination of 6-h EC 50 in a wide range of salinity, by assessing the reduction of bacteria actively replicating and forming colonies. The toxicity of copper oxide nanoparticles (CuO NPs) at different salinities (5-20-35 ‰) was evaluated. CuSO 4 5H 2 O and CuO bulk were used as reference toxicants (solubility and size control, respectively). Aggregation and stability of CuO NP in final testing dispersions were characterized; Cu 2+ dissolution and the physical interactions between Vibrio and CuO NPs were also investigated. All the chemical forms of copper showed a clear dose-response relationship, although their toxicity was different. The order of decreasing toxicity was: CuSO 4 5H 2 O > CuO NP > CuO bulk. As expected, the size of CuO NP aggregates increased with salinity and, concurrently, their toxicity decreased. Results confirmed the intrinsic toxicity of CuO NPs, showing modest Cu 2+ dissolution and no evidence of CuO NP internalization or induction of bacterial morphological alterations. This study showed the V. anguillarum bioassay as an effective tool for the risk assessment of nanomaterials in marine and brackish environments.

  3. Vibrio lentus protects gnotobiotic sea bass (Dicentrarchus labrax L.) larvae against challenge with Vibrio harveyi.

    Science.gov (United States)

    Schaeck, M; Duchateau, L; Van den Broeck, W; Van Trappen, S; De Vos, P; Coulombet, C; Boon, N; Haesebrouck, F; Decostere, A

    2016-03-15

    Due to the mounting awareness of the risks associated with the use of antibiotics in aquaculture, treatment with probiotics has recently emerged as the preferred environmental-friendly prophylactic approach in marine larviculture. However, the presence of unknown and variable microbiota in fish larvae makes it impossible to disentangle the efficacy of treatment with probiotics. In this respect, the recent development of a germ-free culture model for European sea bass (Dicentrarchus labrax L.) larvae opened the door for more controlled studies on the use of probiotics. In the present study, 206 bacterial isolates, retrieved from sea bass larvae and adults, were screened in vitro for haemolytic activity, bile tolerance and antagonistic activity against six sea bass pathogens. Subsequently, the harmlessness and the protective effect of the putative probiotic candidates against the sea bass pathogen Vibrio harveyi were evaluated in vivo adopting the previously developed germ-free sea bass larval model. An equivalence trial clearly showed that no harmful effect on larval survival was elicited by all three selected probiotic candidates: Bacillus sp. LT3, Vibrio lentus and Vibrio proteolyticus. Survival of Vibrio harveyi challenged larvae treated with V. lentus was superior in comparison with the untreated challenged group, whereas this was not the case for the larvae supplemented with Bacillus sp. LT3 and V. proteolyticus. In this respect, our results unmistakably revealed the protective effect of V. lentus against vibriosis caused by V. harveyi in gnotobiotic sea bass larvae, rendering this study the first in its kind. Copyright © 2016. Published by Elsevier B.V.

  4. Effects of ambient exposure, refrigeration, and icing on Vibrio vulnificus and Vibrio parahaemolyticus abundances in oysters.

    Science.gov (United States)

    Jones, J L; Lydon, K A; Kinsey, T P; Friedman, B; Curtis, M; Schuster, R; Bowers, J C

    2017-07-17

    Vibrio vulnificus (Vv) and V. parahaemolyticus (Vp) illnesses are typically acquired through the consumption of raw molluscan shellfish, particularly oysters. As Vibrio spp. are naturally-occurring bacteria, one means of mitigation of illness is achieved by limiting post-harvest growth. In this study, effects of ambient air storage, refrigeration, and icing of oysters on Vibrio spp. abundances were examined at two sites in Alabama (AL) [Dog River (DR) and Cedar Point (CP)] and one site in Delaware Bay, New Jersey (NJ). As the United States shellfish program recommendations include testing for total these organisms and gene targets, Vv and total (tlh) and pathogenic (tdh+ and trh+) Vp were enumerated from samples using MPN-real-time-PCR approaches. Mean Vv and Vp abundances in oysters from AL-DR were lowest in immediately iced samples (2.3 and -0.1 log MPN/g, respectively) and highest in the 5h ambient then refrigerated samples (3.4 and 0.5 log MPN/g, respectively). Similarly, in AL-CP Vv and Vp mean levels in oysters were lowest in immediately iced samples (3.6 and 1.2 log MPN/g, respectively) and highest in 5h ambient then refrigerated samples (5.1 and 3.2 log MPN/g, respectively). Mean levels of pathogenic Vp from AL sites were frequently below the limit of detection (refrigerated post-harvest. These results suggest vibriosis risk can be mitigated by shorter storage times and more rapid cooling of oysters, providing data regulatory authorities can use to evaluate Vibrio spp. control plans. Published by Elsevier B.V.

  5. A Small Number of Phylogenetically Distinct Clonal Complexes Dominate a Coastal Vibrio cholerae Population.

    Science.gov (United States)

    Kirchberger, Paul C; Orata, Fabini D; Barlow, E Jed; Kauffman, Kathryn M; Case, Rebecca J; Polz, Martin F; Boucher, Yan

    2016-09-15

    Vibrio cholerae is a ubiquitous aquatic microbe in temperate and tropical coastal areas. It is a diverse species, with many isolates that are harmless to humans, while others are highly pathogenic. Most notable among them are strains belonging to the pandemic O1/O139 serogroup lineage, which contains the causative agents of cholera. The environmental selective regimes that led to this diversity are key to understanding how pathogens evolve in environmental reservoirs. A local population of V. cholerae and its close relative Vibrio metoecus from a coastal pond and lagoon system was extensively sampled during two consecutive months across four size fractions (480 isolates). In stark contrast to previous studies, the observed population was highly clonal, with 60% of V. cholerae isolates falling into one of five clonal complexes, which varied in abundance in the short temporal scale sampled. V. cholerae clonal complexes had significantly different distributions across size fractions and the two environments sampled, the pond and the lagoon. Sequencing the genomes of 20 isolates representing these five V. cholerae clonal complexes revealed different evolutionary trajectories, with considerable variations in gene content with potential ecological significance. Showing genotypic differentiation and differential spatial distribution, the dominant clonal complexes are likely ecologically divergent. Temporal variation in the relative abundance of these complexes suggests that transient blooms of specific clones could dominate local diversity. Vibrio cholerae is commonly found in coastal areas worldwide, with only a single group of this bacterium capable of causing severe cholera outbreaks. However, the potential to evolve the ability to cause disease exists in many strains of this species in its aquatic reservoir. Understanding how pathogenic bacteria evolve requires the study of their natural environments. By extensive sampling in a geographically restricted location in

  6. Zymomonas mobilis: a bacterium for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Baratti, J.C.; Bu' Lock, J.D.

    1986-01-01

    Zymomonas mobilis is a facultative anaerobic gram negative bacterium first isolated in tropical countries from alcoholic beverages like the African palm wine, the Mexican pulque and also as a contaminant of cider (cider sickness) or beer in the European countries. It is one of the few facultative anaerobic bacteria degrading glucose by the Entner-Doudoroff pathway usually found in strictly aerobic microorganisms. Some work was devoted to this bacterium in the 50s and 60s and was reviewed by Swings and De Ley in their classical paper published in 1977. During the 70s there was very little work on the bacterium until 1979 and the first report by the Australian group of P.L. Rogers on the great potentialities of Z. mobilis for ethanol production. At that time the petroleum crisis had led the developed countries to search for alternative fuel from renewable resources. The Australian group clearly demonstrated the advantages of the bacterium compared to the yeasts traditionally used for the alcoholic fermentation. As a result, there was a considerable burst in the Zymomonas literature which started from nearly zero in the late 70s to attain 70 papers published in the field in 1984. In this article, papers published from 1982 to 1986 are reviewed.

  7. Intraspecific Competition Impacts Vibrio fischeri Strain Diversity during Initial Colonization of the Squid Light Organ.

    Science.gov (United States)

    Sun, Yan; LaSota, Elijah D; Cecere, Andrew G; LaPenna, Kyle B; Larios-Valencia, Jessie; Wollenberg, Michael S; Miyashiro, Tim

    2016-05-15

    Animal development and physiology depend on beneficial interactions with microbial symbionts. In many cases, the microbial symbionts are horizontally transmitted among hosts, thereby making the acquisition of these microbes from the environment an important event within the life history of each host. The light organ symbiosis established between the Hawaiian squid Euprymna scolopes and the bioluminescent bacterium Vibrio fischeri is a model system for examining how hosts acquire horizontally transmitted microbial symbionts. Recent studies have revealed that the light organ of wild-caught E. scolopes squid contains polyclonal populations of V. fischeri bacteria; however, the function and development of such strain diversity in the symbiosis are unknown. Here, we report our phenotypic and phylogenetic characterizations of FQ-A001, which is a V. fischeri strain isolated directly from the light organ of an E. scolopes individual. Relative to the type strain ES114, FQ-A001 exhibits similar growth in rich medium but displays increased bioluminescence and decreased motility in soft agar. FQ-A001 outcompetes ES114 in colonizing the crypt spaces of the light organs. Remarkably, we find that animals cocolonized with FQ-A001 and ES114 harbor singly colonized crypts, in contrast to the cocolonized crypts observed from competition experiments involving single genotypes. The results with our two-strain system suggest that strain diversity within the squid light organ is a consequence of diversity in the single-strain colonization of individual crypt spaces. The developmental programs and overall physiologies of most animals depend on diverse microbial symbionts that are acquired from the environment. However, the basic principles underlying how microbes colonize their hosts remain poorly understood. Here, we report our findings of bacterial strain competition within the coevolved animal-microbe symbiosis composed of the Hawaiian squid and bioluminescent bacterium Vibrio fischeri

  8. Antibiotic Susceptibility Patterns and Plasmid Profile of Vibrio ...

    African Journals Online (AJOL)

    32.14%) samples of Vibrio cholerae isolates recovered from water samples from Elele Community. All isolates showed a multiple resistance patterns to 7 antibiotics namely amoxicillin, cotrimoxazole, nitrofurantoin, gentamicin, tetracycline, ...

  9. Spatiotemporal Dynamics of Vibrio spp. within the Sydney Harbour Estuary

    Science.gov (United States)

    Siboni, Nachshon; Balaraju, Varunan; Carney, Richard; Labbate, Maurizio; Seymour, Justin R.

    2016-01-01

    Vibrio are a genus of marine bacteria that have substantial environmental and human health importance, and there is evidence that their impact may be increasing as a consequence of changing environmental conditions. We investigated the abundance and composition of the Vibrio community within the Sydney Harbour estuary, one of the most densely populated coastal areas in Australia, and a region currently experiencing rapidly changing environmental conditions. Using quantitative PCR (qPCR) and Vibrio-specific 16S rRNA amplicon sequencing approaches we observed significant spatial and seasonal variation in the abundance and composition of the Vibrio community. Total Vibrio spp. abundance, derived from qPCR analysis, was higher during the late summer than winter and within locations with mid-range salinity (5–26 ppt). In addition we targeted three clinically important pathogens: Vibrio cholerae, V. Vulnificus, and V. parahaemolyticus. While toxigenic strains of V. cholerae were not detected in any samples, non-toxigenic strains were detected in 71% of samples, spanning a salinity range of 0–37 ppt and were observed during both late summer and winter. In contrast, pathogenic V. vulnificus was only detected in 14% of samples, with its occurrence restricted to the late summer and a salinity range of 5–26 ppt. V. parahaemolyticus was not observed at any site or time point. A Vibrio-specific 16S rRNA amplicon sequencing approach revealed clear shifts in Vibrio community composition across sites and between seasons, with several Vibrio operational taxonomic units (OTUs) displaying marked spatial patterns and seasonal trends. Shifts in the composition of the Vibrio community between seasons were primarily driven by changes in temperature, salinity and NO2, while a range of factors including pH, salinity, dissolved oxygen (DO) and NOx (Nitrogen Oxides) explained the observed spatial variation. Our evidence for the presence of a spatiotemporally dynamic Vibrio community

  10. Catechol Siderophore Transport by Vibrio cholerae.

    Science.gov (United States)

    Wyckoff, Elizabeth E; Allred, Benjamin E; Raymond, Kenneth N; Payne, Shelley M

    2015-09-01

    Siderophores, small iron-binding molecules secreted by many microbial species, capture environmental iron for transport back into the cell. Vibrio cholerae synthesizes and uses the catechol siderophore vibriobactin and also uses siderophores secreted by other species, including enterobactin produced by Escherichia coli. E. coli secretes both canonical cyclic enterobactin and linear enterobactin derivatives likely derived from its cleavage by the enterobactin esterase Fes. We show here that V. cholerae does not use cyclic enterobactin but instead uses its linear derivatives. V. cholerae lacked both a receptor for efficient transport of cyclic enterobactin and enterobactin esterase to promote removal of iron from the ferrisiderophore complex. To further characterize the transport of catechol siderophores, we show that the linear enterobactin derivatives were transported into V. cholerae by either of the catechol siderophore receptors IrgA and VctA, which also transported the synthetic siderophore MECAM [1,3,5-N,N',N″-tris-(2,3-dihydroxybenzoyl)-triaminomethylbenzene]. Vibriobactin is transported via the additional catechol siderophore receptor ViuA, while the Vibrio fluvialis siderophore fluvibactin was transported by all three catechol receptors. ViuB, a putative V. cholerae siderophore-interacting protein (SIP), functionally substituted for the E. coli ferric reductase YqjH, which promotes the release of iron from the siderophore in the bacterial cytoplasm. In V. cholerae, ViuB was required for the use of vibriobactin but was not required for the use of MECAM, fluvibactin, ferrichrome, or the linear derivatives of enterobactin. This suggests the presence of another protein in V. cholerae capable of promoting the release of iron from these siderophores. Vibrio cholerae is a major human pathogen and also serves as a model for the Vibrionaceae, which include other serious human and fish pathogens. The ability of these species to persist and acquire essential

  11. Genome Sequence of the Human Pathogen Vibrio cholerae Amazonia

    Science.gov (United States)

    Thompson, Cristiane C.; Marin, Michel A.; Dias, Graciela M.; Dutilh, Bas E.; Edwards, Robert A.; Iida, Tetsuya; Thompson, Fabiano L.; Vicente, Ana Carolina P.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis revealed that it contains Vibrio pathogenicity island 2 and a set of genes related to pathogenesis and fitness, such as the type VI secretion system, present in choleragenic V. cholerae strains. PMID:21952545

  12. Passive Immune-Protection of Litopenaeus vannamei against Vibrio harveyi and Vibrio parahaemolyticus Infections with Anti-Vibrio Egg Yolk (IgY)-Encapsulated Feed.

    Science.gov (United States)

    Gao, Xiaojian; Zhang, Xiaojun; Lin, Li; Yao, Dongrui; Sun, Jingjing; Du, Xuedi; Li, Xiumei; Zhang, Yue

    2016-05-17

    Vibrio spp. are major causes of mortality in white shrimp (Litopenaeus vannamei) which is lacking adaptive immunity. Passive immunization with a specific egg yolk antibody (IgY) is a potential method for the protection of shrimp against vibriosis. In this study, immune effects of the specific egg yolk powders (IgY) against both V. harveyi and V. parahaemolyticus on white shrimp were evaluated. The egg yolk powders against V. harveyi and V. parahaemolyticus for passive immunization of white shrimp were prepared, while a tube agglutination assay and an indirect enzyme-linked immunosorbent assay (ELISA) were used for detection of IgY titer. Anti-Vibrio egg yolk was encapsulated by β-cyclodextrin, which could keep the activity of the antibody in the gastrointestinal tract of shrimp. The results showed that the anti-Vibrio egg powders had an inhibiting effect on V. harveyi and V. parahaemolyticus in vitro. Lower mortality of infected zoeae, mysis, and postlarva was observed in groups fed with anti-Vibrio egg powders, compared with those fed with normal egg powders. The bacterial load in postlarva fed with specific egg powders in seeding ponds was significantly lower than those fed with normal egg powders in seeding ponds. These results show that passive immunization by oral administration with specific egg yolk powders (IgY) may provide a valuable protection of vibrio infections in white shrimp.

  13. [Isolation and physiological characteristics of lytic bacteriophages of Vibrio].

    Science.gov (United States)

    Sun, Jia; Ye, Dezan; Kochel, Agnes; Jost, Guenter

    2008-06-01

    Vibrio is a widely distributed pathogen in aquatic environment. Our study aimed at searching for possible biological control of pathogenic vibrio. We collected natural samples from coast and lakes in spring of 2006 and autumn of 2005; and isolated lytic phages by double-layer plate method. We identified the hosts with 16S rDNA sequencing and observed their morphology with phages under electron microscopy. We also tested the physiological characteristics of phages. We isolated 96 bacteria and 2 phages (Vibio/XM/P1, Vibio/XM/P2). Their hosts belonged to Vibrio alginolyticus and Vibrio anguillarum. Both phages were hexagonal-headed and one with a tail. Physiological tests show that their optimum grow condition were pH7, 25 degrees C and pH8, 30 degrees C. Both phages were sensitive to high temperature and UV light. Vibrio/XM/P2 was sensitive to aether and chloroform whereas Vibrio/XM/P1 not.

  14. Abundance and antibiotic susceptibility of Vibrio spp. isolated from microplastics

    Science.gov (United States)

    Laverty, A. L.; Darr, K.; Dobbs, F. C.

    2016-02-01

    In recent years, there has been a growing concern for `microplastics' (particles resistance profiles of Vibrio spp. found on them. We collected 22 microplastic pieces, paired seawater samples, and from them cultured 44 putative Vibrio spp. isolates, 18 of which were PCR-confirmed as V. parahaemolyticus and 3 as V. vulnificus. There were no PCR-confirmed V. cholerae isolates. We used the Kirby-Bauer disk diffusion susceptibility test to examine the isolates' response to six antibiotics: chloramphenicol (30μg), gentamicin (10μg), ampicillin (10μg), streptomycin (10μg), tetracycline (30μg), and rifampin (5μg). Vibrio isolates were susceptible to three or more of the six antibiotics tested and all were susceptible to tetracycline and chloramphenicol. There were no apparent differences between the antibiotic susceptibilities of vibrios isolated from microplastics compared to those from the water column. In every instance tested, vibrios on microplastics were enriched by at least two orders of magnitude compared to those from paired seawater samples. This study demonstrates that microplastic particles serve as a habitat for Vibrio species, in particular V. vulnificus and V. parahaemolyticus, confirming the conjecture of Zettler et al. (2013) that plastics may serve as a vector for these and other potentially pathogenic bacteria.

  15. Comparative microscopy study of Vibrio cholerae flagella

    Science.gov (United States)

    Konnov, Nikolai P.; Baiburin, Vil B.; Zadnova, Svetlana P.; Volkov, Uryi P.

    1999-06-01

    A fine structure of bacteria flagella is an important problem of molecular cell biology. Bacteria flagella are the self-assembled structures that allow to use the flagellum protein in a number of biotechnological applications. However, at present, there is a little information about high resolution scanning probe microscopy study of flagellum structure, in particular, about investigation of Vibrio cholerae flagella. In our lab have been carried out the high resolution comparative investigation of V. cholerae flagella by means of various microscopes: tunneling (STM), scanning force (SFM) and electron transmission. As a scanning probe microscope is used designed in our lab versatile SPM with replaceable measuring heads. Bacteria were grown, fixed and treated according to the conventional techniques. For STM investigations samples were covered with Pt/Ir thin films by rotated vacuum evaporation, in SFM investigations were used uncovered samples. Electron microscopy of the negatively stained bacteria was used as a test procedure.

  16. Vibrio cholerae Biofilms and Cholera Pathogenesis.

    Directory of Open Access Journals (Sweden)

    Anisia J Silva

    2016-02-01

    Full Text Available Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i the evidence for biofilm formation during infection, (ii the coordinate regulation of biofilm and virulence gene expression, and (iii the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv we discuss a model for the role of V. cholerae biofilms in pathogenicity.

  17. VISCOSITY DICTATES METABOLIC ACTIVITY of Vibrio ruber

    Directory of Open Access Journals (Sweden)

    Maja eBoric

    2012-07-01

    Full Text Available Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment.

  18. Viscosity dictates metabolic activity of Vibrio ruber

    Science.gov (United States)

    Borić, Maja; Danevčič, Tjaša; Stopar, David

    2012-01-01

    Little is known about metabolic activity of bacteria, when viscosity of their environment changes. In this work, bacterial metabolic activity in media with viscosity ranging from 0.8 to 29.4 mPas was studied. Viscosities up to 2.4 mPas did not affect metabolic activity of Vibrio ruber. On the other hand, at 29.4 mPas respiration rate and total dehydrogenase activity increased 8 and 4-fold, respectively. The activity of glucose-6-phosphate dehydrogenase (GPD) increased up to 13-fold at higher viscosities. However, intensified metabolic activity did not result in faster growth rate. Increased viscosity delayed the onset as well as the duration of biosynthesis of prodigiosin. As an adaptation to viscous environment V. ruber increased metabolic flux through the pentose phosphate pathway and reduced synthesis of a secondary metabolite. In addition, V. ruber was able to modify the viscosity of its environment. PMID:22826705

  19. Vibrio cholerae Biofilms and Cholera Pathogenesis

    Science.gov (United States)

    Silva, Anisia J.; Benitez, Jorge A.

    2016-01-01

    Vibrio cholerae can switch between motile and biofilm lifestyles. The last decades have been marked by a remarkable increase in our knowledge of the structure, regulation, and function of biofilms formed under laboratory conditions. Evidence has grown suggesting that V. cholerae can form biofilm-like aggregates during infection that could play a critical role in pathogenesis and disease transmission. However, the structure and regulation of biofilms formed during infection, as well as their role in intestinal colonization and virulence, remains poorly understood. Here, we review (i) the evidence for biofilm formation during infection, (ii) the coordinate regulation of biofilm and virulence gene expression, and (iii) the host signals that favor V. cholerae transitions between alternative lifestyles during intestinal colonization, and (iv) we discuss a model for the role of V. cholerae biofilms in pathogenicity. PMID:26845681

  20. Localized quorum sensing in Vibrio fischeri.

    Science.gov (United States)

    Parent, Mary E; Snyder, Charles E; Kopp, Nathaniel D; Velegol, Darrell

    2008-04-01

    Quorum sensing is almost always regarded as a population density effect in three-dimensional bulk samples of bacteria. Here we create two-dimensional samples of Vibrio fischeri cells adhered onto glass surfaces to examine the effect of local population densities on quorum sensing. This is done by measuring the luminescent response. The 2-D bacterial populations enable us to simultaneously account for time and distance effects on quorum sensing, which were previously very challenging to access in typical three-dimensional bulk samples. Thus, we are able to consider quorum sensing in terms of signal diffusion. A diffusion model of quorum sensing signals guides the experiments and shows that for a given cell spacing (density) and diffusion time there exists a "true quorum"- a number of cells necessary for quorum sensing. We find that quorum sensing can occur locally in 2-D surface samples and is a function of cell population density as well as signal diffusion time.

  1. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health.

    Science.gov (United States)

    Igbinosa, Etinosa O

    2016-04-01

    The aim of this study was to evaluate the presence of Vibrio isolates recovered from four different fish pond facilities in Benin City, Nigeria, determine their antibiogram profiles, and evaluate the public health implications of these findings. Fish pond water samples were collected from four sampling sites between March and September 2014. A total of 56 samples were collected and screened for the isolation of Vibrio species using standard culture-based methods. Polymerase chain reaction (PCR) was used to confirm the identities of the Vibrio species using the genus-specific and species-specific primers. Vibrio species were detected at all the study sites at a concentration on the order of 10(3) and 10(6) CFU/100 ml. A total of 550 presumptive Vibrio isolates were subjected to PCR confirmation. Of these isolates, 334 isolates tested positive, giving an overall Vibrio prevalence rate of 60.7%. The speciation of the 334 Vibrio isolates from fish ponds yielded 32.63% Vibrio fluvialis, 20.65% Vibrio parahaemolyticus, 18.26% Vibrio vulnificus, and 28.44% other Vibrio species. In all, 167 confirmed Vibrio isolates were selected from a pool of 334 confirmed Vibrio isolates for antibiogram profiling. The susceptibility profiles of 20 antimicrobial agents on the isolates revealed a high level of resistance for AMP(R), ERY(R), NAL(R), SUL(R), TMP(R), SXT(R), TET(R), OTC(R), and CHL(R). The percentage of multiple drug resistance Vibrio isolates was 67.6%. The multiple antibiotic resistance index mean value of 0.365 for the Vibrio isolates found in this study indicated that the Vibrio isolates were exposed to high-risk sources of contamination when antibiotics were frequently used. The resistant Vibrio strains could be transmitted through the food chain to humans and therefore constitutes a risk to public health.

  2. Photodynamic effect of curcumin on Vibrio parahaemolyticus.

    Science.gov (United States)

    Wu, Juan; Mou, Haijin; Xue, Changhu; Leung, Albert Wingnang; Xu, Chuanshan; Tang, Qing-Juan

    2016-09-01

    Vibrio parahaemolyticus (V. parahaemolyticus) is currently a major cause of bacterial diarrhoea associated with seafood consumption. The objective of this study was to determine the inactivation effect of curcumin-mediated photodynamic action on V. parahaemolyticus. First of all, V. parahaemolyticus suspended in PBS buffer was irradiated by a visible light from a LED light source with an energy density of 3.6J/cm(2). Colony forming units (CFU) were counted and the viability of V. parahaemolyticus cells was calculated after treatment. Singlet oxygen ((1)O2) production after photodynamic action of curcumin was evaluated using 9,10-Anthracenediyl-bis (methylene) dimalonic acid (ADMA). Bacterial outer membrane protein was extracted and analyzed using electrophoresis SDS-PAGE. DNA and RNA of V. parahaemolyticus were also extracted and analyzed using agarose gel electrophoresis after photodynamic treatment. Finally, the efficacy of photodynamic action of curcumin was preliminarily evaluated in the decontamination of V. parahaemolyticus in oyster. Results showed that the viability of V. parahaemolyticus was significantly decreased to non-detectable levels over 6.5-log reductions with the curcumin concentration of 10 and 20μM. Photodynamic action of curcumin significantly increased the singlet oxygen level with the curcumin concentration of 10μM. Notable damage was found to bacterial outer membrane proteins and genetic materials after photodynamic treatment. Photodynamic action of curcumin reduced the number of V. parahaemolyticus contaminating in oyster to non-detectable level. Our findings demonstrated that photodynamic action of curcumin could be a potentially good method to inactivate Vibrio parahaemolyticus contaminating in oyster. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The regulatory network of natural competence and transformation of Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    Mirella Lo Scrudato

    Full Text Available The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed "natural competence for genetic transformation." Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT-PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae.

  4. The regulatory network of natural competence and transformation of Vibrio cholerae.

    Science.gov (United States)

    Lo Scrudato, Mirella; Blokesch, Melanie

    2012-01-01

    The human pathogen Vibrio cholerae is an aquatic bacterium frequently encountered in rivers, lakes, estuaries, and coastal regions. Within these environmental reservoirs, the bacterium is often found associated with zooplankton and more specifically with their chitinous exoskeleton. Upon growth on such chitinous surfaces, V. cholerae initiates a developmental program termed "natural competence for genetic transformation." Natural competence for transformation is a mode of horizontal gene transfer in bacteria and contributes to the maintenance and evolution of bacterial genomes. In this study, we investigated competence gene expression within this organism at the single cell level. We provide evidence that under homogeneous inducing conditions the majority of the cells express competence genes. A more heterogeneous expression pattern was observable on chitin surfaces. We hypothesize that this was the case due to the heterogeneity around the chitin surface, which might vary extensively with respect to chitin degradation products and autoinducers; these molecules contribute to competence induction based on carbon catabolite repression and quorum-sensing pathways, respectively. Therefore, we investigated the contribution of these two signaling pathways to natural competence in detail using natural transformation assays, transcriptional reporter fusions, quantitative RT-PCR, and immunological detection of protein levels using Western blot analysis. The results illustrate that all tested competence genes are dependent on the transformation regulator TfoX. Furthermore, intracellular cAMP levels play a major role in natural transformation. Finally, we demonstrate that only a minority of genes involved in natural transformation are regulated in a quorum-sensing-dependent manner and that these genes determine the fate of the surrounding DNA. We conclude with a model of the regulatory circuit of chitin-induced natural competence in V. cholerae.

  5. ANTAGONISM AGAINST VIBRIO CHOLERAE BY BACTERIAL DIFFUSIBLE COMPOUND IN THE FECAL MICROBIOTA OF RODENTS

    Directory of Open Access Journals (Sweden)

    Silva Simone Helena da

    1998-01-01

    Full Text Available In an ex vivo agar plate assay, we monitored the appearance of an inhibitory halo against Vibrio cholerae from the feces of Wistar and Fischer rats aged 10 to 42 days. The frequency of Wistar rats showing halo increased from 0% (10 days to a maximum of 80.0% (29 days and then decreased to 53.3% (42 days. A similar pattern was obtained with Fischer rats but with a lower intensity (maximum frequency of 50.0% by day 36. In a separate experiment, when Wistar rats were fed a low-protein diet for 7 days, the inhibitory halo decreased drastically. Three apparently different colony morphologies were isolated from the dominant fecal microbiota: a facultative anaerobe (FAN and two strict anaerobes (SAN. The ex vivo inhibitory test showed a halo around the feces of germfree mice monoassociated with the FAN bacterium or one of the SAN bacterium but not of the germfree ones. After oral challenge of all groups with V. cholerae, a permissive and a drastic barrier effects were observed in mice with FAN and SAN associated bacteria, respectively. The FAN and one SAN bacteria used in the in vivo challenges were identified as Escherichia coli and Streptococcus intermedius, respectively. The potent antagonism developed by the rat intestinal microbiota against V. cholerae seems to be due, in part, to diffusible compounds and this phenomenon depends apparently on age, strain and nutrition of the animals. These preliminary results also suggest that this effect was due to more than one bacterial component at any given moment.

  6. Effects of Pollution on Vibrios in Woji River OJESANMI, A S; IBE, S N ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    1987). Incidence of. Vibrio cholerae from estuaries of the United States west coast. Appl. Environ. Microbiol. 53, 1344-1348. Ndon, JA; Udo,SM; Wehrenberg, WB (1992). Vibrio-Associated Gastroenteritis in the lower Cross-. River basin of Nigeria.

  7. Prevalence and heterogeneity of Hemolysin gene vhh among hatchery isolates of Vibrio harveyi in India

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; George; Kumar

    Vibrio harveyi, pathogenic to fish, harbor a hemolysin gene vhh, the homologues of which are found in many species of the Genus Vibrio. It is investigated that the prevalence of vhh gene among V. harveyi isolated from Penaeus monodon hatcheries...

  8. Integration of a laterally acquired gene into a cell network important for growth in a strain of Vibrio rotiferianus

    Directory of Open Access Journals (Sweden)

    Labbate Maurizio

    2011-11-01

    Full Text Available Abstract Background Lateral Gene Transfer (LGT is a major contributor to bacterial evolution and up to 25% of a bacterium's genome may have been acquired by this process over evolutionary periods of time. Successful LGT requires both the physical transfer of DNA and its successful incorporation into the host cell. One system that contributes to this latter step by site-specific recombination is the integron. Integrons are found in many diverse bacterial Genera and is a genetic system ubiquitous in vibrios that captures mobile DNA at a dedicated site. The presence of integron-associated genes, contained within units of mobile DNA called gene cassettes makes up a substantial component of the vibrio genome (1-3%. Little is known about the role of this system since the vast majority of genes in vibrio arrays are highly novel and functions cannot be ascribed. It is generally regarded that strain-specific mobile genes cannot be readily integrated into the cellular machinery since any perturbation of core metabolism is likely to result in a loss of fitness. Results In this study, at least one mobile gene contained within the Vibrio rotiferianus strain DAT722, but lacking close relatives elsewhere, is shown to greatly reduce host fitness when deleted and tested in growth assays. The precise role of the mobile gene product is unknown but impacts on the regulation of outermembrane porins. This demonstrates that strain specific laterally acquired mobile DNA can be integrated rapidly into bacterial networks such that it becomes advantageous for survival and adaptation in changing environments. Conclusions Mobile genes that are highly strain specific are generally believed to act in isolation. This is because perturbation of existing cell machinery by the acquisition of a new gene by LGT is highly likely to lower fitness. In contrast, we show here that at least one mobile gene, apparently unique to a strain, encodes a product that has integrated into central

  9. Liquid holding recovery and photoreactivation of the ultraviolet-inactivated vibrios

    International Nuclear Information System (INIS)

    Banerjee, S.K.; Chatterjee, S.N.

    1981-01-01

    The kinetics of liquid holding recovery and photoreactivation of the ultra-violet-inactivated vibrios have been investigated. Photoreactivation was highest (about 80%) for Vibrio cholerae (classical) strains but the liquid holding recovery was highest (about 29%) for Vibrio parahemolyticus ones. Significance of the differences between any two of the four vibrio biotypes in respect of their liquid holding recovery and also photoreactivation was analysed statistically. (auth.)

  10. Persistence of Antibiotic Resistant Vibrio spp. in Shellfish Hatchery Environment.

    Science.gov (United States)

    Dubert, Javier; Osorio, Carlos R; Prado, Susana; Barja, Juan L

    2016-11-01

    The characterization of antibiotic-resistant vibrios isolated from shellfish aquaculture is necessary to elucidate the potential transfer of resistance and to establish effective strategies against vibriosis. With this aim, we analyzed a collection of bacterial isolates obtained from 15 failed hatchery larval cultures that, for the most part, had been treated experimentally with chloramphenicol to prevent vibriosis. Isolates were obtained during a 2-year study from experimental cultures of five different clam species. Among a total of 121 Vibrio isolates studied, 28 were found to be chloramphenicol resistant, suggesting that the shellfish hatchery had been using a sublethal concentration of the antibiotic. Interestingly, chloramphenicol-resistant vibrios showed also resistance to tetracycline and amoxicillin (group A; n = 19) or to streptomycin (group B; n = 9). Chloramphenicol-resistant vibrios were subjected to a PCR amplification and DNA sequencing of the chloramphenicol acetyltransferase genes (cat), and the same approach was followed to study the tetracycline resistance markers (tet). 16S ribosomal RNA (rRNA) gene sequencing revealed that chloramphenicol-resistant vibrios pertained mostly to the Splendidus clade. Conjugation assays demonstrated that various R-plasmids which harbored the cat II/tet(D) genes and cat III gene in groups A and B respectively, were transferred to E. coli and bivalve pathogenic vibrios. Most interestingly, transconjugants exhibited the antibiotic resistance patterns of the donors, despite having been selected only on the basis of chloramphenicol resistance. This is the first report carried out in a bivalve hatchery elucidating the persistence of resistant vibrios, the mechanisms of antibiotic resistance, and the transfer of different R-plasmids.

  11. Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish

    DEFF Research Database (Denmark)

    Gram, Lone; Melchiorsen, Jette; Spanggaard, Bettina

    1999-01-01

    To study the possible use of probiotics in fish farming, we evaluated the in vitro and in vivo antagonism of antibacterial strain Pseudomonas fluorescens strain AH2 against the fish- pathogenic bacterium Vibrio anguillarum. As iron is important in virulence and bacterial interactions, the effect....... fluorescens AH2 inhibited the growth of V. anguillarum during coculture, independently of the iron concentration, when the initial count of the antagonist was 100 to 1,000 times greater that of the fish pathogen. These in vitro results were successfully repeated in vivo. A probiotic effect in vivo was tested...... by exposing rainbow trout (Oncorynchus mykiss Walbaum) to P. fluorescens AH2 at a density of 10(5) CFU/ml for 5 days before a challenge with V. anguillarum at 10(4) to 10(5) CFU/ml for 1 h. Some fish were also exposed to P. fluorescens AH2 at 10(7) CFU/ml during the 1-h infection. The combined probiotic...

  12. Prevalence and distribution of Vibrio parahaemolyticus in finfish from Cochin (south India

    Directory of Open Access Journals (Sweden)

    Ammanamveetil A.M. Hatha

    2012-09-01

    Full Text Available Finfish samples obtained from four retail outlets in Cochin between June 2009 and June 2010 were investigated for the occurrence of Vibrio parahaemolyticus. A total of 182 samples were collected and suspect isolates were identified using standard biochemical tests and were further confirmed by a species-specific tlh gene. V. parahaemolyticus was detected in 45.1% of samples, with demersal fish being more affected than pelagic species. The bacterium was isolated more frequently from the skin and gills of pelagic fish, while the intestine yielded greater numbers of V. parahaemolyticus in demersal fish. The highest incidence of antibiotic resistance was recorded against ampicillin and streptomycin, followed by carbenicillin, cefpodoxime, cephalothin, colistin and amoxycillin; the lowest was against nalidixic acid, tetracycline, chloramphenicol and ciprofloxacin. Multiple drug resistance was prevalent among isolates. Although only a fraction of strains are pathogenic for humans, the time-temperature abuse in markets provides ample scope for these strains to multiply to dangerous levels. The multidrug resistant nature of the strains adds to the gravity of the problem. High V. parahaemolyticus incidence rates in market finfish samples from areas in and around Cochin clearly indicates that control measures should be adopted to reduce post-harvest contamination in seafood and time-temperature abuse in markets to diminish the risk of V. parahaemolyticus infection associated with seafood destined for human consumption.

  13. Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae.

    Science.gov (United States)

    Berney, M; Weilenmann, H-U; Simonetti, A; Egli, T

    2006-10-01

    To determine the efficacy of solar disinfection (SODIS) for enteric pathogens and to test applicability of the reciprocity law. Resistance to sunlight at 37 degrees C based on F99 values was in the following order: Salmonella Typhimurium>Escherichia coli>Shigella flexneri>Vibrio cholerae. While F90 values of Salm. Typhimurium and E. coli were similar, F99 values differed by 60% due to different inactivation curve shapes. Efficacy seemed not to be dependent on fluence rate for E. coli stationary cells. Sensitivity to mild heat was observed above a temperature of 45 degrees C for E. coli, Salm. Typhimurium and Sh. flexneri, while V. cholerae was already susceptible above 40 degrees C. Salmonella Typhimurium was the most resistant and V. cholerae the least resistant enteric strain. The reciprocity law is applicable for stationary E. coli cells irradiated with sunlight or artificial sunlight. Escherichia coli might not be the appropriate indicator bacterium to test the efficacy of SODIS on enteric bacteria and the physiological response to SODIS might be different among enteric bacteria. The applicability of the reciprocity law indicates that fluence rate plays a secondary role in SODIS efficacy. Stating inactivation efficacy with T90 or F90 values without showing original data is inadequate for SODIS studies.

  14. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I., E-mail: vanessagarcia@usp.br, E-mail: sborrely@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L{sup -1}, 2.34 mg.L{sup -1}, 2.35 mg.L{sup -1} and 1.80 mg.L{sup -1}, respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  15. Reduction of acute toxicity of the pharmaceutical fluoxetine (Prozac) submitted to ionizing radiation to Vibrio fischeri

    International Nuclear Information System (INIS)

    Santos, Dymes R.A.; Garcia, Vanessa S.G.; Vilarrubia, Anna C.S.; Borrely, Sueli I.

    2011-01-01

    The constant use of pharmaceutical drugs by great part of the population and its continuous input into the environment creates a growing need of investigating its presence, behavior and the effects on aquatic biota, as well as new ways to treat wastewater containing such substances. The fluoxetine hydrochloride (FH) present in the drug Prozac is an active ingredient used in the treatment of depressive and anxiety disorders. Generally, these compounds enter the aquatic environment by sewage collectors systems after undergoing prior treatment in sewage treatment plants (STPs) or without any treatment. This study focused on evaluating the reduction of acute toxicity of the pharmaceutical FH, under its manipulated formula, for the marine bacterium Vibrio fischeri. It was also evaluated the acute toxicity of the aqueous solution containing the FH after its exposition to ionizing radiation from industrial electron accelerator. It was performed acute toxicity tests lasting 15 minutes, where the average EC (50) of the non-irradiated CF water solution was approximately 0.68 mg L-1. While the CF water solution irradiated with 1 kGy, 2.5 kGy, 7.5 kGy and 10 kGy, presented an average EC(50) 1.63 mg.L -1 , 2.34 mg.L -1 , 2.35 mg.L -1 and 1.80 mg.L -1 , respectively, showing a notable reduction of the acute toxicity for this organism. (author)

  16. Rapid Assessment of the Toxicity of Fungal Compounds Using Luminescent Vibrio qinghaiensis sp. Q67

    Directory of Open Access Journals (Sweden)

    Qijie Jian

    2017-10-01

    Full Text Available Most tropical fruits after harvest are very perishable because of fungal infection. Since some pathogenic fungi can produce hazardous compounds such as mycotoxins, novel rapid and effective methods to assess those hazardous compounds are urgently needed. Herein we report that Vibrio qinghaiensis sp. Q67, a luminescent bacterium, can be used to rapidly assess the toxicities of mycotoxins and cultures from mycotoxin-producing pathogens. A good correlation (R2 > 0.98 between concentrations of the mycotoxins (fumonisin B1, deoxynivalenol, zearalenone, ochratoxin A, patulin, and citrinin and the luminous intensity of V. qinghaiensis sp. Q67 was obtained. Furthermore, significant correlations (R2 > 0.96 between the amount of mycotoxin and the luminous intensity from the cultures of 10 major mycotoxin-producing pathogens were also observed. In addition, Fusarium proliferatum (half-maximal inhibitory concentration (IC50 = 17.49% exhibited greater luminescence suppression than Fusarium semitectum (IC50 = 92.56% or Fusarium oxysporum (IC50 = 28.61%, which was in agreement with the existing higher levels of fumonisin B1, fumonisin B2, and deoxynivalenol, which were measured by high-performance liquid chromatography-tandem mass spectrometry. These results suggest that V. qinghaiensis sp. Q67 is a promising alternative for the rapid evaluation of the toxicity of fungal mycotoxins.

  17. Increased isolation frequency of toxigenic Vibrio cholerae O1 from environmental monitoring sites in Haiti.

    Directory of Open Access Journals (Sweden)

    Meer T Alam

    Full Text Available Since the identification of the first cholera case in 2010, the disease has spread in epidemic form throughout the island nation of Haiti; as of 2014, about 700,000 cholera cases have been reported, with over 8,000 deaths. While case numbers have declined, the more fundamental question of whether the causative bacterium, Vibrio cholerae has established an environmental reservoir in the surface waters of Haiti remains to be elucidated. In a previous study conducted between April 2012 and March 2013, we reported the isolation of toxigenic V. cholerae O1 from surface waters in the Ouest Department. After a second year of surveillance (April 2013 to March 2014 using identical methodology, we observed a more than five-fold increase in the number of water samples containing culturable V. cholerae O1 compared to the previous year (1.7% vs 8.6%, with double the number of sites having at least one positive sample (58% vs 20%. Both seasonal water temperatures and precipitation were significantly related to the frequency of isolation. Our data suggest that toxigenic V. cholerae O1 are becoming more common in surface waters in Haiti; while the basis for this increase is uncertain, our findings raise concerns that environmental reservoirs are being established.

  18. Optimization and characterization of biosurfactant production from marine Vibrio sp. strain 3B-2

    Science.gov (United States)

    Hu, Xiaoke; Wang, Caixia; Wang, Peng

    2015-01-01

    A biosurfactant-producing bacterium, designated 3B-2, was isolated from marine sediment and identified as Vibrio sp. by 16S rRNA gene sequencing. The culture medium composition was optimized to increase the capability of 3B-2 for producing biosurfactant. The produced biosurfactant was characterized in terms of protein concentration, surface tension, and oil-displacement efficiency. The optimal medium for biosurfactant production contained: 0.5% lactose, 1.1% yeast extract, 2% sodium chloride, and 0.1% disodium hydrogen phosphate. Under optimal conditions (28°C), the surface tension of crude biosurfactant could be reduced to 41 from 71.5 mN/m (water), while its protein concentration was increased to up to 6.5 g/L and the oil displacement efficiency was improved dramatically at 6.5 cm. Two glycoprotein fractions with the molecular masses of 22 and 40 kDa were purified from the biosurfactant, which held great potential for applications in microbial enhanced oil recovery and bioremediation. PMID:26441908

  19. Observing Chemotaxis in Vibrio fischeri Using Soft Agar Assays in an Undergraduate Microbiology Laboratory

    Directory of Open Access Journals (Sweden)

    Cindy R. DeLoney-Marino

    2013-08-01

    Full Text Available Chemotaxis, the directed movement of cells towards or away from a chemical, is both an exciting and complicated behavior observed in many bacterial species. Attempting to adequately visualize or demonstrate the chemotaxic response of bacteria in the classroom is difficult at best, with good models to illustrate the concept lacking. The BSL-1 marine bacterium Vibrio fischeri (a.k.a. Aliivibrio fischeri is easy to culture, making it an ideal candidate for experiments in an undergraduate microbiology course. A number of chemoattractants for V. fischeri have been identified, including a variety of sugars, nucleosides, and amino acids (1, 2. Below presents how the soft agar-based chemotaxis assay can be implemented in the undergraduate laboratory. As bacterial cells migrate towards one or more attractants in soft agar, students can directly observe the chemotaxic behavior of V. fischeri without the need to learn complicated techniques or use specialized equipment. Once the bands of bacterial cells are observed, the migration can then be disrupted by the addition of excess attractant to the soft agar, thereby visualizing what happens once cells are no longer in a gradient of attractant. In addition, soft agar plates lacking attractants can be used to visualize the random movements of bacterial cells that are non-chemotaxing. These exercises can be used in the microbiology laboratory to help students understand the complex behavior of bacterial chemotaxis.

