WorldWideScience

Sample records for bacterium desulfovibrio desulfuricans

  1. Chemical composition of Desulfovibrio desulfuricans lipid A

    OpenAIRE

    Wolny, Daniel; Lodowska, Jolanta; Jaworska-Kik, Marzena; Kurkiewicz, Sławomir; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2010-01-01

    Lipopolysaccharides also called endotoxins are an integral component of the outer membrane of Gram-negative bacteria. When released from the bacterial surface, they interact with a host immune system, triggering excessive inflammatory response. Lipid A is the biologically most active part of endotoxin, and its activity is modulated by the quantity, quality and arrangement of its fatty acids. Desulfovibrio desulfuricans is sulfate-reducing, Gram-negative bacterium that is supposed to be opport...

  2. Genetic transfer in Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    An apparently defective bacteriophage capable of mediating transduction has been identified in culture filtrates of Desulfovibrio desulfuricans (American Type Culture Collection 27774). Phage-mediated intraspecies transfer of antibiotic resistance markers occurs with a frequency of 10-4 to 10-6 per recipient cell. The vector contains linear fragments of double-strained DNA of about 13.5 kilobase pairs, which appear to be random pieces of bacterial DNA. As yet, neither induction nor plaque formation has been observed. To the authors' knowledge, a system of genetic exchange has not been described before for a member of the sulfate-reducing bacteria

  3. TEM investigation of U6+ and Re7+ reduction by Desulfovibrio desulfuricans, a sulfate-reducing bacterium

    International Nuclear Information System (INIS)

    Uranium and its fission product Tc in aerobic environment will be in the forms of UO22+ and TcO4-. Reduced forms of tetravalent U and Tc are sparingly soluble. As determined by transmission electron microscopy, the reduction of uranyl acetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolic active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. The reduction of Re7+ by cells of Desulfovibrio desulfuricans is fast in media containing H2 an electron donor, and slow in media containing lactic acid. It is proposed that the cytochrome in these cells has an important role in the reduction of uranyl and Re7+ is (a chemical analogue for Tc7+) through transferring an electron from molecular hydrogen or lactic acid to the oxyions of UO22+ and TcO4-

  4. Effect of sulfide, selenite and mercuric mercury on the growth and methylation capacity of the sulfate reducing bacterium Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Cultures of the sulfate reducing bacteria Desulfovibrio desulfuricans were grown under anoxic conditions to study the effect of added sulfide, selenite and mercuric ions. A chemical trap consisting in a CuSO4 solution was used to control the poisoning effect induced by the bacterial production of hydrogen sulfide via the precipitation of CuS. Following the addition of Hg2+, the formation of methylmercury (MeHg) was correlated to bacterial proliferation with most of MeHg found in the culture medium. A large fraction (50–80%) of added Hg2+ to a culture ended up in a solid phase (Hg0 and likely HgS) limiting its bioavailability to cells with elemental Hg representing ∼ 40% of the solid. Following the addition of selenite, a small fraction was converted into Se(0) inside the cells and, even though the conversion to this selenium species increased with the increase of added selenite, it never reached more than 49% of the added amount. The formation of volatile dimethylselenide is suggested as another detoxification mechanism. In cultures containing both added selenite and mercuric ions, elemental forms of the two compounds were still produced and the increase of selenium in the residual fraction of the culture suggests the formation of mercuric selenite limiting the bioavailability of both elements to cells. - Highlights: ► Detoxification mechanisms of D. desulfuricans were studied in presence of added sulfide, selenite and mercuric ions. ► The poisoning effect of H2S added to or generated by cultures of D. desulfuricans can be controlled with a chemical trap. ► The addition of selenite to cultures triggered the formation of elemental Se and other forms of volatile and non-volatile Se. ► The addition of mercuric ions to cultures led to the production of methylmercury, volatile Hg and solid mercuric sulfide. ► With both Se and Hg added to cultures, fractionation of species in solid and liquid phases suggests the formation of HgSe

  5. Carbon flow in mercury biomethylation by Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Radiocarbon incorporation from pyruvate and serine into monomethylmercury by Desulfovibrio desulfuricans was consistent with the proposal that the methyl group originates from C-3 of serine. Immunodiagnostic assays measured 4 to 35 μg of tetrahydrofolate and 58 to 161 ng of cobalamin or a closely related cobalt porphyrin per g of cell protein in D. desulfuricans. The light-reversible inhibition of mercury methylation by propyl iodide in D. desulfuricans indicates methyl transfer by a cobalt porphyrin