  20. Visualization of coral host-pathogen interactions using a stable GFP-labeled Vibrio coralliilyticus strain

    Science.gov (United States)

    Pollock, F. Joseph; Krediet, Cory J.; Garren, Melissa; Stocker, Roman; Winn, Karina; Wilson, Bryan; Huete-Stauffer, Carla; Willis, Bette L.; Bourne, David G.

    2015-06-01

    The bacterium Vibrio coralliilyticus has been implicated as the causative agent of coral tissue loss diseases (collectively known as white syndromes) at sites across the Indo-Pacific and represents an emerging model pathogen for understanding the mechanisms linking bacterial infection and coral disease. In this study, we used a mini-Tn7 transposon delivery system to chromosomally label a strain of V. coralliilyticus isolated from a white syndrome disease lesion with a green fluorescent protein gene (GFP). We then tested the utility of this modified strain as a research tool for studies of coral host-pathogen interactions. A suite of biochemical assays and experimental infection trials in a range of model organisms confirmed that insertion of the GFP gene did not interfere with the labeled strain's virulence. Using epifluorescence video microscopy, the GFP-labeled strain could be reliably distinguished from non-labeled bacteria present in the coral holobiont, and the pathogen's interactions with the coral host could be visualized in real time. This study demonstrates that chromosomal GFP labeling is a useful technique for visualization and tracking of coral pathogens and provides a novel tool to investigate the role of V. coralliilyticus in coral disease pathogenesis.

  1. Characterization of Vibrio Parahaemolyticus isolated from oysters and mussels in São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Martha Virginia Ribeiro Rojas

    2011-08-01

    Full Text Available Vibrio parahaemolyticus is a marine bacterium, responsible for gastroenteritis in humans. Most of the clinical isolates produce thermostable direct hemolysin (TDH and TDH-related hemolysin (TRH encoded by tdh and trh genes respectively. In this study, twenty-three V. parahaemolyticus, previously isolated from oysters and mussels were analyzed by PCR using specific primers for the 16S rRNA and virulence genes (tdh, trh and tlh and for resistance to different classes of antibiotics and PFGE. Nineteen isolates were confirmed by PCR as V. parahaemolyticus. The tlh gene was present in 100% of isolates, the tdh gene was identified in two (10.5% isolates, whereas the gene trh was not detected. Each isolate was resistant to at least one of the nine antimicrobials tested. Additionally, all isolates possessed the blaTEM-116 gene. The presence of this gene in V. parahaemolyticus indicates the possibility of spreading this gene in the environment. Atypical strains of V. parahaemolyticus were also detected in this study.

  2. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    Science.gov (United States)

    Shanan, Salah; Bayoumi, Magdi; Saeed, Amir; Sandström, Gunnar; Abd, Hadi

    2016-01-01

    Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria. PMID:27118300

  3. Swedish isolates of Vibrio cholerae enhance their survival when interacted intracellularly with Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Salah Shanan

    2016-04-01

    Full Text Available Vibrio cholerae is a Gram-negative bacterium that occurs naturally in aquatic environment. Only V. cholerae O1 and V. cholerae O139 produce cholera toxin and cause cholera, other serogroups can cause gastroenteritis, open wounds infection, and septicaemia. V. cholerae O1 and V. cholerae O139 grow and survive inside Acanthamoeba castellanii. The aim of this study is to investigate the interactions of the Swedish clinical isolates V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 with A. castellanii. The interaction between A. castellanii and V. cholerae strains was studied by means of amoeba cell counts, viable counts of the bacteria in the absence or presence of amoebae, and of the intracellularly growing bacteria, visualised by electron microscopy. These results show that all V. cholerae can grow and survive outside and inside the amoebae, disclosing that V. cholerae O3, V. cholerae O4, V. cholerae O5, V. cholerae O11, and V. cholerae O160 all can be considered as facultative intracellular bacteria.

  4. Toxicity Screening of Hydrolyzed H, HD, and HT using the Bioluminescent Marine Bacterium, Vibrio Fischeri, by Means of Microtox Assay

    National Research Council Canada - National Science Library

    Haley, Mark V; Checkai, Ronald T

    2006-01-01

    .... The mineralization of HD through hot water hydrolysis with subsequent neutralization using NaOH, followed by biodegradation, has been demonstrated to be an effective technology at the Aberdeen...

  5. Vibrio plantisponsor sp. nov., a diazotrophic bacterium isolated from a mangrove associated wild rice (Porteresia coarctata Tateoka)

    Digital Repository Service at National Institute of Oceanography (India)

    Rameshkumar, N.; Gomez-Gil, B.; Sproer, C.; Lang, E.; Kumar, N.D.; Krishnamurthi, S.; Nair, S.; Roque, A.

    similarity (Fig. 3), which indicates that these two isolates doesn’t belong to any strains of Diazotrophicus clade and further supporting the results of DNA-DNA relatedness. As it is has been previously shown that rep-PCR similarities around 65 % represent...

  6. Anti-vibrio potentials of acetone and aqueous leaf extracts of ...

    African Journals Online (AJOL)

    Purpose: To evaluate the anti-vibrio potentials of acetone and aqueous leaf extracts of Ocimum gratissimum and determine its relevance in the treatment of vibrios infection. Methods: The agar-well diffusion method was used for screening the extracts for their anti-vibrio activity. Broth micro-dilution assay was used to ...

  7. Prevalence study of Vibrio species and frequency of the virulence genes of Vibrio parahaemolyticus isolated from fresh and salted shrimps in Genaveh seaport

    Directory of Open Access Journals (Sweden)

    S Hosseini

    2014-08-01

    Full Text Available Vibrio species are important seafood-borne pathogens that are responsible for 50-70% of gasteroenteritis. The present study was carried out in order to determine the prevalence of Vibrio species and the distribution of tdh, tlh and trh virulence genes in Vibrio parahaemolyticus isolated from fresh and salted shrimp samples. Totally, 60 fresh and salted shrimp samples were collected from the Genaveh seaport. Microbial culture was used to isolate Vibrio species. In addition, the presences of Vibrio parahaemolyticus, Vibrio cholera, Vibrio vulnificus and Vibrio harveyi and the virulence genes of V. parahaemolyticus were studied using the PCR method. Results showed that 20% of fresh and 23.33% of salted shrimp samples were positive for Vibrio species. In studied samples, V. vulnificus had the highest prevalence rate (8.33%, while V. cholera had the lowest prevalence rate (1.66%. From a total of 4 detected V. parahaemolyticus, all of them had tlh gene (100%. The distribution of tdh and trh genes in isolated V. parahaemolyticus strains were 50% and 25%, respectively. High prevalence of Vibrio species and especially virulent V. parahaemolyticus in samples confirmed the lack of hygienic condition in the production and distribution centers of shrimp.

  8. [Preparation of monoclonal antibodies against flagellin core protein of Vibrio cholerae and its application in establishing double-antibody sandwich ELISA for testing Vibrio cholerae from food products].

    Science.gov (United States)

    Cheng, Jinxia; Zeng, Jing; Zhang, Lei; Zhang, Lin; Zhang, Haiyu; Liu, Xuesong; Cao, Dong

    2013-11-01

    To prepare the monoclonal antibodies (mAbs) against flagellin core protein of Vibrio cholerae and establish the double-antibody sandwich ELISA method for testing Vibrio cholerae from food products. BALB/c mice were immunized with flagellin extracted from Vibrio cholerae Vc75 by differential centrifugation. The splenocytes from the immunized mice were fused with Sp2/0 myeloma cells when the antibody titer in serum reached 1:32 000. The hybridoma cell lines were obtained by regular subcloning and used to generate ascites. And mAbs reacting to Vibrio cholerae flagellin were achieved by purified from the ascites. Six hybridoma cell lines stably secreting mAbs against Vibrio cholerae flagellin were taken and named VcNo.1-VcNo.6. The mAb titer in serum by indirect ELISA was 1:2 × 10(6). SDS-PAGE showed that the flagellin protein molecular weight (Mr) was 44 000 and the purity was high. Double-antibody sandwich ELISA method was set up using VcNo.6 antibody for detecting Vibrio cholerae. The sensitivity reached 10(3) CFU/mL. The ELISA method showed high specificity to Vibrio cholerae through testing 100 Vibrio cholerae (100% positive) and 101 non-Vibrio cholerae strains (100% negative). The detection limit was 1 CFU/g sample in artificial contaminated samples. The mAbs against flagellin core protein of Vibrio cholerae was successfully prepared and used to set up the double-antibody sandwich ELISA. The mAb of VcNo.6 was highly specific to Vibrio cholerae. The sensitivity of the established ELISA was as high as 10(3) CFU/mL. Moreover, it did not react to non-Vibrio cholerae strains. Therefore, the mAbs of VcNo.6 could be widely used in Vibrio cholerae detection from food samples as well as clinical samples.

  9. Vibriophages and their interactions with the fish pathogen Vibrio anguillarum.

    Science.gov (United States)

    Tan, Demeng; Gram, Lone; Middelboe, Mathias

    2014-05-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24 V. anguillarum strains, and 13 Vibrio species strains. Together, the host ranges of the 11 phages covered all of the tested 37 Vibrio sp. host strains, which represented considerable temporal (20 years) and geographical (9 countries) differences in their origins of isolation. Thus, despite the occurrence of unique susceptibility patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages. However, rapid regrowth of both phage-resistant and phage-sensitive cells following the initial lysis suggested that several mechanisms of protection against phage infection had developed in the host populations.

  10. Non-Cholera Vibrios: The Microbial Barometer of Climate Change.

    Science.gov (United States)

    Baker-Austin, Craig; Trinanes, Joaquin; Gonzalez-Escalona, Narjol; Martinez-Urtaza, Jaime

    2017-01-01

    There is a growing interest in the role of climate change in driving the spread of waterborne infectious diseases, such as those caused by bacterial pathogens. One particular group of pathogenic bacteria - vibrios - are a globally important cause of diseases in humans and aquatic animals. These Gram-negative bacteria, including the species Vibrio vulnificus, Vibrio parahaemolyticus and Vibrio cholerae, grow in warm, low-salinity waters, and their abundance in the natural environment mirrors ambient environmental temperatures. In a rapidly warming marine environment, there are greater numbers of human infections, and most notably outbreaks linked to extreme weather events such as heatwaves in temperate regions such as Northern Europe. Because the growth of pathogenic vibrios in the natural environment is largely dictated by temperature, we argue that this group of pathogens represents an important and tangible barometer of climate change in marine systems. We provide a number of specific examples of the impacts of climate change on this group of bacteria and their associated diseases, and discuss advanced strategies to improve our understanding of these emerging waterborne diseases through the integration of microbiological, genomic, epidemiological, climatic, and ocean sciences. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  11. Antibiotic use for Vibrio infections: important insights from surveillance data.

    Science.gov (United States)

    Wong, Kam Cheong; Brown, Anthony M; Luscombe, Georgina M; Wong, Shin Jie; Mendis, Kumara

    2015-06-11

    There is a paucity of data on the in vivo efficacy of antibiotics for lethal Vibrio species. Analyses of long-term surveillance datasets may provide insights into use of antibiotics to decrease mortality. The United States Centers for Disease Control and Prevention (CDC) Cholera and Other Vibrio Illness Surveillance (COVIS) dataset from 1990 to 2010, with 8056 records, was analysed to ascertain trends in antibiotics use and mortality. Two-thirds of patients (5243) were prescribed antibiotics - quinolones (56.1 %), cephalosporins (24.1 %), tetracyclines (23.5 %), and penicillins (15.4 %). Considering all Vibrio species, the only class of antibiotic associated with reduced odds of mortality was quinolone (odds ratio 0.56, 95 % CI 0.46-0.67). Patients with V. vulnificus treated according to CDC recommendations had lower mortality (quinolone alone: 16.7 %, 95 % CI 10.2-26.1; tetracycline plus cephalosporin: 21.7 %, 16.8-27.5; no antibiotic: 51.1 %, 45.6-56.7; each p Vibrio species, mortality rates increased with number of antibiotics in the treatment regimen (p Vibrio species, use of quinolones is associated with lower mortality and penicillin alone is not particularly effective. For the most lethal species, V. vulnificus, treatment that includes either quinolone or tetracycline is associated with lower mortality than cephalosporin alone. We recommend treating patients who present with a clinical syndrome suggestive of V. vulnificus infection with a treatment regimen that includes a quinolone.

  12. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum

    Science.gov (United States)

    Tan, Demeng; Gram, Lone

    2014-01-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24 V. anguillarum strains, and 13 Vibrio species strains. Together, the host ranges of the 11 phages covered all of the tested 37 Vibrio sp. host strains, which represented considerable temporal (20 years) and geographical (9 countries) differences in their origins of isolation. Thus, despite the occurrence of unique susceptibility patterns of the individual host isolates, key phenotypic properties related to phage susceptibility are distributed worldwide and maintained in the global Vibrio community for decades. The phage susceptibility pattern of the isolates did not show any relation to the physiological relationships obtained from Biolog GN2 profiles, demonstrating that similar phage susceptibility patterns occur across broad phylogenetic and physiological differences in Vibrio strains. Subsequent culture experiments with two phages and two V. anguillarum hosts demonstrated an initial strong lytic potential of the phages. However, rapid regrowth of both phage-resistant and phage-sensitive cells following the initial lysis suggested that several mechanisms of protection against phage infection had developed in the host populations. PMID:24610858

  13. New Vibrio species associated to molluscan microbiota: a review

    Science.gov (United States)

    Romalde, Jesús L.; Dieguez, Ana L.; Lasa, Aide; Balboa, Sabela

    2014-01-01

    The genus Vibrio consists of more than 100 species grouped in 14 clades that are widely distributed in aquatic environments such as estuarine, coastal waters, and sediments. A large number of species of this genus are associated with marine organisms like fish, molluscs and crustaceans, in commensal or pathogenic relations. In the last decade, more than 50 new species have been described in the genus Vibrio, due to the introduction of new molecular techniques in bacterial taxonomy, such as multilocus sequence analysis or fluorescent amplified fragment length polymorphism. On the other hand, the increasing number of environmental studies has contributed to improve the knowledge about the family Vibrionaceae and its phylogeny. Vibrio crassostreae, V. breoganii, V. celticus are some of the new Vibrio species described as forming part of the molluscan microbiota. Some of them have been associated with mortalities of different molluscan species, seriously affecting their culture and causing high losses in hatcheries as well as in natural beds. For other species, ecological importance has been demonstrated being highly abundant in different marine habitats and geographical regions. The present work provides an updated overview of the recently characterized Vibrio species isolated from molluscs. In addition, their pathogenic potential and/or environmental importance is discussed. PMID:24427157

  14. Isolation and characterization of five lytic bacteriophages infecting a Vibrio strain closely related to Vibrio owensii.

    Science.gov (United States)

    Yu, Yan-Ping; Gong, Ting; Jost, Günter; Liu, Wen-Hua; Ye, De-Zan; Luo, Zhu-Hua

    2013-11-01

    Vibrio owensii is a potential bacterial pathogen in marine aquaculture system. In this study, five lytic phages specific against Vibrio strain B8D, closely related to V. owensii, were isolated from seawater of an abalone farm. The phages were characterized with respect to morphology, genome size, growth phenotype, as well as thermal, and pH stability. All phages were found to belong to the family Siphoviridae with long noncontractile tails and terminal fibers. Restriction analysis indicated that the five phages were dsDNA viruses with molecular weights ranging from c. 30 to 48 kb. One-step growth experiments revealed that the phages were heterogeneous in latent periods (10-70 min), rise periods (40-70 min), and burst sizes [23-331 plaque-forming units (PFU) per infected cell] at the same host strain. All phages were thermal stable and were tolerant to a wide range of pH. The results indicated that these phages could be potential candidates of a phage cocktail for biological control of V. owensii in aquaculture systems. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  15. Evaluation of molecular methods to discriminate the closely related species Vibrio fluvialis and Vibrio furnissii.

    Science.gov (United States)

    Schirmeister, Falko; Wieczorek, Angelina; Dieckmann, Ralf; Taureck, Karin; Strauch, Eckhard

    2014-10-01

    Vibrio furnissii and Vibrio fluvialis are two closely related species which are regarded as emerging human pathogens. Human infections have been mainly associated with consumption of seafood or drinking of contaminated water. V. furnissii strains can be distinguished from V. fluvialis by their ability to produce gas from fermentation of carbohydrates. In this study, we compare two phenotypic (biochemical testing and matrix-assisted laser desorption/ionisation time of flight mass spectrometry, MALDI-TOF MS) and three genotypic techniques (rpoB sequencing, conventional PCR and real-time PCR) for determination of the two species. The methods were evaluated on a collection of 42 V. furnissii and 32 V. fluvialis strains, which were isolated from marine environments and from animals intended for food production. Four of the applied methods allowed the unambiguous discrimination of the two species, while the biochemical testing was the least reliable technique, due to a high variation in the phenotype of gas production from carbohydrates. In view of the One Health concept reliable diagnostic techniques are a prerequisite for preventive public health measurements, as pathogens isolated from animals can cross species borders and methods for detection of sources, reservoirs and ways of transmission of pathogenic bacteria are indispensable for the prevention of infectious diseases in humans and animals. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Vibrio parahaemolyticus- An emerging foodborne pathogen

    Directory of Open Access Journals (Sweden)

    S Nelapati

    2012-02-01

    Full Text Available Vibrio parahaemolyticus is a halophilic gram negative, motile, oxidase positive, straight or curved rod-shaped, facultative anaerobic bacteria that occur naturally in the marine environment. They form part of the indigenous microflora of aquatic habitats of various salinity and are the major causative agents for some of the most serious diseases in fish, shellfish and penacid shrimp. This human pathogen causes acute gastroenteritis characterized by diarrhea, vomiting and abdominal cramps through consumption of contaminated raw fish or shellfish. V. parahaemolyticus is the leading cause of gastroenteritis due to the consumption of seafood worldwide. The incidence of V. parahaemolyticus infection has been increasing in many parts of the world, due to the emergence of O3:K6 serotype carrying the tdh gene which is responsible for most outbreaks worldwide. The pathogenicity of this organism is closely correlated with the Kanagawa phenomenon (KP + due to production of Kanagawa hemolysin or the thermostable direct hemolysin (TDH. The TDH and TRH (TDH-related hemolysin encoded by tdh and trh genes are considered to be important virulence factors. [Vet. World 2012; 5(1.000: 48-63

  17. Characterization of clinical and environmental isolates of Vibrio cidicii sp. nov., a close relative of Vibrio navarrensis.

    Science.gov (United States)

    Orata, Fabini D; Xu, Yue; Gladney, Lori M; Rishishwar, Lavanya; Case, Rebecca J; Boucher, Yan; Jordan, I King; Tarr, Cheryl L

    2016-10-01

    Four Vibrio spp. isolates from the historical culture collection at the Centers for Disease Control and Prevention, obtained from human blood specimens (n=3) and river water (n=1), show characteristics distinct from those of isolates of the most closely related species, Vibrio navarrensis and Vibrio vulnificus, based on phenotypic and genotypic tests. They are specifically adapted to survival in both freshwater and seawater, being able to grow in rich media without added salts as well as salinities above that of seawater. Phenotypically, these isolates resemble V. navarrensis, their closest known relative with a validly published name, but the group of isolates is distinguished from V. navarrensis by the ability to utilize l-rhamnose. Average nucleotide identity and percent DNA-DNA hybridization values obtained from the pairwise comparisons of whole-genome sequences of these isolates to V. navarrensis range from 95.4-95.8 % and 61.9-64.3 %, respectively, suggesting that the group represents a different species. Phylogenetic analysis of the core genome, including four protein-coding housekeeping genes (pyrH, recA, rpoA and rpoB), places these four isolates into their own monophyletic clade, distinct from V. navarrensis and V. vulnificus. Based on these differences, we propose these isolates represent a novel species of the genus Vibrio, for which the name Vibrio cidicii sp. nov. is proposed; strain LMG 29267T (=CIP 111013T=2756-81T), isolated from river water, is the type strain.

  18. Reclassification of the larval pathogen for marine bivalves Vibrio tubiashii subsp. europaeus as Vibrio europaeus sp. nov.

    Science.gov (United States)

    Dubert, Javier; Romalde, Jesús L; Spinard, Edward J; Nelson, David R; Gomez-Chiarri, Marta; Barja, Juan L

    2016-11-01

    The Orientalis clade has a relevant significance for bivalve aquaculture since it includes the pathogens Vibrio bivalvicida, Vibrio tubiashii subsp. tubiashii and Vibrio tubiashii subsp. europaeus. However, the previous taxonomic description of the subspecies of V. tubiashii shows some incongruities that should be emended. In the genomic age, the comparison between genome assemblies is the key to clarify the taxonomic position of both subspecies. With this purpose, we have tested the ability of multilocus sequence analysis based on eight housekeeping gene sequences (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA and topA), different in silico genome-to-genome comparisons, chemotaxonomic features and phenotypic traits to reclassify the subspecies V. tubiashii subsp. europaeus within the Orientalis clade. This polyphasic approach clearly demonstrated that this subspecies is phylogenetically and phenotypically distinct from V. tubiashii and should be elevated to the rank of species as Vibrio europaeus sp. nov. This reclassification allows us to update the Orientalis clade (V. bivalvicida,V. brasiliensis, V. crosai, V. hepatarius, V. orientalis, V. sinaloensis, V. tubiashii and V. europaeus sp. nov.) and reconstruct a better phylogeny of the genus Vibrio. An emended description of V. tubiashii is provided. Finally, the proposed novel species is represented by emergent bivalve pathogens [type strain PP-638T (=CECT 8136T=DSM 27349T), PP2-843 and 07/118 T2] responsible for high mortalities in Spanish and French hatcheries.

  19. Intragenomic Variation Among 16S rRNA Copies in Vibrio - Significance of Lifestyle

    OpenAIRE

    Karlsholm, Line Strand

    2017-01-01

    Intragenomic heterogeneity among 16S rRNA gene copies has been found in several species of bacteria. In this thesis, the presence of different 16S rRNA gene copies and the differences in the relative abundance of these 16S rRNA gene variants for different lifestyles was examined for three species of Vibrio. The Vibrio strains used were Vibrio anguillarum strain HI610, Vibrio campbellii strain BB120 and the Vibrio sp. strain RD5-30. The methods used to examine this were denaturing gradient g...

  20. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  1. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus

    DEFF Research Database (Denmark)

    Boyd, EF; Cohen, AL; Naughton, LM

    2008-01-01

    Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup...... the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS), a type VI secretion system (T6SS......) and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7). Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions...

  2. Antibiotic-resistant mutants of γ-irradiated vibrios

    International Nuclear Information System (INIS)

    Sokurova, E.N.; Golovina, V.S.

    1981-01-01

    It was demonstrated that a nutrition medium has a protective effect against γ-radiation-induced lethal damages to vibrios. The values of D 0 and LD 90 were 3 times higher for vibrios irradiated in a nutrition medium than in a physiological solution. There was a small shoulder in the survival curve under both irradiation conditions. Exposure of vibrios to γ-quanta induced mutations resistant to streptomycin, their frequency increasing exponentially with radiation dose. The frequency of spontaneous mutations resistant to streptomycin was (5.85+-1.90)x10 -8 . Mutations resistant to chloramphenicol did not occur spontaneously and were not induced by γ-radiation. A spontaneous streptomycin-resistant mutant did not differ in radiosensitivity from the parent strain: n=1.54 and 1.46, D 0 =12.2 and 12.1 Gy and LD 90 =32.7 and 33.9 Gy respectively [ru

  3. Insights into Bacteriophage Application in Controlling Vibrio Species

    Science.gov (United States)

    Letchumanan, Vengadesh; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Goh, Bey-Hing; Ab Mutalib, Nurul-Syakima; Lee, Learn-Han

    2016-01-01

    Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages – viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy. PMID:27486446

  4. Vibriophages and Their Interactions with the Fish Pathogen Vibrio anguillarum

    DEFF Research Database (Denmark)

    Tan, Demeng; Gram, Lone; Middelboe, Mathias

    2014-01-01

    Vibrio anguillarum is an important pathogen in aquaculture, responsible for the disease vibriosis in many fish and invertebrate species. Disease control by antibiotics is a concern due to potential development and spread of antibiotic resistance. The use of bacteriophages to control the pathogen...... may offer a non-antibiotic-based approach to reduce vibriosis. A detailed understanding of the phage-host interaction is needed to evaluate the potential of phages to control the pathogen. In this study, we examined the diversity and interactions of 11 vibriophages, 24 V. anguillarum strains, and 13...... Vibrio species strains. Together, the host ranges of the 11 phages covered all of the tested 37 Vibrio sp. host strains, which represented considerable temporal (20 years) and geographical (9 countries) differences in their origins of isolation. Thus, despite the occurrence of unique susceptibility...

  5. Vibrio injenensis sp. nov., isolated from human clinical specimens.

    Science.gov (United States)

    Paek, Jayoung; Shin, Jeong Hwan; Shin, Yeseul; Park, In-Soon; Kim, Hongik; Kook, Joong-Ki; Kang, Seok-Seong; Kim, Dae-Soo; Park, Kun-Hyang; Chang, Young-Hyo

    2017-01-01

    Vibrio species are well known as motile, mostly oxidase-positive, facultative anaerobic Gram-negative bacteria. They are abundant in aquatic environments and are a common cause of human infections including diarrhea, soft tissue diseases, and bacteremia. Here, two Gram-negative bacteria, designated M12-1144 T and M12-1181, were isolated from human clinical specimens and identified using a polyphasic taxonomic approach. Phylogenetic study based on 16S rRNA gene sequence analysis revealed that the isolates belong to the genus Vibrio, and are closely related to Vibrio metschnikovii KCTC 32284 T (98.3%) and Vibrio cincinnatiensis KCTC 2733 T (97.8%). The major fatty acids were summed feature 3 (C 16:1 ω7c/C 16:1 ω6c, 38.0%), C 16:0 (23.0%), and summed feature 8 (C 18:1 ω7c or C 18:1 ω6c, 19.3%) and major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. The G + C content of the genomic DNA was determined to be 44.1 mol%. DNA-DNA relatedness between the two newly isolated strains and V. metschnikovii KCTC 32284 T and V. cincinnatiensis KCTC 2733 T was between 42.6 to 47.5%. The similarities of genome-to-genome distance between M12-1144 T and related species ranged from 18.4-54.8%. Based on these results, a new species of the genus Vibrio, Vibrio injenensis is proposed. The type strain is M12-1144 T (=KCTC 32233 T  =JCM 30011 T ).

  6. Monomicrobial Aeromonas and Vibrio bacteremia in cirrhotic adults in southern Taiwan: Similarities and differences.

    Science.gov (United States)

    Syue, Ling-Shan; Chen, Po-Lin; Wu, Chi-Jung; Lee, Nan-Yao; Lee, Ching-Chi; Li, Chia-Wen; Li, Ming-Chi; Tang, Hung-Jen; Hsueh, Po-Ren; Ko, Wen-Chien

    2016-08-01

    Aeromonas and Vibrio are important water-borne pathogens causing substantial morbidity and mortality in cirrhotic patients in Taiwan, but the differences in clinical manifestations of Aeromonas and Vibrio bacteremia have not been reported in detail. From January 2003 to September 2013, cirrhotic patients with monomicrobial Aeromonas or Vibrio bacteremia at a medical center in Taiwan were included in this study. The study population consisted of 77 cirrhotic patients with Aeromonas bacteremia and 48 patients with Vibrio bacteremia. Both pathogens clustered during the summer season; Vibrio bacteremia was more correlated with higher temperatures (Vibrio: r(2) = 0.95, p Vibrio bacteremia mainly occurred in mildly or moderately decompensated cirrhosis (Child-Pugh class A and B: 45.8% vs. 20.8%, p = 0.003), and caused more soft-tissue infections (31.3% vs. 5.2%; p Vibrio and Aeromonas bacteremia (14.6% vs. 14.3%, p = 0.96), but those with Vibrio bacteremia underwent a fulminant course, as evidenced by a shorter time from bacteremia onset to death (3.1 days vs. 8.2 days, p = 0.04). In cirrhotic patients, bacteremia caused by Aeromonas and Vibrio species clustered in summer months and caused similar mortality, but Vibrio bacteremia led to a more severe and fulminant sepsis. Copyright © 2014. Published by Elsevier B.V.

  7. Vibrios associated with mortality in cultured plaice Pleuronectes platessa fry

    DEFF Research Database (Denmark)

    Pedersen, Karl; Austin, B.; Austin, D.A.

    1999-01-01

    Fifty two bacterial strains, identified as Vibrio spp., were isolated from diseased plaice fry. The most numerous group comprised V. anguillarum (26/52), of which 3 isolates belonged to serogroup O2a, 16 corresponded to serogroup O18, and 7 isolates were nontypeable. All serogroup O18 isolates had....... fluvialis isolates had identical ribotype patterns, indicating the presence of a single clone. The last 5 isolates belonged to 2 different, unidentified Vibrio species (n=2 and 3, respectively). Although all isolates were recovered from diseased plaice fry, their exact role as pathogens for the fry......, the strains may have been more virulent upon primary isolation from the plaice fry....

  8. Long-term effects of ocean warming on vibrios

    Science.gov (United States)

    Pruzzo, C.; Pezzati, E.; Brettar, I.; Reid, P. C.; Colwell, R.; Höfle, M. G.; vezzulli, L.

    2012-12-01

    Vibrios are a major source of human disease, play an important role in the ecology and health of marine animals and are regarded as an abundant fraction of culturable bacteria of the ocean. There has been a considerable global effort to reduce the risk of Vibrio infections and yet in most countries both human and non-human illnesses associated with these bacteria are increasing. The cause of this increase is not known, but since vibrios are strongly thermodependant there is good reason to believe that global warming may have contributed. To investigate this possibility we examined historical samples from the Continuous Plankton Recorder (CPR) archive using advanced molecular analysis and pyrosequencing. For the first time we were able to recover environmental DNA from CPR samples that had been stored for up to ~50 years in a formalin-fixed format, which is suitable for molecular analyses of the associated prokaryotic community. To overcome the problem of DNA degradation due to the sample age and storage in formalin we develop an unbiased index of abundance for Vibrio quantification in CPR samples termed a 'relative Vibrio Abundance Index' (VAI). VAI is defined as the ratio of Vibrio spp. cells to total bacterial cells assessed by Real-Time PCR using genus-specific and universal primers, respectively, producing small amplicons of similar size (~100bp). We assessed VAI index on 55 samples (each representing 10 nautical miles tow equal to 3 m3 of filtered sewater) collected in August by the CPR survey in the North Sea from off the Rhine and Humber estuaries between 1961 to 2005 showing that the genus Vibrio has increased in prevalence in the last 44 years and that this increase is correlated significantly, during the same period, with warming sea surface temperature. In addition, by applying deep sequencing analysis of a subset of these samples we provide evidence that bacteria belonging to the genus Vibrio, including the human pathogen V. cholerae, not only increased

  9. Leucine uptake and bacteriophage adsorption a Vibrio strain

    International Nuclear Information System (INIS)

    Robb, F.T.; Robb, S.M.; Mothibeli, M.A.; Woods, D.R.

    1982-01-01

    Vibrio mutants with altered leucine transport systems were isolated as part of a study on the physiological characteristics of stationary phase Vibrio cells. The strains are investigated and show that mutants which are defective in leucine uptake are unable to adsorb phage α3a. Elevated leucine transport produces a concomitant increase in the rate of phage adsorption. Phage adsortpion and L-leucine transport experiments indicated that there was a correlation between phage α3a adsorption and leucine uptake. The results suggest that the transport of L-leucine and phage α3 are linked

  10. Phenotypic characterization and RAPD fingerprinting of Vibrio parahaemolyticus and Vibrio alginolyticus isolated during Tunisian fish farm outbreaks.

    Science.gov (United States)

    Sadok, Khouadja; Mejdi, Snoussi; Nourhen, Saidi; Amina, Bakhrouf

    2013-01-01

    The genus Vibrio is characterized by a large number of species and some of them are human pathogens causing gastrointestinal and wound infections through the ingestion or manipulation of contaminated fishes and shellfish including Vibrio parahaemolyticus and Vibrio alginolyticus. In this study, we reported the phenotypic and molecular characterization of 9 V. parahaemolyticus and 27 V. alginolyticus strains isolated from outbreaks affecting cultured Gilthead sea bream (Sparus aurata L.) and Sea bass (Dicentrarchus labrax) along the Tunisian coast from 2008 to 2009. All isolates were tested for the presence of DNase, caseinase, protease, lipase, amylase, gelatinase, hemolytic activity and antibacterial resistance to different drugs. Randomly amplified polymorphic DNA was used to examine the genetic relatedness among the V. parahaemolyticus and V. alginolyticus strains.

  11. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792

    DEFF Research Database (Denmark)

    Valles, Iliana Espinoza; Vora, Gary J; Lin, Baochuan

    2015-01-01

    Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome....... The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78 %) than to those of the other closely related species Vibrio owensii (67 %), Vibrio rotiferianus (63 %) and Vibrio campbellii (59 %). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA...

  12. Vibrio salilacus sp. nov., a new member of the Anguillarum clade with six alleles of the 16S rRNA gene from a saline lake.

    Science.gov (United States)

    Zhong, Zhi-Ping; Liu, Ying; Liu, Hong-Can; Wang, Fang; Zhou, Yu-Guang; Liu, Zhi-Pei

    2015-08-01

    A Gram-stain-negative, catalase- and oxidase-positive, facultatively aerobic bacterium, strain DSG-S6T, was isolated from Dasugan Lake (salinity 3.1%, w/w), China. Its taxonomic position was determined by using a polyphasic approach. Cells of strain DSG-S6T were non-spore-forming, slightly bent rods, and motile by means of a single polar flagellum. Growth occurred in the presence of 0-7.0% (w/v) NaCl (optimum, 2.0%), at 4-35 °C (optimum, 30 °C) and at pH 6.0-10.5 (optimum, pH 8.0-8.5). C16 : 0, C18 : 1ω7c and C16 : 1ω7c and/or C16 : 1ω6c were the major fatty acids. Six alleles of the 16S rRNA gene sharing 98.9-99.9  % similarity were detected in strain DSG-S6T, which showed highest 16S rRNA gene sequence similarity to Vibrio aestuarianus ATCC 35048T (97.7 %), then to Vibrio pacinii LMG 19999T (97.6%) and Vibrio metschnikovii CIP 69.14T (96.8%). Multilocus sequence analysis of four housekeeping genes and 16S rRNA genes clearly clustered it as a member of the Anguillarum clade. Mean DNA-DNA relatedness between strain DSG-S6T and V. aestuarianus NBRC 15629T, V. pacinii CGMCC 1.12557T and V. metschnikovii JCM 21189T was 20.6 ± 2.3, 38.1 ± 3.5 and 24.2 ± 2.8%, respectively. The DNA G+C content was 46.8 mol% (Tm). Based on the data, it is concluded that strain DSG-S6T represents a novel species of the genus Vibrio, for which the name Vibrio salilacus sp. nov. is proposed. The type strain is DSG-S6T ( = CGMCC 1.12427T = JCM 19265T).

  13. Development of a More Sensitive and Specific Chromogenic Agar Medium for the Detection of Vibrio parahaemolyticus and Other Vibrio Species.

    Science.gov (United States)

    Yeung, Marie; Thorsen, Trevor

    2016-11-08

    Foodborne infections in the US caused by Vibrio species have shown an upward trend. In the genus Vibrio, V. parahaemolyticus is responsible for the majority of Vibrio-associated infections. Thus, accurate differentiation among Vibrio spp. and detection of V. parahaemolyticus is critically important to ensure the safety of our food supply. Although molecular techniques are increasingly common, culture-depending methods are still routinely done and they are considered standard methods in certain circumstances. Hence, a novel chromogenic agar medium was tested with the goal of providing a better method for isolation and differentiation of clinically relevant Vibrio spp. The protocol compared the sensitivity, specificity and detection limit for the detection of V. parahaemolyticus between the new chromogenic medium and a conventional medium. Various V. parahaemolyticus strains (n=22) representing diverse serotypes and source of origins were used. They were previously identified by Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC), and further verified in our laboratory by tlh-PCR. In at least four separate trials, these strains were inoculated on the chromogenic agar and thiosulfate-citrate-bile salts-sucrose (TCBS) agar, which is the recommended medium for culturing this species, followed by incubation at 35-37 °C for 24-96 hr. Three V. parahaemolyticus strains (13.6%) did not grow optimally on TCBS, nonetheless exhibited green colonies if there was growth. Two strains (9.1%) did not yield the expected cyan colonies on the chromogenic agar. Non-V. parahaemolyticus strains (n=32) were also tested to determine the specificity of the chromogenic agar. Among these strains, 31 did not grow or exhibited other colony morphologies. The mean recovery of V. parahaemolyticus on the chromogenic agar was ~96.4% relative to tryptic soy agar supplemented with 2% NaCl. In conclusion, the new chromogenic agar is an effective medium to detect V

  14. Replication ofVibrio choleraeclassical CTX phage.

    Science.gov (United States)

    Kim, Eun Jin; Yu, Hyun Jin; Lee, Je Hee; Kim, Jae-Ouk; Han, Seung Hyun; Yun, Cheol-Heui; Chun, Jongsik; Nair, G Balakrish; Kim, Dong Wook

    2017-02-28

    The toxigenic classical and El Tor biotype Vibrio cholerae serogroup O1 strains are generated by lysogenization of host-type-specific cholera toxin phages (CTX phages). Experimental evidence of the replication and transmission of an El Tor biotype-specific CTX phage, CTX-1, has explained the evolution of V. cholerae El Tor biotype strains. The generation of classical biotype strains has not been demonstrated in the laboratory, and the classical biotype-specific CTX phage, CTX-cla, is considered to be defective with regard to replication. However, the identification of atypical El Tor strains that contain CTX-cla-like phage, CTX-2, indicates that CTX-cla and CTX-2 replicate and can be transmitted to V. cholerae strains. The replication of CTX-cla and CTX-2 phages and the transduction of El Tor biotype strains by various CTX phages under laboratory conditions are demonstrated in this report. We have established a plasmid-based CTX phage replication system that supports the replication of CTX-1, CTX-cla, CTX-2, and CTX-O139. The replication of CTX-2 from the tandem repeat of lysogenic CTX-2 in Wave 2 El Tor strains is also presented. El Tor biotype strains can be transduced by CTX phages in vitro by introducing a point mutation in toxT , the transcriptional activator of the tcp (toxin coregulated pilus) gene cluster and the cholera toxin gene. This mutation also increases the expression of cholera toxin in El Tor strains in a sample single-phase culture. Our results thus constitute experimental evidence of the genetic mechanism of the evolution of V. cholerae .

  15. Response of Vibrio cholerae to the Catecholamine Hormones Epinephrine and Norepinephrine.

    Science.gov (United States)

    Halang, Petra; Toulouse, Charlotte; Geißel, Bernadette; Michel, Bernd; Flauger, Birgit; Müller, Manuel; Voegele, Ralf T; Stefanski, Volker; Steuber, Julia

    2015-12-01

    In Escherichia coli or Salmonella enterica, the stress-associated mammalian hormones epinephrine (E) and norepinephrine (NE) trigger a signaling cascade by interacting with the QseC sensor protein. Here we show that Vibrio cholerae, the causative agent of cholera, exhibits a specific response to E and NE. These catecholates (0.1 mM) enhanced the growth and swimming motility of V. cholerae strain O395 on soft agar in a medium containing calf serum, which simulated the environment within the host. During growth, the hormones were converted to degradation products, including adrenochrome formed by autooxidation with O2 or superoxide. In E. coli, the QseC sensor kinase, which detects the autoinducer AI-3, also senses E or NE. The genome of V. cholerae O395 comprises an open reading frame coding for a putative protein with 29% identity to E. coli QseC. Quantitative reverse transcriptase PCR (qRT-PCR) experiments revealed increased transcript levels of the qseC-like gene and of pomB, a gene encoding a structural component of the flagellar motor complex, under the influence of E or NE. Phentolamine blocks the response of E. coli QseC to E or NE. A V. cholerae mutant devoid of the qseC-like gene retained the phentolamine-sensitive motility in the presence of E, whereas NE-stimulated motility was no longer inhibited by phentolamine. Our study demonstrates that V. cholerae senses the stress hormones E and NE. A sensor related to the histidine kinase QseC from E. coli is identified and is proposed to participate in the sensing of NE. Vibrio cholerae is a Gram-negative bacterium that may cause cholera, a severe illness with high mortality due to acute dehydration caused by diarrhea and vomiting. Pathogenic V. cholerae strains possess virulence factors like the cholera toxin (CTX) and the toxin-coregulated pilus (TCP) produced in response to signals provided by the host. In pathogenic enterobacteria, the stress-associated hormones epinephrine (E) and norepinephrine (NE) of the

  16. The Two-Component Signal Transduction System VxrAB Positively Regulates Vibrio cholerae Biofilm Formation.

    Science.gov (United States)

    Teschler, Jennifer K; Cheng, Andrew T; Yildiz, Fitnat H

    2017-09-15

    Two-component signal transduction systems (TCSs), typically composed of a sensor histidine kinase (HK) and a response regulator (RR), are the primary mechanism by which pathogenic bacteria sense and respond to extracellular signals. The pathogenic bacterium Vibrio cholerae is no exception and harbors 52 RR genes. Using in-frame deletion mutants of each RR gene, we performed a systematic analysis of their role in V. cholerae biofilm formation. We determined that 7 RRs impacted the expression of an essential biofilm gene and found that the recently characterized RR, VxrB, regulates the expression of key structural and regulatory biofilm genes in V. cholerae vxrB is part of a 5-gene operon, which contains the cognate HK vxrA and three genes of unknown function. Strains carrying Δ vxrA and Δ vxrB mutations are deficient in biofilm formation, while the Δ vxrC mutation enhances biofilm formation. The overexpression of VxrB led to a decrease in motility. We also observed a small but reproducible effect of the absence of VxrB on the levels of cyclic di-GMP (c-di-GMP). Our work reveals a new function for the Vxr TCS as a regulator of biofilm formation and suggests that this regulation may act through key biofilm regulators and the modulation of cellular c-di-GMP levels. IMPORTANCE Biofilms play an important role in the Vibrio cholerae life cycle, providing protection from environmental stresses and contributing to the transmission of V. cholerae to the human host. V. cholerae can utilize two-component systems (TCS), composed of a histidine kinase (HK) and a response regulator (RR), to regulate biofilm formation in response to external cues. We performed a systematic analysis of V. cholerae RRs and identified a new regulator of biofilm formation, VxrB. We demonstrated that the VxrAB TCS is essential for robust biofilm formation and that this system may regulate biofilm formation via its regulation of key biofilm regulators and cyclic di-GMP levels. This research furthers

  17. Detection of quorum sensing molecules from Vibrio harveyi and use ...

    African Journals Online (AJOL)

    This paper explores the extraction and detection processes of quorum sensing molecules such as N-aceyl homoserine lactone compounds (AHL) from marine Vibrio harveyi. The spent culture of V. harveyi was solvent partitioned for AHL, rotary evaporated and re-suspended in 50% acetonitrile then detected with reporter ...

  18. Detection of viable toxigenic Vibrio cholerae and virulent Shigella ...

    African Journals Online (AJOL)

    DRINIE

    2003-04-02

    Apr 2, 2003 ... Key words: Vibrio cholerae, Shigella, water-borne pathogens, polymerase chain reaction, environmental waters, drinking water, detection. Introduction ... in drinking water supplies and source waters should thus be viewed as a high priority. ... water, tap water and treated effluent). The bacterial cells from ...

  19. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    AJL

    2012-05-01

    May 1, 2012 ... Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated.

  20. Vibrio trends in the ecology of the Venice lagoon.

    Science.gov (United States)

    Rahman, Mohammad Shamsur; Martino, Maria Elena; Cardazzo, Barbara; Facco, Pierantonio; Bordin, Paola; Mioni, Renzo; Novelli, Enrico; Fasolato, Luca

    2014-04-01

    Vibrio is a very diverse genus that is responsible for different human and animal diseases. The accurate identification of Vibrio at the species level is important to assess the risks related to public health and diseases caused by aquatic organisms. The ecology of Vibrio spp., together with their genetic background, represents an important key for species discrimination and evolution. Thus, analyses of population structure and ecology association are necessary for reliable characterization of bacteria and to investigate whether bacterial species are going through adaptation processes. In this study, a population of Vibrionaceae was isolated from shellfish of the Venice lagoon and analyzed in depth to study its structure and distribution in the environment. A multilocus sequence analysis (MLSA) was developed on the basis of four housekeeping genes. Both molecular and biochemical approaches were used for species characterization, and the results were compared to assess the consistency of the two methods. In addition, strain ecology and the association between genetic information and environment were investigated through statistical models. The phylogenetic and population analyses achieved good species clustering, while biochemical identification was demonstrated to be imprecise. In addition, this study provided a fine-scale overview of the distribution of Vibrio spp. in the Venice lagoon, and the results highlighted a preferential association of the species toward specific ecological variables. These findings support the use of MLSA for taxonomic studies and demonstrate the need to consider environmental information to obtain broader and more accurate bacterial characterization.

  1. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    2013-08-20

    Aug 20, 2013 ... PCR template. Therefore, the multiplex PCR assay described herein is a quick, sensitive and effective method for monitoring of V. cholerae in the environment as well as for confirmation of its toxigenicity and epidemic potential. CONCLUSION. Toxigenic Vibrio cholerae O1 is the major causative agent of.

  2. Biofilm recruitment of Vibrio cholerae by matrix proteolysis.

    Science.gov (United States)

    Duperthuy, Marylise; Uhlin, Bernt Eric; Wai, Sun Nyunt

    2015-11-01

    The appearance of bacterial biofilms involves secretion of polysaccharides and proteins that form an extracellular matrix embedding the bacteria. Proteases have also been observed, but their role has remained unclear. Smith and co-workers have now found that proteolysis can contribute to further recruitment of bacteria to Vibrio cholerae biofilms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Detection and confirmation of toxigenic Vibrio cholerae O1 in ...

    African Journals Online (AJOL)

    Epidemic cholera caused by toxigenic Vibrio cholerae O1 is a major health problem in several developing countries. Traditional methods for identifying V. cholerae involve cultural, biochemical and immunological assays which are cumbersome and often take several days to complete. In the present study, a direct cell ...

  4. Antibiotic Susceptibility Patterns and Plasmid Profile of Vibrio ...

    African Journals Online (AJOL)

    MICHAEL HORSFALL

    ABSTRACT: The antibiotic susceptibility patterns and plasmid profile were studied for 18(32.14%) samples of Vibrio cholerae isolates recovered from water samples from Elele Community. All isolates showed a multiple resistance patterns to 7 antibiotics namely amoxicillin, cotrimoxazole, nitrofurantoin, gentamicin,.

  5. Prevalence of Vibrio cholerae in rivers of Mpumalanga province ...

    African Journals Online (AJOL)

    Cholera is a life-threatening diarrhoeal disease, which mainly affects inhabitants of developing countries due to poor socio-economic conditions and lack of access to potable water and sanitation. Toxigenic Vibrio cholerae are the aetiological agents of cholera. These bacteria are autochthonous to aquatic environments, ...

  6. Filamentous phage associated with recent pandemic strains of Vibrio parahaemolyticus.

    OpenAIRE

    Iida, T.; Hattori, A.; Tagomori, K.; Nasu, H.; Naim, R.; Honda, T.

    2001-01-01

    A group of pandemic strains of Vibrio parahaemolyticus has recently appeared in Asia and North America. We demonstrate that a filamentous phage is specifically associated with the pandemic V. parahaemolyticus strains. An open reading frame unique to the phage is a useful genetic marker to identify these strains.

  7. Survival of Vibrio cholerae in industrially polluted water, with ...

    African Journals Online (AJOL)

    containing industrial effluents. The effect of iron as well as pH on the survival of Vibrio cholerae (non-O1, El Tor and classical strains) in water samples from 12 points, where selected industrial effluents were discharged into rivers, was studied.

  8. Extraction from prawn shells of substances cryoprotective for Vibrio cholerae.

    Science.gov (United States)

    Shimodori, S; Moriya, T; Kohashi, O; Faming, D; Amako, K

    1989-10-01

    Substances cryoprotective for Vibrio cholerae were detected from prawn shells immersed in phosphate-buffered saline. This cryoprotective activity was heat resistant and sensitive to treatment with trypsin. For the exhibition of its full activity, the presence of Mg ion was indispensable. The cryoprotective activity of this substance was more active than that of other known cryoprotectants, like glycerol or serum.

  9. Genome sequence of the human pathogen Vibrio cholerae Amazonia.

    NARCIS (Netherlands)

    Thompson, C.C.; Marin, M.A.; Dias, G.M.; Dutilh, B.E.; Edwards, R.A.; Iida, T.; Thompson, F.L.; Vicente, A.C.

    2011-01-01

    Vibrio cholerae O1 Amazonia is a pathogen that was isolated from cholera-like diarrhea cases in at least two countries, Brazil and Ghana. Based on multilocus sequence analysis, this lineage belongs to a distinct profile compared to strains from El Tor and classical biotypes. The genomic analysis

  10. Ion-swimming speed variation of Vibrio cholerae cells

    Indian Academy of Sciences (India)

    In the present work we report the variation in swimming speed of Vibrio cholerae with respect to the change in concentration of sodium ions in the medium. We have also studied the variation in swimming speed with respect to temperature. We find that the swimming speed initially shows a linear increase with the increase of ...

  11. Vibrio damsela associated with diseased fish in Denmark

    DEFF Research Database (Denmark)

    Pedersen, Karl; Dalsgaard, Inger; Larsen, J.L.

    1997-01-01

    A total of 26 Vibrio damsela strains were isolated in Denmark. Fifteen strains were isolated from the head kidney of rainbow trout (Oncorhynchus mykiss) in aquaculture, eight were from organs of two stingrays (Dasyatis pastinaca) held in captivity, two were from organs and pathological material...

  12. Localization of immunodominant linear B-cell epitopes of Vibrio ...

    African Journals Online (AJOL)

    Outer membrane protein U (OmpU), an adhesion protein of Vibrio mimicus, is a good antigen, but its epitopes are still unclear. In order to locate the epitopes of OmpU protein, epitope prediction was performed using the amino acid sequence of OmpU protein of V. mimicus HX4 strain that was isolated from the diseased ...

  13. Vibrio Cholerae 01 Infections In Jos, Nigeria | Opajobi | African ...

    African Journals Online (AJOL)

    A study to determine the prevalence of Vibrio cholerae 01 in stool sample submitted for routine examination of enteric pathogens, as well as identify the serotypes and antibiogram of the isolates to commonly used antibiotics was undertaken. The survey involved the examination of 774 (763 stool and 11 rectal swabs) ...

  14. In situ measured elimination of Vibrio cholerae from brackish water

    Czech Academy of Sciences Publication Activity Database

    Martínez-P., M. E.; Macek, Miroslav; Castro-G., M. T.

    2004-01-01

    Roč. 9, č. 1 (2004), s. 133-140 ISSN 1360-2276 R&D Projects: GA MŠk(CZ) ME 296 Grant - others:UNAM/DGAPA/PAPIT(MX) IN216796 Keywords : Vibrio cholera e * protozoan feeding * brackish water Subject RIV: EE - Microbiology, Virology Impact factor: 1.969, year: 2004

  15. Salmonella and Vibrio cholerae in Nile perch ( Lates niloticus ...

    African Journals Online (AJOL)

    The Nile perch (Lates niloticus) industry in East Africa has suffered severe economic losses in the last few years due to failure to comply with the microbiological standards of European Union (E.U). Fresh and frozen products have been suspected to be contaminated with Salmonella and Vibrio cholerae. This has led to a ...

  16. Isolation and molecular identification of Vibrio spp. by sequencing of ...

    African Journals Online (AJOL)

    Out of the 93 cultured samples only 48 (51.6%) yielded colonies on Thiosulfate Citrate Bile Salt agar (TCBS) with culture characteristics of Vibrio spp. More than half (n=27) of processed seafood samples (n=46) yielded colonies on TCBS, while only 44.6% of samples of meat and meat products showed colonies on TCBS.

  17. Natural modulators of Vibrios in seawater and shellfish

    Science.gov (United States)

    Naturally occurring marine bacteria, Vibrio parahaemolyticus and V. vulnificus, are major threats to the safety of molluscan shellfish in the US and elsewhere. Illnesses range from mild gastrointestinal upset to septicemia and death. In studies on the uptake and persistence of V. parahaemolyticus ...

  18. Proteolysis of Virulence Regulator ToxR Is Associated with Entry of Vibrio cholerae into a Dormant State

    Science.gov (United States)

    Almagro-Moreno, Salvador; Kim, Tae K.; Skorupski, Karen; Taylor, Ronald K.

    2015-01-01

    Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI), a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP) in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL), and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC). Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state. PMID:25849031

  19. First characterization of bacterial pathogen, Vibrio alginolyticus, for Porites andrewsi White syndrome in the South China Sea.

    Directory of Open Access Journals (Sweden)

    Xie Zhenyu

    Full Text Available White syndrome, a term for scleractinian coral disease with progressive tissue loss, is known to cause depressed growth and increased morality of coral reefs in the major oceans around the world, and the occurrence of this disease has been frequently reported in the past few decades. Investigations during April to September in both 2010 and 2011 identified widespread Porites andrewsi White syndrome (PAWS in Xisha Archipelago, South China Sea. However, the causes and etiology of PAWS have been unknown.A transmission experiment was performed on P. andrewsi in the Qilianyu Subgroup (QLY. The results showed that there was a significant (P ≤ 0.05 difference between test and control groups after 28 days if the invalid replicates were excluded. Rates of tissue loss ranged from 0.90-10.76 cm(2 d(-1 with a mean of 5.40 ± 3.34 cm(2 d(-1 (mean ± SD. Bacterial strains were isolated from the PAWS corals at the disease outbreak sites in QLY of the Xisha Archipelago, South China Sea, and included in laboratory-based infection trials to satisfy Koch's postulates for establishing causality. Following exposure to bacterial concentrations of 10(5 cells mL(-1, the infected colonies exhibited similar signs to those observed in the field. Using phylogenetic 16S rRNA gene analysis, classical phenotypic trait comparison, Biolog automatic identification system, MALDI-TOF mass spectrometry and MALDI Biotyper method, two pathogenic strains were identified as Vibrio alginolyticus .This is the first report of V. alginolyticus as a pathogenic agent of PAWS in the South China Sea. Our results point out an urgent need to develop sensitive detection methods for V. alginolyticus virulence strains and robust diagnostics for coral disease caused by this and Vibrio pathogenic bacterium in the South China Sea.

  20. Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state.

    Directory of Open Access Journals (Sweden)

    Salvador Almagro-Moreno

    2015-04-01

    Full Text Available Vibrio cholerae O1 is a natural inhabitant of aquatic environments and causes the diarrheal disease, cholera. Two of its primary virulence regulators, TcpP and ToxR, are localized in the inner membrane. TcpP is encoded on the Vibrio Pathogenicity Island (VPI, a horizontally acquired mobile genetic element, and functions primarily in virulence gene regulation. TcpP has been shown to undergo regulated intramembrane proteolysis (RIP in response to environmental conditions that are unfavorable for virulence gene expression. ToxR is encoded in the ancestral genome and is present in non-pathogenic strains of V. cholerae, indicating it has roles outside of the human host. In this study, we show that ToxR undergoes RIP in V. cholerae in response to nutrient limitation at alkaline pH, a condition that occurs during the stationary phase of growth. This process involves the site-2 protease RseP (YaeL, and is dependent upon the RpoE-mediated periplasmic stress response, as deletion mutants for the genes encoding these two proteins cannot proteolyze ToxR under nutrient limitation at alkaline pH. We determined that the loss of ToxR, genetically or by proteolysis, is associated with entry of V. cholerae into a dormant state in which the bacterium is normally found in the aquatic environment called viable but nonculturable (VBNC. Strains that can proteolyze ToxR, or do not encode it, lose culturability, experience a change in morphology associated with cells in VBNC, yet remain viable under nutrient limitation at alkaline pH. On the other hand, mutant strains that cannot proteolyze ToxR remain culturable and maintain the morphology of cells in an active state of growth. Overall, our findings provide a link between the proteolysis of a virulence regulator and the entry of a pathogen into an environmentally persistent state.

  1. Salinity-Based Toxicity of CuO Nanoparticles, CuO-Bulk and Cu Ion to Vibrio anguillarum

    Directory of Open Access Journals (Sweden)

    Alice Rotini

    2017-10-01

    Full Text Available Bacteria are used in ecotoxicology for their important role in marine ecosystems and their quick, reproducible responses. Here we applied a recently proposed method to assess the ecotoxicity of nanomaterials on the ubiquitous marine bacterium Vibrio anguillarum, as representative of brackish and marine ecosystems. The test allows the determination of 6-h EC50 in a wide range of salinity, by assessing the reduction of bacteria actively replicating and forming colonies. The toxicity of copper oxide nanoparticles (CuO NPs at different salinities (5-20-35 ‰ was evaluated. CuSO4 5H2O and CuO bulk were used as reference toxicants (solubility and size control, respectively. Aggregation and stability of CuO NP in final testing dispersions were characterized; Cu2+ dissolution and the physical interactions between Vibrio and CuO NPs were also investigated. All the chemical forms of copper showed a clear dose-response relationship, although their toxicity was different. The order of decreasing toxicity was: CuSO4 5H2O > CuO NP > CuO bulk. As expected, the size of CuO NP aggregates increased with salinity and, concurrently, their toxicity decreased. Results confirmed the intrinsic toxicity of CuO NPs, showing modest Cu2+ dissolution and no evidence of CuO NP internalization or induction of bacterial morphological alterations. This study showed the V. anguillarum bioassay as an effective tool for the risk assessment of nanomaterials in marine and brackish environments.

  2. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species.

    Science.gov (United States)

    Hasan, Nur A; Grim, Christopher J; Lipp, Erin K; Rivera, Irma N G; Chun, Jongsik; Haley, Bradd J; Taviani, Elisa; Choi, Seon Young; Hoq, Mozammel; Munk, A Christine; Brettin, Thomas S; Bruce, David; Challacombe, Jean F; Detter, J Chris; Han, Cliff S; Eisen, Jonathan A; Huq, Anwar; Colwell, Rita R

    2015-05-26

    Vibrio species are both ubiquitous and abundant in marine coastal waters, estuaries, ocean sediment, and aquaculture settings worldwide. We report here the isolation, characterization, and genome sequence of a novel Vibrio species, Vibrio antiquarius, isolated from a mesophilic bacterial community associated with hydrothermal vents located along the East Pacific Rise, near the southwest coast of Mexico. Genomic and phenotypic analysis revealed V. antiquarius is closely related to pathogenic Vibrio species, namely Vibrio alginolyticus, Vibrio parahaemolyticus, Vibrio harveyi, and Vibrio vulnificus, but sufficiently divergent to warrant a separate species status. The V. antiquarius genome encodes genes and operons with ecological functions relevant to the environment conditions of the deep sea and also harbors factors known to be involved in human disease caused by freshwater, coastal, and brackish water vibrios. The presence of virulence factors in this deep-sea Vibrio species suggests a far more fundamental role of these factors for their bacterial host. Comparative genomics revealed a variety of genomic events that may have provided an important driving force in V. antiquarius evolution, facilitating response to environmental conditions of the deep sea.

  3. Agrobacterium tumefaciens is a diazotrophic bacterium

    International Nuclear Information System (INIS)

    Kanvinde, L.; Sastry, G.R.K.

    1990-01-01

    This is the first report that Agrobacterium tumefaciens can fix nitrogen in a free-living condition as shown by its abilities to grown on nitrogen-free medium, reduce acetylene to ethylene, and incorporate 15 N supplied as 15 N 2 . As with most other well-characterized diazotrophic bacteria, the presence of NH 4 + in the medium and aerobic conditions repress nitrogen fixation by A. tumefaciens. The system requires molybdenum. No evidence for nodulation was found with pea, peanut, or soybean plants. Further understanding of the nitrogen-fixing ability of this bacterium, which has always been considered a pathogen, should cast new light on the evolution of a pathogenic versus symbiotic relationship

  4. Vibrio cholerae cytolysin causes an inflammatory response in human intestinal epithelial cells that is modulated by the PrtV protease.

    Directory of Open Access Journals (Sweden)

    Gangwei Ou

    Full Text Available BACKGROUND: Vibrio cholerae is the causal intestinal pathogen of the diarrheal disease cholera. It secretes the protease PrtV, which protects the bacterium from invertebrate predators but reduces the ability of Vibrio-secreted factor(s to induce interleukin-8 (IL-8 production by human intestinal epithelial cells. The aim was to identify the secreted component(s of V. cholerae that induces an epithelial inflammatory response and to define whether it is a substrate for PrtV. METHODOLOGY/PRINCIPAL FINDINGS: Culture supernatants of wild type V. cholerae O1 strain C6706, its derivatives and pure V. cholerae cytolysin (VCC were analyzed for the capacity to induce changes in cytokine mRNA expression levels, IL-8 and tumor necrosis factor-alpha (TNF-alpha secretion, permeability and cell viability when added to the apical side of polarized tight monolayer T84 cells used as an in vitro model for human intestinal epithelium. Culture supernatants were also analyzed for hemolytic activity and for the presence of PrtV and VCC by immunoblot analysis. CONCLUSIONS/SIGNIFICANCE: We suggest that VCC is capable of causing an inflammatory response characterized by increased permeability and production of IL-8 and TNF-alpha in tight monolayers. Pure VCC at a concentration of 160 ng/ml caused an inflammatory response that reached the magnitude of that caused by Vibrio-secreted factors, while higher concentrations caused epithelial cell death. The inflammatory response was totally abolished by treatment with PrtV. The findings suggest that low doses of VCC initiate a local immune defense reaction while high doses lead to intestinal epithelial lesions. Furthermore, VCC is indeed a substrate for PrtV and PrtV seems to execute an environment-dependent modulation of the activity of VCC that may be the cause of V. cholerae reactogenicity.

  5. [Vibrio vulnificus infection outside of the fish ponds in northern Israel: acquisition in the "Einot Tzukim" springs near the Dead Sea].

    Science.gov (United States)

    Schlesinger, Yechiel; Ben-Shalom, Efrat; Raveh, David P; Yinnon, Amos M; Miskin, Hagit; Rudensky, Bernard

    2009-11-01

    Vibrio vulnificus is a Gram-negative bacterium that may cause severe skin and systemic infection after exposure of open wounds to contaminated water, especially in patients with underlying disease such as immune-deficiency, iron overload or end stage liver or renal disease. The V. vulnificus infection has been reported in Israel almost exclusively after exposure to Tilapia fish cultivated in fresh water fish ponds in northern Israel. The authors report the first case of V. vulnificus infection acquired in a nature reserve in southeastern Israel, with no connection to fish handling. A 14.5-years-old girl with transfusion-dependant thalassemia major presented with high fever and a rapidly progressive bullous cellulitis of the ankle. The infection occurred around a cut on the left lateral malleolus, after bathing in the fresh water ponds of Einot Tzukim (Ein Feshcha) in south-eastern Israel, and progressed despite the use of broad-spectrum antibiotics. Blood and wound cultures eventually yielded Vibrio vulnificus and appropriate treatment was commenced. The fever subsided after a few days but resolution of the local findings was very gradual and lasted for weeks. The presence of V. vulnificus in natural springs far from the northern artificial fish ponds broadens the danger of this infection. We find it prudent to advise people at risk for V. vulnificus infection, such as those suffering from immunedeficiency, iron overload and end stage liver or renal disease, to refrain from bathing in natural ponds whilst injured.

  6. Household Transmission of Vibrio cholerae in Bangladesh.

    Directory of Open Access Journals (Sweden)

    Jonathan D Sugimoto

    2014-11-01

    Full Text Available Vibrio cholerae infections cluster in households. This study's objective was to quantify the relative contribution of direct, within-household exposure (for example, via contamination of household food, water, or surfaces to endemic cholera transmission. Quantifying the relative contribution of direct exposure is important for planning effective prevention and control measures.Symptom histories and multiple blood and fecal specimens were prospectively collected from household members of hospital-ascertained cholera cases in Bangladesh from 2001-2006. We estimated the probabilities of cholera transmission through 1 direct exposure within the household and 2 contact with community-based sources of infection. The natural history of cholera infection and covariate effects on transmission were considered. Significant direct transmission (p-value<0.0001 occurred among 1414 members of 364 households. Fecal shedding of O1 El Tor Ogawa was associated with a 4.9% (95% confidence interval: 0.9%-22.8% risk of infection among household contacts through direct exposure during an 11-day infectious period (mean length. The estimated 11-day risk of O1 El Tor Ogawa infection through exposure to community-based sources was 2.5% (0.8%-8.0%. The corresponding estimated risks for O1 El Tor Inaba and O139 infection were 3.7% (0.7%-16.6% and 8.2% (2.1%-27.1% through direct exposure, and 3.4% (1.7%-6.7% and 2.0% (0.5%-7.3% through community-based exposure. Children under 5 years-old were at elevated risk of infection. Limitations of the study may have led to an underestimation of the true risk of cholera infection. For instance, available covariate data may have incompletely characterized levels of pre-existing immunity to cholera infection. Transmission via direct exposure occurring outside of the household was not considered.Direct exposure contributes substantially to endemic transmission of symptomatic cholera in an urban setting. We provide the first estimate of

  7. Role of Heat Shock Proteases in Quorum-Sensing-Mediated Regulation of Biofilm Formation byVibrioSpecies.

    Science.gov (United States)

    Lee, Kyung-Jo; Jung, You-Chul; Park, Soon-Jung; Lee, Kyu-Ho

    2018-01-02

    Capsular polysaccharide (CPS) is essential for the dispersal of biofilms formed by the pathogenic bacterium Vibrio vulnificus CPS production is induced by the quorum-sensing (QS) master regulator SmcR when biofilms mature. However, V. vulnificus biofilms formed under heat shock conditions did not exhibit the dispersion stage. Transcripts of the CPS gene cluster were at basal levels in the heat-exposed cell owing to reduced cellular levels of SmcR. At least two proteases induced by heat shock, ClpPA and Lon, were responsible for determining the instability of SmcR. In vitro and in vivo assays demonstrated that SmcR levels were regulated via proteolysis by these proteases, with preferential proteolysis of monomeric SmcR. Thus, CPS production was not induced by QS when bacteria were heat treated. Further studies performed with other Vibrio species demonstrated that high temperature deactivated the QS circuits by increased proteolysis of their QS master regulators, thus resulting in alterations to the QS-regulated phenotypes, including biofilm formation. IMPORTANCE The term "quorum-sensing mechanism" is used to describe diverse bacterial cell density-dependent activities that are achieved by sensing of the signaling molecules and subsequent signal transduction to the master regulators. These well-known bacterial regulatory systems regulate the expression of diverse virulence factors and the construction of biofilms in pathogenic bacteria. There have been numerous studies designed to control bacterial quorum sensing by using small molecules to antagonize the quorum-sensing regulatory components or to interfere with the signaling molecules. In the present study, we showed that the quorum-sensing regulatory circuits of pathogenic Vibrio species were deactivated by heat shock treatment via highly increased proteolysis of the master transcription factors. Our results showed a new mode of quorum deactivation which can be achieved under conditions of high but nonlethal

  8. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Science.gov (United States)

    Pryshliak, Mark; Hammerl, Jens A; Reetz, Jochen; Strauch, Eckhard; Hertwig, Stefan

    2014-01-01

    Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1) infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  9. Vibrio vulnificus phage PV94 is closely related to temperate phages of V. cholerae and other Vibrio species.

    Directory of Open Access Journals (Sweden)

    Mark Pryshliak

    Full Text Available BACKGROUND: Vibrio vulnificus is an important pathogen which can cause serious infections in humans. Yet, there is limited knowledge on its virulence factors and the question whether temperate phages might be involved in pathogenicity, as is the case with V. cholerae. Thus far, only two phages (SSP002 and VvAW1 infecting V. vulnificus have been genetically characterized. These phages were isolated from the environment and are not related to Vibrio cholerae phages. The lack of information on temperate V. vulnificus phages prompted us to isolate those phages from lysogenic strains and to compare them with phages of other Vibrio species. RESULTS: In this study the temperate phage PV94 was isolated from a V. vulnificus biotype 1 strain by mitomycin C induction. PV94 is a myovirus whose genome is a linear double-stranded DNA of 33,828 bp with 5'-protruding ends. Sequence analysis of PV94 revealed a modular organization of the genome. The left half of the genome comprising the immunity region and genes for the integrase, terminase and replication proteins shows similarites to V. cholerae kappa phages whereas the right half containing genes for structural proteins is closely related to a prophage residing in V. furnissii NCTC 11218. CONCLUSION: We present the first genomic sequence of a temperate phage isolated from a human V. vulnificus isolate. The sequence analysis of the PV94 genome demonstrates the wide distribution of closely related prophages in various Vibrio species. Moreover, the mosaicism of the PV94 genome indicates a high degree of horizontal genetic exchange within the genus Vibrio, by which V. vulnificus might acquire virulence-associated genes from other species.

  10. Four genomic islands that mark post-1995 pandemic Vibrio parahaemolyticus isolates

    Directory of Open Access Journals (Sweden)

    Reen F Jerry

    2006-05-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is an aquatic, halophilic, Gram-negative bacterium, first discovered in 1950 in Japan during a food-poisoning outbreak. Infections resulting from consumption of V. parahaemolyticus have increased globally in the last 10 years leading to the bacterium's classification as a newly emerging pathogen. In 1996 the first appearance of a pandemic V. parahaemolyticus clone occurred, a new O3:K6 serotype strain that has now been identified worldwide as a major cause of seafood-borne gastroenteritis. Results We examined the sequenced genome of V. parahaemolyticus RIMD2210633, an O3:K6 serotype strain isolated in Japan in 1996, by bioinformatic analyses to uncover genomic islands (GIs that may play a role in the emergence and pathogenesis of pandemic strains. We identified 7 regions ranging in size from 10 kb to 81 kb that had the characteristics of GIs such as aberrant base composition compared to the core genome, presence of phage-like integrases, flanked by direct repeats and the absence of these regions from closely related species. Molecular analysis of worldwide clinical isolates of V. parahaemolyticus recovered over the last 33 years demonstrated that a 24 kb region named V. parahaemolyticus island-1 (VPaI-1 encompassing ORFs VP0380 to VP0403 is only present in new O3:K6 and related strains recovered after 1995. We investigated the presence of 3 additional regions, VPaI-4 (VP2131 to VP2144, VPaI-5 (VP2900 to VP2910 and VPaI-6 (VPA1254 to VPA1270 by PCR assays and Southern blot analyses among the same set of V. parahaemolyticus isolates. These 3 VPaI regions also gave similar distribution patterns amongst the 41 strains examined. Conclusion The 4 VPaI regions examined may represent DNA acquired by the pandemic group of V. parahaemolyticus isolates that increased their fitness either in the aquatic environment or in their ability to infect humans.

  11. Molecular epidemiology of Vibrio cholerae associated with flood in Brahamputra River valley, Assam, India.

    Science.gov (United States)

    Bhuyan, Soubhagya K; Vairale, Mohan G; Arya, Neha; Yadav, Priti; Veer, Vijay; Singh, Lokendra; Yadava, Pramod K; Kumar, Pramod

    2016-06-01

    Cholera is often caused when drinking water is contaminated through environmental sources. In recent years, the drastic cholera epidemics in Odisha (2007) and Haiti (2010) were associated with natural disasters (flood and Earthquake). Almost every year the state of Assam India witnesses flood in Brahamputra River valley during reversal of wind system (monsoon). This is often followed by outbreak of diarrheal diseases including cholera. Beside the incidence of cholera outbreaks, there is lack of experimental evidence for prevalence of the bacterium in aquatic environment and its association with cholera during/after flood in the state. A molecular surveillance during 2012-14 was carried out to study prevalence, strain differentiation, and clonality of Vibrio cholerae in inland aquatic reservoirs flooded by Brahamputra River in Assam. Water samples were collected, filtered, enriched in alkaline peptone water followed by selective culturing on thiosulfate bile salt sucrose agar. Environmental isolates were identified as V. cholerae, based on biochemical assays followed by sero-grouping and detailed molecular characterization. The incidence of the presence of the bacterium in potable water sources was higher after flood. Except one O1 isolate, all of the strains were broadly grouped under non-O1/non-O139 whereas some of them did have cholera toxin (CT). Surprisingly, we have noticed Haitian ctxB in two non-O1/non-O139 strains. MLST analyses based on pyrH, recA and rpoA genes revealed clonality in the environmental strains. The isolates showed varying degree of antimicrobial resistance including tetracycline and ciprofloxacin. The strains harbored the genetic elements SXT constins and integrons responsible for multidrug resistance. Genetic characterization is useful as phenotypic characters alone have proven to be unsatisfactory for strain discrimination. An assurance to safe drinking water, sanitation and monitoring of the aquatic reservoirs is of utmost importance for

  12. Vibrio Parahemolyticus in the Wastewater of Kermanshah City

    Directory of Open Access Journals (Sweden)

    Ali Almasi

    2005-11-01

    Full Text Available آب و فاضلاب                                                                                                                                                                                                               شماره 51- سال 1383     Municipal wastewater is one of the most important pollution sources for water supply resources. Soil, vegetable, and food material are exposed as well. Identification and enumeration of pathogenic agents particularly pathogenic Vibrios are beneficial for control and prevention planning of the infectious diseases. This research carried out to identify the distribution of the recognized pathogenic Vibrios emphasizing on identification of Vibrio cholerain the wastewater of city of Kermanshah in 2001. Population of city of Kermanshah was estimated over 713000 and produced wastewater was approximately 150 l/cap/d. The method of study was cross-sectional descriptive. Sampling procedure was adopted from standard Methods for the Examination of water and wastewater, and the method for Vibrios identification was according to finegold 1990. There were 8 discharge outlet domestic wastewaters, which had been chosen as sampling sites. Samples were collected weekly in randomized manner in day time. Although 288 samples should be collected statistically, 339 samples were collected and analyzed. The results indicated that site 7 with 5 positives, sites 4 and 8 with 3 positives, site 5 with 2 postitives and sites 2, 3 and 6 with one positive suspected to vibrio pathogens. However, not any Vibrio detected in site 1. The most positive samples were seen in spring, late summer and early autumn. The positive results were detected in May, June, September, and October. Among samples which have been detected as a

  13. IDENTIFICATION OF A LOCAL PROBIOTIC BACTERIUM USING 16S rRNA GENE SEQUENCE THAT WAS USED FOR FIELD TRIAL TO ENHANCED WHITELEG SHRIMP (Litopenaeus vannamei SURVIVAL

    Directory of Open Access Journals (Sweden)

    Tb. Haeru Rahayu

    2015-12-01

    Full Text Available The use of local probiotics in the culture of aquatic organisms is increasing with the demand for more environmental-friendly aquaculture practices. The local bacterium isolate considered as a probiotic was added into the water of whiteleg shrimp (Litopenaeus vannamei culture in a field trial. Four rectangular plastic ponds (ca. 20 m x 30 m per pond were used for 100 days experimentation for six consecutive crops in two years experiment. Survival, harvest size, feed conversion ratio (FCR and Vibrio bacterial count was compared with those of shrimp receiving and none of local isolate. Identification based on 16S rRNA gene sequence shown those isolate was Bacillus pumilus strain DURCK14 with 99% homology. Water shrimp pond added a local isolate had significantly higher survival at about 10.0% to 11.7% than shrimp without added the isolate (p<0.05, and better FCR, but no significant different in shrimp harvest size. Vibrio bacterial was undetected by total plate count. Moreover, it shown better projected yields on an annual basis (three crops per year.

  14. Enumeration of viable non-culturable Vibrio cholerae using propidium monoazide combined with quantitative PCR.

    Science.gov (United States)

    Wu, Bin; Liang, Weili; Kan, Biao

    2015-08-01

    The well-known human pathogenic bacterium, Vibrio cholerae, can enter a physiologically viable but non-culturable (VBNC) state under stress conditions. The differentiation of VBNC cells and nonviable cells is essential for both disease prevention and basic research. Among all the methods for detecting viability, propidium monoazide (PMA) combined with real-time PCR is popular because of its specificity, sensitivity, and speed. However, the effect of PMA treatment is not consistent and varies among different species and conditions. In this study, with an initial cell concentration of 1×10(8) CFU/ml, time and dose-effect relationships of different PMA treatments were evaluated via quantitative real-time PCR using live cell suspensions, dead cell suspensions and VBNC cell suspensions of V. cholerae O1 El Tor strain C6706. The results suggested that a PMA treatment of 20 μM PMA for 20 min was optimal under our conditions. This treatment maximized the suppression of the PCR signal from membrane-compromised dead cells but had little effect on the signal from membrane-intact live cells. In addition to the characteristics of PMA treatment itself, the initial concentration of the targeted bacteria showed a significant negative influence on the stability of PMA-PCR assay in this study. We developed a strategy that mimicked a 1×10(8) CFU/ml cell concentration with dead bacteria of a different bacterial species, the DNA of which cannot be amplified using the real time PCR primers. With this strategy, our optimal approach successfully overcame the impact of low cell density and generated stable and reliable results for counting viable cells of V. cholerae in the VBNC state. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Marine Lactobacillus pentosus H16 protects Artemia franciscana from Vibrio alginolyticus pathogenic effects.

    Science.gov (United States)

    Garcés, M E; Sequeiros, C; Olivera, N L

    2015-02-10

    Vibrio alginolyticus is an opportunistic pathogen which may affect different aquatic organisms. The aim of this study was to assess the probiotic properties and the protective mode of action of Lactobacillus pentosus H16 against V. alginolyticus 03/8525, through in vitro and in vivo studies using Artemia franciscana (hereafter Artemia). This strain showed antimicrobial activity against V. alginolyticus 03/8525 and Aeromonas salmonicida subsp. salmonicida ATCC33658 possibly related to lactobacilli organic acid production. It was able to survive at high rainbow trout bile concentrations and showed high selective adhesion to rainbow trout mucus (1.2×10(5)±8.0×10(3) cells cm(-2)). H16 outcompeted V. alginolyticus 03/8525 and A. salmonicida subsp. salmonicida ATCC33658, greatly reducing their adherence to rainbow trout mucus (64.8 and 74.1%, respectively). Moreover, H16 produced a cell-bound biosurfactant which caused an important decrease in the surface tension. H16 also protected Artemia nauplii against mortality when it was administered previous to V. alginolyticus 03/8525 inoculation. Furthermore, H16 bioencapsulated in Artemia, suggesting that it is possible to use live carriers in its administration. We conclude that the ability of L. pentosus H16 to selectively adhere to mucosal surfaces and produce cell-bound biosurfactants, displacing pathogenic strains, in addition to its antimicrobial activity, confer H16 competitive advantages against pathogens as demonstrated in in vivo challenge experiments. Thus, L. pentosus H16, a marine bacterium from the intestinal tract of hake, is an interesting probiotic for Artemia culture and also has the potential to prevent vibriosis in other aquaculture activities such as larvae culture and fish farming.

  16. Determining vaccination frequency in farmed rainbow trout using Vibrio anguillarum O1 specific serum antibody measurements.

    Directory of Open Access Journals (Sweden)

    Lars Holten-Andersen

    Full Text Available BACKGROUND: Despite vaccination with a commercial vaccine with a documented protective effect against Vibrio anguillarum O1 disease outbreaks caused by this bacterium have been registered among rainbow trout at Danish fish farms. The present study examined specific serum antibody levels as a valid marker for assessing vaccination status in a fish population. For this purpose a highly sensitive enzyme-linked immunosorbent assay (ELISA was developed and used to evaluate sera from farmed rainbow trout vaccinated against V. anguillarum O1. STUDY DESIGN: Immune sera from rainbow trout immunised with an experimental vaccine based on inactivated V. anguillarum O1 bacterin in Freund's incomplete adjuvant were used for ELISA optimisation. Subsequently, sera from farmed rainbow trout vaccinated with a commercial vaccine against V. anguillarum were analysed with the ELISA. The measured serum antibody levels were compared with the vaccine status of the fish (vaccinated/unvaccinated as evaluated through visual examination. RESULTS: Repeated immunisation with the experimental vaccine lead to increasing levels of specific serum antibodies in the vaccinated rainbow trout. The farmed rainbow trout responded with high antibody levels to a single injection with the commercial vaccine. However, the diversity in responses was more pronounced in the farmed fish. Primary visual examinations for vaccine status in rainbow trout from the commercial farm revealed a large pool of unvaccinated specimens (vaccination failure rate=20% among the otherwise vaccinated fish. Through serum analyses using the ELISA in a blinded set-up it was possible to separate samples collected from the farmed rainbow trout into vaccinated and unvaccinated fish. CONCLUSIONS: Much attention has been devoted to development of new and more effective vaccines. Here we present a case from a Danish rainbow trout farm indicating that attention should also be directed to the vaccination procedure in

  17. Insight Into the Origin and Evolution of the Vibrio parahaemolyticus Pandemic Strain

    Directory of Open Access Journals (Sweden)

    Romilio T. Espejo

    2017-07-01

    Full Text Available A strain of Vibrio parahaemolyticus that emerged in 1995 caused the first known pandemic involving this species. This strain comprises clonal autochthonous ocean-dwelling bacteria whose evolution has occurred in the ocean environment. The low sequence diversity in this population enabled the discovery of information on its origin and evolution that has been hidden in bacterial clones that have evolved over a long period. Multilocus sequencing and microarray analysis, together with phylogenetic analysis, of pandemic and pre-pandemic isolates has suggested that the founder clone was an O3:K6 non-pathogenic strain that initially acquired a toxRS/new region and subsequently acquired at least seven novel genomic islands. Sequencing and comparison of whole genomes later confirmed these early observations, and it confirmed that most of the genetic changes occurred via gene conversion involving horizontally transmitted DNA. The highly clonal population rapidly diversified, especially in terms of antigenicity, and 27 serotypes have already been reported. Comparisons of the core genomes derived from the founder clone indicate that there are only a few hundred single-nucleotide variations between isolates. However, when the whole genome is considered (the core plus non-core genome and from any clonal frame, the amount of DNA with a different clonal frame can reach up to 4.2% and the number of single-nucleotide variations can reach several hundred thousand. Altogether, these and previous observations based on multilocus sequence typing, microarray analysis, and whole-genome sequencing indicate the large contribution made by DNA with different clonal genealogy to genome diversification. The evidence also indicates that horizontal gene transfer (HGT caused the emergence of new pathogens. Furthermore, the extent of HGT seems to depend on the vicissitudes of the life of each bacterium, as exemplified by differences in thousands of base pairs acquired by HGT

  18. Vibrio cholerae infection of Drosophila melanogaster mimics the human disease cholera.

    Directory of Open Access Journals (Sweden)

    Nathan S Blow

    2005-09-01

    Full Text Available Cholera, the pandemic diarrheal disease caused by the gram-negative bacterium Vibrio cholerae, continues to be a major public health challenge in the developing world. Cholera toxin, which is responsible for the voluminous stools of cholera, causes constitutive activation of adenylyl cyclase, resulting in the export of ions into the intestinal lumen. Environmental studies have demonstrated a close association between V. cholerae and many species of arthropods including insects. Here we report the susceptibility of the fruit fly, Drosophila melanogaster, to oral V. cholerae infection through a process that exhibits many of the hallmarks of human disease: (i death of the fly is dependent on the presence of cholera toxin and is preceded by rapid weight loss; (ii flies harboring mutant alleles of either adenylyl cyclase, Gsalpha, or the Gardos K channel homolog SK are resistant to V. cholerae infection; and (iii ingestion of a K channel blocker along with V. cholerae protects wild-type flies against death. In mammals, ingestion of as little as 25 mug of cholera toxin results in massive diarrhea. In contrast, we found that ingestion of cholera toxin was not lethal to the fly. However, when cholera toxin was co-administered with a pathogenic strain of V. cholerae carrying a chromosomal deletion of the genes encoding cholera toxin, death of the fly ensued. These findings suggest that additional virulence factors are required for intoxication of the fly that may not be essential for intoxication of mammals. Furthermore, we demonstrate for the first time the mechanism of action of cholera toxin in a whole organism and the utility of D. melanogaster as an accurate, inexpensive model for elucidation of host susceptibility to cholera.

  19. Proteomic analysis of differentially expressed proteins in Penaeus monodon hemocytes after Vibrio harveyi infection

    Directory of Open Access Journals (Sweden)

    Fang Lo Chu

    2010-07-01

    Full Text Available Abstract Background Viral and bacterial diseases can cause mass mortalities in commercial shrimp aquaculture. In contrast to studies on the antiviral response, the responses of shrimps to bacterial infections by high throughput techniques have been reported only at the transcriptional level and not at the translational level. In this study, a proteomic analysis of shrimp hemocytes to identify differentially expressed proteins in response to a luminous bacterium Vibrio harveyi was evaluated for its feasibility and is reported for the first time. Results The two-dimensional gel electrophoresis (2-DE patterns of the hemocyte proteins from the unchallenged and V. harveyi challenged shrimp, Penaeus monodon, at 24 and 48 h post infection were compared. From this, 27 differentially expressed protein spots, and a further 12 weakly to non-differentially regulated control spots, were selected for further analyses by the LC-ESI-MS/MS. The 21 differentially expressed proteins that could be identified by homologous annotation were comprised of proteins that are directly involved in the host defense responses, such as hemocyanin, prophenoloxidase, serine proteinase-like protein, heat shock protein 90 and alpha-2-macroglobulin, and those involved in signal transduction, such as the14-3-3 protein epsilon and calmodulin. Western blot analysis confirmed the up-regulation of hemocyanin expression upon bacterial infection. The expression of the selected proteins which were the representatives of the down-regulated proteins (the 14-3-3 protein epsilon and alpha-2-macroglobulin and of the up-regulated proteins (hemocyanin was further assessed at the transcription level using real-time RT-PCR. Conclusions This work suggests the usefulness of a proteomic approach to the study of shrimp immunity and revealed hemocyte proteins whose expression were up regulated upon V. harveyi infection such as hemocyanin, arginine kinase and down regulated such as alpha-2-macroglobulin

  20. Production and characterization of polyhydroxybutyrate from Vibrio harveyi MCCB 284 utilizing glycerol as carbon source.

    Science.gov (United States)

    Mohandas, S P; Balan, L; Lekshmi, N; Cubelio, S S; Philip, R; Bright Singh, I S

    2017-03-01

    Production and characterization of polyhydroxybutyrate (PHB) from moderately halophilic bacterium Vibrio harveyi MCCB 284 isolated from tunicate Phallusia nigra. Twenty-five bacterial isolates were obtained from tunicate samples and three among them exhibited an orange fluorescence in Nile red staining indicating the presence of PHB. One of the isolates, MCCB 284, which showed rapid growth and good polymer yield, was identified as V. harveyi. The optimum conditions of the isolate for the PHB production were pH 8·0, sodium chloride concentration 20 g l -1 , inoculum size 0·5% (v/v), glycerol 20 g l -1 and 72 h of incubation at 30°C. Cell dry weight (CDW) of 3·2 g l -1 , PHB content of 2·3 g l -1 and final PHB yield of 1·2 g l -1 were achieved. The extracted PHB was characterized by FTIR, NMR and DSC-TGA techniques. An isolate of V. harveyi that could effectively utilize glycerol for growth and PHB accumulation was obtained from tunicate P. nigra. PHB produced was up to 72% based on CDW. This is the first report of an isolate of V. harveyi which utilizes glycerol as the sole carbon source for PHB production with high biomass yield. This isolate could be of use as candidate species for commercial PHB production using glycerol as the feed stock or as source of genes for recombinant PHB production or for synthetic biology. © 2016 The Society for Applied Microbiology.

  1. ToxR of Vibrio cholerae affects biofilm, rugosity and survival with Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Valeru Soni P

    2012-01-01

    Full Text Available Abstract Background Vibrio cholerae causes the diarrheal disease cholera and utilizes different survival strategies in aquatic environments. V. cholerae can survive as free-living or in association with zooplankton and can build biofilm and rugose colonies. The bacterium expresses cholera toxin (CT and toxin-coregulated pilus (TCP as the main virulence factors. These factors are co-regulated by a transcriptional regulator ToxR, which modulates expression of outer membrane proteins (OmpU and (OmpT. The aims of this study were to disclose the role of ToxR in expression of OmpU and OmpT, biofilm and rugose colony formation as well as in association with the free-living amoeba Acanthamoeba castellanii at different temperatures. Results The toxR mutant V. cholerae produced OmpT, significant biofilm and rugose colonies compared to the wild type that produced OmpU, decreased biofilm and did not form rugoes colonies at 30°C. Interestingly, neither the wild type nor toxR mutant strain could form rugose colonies in association with the amoebae. However, during the association with the amoebae it was observed that A. castellanii enhanced survival of V. cholerae wild type compared to toxR mutant strain at 37°C. Conclusions ToxR does seem to play some regulatory role in the OmpT/OmpU expression shift, the changes in biofilm, rugosity and survival with A. castellanii, suggesting a new role for this regulatory protein in the environments.

  2. Prevalences of pathogenic and nonpathogenic Vibrio parahaemolyticus in mollusks from the Spanish Mediterranean Coast

    Directory of Open Access Journals (Sweden)

    Carmen eLopez-Joven

    2015-07-01

    Full Text Available Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh + and tdh+ and/or trh+ versus a nonpathogenic one (only tlh+ as species marker for V. parahaemolyticus, was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459. It was, however, significantly dependent on sampling point, campaign (year and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+ were detected in 3.8% of the samples (56/1459, meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207. Moreover, the presence of pathogenic V. parahaemolyticus (trh+ was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001, which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked.This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast.

  3. Understanding the Role of Host Hemocytes in a Squid/Vibrio Symbiosis Using Transcriptomics and Proteomics

    Directory of Open Access Journals (Sweden)

    Andrew J. Collins

    2012-05-01

    Full Text Available The symbiosis between the squid, Euprymna scolopes, and the bacterium, Vibrio fischeri, serves as a model for understanding interactions between beneficial bacteria and animal hosts. The establishment and maintenance of the association is highly specific and depends on the selection of V. fischeri and exclusion of non-symbiotic bacteria from the environment. Current evidence suggests that the host’s cellular innate immune system, in the form of macrophage-like hemocytes, helps to mediate host tolerance of V. fischeri. To begin to understand the role of hemocytes in this association, we analyzed these cells by high-throughput 454 transcriptomic and liquid chromatography/ tandem mass spectrometry (LC-MS/MS proteomic analyses. 454 high-throughput sequencing produced 650,686 reads totaling 279.9 Mb while LC-MS/MS analyses of circulating hemocytes putatively identified 702 unique proteins. Several receptors involved with the recognition of microbial associated molecular patterns (MAMPs were identified. Among these was a complete open reading frame (ORF to a putative peptidoglycan recognition protein (EsPGRP5 that has conserved residues for amidase activity. Assembly of the hemocyte transcriptome showed EsPGRP5 had high coverage, suggesting it is among the 5% most abundant transcripts in circulating hemocytes. Other transcripts and proteins identified included members of the conserved NFκB signaling pathway, putative members of the complement pathway, the carbohydrate binding protein galectin, and cephalotoxin. Quantitative PCR of complement-related genes, cephalotoxin, EsPGRP5, and a nitric oxide synthase showed differential expression in circulating hemocytes isolated from adult squid with colonized light organs compared to those for which the symbionts were removed. These data suggest that the presence of the symbiont influences gene expression of the cellular innate immune system of the host.

  4. MR findings of infectious myositis caused by vibrio vulnificus: case report

    International Nuclear Information System (INIS)

    Lee, Joon Ho; Na, Jae Boem

    2003-01-01

    Vibrio vulnificus infection is a fatal disease occurring after the consumption of seafood in patients with underlying liver disease. Inflammation of the skin, subcutanous fat and fascia disseminates from the lower extremity to the trunk and upper extremity. Infection myositis caused by vibrio vulnificus is rare, and its MR findings have not been reported. We report these in a case of infectious myositis caused by vibrio vulnificus involving both lower extremities

  5. Multilocus Sequence Analysis of Close Relatives Vibrio anguillarum and Vibrio ordalii.

    Science.gov (United States)

    Steinum, Terje M; Karataş, Süheyla; Martinussen, Nora Tandstad; Meirelles, Pedro M; Thompson, Fabiano L; Colquhoun, Duncan J

    2016-09-15

    The genetic heterogeneity of the close relatives Vibrio anguillarum and Vibrio ordalii, both serious pathogens of fish causing extensive losses in aquaculture, was studied. Eight housekeeping genes, i.e., atpA, ftsZ, gapA, gyrB, mreB, rpoA, topA, and pyrH, were partially sequenced in 116 isolates from diverse fish species and geographical areas. The eight genes appear to be under purifying selection, and the genetic diversity in the total data set was estimated to be 0.767 ± 0.026. Our multilocus sequence analysis (MLSA) scheme identified several widespread clonal complexes and resolved the isolates, for the most part, according to serotype. Serotype O2b isolates from diseased cod in Norway, Ireland, and Scotland were found to be extremely homogeneous. Horizontal gene transfer appears to be fairly common within and between clonal complexes. Taken together, MLSA and in silico DNA-DNA hybridization (DDH) calculations suggest that some isolates previously characterized as V ordalii, i.e., 12B09, FF93, FS144, and FS238, are in fact V. anguillarum isolates. The precise taxonomic situation for two isolates from Atlantic cod that display several traits consistent with V. ordalii, i.e., NVI 5286 and NVI 5918, and a single environmental strain that was previously considered to represent V. ordalii, i.e., FF167, is less clear. It is still being debated whether V. anguillarum and V ordalii represent separate bacterial species. Our study addresses this issue and elucidates the degree of genetic variability within this group of closely related bacteria, based on a substantial number of isolates. Our results clearly illustrate the existence of different populations among putative V ordalii isolates. On the basis of additional full-length genomic analysis, we conclude that most environmental isolates previously identified as V ordalii lie firmly within the species V. anguillarum While bona fide fish-pathogenic V ordalii isolates display a very close genetic relationship with V

  6. GroEL PCR- RFLP - An efficient tool to discriminate closely related pathogenic Vibrio species.

    Science.gov (United States)

    Silvester, Reshma; Alexander, Deborah; Antony, Ally C; Hatha, Mohamed

    2017-04-01

    Vibrio sp. are autochthonous to marine and estuarine waters. Several species of Vibrio are pathogens. It is of utmost importance to detect and discriminate the Vibrio sp. that are often involved in food and water borne infections. Since 16S rRNA based identification has limited utility in differentiating the closely related pathogenic species from non pathogenic species, we have evaluated the discriminatory power of groEL PCR-RFLP for identification of closely related Vibrio sp. Accordingly, in the current study, the efficiency of groEL PCR- RFLP for detection and accurate differentiation of known pathogens among Vibrio sp. such as V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. fluvialis, V. alginolyticus, V. anguillarum was evaluated. PCR amplified groEL gene fragment of each Vibrio sp. was digested separately using 5 restriction enzymes viz. Hha1, Rsa1, Alu1, Dde1 and Mbo1. The accuracy of the method was further validated by insilico restriction analysis of multiple strains of each species using NEBcutter. The method proved to be efficient for detection and differentiation of Vibrio species under study. Phylogenetic analysis also revealed groEL gene to be a better phylogenetic marker for Vibrio compared to 16S rRNA. Hence, the method can be employed for accurate detection of Vibrio sp. including the closely related species. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Market survey of Vibrio spp. and other microrganisms in Italian shellfish.

    Science.gov (United States)

    Parisi, A; Normanno, G; Addante, N; Dambrosio, A; Montagna, C O; Quaglia, N C; Celano, G V; Chiocco, D

    2004-10-01

    A survey was conducted of Vibrio spp., Escherichia coli, fecal coliforms, and Salmonella in 644 molluscan shellfish samples marketed in the Apulia region of southern Italy. Vibrios were found in 278 samples (43%), and levels of E. coli and fecal coliforms were above the Italian legal limit in 27 and 34 samples (4 and 5%), respectively. Salmonella was not detected in any of the samples. Because the majority of the vibrio isolates were found in samples that were compliant with Italian regulations, there appears to be no relationship between the presence of microorganisms of fecal origin and the presence of vibrios potentially harmful to human health.

  8. Experimental evolution of aging in a bacterium

    Directory of Open Access Journals (Sweden)

    Stearns Stephen C

    2007-07-01

    Full Text Available Abstract Background Aging refers to a decline in reproduction and survival with increasing age. According to evolutionary theory, aging evolves because selection late in life is weak and mutations exist whose deleterious effects manifest only late in life. Whether the assumptions behind this theory are fulfilled in all organisms, and whether all organisms age, has not been clear. We tested the generality of this theory by experimental evolution with Caulobacter crescentus, a bacterium whose asymmetric division allows mother and daughter to be distinguished. Results We evolved three populations for 2000 generations in the laboratory under conditions where selection was strong early in life, but very weak later in life. All populations evolved faster growth rates, mostly by decreasing the age at first division. Evolutionary changes in aging were inconsistent. The predominant response was the unexpected evolution of slower aging, revealing the limits of theoretical predictions if mutations have unanticipated phenotypic effects. However, we also observed the spread of a mutation causing earlier aging of mothers whose negative effect was reset in the daughters. Conclusion Our results confirm that late-acting deleterious mutations do occur in bacteria and that they can invade populations when selection late in life is weak. They suggest that very few organisms – perhaps none- can avoid the accumulation of such mutations over evolutionary time, and thus that aging is probably a fundamental property of all cellular organisms.

  9. The Zymovars of Vibrio cholerae: Multilocus Enzyme Electrophoresis of Vibrio cholerae

    Directory of Open Access Journals (Sweden)

    Fernanda S Freitas

    2002-06-01

    Full Text Available Zymovars analysis also known as multilocus enzyme electrophoresis is applied here to investigate the genetic variation of Vibrio cholerae strains and characterise strains or group of strains of medical and epidemiological interest. Fourteen loci were analyzed in 171 strains of non-O1 non-O139, 32 classical and 61 El Tor from America, Africa, Europe and Asia. The mean genetic diversity was 0.339. It is shown that the same O antigen (both O1 and non-O1 may be present in several geneticaly diverse (different zymovars strains. Conversely the same zymovar may contain more than one serogroup. It is confirmed that the South American epidemic strain differs from the 7th pandemic El Tor strain in locus LAP (leucyl leucyl aminopeptidase. Here it is shown that this rare allele is present in 1 V. mimicus and 4 non-O1 V. cholerae. Non toxigenic O1 strains from South India epidemic share zymovar 14A with the epidemic El Tor from the 7th pandemic, while another group have diverse zymovars. The sucrose negative epidemic strains isolated in French Guiana and Brazil have the same zymovar of the current American epidemic V. cholerae.

  10. Investigation of household contamination of Vibrio cholerae in Bangladesh

    DEFF Research Database (Denmark)

    Hossain, Zenat Zebin; Farhana, Israt; Mohan Tulsiani, Suhella

    The role of in-house transmission on the incidence of Vibrio cholerae, the deadly waterborne pathogen, is still not developed. The aim of the current study was to investigate possible contamination routes in household domain for effective cholera control in Bangladesh. To examine the prevalence....... cholerae El Tor strain N16961, showed hemolysis and proteolysis activity but none of them exhibited any hemagglutinin activity on human erythrocytes. The study findings indicate that V. cholerae contamination is mostly originated in and around kitchen area rather than latrine area. Contaminated food...... and water supply may be the reason behind this relatively high presence of virulence factors in food plates and water pots. Direct exposure routes of disease transmission should be a major consideration in cholera prevention policies. Investigation of household contamination of Vibrio cholerae in Bangladesh...

  11. Bacteriocin production by indigenous marine catfish associated Vibrio spp.

    Science.gov (United States)

    Zai, Arsalan Saeed; Ahmad, Samia; Rasool, Sheikh Ajaz

    2009-04-01

    Fifty strains of genus Vibrio were isolated (identified) from healthy and diseased marine catfish(es). The isolates were screened for bacteriocin (vibriocin) production. About 32% isolates were found bacteriocin producers. The best producer was identified as Vibrio anguillarum AVP10. The maximum production of vibriocin AVP10 was manifested at 29 degrees C at pH 7, after 18-20 h of incubation. Vibriocin activity was enhanced in the presence of citrate-phosphate buffer. The vibriocin AVP10 withstands autoclaving temperature and showed activity even after prolonged chloroform treatment. Proteolytic enzymes inhibited its activity, while lipolytic enzyme had no effect. It was found bioactive only against intrageneric bacterial strains. Mode of action of vibriocin AVP10 varies with the indicator (sensitive) culture used i.e. bactericidal effects was exerted against V. anguillarum AVS9 while bacteriostatic effect was shown against entero-toxigenic E. coli.

  12. Vibrio vulnificus-infektioner i Danmark sommeren 1994

    DEFF Research Database (Denmark)

    Bruun, Brita Grønbech; Frimodt-Møller, N; Dalsgaard, A.

    1996-01-01

    The clinical manifestations and epidemiological data of 11 patients infected with Vibrio vulnificus found in Denmark during the unusually warm summer of 1994 are reported. All patients had been exposed to seawater prior to illness, but none had consumed seafood. Nine patients, including four with...... climates such as the Danish. Exposure to seawater, including handling of fresh seafood, during warm periods carries a risk of infection with V. vulnificus.......The clinical manifestations and epidemiological data of 11 patients infected with Vibrio vulnificus found in Denmark during the unusually warm summer of 1994 are reported. All patients had been exposed to seawater prior to illness, but none had consumed seafood. Nine patients, including four...

  13. FURTHER STUDIES ON THE ETIOLOGICAL ROLE OF VIBRIO FETUS.

    Science.gov (United States)

    Smith, T; Little, R B; Taylor, M S

    1920-11-30

    The data bearing on these three cases are quite sufficient to rule out Bacillus abortus as the agent. Not only the cultures and guinea pig tests of fetal tissues and contents of the digestive tract, but also the agglutination and guinea pig tests of the milk, were negative. The same is true of the agglutination tests of the blood serum. Only in one case was the placenta obtained in part. The stained films and the sections from various regions showed no abortion bacilli. Guinea pig tests of placental tissue were negative for Bacillus abortus. On the other hand) minute organisms resembling vibrios were detected in the cytoplasm of endothelial cells within capillaries in the edematous subchorionic tissue. Subsequently the agglutination titer of the blood serum of one of these cases rose to a level indicating infection with Bacillus abortus during the second pregnancy. The peculiar distribution of abortions due to Vibrio fetus among older cows and heifers in this herd, resulting at first in cases among older cows and latterly passing to young stock, may be explained by certain occurrences in the herd itself. It may be assumed that the infection was originally brought in by purchased cows. The young stock is kept segregated from these in a special barn, and when 6 months old it is pastured on outlying farms until returned in an advanced stage of pregnancy. The heifers during the first pregnancy were thus kept away from vibrio carriers until after the first calf was born. In June and July, 1919, 55 older cows, purchased and native, were placed on the young stock pasture. The three cases of abortion in heifers due to Vibrio fetus occurred October 24, November 9, and December 2, 1919. The age and condition of the fetuses accord very well with the assumption that Vibrio fetus was introduced among the young stock in June or July of the same year. The information gathered thus far concerning vibrionic abortion in this herd enables us to formulate a tentative hypothesis

  14. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    OpenAIRE

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine...

  15. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages

    OpenAIRE

    M. Mozammel Hoque; Iftekhar Bin Naser; S. M. Nayeemul Bari; Jun Zhu; John J. Mekalanos; Shah M. Faruque

    2016-01-01

    Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found t...

  16. Sources of Vibrio mimicus contamination of turtle eggs.

    Science.gov (United States)

    Acuña, M T; Díaz, G; Bolaños, H; Barquero, C; Sánchez, O; Sánchez, L M; Mora, G; Chaves, A; Campos, E

    1999-01-01

    Vibrio mimicus contamination of sand increased significantly during the arrival of the olive ridley sea turtles (Lepidochelys olivacea) at Ostional anidation beach, Costa Rica. Statistical analysis supports that eggs are contaminated with V. mimicus by contact with the sand nest. V. mimicus was isolated from eggs of all nests tested, and ctxA+ strains were found in 31% of the nests, all of which were near the estuary.

  17. Adsorption kinetics of laterally and polarly flagellated Vibrio.

    OpenAIRE

    Belas, M R; Colwell, R R

    1982-01-01

    The adsorption of laterally and polarly flagellated bacteria to chitin was measured, and from the data obtained, a modified Langmuir adsorption isotherm was derived. Results indicated that the adsorption of laterally flagellated Vibrio parahaemolyticus follows the Langmuir adsorption isotherm, a type of adsorption referred to as surface saturation kinetics, when conditions are favorable for the production of lateral flagella. When conditions were not favorable for the production of lateral fl...

  18. Characterization of Pathogenic Vibrio parahaemolyticus from the Chesapeake Bay, Maryland

    Directory of Open Access Journals (Sweden)

    Arlene J. Chen

    2017-12-01

    Full Text Available Vibrio parahaemolyticus is the leading cause of bacterial gastroenteritis associated with seafood consumption in the United States. Here we investigated the presence of virulence factors and genetic diversity of V. parahaemolyticus isolated from water, oyster, and sediment samples from the Chesapeake Bay, Maryland. Of more than 2,350 presumptive Vibrio collected, more than half were confirmed through PCR as V. parahaemolyticus, with 10 encoding both tdh and trh and 6 encoding only trh. Potentially pathogenic V. parahaemolyticus were then serotyped with O1:KUT and O3:KUT predominant. Furthermore, pulsed-field gel electrophoresis was performed and the constructed dendrogram displayed high diversity, as did results from multiple-locus VNTR analysis. Vibrio parahaemolyticus was readily isolated from Chesapeake Bay waters but was less frequently isolated from oyster and sediment samples collected during this study. Potentially pathogenic V. parahaemolyticus was isolated in fewer numbers and the isolates displayed expansive diversity. Although characteristics of the pathogenic V. parahaemolyticus were highly variable and the percent of pathogenic V. parahaemolyticus detected was low, it is important to note that, pathogenic V. parahaemolyticus are present in the Chesapeake Bay, warranting seafood monitoring to minimize risk of disease for the public, and to reduce the economic burden of V. parahaemolyticus related illness.

  19. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    Science.gov (United States)

    Sharma, Anshu; Baral, Dinesh; Rawat, Kamla; Solanki, Pratima R.; Bohidar, H. B.

    2015-05-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe3O4)) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe3O4 and CA-Fe3O4/ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe3O4, CA-Fe3O4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe3O4) and 189.51 nm (CA-Fe3O4) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe2O3/ITO immunosensor exhibits a good detection range of 12.5-500 ng mL-1 with a low detection limit of 0.32 ng mL-1, sensitivity 0.03 Ω/ng ml-1 cm-2, and reproducibility more than 11 times.

  20. Crystal structures of the isochorismatase domains from Vibrio anguillarum.

    Science.gov (United States)

    Du, Jiansen; Deng, Tian; Ma, Qingjun

    2017-08-26

    Antibiotic resistance is becoming a global threat and overuse of antibiotics in aquaculture disease control worsens the situation. To reduce the risk of drug resistance developed in aquaculture, safer biocontrol programs are needed. Antivirulence therapy, with less chance for developing drug resistance, is a promising approach. To facilitate antivirulence inhibitor design against Vibrio anguillarum, a serious aquaculture pathogen, we present crystal structures for isochorismatase domains of AngB and VabB, which are required to synthesize siderophore, a critical virulence factor. Both structures are highly similar to known isochorismatases in fold and active site, therefore we conclude inhibitors for isochorismatases can be developed in a common framework. The structural information will improve design of virulence inhibitors against Vibrio anguillarum. We also firstly report that isochorismatase family could bind endogenous metabolite during the hetero-expression process, which is likely nicotinic acid, nicotinamide or pyrazinic acid, based on structural analysis and affinity prediction. Taken together, our results provide precise structural information of isochorismatase domains for antivirulence inhibitor design against Vibrio anguillarum. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Isolation and characterization of an antibacterium against Vibrio harveyi 11593 from a mixed pond with penaeus japonicus bate, portunus trituberculatus and ruditapes philippinarum in China

    Science.gov (United States)

    An, X. H.; Xu, Y. J.; Li, F. H.; Ma, G. Z.; Li, L. T.

    2016-08-01

    Aquaculture diseases, particularly Vibriosis, are becoming a pressing concern due to incurred aquacultural loss in China. Commercial antibiotics may be used to control it, but its increased antibiotic resistance to prominent pathogenic bacteria has become a prevalent problem nationwide, and a global threat to public health. Probiotics are recommended instead because they are healthy, environment-friendly, and capable of maintaining productivity. An antibacterium against Vibrio harveyi 11593 was isolated from a mariculture pond with shrimp, crabs, and shellfish in China. The bacterium, E14, has an inhibitory zone diameter (DIZ) of 24.5 ± 0.5 mm. The strain was identified as Bacillus pumilus based on morphological observation, conventional biochemical tests, and 16S rDNA sequence analysis. The gram-positiveand motile bacterium is around 1.10-1.32 pm × 0.67-0.83 μm in size. Optimized conditions for antimicrobial substance production of B. pumilus E14 require that it be cultured for 26 h at 28 °C, with an initial pH of 7.0 in 100 mL/500 mL LB with 3% NaCl. The B. pumilus E14 cultures were confirmed to be safe and efficacious and actually worked to protect the host animal in shrimp larvae (Penaeus chinensis) culture. The B. pumilus E14 obtained in this study strengthened the strain's defense against aquaculture disease and made a good candidate for an alternative probiotics and benefit to sustainability of aquaculture.

  2. Development of a Taqman real-time PCR assay for rapid detection and quantification of Vibrio tapetis in extrapallial fluids of clams

    Directory of Open Access Journals (Sweden)

    Adeline Bidault

    2015-12-01

    Full Text Available The Gram-negative bacterium Vibrio tapetis is known as the causative agent of Brown Ring Disease (BRD in the Manila clam Venerupis (=Ruditapes philippinarum. This bivalve is the second most important species produced in aquaculture and has a high commercial value. In spite of the development of several molecular methods, no survey has been yet achieved to rapidly quantify the bacterium in the clam. In this study, we developed a Taqman real-time PCR assay targeting virB4 gene for accurate and quantitative identification of V. tapetis strains pathogenic to clams. Sensitivity and reproducibility of the method were assessed using either filtered sea water or extrapallial fluids of clam injected with the CECT4600T V. tapetis strain. Quantification curves of V. tapetis strain seeded in filtered seawater (FSW or extrapallial fluids (EF samples were equivalent showing reliable qPCR efficacies. With this protocol, we were able to specifically detect V. tapetis strains down to 1.125 101 bacteria per mL of EF or FSW, taking into account the dilution factor used for appropriate template DNA preparation. This qPCR assay allowed us to monitor V. tapetis load both experimentally or naturally infected Manila clams. This technique will be particularly useful for monitoring the kinetics of massive infections by V. tapetis and for designing appropriate control measures for aquaculture purposes.

  3. The susceptibility of Irish-grown and Galician-grown Manila clams, Ruditapes philippinarum, to Vibrio tapetis and Brown Ring Disease.

    Science.gov (United States)

    Drummond, Linda C; Balboa, Sabela; Beaz, Roxana; Mulcahy, Máire F; Barja, Juan L; Culloty, Sarah C; Romalde, Jesús L

    2007-05-01

    Brown Ring Disease (BRD), which affects the Manila clam in Europe, is caused by the bacterium, Vibrio tapetis. BRD has been diagnosed in Ireland on only one occasion (1997) although the aetiological agent has recently been detected in apparently healthy Manila clams from a number of sites around the Irish coast. The present work investigated the susceptibilities to BRD of two stocks of Manila clams, one from Ireland and the second from Galicia, north-western Spain, where BRD has been reported on a number of occasions. Exposure of the clams was by addition of V. tapetis to the holding waters. Development of BRD was assessed by the appearance of brown ring signs on the host shells, by bacterial isolation and characterization, and by detection of the bacterium by PCR. The pathogen was recovered from infected individuals and confirmed as V. tapetis by biochemical tests and a slide agglutination test. Galician clams experienced significantly higher mortalities, BRD prevalences and V. tapetis levels than Irish clams. Background infection with V. tapetis in the control stocks prevented conclusions being drawn on comparative susceptibility of the two stocks. Irish clams were significantly affected by the experimental challenge, as demonstrated by the development of BRD and an increase in V. tapetis levels. Results illustrate the vulnerability of Irish clams to BRD and have implications for the movement and transfer of clam seed in Ireland.

  4. Lack of Outer Membrane Protein A Enhances the Release of Outer Membrane Vesicles and Survival of Vibrio cholerae and Suppresses Viability of Acanthamoeba castellanii

    Directory of Open Access Journals (Sweden)

    Soni Priya Valeru

    2014-01-01

    Full Text Available Vibrio cholerae, the causative agent of the diarrhoeal disease cholera, survives in aquatic environments. The bacterium has developed a survival strategy to grow and survive inside Acanthamoeba castellanii. It has been shown that V. cholerae expresses outer membrane proteins as virulence factors playing a role in the adherence to interacted host cells. This study examined the role of outer membrane protein A (OmpA and outer membrane vesicles (OMVs in survival of V. cholerae alone and during its interaction with A. castellanii. The results showed that an OmpA mutant of V. cholerae survived longer than wild-type V. cholerae when cultivated alone. Cocultivation with A. castellanii enhanced the survival of both bacterial strains and OmpA protein exhibited no effect on attachment, engulfment, and survival inside the amoebae. However, cocultivation of the OmpA mutant of V. cholerae decreased the viability of A. castellanii and this bacterial strain released more OMVs than wild-type V. cholerae. Surprisingly, treatment of amoeba cells with OMVs isolated from the OmpA mutant significantly decreased viable counts of the amoeba cells. In conclusion, the results might highlight a regulating rule for OmpA in survival of V. cholerae and OMVs as a potent virulence factor for this bacterium towards eukaryotes in the environment.

  5. Examination of the mechanism of phenanthrenequinone toxicity to Vibrio fischeri: evidence for a reactive oxygen species-mediated toxicity mechanism.

    Science.gov (United States)

    Wang, Wenxi; Nykamp, Julie; Huang, Xiao-Dong; Gerhardt, Karen; Dixon, D George; Greenberg, Bruce M

    2009-08-01

    Phenanthrenequinone (PHQ) is a photoproduct of phenanthrene, one of the most prevalent polycyclic aromatic hydrocarbons in the environment. Phenanthrenequinone is a compound of substantial interest, because its toxicity can be much greater than its parent chemical to aquatic organisms. The toxicity mechanisms of PHQ to the luminescent marine bacterium Vibrio fischeri were examined in the present study. Phenanthrenequinone can redox cycle in bacterial cells and transfer electrons to O2, enhancing the production of superoxide (O*2-), hydrogen peroxide (H2O2), and other reactive oxygen species (ROS). Exposure of cells to PHQ increased activity of superoxide dismutase (SOD), which detoxifies the ROS superoxide. Concentrations of PHQ that induced the production of H2O2 and other ROS, as well as the elevated levels of Fe-SOD, were correlated with its toxicity as measured by luminescence. Furthermore, toxicity of PHQ to V. fischeri was lowered under the anaerobic conditions, suggesting that the absence of oxygen, which would limit the production of ROS, alleviated toxicity of PHQ. Thus, a ROS-mediated toxicity mechanism of PHQ is highly implicated by in the present study.

  6. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates.

    Science.gov (United States)

    Bier, Nadja; Jäckel, Claudia; Dieckmann, Ralf; Brennholt, Nicole; Böer, Simone I; Strauch, Eckhard

    2015-12-15

    Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST). A high diversity of MLST sequences (74 sequence types) and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.

  7. Generation and Characterization of a scFv Antibody Against T3SS Needle of Vibrio parahaemolyticus.

    Science.gov (United States)

    Wang, Rongzhi; Fang, Sui; Xiang, Shuangshuang; Ling, Sumei; Yuan, Jun; Wang, Shihua

    2014-06-01

    Vibrio parahaemolyticus, a halophilic gram-negative bacterium, is a food-borne pathogen that largely inhabits marine and estuarine environments, and poses a serious threat to human and animal health all over the world. The hollow "needle" channel, a specific assemble of T3SS which exists in most of gram-negative bacteria, plays a key role in the transition of virulence effectors to host cells. In this study, needle protein VP1694 was successfully expressed and purified, and the fusion protein Trx-VP1694 was used to immunize Balb/c mice. Subsequently, a phage single-chain fragment variable antibody (scFv) library was constructed, and a specific scFv against VP1694 named scFv-FA7 was screened by phage display panning. To further identify the characters of scFv, the soluble expression vector pACYC-scFv-skp was constructed and the soluble scFv was purified by Ni(2+) affinity chromatography. ELISA analysis showed that the scFv-FA7 was specific to VP1694 antigen, and its affinity constant was 1.07 × 10(8 )L/mol. These results offer a molecular basis to prevent and cure diseases by scFv, and also provide a new strategy for further research on virulence mechanism of T3SS in V. parahaemolyticus by scFv.

  8. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves.

    Science.gov (United States)

    Katharios, Pantelis; Kalatzis, Panos G; Kokkari, Constantina; Sarropoulou, Elena; Middelboe, Mathias

    2017-01-01

    A novel virulent bacteriophage, vB_VspP_pVa5, infecting a strain of Vibrio splendidus was isolated from a sea-cage aquaculture farm in Greece, and characterized using microbiological methods and genomic analysis. Bacteriophage vB_VspP_pVa5 is a N4-like podovirus with an icosahedral head measuring 85 nm in length and a short non-contractile tail. The phage had a narrow host range infecting only the bacterial host, a latent period of 30 min and a burst size of 24 virions per infected bacterium. Its genome size was 78,145 bp and genomic analysis identified 107 densely-packed genes, 40 of which could be annotated. In addition to the very large virion encapsulated DNA-dependent RNA polymerase which is the signature of the N4-like genus, an interesting feature of the novel phage is the presence of a self-splicing group I intron in the thymidylate synthase gene. A tRNAStop interrupted by a ~2.5kb open reading frame-containing area was also identified. The absence of genes related to lysogeny along with the high efficacy observed during in vitro cell lysis trials, indicate that the vB_VspP_pVa5 is a potential candidate component in a bacteriophage cocktail suitable for the biological control of V. splendidus in aquaculture.

  9. Isolation and characterization of a N4-like lytic bacteriophage infecting Vibrio splendidus, a pathogen of fish and bivalves.

    Directory of Open Access Journals (Sweden)

    Pantelis Katharios

    Full Text Available A novel virulent bacteriophage, vB_VspP_pVa5, infecting a strain of Vibrio splendidus was isolated from a sea-cage aquaculture farm in Greece, and characterized using microbiological methods and genomic analysis. Bacteriophage vB_VspP_pVa5 is a N4-like podovirus with an icosahedral head measuring 85 nm in length and a short non-contractile tail. The phage had a narrow host range infecting only the bacterial host, a latent period of 30 min and a burst size of 24 virions per infected bacterium. Its genome size was 78,145 bp and genomic analysis identified 107 densely-packed genes, 40 of which could be annotated. In addition to the very large virion encapsulated DNA-dependent RNA polymerase which is the signature of the N4-like genus, an interesting feature of the novel phage is the presence of a self-splicing group I intron in the thymidylate synthase gene. A tRNAStop interrupted by a ~2.5kb open reading frame-containing area was also identified. The absence of genes related to lysogeny along with the high efficacy observed during in vitro cell lysis trials, indicate that the vB_VspP_pVa5 is a potential candidate component in a bacteriophage cocktail suitable for the biological control of V. splendidus in aquaculture.

  10. [Antibiotic resistance and molecular characterization of Vibrio cholera strains isolated from an outbreak of cholera epidemic in Jiangsu province].

    Science.gov (United States)

    Dong, Chen; Zhang, Xuefeng; Bao, Changjun; Zhu, Yefei; Zhuang, Ling; Tan, Zhongming; Qian, Huimin; Tang, Fenyang

    2015-02-01

    To assess the antibiotic resistance and molecular characterization of cholera strains and to provide basis for clinical treatment and prevention of cholera. 4 stains isolated from an outbreak of cholera epidemic in Huai'an City in Jiangsu province in September 2010 were characterized using antibiotic susceptibility, biotype analysis, virluence genes detection, ctxB gene sequencing, and PFGE analysis. The 4 strains were all resistant to sulphamethoxazole/trimethoprim, erythromycin, streptomycin. High drug susceptibility of the samples was found to 6 kinds of antibiotics such as amikacin, norfloxacin, ciprofloxacin, gentamicin, chloramphenicol, ampicillin. The isolates expressed phenotypic traits of both serogroup O1 ogawa and El Tor and carried 9 kinds of virulence genes, ctxA, ace, zot, toxR, tcpI, ompU, rtxC, tcpA, and hlyA gene. They were also identified as harboring the classical ctxB genotype based on amino acid residue substitutions. The PFGE profiles of NotI showed a single banding pattern, while SfiI's was 2 banding patterns. The bacterium type of Vibrio cholerae causing the epidemic outbreak of cholera belonged to the atypical EL Tor variant which was also identified as toxicogenic strain. The mapping of the strains prompted that there should be the common contamination source. Drug sensitivity test can guide the clinical drug use, in order to reduce the emergence of resistant strains.

  11. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  12. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  13. Biosynthesis and uptake of glycine betaine as cold-stress response to low temperature in fish pathogen Vibrio anguillarum.

    Science.gov (United States)

    Ma, Yue; Wang, Qiyao; Gao, Xiating; Zhang, Yuanxing

    2017-01-01

    Fish pathogen Vibrio anguillarum, a mesophile bacterium, is usually found in estuarine and marine coastal ecosystems worldwide that pose a constant stress to local organism by its fluctuation in salinity as well as notable temperature change. Though V. anguillarum is able to proliferate while maintain its pathogenicity under low temperature (5-18°C), so far, coldadaption molecular mechanism of the bacteria is unknown. In this study, V. anguillarum was found possessing a putative glycine betaine synthesis system, which is encoded by betABI and synthesizes glycine betaine from its precursor choline. Furthermore, significant up-regulation of the bet gene at the transcriptional level was noted in log phase in response to cold-stress. Moreover, the accumulation of betaine glycine was only found appearing at low growth temperatures, suggesting that response regulation of both synthesis system and transporter system are cold-dependent. Furthermore, in-frame deletion mutation in the two putative ABC transporters and three putative BCCT family transporters associated with glycine betaine uptake could not block cellular accumulation of betaine glycine in V. anguillarum under coldstress, suggesting the redundant feature in V. anguillarum betaine transporter system. These findings confirmed that glycine betaine serves as an effective cold stress protectant and highlighted an underappreciated facet of the acclimatization of V. anguillarum to cold environments.

  14. Virulence Profiles of Vibrio vulnificus in German Coastal Waters, a Comparison of North Sea and Baltic Sea Isolates

    Directory of Open Access Journals (Sweden)

    Nadja Bier

    2015-12-01

    Full Text Available Vibrio vulnificus is a halophilic bacterium of coastal environments known for sporadically causing severe foodborne or wound infections. Global warming is expected to lead to a rising occurrence of V. vulnificus and an increasing incidence of human infections in Northern Europe. So far, infections in Germany were exclusively documented for the Baltic Sea coast, while no cases from the North Sea region have been reported. Regional variations in the prevalence of infections may be influenced by differences in the pathogenicity of V. vulnificus populations in both areas. This study aimed to compare the distribution of virulence-associated traits and genotypes among 101 V. vulnificus isolates from the Baltic Sea and North Sea in order to assess their pathogenicity potential. Furthermore, genetic relationships were examined by multilocus sequence typing (MLST. A high diversity of MLST sequences (74 sequence types and differences regarding the presence of six potential pathogenicity markers were observed in the V. vulnificus populations of both areas. Strains with genotypes and markers associated with pathogenicity are not restricted to a particular geographic region. This indicates that lack of reported cases in the North Sea region is not caused by the absence of potentially pathogenic strains.

  15. Development of a real-time resistance measurement for Vibrio parahaemolyticus detection by the lecithin-dependent hemolysin gene.

    Directory of Open Access Journals (Sweden)

    Guiming Xiang

    Full Text Available The marine bacterium Vibrio parahaemolyticus (V. parahaemolyticus causes gastroenteritis in humans via the ingestion of raw or undercooked contaminated seafood, and early diagnosis and prompt treatment are important for the prevention of V. parahaemolyticus-related diseases. In this study, a real-time resistance measurement based on loop-mediated isothermal amplification (LAMP, electrochemical ion bonding (Crystal violet and Mg(2+, real-time monitoring, and derivative analysis was developed. V. parahaemolyticus DNA was first amplified by LAMP, and the products (DNA and pyrophosphate represented two types of negative ions that could combine with a positive dye (Crystal violet and positive ions (Mg(2+ to increase the resistance of the reaction liquid. This resistance was measured in real-time using a specially designed resistance electrode, thus permitting the quantitative detection of V. parahaemolyticus. The results were obtained in 1-2 hours, with a minimum bacterial density of 10 CFU.mL(-1 and high levels of accuracy (97%, sensitivity (96.08%, and specificity (97.96% when compared to cultivation methods. Therefore, this simple and rapid method has a potential application in the detection of V. parahaemolyticus on a gene chip or in point-of-care testing.

  16. The Vibrio cholerae Mrp system: cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host.

    Science.gov (United States)

    Dzioba-Winogrodzki, Judith; Winogrodzki, Olga; Krulwich, Terry A; Boin, Markus A; Häse, Claudia C; Dibrov, Pavel

    2009-01-01

    The mrp operon from Vibrio cholerae encoding a putative multisubunit Na(+)/H(+) antiporter was cloned and functionally expressed in the antiporter-deficient strain of Escherichia coli EP432. Cells of EP432 expressing Vc-Mrp exhibited resistance to Na(+) and Li(+) as well as to natural bile salts such as sodium cholate and taurocholate. When assayed in everted membrane vesicles of the E. coli EP432 host, Vc-Mrp had sufficiently high antiport activity to facilitate the first extensive analysis of Mrp system from a Gram-negative bacterium encoded by a group 2 mrp operon. Vc-Mrp was found to exchange protons for Li(+), Na(+), and K(+) ions in pH-dependent manner with maximal activity at pH 9.0-9.5. Exchange was electrogenic (more than one H(+) translocated per cation moved in opposite direction). The apparent K(m) at pH 9.0 was 1.08, 1.30, and 68.5 mM for Li(+), Na(+), and K(+), respectively. Kinetic analyses suggested that Vc-Mrp operates in a binding exchange mode with all cations and protons competing for binding to the antiporter. The robust ion antiport activity of Vc-Mrp in sub-bacterial vesicles and its effect on bile resistance of the heterologous host make Vc-Mrp an attractive experimental model for the further studies of biochemistry and physiology of Mrp systems. Copyright 2008 S. Karger AG, Basel.

  17. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  18. The Dynamics of Genetic Interactions between Vibrio metoecus and Vibrio cholerae, Two Close Relatives Co-Occurring in the Environment.

    Science.gov (United States)

    Orata, Fabini D; Kirchberger, Paul C; Méheust, Raphaël; Barlow, E Jed; Tarr, Cheryl L; Boucher, Yan

    2015-10-09

    Vibrio metoecus is the closest relative of Vibrio cholerae, the causative agent of the potent diarrheal disease cholera. Although the pathogenic potential of this new species is yet to be studied in depth, it has been co-isolated with V. cholerae in coastal waters and found in clinical specimens in the United States. We used these two organisms to investigate the genetic interaction between closely related species in their natural environment. The genomes of 20 V. cholerae and 4 V. metoecus strains isolated from a brackish coastal pond on the US east coast, as well as 4 clinical V. metoecus strains were sequenced and compared with reference strains. Whole genome comparison shows 86-87% average nucleotide identity (ANI) in their core genes between the two species. On the other hand, the chromosomal integron, which occupies approximately 3% of their genomes, shows higher conservation in ANI between species than any other region of their genomes. The ANI of 93-94% observed in this region is not significantly greater within than between species, meaning that it does not follow species boundaries. Vibrio metoecus does not encode toxigenic V. cholerae major virulence factors, the cholera toxin and toxin-coregulated pilus. However, some of the pathogenicity islands found in pandemic V. cholerae were either present in the common ancestor it shares with V. metoecus, or acquired by clinical and environmental V. metoecus in partial fragments. The virulence factors of V. cholerae are therefore both more ancient and more widespread than previously believed. There is high interspecies recombination in the core genome, which has been detected in 24% of the single-copy core genes, including genes involved in pathogenicity. Vibrio metoecus was six times more often the recipient of DNA from V. cholerae as it was the donor, indicating a strong bias in the direction of gene transfer in the environment. © The Author(s) 2015. Published by Oxford University Press on behalf of the

  19. Ecología de Vibrio cholerae en relación al Fitoplancton y variables fisicoquímicas en ríos de Tucumán (Argentina Ecology of Vibrio cholerae in relation to phytoplankton and physico-chemical variables in rivers of Tucumán (Argentina

    Directory of Open Access Journals (Sweden)

    V. Mirande

    Full Text Available Vibrio cholerae muestra gran diversidad serológica en base a su antígeno somático O, conociéndose al menos 200 serogrupos. De éstos, solamente O1 y O139 son causantes de epidemias o pandemias. En Latinoamérica el serogrupo O1 reapareció en 1991, tras cien años de no presentar brotes en el continente. Esta bacteria sobrevive y se multiplica asociada al plancton, independientemente de la aparición de infecciones humanas. Desde la década del noventa, en Tucumán, se detectaron casos esporádicos de diarrea por Vibrio cholerae no-O1. El objetivo del presente trabajo fue estudiar la posible relación entre la presencia de especímenes de fitoplancton, variables fisicoquímicas y aislamientos de Vibrio cholerae en ríos de Tucumán. Se realizaron 18 campañas en los ríos Lules y Salí entre 2003-2005. Se estudiaron las variables fisicoquímicas del agua (pH, temperatura, conductividad y oxígeno disuelto, el fitoplancton (riqueza y frecuencia relativa y las cepas aisladas de V. cholerae. Los resultados evidenciaron diferencias en la calidad del agua, observándose períodos de anoxia en el río Salí. Las diatomeas sobresalieron en la mayoría de los meses y generalmente estuvieron en porcentajes superiores al 85 %. Sólo se aisló Vibrio cholerae no-O1, no-O139, detectándose más frecuentemente en los meses cálidos, con pH alcalino, aún con baja concentración de oxígeno.Vibrio cholerae shows a great serologic diversity in relation to his O somatic antigen and we know at least 200 serogroups. About these, only O1 and O139 are responsible of epidemics and pandemics. The serogroup O1 reemerged in Latin America in 1991 after being absent from the continent for nearly a century. This bacterium survives and grows up associated to plankton, independently of appearance of human infections. From 90 th decade, there were sporadic cases of diarrhea because of Vibrio cholerae O1 in Tucumán. The aims of this paper were to study the possible

  20. Metabolomic response of a marine bacterium to 3,6-anhydro-l-galactose, the rare sugar from red macroalgae, as the sole carbon source.

    Science.gov (United States)

    Yun, Eun Ju; Yu, Sora; Kim, Sooah; Kim, Kyoung Heon

    2018-03-20

    Marine red macroalgae have received much attention as sustainable resources for producing bio-based products. Therefore, understanding the metabolic pathways of carbohydrates from red macroalgae, in fermentative microorganisms, is crucial for efficient bioconversion of the carbohydrates into bio-based products. Recently, the novel catabolic pathway of 3,6-anhydro-l-galactose (AHG), the main component of red macroalgae, was discovered in a marine bacterium, Vibrio sp. strain EJY3. However, the global metabolic network in response to AHG remains unclear. Here, the intracellular metabolites of EJY3 grown on AHG, glucose, or galactose were comparatively profiled using gas chromatography/time-of-flight mass spectrometry. The global metabolite profiling results revealed that the metabolic profile for AHG significantly differed from those for other common sugars. Specifically, the metabolic intermediate of the AHG pathway, 3,6-anhydrogalactonate, was detected during growth only in the presence of AHG; thus, the recently discovered key steps in AHG catabolism was found not to occur in the catabolism of other common sugars. Moreover, the levels of metabolic intermediates related to glycerolipid metabolism and valine biosynthesis were higher with AHG than those with other sugars. These comprehensive metabolomic analytical results for AHG in this marine bacterium can be used as the basis for having fermentative microbial strains to engineered to efficiently utilize AHG from macroalgal biomass. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa.

    Science.gov (United States)

    Osunla, Charles A; Okoh, Anthony I

    2017-10-07

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  2. Complete genome sequence for the shellfish pathogen Vibrio coralliilyticus RE98 isolated from a shellfish hatchery

    Science.gov (United States)

    Vibrio coralliilyticus is a pathogen of corals and larval shellfish. Publications on strain RE98 list it as a Vibrio tubiashii; however, whole genome sequencing confirms RE98 as V. coralliilyticus containing a total of 6,037,824 bp consisting of two chromosomes (3,420,228 and 1,917,482 bp), and two...

  3. Onderzoek pathogene vibrio soorten in Nederlandse mosselen en oesters in augustus en september 2003

    NARCIS (Netherlands)

    Aalberts, C.H.J.

    2003-01-01

    Naar aanleiding van de hoge weerstemperatuur in augustus 2003 zijn in de kweek- en verwatergebieden van mosselen en oesters in Nederland enkele monsters onderzocht op de aanwezigheid van voor de mens pathogene vibrio soorten. In geen van de 18 monsters is Vibrio parahaemolyticus, vulnificus of

  4. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus

    NARCIS (Netherlands)

    Leon-Sicairos, N.; Canizalez-Roman, A.; de la Garza, M.; Reyes-Lopez, M.; Zazueta-Beltran, J.; Nazmi, K.; Gomez-Gil, B.; Bolscher, J.G.

    2009-01-01

    Infections caused by Vibrio parahaemolyticus, an halophilic member of the genus Vibrio, have increased globally in the last 5 years. Diarrhea caused by V. parahaemolyticus results from eating raw or undercooked seafood. The aim of this work was to investigate whether lactoferrin and some

  5. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Science.gov (United States)

    Osunla, Charles A.

    2017-01-01

    Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens. PMID:28991153

  6. Vibrio Pathogens: A Public Health Concern in Rural Water Resources in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Charles A. Osunla

    2017-10-01

    Full Text Available Members of the Vibrio genus are autochthonous inhabitants of aquatic environments and play vital roles in sustaining the aquatic milieu. The genus comprises about 100 species, which are mostly of marine or freshwater origin, and their classification is frequently updated due to the continuous discovery of novel species. The main route of transmission of Vibrio pathogens to man is through drinking of contaminated water and consumption inadequately cooked aquatic food products. In sub-Saharan Africa and much of the developing world, some rural dwellers use freshwater resources such as rivers for domestic activities, bathing, and cultural and religious purposes. This review describes the impact of inadequately treated sewage effluents on the receiving freshwater resources and the associated risk to the rural dwellers that depends on the water. Vibrio infections remain a threat to public health. In the last decade, Vibrio disease outbreaks have created alertness on the personal, economic, and public health uncertainties associated with the impact of contaminated water in the aquatic environment of sub-Saharan Africa. In this review, we carried out an overview of Vibrio pathogens in rural water resources in Sub-Saharan Africa and the implication of Vibrio pathogens on public health. Continuous monitoring of Vibrio pathogens among environmental freshwater and treated effluents is expected to help reduce the risk associated with the early detection of sources of infection, and also aid our understanding of the natural ecology and evolution of Vibrio pathogens.

  7. Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi).

    Science.gov (United States)

    Chimetto, L A; Brocchi, M; Gondo, M; Thompson, C C; Gomez-Gil, B; Thompson, F L

    2009-06-01

    A taxonomic survey of the vibrios associated with the Brazilian endemic coral Mussismilia hispida and the sympatric zoanthids (i.e. Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). Mucus of 54 cnidarian specimens collected in three different places at São Sebastião in two consecutive years (i.e. 2005 and 2006) was used for taxonomic characterization of the cnidarian microbiota. Ninety-eight of the 151 vibrio isolates fell within the vibrio core group according to partial 16S rDNA sequences. We performed the sequencing of recA and pyrH genes of all vibrio isolates. The most abundant taxa belonged to the vibrio core group (Vibrio harveyi, Vibrio rotiferianus, Vibrio campbellii and Vibrio alginolyticus), Vibrio mediterranei (=Vibrio shillonii) and Vibrio chagasii. With the exception of V. chagasii which was found only in the mucus of M. hispida, the other species appeared in different hosts with no evidence for the presence of host-specific clones or species. Using rep-PCR analysis, we observed a high genomic heterogeneity within the vibrios. Each vibrio isolate generated a different rep-PCR fingerprint pattern. There was a complete agreement between the grouping based on rep-PCR and concatenated sequences of pyrH, recA and 16S rDNA, but the pyrH gene has the highest discriminatory power for vibrio species identification. The vibrio core group is dominant in the mucus of these cnidarians. There is a tremendous diversity of vibrio lineages within the coral mucus. pyrH gene sequences permit a clear-cut identification of vibrios. The taxonomic resolution provided by pyrH (but not recA) appears to be enough for identifying species of vibrios and for disclosing putative new taxa. The vibrio core group appears to be dominant in the mucus of the Brazilian cnidarians. The overrepresentation of these vibrios may reflect as yet unknown ecological functions in the coral holobiont.

  8. Characterization of a halophilic heterotrophic nitrification-aerobic denitrification bacterium and its application on treatment of saline wastewater.

    Science.gov (United States)

    Duan, Jinming; Fang, Hongda; Su, Bing; Chen, Jinfang; Lin, Jinmei

    2015-03-01

    A novel halophilic bacterium capable of heterotrophic nitrification-aerobic denitrification was isolated from marine sediments and identified as Vibrio diabolicus SF16. It had ability to remove 91.82% of NH4(+)-N (119.77 mg/L) and 99.71% of NO3(-)-N (136.43 mg/L). The nitrogen balance showed that 35.83% of initial NH4(+)-N (119.77 mg/L) was changed to intracellular nitrogen, and 53.98% of the initial NH4(+)-N was converted to gaseous denitrification products. The existence of napA gene further proved the aerobic denitrification ability of strain SF16. The optimum culture conditions were salinity 1-5%, sodium acetate as carbon source, C/N 10, and pH 7.5-9.5. When an aerated biological filter system inoculated with strain SF16 was employed to treat saline wastewater, the average removal efficiency of NH4(+)-N and TN reached 97.14% and 73.92%, respectively, indicating great potential of strain SF16 for future full-scale applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. IDENTIFICATION OF VIBRIO BACTERIA CAUSED VIBRIOSIS ON FRESHWATER PRAWN LARVAE (Macrobrachium rosenbergii (de Man

    Directory of Open Access Journals (Sweden)

    Ni Wayan Desi Bintari

    2016-12-01

    Full Text Available Freshwater prawn (Macrobrachium rosenbergii (de Man farming in Bali needs to be supported by the provisionof healthy prawn larvae. Vibriosis infection can be a limiting factor on larval production system which cause highmass mortality in larvae. Therefore a bacteriological study is very important to identify of Vibrio species whichcan cause vibriosis in freshwater prawn larvae. Screening of Vibrio bacteria carried on larval rearing water atUPT Pembenihan Dinas Kelautan dan Perikanan Provinsi Bali which located in Pesinggahan Village, Klungkung.During study, 5 Vibrio isolates can be characterized (VSP01, VSP02, VSP04, VSP05 and VSP06 which wereisolated as dominant Vibrio bacteria in larval rearing water. Koch postulate test results showed that VSP06 cancause vibriosis in freshwater prawn larvae. The result of identification by BBL Cystal™ Identification Systems andidentification book Bergeys’s Manual of Determinative Bacteriology Ninth Edition (Holt et al., 1994, BL6 wasidentified as Vibrio anguillarum.

  10. IDENTIFICATION OF VIBRIO BACTERIA CAUSED VIBRIOSIS ON FRESHWATER PRAWN LARVAE (Macrobrachium rosenbergii (de Man

    Directory of Open Access Journals (Sweden)

    Ni Wayan Desi Bintari

    2017-02-01

    Full Text Available Freshwater prawn (Macrobrachium rosenbergii (de Man farming in Bali needs to be supported by the provisionof healthy prawn larvae. Vibriosis infection can be a limiting factor on larval production system which cause highmass mortality in larvae. Therefore a bacteriological study is very important to identify of Vibrio species whichcan cause vibriosis in freshwater prawn larvae. Screening of Vibrio bacteria carried on larval rearing water atUPT Pembenihan Dinas Kelautan dan Perikanan Provinsi Bali which located in Pesinggahan Village, Klungkung.During study, 5 Vibrio isolates can be characterized (VSP01, VSP02, VSP04, VSP05 and VSP06 which wereisolated as dominant Vibrio bacteria in larval rearing water. Koch postulate test results showed that VSP06 cancause vibriosis in freshwater prawn larvae. The result of identification by BBL Cystal™ Identification Systems andidentification book Bergeys’s Manual of Determinative Bacteriology Ninth Edition (Holt et al., 1994, BL6 wasidentified as Vibrio anguillarum.

  11. Comparative assessment of Vibrio virulence in marine fish larvae

    DEFF Research Database (Denmark)

    Rønneseth, A.; Castillo, D.; D'Alvise, Paul

    2017-01-01

    Vibrionaceae infections are a major obstacle for marine larviculture; however, little is known about virulence differences of Vibrio strains. The virulence of Vibrio strains, mostly isolated from vibriosis outbreaks in farmed fish, was tested in larval challenge trials with cod (Gadus morhua...... effects on survival. Some Vibrio strains were pathogenic in all of the larva species, while some caused disease only in one of the species. Twenty-nine of the Vibrio anguillarum strains increased the mortality of larvae from at least one fish species; however, pathogenicity of the strains differed...... markedly. Other Vibrio species had no or less pronounced effects on larval mortalities. Iron uptake has been related to V. anguillarum virulence; however, the presence or absence of the plasmid pJM1 encoding anguibactin did not correlate with virulence. The genomes of V. anguillarum were compared (D...

  12. Vibrio ecology in PNW - The Ecology of Vibrio parahaemolyticus in the Pacific Northwest: Implications for risk assessment and early warning systems

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Over the past decade, there has been a significant increase in Vibrio parahaemolyticus-related gastroenteritis from the consumption of raw oysters harvested in...

  13. Saharan dust nutrients promote Vibrio bloom formation in marine surface waters

    Science.gov (United States)

    Westrich, Jason R.; Ebling, Alina M.; Landing, William M.; Joyner, Jessica L.; Kemp, Keri M.; Griffin, Dale W.; Lipp, Erin K.

    2016-01-01

    Vibrio is a ubiquitous genus of marine bacteria, typically comprising a small fraction of the total microbial community in surface waters, but capable of becoming a dominant taxon in response to poorly characterized factors. Iron (Fe), often restricted by limited bioavailability and low external supply, is an essential micronutrient that can limit Vibrio growth. Vibrio species have robust metabolic capabilities and an array of Fe-acquisition mechanisms, and are able to respond rapidly to nutrient influx, yet Vibrio response to environmental pulses of Fe remains uncharacterized. Here we examined the population growth of Vibrioafter natural and simulated pulses of atmospherically transported Saharan dust, an important and episodic source of Fe to tropical marine waters. As a model for opportunistic bacterial heterotrophs, we demonstrated that Vibrio proliferate in response to a broad range of dust-Fe additions at rapid timescales. Within 24 h of exposure, strains of Vibrio cholerae and Vibrio alginolyticus were able to directly use Saharan dust–Fe to support rapid growth. These findings were also confirmed with in situ field studies; arrival of Saharan dust in the Caribbean and subtropical Atlantic coincided with high levels of dissolved Fe, followed by up to a 30-fold increase of culturable Vibrio over background levels within 24 h. The relative abundance of Vibrio increased from ∼1 to ∼20% of the total microbial community. This study, to our knowledge, is the first to describe Vibrio response to Saharan dust nutrients, having implications at the intersection of marine ecology, Fe biogeochemistry, and both human and environmental health.

  14. Occurrence and Diversity of Clinically Important Vibrio Species in the Aquatic Environment of Georgia

    Science.gov (United States)

    Kokashvili, Tamar; Whitehouse, Chris A.; Tskhvediani, Ana; Grim, Christopher J.; Elbakidze, Tinatin; Mitaishvili, Nino; Janelidze, Nino; Jaiani, Ekaterine; Haley, Bradd J.; Lashkhi, Nino; Huq, Anwar; Colwell, Rita R.; Tediashvili, Marina

    2015-01-01

    Among the more than 70 different Vibrio species inhabiting marine, estuarine, and freshwater ecosystems, 12 are recognized as human pathogens. The warm subtropical climate of the Black Sea coastal area and inland regions of Georgia likely provides a favorable environment for various Vibrio species. From 2006 to 2009, the abundance, ecology, and diversity of clinically important Vibrio species were studied in different locations in Georgia and across seasons. Over a 33-month period, 1,595 presumptive Vibrio isolates were collected from the Black Sea (n = 657) and freshwater lakes around Tbilisi (n = 938). Screening of a subset of 440 concentrated and enriched water samples by PCR-electrospray ionization/mass spectrometry (PCR-ESI/MS) detected the presence of DNA from eight clinically important Vibrio species: V. cholerae, V. parahaemolyticus, V. vulnificus, V. mimicus, V. alginolyticus, V. harveyi, V. metschnikovii, and V. cincinnatiensis. Almost 90% of PCR/ESI-MS samples positive for Vibrio species were collected from June through November. Three important human-pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) were detected in 62.8, 37.8, and 21.4% of samples testing positive for Vibrios, respectively. The results of these activities suggest that natural reservoirs for human-pathogenic Vibrios exist in Georgian aquatic environments. Water temperature at all sampling sites was positively correlated with the abundance of clinically important Vibrio spp. (except V. metschnikovii), and salinity was correlated with species composition at particular Black Sea sites as well as inland reservoirs. PMID:26528464

  15. Temperature-dependent inhibition of opportunistic Vibrio pathogens by native coral commensal bacteria.

    Science.gov (United States)

    Frydenborg, Beck R; Krediet, Cory J; Teplitski, Max; Ritchie, Kim B

    2014-02-01

    Bacteria living within the surface mucus layer of corals compete for nutrients and space. A number of stresses affect the outcome of this competition. The interactions between native microorganisms and opportunistic pathogens largely determine the coral holobiont's overall health and fitness. In this study, we tested the hypothesis that commensal bacteria isolated from the mucus layer of a healthy elkhorn coral, Acropora palmata, are capable of inhibition of opportunistic pathogens, Vibrio shiloi AK1 and Vibrio coralliilyticus. These vibrios are known to cause disease in corals and their virulence is temperature dependent. Elevated temperature (30 °C) increased the cell numbers of one commensal and both Vibrio pathogens in monocultures. We further tested the hypothesis that elevated temperature favors pathogenic organisms by simultaneously increasing the fitness of vibrios and decreasing the fitness of commensals by measuring growth of each species within a co-culture over the course of 1 week. In competition experiments between vibrios and commensals, the proportion of Vibrio spp. increased significantly under elevated temperature. We finished by investigating several temperature-dependent mechanisms that could influence co-culture differences via changes in competitive fitness. The ability of Vibrio spp. to utilize glycoproteins found in A. palmata mucus increased or remained stable when exposed to elevated temperature, while commensals' tended to decrease utilization. In both vibrios and commensals, protease activity increased at 30 °C, while chiA expression increased under elevated temperatures for Vibrio spp. These results provide insight into potential mechanisms through which elevated temperature may select for pathogenic bacterial dominance and lead to disease or a decrease in coral fitness.

  16. VibrioBase: A MALDI-TOF MS database for fast identification of Vibrio spp. that are potentially pathogenic in humans.

    Science.gov (United States)

    Erler, René; Wichels, Antje; Heinemeyer, Ernst-August; Hauk, Gerhard; Hippelein, Martin; Reyes, Nadja Torres; Gerdts, Gunnar

    2015-02-01

    Mesophilic marine bacteria of the family Vibrionaceae, specifically V. cholerae, V. parahaemolyticus and V. vulnificus, are considered to cause severe illness in humans. Due to climate-change-driven temperature increases, higher Vibrio abundances and infections are predicted for Northern Europe, which in turn necessitates environmental surveillance programs to evaluate this risk. We propose that whole-cell matrix assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling is a promising tool for the fast and reliable species classification of environmental isolates. Because the reference database does not contain sufficient Vibrio spectra we generated the VibrioBase database in this study. Mass spectrometric data were generated from 997 largely environmental strains and filed in this new database. MALDI-TOF MS clusters were assigned based on the species classification obtained by analysis of partial rpoB (RNA polymerase beta-subunit) sequences. The affiliation of strains to species-specific clusters was consistent in 97% of all cases using both approaches, and the extended VibrioBase generated more specific species identifications with higher matching scores compared to the commercially available database. Therefore, we have made the VibrioBase database freely accessible, which paves the way for detailed risk assessment studies of potentially pathogenic Vibrio spp. from marine environments. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Incidence of Vibrio cholerae and related vibrios in a coastal lagoon and seawater influenced by lake discharges along an annual cycle.

    Science.gov (United States)

    Garay, E; Arnau, A; Amaro, C

    1985-08-01

    Most probable numbers of Vibrio cholerae and related vibrios were determined in Albufera Lake, Valencia, Spain, and in coastal waters under the influence of the lake discharges over the course of an annual cycle. The influence of temperature, kind of water, and characteristics of the different sampling sites on the numbers of vibrios recovered was evaluated. Maximum recovery of vibrios reached 10(3)/ml in both types of waters analyzed. V. cholerae numbers reached 10(3)/ml in the lake and 10(2) in one of the coastal sites. Frequently during the warm season, all vibrios isolated were identified as V. cholerae. Occasionally, no V. cholerae was recovered. The recovery of vibrios was significantly influenced by the temperature of the water and the type of water analyzed. Most of the V. cholerae isolates were included in Heiberg groups I and II, and nearly 50% of the strains used chitin as sole carbon source. Indole was not produced by 100% of the strains. All strains tested were non-O1 serovars.

  18. Ecology of antibiotic resistant vibrios in traditional shrimp farming system (bhery of West Bengal, India

    Directory of Open Access Journals (Sweden)

    Leesa Priyadarsani

    2013-11-01

    Full Text Available Objective: To study the ecology of antibiotic resistant bacteria with emphasis on sucrose negative vibrios in water and sediments samples of traditional shrimp farming system (bhery in West Bengal, India. Methods: The vibrios were isolated from traditional shrimp farm samples on thiosulphate citrate bile salt sucrose agar and sucrose negative bacterial strains were used as biomarkers to assess the frequency of antibiotic resistance. Results: The incoming water brought presumptive vibrios ranging from 5.50000×10 1 to 1.00×10 3 mL in to the bhery, and there appeared to build up vibrios in the culture system with days of culture, as there was about 9 fold increase in vibrios. The levels of vibrios were observed to be moderately higher in outlet water and ranged between 4.15×10 2 and 4.15×10 3 mL. The counts of vibrios in pond sediment was found to be 1.00×10 2 –4.90×10 3 g; while in inlet (2.00×10 2 –4.20×10 4 g and outlet (3.00×10 2 –6.85×10 3 g their levels were observed to be higher than the pond sediment. Thirteen different Vibrio species were encountered in traditional shrimp culture system and all vibrios were sensitive to chloramphenicol, followed by ciprofloxacin and gatifloxacin (98.24%, gentamicin (95.61% and other antibiotics. The multiple antibiotic resistance (MAR, i.e., resistance to at least two antibiotics, was noticed among 43.85% of the sucrose negative vibrios and 41.86% of the sucrose negative non-vibrios. All vibrios harveyi strains exhibited MAR. Although no antibiotic was used in the bhery, the prevalence of MAR in 44% of the sucrose negative vibrios and nonvibrios is a cause of concern. The MAR index was higher in inlet water and sediment samples. The MAR observed in biomarker strains of pond water and sediment (40% was comparable to those of inlet samples, thus confirming the fact that incoming water was the major source of antibiotic resistant bacteria. Conclusions: It seems that the shrimp culture in bhery

  19. Vibrio fujianensis sp. nov., isolated from aquaculture water.

    Science.gov (United States)

    Fang, Yujie; Chen, Aiping; Dai, Hang; Huang, Ying; Kan, Biao; Wang, Duochun

    2018-02-13

    A Gram-stain-negative, facultatively anaerobic strain, designated FJ201301 T , was isolated from aquaculture water collected from Fujian province, China. Phylogenetic analysis of 16S rRNA gene sequences indicated that strain FJ201301 T belonged to the genus Vibrio, formed a distinct cluster with Vibriocincinnatiensis ATCC 35912 T and shared the highest similarity with Vibriosalilacus CGMCC 1.12427 T . A 15 bp insertion found in the 16S rRNA gene was a significant marker that distinguished strain FJ201301 T from several phylogenetic neighbours (e.g. V. cincinnatiensis). Multilocus sequence analysis of eight genes (ftsZ, gapA, gyrB, mreB, pyrH, recA, rpoA and topA; concatenated 4135 bp sequence) showed that, forming a long and independent phylogenetic branch, strain FJ201301 T clustered with V. cincinnatiensis ATCC 35912 T , Vibrioinjenensis KCTC 32233 T and Vibriometschnikovii CIP 69.14 T clearly separated from V. salilacus CGMCC 1.12427 T . Furthermore, the highest in silico DNA-DNA hybridization and average nucleotide identity values between strain FJ201301 T and the closest related species were 26.3 and 83.1 % with V. cincinnatiensis ATCC 35912 T , less than the proposed cutoff levels for species delineation, i.e. 70 and 95 %, respectively. Biochemical, sequence and genomic analysis suggested the designation of strain FJ201301 T representing a novel species of the genus Vibrio, for which the name Vibrio fujianensis sp. nov. is proposed. The type strain is FJ201301 T (=DSM 104687 T =CGMCC 1.16099 T ).

  20. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus

    Directory of Open Access Journals (Sweden)

    Binnewies Tim T

    2008-06-01

    Full Text Available Abstract Background Vibrio parahaemolyticus is abundant in the aquatic environment particularly in warmer waters and is the leading cause of seafood borne gastroenteritis worldwide. Prior to 1995, numerous V. parahaemolyticus serogroups were associated with disease, however, in that year an O3:K6 serogroup emerged in Southeast Asia causing large outbreaks and rapid hospitalizations. This new highly virulent strain is now globally disseminated. Results We performed a four-way BLAST analysis on the genome sequence of V. parahaemolyticus RIMD2210633, an O3:K6 isolate from Japan recovered in 1996, versus the genomes of four published Vibrio species and constructed genome BLAST atlases. We identified 24 regions, gaps in the genome atlas, of greater than 10 kb that were unique to RIMD2210633. These 24 regions included an integron, f237 phage, 2 type III secretion systems (T3SS, a type VI secretion system (T6SS and 7 Vibrio parahaemolyticus genomic islands (VPaI-1 to VPaI-7. Comparative genomic analysis of our fifth genome, V. parahaemolyticus AQ3810, an O3:K6 isolate recovered in 1983, identified four regions unique to each V. parahaemolyticus strain. Interestingly, AQ3810 did not encode 8 of the 24 regions unique to RMID, including a T6SS, which suggests an additional virulence mechanism in RIMD2210633. The distribution of only the VPaI regions was highly variable among a collection of 42 isolates and phylogenetic analysis of these isolates show that these regions are confined to a pathogenic clade. Conclusion Our data show that there is considerable genomic flux in this species and that the new highly virulent clone arose from an O3:K6 isolate that acquired at least seven novel regions, which included both a T3SS and a T6SS.

  1. Biocompatible capped iron oxide nanoparticles for Vibrio cholerae detection

    International Nuclear Information System (INIS)

    Sharma, Anshu; Rawat, Kamla; Solanki, Pratima R; Bohidar, H B; Baral, Dinesh

    2015-01-01

    We report the studies relating to fabrication of an efficient immunosensor for Vibrio cholerae detection. Magnetite (iron oxide (Fe 3 O 4 )) nanoparticles (NPs) have been synthesized by the co-precipitation method and capped by citric acid (CA). These NPs were electrophoretically deposited onto indium-tin-oxide (ITO)-coated glass substrate and used for immobilization of monoclonal antibodies against Vibrio cholerae (Ab) and bovine serum albumin (BSA) for Vibrio cholerae detection using an electrochemical technique. The structural and morphological studies of Fe 3 O 4 and CA-Fe 3 O 4 /ITO were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) techniques. The average crystalline size of Fe 3 O 4 , CA-Fe 3 O 4 nanoparticles obtained were about 29 ± 1 nm and 37 ± 1 nm, respectively. The hydrodynamic radius of the nanoparticles was found to be 77.35 nm (Fe 3 O 4 ) and 189.51 nm (CA-Fe 3 O 4 ) by DLS measurement. The results of electrochemical response studies of the fabricated BSA/Ab/CA-Fe 2 O 3 /ITO immunosensor exhibits a good detection range of 12.5–500 ng mL −1 with a low detection limit of 0.32 ng mL −1 , sensitivity 0.03 Ω/ng ml −1 cm −2 , and reproducibility more than 11 times. (paper)

  2. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  3. Isolamento de vibrios potencialmente patogênicos em moluscos bivalves

    OpenAIRE

    Glavur Rogerio Matte

    1994-01-01

    Neste estudo, 26 amostras de ostras (Crassostrea gigas) comercializadas na cidade de São Paulo e em alguns pontos do litoral de São Paulo, e 36 amostras de mexilhões (Perna perna) colhidas mensalmente em 3 pontos do litoral de Ubatuba - SP, foram submetidas à pesquisa de vibrios potencialmente patogênicos. As amostras desses moluscos eram submetidas a enriquecimento em água peptonada alcalina sem cloreto de sódio e com 1 por cento de cloreto de sódio, e GSTB. O isolamento foi realizado em ág...

  4. Quorum Sensing Disruption in Vibrio harveyi Bacteria by Clay Materials.

    Science.gov (United States)

    Naik, Sajo P; Scholin, Jonathon; Ching, San; Chi, Fang; Herpfer, Marc

    2018-01-10

    This work describes the use of clay minerals as catalysts for the degradation of quorum sensing molecule N-(3-oxooctanoyl)-dl-homoserine lactone. Certain clay minerals as a result of their surface properties and porosity can catalytically degrade the quorum sensing molecule into smaller fragments. The disruption of quorum sensing by clay in a growing Gram-negative Vibrio harveyi bacteria culture was also studied by monitoring luminescence and population density of the bacteria, wherein quenching of bacterial quorum sensing activity was observed by means of luminescence reduction. The results of this study show that food-grade clays can be used as biocatalysts in disrupting bacterial activity in various media.

  5. Vibrios associated with mortality in cultured plaice Pleuronectes platessa fry

    DEFF Research Database (Denmark)

    Pedersen, Karl; Austin, B.; Austin, D.A.

    1999-01-01

    identical ribotype patterns. Fourteen isolates were identified as V. splendidus biotype I (n = 11) or V. splendidus-like (n = 3). Seven isolates were V. fluvialis, representing the first isolation of this species in Denmark and the first description of V. fluvialis associated with diseased fish. All V....... fluvialis isolates had identical ribotype patterns, indicating the presence of a single clone. The last 5 isolates belonged to 2 different, unidentified Vibrio species (n=2 and 3, respectively). Although all isolates were recovered from diseased plaice fry, their exact role as pathogens for the fry...

  6. Application of Reverse Transcriptase-PCR-DGGE as a rapid method for routine determination of Vibrio spp. in foods.

    Science.gov (United States)

    Chahorm, Kanchana; Prakitchaiwattana, Cheunjit

    2018-01-02

    The aim of this research was to evaluate the feasibility of PCR-DGGE and Reverse Transcriptase-PCR-DGGE techniques for rapid detection of Vibrio species in foods. Primers GC567F and 680R were initially evaluated for amplifying DNA and cDNA of ten references Vibrio species by PCR method. The GC-clamp PCR amplicons were separated according to their sequences by the DGGE using 10% (w/v) polyacrylamide gel containing 45-70% urea and formamide denaturants. Two pair of Vibrio species, which could not be differentiated on the gel, was Vibrio fluvialis - Vibrio furnissii and Vibrio parahaemolyticus - Vibrio harveyi. To determine the detection limit, in the community of 10 reference strains containing the same viable population, distinct DNA bands of 3 species; Vibrio cholerae, Vibrio mimicus and Vibrio alginolyticus were consistently observed by PCR-DGGE technique. In fact, 5 species; Vibrio cholerae, Vibrio mimicus, Vibrio alginolyticus, Vibrio parahaemolyticus and Vibrio fluvialis consistently observed by Reverse Transcriptase-PCR-DGGE. In the community containing different viable population increasing from 10 2 to 10 5 CFU/mL, PCR-DGGE analysis only detected the two most prevalent species, while RT-PCR-DGGE detected the five most prevalent species. Therefore, Reverse Transcriptase-PCR-DGGE was also selected for detection of various Vibrio cell conditions, including viable cell (VC), injured cells from frozen cultures (IVC) and injured cells from frozen cultures with pre-enrichment (PIVC). It was found that cDNA band of all cell conditions gave the same migratory patterns, except that multiple cDNA bands of Plesiomonas shigelloides under IVC and PIVC conditions were found. When Reverse Transcriptase-PCR-DGGE was used for detecting Vibrio parahaemolyticus in the pathogen-spiked food samples, Vibrio parahaemolyticus could be detected in the spiked samples containing at least 10 2 CFU/g of this pathogen. The results obtained also corresponded to standard method (USFDA, 2004

  7. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Science.gov (United States)

    Pradhan, Nirakar; Dipasquale, Laura; d’Ippolito, Giuliana; Panico, Antonio; Lens, Piet N. L.; Esposito, Giovanni; Fontana, Angelo

    2015-01-01

    As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production. PMID:26053393

  8. Hydrogen Production by the Thermophilic Bacterium Thermotoga neapolitana

    Directory of Open Access Journals (Sweden)

    Nirakar Pradhan

    2015-06-01

    Full Text Available As the only fuel that is not chemically bound to carbon, hydrogen has gained interest as an energy carrier to face the current environmental issues of greenhouse gas emissions and to substitute the depleting non-renewable reserves. In the last years, there has been a significant increase in the number of publications about the bacterium Thermotoga neapolitana that is responsible for production yields of H2 that are among the highest achievements reported in the literature. Here we present an extensive overview of the most recent studies on this hyperthermophilic bacterium together with a critical discussion of the potential of fermentative production by this bacterium. The review article is organized into sections focused on biochemical, microbiological and technical issues, including the effect of substrate, reactor type, gas sparging, temperature, pH, hydraulic retention time and organic loading parameters on rate and yield of gas production.

  9. Persistence, Seasonal Dynamics and Pathogenic Potential of Vibrio Communities from Pacific Oyster Hemolymph

    Science.gov (United States)

    Wendling, Carolin C.; Batista, Frederico M.; Wegner, K. Mathias

    2014-01-01

    Bacteria of the genus Vibrio occur at a continuum from free-living to symbiotic life forms, including opportunists and pathogens, that can contribute to severe diseases, for instance summer mortality events of Pacific oysters Crassostrea gigas. While most studies focused on Vibrio isolated from moribund oysters during mortality outbreaks, investigations of the Vibrio community in healthy oysters are rare. Therefore, we characterized the persistence, diversity, seasonal dynamics, and pathogenicity of the Vibrio community isolated from healthy Pacific oysters. In a reciprocal transplant experiment we repeatedly sampled hemolymph from adult Pacific oysters to differentiate population from site-specific effects during six months of in situ incubation in the field. We characterized virulence phenotypes and genomic diversity based on multilocus sequence typing in a total of 70 Vibrio strains. Based on controlled infection experiments we could show that strains with the ability to colonize healthy adult oysters can also have the potential to induce high mortality rates on larvae. Diversity and abundance of Vibrio varied significantly over time with highest values during and after spawning season. Vibrio communities from transplanted and stationary oysters converged over time, indicating that communities were not population specific, but rather assemble from the surrounding environment forming communities, some of which can persist over longer periods. PMID:24728233

  10. Phylodynamic analysis of clinical and environmental Vibrio cholerae isolates from Haiti reveals diversification driven by positive selection.

    Science.gov (United States)

    Azarian, Taj; Ali, Afsar; Johnson, Judith A; Mohr, David; Prosperi, Mattia; Veras, Nazle M; Jubair, Mohammed; Strickland, Samantha L; Rashid, Mohammad H; Alam, Meer T; Weppelmann, Thomas A; Katz, Lee S; Tarr, Cheryl L; Colwell, Rita R; Morris, J Glenn; Salemi, Marco

    2014-12-23

    Phylodynamic analysis of genome-wide single-nucleotide polymorphism (SNP) data is a powerful tool to investigate underlying evolutionary processes of bacterial epidemics. The method was applied to investigate a collection of 65 clinical and environmental isolates of Vibrio cholerae from Haiti collected between 2010 and 2012. Characterization of isolates recovered from environmental samples identified a total of four toxigenic V. cholerae O1 isolates, four non-O1/O139 isolates, and a novel nontoxigenic V. cholerae O1 isolate with the classical tcpA gene. Phylogenies of strains were inferred from genome-wide SNPs using coalescent-based demographic models within a Bayesian framework. A close phylogenetic relationship between clinical and environmental toxigenic V. cholerae O1 strains was observed. As cholera spread throughout Haiti between October 2010 and August 2012, the population size initially increased and then fluctuated over time. Selection analysis along internal branches of the phylogeny showed a steady accumulation of synonymous substitutions and a progressive increase of nonsynonymous substitutions over time, suggesting diversification likely was driven by positive selection. Short-term accumulation of nonsynonymous substitutions driven by selection may have significant implications for virulence, transmission dynamics, and even vaccine efficacy. Cholera, a dehydrating diarrheal disease caused by toxigenic strains of the bacterium Vibrio cholerae, emerged in 2010 in Haiti, a country where there were no available records on cholera over the past 100 years. While devastating in terms of morbidity and mortality, the outbreak provided a unique opportunity to study the evolutionary dynamics of V. cholerae and its environmental presence. The present study expands on previous work and provides an in-depth phylodynamic analysis inferred from genome-wide single nucleotide polymorphisms of clinical and environmental strains from dispersed geographic settings in

  11. Cholera outbreaks (2012) in three districts of Nepal reveal clonal transmission of multi-drug resistant Vibrio cholerae O1

    Science.gov (United States)

    2014-01-01

    Background Although endemic cholera causes significant morbidity and mortality each year in Nepal, lack of information about the causal bacterium often hinders cholera intervention and prevention. In 2012, diarrheal outbreaks affected three districts of Nepal with confirmed cases of mortality. This study was designed to understand the drug response patterns, source, and transmission of Vibrio cholerae associated with 2012 cholera outbreaks in Nepal. Methods V. cholerae (n = 28) isolated from 2012 diarrhea outbreaks {n = 22; Kathmandu (n = 12), Doti (n = 9), Bajhang (n = 1)}, and surface water (n = 6; Kathmandu) were tested for antimicrobial response. Virulence properties and DNA fingerprinting of the strains were determined by multi-locus genetic screening employing polymerase chain reaction, DNA sequencing, and pulsed-field gel electrophoresis (PFGE). Results All V. cholerae strains isolated from patients and surface water were confirmed to be toxigenic, belonging to serogroup O1, Ogawa serotype, biotype El Tor, and possessed classical biotype cholera toxin (CTX). Double-mismatch amplification mutation assay (DMAMA)-PCR revealed the V. cholerae strains to possess the B-7 allele of ctx subunit B. DNA sequencing of tcpA revealed a point mutation at amino acid position 64 (N → S) while the ctxAB promoter revealed four copies of the tandem heptamer repeat sequence 5'-TTTTGAT-3'. V. cholerae possessed all the ORFs of the Vibrio seventh pandemic island (VSP)-I but lacked the ORFs 498–511 of VSP-II. All strains were multidrug resistant with resistance to trimethoprim-sulfamethoxazole (SXT), nalidixic acid (NA), and streptomycin (S); all carried the SXT genetic element. DNA sequencing and deduced amino acid sequence of gyrA and parC of the NAR strains (n = 4) revealed point mutations at amino acid positions 83 (S → I), and 85 (S → L), respectively. Similar PFGE (NotI) pattern revealed the Nepalese V. cholerae to be clonal

  12. Enterobacteria and Vibrio from Macrobrachium amazonicum prawn farming in Fortaleza, Ceará, Brazil.

    Science.gov (United States)

    Castelo-Branco, Débora de Souza Collares Maia; Sales, Jamille Alencar; Brilhante, Raimunda Sâmia Nogueira; Guedes, Glaucia Morgana de Melo; Ponte, Yago Brito de; Sampaio, Célia Maria de Souza; Bandeira, Tereza de Jesus Pinheiro Gomes; Moreira, José Luciano Bezerra; Alencar, Lucas Pereira de; Paiva, Manoel de Araújo Neto; Cordeiro, Rossana de Aguiar; Monteiro, André Jalles; Pereira-Neto, Waldemiro de Aquino; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2016-01-01

    To investigate the isolation of enterobacteria associated with Macrobrachium amazonicum (M. amazonicum) farming and evaluate the in vitro antimicrobial susceptibility of Vibrio strains. Strains were isolated from female M. amazonicum prawns and environmental and hatchery water. Biochemical assays were used to identify bacterial genera and those belonging to the genus Vibrio were submitted to further analyses for species identification, through Vitek 2 automated system and serotyping. Susceptibility test was performed according to Clinical Laboratory Standards Institute. The following genera of enterobacteria were recovered: Enterobacter (n = 11), Citrobacter (n = 10), Proteus (n = 2), Serratia (n = 2), Kluyvera (n = 2), Providencia (n = 2), Cedecea (n = 1), Escherichia (n = 1), Edwardsiella (n = 1) and Buttiauxella (n = 1). As for Vibrio, three species were identified: Vibrio cholerae non-O1/non-O139 (n = 4), Vibrio vulnificus (V. vulnificus) (n = 1) and Vibrio mimicus (n = 1). Vibrio spp. showed minimum inhibitory concentrations values within the susceptibility range established by Clinical Laboratory Standards Institute for almost all antibiotics, except for V. vulnificus, which presented intermediate profile to ampicillin. Enterobacteria do not seem to be the most important pathogens associated with M. amazonicum farming, whereas the recovery of Vibrio spp. from larviculture, with emphasis on Vibrio cholerae and V. vulnificus, deserves special attention due to their role as potentially zoonotic aquaculture-associated pathogens. Furthermore, the intermediate susceptibility of V. vulnificus to ampicillin reflects the importance of monitoring drug use in prawn farming. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  13. Antimicrobial susceptibility of Vibrio vulnificus and Vibrio parahaemolyticus recovered from recreational and commercial areas of Chesapeake Bay and Maryland Coastal Bays.

    Directory of Open Access Journals (Sweden)

    Kristi S Shaw

    Full Text Available Vibrio vulnificus and V. parahaemolyticus in the estuarine-marine environment are of human health significance and may be increasing in pathogenicity and abundance. Vibrio illness originating from dermal contact with Vibrio laden waters or through ingestion of seafood originating from such waters can cause deleterious health effects, particularly if the strains involved are resistant to clinically important antibiotics. The purpose of this study was to evaluate antimicrobial susceptibility among these pathogens. Surface-water samples were collected from three sites of recreational and commercial importance from July to September 2009. Samples were plated onto species-specific media and resulting V. vulnificus and V. parahaemolyticus strains were confirmed using polymerase chain reaction assays and tested for antimicrobial susceptibility using the Sensititre® microbroth dilution system. Descriptive statistics, Friedman two-way Analysis of Variance (ANOVA and Kruskal-Wallis one-way ANOVA were used to analyze the data. Vibrio vulnificus (n = 120 and V. parahaemolyticus (n = 77 were isolated from all sampling sites. Most isolates were susceptible to antibiotics recommended for treating Vibrio infections, although the majority of isolates expressed intermediate resistance to chloramphenicol (78% of V. vulnificus, 96% of V. parahaemolyticus. Vibrio parahaemolyticus also demonstrated resistance to penicillin (68%. Sampling location or month did not significantly impact V. parahaemolyticus resistance patterns, but V. vulnificus isolates from St. Martin's River had lower overall intermediate resistance than that of the other two sampling sites during the month of July (p = 0.0166. Antibiotics recommended to treat adult Vibrio infections were effective in suppressing bacterial growth, while some antibiotics recommended for pediatric treatment were not effective against some of the recovered isolates. To our knowledge, these are the first antimicrobial

  14. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy

    Science.gov (United States)

    Castillo, Daniel

    2018-01-01

    A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review. PMID:29495270

  15. Invariant recognition of polychromatic images of Vibrio cholerae 01

    Science.gov (United States)

    Alvarez-Borrego, Josue; Mourino-Perez, Rosa R.; Cristobal, Gabriel; Pech-Pacheco, Jose L.

    2002-04-01

    Cholera is an acute intestinal infectious disease. It has claimed many lives throughout history, and it continues to be a global health threat. Cholera is considered one of the most important emergence diseases due its relation with global climate changes. Automated methods such as optical systems represent a new trend to make more accurate measurements of the presence and quantity of this microorganism in its natural environment. Automatic systems eliminate observer bias and reduce the analysis time. We evaluate the utility of coherent optical systems with invariant correlation for the recognition of Vibrio cholerae O1. Images of scenes are recorded with a CCD camera and decomposed in three RGB channels. A numeric simulation is developed to identify the bacteria in the different samples through an invariant correlation technique. There is no variation when we repeat the correlation and the variation between images correlation is minimum. The position-, scale-, and rotation-invariant recognition is made with a scale transform through the Mellin transform. The algorithm to recognize Vibrio cholerae O1 is the presence of correlation peaks in the green channel output and their absence in red and blue channels. The discrimination criterion is the presence of correlation peaks in red, green, and blue channels.

  16. [Identification and molecular study on vibrio cholerae in sea products].

    Science.gov (United States)

    Chang, Zhao-rui; Zhang, Jing; Wang, Duo-chun; Zhong, Hao-jie; Xu, Jin; Ran, Lu; Wang, Mao-wu; Wang, Zi-jun; Kan, Biao

    2007-07-01

    To investigate the serologic type, phage-biotype and toxic factor of Vibrio cholerae isolated from different sea products, analyze the relation between the Vibrio cholerae in sea products and cholera epidemiology, and provide references for forecasting cholera epidemic situation and drawing out a preventing plan. The biotype of strains isolated was analyzed by using type and phage-biotype serological methods. The toxic gene was detected by PCR. The constituent ratio of V. cholerae O139, Ogawa and Inaba were, respectively, 48.44%, 20.31% and 31.25% in 64 strains of V. cholerae. The result of phage-biotype showed that the 26 strains of V. cholerae O1 were all non-epidemic strains. The result of toxic gene detecting showed that positive rate of V. cholerae O139 was higher than those of Ogawa and Inaba. The positive rate of toxic gene in V. cholerae O139 was high and the V. cholerae O139 was mainly in turtle, breed aquatics water and crustacean, so these sea products were the important sectors in cholera prevention and control.

  17. Identification and Initial Characterization of Prophages in Vibrio campbellii.

    Science.gov (United States)

    Lorenz, Nicola; Reiger, Matthias; Toro-Nahuelpan, Mauricio; Brachmann, Andreas; Poettinger, Lisa; Plener, Laure; Lassak, Jürgen; Jung, Kirsten

    2016-01-01

    Phages are bacteria targeting viruses and represent the most abundant biological entities on earth. Marine environments are exceptionally rich in bacteriophages, harboring a total of 4x1030 viruses. Nevertheless, marine phages remain poorly characterized. Here we describe the identification of intact prophage sequences in the genome of the marine γ-proteobacterium Vibrio campbellii ATCC BAA-1116 (formerly known as V. harveyi ATCC BAA-1116), which presumably belong to the family of Myoviridae. One prophage was found on chromosome I and shows significant similarities to the previously identified phage ΦHAP-1. The second prophage region is located on chromosome II and is related to Vibrio phage kappa. Exposure of V. campbellii to mitomycin C induced the lytic cycle of two morphologically distinct phages and, as expected, extracellular DNA from induced cultures was found to be specifically enriched for the sequences previously identified as prophage regions. Heat stress (50°C, 30 min) was also found to induce phage release in V. campbellii. Notably, promoter activity of two representative phage genes indicated heterogeneous phage induction within the population.

  18. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy

    Directory of Open Access Journals (Sweden)

    Panos G. Kalatzis

    2018-02-01

    Full Text Available A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.

  19. Antibiotic Resistance of Vibrio cholerae Isolates from Kashan, Iran

    Directory of Open Access Journals (Sweden)

    Afzali H.MD,

    2016-03-01

    Full Text Available Abstract Aims: Cholera is an acute diarrheal disease that can lead to severe dehydration and death. Antibiotic resistance is a big challenge in infective disease like Cholera. The present study aimed to understand the characteristics and trends of antibiotic resistance of V. cholerae isolations in and around Kashan, Iran. Instrument & Methods: In this descriptive cross-sectional study, samples were gathered using census method from 1998 to 2013 in Kashan, Iran. 1132 fecal samples of patients with acute diarrhea and 237 samples of suspected water samples were taken. The serotypes and biotypes were determined by an enzymatic method. Antibiotic susceptibility test was performed by using Disk Diffusion Method. Data were analyzed using SPSS 23 software. Fisher-exact and Chi-square tests were used to compare the statistical parameters. Findings: 96 fecal samples (8.5% and 18 water samples (7.6% were positive for Vibrio cholerae. Non-agglutinating (Nag isolates (75.4% were more common than serotype Inaba (13.2% and Ogawa (11.4%. Nag serotypes were mostly resistant to cefixime (44% and ampicillin (33%. In contaminated water samples also the most frequent cases were Nag serotype (50%. Nag serotype showed 22.2% of resistance to ampicillin and nitrofurantoin. Conclusion: Vibrio cholerae isolates in Kashan, Iran, are highly resistant to antibiotics, especially Nag serotypes.

  20. Identification and Initial Characterization of Prophages in Vibrio campbellii.

    Directory of Open Access Journals (Sweden)

    Nicola Lorenz

    Full Text Available Phages are bacteria targeting viruses and represent the most abundant biological entities on earth. Marine environments are exceptionally rich in bacteriophages, harboring a total of 4x1030 viruses. Nevertheless, marine phages remain poorly characterized. Here we describe the identification of intact prophage sequences in the genome of the marine γ-proteobacterium Vibrio campbellii ATCC BAA-1116 (formerly known as V. harveyi ATCC BAA-1116, which presumably belong to the family of Myoviridae. One prophage was found on chromosome I and shows significant similarities to the previously identified phage ΦHAP-1. The second prophage region is located on chromosome II and is related to Vibrio phage kappa. Exposure of V. campbellii to mitomycin C induced the lytic cycle of two morphologically distinct phages and, as expected, extracellular DNA from induced cultures was found to be specifically enriched for the sequences previously identified as prophage regions. Heat stress (50°C, 30 min was also found to induce phage release in V. campbellii. Notably, promoter activity of two representative phage genes indicated heterogeneous phage induction within the population.

  1. Production and characterization of a monoclonal antibody against mannose-sensitive hemagglutinin of Vibrio cholerae.

    Science.gov (United States)

    Falero, G; Rodríguez, B L; Valmaseda, T; Pérez, M E; Pérez, J L; Fando, R; Robert, A; Campos, J; Silva, A; Sierra, G; Benítez, J A

    1998-02-01

    We have generated murine monoclonal antibodies (MAb) against Vibrio cholerae mannose-sensitive hemagglutinin (MSHA) using conventional hybridoma procedures. Seven hybridomas were obtained and one characterized. Hybridoma 2F12/F1 secreted an antibody of the IgG3 type that reacted with a 17-kDa antigen corresponding to the product of the mshA gene. This MAb inhibited mannose-sensitive agglutination of chicken erythrocytes by EL tor and O139 vibrios. Vibrios expressing MSHA activity inhibited binding of the antibody secreted by 2F12/F1 to MSHA-coated microtiter plates.

  2. Antimicrobial effect of dietary oregano essential oil against Vibrio bacteria in shrimps

    Directory of Open Access Journals (Sweden)

    Gracia-Valenzuela M.H.

    2014-01-01

    Full Text Available The effect of dietary oregano essential oils on the growth of Vibrio bacteria in shrimps was evaluated. Shrimps were fed: (i food with oregano oil with a high level of thymol; (ii food with oregano oil with a high level of carvacrol, and (iii food without oregano oil (the control. The animals were infected by three species of Vibrio (vulnificus, parahaemolyticus and cholerae. The microbial counts of Vibrio species were significantly lower (p <0.05 in tissues from animals whose food was supplemented with oregano oil. We concluded that dietary supplementation of shrimps with oregano oil provides antimicrobial activity into the body of the penaeids.

  3. Complete genome sequence of a giant Vibrio bacteriophage VH7D.

    Science.gov (United States)

    Luo, Zhu-Hua; Yu, Yan-Ping; Jost, Günter; Xu, Wei; Huang, Xiang-Ling

    2015-12-01

    A Vibrio sp. lytic phage VH7D was isolated from seawater of an abalone farm in Xiamen, China. The phage was capable of lysing Vibrio rotiferianus DSM 17186(T) and Vibrio harveyi DSM 19623(T). The complete genome of this phage consists of 246,964 nucleotides with a GC content of 41.31%, which characterized it as a giant vibriophage. Here we report the complete genome sequence and major findings from the genomic annotation. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Characterization and PCR Detection Of Binary, Pir-Like Toxins from Vibrio parahaemolyticus Isolates that Cause Acute Hepatopancreatic Necrosis Disease (AHPND) in Shrimp.

    Science.gov (United States)

    Sirikharin, Ratchanok; Taengchaiyaphum, Suparat; Sanguanrut, Piyachat; Chi, Thanh Duong; Mavichak, Rapeepat; Proespraiwong, Porranee; Nuangsaeng, Bunlung; Thitamadee, Siripong; Flegel, Timothy W; Sritunyalucksana, Kallaya

    2015-01-01

    Unique isolates of Vibrio parahaemolyticus (VPAHPND) have previously been identified as the causative agent of acute hepatopancreatic necrosis disease (AHPND) in shrimp. AHPND is characterized by massive sloughing of tubule epithelial cells of the hepatopancreas (HP), proposed to be induced by soluble toxins released from VPAHPND that colonize the shrimp stomach. Since these toxins (produced in broth culture) have been reported to cause AHPND pathology in reverse gavage bioassays with shrimp, we used ammonium sulfate precipitation to prepare protein fractions from broth cultures of VPAHPND isolates for screening by reverse gavage assays. The dialyzed 60% ammonium sulfate fraction caused high mortality within 24-48 hours post-administration, and histological analysis of the moribund shrimp showed typical massive sloughing of hepatopancreatic tubule epithelial cells characteristic of AHPND. Analysis of the active fraction by SDS-PAGE revealed two major bands at marker levels of approximately 16 kDa (ToxA) and 50 kDa (ToxB). Mass spectrometry analysis followed by MASCOT analysis revealed that both proteins had similarity to hypothetical proteins of V. parahaemolyticus M0605 (contig034 GenBank accession no. JALL01000066.1) and similarity to known binary insecticidal toxins called 'Photorhabdus insect related' proteins A and B (Pir-A and Pir-B), respectively, produced by the symbiotic, nematode bacterium Photorhabdus luminescens. In in vivo tests, it was shown that recombinant ToxA and ToxB were both required in a dose dependent manner to cause AHPND pathology, indicating further similarity to Pir-A and -B. A single-step PCR method was designed for detection of the ToxA gene and was validated using 104 bacterial isolates consisting of 51 VPAHPND isolates, 34 non-AHPND VP isolates and 19 other isolates of bacteria commonly found in shrimp ponds (including other species of Vibrio and Photobacterium). The results showed 100% specificity and sensitivity for detection of

  5. Characterization and PCR Detection Of Binary, Pir-Like Toxins from Vibrio parahaemolyticus Isolates that Cause Acute Hepatopancreatic Necrosis Disease (AHPND in Shrimp.

    Directory of Open Access Journals (Sweden)

    Ratchanok Sirikharin

    Full Text Available Unique isolates of Vibrio parahaemolyticus (VPAHPND have previously been identified as the causative agent of acute hepatopancreatic necrosis disease (AHPND in shrimp. AHPND is characterized by massive sloughing of tubule epithelial cells of the hepatopancreas (HP, proposed to be induced by soluble toxins released from VPAHPND that colonize the shrimp stomach. Since these toxins (produced in broth culture have been reported to cause AHPND pathology in reverse gavage bioassays with shrimp, we used ammonium sulfate precipitation to prepare protein fractions from broth cultures of VPAHPND isolates for screening by reverse gavage assays. The dialyzed 60% ammonium sulfate fraction caused high mortality within 24-48 hours post-administration, and histological analysis of the moribund shrimp showed typical massive sloughing of hepatopancreatic tubule epithelial cells characteristic of AHPND. Analysis of the active fraction by SDS-PAGE revealed two major bands at marker levels of approximately 16 kDa (ToxA and 50 kDa (ToxB. Mass spectrometry analysis followed by MASCOT analysis revealed that both proteins had similarity to hypothetical proteins of V. parahaemolyticus M0605 (contig034 GenBank accession no. JALL01000066.1 and similarity to known binary insecticidal toxins called 'Photorhabdus insect related' proteins A and B (Pir-A and Pir-B, respectively, produced by the symbiotic, nematode bacterium Photorhabdus luminescens. In in vivo tests, it was shown that recombinant ToxA and ToxB were both required in a dose dependent manner to cause AHPND pathology, indicating further similarity to Pir-A and -B. A single-step PCR method was designed for detection of the ToxA gene and was validated using 104 bacterial isolates consisting of 51 VPAHPND isolates, 34 non-AHPND VP isolates and 19 other isolates of bacteria commonly found in shrimp ponds (including other species of Vibrio and Photobacterium. The results showed 100% specificity and sensitivity for

  6. The complete sequence of marine bacteriophage VpV262 infecting vibrio parahaemolyticus indicates that an ancestral component of a T7 viral supergroup is widespread in the marine environment

    International Nuclear Information System (INIS)

    Hardies, Stephen C.; Comeau, Andre M.; Serwer, Philip; Suttle, Curtis A.

    2003-01-01

    The 46,012-bp sequence of the marine bacteriophage VpV262 infecting the bacterium Vibrio parahaemolyticus is reported. The VpV262 sequence reveals that it is a distant relative of marine Roseophage SIO1, and an even more distant relative of coliphage T7. VpV262 and SIO1 appear to represent a widespread marine phage group that lacks an RNA polymerase gene and is ancestral to the T7-like phages. We propose that this group together with the T7-like phages be designated as the T7 supergroup. The ancestral head structure gene module for the T7 supergroup was reconstructed by using sensitive biased Psi-blast searches supplemented by statistical support derived from gene order. In the early and replicative segments, these phages have participated in extensive interchange with the viral gene pool. VpV262 carries a different replicative module than SIO1 and the T7-like phages

  7. Community-Level and Species-Specific Associations between Phytoplankton and Particle-Associated Vibrio Species in Delaware's Inland Bays.

    Science.gov (United States)

    Main, Christopher R; Salvitti, Lauren R; Whereat, Edward B; Coyne, Kathryn J

    2015-09-01

    Vibrio species are an abundant and diverse group of bacteria that form associations with phytoplankton. Correlations between Vibrio and phytoplankton abundance have been noted, suggesting that growth is enhanced during algal blooms or that association with phytoplankton provides a refuge from predation. Here, we investigated relationships between particle-associated Vibrio spp. and phytoplankton in Delaware's inland bays (DIB). The relative abundances of particle-associated Vibrio spp. and algal classes that form blooms in DIB (dinoflagellates, diatoms, and raphidophytes) were determined using quantitative PCR. The results demonstrated a significant correlation between particle-associated Vibrio abundance and phytoplankton, with higher correlations to diatoms and raphidophytes than to dinoflagellates. Species-specific associations were examined during a mixed bloom of Heterosigma akashiwo and Fibrocapsa japonica (Raphidophyceae) and indicated a significant positive correlation for particle-associated Vibrio abundance with H. akashiwo but a negative correlation with F. japonica. Changes in Vibrio assemblages during the bloom were evaluated using automated ribosomal intergenic spacer analysis (ARISA), which revealed significant differences between each size fraction but no significant change in Vibrio assemblages over the course of the bloom. Microzooplankton grazing experiments showed that losses of particle-associated Vibrio spp. may be offset by increased growth in the Vibrio population. Moreover, analysis of Vibrio assemblages by ARISA also indicated an increase in the relative abundance for specific members of the Vibrio community despite higher grazing pressure on the particle-associated population as a whole. The results of this investigation demonstrate links between phytoplankton and Vibrio that may lead to predictions of potential health risks and inform future management practices in this region. Copyright © 2015, American Society for Microbiology. All

  8. In silico modelling for predicting the cationic hydrophobicity and cytotoxicity of ionic liquids towards the Leukemia rat cell line, Vibrio fischeri and Scenedesmus vacuolatus based on molecular interaction potentials of ions.

    Science.gov (United States)

    Cho, C-W; Ranke, J; Arning, J; Thöming, J; Preiss, U; Jungnickel, C; Diedenhofen, M; Krossing, I; Stolte, S

    2013-10-01

    In this study we present prediction models for estimating in silico the cationic hydrophobicity and the cytotoxicity (log [1/EC50]) of ionic liquids (ILs) towards the Leukemia rat cell line (IPC-81), the marine bacterium Vibrio fischeri and the limnic green algae Scenedesmus vacuolatus using linear free energy relationship (LFER) descriptors computed by COSMO calculations. The LFER descriptors used for the prediction model (i.e. excess molar refraction (E), dipolarity/polarizability (S), hydrogen-bonding acidity (A), hydrogen-bonding basicity (B) and McGowan volume (V)) were calculated using sub-descriptors (sig2, sig3, HBD3, HBA4, MR, and volume) derived from COSMO-RS, COSMO and OBPROP. With the combination of two solute descriptors (B, V) of the cation we were able to predict cationic hydrophobicity values (log ko ) with r (2) = 0.987 and standard error (SE) = 0.139 log units. By using the calculated log k o values, we were able to deduce a linear toxicity prediction model. In the second prediction study for the cytotoxicity of ILs, analysis of descriptor sensitivity helped us to determine that the McGowan volume (V) terms of the cation was the most important predictor of cytotoxicity and to simplify prediction models for cytotoxicity of ILs towards the IPC-81 (r (2) of 0.778, SE of 0.450 log units), Vibrio fischeri (r (2) of 0.762, SE of 0.529 log units) and Scenedesmus vacuolatus (r (2) of 0.776, SE of 0.825 log units). The robustness and predictivity of the two models for IPC-81 and Vibrio fischeri were checked by comparing the calculated SE and r (2) (coefficient of determination) values of the test set.

  9. The physiology of the filamentous bacterium Microthrix parvicella

    NARCIS (Netherlands)

    Slijkhuis, H.

    1983-01-01

    A study has been made of the physiology of Microthrix parvicella. This filamentous bacterium often causes poor settleability of activated sludge in oxidation ditches supplied with domestic sewage. The organism was found to utilize only long chain fatty acids (preferably in

  10. Biosynthesis of silver nanoparticles by marine bacterium, Idiomarina ...

    Indian Academy of Sciences (India)

    Metal-tolerant microorganisms have been exploited in recent years to synthesize nanoparticles due to their potential to offer better size control through peptide binding and compartmentalization. In this paper, we report the intracellular synthesis of silver nanoparticles (SNPs) by the highly silver-tolerant marine bacterium, ...

  11. Control of magnetotactic bacterium in a micro-fabricated maze

    NARCIS (Netherlands)

    Khalil, I.S.M.; Pichel, Marc Philippe; Pichel, M.P.; Reefman, B.A.; Sardan Sukas, Ö.; Abelmann, Leon; Misra, Sarthak

    2013-01-01

    We demonstrate the closed-loop control of a magnetotactic bacterium (MTB), i.e., Magnetospirillum magnetotacticum, within a micro-fabricated maze using a magneticbased manipulation system. The effect of the channel wall on the motion of the MTB is experimentally analyzed. This analysis is done by

  12. Amylase activity of a yellow pigmented bacterium isolated from ...

    African Journals Online (AJOL)

    This study investigated the amylase activity of a yellow pigmented bacterium isolated from cassava wastes obtained from a dumpsite near a gari processing factory in Ibadan, Nigeria. Isolate was grown in nutrient broth containing 1% starch and then centrifuged at 5,000 rpm. Amylase activity was assayed using the DNSA ...

  13. Monitoring of a novel bacterium, Lactobacillus thermotolerans , in ...

    African Journals Online (AJOL)

    Abstract. We successfully established fluorescence in situ hybridization (FISH) method for specific detection and enumeration of a novel bacterium, Lactobacillus thermotolerans, in chicken feces. The specific FISH probes were designed based on the L. thermotolerans 16S rRNA gene sequences, and these sequences were ...

  14. Screening and characterization of petroleum-degrading bacterium ...

    African Journals Online (AJOL)

    Petroleum-degrading bacterium JY6 was isolated from petroleum-contaminated soils in DaQing oil field. It was identified as Bacillus cereus based on its morphological, physiological and biochemical characteristics, and analysis of its 16SrRNA gene. Biodegradation function of petroleum and oil degradation rates were ...

  15. Aspects of vibrio parahaemolyticus(SAK) in fish preservation by irradiation 1. The presence of vibrio parahaemolyticus(SAK) in coastal areas of Sumatra and Java

    International Nuclear Information System (INIS)

    Suhadi, F.

    1984-01-01

    A study was carried out on the presence of vibrio parahaemolyticus in samples of sediment and seafoods originating from the eastern coast of Sumatra and the north coastal areas of Java. In a total of 2.434 samples of sediment and seafoods, 79 (3,3%) were found to contain vibrio parahaemolyticus. Among the 467 sediment samples, 1.650 fish, 133 shellfish, 123 shrimps, and 61 crab samples, 22 (4.7%), 41 (2.5%), 12 (9.0%), 2 (1,6%) and 2 (3.3%) were positive for vibrio parahaemolyticus, respectively. Based on the sampling areas, the high incidence of vibrio parahaemolyticus was found in samples collected from Riau (5.4%), while the samples from East Java was only about 0.4%. The contamination level of vibrio parahaemolyticus in samples collected from coastal areas of Sumatra and Java is relatively lower compared with the data obtained from some other coastal areas in the United States and Japan. (author)

  16. Structural characteristics of alkaline phosphatase from the moderately halophilic bacterium Halomonas sp. 593

    Energy Technology Data Exchange (ETDEWEB)

    Arai, Shigeki; Yonezawa, Yasushi [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Ishibashi, Matsujiro [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Matsumoto, Fumiko; Adachi, Motoyasu; Tamada, Taro [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan); Tokunaga, Hiroko [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Blaber, Michael [Florida State University, 1115 West Call Street, Tallahassee, FL 32306-4300 (United States); Tokunaga, Masao [Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065 (Japan); Kuroki, Ryota, E-mail: kuroki.ryota@jaea.go.jp [Japan Atomic Energy Agency, 2-4 Shirakata-shirane, Tokai, Ibaraki 319-1195 (Japan)

    2014-03-01

    In order to clarify the structural basis of the halophilic characteristics of an alkaline phosphatase derived from the moderate halophile Halomonas sp. 593 (HaAP), the tertiary structure of HaAP was determined to 2.1 Å resolution by X-ray crystallography. The structural properties of surface negative charge and core hydrophobicity were shown to be intermediate between those characteristic of halophiles and non-halophiles, and may explain the unique functional adaptation to a wide range of salt concentrations. Alkaline phosphatase (AP) from the moderate halophilic bacterium Halomonas sp. 593 (HaAP) catalyzes the hydrolysis of phosphomonoesters over a wide salt-concentration range (1–4 M NaCl). In order to clarify the structural basis of its halophilic characteristics and its wide-range adaptation to salt concentration, the tertiary structure of HaAP was determined by X-ray crystallography to 2.1 Å resolution. The unit cell of HaAP contained one dimer unit corresponding to the biological unit. The monomer structure of HaAP contains a domain comprised of an 11-stranded β-sheet core with 19 surrounding α-helices similar to those of APs from other species, and a unique ‘crown’ domain containing an extended ‘arm’ structure that participates in formation of a hydrophobic cluster at the entrance to the substrate-binding site. The HaAP structure also displays a unique distribution of negatively charged residues and hydrophobic residues in comparison to other known AP structures. AP from Vibrio sp. G15-21 (VAP; a slight halophile) has the highest similarity in sequence (70.0% identity) and structure (C{sup α} r.m.s.d. of 0.82 Å for the monomer) to HaAP. The surface of the HaAP dimer is substantially more acidic than that of the VAP dimer (144 exposed Asp/Glu residues versus 114, respectively), and thus may enable the solubility of HaAP under high-salt conditions. Conversely, the monomer unit of HaAP formed a substantially larger hydrophobic interior

  17. Photobacterium marinum sp. nov., a marine bacterium isolated from a sediment sample from Palk Bay, India

    Digital Repository Service at National Institute of Oceanography (India)

    Srinivas, T.N.R.; VijayaBhaskar, Y.; Bhumika, V.; AnilKumar, P.

    . Syst. Evol. Microbiol. 57, 2073-2078. [4] Beijerinck, M.W. (1889) Le Photobacterium luminosum, Bactérie lumineuse de la Mer du Nord. Archives Néerlandaises des Sciences Exactes et Naturelles. 23, 401-427. [5] Chimetto, L.A., Cleenwerck, I., Thompson... fischeri and Photobacterium logei were considered as synonyms of Vibrio fisheri and Vibrio logei, respectively and were transferred to Aliivibrio from the genus Vibrio [35]. According to Kimura et al. [13] Photobacterium histaminum [19] is a later...

  18. Vibrio cholerae Detection in Water and Wastewater by Polymerase Chain Reaction Assay

    Directory of Open Access Journals (Sweden)

    Behnaz Barzamini

    2014-11-01

    Full Text Available Background: Vibrio cholerae is a significant human pathogen worldwide and annually causes some cases of deaths. Contaminated water plays an important role in transmission of this pathogen, which indicates the importance of early diagnosis. Objectives: The current study aimed to perform Polymerase Chain Reaction (PCR on water and wastewater samples to determine the detection limit for Vibrio cholerae. Materials and Methods: PCR was performed on the DNA extracted from Vibrio cholerae of the contaminated water and wastewater using ctxA gene specific primers. The accuracy of PCR method to detect these bacteria was also assessed. Results: The result of PCR performed on the extracted DNA showed a specific 241 base pair band. The limit of bacterial detection for water and wastewater were 40 cfu/mL and 81 cfu/mL, respectively. Conclusions: In the current study, PCR performance using the ctxA gene specific primers to detect Vibrio cholerae was found highly accurate and specific.

  19. Experimental Reservoirs of Human Pathogens: The Vibrio Cholerae Paradigm (7th Annual SFAF Meeting, 2012)

    Energy Technology Data Exchange (ETDEWEB)

    Colwell, Rita [University of Maryland

    2012-06-01

    Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.

  20. Color correlation for the recognition of Vibrio cholerae O1 in seawater

    Science.gov (United States)

    Mourino-Perez, Rosa R.; Alvarez-Borrego, Josue

    1999-07-01

    Application of color correlation optical systems for the recognition of Vibrio cholerae 01 in seawater samples with matched filters and phase only filters recorded in holographic plates in three channels (RGB).

  1. Biotype-Specific Restriction and Modification of DNA in Vibrio cholerae

    Science.gov (United States)

    Imbesi, Franca; Manning, Paul A.

    1982-01-01

    By using Vibrio cholerae typing phages it was possible to demonstrate that within V. cholerae of the O-1 serotype there are at least two biotype-specific DNA restriction and modification systems. PMID:7130366

  2. Competitive Survival of Escherichia coli, Vibrio cholerae, Salmonella typhimurium and Shigella dysenteriae in Riverbed Sediments

    CSIR Research Space (South Africa)

    Abia, AL

    2016-11-01

    Full Text Available investigated the survival of Escherichia coli, Salmonella enterica ser. Typhimurium, Vibrio cholerae and Shigella dysenteriae in riverbed sediments of the Apies River. Experiments were performed in flow chambers containing three sediment types and connected...

  3. Clinical, hematological and biochemical alterations in olive flounder, Paralichthys olivaceus following experimental infection by Vibrio scophthalmi

    Science.gov (United States)

    Hematological analysis can provide key values for monitoring fish health conditions. There is no information available on hematological changes of olive flounder following infection by Vibrio scophthalmi. In this study, hematological and biochemical alterations were determined for olive flounder inf...

  4. DIFFERENTIAL EFFECTS OF OYSTER (CRASSOSTREA VIRGINICA) DEFENSES ON CLINICAL AND ENVIRONMENTAL ISOLATES OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Three clinical (2030, 2062, and 2107) and three environmental (1094, 1163, and ATCC 17802) isolates of Vibrio parahaemolyticus were exposed to hemocytes and plasma collected from oysters (Crassostrea virginica) to determine their susceptibility to putative oyster defenses. Clinic...

  5. RESPONSES OF OYSTER (CRASSOSTREA VIRGINICA) HEMOCYTES TO NONPATHOGENIC AND CLINICAL ISOLATES OF VIBRIO PARAHAEMOLYTICUS

    Science.gov (United States)

    Bacterial uptake by oysters (Crassostrea virginica) and bactericidal activity of oyster hemocytes were studied using four environmental isolates and three clinical isolates of Vibrio parahaemolyticus. Clinical isolates (2030, 2062, 2107) were obtained from gastroenteritis patien...

  6. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor.

    Science.gov (United States)

    Wang, R X; Wang, J Y; Sun, Y C; B L Yang; A L Wang

    2015-12-30

    546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were 40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Risk assessment of Vibrio parahaemolyticus in seafood: interpretative summary and technical report

    National Research Council Canada - National Science Library

    2011-01-01

    "Vibrio parahaemolyticus are common causes of diarrhoeal disease worldwide. These marine micro-organisms, native in estuarine waters globally, concentrate in the gut of filter-feeding molluscan shellfish, such as oysters, clams and mussels...

  8. INFLUENCE OF SEASONAL FACTORS ON OYSTER HEMOCYTE KILLING OF VIBRIO PARAHEMOLYTICUS

    Science.gov (United States)

    Seasonal variation of cellular defenses of oyster Crassostrea virginica against Vibrio parahaemolyticus were examined from June 1997 to December 1998 using a recently developed bactericidal assay that utilizes a tetrazolium dye. Mean hemocyte numbers, plasma lysozyme, and P. mari...

  9. Environmental influences on the seasonal distribution of Vibrio parahaemolyticus in the Pacific Northwest of the USA

    Science.gov (United States)

    Populations of Vibrio parahaemolyticus in the environment can be influenced by numerous factors. We assessed the correlation of total (tl+) and potentially virulent (tdh+) V. parahaemolyticus in water with three harmful algal bloom (HAB) genera (Pseudo-nitzschia, Alexandrium and ...

  10. Corrosion of mild steel and stainless steel by marine Vibrio sp.

    Digital Repository Service at National Institute of Oceanography (India)

    PrabhaDevi; Wagh, A.B.

    Microbially induced corrosion (MIC) of stainless steel and mild steel coupons exposed to media with and without a bacterial culture Vibrio sp. was studied using Scanning Electron Microscope (SEM). Pitting type of corrosion was noticed which was more...

  11. FK phage for differentiating the classical and El T or groups of Vibrio cholerae.

    OpenAIRE

    Takeya, K; Otohuji, T; Tokiwa, H

    1981-01-01

    A new vibrio-infecting phage (FK phage) isolated from sewage lysed all strains of Vibrio cholerae biovar cholerae, whereas all strains of V. cholerae biovar El Tor were resistant to it. FK phage was entirely different from Mukerjee group IV phage in morphology and antigenicity. In addition to group IV phage, the use of FK phage will be useful in the examination and typing of V. cholerae.

  12. Vibrio ishigakensis sp. nov., in Halioticoli clade isolated from seawater in Okinawa coral reef area, Japan.

    Science.gov (United States)

    Gao, Feng; Al-Saari, Nurhidayu; Rohul Amin, A K M; Sato, Kazumichi; Mino, Sayaka; Suda, Wataru; Oshima, Kenshiro; Hattori, Masahira; Ohkuma, Moriya; Hargreaves, Paulo Iiboshi; Meirelles, Pedro Milet; Thompson, Fabiano L; Thompson, Cristiane; Gomez-Gil, Bruno; Sawabe, Toko; Sawabe, Tomoo

    2016-07-01

    Five novel strains showing non-motile, alginolytic, halophilic and fermentative features were isolated from seawater samples off Okinawa in coral reef areas. These strains were characterized by an advanced polyphasic taxonomy including genome based taxonomy using multilocus sequence analysis (MLSA) and in silico DNA-DNA similarity (in silico DDH). Phylogenetic analyses on the basis of 16S rRNA gene sequences revealed that the isolates could be assigned to the genus Vibrio, however they were not allocated into any distinct cluster with known Vibrionaceae species. MLSA based on eight protein-coding genes (gapA, gyrB, ftsZ, mreB, pyrH, recA, rpoA, and topA) showed the vibrios formed an outskirt branch of Halioticoli clade. The experimental DNA-DNA hybridization data revealed that the five strains were in the range of being defined as conspecific but separate from nine Halioticoli clade species. The G+C contents of the Vibrio ishigakensis strains were 47.3-49.1mol%. Both Amino Acid Identity and Average Nucleotide Identity of the strain C1(T) against Vibrio ezurae HDS1-1(T), Vibrio gallicus HT2-1(T), Vibrio halioticoli IAM 14596(T), Vibrio neonatus HDD3-1(T) and Vibrio superstes G3-29(T) showed less than 95% similarity. The genome-based taxonomic approach by means of in silico DDH values also supports the V. ishigakensis strains being distinct from the other known Halioticoli clade species. Sixteen traits (growth temperature range, DNase and lipase production, indole production, and assimilation of 10 carbon compounds) distinguished these strains from Halioticoli clade species. The names V. ishigakensis sp. nov. is proposed for the species of Halioticoli clade, with C1(T) as the type strain (JCM 19231(T)=LMG 28703(T)). Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Prevalence and Antimicrobial Resistance of Vibrio spp. in Retail and Farm Shrimps in Ecuador.

    Science.gov (United States)

    Sperling, L; Alter, T; Huehn, S

    2015-11-01

    The aim of this study was to investigate the prevalence of Vibrio spp. in shrimp at retail and in shrimp farms in Ecuador and to determine the antimicrobial agent resistance patterns of farm isolates. The presence of genes linked to early mortality syndrome (EMS) or acute hepatopancreatic necrosis disease (AHPND) also was evaluated. Vibrio spp. were isolated from retail shrimps in Cuenca, Ecuador, and farm shrimps originating from provinces El Oro and Guayas, Ecuador. A total of 229 shrimp samples were collected, of which 71 originated from retail markets in Cuenca and 158 came from shrimp farms. Overall, 219 (95.6%) samples tested positive for Vibrio spp. Vibrio parahaemolyticus (80.8%) was the most common species detected, followed by Vibrio alginolyticus (50.2%), Vibrio cholerae (11.3%), and Vibrio vulnificus (3.5%). None of the V. parahaemolyticus isolates carried the virulence-associated tdh and trh genes. In V. parahaemolyticus shrimp farm isolates, high resistance was found to ampicillin (92.2%), and intermediate resistance was found to tetracycline (51.3%) and amikacin (22.1%). Of the V. parahaemolyticus strains, 68 were resistant to at least three antimicrobial agents, and 2 were resistant to seven antimicrobial agents simultaneously. Up to 18 resistant isolates were found for V. alginolyticus, whereas V. vulnificus and V. cholerae isolates were more susceptible. None of the V. parahaemolyticus isolates carried the EMS-AHPND plasmid. The results of this study revealed the ubiquitous occurrence of Vibrio spp. in shrimps at retail and on shrimp farms in Ecuador.

  14. Vibrio spp. from Macrobrachium amazonicum prawn farming are inhibited by Moringa oleifera extracts.

    Science.gov (United States)

    Brilhante, Raimunda Sâmia Nogueira; Sales, Jamille Alencar; de Souza Sampaio, Celia Maria; Barbosa, Francisco Geraldo; de Araújo Neto Paiva, Manoel; de Melo Guedes, Glaucia Morgana; de Alencar, Lucas Pereira; de Ponte, Yago Brito; de Jesus Pinheiro Gomes Bandeira, Tereza; Moreira, José Luciano Bezerra; de Souza Collares Maia Castelo-Branco, Débora; de Aquino Pereira-Neto, Waldemiro; de Aguiar Cordeiro, Rossana; Sidrim, José Júlio Costa; Rocha, Marcos Fábio Gadelha

    2015-11-01

    To investigate the in vitro antimicrobial potential of extracts of stem, leaves, flowers, pods and seeds of Moringa oleifera (M. oleifera) against Vibrio spp. from hatchery water and the prawn Macrobrachium amazonicum. The ethanol extracts of stem, leaves, pods and seeds and chloroform extract of flowers of M. oleifera were tested against Vibrio cholerae (V. cholerae) serogroups non-O1/non-O139 (n = 4), Vibrio vulnificus (n = 1) and Vibrio mimicus (n = 1). Escherichia coli (E. coli) (ATCC(®) 25922) was used as quality control. Vibrio species were obtained from Macrobrachium amazonicum prawns and from hatchery water from prawn farming. The Minimum Inhibitory Concentration (MIC) was determined by broth microdilution method. The best result was obtained with the ethanol extract of pods, which inhibited three strains of the V. cholerae, Vibrio vulnificus, Vibrio mimicus and E. coli (MIC range 0.312-5.000 mg/mL). The chloroform extract of flowers was effective against all V. cholerae strains and E. coli (MIC range 0.625-1.250 mg/mL). However, the ethanol extracts of stem and seeds showed low effectiveness in inhibiting the bacterial growth. The extracts of pods, flowers and leaves of M. oleifera have potential for the control of Vibrio spp. Further studies are necessary to isolate the bioactive compounds responsible for this antimicrobial activity. Copyright © 2015 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  15. Ocean warming and spread of pathogenic vibrios in the aquatic environment.

    Science.gov (United States)

    Vezzulli, Luigi; Colwell, Rita R; Pruzzo, Carla

    2013-05-01

    Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.

  16. Use of phages to control Vibrio splendidus infection in the juvenile sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Zhen; Li, Xiaoyu; Zhang, Jiancheng; Wang, Xitao; Wang, Lili; Cao, Zhenhui; Xu, Yongping

    2016-07-01

    In the present study, we isolated 3 bacteriophages with the ability to control Vibrio splendidus, a bacterium known to cause disease in the juvenile sea cucumber. These bacteriophages were designated as vB_VspS_VS-ABTNL-1 (PVS-1), vB_VspS_VS-ABTNL-2 (PVS-2) and vB_VspS_VS-ABTNL-3 (PVS-3). The ability of the 3 phages to inhibit the growth of V. splendidus VS-ABTNL was tested in vitro using each of the 3 phages individually or in the form of a cocktail of all 3 phages in the proportion of 1:1:1. All treated cultures produced a significant (P Vibrio species and 2 environmental isolates. Both PVS-1 and PVS-2 were lytic to all 4 isolates of V. splendidus while PVS-3 only inhibited the growth of 3 of them. V. splendidus VS-ABTNL was more susceptible to phage PVS-2 than the other 2 phages. In an in vivo performance trial, 360 sea cucumbers (23 ± 2 g) were randomly assigned to 1 of 6 treatments. Each treatment was housed in 3 PVC tanks (38 cm × 54 cm × 80 cm) with 20 sea cucumbers per tank. Six diets were prepared including an unsupplemented control diet, antibiotic treatment diet, 3 diets containing 1 of the 3 phages individually and a diet containing a cocktail of all 3 phages. After 60 days of feeding, all sea cucumber were challenged with V. splendidus VS-ABTNL by immersion in sea water containing a bacterial concentration of 6 × 10(6) CFU/mL for 2 days. The survival rate of sea cucumbers during the next 10 days was 18% for the unsupplemented diet, 82% for the antibiotic treatment, 82% for the phage cocktail, 65% for phage PVS-1, 58% for phage PVS-2 and 50% for phage PVS-3. There were no significant differences in weight gain, ingestion rate or feed conversion among sea cucumber fed the 4 phage treatments compared with those fed the unsupplemented diet (P > 0.05). The levels of nitric oxide synthase and acid phosphatase of sea cucumbers fed phage-containing diets were significantly (P  0.05) were detected among the 4 phage-fed treatments. An

  17. Peptide nucleic acid fluorescence in-situ hybridization for identification of Vibrio spp. in aquatic products and environments.

    Science.gov (United States)

    Zhang, Xiaofeng; Li, Ke; Wu, Shan; Shuai, Jiangbing; Fang, Weihuan

    2015-08-03

    A peptide nucleic acid fluorescence in situ hybridization (PNA-FISH) method was developed for specific detection of the Vibrio genus. In silico analysis by BLAST and ProbeCheck showed that the designed PNA probe targeting the 16S rRNAs was suitable for specific identification of Vibrio. Specificity and sensitivity of the probe Vib-16S-1 were experimentally verified by its reactivity against 18 strains of 9 Vibrio species and 14 non-Vibrio strains of 14 representative species. The PNA-FISH assay was able to identify 47 Vibrio positive samples from selectively enriched cultures of 510 samples of aquatic products and environments, comparable with the results obtained by biochemical identification and real-time PCR. We conclude that PNA-FISH can be an alternative method for rapid identification of Vibrio species in a broad spectrum of seafood or related samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Aspects of vibrio parahaemolyticus(SAK) in fish preservation by irradiation 2. Radiation sensitivity of vibrio parahaemolyticus(SAK) to gamma rays

    International Nuclear Information System (INIS)

    Suhadi, F.

    1985-01-01

    This experiment was done to determine the effect of suspending medium on radiation sensitivity of vibrio parahaemolyticus strains isolated from marine environment. D 10 value of nine strains tested were found to be around 151-281 Gy in fish homogenate, and 102-210 Gy in saline solution. The reduction of vibrio parahaemolyticus in fish homogenate at doses of 500 and 750 Gy were found to be 1.8-3.3 logs and 2.7-5.0 logs, respectively, while in saline solution the values were found to be 2.4-4.9 logs and 3.6-7.4 logs. Radiation sensitivity of vibrio parahaemolyticus varied between strains and also depended upon the suspending medium. (author)

  19. Phaeobacter gallaeciensis reduces Vibrio anguillarum in cultures of microalgae and rotifers, and prevents vibriosis in cod larvae.

    Directory of Open Access Journals (Sweden)

    Paul W D'Alvise

    Full Text Available Phaeobacter gallaeciensis can antagonize fish-pathogenic bacteria in vitro, and the purpose of this study was to evaluate the organism as a probiont for marine fish larvae and their feed cultures. An in vivo mechanism of action of the antagonistic probiotic bacterium is suggested using a non-antagonistic mutant. P. gallaeciensis was readily established in axenic cultures of the two microalgae Tetraselmis suecica and Nannochloropsis oculata, and of the rotifer Brachionus plicatilis. P. gallaeciensis reached densities of 10(7 cfu/ml and did not adversely affect growth of algae or rotifers. Vibrio anguillarum was significantly reduced by wild-type P. gallaeciensis, when introduced into these cultures. A P. gallaeciensis mutant that did not produce the antibacterial compound tropodithietic acid (TDA did not reduce V. anguillarum numbers, suggesting that production of the antibacterial compound is important for the antagonistic properties of P. gallaeciensis. The ability of P. gallaeciensis to protect fish larvae from vibriosis was determined in a bath challenge experiment using a multidish system with 1 larva per well. Unchallenged larvae reached 40% accumulated mortality which increased to 100% when infected with V. anguillarum. P. gallaeciensis reduced the mortality of challenged cod larvae (Gadus morhua to 10%, significantly below the levels of both the challenged and the unchallenged larvae. The TDA mutant reduced mortality of the cod larvae in some of the replicates, although to a much lesser extent than the wild type. It is concluded that P. gallaeciensis is a promising probiont in marine larviculture and that TDA production likely contributes to its probiotic effect.

  20. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus

    International Nuclear Information System (INIS)

    Zhou, Qing; Zhang, Yong; Peng, Hui-Fang; Ke, Cai-Huan; Huang, He-Qing

    2014-01-01

    Highlights: • Fe accumulated in hepatopancreas tissues after iron-enriched exposure. • Ferritin expression was positively correlated with iron concentration in seawater. • Ferritin appears to be involved in iron homeostasis and immune defense mechanism of M. meretrix. • mRNAs of cytokine genes responded faster than antioxidant enzyme genes in immune defense mechanism. • The study gives a new potential biomarker for monitoring iron levels in seawater. - Abstract: The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3 h, ferritin at 24 h, and metallothionein and glutathione peroxidase at 48 h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis

  1. Cytotoxic Vibrio T3SS1 Rewires Host Gene Expression to Subvert Cell Death Signaling and Activate Cell Survival Networks

    Science.gov (United States)

    De Nisco, Nicole J.; Kanchwala, Mohammed; Li, Peng; Fernandez, Jessie; Xing, Chao; Orth, Kim

    2017-01-01

    Bacterial effectors are potent manipulators of host signaling pathways. The marine bacterium Vibrio parahaemolyticus (V. para), delivers effectors into host cells through two type three secretion systems (T3SS). The ubiquitous T3SS1 is vital for V. para survival in the environment, whereas T3SS2 causes acute gastroenteritis in human hosts. Although the natural host is undefined, T3SS1 effectors attack highly conserved cellular processes and pathways to orchestrate non-apoptotic cell death. Much is known about how T3SS1 effectors function in isolation, but we wanted to understand how their concerted action globally affects host cell signaling. To assess the host response to T3SS1, we compared gene expression changes over time in primary fibroblasts infected with V. para that have a functional T3SS1 (T3SS1+) to those in cells infected with V. para lacking T3SS1 (T3SS1−). Overall, the host transcriptional response to both T3SS1+ and T3SS1− V. para was rapid, robust, and temporally dynamic. T3SS1 re-wired host gene expression by specifically altering the expression of 398 genes. Although T3SS1 effectors target host cells at the posttranslational level to cause cytotoxicity, network analysis indicated that V. para T3SS1 also precipitates a host transcriptional response that initially activates cell survival and represses cell death networks. The increased expression of several key pro-survival transcripts mediated by T3SS1 was dependent on a host signaling pathway that is silenced later in infection by the posttranslational action of T3SS1. Taken together, our analysis reveals a complex interplay between roles of T3SS1 as both a transcriptional and posttranslational manipulator of host cell signaling. PMID:28512145

  2. Toxicological responses of the hard clam Meretrix meretrix exposed to excess dissolved iron or challenged by Vibrio parahaemolyticus

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Qing [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Zhang, Yong [Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102 (China); Peng, Hui-Fang [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); Ke, Cai-Huan, E-mail: chke@xmu.edu.cn [State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Huang, He-Qing, E-mail: hqhuang@xmu.edu.cn [State Key Laboratory of Stress Cell Biology, School of Life Science, Xiamen University, Xiamen 361102 (China); State Key Laboratory of Marine Environmental Science, School of Ocean and Earth Science, Xiamen University, Xiamen 361102 (China); Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen 361102 (China)

    2014-11-15

    Highlights: • Fe accumulated in hepatopancreas tissues after iron-enriched exposure. • Ferritin expression was positively correlated with iron concentration in seawater. • Ferritin appears to be involved in iron homeostasis and immune defense mechanism of M. meretrix. • mRNAs of cytokine genes responded faster than antioxidant enzyme genes in immune defense mechanism. • The study gives a new potential biomarker for monitoring iron levels in seawater. - Abstract: The responses of genes encoding defense components such as ferritin, the lipopolysaccharide-induced tumor necrosis factor-alpha factor (LITAF), the inhibitor of nuclear factor-κB (IκB), metallothionein, and glutathione peroxidase were assessed at the transcriptional level in order to investigate the toxicological and immune mechanism of the hard clam Meretrix meretrix (HCMM) following challenge with iron or a bacterium (Vibrio parahaemolyticus). Fe dissolved in natural seawater led to an increase of Fe content in both the hepatopancreas and gill tissue of HCMM between 4 and 15 days of exposure. The ferritin gene responded both transcriptionally as indicated by real-time quantitative PCR and translationally as shown by western blotting results to iron exposure and both transcriptional and translational ferritin expression in the hepatopancreas had a positive correlation with the concentration of dissolved iron in seawater. Both iron and V. parahaemolyticus exposure triggered immune responses with similar trends in clam tissues. There was a significant post-challenge mRNA expression of LITAF and IκB at 3 h, ferritin at 24 h, and metallothionein and glutathione peroxidase at 48 h. This behavior might be linked to their specific functions in physiological processes. These results suggested that similar signaling pathways were triggered during both iron and V. parahaemolyticus challenges. Here, we indicated that the ferritin of Meretrix meretrix was an intermediate in the pathway of iron homeostasis

  3. Protective efficacy of six immunogenic recombinant proteins of Vibrio anguillarum and evaluation them as vaccine candidate for flounder (Paralichthys olivaceus).

    Science.gov (United States)

    Xing, Jing; Xu, Hongsen; Wang, Yang; Tang, Xiaoqian; Sheng, Xiuzhen; Zhan, Wenbin

    2017-06-01

    Vibrio anguillarum is a severe bacterium that causes terminal haemorrhagic septicaemia in freshwater and marine fish. Virulence-associated proteins play an important role in bacterial pathogenicity and could be applied for immunoprophylaxis. In this study, six antigenic proteins from V. anguillarum were selected and the immune protective efficacy of their recombinant proteins was investigated. VirA, CheR, FlaC, OmpK, OmpR and Hsp33 were recombinantly produced and the reactions of recombinant proteins to flounder-anti-V. anguillarum antibodies (fV-ab) were detected, respectively. Then the recombinant proteins were injected to fish, after immunization, the percentages of surface membrane immunoglobulin-positive (sIg+) cell in lymphocytes, total antibodies, antibodies against V. anguillarum, antibodies against recombinant proteins and relative percent survival (RPS) were analyzed, respectively. The results showed that all the recombinant proteins could react to fV-ab, proliferate sIg + cells in lymphocytes and induce production of total antibodies, specific antibodies against V. anguillarum or the recombinant proteins; the RPS of rVirA, rCheR, rFlaC, rOmpK, rOmpR and rHsp33 against V. anguillarum was 70.27%, 27.03%, 16.22%, 62.16%, 45.95% and 81.08%, respectively. The results revealed that rHsp33, rVirA and rOmpK have good protections against V. anguillarum and could be vaccine candidates against V. anguillarum. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Immune priming and portal of entry effectors improve response to vibrio infection in a resistant population of the European abalone.

    Science.gov (United States)

    Dubief, Bruno; Nunes, Flavia L D; Basuyaux, Olivier; Paillard, Christine

    2017-01-01

    Since 1997, populations of the European abalone Haliotis tuberculata suffer mass mortalities attributed to the bacterium Vibrio harveyi. These mortalities occur at the spawning season, when the abalone immune system is depressed, and when temperatures exceed 17 °C, leading to favorable conditions for V. harveyi proliferation. In order to identify mechanisms of disease resistance, experimental successive infections were carried out on two geographically distinct Brittany populations: one that has suffered recurrent mortalities (Saint-Malo) and one that has not been impacted by the disease (Molène). Furthermore, abalone surviving these two successive bacterial challenges and uninfected abalone were used for several post-infection analyses. The Saint-Malo population was found to be resistant to V. harveyi infection, with a survival rate of 95% compared to 51% for Molène. While in vitro quantification of phagocytosis by flow cytometry showed strong inhibition following the first infection, no inhibition of phagocytosis was observed following the second infection for Saint-Malo, suggesting an immune priming effect. Moreover, assays of phagocytosis of GFP-labelled V. harveyi performed two months post-infection show an inhibition of phagocytosis by extracellular products of V. harveyi for uninfected abalone, while no effect was observed for previously infected abalone from Saint-Malo, suggesting that the effects of immune priming may last upwards of two months. Detection of V. harveyi by qPCR showed that a significantly greater number of abalone from the susceptible population were positive for V. harveyi in the gills, indicating that portal of entry effectors may play a role in resistance to the disease. Collectively, these results suggest a potential synergistic effect of gills and hemolymph in the resistance of H. tuberculata against V. harveyi with an important involvement of the gills, the portal of entry of the bacteria. Copyright © 2016 Elsevier Ltd

  5. Population structure of Vibrio fischeri within the light organs of Euprymna scolopes squid from Two Oahu (Hawaii) populations.

    Science.gov (United States)

    Wollenberg, M S; Ruby, E G

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory.

  6. Population Structure of Vibrio fischeri within the Light Organs of Euprymna scolopes Squid from Two Oahu (Hawaii) Populations▿ †

    Science.gov (United States)

    Wollenberg, M. S.; Ruby, E. G.

    2009-01-01

    We resolved the intraspecific diversity of Vibrio fischeri, the bioluminescent symbiont of the Hawaiian sepiolid squid Euprymna scolopes, at two previously unexplored morphological and geographical scales. These scales ranged from submillimeter regions within the host light organ to the several kilometers encompassing two host populations around Oahu. To facilitate this effort, we employed both novel and standard genetic and phenotypic assays of light-organ symbiont populations. A V. fischeri-specific fingerprinting method and five phenotypic assays were used to gauge the genetic richness of V. fischeri populations; these methods confirmed that the symbiont population present in each adult host's light organ is polyclonal. Upon statistical analysis of these genetic and phenotypic population data, we concluded that the characteristics of symbiotic populations were more similar within individual host populations than between the two distinct Oahu populations of E. scolopes, providing evidence that local geographic symbiont population structure exists. Finally, to better understand the genesis of symbiont diversity within host light organs, the process of symbiosis initiation in newly hatched juvenile squid was examined both experimentally and by mathematical modeling. We concluded that, after the juvenile hatches, only one or two cells of V. fischeri enter each of six internal epithelium-lined crypts present in the developing light organ. We hypothesize that the expansion of different, crypt-segregated, clonal populations creates the polyclonal adult light-organ population structure observed in this study. The stability of the luminous-bacterium-sepiolid squid mutualism in the presence of a polyclonal symbiont population structure is discussed in the context of contemporary evolutionary theory. PMID:18997024

  7. Distribution, genetic richness and phage sensitivity of Vibrio spp. from coastal British Columbia.

    Science.gov (United States)

    Comeau, André M; Suttle, Curtis A

    2007-07-01

    This study examined the distribution, susceptibility to viral infection and genetic diversity of Vibrio spp. in the coastal waters and sediments of British Columbia during summer (July and August). Abundances of presumptive Vibrio spp. ranged from 1.5 to 346 ml(-1) within the water column (1-291 m); whereas, abundances at the water-sediment interface were much higher (up to approximately 3 x 10(4)Vibrio spp. cc(-1)), and decreased with sediment depth (down to 30 cm). The genetic diversity of Vibrio spp. isolates was not tied to the location from which they originated and was only influenced in a minor way by the type of environment. However, the environment had a greater effect on phage-typing patterns. Vibrio parahaemolyticus isolates from environments with high abundances of cells (sediments and oysters) were generally more susceptible to viral infection than those from the water column which were highly resistant. Therefore, although Vibrio spp. were widespread in the areas investigated, the results show that there is segregation of bacterial host strains in different environments, under differing selection pressures, which ultimately will affect in situ phage production.

  8. Prevalence of listeria, Aeromonas, and Vibrio species in fish used for human consumption in Turkey.

    Science.gov (United States)

    Yücel, Nihal; Balci, Senay

    2010-02-01

    A total of 78 raw retail fish samples from 30 freshwater and 48 marine fish were examined for the presence of Listeria, Aeromonas, and Vibrio species. The overall incidence of Listeria spp. was 30% in freshwater samples and 10.4% in marine fish samples. Listeria monocytogenes (44.5%) was the most commonly isolated species in freshwater fish, and Listeria murrayi (83.5%) was the most commonly isolated species in marine fish samples. Motile aeromonads were more common in marine fish samples (93.7%) than in freshwater fish samples (10%). Vibrio alginolyticus, Vibrio fluvialis, and Vibrio damsela were isolated only in marine fish samples, representing 40.9, 38.6, and 36.3% of Vibrio isolates, respectively. In freshwater and marine fish, the highest incidences of Listeria and Aeromonas were found in skin samples; the highest incidence of Vibrio in marine fish was found in gill samples. The location of Listeria spp. and L. monocytogenes in a fish was significantly different among freshwater fish. A high incidence of these bacterial pathogens was found in the brown trout (Salmo trutta) and horse mackerel (Trachurus trachurus). Handling of contaminated fish, cross-contamination, or eating raw fish might pose a health hazard, especially in immunosuppressed individuals, elderly people, and children. This study highlights the importance of bacterial pathogens in fish intended for human consumption, but more study is needed.

  9. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1.

    Science.gov (United States)

    Zhang, Weiwei; Liang, Weikang; Li, Chenghua

    2016-01-25

    Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Vibrio bivalvicida sp. nov., a novel larval pathogen for bivalve molluscs reared in a hatchery.

    Science.gov (United States)

    Dubert, Javier; Romalde, Jesús L; Prado, Susana; Barja, Juan L

    2016-02-01

    Three isolates were obtained from cultures of carpet shell clam (Ruditapes decussatus) reared in a bivalve hatchery (Galicia, NW Spain) from different sources: healthy broodstock, moribund larvae and the seawater corresponding to the larval tank. All isolates were studied by a polyphasic approach, including a phylogenetic analysis based on concatenated sequences of the five housekeeping genes ftsZ, gyrB, pyrH, recA and rpoA. The analysis supported their inclusion in the Orientalis clade of the genus Vibrio, and they formed a tight group separated from the closest relatives: Vibrio tubiashii subsp. europaensis, Vibrio tubiashii subsp. tubiashii and Vibrio orientalis. The percentages of genomic resemblance, including average nucleotide identity, DNA-DNA hybridization and in silico genome-to-genome comparison, between the type strain and the closest relatives were below values for species delineation and confirmed the taxonomic position of the new species, which could be differentiated from the related taxa on the basis of several phenotypic and chemotaxonomic features, including FAME and MALDI-TOF-MS. The pathogenicity of the new species was demonstrated in larvae of R. decussatus, Ruditapes philippinarum, Ostrea edulis and Donax trunculus. The results demonstrated that the strains analyzed represented a novel species in the Orientalis clade of the genus Vibrio, for which the name Vibrio bivalvicida sp. nov. is proposed, with 605(T) (= CECT 8855(T)=CAIM 1904(T)) designated as the type strain. Copyright © 2015 Elsevier GmbH. All rights reserved.

  11. Antibiotic resistance and plasmid profiling of Vibrio spp. in tropical waters of Peninsular Malaysia.

    Science.gov (United States)

    You, K G; Bong, C W; Lee, C W

    2016-03-01

    Vibrio species isolated from four different sampling stations in the west coast of Peninsular Malaysia were screened for their antimicrobial resistance and plasmid profiles. A total of 138 isolates belonging to 15 different species were identified. Vibrio campbellii, V. parahaemolyticus, V. harveyi, and V. tubiashii were found to predominance species at all stations. High incidence of erythromycin, ampicillin, and mecillinam resistance was observed among the Vibrio isolates. In contrast, resistance against aztreonam, cefepime, streptomycin, sulfamethoxazole, and sulfonamides was low. All the Vibrio isolates in this study were found to be susceptible to imipenem, norfloxacin, ofloxacin, chloramphenicol, trimethoprim/sulfamethoxazole, and oxytetracycline. Ninety-five percent of the Vibrio isolates were resistant to one or more different classes of antibiotic, and 20 different resistance antibiograms were identified. Thirty-two distinct plasmid profiles with molecular weight ranging from 2.2 to 24.8 kb were detected among the resistance isolates. This study showed that multidrug-resistant Vibrio spp. were common in the aquatic environments of west coast of Peninsular Malaysia.

  12. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal.

    Science.gov (United States)

    Mookerjee, Subham; Batabyal, Prasenjit; Sarkar, Madhumanti Halder; Palit, Anup

    2015-01-01

    Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios) is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%), V. parahaemolyticus (22.5%), V. mimicus (19.1%), V. alginolyticus (15.8%) and V. vulnificus (11.6%), were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%), V. alginolyticus ɸ (17.5%), V. parahaemolyticus ɸ (10%), V. cholerae non-O1/O139 ɸ (26.6%) and V. mimicus ɸ (9.1%), were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20-34°C), and to a lesser extent, in the summer (24-36°C) seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence.

  13. Seasonal Prevalence of Enteropathogenic Vibrio and Their Phages in the Riverine Estuarine Ecosystem of South Bengal.

    Directory of Open Access Journals (Sweden)

    Subham Mookerjee

    Full Text Available Diarrheal disease remains an unsolved problem in developing countries. The emergence of new etiological agents (non-cholera vibrios is a major cause of concern for health planners. We attempted to unveil the seasonal dynamics of entero-pathogenic Vibrios in Gangetic riverine-estuarine ecosystem. 120 surface water samples were collected for a period of one year from 3 sampling sites on the Hooghly river. Five enteropathogenic Vibrio species, V. cholerae (35%, V. parahaemolyticus (22.5%, V. mimicus (19.1%, V. alginolyticus (15.8% and V. vulnificus (11.6%, were present in the water samples. The vibriophages, V. vulnificus ɸ (17.5%, V. alginolyticus ɸ (17.5%, V. parahaemolyticus ɸ (10%, V. cholerae non-O1/O139 ɸ (26.6% and V. mimicus ɸ (9.1%, were also detected in these samples. The highest number of Vibrios were noted in the monsoon (20-34°C, and to a lesser extent, in the summer (24-36°C seasons. Samples positive for phages for any of the identified Vibrio species were mostly devoid of that particular bacterial organism and vice versa. The detection of toxin genes and resistance to β-lactam antibiotics in some environmental enteropathogenic Vibrio species in the aquatic niches is a significant outcome. This finding is instrumental in the south Bengal diarrhoeal incidence.

  14. Prevalence of potentially pathogenic Vibrio species in the seafood marketed in Malaysia.

    Science.gov (United States)

    Elhadi, Nasreldin; Radu, Son; Chen, Chien-Hsien; Nishibuchi, Mitsuaki

    2004-07-01

    Seafood samples obtained in seafood markets and supermarkets at 11 sites selected from four states in Malaysia were examined for the presence of nine potentially pathogenic species from the genus Vibrio between July 1998 and June 1999. We examined 768 sample sets that included shrimp, squid, crab, cockles, and mussels. We extensively examined shrimp samples from Selangor State to determine seasonal variation of Vibrio populations. Eight potentially pathogenic Vibrio species were detected, with overall incidence in the samples at 4.6% for V. cholerae, 4.7% for V. parahaemolyticus, 6.0% for V. vulnificus, 11% for V. alginolyticus, 9.9% for V. metschnikovii, 1.3% for V. mimicus, 13% for V. damsela, 7.6% for V. fluvialis, and 52% for a combined population of all of the above. As many as eight Vibrio species were detected in shrimp and only four in squid and peel mussels. The overall percent incidence of any of the eight vibrios was highest (82%) in cockles (Anadara granosa) among the seafoods examined and was highest (100%) in Kuching, Sarawak State, and lowest (25%) in Penang, Pulau Penang State, among the sampling sites. Of 97 strains of V. cholerae isolated, one strain belonged to the O1 serotype and 14 to the O139 serotype. The results indicate that the various seafood markets in Malaysia are contaminated with potentially pathogenic Vibrio species regardless of the season and suggest that there is a need for adequate consumer protection measures.

  15. Acute Otitis due to Vibrio fluvialis after Swimming

    Directory of Open Access Journals (Sweden)

    Ping-Jen Chen

    2012-01-01

    Full Text Available A 40-year-old female presented with purulent exudate through the left auditive duct and pain in the left ear region, which intensified during mastication. After collection of the pus from the left ear lesion, amoxicillin-clavulanic acid for seven days was prescribed for a presumed diagnosis of acute otitis. Four days later, the pus culture grew V. fluvialis which is further identified by API 20E identification system (bioMérieux. Following the successful completion of a course of antibiotics, the patient recovered completely and without complication. To the best of our knowledge, this is the first case of Vibrio fluvialis otitis after swimming in an immunocompetent patient.

  16. Identification and characterization of Vibrio cholerae surface proteins by radioiodination

    International Nuclear Information System (INIS)

    Richardson, K.; Parker, C.D.

    1985-01-01

    Whole cells and isolated outer membrane from Vibrio cholerae (Classical, Inaba) were radiolabeled with Iodogen or Iodo-beads as catalyst. Radiolabeling of whole cells was shown to be surface specific by sodium dodecyl sulfate-urea polyacrylamide gel electrophoresis of whole cells and cell fractions. Surface-labeled whole cells regularly showed 16 distinguishable protein species, of which nine were found in radiolabeled outer membrane preparations obtained by a lithium chloride- lithium acetate procedure. Eight of these proteins were found in outer membranes prepared by sucrose density gradient centrifugation and Triton X-100 extraction of radiolabeled whole cells. The mobility of several proteins was shown to be affected by temperature, and the major protein species exposed on the cell surface was shown to consist of at least two different peptides

  17. Survival of Vibrio cholerae O1 on fomites

    DEFF Research Database (Denmark)

    Farhana, Israt; Hossain, Zenat Zebin; Tulsiani, Suhella Mohan

    2016-01-01

    It is well established that the contamination sources of cholera causing bacteria, Vibrio cholerae, are water and food, but little is known about the transmission role of the fomites (surfaces that can carry pathogens) commonly used in households. In the absence of appropriate nutrients or growth...... conditions on fomites, bacteria have been known to assume a viable but non-culturable (VBNC) state after a given period of time. To investigate whether and when V. cholerae O1 assumes such a state, this study investigated the survival and viable quantification on a range of fomites such as paper, wood, glass......, plastic, cloth and several types of metals under laboratory conditions. The fomites were inoculated with an outbreak strain of V. cholerae and its culturability was examined by drop plate count method at 30 min intervals for up to 6 h. For molecular detection, the viable/dead stain ethidium monoazide (EMA...

  18. Comparative Genomics of Vibrio cholerae from Haiti, Asia, and Africa

    Science.gov (United States)

    Reimer, Aleisha R.; Van Domselaar, Gary; Stroika, Steven; Walker, Matthew; Kent, Heather; Tarr, Cheryl; Talkington, Deborah; Rowe, Lori; Olsen-Rasmussen, Melissa; Frace, Michael; Sammons, Scott; Dahourou, Georges Anicet; Boncy, Jacques; Smith, Anthony M.; Mabon, Philip; Petkau, Aaron; Graham, Morag; Gilmour, Matthew W.

    2011-01-01

    Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative. PMID:22099115

  19. Pre-earthquake non-epidemic Vibrio cholerae in Haiti.

    Science.gov (United States)

    Liu, Jie; Winstead-Derlega, Christopher; Houpt, Eric; Heidkamp, Rebecca; Pape, Jean; Dillingham, Rebecca

    2014-01-15

    To our knowledge, there was no record of Vibrio cholerae in Haiti until the 2010 post earthquake outbreak. This study describes the analysis of 301 stool samples from 117 infants in Port-au-Prince, Haiti, who participated in a pediatric nutrition study between July 2008 and October 2009. Nine samples were identified positive with both SYBR Green and Taqman-MGB probe based molecular assays targeting V. cholerae hlyA and toxR, respectively (Ct = 33-40), but none were O1 or O139. Our results from multiple molecular assays demonstrate the presence of non-O1/O139 V. cholerae DNA in stools collected from nine asymptomatic Haitian infants two years prior to the 2010 earthquake.

  20. Detection of Vibrio parahaemolyticus in cockle (Anadara granosa) by PCR.

    Science.gov (United States)

    Bilung, Lesley Maurice; Radu, Son; Bahaman, Abdul Rani; Rahim, Raha Abdul; Napis, Suhaimi; Ling, Michael Wong Clemente Vui; Tanil, Gwendelynne Bulan; Nishibuchi, Mitsuaki

    2005-11-01

    This study aimed to determine the occurrence of Vibrio parahaemolyticus in cockles (Anadara granosa) at a harvesting area and to detect the presence of virulent strains carrying the thermostable direct hemolysin (tdh) and TDH-related hemolysin genes (trh) using PCR. Of 100 samples, 62 were positive for the presence of V. parahaemolyticus with an MPN (most probable number) value greater than 3.0 (>1100 MPN per g). The PCR analysis revealed 2 samples to be positive for the tdh gene and 11 to be positive for the trh gene. Hence, these results demonstrate the presence of pathogenic V. parahaemolyticus in cockles harvested in the study area and reveal the potential risk of illness associated with their consumption.

  1. Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent.

    Science.gov (United States)

    Lee, Hyun Sung; Choi, Slae; Shin, Hakdong; Lee, Ju-Hoon; Choi, Sang Ho

    2014-01-01

    A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection.

  2. Ozone Disinfection of Vibrio vulnificus in Shrimp Pond Water

    Science.gov (United States)

    Dyah Pita Rengga, Wara; Cahya Julyta Putri, Echa; Wulansarie, Ria; Suryanto, Agus

    2018-03-01

    One variety of shrimp, L.Vanamei, often uses brackish water during the operation in the shrimp pond. Chlorination and ultraviolet are usually used for disinfection of brackish water. However, it is ineffective and forms sediment in the water distribution. It can be a negative impact on the water quality cause a contamination on the shrimp, so the farmers might have loss of profit because Vibrio vulnificus causes infection and dead on the shrimp. It affects the safety of consumers and should be minimized. The purpose of this study is to reduce the number of V. vulnificus bacteria in the pond water. The water was put in the storage tanks then pumped to filter out the impurities of the water. Furthermore, the water set the flow rate in 1 LPM, 2 LPM, and 3 LPM. After that, the ozone was injected to the water flow to sterilize the V. vulnificus bacteria. Finally, the water was returned to the original tank. The water from the tank was taken through a valve and analyzed in 0, 3, 7, 12, 18, 24, 30 minutes. The sample was analyzed immediately using a Total Plate Count method to determine the number of V. vulnificus bacteria in the shrimp pond water. The flow rate shows that the longer time of ozone made a lower amount of Vibrio v. bacteria. In 2 LPM water, it shows the optimum results of V. vulnificus. bacteria reduction for 88.1% compared to the flow rate of 1 LPM and 3 LPM with the bacteria reduction of 68,8% and 70.6%. This study shows that the ozone with a flow rate of 2 LPM circulation is the most effective method to help reducing the number of V. vulnificus in brackish water distribution system in the shrimp environment and potentially as a disinfectant.

  3. Autoinducers act as biological timers in Vibrio harveyi.

    Directory of Open Access Journals (Sweden)

    Claudia Anetzberger

    Full Text Available Quorum sensing regulates cell density-dependent phenotypes and involves the synthesis, excretion and detection of so-called autoinducers. Vibrio harveyi strain ATCC BAA-1116 (recently reclassified as Vibrio campbellii, one of the best-characterized model organisms for the study of quorum sensing, produces and responds to three autoinducers. HAI-1, AI-2 and CAI-1 are recognized by different receptors, but all information is channeled into the same signaling cascade, which controls a specific set of genes. Here we examine temporal variations of availability and concentration of the three autoinducers in V. harveyi, and monitor the phenotypes they regulate, from the early exponential to the stationary growth phase in liquid culture. Specifically, the exponential growth phase is characterized by an increase in AI-2 and the induction of bioluminescence, while HAI-1 and CAI-1 are undetectable prior to the late exponential growth phase. CAI-1 activity reaches its maximum upon entry into stationary phase, while molar concentrations of AI-2 and HAI-1 become approximately equal. Similarly, autoinducer-dependent exoproteolytic activity increases at the transition into stationary phase. These findings are reflected in temporal alterations in expression of the luxR gene that encodes the master regulator LuxR, and of four autoinducer-regulated genes during growth. Moreover, in vitro phosphorylation assays reveal a tight correlation between the HAI-1/AI-2 ratio as input and levels of receptor-mediated phosphorylation of LuxU as output. Our study supports a model in which the combinations of autoinducers available, rather than cell density per se, determine the timing of various processes in V. harveyi populations.

  4. Isolation of urease-positive Vibrio parahaemolyticus from diarrheal patients in Northeast Brazi Vibrio parahaemolyticus urease-positivos de pacientes diarréicos no Nordeste do Brasil

    Directory of Open Access Journals (Sweden)

    Marcelo Magalhães

    1991-08-01

    Full Text Available Of 21 human fecal strains of Vibrio parahaemolyticus, isolated on the Northeast Coast of Brazil, eight (38% were urease positive. Most of these strains, in contrast to the urease-negative ones, did not produce the hemolysin responsible for the Kanagawa phenomenon.De 21 linhagens de Vibrio parahaemolyticus, isoladas de fezes humanas, na costa Nordeste do Brasil, oito (38% foram urease positivas. A maioria dessas linhagens, em contraste com as urease-negativas, não produziram a hemolisina responsável pelo fenômeno Kanagawa.

  5. Vibrio parahaemolyticus type VI secretion system 1 is activated in marine conditions to target bacteria, and is differentially regulated from system 2.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    Full Text Available Vibrio parahaemolyticus is a marine bacterium that thrives in warm climates. It is a leading cause of gastroenteritis resulting from consumption of contaminated uncooked shellfish. This bacterium harbors two putative type VI secretion systems (T6SS. T6SSs are widespread protein secretion systems found in many Gram-negative bacteria, and are often tightly regulated. For many T6SSs studied to date, the conditions and cues, as well as the regulatory mechanisms that control T6SS activity are unknown. In this study, we characterized the environmental conditions and cues that activate both V. parahaemolyticus T6SSs, and identified regulatory mechanisms that control T6SS gene expression and activity. We monitored the expression and secretion of the signature T6SS secreted proteins Hcp1 and Hcp2, and found that both T6SSs are differentially regulated by quorum sensing and surface sensing. We also showed that T6SS1 and T6SS2 require different temperature and salinity conditions to be active. Interestingly, T6SS1, which is found predominantly in clinical isolates, was most active under warm marine-like conditions. Moreover, we found that T6SS1 has anti-bacterial activity under these conditions. In addition, we identified two transcription regulators in the T6SS1 gene cluster that regulate Hcp1 expression, but are not required for immunity against self-intoxication. Further examination of environmental isolates revealed a correlation between the presence of T6SS1 and virulence of V. parahaemolyticus against other bacteria, and we also showed that different V. parahaemolyticus isolates can outcompete each other. We propose that T6SS1 and T6SS2 play different roles in the V. parahaemolyticus lifestyles, and suggest a role for T6SS1 in enhancing environmental fitness of V. parahaemolyticus in marine environments when competing for a niche in the presence of other bacterial populations.

  6. Two regulators of Vibrio parahaemolyticus play important roles in enterotoxicity by controlling the expression of genes in the Vp-PAI region.

    Science.gov (United States)

    Kodama, Toshio; Gotoh, Kazuyoshi; Hiyoshi, Hirotaka; Morita, Mikiharu; Izutsu, Kaori; Akeda, Yukihiro; Park, Kwon-Sam; Cantarelli, Vlademir V; Dryselius, Rikard; Iida, Tetsuya; Honda, Takeshi

    2010-01-13

    Vibrio parahaemolyticus is an important pathogen causing food-borne disease worldwide. An 80-kb pathogenicity island (Vp-PAI), which contains two tdh (thermostable direct hemolysin) genes and a set of genes for the type III secretion system (T3SS2), is closely related to the pathogenicity of this bacterium. However, the regulatory mechanisms of Vp-PAI's gene expression are poorly understood. Here we report that two novel ToxR-like transcriptional regulatory proteins (VtrA and VtrB) regulate the expression of the genes encoded within the Vp-PAI region, including those for TDH and T3SS2-related proteins. Expression of vtrB was under control of the VtrA, as vector-expressed vtrB was able to recover a functional protein secretory capacity for T3SS2, independent of VtrA. Moreover, these regulatory proteins were essential for T3SS2-dependent biological activities, such as in vitro cytotoxicity and in vivo enterotoxicity. Enterotoxic activities of vtrA and/or vtrB deletion strains derived from the wild-type strain were almost absent, showing fluid accumulation similar to non-infected control. Whole genome transcriptional profiling of vtrA or vtrB deletion strains revealed that the expression levels of over 60 genes were downregulated significantly in these deletion mutant strains and that such genes were almost exclusively located in the Vp-PAI region. These results strongly suggest that VtrA and VtrB are master regulators for virulence gene expression in the Vp-PAI and play critical roles in the pathogenicity of this bacterium.

  7. Relative contributions of Vibrio polysaccharide and quorum sensing to the resistance of Vibrio cholerae to predation by heterotrophic protists.

    Directory of Open Access Journals (Sweden)

    Shuyang Sun

    Full Text Available Protozoan grazing is a major mortality factor faced by bacteria in the environment. Vibrio cholerae, the causative agent of the disease cholera, is a natural inhabitant of aquatic ecosystems, and its survival depends on its ability to respond to stresses, such as predation by heterotrophic protists. Previous results show that grazing pressure induces biofilm formation and enhances a smooth to rugose morphotypic shift, due to increased expression of Vibrio polysaccharide (VPS. In addition to negatively controlling vps genes, the global quorum sensing (QS regulator, HapR, plays a role in grazing resistance as the ΔhapR strain is efficiently consumed while the wild type (WT is not. Here, the relative and combined contributions of VPS and QS to grazing resistance were investigated by exposing VPS and HapR mutants and double mutants in VPS and HapR encoding genes at different phases of biofilm development to amoeboid and flagellate grazers. Data show that the WT biofilms were grazing resistant, the VPS mutants were less resistant than the WT strain, but more resistant than the QS mutant strain, and that QS contributes to grazing resistance mainly in mature biofilms. In addition, grazing effects on biofilms of mixed WT and QS mutant strains were investigated. The competitive fitness of each strain in mixed biofilms was determined by CFU and microscopy. Data show that protozoa selectively grazed the QS mutant in mixed biofilms, resulting in changes in the composition of the mixed community. A small proportion of QS mutant cells which comprised 4% of the mixed biofilm biovolume were embedded in grazing resistant WT microcolonies and shielded from predation, indicating the existence of associational protection in mixed biofilms.

  8. Gastroenteritis humanas associadas a Vibrio parahaemolyticus no Recife, Brasil Vibrio parahaemolyticus associated with human gastroenteritis in Recife, Brazil

    Directory of Open Access Journals (Sweden)

    Vera Magalhães

    1991-02-01

    Full Text Available Realizou-se estudo sobre a ocorrência do Vibrio parahaemolyticus em 1.100 fezes diarréicas, enviadas rotineiramente a laboratório clínico privado do Recife, para diagnóstico microbiológico. Isolou-se o V. parahaemolyticus de 14 (1,3% amostras fecais. Entretanto, se nós consideramos apenas os espécimes dos pacientes adultos, a taxa de isolamento do V. parahaemolyticus elevou-se para 7,1%. Na maioria dos casos (92,86%, o V. parahaemolyticus foi o único enteropatógeno reconhecido. Demonstraram-se sete antígenos K entre as cepas isoladas e três não puderam ser sorotipadas. Apenas duas linhagens, ambas ureolíticas, não produziram a toxina direta termoestável. Nós concluímos que o V. parahaemolyticus é importante causa de diarréia do adulto no Recife, em consumidores de frutos do mar.A study was carried out on the occurrence of Vibrio parahaemolyticus in 1.100 diarrheal feces, routinely sent to a private clinical laboratory for microbiologic diagnosis, in Recife. V. parahaemolyticus was isolated from 14 (1.3% fecal samples. However, if we considered only the specimens from adult patients, the isolation rate of V. parahaemolyticus rose to 7.1%. In most cases (92.86%, V. parahaemolyticus was the only enteropathogen recognized. Among the isolates, seven K antigen serovars were demonstrated, and three were untypable. Only two human isolates, both ureolytic, did not produce the thermostable direct hemolysin. We concluded that V. parahaemolyticus is an important cause of sea food linked diarrhea among adults in Recife.

  9. Biosorption of heavy metals by a marine bacterium

    International Nuclear Information System (INIS)

    Iyer, Anita; Mody, Kalpana; Jha, Bhavanath

    2005-01-01

    Heavy metal chelation property of exopolysaccharide produced by Enterobacter cloaceae, a marine bacterium, isolated from the West Coast of India, is reported in this paper. The exopolysaccharide demonstrated excellent chelating properties with respect to cadmium (65%) followed by copper (20%) and cobalt (8%) at 100 mg/l heavy metal concentration. However, it could not chelate mercury. A comparative study of the percentage biosorption of the above mentioned metals is presented here

  10. Genome Sequence of the Milbemycin-Producing Bacterium Streptomyces bingchenggensis▿

    OpenAIRE

    Wang, Xiang-Jing; Yan, Yi-Jun; Zhang, Bo; An, Jing; Wang, Ji-Jia; Tian, Jun; Jiang, Ling; Chen, Yi-Hua; Huang, Sheng-Xiong; Yin, Min; Zhang, Ji; Gao, Ai-Li; Liu, Chong-Xi; Zhu, Zhao-Xiang; Xiang, Wen-Sheng

    2010-01-01

    Streptomyces bingchenggensis is a soil-dwelling bacterium producing the commercially important anthelmintic macrolide milbemycins. Besides milbemycins, the insecticidal polyether antibiotic nanchangmycin and some other antibiotics have also been isolated from this strain. Here we report the complete genome sequence of S. bingchenggensis. The availability of the genome sequence of S. bingchenggensis should enable us to understand the biosynthesis of these structurally intricate antibiotics bet...

  11. Initiation of chromosomal replication in predatory bacterium Bdellovibrio bacteriovorus

    Directory of Open Access Journals (Sweden)

    Lukasz Makowski

    2016-11-01

    Full Text Available Bdellovibrio bacteriovorus is a small Gram-negative predatory bacterium that attacks other Gram-negative bacteria, including many animal, human, and plant pathogens. This bacterium exhibits a peculiar biphasic life cycle during which two different types of cells are produced: non-replicating highly motile cells (the free-living phase and replicating cells (the intracellular-growth phase. The process of chromosomal replication in B. bacteriovorus must therefore be temporally and spatially regulated to ensure that it is coordinated with cell differentiation and cell cycle progression. Recently, B. bacteriovorus has received considerable research interest due to its intriguing life cycle and great potential as a prospective antimicrobial agent. Although we know that chromosomal replication in bacteria is mainly regulated at the initiation step, no data exists about this process in B. bacteriovorus. We report the first characterization of key elements of initiation of chromosomal replication – DnaA protein and oriC region from the predatory bacterium, B. bacteriovorus. In vitro studies using different approaches demonstrate that the B. bacteriovorus oriC (BdoriC is specifically bound and unwound by the DnaA protein. Sequence comparison of the DnaA-binding sites enabled us to propose a consensus sequence for the B. bacteriovorus DnaA box (5’-NN(A/TTCCACA-3’. Surprisingly, in vitro analysis revealed that BdoriC is also bound and unwound by the host DnaA proteins (relatively distantly related from B. bacteriovorus. We compared the architecture of the DnaA–oriC complexes (orisomes in homologous (oriC and DnaA from B. bacteriovorus and heterologous (BdoriC and DnaA from prey, E. coli or P. aeruginosa systems. This work provides important new entry points toward improving our understanding of the initiation of chromosomal replication in this predatory bacterium.

  12. New insights into Oculina patagonica coral diseases and their associated Vibrio spp. communities

    Science.gov (United States)

    Rubio-Portillo, Esther; Yarza, Pablo; Peñalver, Cindy; Ramos-Esplá, Alfonso A; Antón, Josefa

    2014-01-01

    Bleaching of Oculina patagonica has been extensively studied in the Eastern Mediterranean Sea, although no studies have been carried out in the Western basin. In 1996 Vibrio mediterranei was reported as the causative agent of bleaching in O. patagonica but it has not been related to bleached or healthy corals since 2003, suggesting that it was no longer involved in bleaching of O. patagonica. In an attempt to clarify the relationship between Vibrio spp., seawater temperature and coral diseases, as well as to investigate the putative differences between Eastern and Western Mediterranean basins, we have analysed the seasonal patterns of the culturable Vibrio spp. assemblages associated with healthy and diseased O. patagonica colonies. Two sampling points located in the Spanish Mediterranean coast were chosen for this study: Alicante Harbour and the Marine Reserve of Tabarca. A complex and dynamic assemblage of Vibrio spp. was present in O. patagonica along the whole year and under different environmental conditions and coral health status. While some Vibrio spp. were detected all year around in corals, the known pathogens V. mediteranei and V. coralliilyticus were only present in diseased specimens. The pathogenic potential of these bacteria was studied by experimental infection under laboratory conditions. Both vibrios caused diseased signs from 24 °C, being higher and faster at 28 °C. Unexpectedly, the co-inoculation of these two Vibrio species seemed to have a synergistic pathogenic effect over O. patagonica, as disease signs were readily observed at temperatures at which bleaching is not normally observed. PMID:24621525

  13. Real-time PCR optimization to identify environmental Vibrio spp. strains.

    Science.gov (United States)

    Tall, A; Teillon, A; Boisset, C; Delesmont, R; Touron-Bodilis, A; Hervio-Heath, D

    2012-08-01

    To identify Vibrio vulnificus, Vibrio cholerae and Vibrio alginolyticus using standardized DNA extraction method and real-time PCR assays, among a large number of bacterial strains isolated from marine environment. Methods for DNA extraction and real-time PCR were standardized to identify a large number of Vibrio spp. strains isolated through regular collection campaigns of environmental samples. Three real-time PCR assays were developed from a multiplex PCR, targeting V. vulnificus, V. cholerae and V. alginolyticus on the dnaJ gene. After testing their specificity, these systems were applied for the identification of 961 strains isolated at 22°C (446 strains) and 37°C (515 strains) in September 2009. The predominance of V. alginolyticus (82·6%) among the Vibrio spp. strains isolated at 37°C was shown. At 22°C, only 1·6% of the strains were identified by PCR and they were V. alginolyticus. Reproducible and specific real-time PCR assays combined to a DNA extraction method on microplates were used to constitute a large environmental Vibrio strains collection and to identify and detect potential human pathogenic Vibrio isolated at 37°C. For environmental strains isolated at 22°C, because of the higher species diversity, other approaches, like sequencing, should be chosen for identification. The protocol developed in this study provides an appropriate and rapid screening tool to identify a large number of bacterial strains routinely isolated from the environment in long-term studies. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.

  14. Vibrio sp. DSM 14379 pigment production--a competitive advantage in the environment?

    Science.gov (United States)

    Starič, Nejc; Danevčič, Tjaša; Stopar, David

    2010-10-01

    The ability to produce several antibacterial agents greatly increases the chance of producer's survival. In this study, red-pigmented Vibrio sp. DSM 14379 and Bacillus sp., both isolated from the same sampling volume from estuarine waters of the Northern Adriatic Sea, were grown in a co-culture. The antibacterial activity of the red pigment extract was tested on Bacillus sp. in microtiter plates. The MIC(50) for Bacillus sp. was estimated to be around 10⁻⁵ mg/L. The extract prepared form the nonpigmented mutant of Vibrio sp. had no antibacterial effect. The pigment production of Vibrio sp. was studied under different physicochemical conditions. There was no pigment production at high or low temperatures, high or low salt concentrations in peptone yeast extract (PYE) medium, low glucose concentration in mineral growth medium or high glucose concentration in PYE medium. This indicates that the red pigment production is a luxurious good that Vibrio sp. makes only under favorable conditions. The Malthusian fitness of Bacillus sp. in a co-culture with Vibrio sp. under optimal environmental conditions dropped from 4.0 to -7.6, which corresponds to three orders of magnitude decrease in the number of CFU relative to the monoculture. The nonpigmented mutant of Vibrio sp. in a co-culture with Bacillus sp. had a significant antibacterial activity. This result shows that studying antibacterial properties in isolation (i.e. pigment extract only) may not reveal full antibacterial potential of the bacterial strain. The red pigment is a redundant antibacterial agent of Vibrio sp.

  15. Relationships between Environmental Factors and Pathogenic Vibrios in the Northern Gulf of Mexico ▿ †

    Science.gov (United States)

    Johnson, C. N.; Flowers, A. R.; Noriea, N. F.; Zimmerman, A. M.; Bowers, J. C.; DePaola, A.; Grimes, D. J.

    2010-01-01

    Although autochthonous vibrio densities are known to be influenced by water temperature and salinity, little is understood about other environmental factors associated with their abundance and distribution. Densities of culturable Vibrio vulnificus containing vvh (V. vulnificus hemolysin gene) and V. parahaemolyticus containing tlh (thermolabile hemolysin gene, ubiquitous in V. parahaemolyticus), tdh (thermostable direct hemolysin gene, V. parahaemolyticus pathogenicity factor), and trh (tdh-related hemolysin gene, V. parahaemolyticus pathogenicity factor) were measured in coastal waters of Mississippi and Alabama. Over a 19-month sampling period, vibrio densities in water, oysters, and sediment varied significantly with sea surface temperature (SST). On average, tdh-to-tlh ratios were significantly higher than trh-to-tlh ratios in water and oysters but not in sediment. Although tlh densities were lower than vvh densities in water and in oysters, the opposite was true in sediment. Regression analysis indicated that SST had a significant association with vvh and tlh densities in water and oysters, while salinity was significantly related to vibrio densities in the water column. Chlorophyll a levels in the water were correlated significantly with vvh in sediment and oysters and with pathogenic V. parahaemolyticus (tdh and trh) in the water column. Furthermore, turbidity was a significant predictor of V. parahaemolyticus density in all sample types (water, oyster, and sediment), and its role in predicting the risk of V. parahaemolyticus illness may be more important than previously realized. This study identified (i) culturable vibrios in winter sediment samples, (ii) niche-based differences in the abundance of vibrios, and (iii) predictive signatures resulting from correlations between environmental parameters and vibrio densities. PMID:20817802

  16. Vibrio cholerae persisted in microcosm for 700 days inhibits motility but promotes biofilm formation in nutrient-poor lake water microcosms.

    Directory of Open Access Journals (Sweden)

    Mohammad Jubair

    Full Text Available Toxigenic Vibrio cholerae, ubiquitous in aquatic environments, is responsible for cholera; humans can become infected after consuming food and/or water contaminated with the bacterium. The underlying basis of persistence of V. cholerae in the aquatic environment remains poorly understood despite decades of research. We recently described a "persister" phenotype of V. cholerae that survived in nutrient-poor "filter sterilized" lake water (FSLW in excess of 700-days. Previous reports suggest that microorganisms can assume a growth advantage in stationary phase (GASP phenotype in response to long-term survival during stationary phase of growth. Here we report a V. cholerae GASP phenotype (GASP-700D that appeared to result from 700 day-old persister cells stored in glycerol broth at -80°C. The GASP-700D, compared to its wild-type N16961, was defective in motility, produced increased biofilm that was independent of vps (p<0.005 and resistant to oxidative stress when grown specifically in FSLW (p<0.005. We propose that V. cholerae GASP-700D represents cell populations that may better fit and adapt to stressful survival conditions while serving as a critical link in the cycle of cholera transmission.

  17. The expression of heterologous MAM-7 in Lactobacillus rhamnosus reduces its intrinsic capacity to inhibit colonization of pathogen Vibrio parahaemolyticus in vitro.

    Science.gov (United States)

    Beltran, Sebastian; Munoz-Bergmann, Cristian A; Elola-Lopez, Ana; Quintana, Javiera; Segovia, Cristopher; Trombert, Annette N

    2016-01-07

    Vibrio parahaemolyticus (V. parahaemolyticus) is a Gram-negative, halophilic bacterium recognized as one of the most important foodborne pathogen. When ingested, V. parahaemolyticus causes a self-limiting illness (Vibriosis), characterized mainly by watery diarrhoea. Treatment is usually oral rehydration and/or antibiotics in complicated cases. Since 1996, the pathogenic and pandemic V. parahaemolyticus O3:K6 serotype has spread worldwide, increasing the reported number of vibriosis cases. Thus, the design of new strategies for pathogen control and illness prevention is necessary. Lactobacillus sp. grouped Gram positive innocuous bacteria, part of normal intestinal microbiota and usually used as oral vaccines for several diarrheic diseases. Recombinants strains of Lactobacillus (RL) expressing pathogen antigens can be used as part of an anti-adhesion strategy where RL block the pathogen union sites in host cells. Thus, we aimed to express MAM-7 V. parahaemolyticus adhesion protein in Lactobacillus sp. to generate an RL that prevents pathogen colonization. We cloned the MAM-7 gene from V. parahaemolyticus RIMD 2210633 in Lactobacillus expression vectors. Recombinant strains (Lactobacillus rhamnosus pSEC-MAM7 and L. rhamnosus pCWA-MAM7) adhered to CaCo-2 cells and competed with the pathogen. However, the L. rhamnosus wild type strain showed the best capacity to inhibit pathogen colonization in vitro. In addition, LDH-assay showed that recombinant strains were cytotoxic compared with the wild type isogenic strain. MAM-7 expression in lactobacilli reduces the intrinsic inhibitory capacity of L. rhamnosus against V. parahaemolyticus.

  18. Pandemic serotypes of Vibrio cholerae isolated from ships' ballast tanks and coastal waters: assessment of antibiotic resistance and virulence genes (tcpA and ctxA).

    Science.gov (United States)

    Dobbs, Fred C; Goodrich, Amanda L; Thomson, Frank K; Hynes, Wayne

    2013-05-01

    There is concern that ships' ballasting operations may disseminate Vibrio cholerae to ports throughout the world. Given evidence that the bacterium is indeed transported by ships, we isolated pandemic serotypes O1 and O139 from ballast tanks and characterized them with respect to antibiotic resistance and virulence genes ctxA and tcpA. We carried out concurrent studies with V. cholerae isolated from coastal waters. Of 284 isolates, 30 were serotype O1 and 59 were serotype O139. These serotypes were overrepresented in ballast tanks relative to the coastal waters sampled. All locations, whether coastal waters or ballast tanks, yielded samples from which serotype O1, O139, or both were isolated. There were three groups among the 62 isolates for which antibiotic characterization was conclusive: those exhibiting β-lactamase activity and resistance to at least one of the 12 antibiotics tested; those negative for β-lactamase but having antibiotic resistance; those negative for β-lactamase and registering no antibiotic resistance. When present, antibiotic resistance in nearly all cases was to ampicillin; resistance to multiple antibiotics was uncommon. PCR assays revealed that none of the isolates contained the ctxA gene and only two isolates, one O139 and one O1, contained the tcpA gene; both isolates originated from ballast water. These results support the bacteriological regulations proposed by the International Maritime Association for discharged ballast water.

  19. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    International Nuclear Information System (INIS)

    Duan, Nuo; Wu, Shijia; Yu, Ye; Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun; Wang, Zhouping

    2013-01-01

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry

  20. Marine Bacillus spp. associated with the egg capsule of Concholepas concholepas (common name "loco") have an inhibitory activity toward the pathogen Vibrio parahaemolyticus.

    Science.gov (United States)

    Leyton, Yanett; Riquelme, Carlos

    2010-10-01

    The pandemic bacterium Vibrio parahaemolyticus, isolated from seawater, sediment, and marine organisms, is responsible for gastroenteric illnesses in humans and also cause diseases in aquaculture industry in Chile and other countries around the world. In this study, bacterial flora with inhibitory activity against pathogenic V. parahaemolyticus were collected from egg capsules of Concholepas concholepas and evaluated. The 16S rRNA fragment was sequenced from each isolated strain to determine its identity using the GenBank database. A phylogenetic analysis was made, and tests for the productions of antibacterial substance were performed using the double-layer method. Forty-five morphotypes of bacterial colonies were isolated, 8 of which presented an inhibitory effect on the growth of V. parahaemolyticus. 16S rRNA sequence and phylogenetic analysis show that these strains constitute taxa that are phylogenetically related to the Bacillus genus and are probably sister species or strains of the species Bacillus pumilus, Bacillus licheniform, or Bacillus sp. It is important to determine the nature of the antibacterial substance to evaluate their potential for use against the pathogen species V. parahaemolyticus.

  1. Cloning, expression, purification, crystallization and preliminary X-ray analysis of the 31 kDa Vibrio cholerae heat-shock protein VcHsp31

    International Nuclear Information System (INIS)

    Das, Samir; Dey, Sanjay; Roy, Trina; Sen, Udayaditya

    2011-01-01

    A heat-shock protein from V. cholerae (VcHsp31) has been cloned, expressed, purified and crystallized. Crystals of VcHsp31 belonged to a monoclinic space group and diffracted to 1.9 Å resolution. The Gram-negative bacterium Vibrio cholerae, which is responsible for the diarrhoeal disease cholera in humans, induces the expression of numerous heat-shock genes. VcHsp31 is a 31 kDa putative heat-shock protein that belongs to the DJ-1/PfpI superfamily, functioning as both a chaperone and a protease. VcHsp31 has been cloned, overexpressed and purified by Ni 2+ –NTA affinity chromatography followed by gel filtration. Crystals of VcHsp31 were grown in the presence of PEG 6000 and MPD; they belonged to space group P2 1 and diffracted to 1.9 Å resolution. Assuming the presence of six molecules in the asymmetric unit, the Matthews coefficient was estimated to be 1.97 Å 3 Da −1 , corresponding to a solvent content of 37.4%

  2. Crystallization and preliminary X-ray crystallographic studies of VibE, a vibriobactin-specific 2,3-dihydroxybenzoate-AMP ligase from Vibrio cholerae

    International Nuclear Information System (INIS)

    Liu, Xiuhua; Wang, Zhi; Zhu, Deyu; Wei, Tiandi; Gu, Lichuan; Xu, Sujuan

    2011-01-01

    This article reports the molecular cloning, protein expression and purification, crystallization and preliminary X-ray crystallographic analysis of the vibriobactin synthetase VibE from V. cholerae. Vibriobactin synthetases (VibABCDEFH) catalyze the biosynthesis of vibriobactin in the pathogenic bacterium Vibrio cholerae. VibE, a vibriobactin-specific 2,3-dihydroxybenzoate-AMP ligase, plays a critical role in the transfer of 2,3-dihydroxybenzoate to the aryl carrier protein domain of holo VibB. Here, the cloning, protein expression and purification, crystallization and preliminary X-ray crystallographic analysis of VibE from V. cholerae are reported. The VibE crystal diffracted to 2.3 Å resolution. The crystal belonged to space group P2 1 , with unit-cell parameters a = 56.471, b = 45.927, c = 77.014 Å, β = 95.895°. There is one protein molecule in the asymmetric unit, with a corresponding Matthews coefficient of 1.63 Å 3 Da −1 and solvent content of 24.41%

  3. A dual-color flow cytometry protocol for the simultaneous detection of Vibrio parahaemolyticus and Salmonella typhimurium using aptamer conjugated quantum dots as labels

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Nuo; Wu, Shijia [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Yu, Ye [Zhangjiagang Entry-Exit Inspection and Quarantine Bureau, Zhangjiangang 215600 (China); Ma, Xiaoyuan; Xia, Yu; Chen, Xiujuan; Huang, Yukun [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China); Wang, Zhouping, E-mail: wangzp@jiangnan.edu.cn [State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122 (China)

    2013-12-04

    Graphical abstract: -- Highlights: •Two bacteria were simultaneously detected using QD-apt as labels by flow cytometry. •QD-apt were used for recognition and fluorescence detection of two bacteria. •The method was applied successfully for bacteria detection in real samples. -- Abstract: A sensitive, specific method for the collection and detection of pathogenic bacteria was demonstrated using quantum dots (QDs) as a fluorescence marker coupled with aptamers as the molecular recognition element by flow cytometry. The aptamer sequences were selected using a bacterium-based SELEX strategy in our laboratory for Vibrio parahaemolyticus and Salmonella typhimurium that, when applied in this method, allows for the specific recognition of the bacteria from complex mixtures including shrimp samples. Aptamer-modified QDs (QD-apt) were employed to selectively capture and simultaneously detect the target bacteria with high sensitivity using the fluorescence of the labeled QDs. The signal intensity is amplified due to the high photostability of QDs nanoparticles, resulting in improved sensitivity over methods using individual dye-labeled probes. This proposed method is promising for the sensitive detection of other pathogenic bacteria in food stuff if suitable aptamers are chosen. The method may also provide another potential platform for the application of aptamer-conjugated QDs in flow cytometry.

  4. Determination of clonality and relatedness of Vibrio cholerae isolates by genomic fingerprinting, using long-range repetitive element sequence-based PCR.

    Science.gov (United States)

    Chokesajjawatee, Nipa; Zo, Young-Gun; Colwell, Rita R

    2008-09-01

    A high-throughput method which is applicable for rapid screening, identification, and delineation of isolates of Vibrio cholerae, sensitive to genome variation, and capable of providing phylogenetic inferences enhances environmental monitoring of this bacterium. We have developed and optimized a method for genomic fingerprinting of V. cholerae based on long-range PCR. The method uses a primer set directed to enterobacterial repetitive intergenic consensus sequences, a high-fidelity DNA polymerase, and analysis via conventional agarose gel electrophoresis. Long ( approximately 10 kb), highly reproducible amplicons were generated from V. cholerae isolates, including those from different geographical locations and historical strains isolated during the period 1931-2000. The amplicons yielded reduced variability in their densitometric band patterns to /=90% similarity, discriminating O serotypes and biotypes (classical versus El Tor) as well as pathogenic and nonpathogenic strains. Compared to genome similarity measured by DNA-DNA hybridization, the results showed good correlation (r = 0.7; P useful in large-scale multilaboratory surveys, especially those designed to detect specific pathogens in the natural environment.

  5. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq.

    Directory of Open Access Journals (Sweden)

    Sergey Y Druzhinin

    2015-07-01

    Full Text Available Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation. Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.

  6. A Conserved Pattern of Primer-Dependent Transcription Initiation in Escherichia coli and Vibrio cholerae Revealed by 5' RNA-seq.

    Science.gov (United States)

    Druzhinin, Sergey Y; Tran, Ngat T; Skalenko, Kyle S; Goldman, Seth R; Knoblauch, Jared G; Dove, Simon L; Nickels, Bryce E

    2015-07-01

    Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.

  7. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment, and cultured oysters in the Chesapeake Bay, MD, USA.

    Science.gov (United States)

    Shaw, Kristi S; Jacobs, John M; Crump, Byron C

    2014-01-01

    To determine if a storm event (i.e., high winds, large volumes of precipitation) could alter concentrations of Vibrio vulnificus and V. parahaemolyticus in aquacultured oysters (Crassostrea virginica) and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface (0.3 m) and near-bottom (just above the sediment). Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number (MPN) enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration for either Vibrio species by location (surface or near bottom oysters) or date sampled (oyster tissue, surface water, and sediment concentrations). V. vulnificus in oyster tissue was correlated with total suspended solids (r = 0.41, P = 0.04), and V. vulnificus in sediment was correlated with secchi depth (r = -0.93, P Chesapeake Bay.

  8. Unique and conserved genome regions in Vibrio harveyi and related species in comparison with the shrimp pathogen Vibrio harveyi CAIM 1792.

    Science.gov (United States)

    Espinoza-Valles, Iliana; Vora, Gary J; Lin, Baochuan; Leekitcharoenphon, Pimlapas; González-Castillo, Adrián; Ussery, Dave; Høj, Lone; Gomez-Gil, Bruno

    2015-09-01

    Vibrio harveyi CAIM 1792 is a marine bacterial strain that causes mortality in farmed shrimp in north-west Mexico, and the identification of virulence genes in this strain is important for understanding its pathogenicity. The aim of this work was to compare the V. harveyi CAIM 1792 genome with related genome sequences to determine their phylogenic relationship and explore unique regions in silico that differentiate this strain from other V. harveyi strains. Twenty-one newly sequenced genomes were compared in silico against the CAIM 1792 genome at nucleotidic and predicted proteome levels. The proteome of CAIM 1792 had higher similarity to those of other V. harveyi strains (78%) than to those of the other closely related species Vibrio owensii (67%), Vibrio rotiferianus (63%) and Vibrio campbellii (59%). Pan-genome ORFans trees showed the best fit with the accepted phylogeny based on DNA-DNA hybridization and multi-locus sequence analysis of 11 concatenated housekeeping genes. SNP analysis clustered 34/38 genomes within their accepted species. The pangenomic and SNP trees showed that V. harveyi is the most conserved of the four species studied and V. campbellii may be divided into at least three subspecies, supported by intergenomic distance analysis. blastp atlases were created to identify unique regions among the genomes most related to V. harveyi CAIM 1792; these regions included genes encoding glycosyltransferases, specific type restriction modification systems and a transcriptional regulator, LysR, reported to be involved in virulence, metabolism, quorum sensing and motility.

  9. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a

  10. Impact of Hurricane Irene on Vibrio vulnificus and Vibrio parahaemolyticus concentrations in surface water, sediment and cultured oysters in the Chesapeake Bay, Maryland, USA

    Directory of Open Access Journals (Sweden)

    Kristi S Shaw

    2014-05-01

    Full Text Available To determine if a storm event (i.e., high winds, large volumes of precipitation could alter concentrations of Vibrio vulnificus and Vibrio parahaemolyticus in aquacultured oysters (Crassostrea virginica and associated surface water and sediment, this study followed a sampling timeline before and after Hurricane Irene impacted the Chesapeake Bay estuary in late August 2011. Aquacultured oysters were sampled from two levels in the water column: surface 0.3 m and near-bottom just above the sediment. Concentrations of each Vibrio spp. and associated virulence genes were measured in oysters with a combination of real-time PCR and most probable number enrichment methods, and in sediment and surface water with real-time PCR. While concentration shifts of each Vibrio species were apparent post-storm, statistical tests indicated no significant change in concentration change for either Vibrio species by location (surface or near bottom oysters or date sampled (oyster tissue, surface water and sediment concentrations. V. vulnificus in oyster tissue was correlated with total suspended solids (r=0.41, p=0.04, and V. vulnificus in sediment was correlated with secchi depth (r=-0.93, p< 0.01, salinity (r=-0.46, p=0.02, tidal height (r=-0.45, p=0.03, and surface water V. vulnificus (r=0.98, p< 0.01. V. parahaemolyticus in oyster tissue did not correlate with environmental measurements, but V. parahaemolyticus in sediment and surface water correlated with several measurements including secchi depth (r=-0.48, p=0.02[sediment]; r=-0.97 p< 0.01[surface water] and tidal height (r=-0.96. p< 0.01[sediment], r=-0.59,p< 0.01 [surface water]. The concentrations of Vibrio spp. were higher in oysters relative to other studies (average V. vulnificus 4x105 MPN g-1, V. parahaemolyticus 1x105 MPN g-1, and virulence-associated genes were detected in most oyster samples. This study provides a first estimate of storm-related Vibrio density changes in oyster tissues, sediment and

  11. Vibrio cholerae VciB Mediates Iron Reduction.

    Science.gov (United States)

    Peng, Eric D; Payne, Shelley M

    2017-06-15

    Vibrio cholerae is the causative agent of the severe diarrheal disease cholera. V. cholerae thrives within the human host, where it replicates to high numbers, but it also persists within the aquatic environments of ocean and brackish water. To survive within these nutritionally diverse environments, V. cholerae must encode the necessary tools to acquire the essential nutrient iron in all forms it may encounter. A prior study of systems involved in iron transport in V. cholerae revealed the existence of vciB , which, while unable to directly transport iron, stimulates the transport of iron through ferrous (Fe 2+ ) iron transport systems. We demonstrate here a role for VciB in V. cholerae in which VciB stimulates the reduction of Fe 3+ to Fe 2+ , which can be subsequently transported into the cell with the ferrous iron transporter Feo. Iron reduction is independent of functional iron transport but is associated with the electron transport chain. Comparative analysis of VciB orthologs suggests a similar role for other proteins in the VciB family. Our data indicate that VciB is a dimer located in the inner membrane with three transmembrane segments and a large periplasmic loop. Directed mutagenesis of the protein reveals two highly conserved histidine residues required for function. Taken together, our results support a model whereby VciB reduces ferric iron using energy from the electron transport chain. IMPORTANCE Vibrio cholerae is a prolific human pathogen and environmental organism. The acquisition of essential nutrients such as iron is critical for replication, and V. cholerae encodes a number of mechanisms to use iron from diverse environments. Here, we describe the V. cholerae protein VciB that increases the reduction of oxidized ferric iron (Fe 3+ ) to the ferrous form (Fe 2+ ), thus promoting iron acquisition through ferrous iron transporters. Analysis of VciB orthologs in Burkholderia and Aeromonas spp. suggest that they have a similar activity, allowing a

  12. Vibrio cholerae Colonization of Soft-Shelled Turtles.

    Science.gov (United States)

    Wang, Jiazheng; Yan, Meiying; Gao, He; Lu, Xin; Kan, Biao

    2017-07-15

    Vibrio cholerae is an important human pathogen and environmental microflora species that can both propagate in the human intestine and proliferate in zooplankton and aquatic organisms. Cholera is transmitted through food and water. In recent years, outbreaks caused by V. cholerae -contaminated soft-shelled turtles, contaminated mainly with toxigenic serogroup O139, have been frequently reported, posing a new foodborne disease public health problem. In this study, the colonization by toxigenic V. cholerae on the body surfaces and intestines of soft-shelled turtles was explored. Preferred colonization sites on the turtle body surfaces, mainly the carapace and calipash of the dorsal side, were observed for the O139 and O1 strains. Intestinal colonization was also found. The colonization factors of V. cholerae played different roles in the colonization of the soft-shelled turtle's body surface and intestine. Mannose-sensitive hemagglutinin (MSHA) of V. cholerae was necessary for body surface colonization, but no roles were found for toxin-coregulated pili (TCP) or N -acetylglucosamine-binding protein A (GBPA). Both TCP and GBPA play important roles for colonization in the intestine, whereas the deletion of MSHA revealed only a minor colonization-promoting role for this factor. Our study demonstrated that V. cholerae can colonize the surfaces and the intestines of soft-shelled turtles and indicated that the soft-shelled turtles played a role in the transmission of cholera. In addition, this study showed that the soft-shelled turtle has potential value as an animal model in studies of the colonization and environmental adaption mechanisms of V. cholerae in aquatic organisms. IMPORTANCE Cholera is transmitted through water and food. Soft-shelled turtles contaminated with Vibrio cholerae (commonly the serogroup O139 strains) have caused many foodborne infections and outbreaks in recent years, and they have become a foodborne disease problem. Except for epidemiological

  13. Essential oils of Nigella sativa protects Artemia from the pathogenic effect of Vibrio parahaemolyticus Dahv2.

    Science.gov (United States)

    Manju, Sivalingam; Malaikozhundan, Balasubramanian; Withyachumnarnkul, Boonsirm; Vaseeharan, Baskaralingam

    2016-05-01

    The anti-Vibrio activity of essential oils (EOs) of nine medicinal plants was tested against 28 Vibrio spp. isolated from diseased Fenneropenaeus indicus. EO of Nigella sativa exhibited anti-Vibrio activity against all Vibrio spp. and greater inhibition was noted for the isolate V2 which was identified as Vibrio parahaemolyticus Dahv2. Further, EO of N. sativa effectively inhibited V. parahaemolyticus Dahv2 with an inhibition zone of 23.9mm at 101.2μgml(-1). Moreover, EO of N. sativa revealed anti-biofilm activity at 101.2μgml(-1) against V. parahaemolyticus Dahv2 and inhibited the growth of V. parahaemolyticus Dahv2 at 100μgml(-1).In vivo experimental infection studies showed that the survival of Artemia spp. infected with V. parahaemolyticus Dahv2 at 1×10(3)cfuml(-1) was only 40%. However, the survival of Artemia spp. was significantly increased after challenge with 100μgml(-1) of EO of N. sativa. EO of N. sativa showed higher anti-oxidant potential and total phenol content than other EOs tested. The anti-oxidant activity of EO of N. sativa was highly correlated to their total phenolic contents (r=0.836, P<0.05). This observation suggests that EO of N. sativa protected the Artemia spp. after experimental infection of V. parahaemolyticus Dahv2. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Infection Vibrio sp. Bacteria on Kappaphycus Seaweed Varieties Brown and Green

    Science.gov (United States)

    Irmawati, Yuni; Sudirjo, Fien

    2017-10-01

    Disease in seaweed or ice-ice, until today is still a major problem in the cultivation of seaweed. Changes in extreme environmental conditions is a trigger factor of ice-ice, which can result in seaweed susceptible to infection with pathogenic microorganisms, such as bacteria Vibrio sp. This research aims to determine the bacteria Vibrio sp. infection in seaweed Kappaphycus varieties of brown and green. Vibrio sp. bacteria isolated in the infected seaweed thallus ice-ice, grown on TCBS media, purification, gram staining and biochemical tests. Vibrio sp. infected to seaweed Kappaphycus brown and green varieties in containers controlled by different density, 105 CFU/ml, 106 CFU/ml and 107CFU/ml. Observations were made to change clinical effect in thallus seaweed for 14 days of observation. The results obtained show that the levels of infection bacteria Vibrio sp. higher in seaweed Kappaphycus green varieties both in density 105 CFU/ml, 106 CFU/ml and 107CFU/ml, when compared with varieties brown.

  15. Occurrence of Vibrio and Salmonella species in mussels (Mytilus galloprovincialis) collected along the Moroccan Atlantic coast.

    Science.gov (United States)

    Mannas, Hasna; Mimouni, Rachida; Chaouqy, Noureddine; Hamadi, Fatima; Martinez-Urtaza, Jaime

    2014-01-01

    This study reports the occurrence of different Vibrio and Salmonella species in 52 samples of Mytilus galloprovincialis collected from four sites along the Atlantic coast between Agadir and Essaouira (Anza, Cap Ghir, Imssouane and Essaouira). The level of Escherichia coli (E. coli) was also determined to evaluate the degree of microbial pollution in the investigated areas. In this study three methods were used : AFNOR NF EN ISO 6579 V08-013 for Salmonella spp., the provisional method routinely used by several laboratories (Institut Pasteur, Paris,…) for Vibrio cholerae and Vibrio parahaemolyticus in the seafood, and the most probable number method (MPN) using Norm ISO/TS 16649-3 (2005) for E. coli. The most frequently isolated Vibrios were Vibrio alginolyticus (90.4% of samples), followed by V. cholerae non O1 non O139 (15.4%) and V. parahaemolyticus (7.7%). Salmonella spp. was found in 15% of the samples. The number of E. coli ranged between 0.2/100 g and 1.8 10(3) /100 g of mussel soft tissues. This study indicates the potential sanitary risk associated with the presence of pathogenic bacteria in cultivated mussels in the two populous regions of southern Morocco, where shellfish production and maritime tourism are important to the local economy.

  16. Phytoplankton production systems in a shellfish hatchery: variations of the bacterial load and diversity of vibrios.

    Science.gov (United States)

    Dubert, J; Fernández-Pardo, A; Nóvoa, S; Barja, J L; Prado, S

    2015-06-01

    Outbreaks of disease caused by some Vibrio species represent the main production bottleneck in shellfish hatcheries. Although the phytoplankton used as food is one of the main sources of bacteria, studies of the associated bacterial populations, specifically vibrios, are scarce. The aim of the study was the microbiological monitoring of the microalgae as the first step in assessing the risk disease for bivalve cultures. Two phytoplankton production systems were sampled weekly throughout 1-year period in a bivalve hatchery. Quantitative analysis revealed high levels of marine heterotrophic bacteria in both systems throughout the study. Presumptive vibrios were detected occasionally and at low concentrations. In most of the cases, they belonged to the Splendidus and Harveyi clades. The early detection of vibrios in the microalgae may be the key for a successful bivalve culture. Their abundance and diversity were affected by factors related to the hatchery environment. This work represents the first long study where the presence of vibrios was evaluated rigorously in phytoplankton production systems and provides a suitable microbiological protocol to control and guarantee the quality of the algal cultures to avoid the risk of transferring potential pathogens to shellfish larvae and/or broodstock. © 2015 The Society for Applied Microbiology.

  17. POTENCY OF VIBRIO ISOLATES FOR BIOCONTROL OF VIBRIOSIS IN TIGER SHRIMP (PENAEUS MONODON LARVAE

    Directory of Open Access Journals (Sweden)

    B. W. LAY

    2003-01-01

    Full Text Available This study was carried out to obtain Vibrio isolates able to function as biocontr ol of vibriosis in shrimp hatchery. Thirty one Vibrio isolates were isolated from tiger shrimp larvae and hatchery environments, i.e. Labuan, Pangandaran, and Lampung, Indonesia. Pathogenic V. harveyi MR5339 was obtained from Maros, South-Sulawesi and was made as a rifampicin resistant mutant (RFR to screen for those 31 Vibrio isolates in in vitro assays and to allow us to monitor their presence in shrimp larvae and larval rearing water. Almost all Vibrio isolates could inhibit the growth of pathogenic V. harveyi MR5339 RFR. SKT-b isolate from Skeletonema was the most effective to inhibit the growth of V. harveyi MR5339 Rf* and significantly reduced larval mortality in pathogen challenge assays. These prospective biocontrol bacteria, at concentration of 10" CFU/ml, did not show pathogenicity to shrimp larvae. SKT-b was Gram negative, short rod-shape, exhibited yellow colonies on TCBS and swarming on SWC-agar media, motile, u tilized glucose and sucrose but not lactose: produced extra-cellular protease and amylase, but did not produce chitmase. Partial sequencing of 16S-rRNA gene SKT-b showed SKT-b similarity to Vibrio alginofyticus.

  18. Effect of Climate Change on the Concentration and Associated Risks of Vibrio Spp. in Dutch Recreational Waters

    NARCIS (Netherlands)

    Sterk, Ankie; Schets, Franciska M; de Roda Husman, Ana Maria; de Nijs, Ton; Schijven, Jack F; de Roda Husman, Ana Maria

    2015-01-01

    Currently, the number of reported cases of recreational- water-related Vibrio illness in the Netherlands is low. However, a notable higher incidence of Vibrio infections has been observed in warm summers. In the future, such warm summers are expected to occur more often, resulting in enhanced water

  19. Effect of Climate Change on the Concentration and Associated Risks of Vibrio Spp. in Dutch Recreational Waters.

    Science.gov (United States)

    Sterk, Ankie; Schets, Franciska M; de Roda Husman, Ana Maria; de Nijs, Ton; Schijven, Jack F

    2015-09-01

    Currently, the number of reported cases of recreational- water-related Vibrio illness in the Netherlands is low. However, a notable higher incidence of Vibrio infections has been observed in warm summers. In the future, such warm summers are expected to occur more often, resulting in enhanced water temperatures favoring Vibrio growth. Quantitative information on the increase in concentration of Vibrio spp. in recreational water under climate change scenarios is lacking. In this study, data on occurrence of Vibrio spp. at six different bathing sites in the Netherlands (2009-2012) were used to derive an empirical formula to predict the Vibrio concentration as a function of temperature, salinity, and pH. This formula was used to predict the effects of increased temperatures in climate change scenarios on Vibrio concentrations. For Vibrio parahaemolyticus, changes in illness risks associated with the changed concentrations were calculated as well. For an average temperature increase of 3.7 °C, these illness risks were calculated to be two to three times higher than in the current situation. Current illness risks were, varying per location, on average between 10(-4) and 10(-2) per person for an entire summer. In situations where water temperatures reached maximum values, illness risks are estimated to be up to 10(-2) and 10(-1) . If such extreme situations occur more often during future summers, increased numbers of ill bathers or bathing-water-related illness outbreaks may be expected. © 2015 Society for Risk Analysis.

  20. Selection of the N-acylhomoserine lactone-degrading bacterium Alteromonas stellipolaris PQQ-42 and of its potential for biocontrol in aquaculture

    Directory of Open Access Journals (Sweden)

    Marta eTorres

    2016-05-01

    Full Text Available The production of virulence factors by many pathogenic microorganisms depends on the intercellular communication system called quorum sensing (QS, which involves the production and release of signal molecules known as autoinducers. Based on this, new-therapeutic strategies have emerged for the treatment of a variety of infections, such as the enzymatic degradation of signalling molecules, known as quorum quenching (QQ. In this study, we present the screening of QQ activity amongst 450 strains isolated from a bivalve hatchery in Granada (Spain, and the selection of the strain PQQ-42, which degrades a wide range of N-acylhomoserine lactones (AHLs. The selected strain, identified as Alteromonas stellipolaris, degraded the accumulation of AHLs and reduced the production of protease and chitinase and swimming motility of a Vibrio species in co-cultivation experiments in vitro. In the bio-control experiment, strain PQQ-42 significantly reduced the pathogenicity of V. mediterranei VibC-Oc-097 upon the coral Oculina patagonica showing a lower degree of tissue damage (29.25±14.63 % in its presence, compared to when the coral was infected with V. mediterranei VibC-Oc-097 alone (77.53±13.22 %. Our results suggest that this AHL-degrading bacterium may have biotechnological applications in aquaculture.

  1. Sensitivity of Vibrio cholerae cells to lethal and mutagenic effect of UV-irradiation mediated by plasmids

    International Nuclear Information System (INIS)

    Tiganova, I.G.; Evdokimova, N.M.; Aleshkin, G.I.

    1988-01-01

    The effect of UV-irradiation on Vibrio cholerae cells and its changes mediated by the plasmid R245 have been studied. Vibrio cholerae strains 569B and RV31 have been shown to be considerably more sensitive to lethal effect of UV-irradiation as compared with Escherichia coli and Salmonella typhimurium cells. Highly toxigenic strain 569B and practically atoxigenic strain RV31 have the same UV-sensitivity. Lethla effect of UV-irradiation on Vibrio cholerae cells is incresed when the irradiated cells are plated on enriched media. UV-induction of mutations was not registered in plasmidless strains of Vibrio cholerae. Plasmid R245 increase UV-resistance of vibrio cells and makes them UV-mutable

  2. Chitin utilization by the insect-transmitted bacterium Xylella fastidiosa.

    Science.gov (United States)

    Killiny, Nabil; Prado, Simone S; Almeida, Rodrigo P P

    2010-09-01

    Xylella fastidiosa is an insect-borne bacterium that colonizes xylem vessels of a large number of host plants, including several crops of economic importance. Chitin is a polysaccharide present in the cuticle of leafhopper vectors of X. fastidiosa and may serve as a carbon source for this bacterium. Biological assays showed that X. fastidiosa reached larger populations in the presence of chitin. Additionally, chitin induced phenotypic changes in this bacterium, notably increasing adhesiveness. Quantitative PCR assays indicated transcriptional changes in the presence of chitin, and an enzymatic assay demonstrated chitinolytic activity by X. fastidiosa. An ortholog of the chitinase A gene (chiA) was identified in the X. fastidiosa genome. The in silico analysis revealed that the open reading frame of chiA encodes a protein of 351 amino acids with an estimated molecular mass of 40 kDa. chiA is in a locus that consists of genes implicated in polysaccharide degradation. Moreover, this locus was also found in the genomes of closely related bacteria in the genus Xanthomonas, which are plant but not insect associated. X. fastidiosa degraded chitin when grown on a solid chitin-yeast extract-agar medium and grew in liquid medium with chitin as the sole carbon source; ChiA was also determined to be secreted. The gene encoding ChiA was cloned into Escherichia coli, and endochitinase activity was detected in the transformant, showing that the gene is functional and involved in chitin degradation. The results suggest that X. fastidiosa may use its vectors' foregut surface as a carbon source. In addition, chitin may trigger X. fastidiosa's gene regulation and biofilm formation within vectors. Further work is necessary to characterize the role of chitin and its utilization in X. fastidiosa.

  3. [The in vitro action of plants on Vibrio cholerae].

    Science.gov (United States)

    Guevara, J M; Chumpitaz, J; Valencia, E

    1994-01-01

    Natural products of several plants, according to the geographic location, are used by Peruvian people in the popular treatment of diarrhea, with good success. When cholerae cases appeared in Peru, we were interested to know the "in vitro" effect against Vibrio cholerae 01, of these useful plants to treat diarrhea. The following plants were tested: Cichorium intybus, Althaea officinalis, Psorela glandulosa, Geranium maculatum, Punica granatum, Malus sativa, Cydonia oblonga, Chenopodium ambrosoides, Krameria triandria, Tea chinensis, Daucus carota, Persea gratissima, Psidium guayaba and Lippia dulcis. Decoction or infusion of the plants were used in the "in vitro" experiments. The following plants showed no "in vitro" effect against V. cholerae: Cichorium intybus, Althaea officinalis, Psorela glandulosa, Geranium maculatum, Chenopodium ambrosoides, Krameria triandria, Psidium guayaba, Lippia dulcis and Daucus carota. Decoction of Malus sativa and Cydenia oblonga showed bactericidal effect for their acidity and stone avocado (Persea gratissima) a late bactericidal effect. Tea infusión and the decoction of Punica granatum peel, showed the best bactericidal effect and we suggest to use them as to stop cholera spreading.

  4. α-Hydroxyketone Synthesis and Sensing by Legionella and Vibrio

    Directory of Open Access Journals (Sweden)

    Hubert Hilbi

    2012-03-01

    Full Text Available Bacteria synthesize and sense low molecular weight signaling molecules, termed autoinducers, to measure their population density and community complexity. One class of autoinducers, the α-hydroxyketones (AHKs, is produced and detected by the water-borne opportunistic pathogens Legionella pneumophila and Vibrio cholerae, which cause Legionnaires’ disease and cholera, respectively. The “Legionella quorum sensing” (lqs or “cholera quorum sensing” (cqs genes encode enzymes that produce and sense the AHK molecules “Legionella autoinducer-1” (LAI-1; 3-hydroxypentadecane-4-one or cholera autoinducer-1 (CAI-1; 3-hydroxytridecane-4-one. AHK signaling regulates the virulence of L. pneumophila and V. cholerae, pathogen-host cell interactions, formation of biofilms or extracellular filaments, expression of a genomic “fitness island” and competence. Here, we outline the processes, wherein AHK signaling plays a role, and review recent insights into the function of proteins encoded by the lqs and cqs gene clusters. To this end, we will focus on the autoinducer synthases catalysing the biosynthesis of AHKs, on the cognate trans-membrane sensor kinases detecting the signals, and on components of the down-stream phosphorelay cascade that promote the transmission and integration of signaling events regulating gene expression.

  5. Adverse effects of organic arsenical compounds towards Vibrio fischeri bacteria.

    Science.gov (United States)

    Fulladosa, Elena; Murat, Jean-Claude; Bollinger, Jean-Claude; Villaescusa, Isabel

    2007-05-15

    The most frequently encountered forms of organic arsenic, namely, dimethylarsinic acid, monomethylarsonic acid, arsenobetaine, arsenocholine and Roxarsone (4-hydroxy-3-nitrobenzene arsonic acid) were tested for toxicity either by using the Microtox bioassay, based on the rapid (within 15 min) fading of luminescence emitted by Vibrio fischeri marine bacteria, or by monitoring growth rate of the same bacteria for 3 days. Organic arsenic was generally found to be less toxic to these biological models than inorganic arsenic. In many cases, EC50 values for DMA, MMA or HNAA when using luminescence or growth inhibition assays could not be determined because of the low toxicity of the compounds. Nevertheless, results from the luminescence inhibition assay, which was found to be more sensitive than the growth inhibition assay, allowed to rank toxicity as follows: arsenate at pH 8>HNAA at pH 5>arsenate at pH 5>MMA at pH 5>HNAA at pH 8>DMA at pH 5. Arsenobetaine and monomethylarsonic acid were unexpectedly found to stimulate bacterial growth (hormesis effect). pH was found to have a strong influence on the observed toxicity as a consequence of the pH-induced changes in the chemical speciation of the tested molecules. In most cases it appeared that negatively charged forms were less toxic than the uncharged ones.

  6. Proteomic analysis of Vibrio cholerae outer membrane vesicles

    Science.gov (United States)

    Altindis, Emrah; Fu, Yang; Mekalanos, John J.

    2014-01-01

    Outer membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon. The ToxT expression profile and potential contribution to virulence of these proteins were assessed using ToxT and in vivo RNA-seq, Tn-seq, and cholera stool proteomic and other genome-wide data sets. Thirteen OMV-associated proteins appear to be essential for cell growth, and therefore may represent antibacterial drug targets. Another 12 nonessential OMV proteins, including DegP protease, were required for intestinal colonization in rabbits. Comparative proteomics of a degP mutant revealed the importance of DegP in the incorporation of nine proteins into OMVs, including ones involved in biofilm matrix formation and various substrates of the type II secretion system. Taken together, these results suggest that DegP plays an important role in determining the content of OMVs and also affects phenotypes such as intestinal colonization, proper function of the type II secretion system, and formation of biofilm matrix. PMID:24706774

  7. The Cpx System Regulates Virulence Gene Expression in Vibrio cholerae

    Science.gov (United States)

    Acosta, Nicole; Pukatzki, Stefan

    2015-01-01

    Bacteria possess signal transduction pathways capable of sensing and responding to a wide variety of signals. The Cpx envelope stress response, composed of the sensor histidine kinase CpxA and the response regulator CpxR, senses and mediates adaptation to insults to the bacterial envelope. The Cpx response has been implicated in the regulation of a number of envelope-localized virulence determinants across bacterial species. Here, we show that activation of the Cpx pathway in Vibrio cholerae El Tor strain C6706 leads to a decrease in expression of the major virulence factors in this organism, cholera toxin (CT) and the toxin-coregulated pilus (TCP). Our results indicate that this occurs through the repression of production of the ToxT regulator and an additional upstream transcription factor, TcpP. The effect of the Cpx response on CT and TCP expression is mostly abrogated in a cyclic AMP receptor protein (CRP) mutant, although expression of the crp gene is unaltered. Since TcpP production is controlled by CRP, our data suggest a model whereby the Cpx response affects CRP function, which leads to diminished TcpP, ToxT, CT, and TCP production. PMID:25824837

  8. Molecular tools in understanding the evolution of Vibrio cholerae

    Science.gov (United States)

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  9. Nonredundant Roles of Iron Acquisition Systems in Vibrio cholerae.

    Science.gov (United States)

    Peng, Eric D; Wyckoff, Elizabeth E; Mey, Alexandra R; Fisher, Carolyn R; Payne, Shelley M

    2016-02-01

    Vibrio cholerae, the causative agent of the severe diarrheal disease cholera, thrives in both marine environments and the human host. To do so, it must encode the tools necessary to acquire essential nutrients, including iron, under these vastly different conditions. A number of V. cholerae iron acquisition systems have been identified; however, the precise role of each system is not fully understood. To test the roles of individual systems, we generated a series of mutants in which only one of the four systems that support iron acquisition on unsupplemented LB agar, Feo, Fbp, Vct, and Vib, remains functional. Analysis of these mutants under different growth conditions showed that these systems are not redundant. The strain carrying only the ferrous iron transporter Feo grew well at acidic, but not alkaline, pH, whereas the ferric iron transporter Fbp promoted better growth at alkaline than at acidic pH. A strain defective in all four systems (null mutant) had a severe growth defect under aerobic conditions but accumulated iron and grew as well as the wild type in the absence of oxygen, suggesting the presence of an additional, unidentified iron transporter in V. cholerae. In support of this, the null mutant was only moderately attenuated in an infant mouse model of infection. While the null mutant used heme as an iron source in vitro, we demonstrate that heme is not available to V. cholerae in the infant mouse intestine. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. A Periplasmic Polymer Curves Vibrio cholerae and Promotes Pathogenesis.

    Science.gov (United States)

    Bartlett, Thomas M; Bratton, Benjamin P; Duvshani, Amit; Miguel, Amanda; Sheng, Ying; Martin, Nicholas R; Nguyen, Jeffrey P; Persat, Alexandre; Desmarais, Samantha M; VanNieuwenhze, Michael S; Huang, Kerwyn Casey; Zhu, Jun; Shaevitz, Joshua W; Gitai, Zemer

    2017-01-12

    Pathogenic Vibrio cholerae remains a major human health concern. V. cholerae has a characteristic curved rod morphology, with a longer outer face and a shorter inner face. The mechanism and function of this curvature were previously unknown. Here, we identify and characterize CrvA, the first curvature determinant in V. cholerae. CrvA self-assembles into filaments at the inner face of cell curvature. Unlike traditional cytoskeletons, CrvA localizes to the periplasm and thus can be considered a periskeletal element. To quantify how curvature forms, we developed QuASAR (quantitative analysis of sacculus architecture remodeling), which measures subcellular peptidoglycan dynamics. QuASAR reveals that CrvA asymmetrically patterns peptidoglycan insertion rather than removal, causing more material insertions into the outer face than the inner face. Furthermore, crvA is quorum regulated, and CrvA-dependent curvature increases at high cell density. Finally, we demonstrate that CrvA promotes motility in hydrogels and confers an advantage in host colonization and pathogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages.

    Science.gov (United States)

    Hoque, M Mozammel; Naser, Iftekhar Bin; Bari, S M Nayeemul; Zhu, Jun; Mekalanos, John J; Faruque, Shah M

    2016-11-28

    Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed "quorum sensing" which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera.

  12. Vibrio cholerae: A historical perspective and current trend

    Directory of Open Access Journals (Sweden)

    Mary Oyenike Oladokun

    2016-11-01

    Full Text Available Vibrio cholerae (V. cholerae is a Gram-negative, curved, rod-shaped bacteria with two of its strains V. cholerae O1 and V. cholerae O139 known to cause cholera, a deadly diarrheal disease that has repeatedly plagued the world in pandemics since 1817 and still remains a public health problem globally till today. The pathogens’ persistence in aquatic milieux during inter-epidemic periods is facilitated by the production of a biofilm, thus evolving from being an infection of oral-fecal transmission to a more composite ecological framework of a communicable disease. The outbreaks of cholera spread rapidly in various intensities within and among countries and even continents and the World Health Organization estimates that 3–5 million cases outbreak and over 200 000 die yearly from cholera. Also, the impact of a cholera epidemic is not limited to its high morbidity and mortality rates alone, but also the grievous impact on the economy of the countries experiencing the outbreaks. In this review, we carried out an overview of V. cholerae including its isolation and detection, genetics as well as a comparison of the toxigenic and non-toxigenic determinants in the human host and the host defences. Furthermore, the history of global pandemics, cost implications, conflict and ecological methodologies of cholera prevention and control. The management of disease and antibiotic resistance in V. cholerae are also highlighted.

  13. Genetic characterization of trh positive Vibrio spp. isolated from Norway

    Directory of Open Access Journals (Sweden)

    Anette eBauer Ellingsen

    2013-12-01

    Full Text Available The thermostable direct hemolysin (TDH and/or TDH-related hemolysin (TRH genes are carried by most virulent Vibrio parahaemolyticus serovars. In Norway, trh+ V. parahaemolyticus constitute 4.4% and 4.5 % of the total number of V. parahaemolyticus isolated from blue mussel (Mytilus edulis and water, respectively. The trh gene is located in a region close to the gene cluster for urease production (ure. This region was characterized in V. parahaemolyticus strain TH3996 and it was found that a nickel transport operon (nik was located between the first gene (ureR and the rest of the ure cluster genes. The organization of the trh-ureR-nik-ure gene cluster in the Norwegian trh+ isolates was unknown. In this study, we explore the gene organization within the trh-ureR-nik-ure cluster for these isolates. PCR analyses revealed that the genes within the trh-ureR-nik-ure gene cluster of Norwegian trh+ isolates were organized in a similar fashion as reported previously for TH33996. Additionally, the phylogenetic relationship among these trh+ isolates was investigated using Multilocus Sequence Typing (MLST. Analysis by MLST or ureR-trh sequences generated two different phylogenetic trees for the same strains analyzed, suggesting that ureR-trh genes have been acquired at different times in Norwegian V. parahaemolyticus isolates. MLST results revealed that some pathogenic and non-pathogenic V. parahaemolyticus isolates in Norway appear to be highly genetically related.

  14. Ecology of Vibrio cholerae serogroup 01 in aquatic environments

    Directory of Open Access Journals (Sweden)

    René J. Borroto

    1997-01-01

    Full Text Available The endemic and seasonal nature of cholera depends upon the survival of Vibrio cholerae 01 in a viable but not necessarily culturable state in ecologic niches in aquatic environments during interepidemic periods. To understand the ecology of V. cholerae it is necessary to know which aquatic ecosystems can harbor it and thus contribute to the endemic presence of cholera in Latin America. This article summarizes knowledge about the ecology of V. cholerae 01, specifically, the abiotic and biotic factors that are relevant to the microbe’s survival in aquatic environments. This pathogen finds favorable conditions in waters characterized by moderate salinity, high nutrient content, warm temperature, neutral or slightly alkaline pH, and the presence of aquatic macrophytes, phytoplankton, zooplankton, fish, mollusks, and crusta ceans. These ecologic conditions are typical of estuaries and coastal swamps, and toxigenic V. cholerae 01 is now considered an autochthonous member of the microbial flora of these environments. The microorganism has also shown the ability to colonize freshwater ecosystems in its viable but not necessarily culturable form, if organic or inorganic substrates that favor its survival are available.

  15. Vibrio infections among marine and fresh-water fish

    Science.gov (United States)

    1959-01-01

    In 1951. B. J. Earpio found a vibrio infection among salmon fingerlings being reared in saltwater at the Deception Pass Biological Station of the Washington State Department of Fisheries. The disease waa characterized by erythema at the base of fins and on the sides of the fish, necrotic areas in the Inusculature, inflammation of the intestinal tract, and general septicernia. The disease reappeared the next year, killing nearly all of the churn salmon (Oncorhynchus keta) fingerlings, killing about half of the pink salmon (O. gorbuscha) fingerlings, and affecting to a lesser degree the chinook salmon (O. tshawytscha) fingerlings. Also, late in 1952. R. R. Rucker and E. J. Ordal found the same disease at a rainbow trout hatchery of the Washington State Department of Game at Vancouver. The disease caused severe losses there among the rainbow trout (Salmo gairdneri) and among the sea-run form of the same species (called steelhead trout). The disease was manifested by bloody, necrotic areas in the musculature and inflammation of the viscera, відоіШат to furumaculoвiв,

  16. The repertoire of glycosphingolipids recognized by Vibrio cholerae.

    Directory of Open Access Journals (Sweden)

    John Benktander

    Full Text Available The binding of cholera toxin to the ganglioside GM1 as the initial step in the process leading to diarrhea is nowadays textbook knowledge. In contrast, the knowledge about the mechanisms for attachment of Vibrio cholerae bacterial cells to the intestinal epithelium is limited. In order to clarify this issue, a large number of glycosphingolipid mixtures were screened for binding of El Tor V. cholerae. Several specific interactions with minor complex non-acid glycosphingolipids were thereby detected. After isolation of binding-active glycosphingolipids, characterization by mass spectrometry and proton NMR, and comparative binding studies, three distinct glycosphingolipid binding patterns were defined. Firstly, V. cholerae bound to complex lacto/neolacto glycosphingolipids with the GlcNAcβ3Galβ4GlcNAc sequence as the minimal binding epitope. Secondly, glycosphingolipids with a terminal Galα3Galα3Gal moiety were recognized, and the third specificity was the binding to lactosylceramide and related compounds. V. cholerae binding to lacto/neolacto glycosphingolipids, and to the other classes of binding-active compounds, remained after deletion of the chitin binding protein GbpA. Thus, the binding of V. cholerae to chitin and to lacto/neolacto containing glycosphingolipids represents two separate binding specificities.

  17. Structure of Vibrio cholerae ribosome hibernation promoting factor

    International Nuclear Information System (INIS)

    De Bari, Heather; Berry, Edward A.

    2013-01-01

    The X-ray crystal structure of ribosome hibernation promoting factor from V. cholerae has been determined at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The X-ray crystal structure of ribosome hibernation promoting factor (HPF) from Vibrio cholerae is presented at 2.0 Å resolution. The crystal was phased by two-wavelength MAD using cocrystallized cobalt. The asymmetric unit contained two molecules of HPF linked by four Co atoms. The metal-binding sites observed in the crystal are probably not related to biological function. The structure of HPF has a typical β–α–β–β–β–α fold consistent with previous structures of YfiA and HPF from Escherichia coli. Comparison of the new structure with that of HPF from E. coli bound to the Thermus thermophilus ribosome [Polikanov et al. (2012 ▶), Science, 336, 915–918] shows that no significant structural changes are induced in HPF by binding

  18. Characterization of Toxigenic Vibrio cholerae from Haiti, 2010–2011

    Science.gov (United States)

    Bopp, Cheryl; Tarr, Cheryl; Parsons, Michele B.; Dahourou, Georges; Freeman, Molly; Joyce, Kevin; Turnsek, Maryann; Garrett, Nancy; Humphrys, Michael; Gomez, Gerardo; Stroika, Steven; Boncy, Jacques; Ochieng, Benjamin; Oundo, Joseph; Klena, John; Smith, Anthony; Keddy, Karen; Gerner-Smidt, Peter

    2011-01-01

    In October 2010, the US Centers for Disease Control and Prevention received reports of cases of severe watery diarrhea in Haiti. The cause was confirmed to be toxigenic Vibrio cholerae, serogroup O1, serotype Ogawa, biotype El Tor. We characterized 122 isolates from Haiti and compared them with isolates from other countries. Antimicrobial drug susceptibility was tested by disk diffusion and broth microdilution. Analyses included identification of rstR and VC2346 genes, sequencing of ctxAB and tcpA genes, and pulsed-field gel electrophoresis with SfiI and NotI enzymes. All isolates were susceptible to doxycycline and azithromycin. One pulsed-field gel electrophoresis pattern predominated, and ctxB sequence of all isolates matched the B-7 allele. We identified the tcpETCIRS allele, which is also present in Bangladesh strain CIRS 101. These data show that the isolates from Haiti are clonally and genetically similar to isolates originating in Africa and southern Asia and that ctxB-7 and tcpETCIRS alleles are undergoing global dissemination. PMID:22099116

  19. Liver abscess associated with an oral flora bacterium Streptococcus anginosus

    Directory of Open Access Journals (Sweden)

    Hava Yılmaz

    2012-03-01

    Full Text Available Viridans group Streptococcus, a bacterium of the oral flora has a low-virulence and rarely causes liver abscess. A 40-yearoldmale patient was admitted to the hospital complaining of high fever and malaise. A physical examination revealedpoor oral hygiene; there were caries on many teeth, and he had hepatomegaly. A hepatic abscess was identified inhis abdominal tomography. Streptococcus anginosus was isolated from the drainage material, and the bile ducts werenormal in his MRI cholangiography. An immunocompetent case of liver abscess caused by Streptococcus anginosusoriginated most probably from oral flora is presented here. J Microbiol Infect Dis 2012; 2(1:33-35

  20. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.