  6. The influence of desulfovibrio desulfuricans on neptunium chemistry

    International Nuclear Information System (INIS)

    The role of biotic Np(V) reduction is studied in light of its potential role in the environmental immobilization of this hazardous radionuclide. The speciation of Np in Desulfovibrio desulfuricans cultures is compared with Np speciation in the spent medium and in the uninoculated medium. Precipitates formed in all three samples. Optical spectroscopy and X-ray absorption near edge structure (XANES) were used to determine that Np(V) is almost quantitatively reduced in all three samples and that the precipitate is an amorphous Np(IV) species. These results demonstrate that the reduction of Np is independent of Desulfovibrio desulfuricans. The underlying chemistry associated with these results is discussed

  7. Polymicrobial Bloodstream Infection with Eggerthella lenta and Desulfovibrio desulfuricans

    OpenAIRE

    Liderot, Karin; Larsson, Martin; Boräng, Stina; Özenci, Volkan

    2010-01-01

    The advancement in culture identification methods has made possible the culture and identification of slow-growing anaerobic bacteria in clinical samples. Here, we describe a case of polymicrobial bloodstream infection (BSI) caused by Eggerthella lenta and Desulfovibrio desulfuricans, identified by API 20A and Vitek 2 systems and by 16S rRNA sequencing.

  8. Extracellular iron-sulfur precipitates from growth of Desulfovibrio desulfuricans

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, M. R.; Tischler, M. L.; Witzcak, D.

    1999-12-20

    The authors have examined extracellular iron-bearing precipitates resulting from the growth of Desulfovibrio desulfuricans in a basal medium with lactate as the carbon source and ferrous sulfate. Black precipitates were obtained when D. desulfuricans was grown with an excess of FeSO{sub 4}. When D. desulfuricans was grown under conditions with low amounts of FeSO{sub 4}, brown precipitates were obtained. The precipitates were characterized by iron K-edge XAFS (X-ray absorption fine structure), {sup 57}Fe Moessbauer-effect spectroscopy, and powder X-ray diffraction. Both were noncrystalline and nonmagnetic (at room temperature) solids containing high-spin Fe(III). The spectroscopic data for the black precipitates indicate the formation of an iron-sulfur phase with 6 nearest S neighbors about Fe at an average distance of 2.24(1) {angstrom}, whereas the brown precipitates are an iron-oxygen-sulfur phase with 6 nearest O neighbors about Fe at an average distance of 1.95(1) {angstrom}.

  9. Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricans ND132

    Science.gov (United States)

    Colombo, Matthew J.; Ha, Juyoung; Reinfelder, John R.; Barkay, Tamar; Yee, Nathan

    2013-07-01

    The transformation of inorganic mercury (Hg) to methylmercury (MeHg) plays a key role in determining the amount of Hg that is bioaccumulated in aquatic food chains. An accurate knowledge of Hg methylation mechanisms is required to predict the conditions that promote MeHg production in aquatic environments. In this study, we conducted experiments to examine the oxidation and methylation of dissolved elemental mercury [Hg(0)] by the anaerobic bacterium Desulfovibrio desulfuricans ND132. Anoxic cultures of D. desulfuricans ND132 were exposed to Hg(0) in the dark, and samples were collected and analyzed for the loss of Hg(0), formation of non-purgeable Hg, and formation of MeHg over time. We found that D. desulfuricans ND132 rapidly transformed dissolved gaseous mercury into non-purgeable Hg, with bacterial cultures producing approximately 40 μg/L of non-purgeable Hg within 30 min, and as much as 800 μg/L of non-purgeable Hg after 36 h. Derivatization of the non-purgeable Hg in the cell suspensions to diethylmercury and analysis of Hg(0)-reacted D. desulfuricans ND132 cells using X-ray absorption near edge structure (XANES) spectroscopy demonstrated that cell-associated Hg was dominantly in the oxidized Hg(II) form. Spectral comparisons and linear combination fitting of the XANES spectra indicated that the oxidized Hg(II) was covalently bonded to cellular thiol functional groups. MeHg analyses revealed that D. desulfuricans ND132 produced up to 118 μg/L of methylmercury after 36 h of incubation. We found that a significant fraction of the methylated Hg was exported out of the cell and released into the culture medium. The results of this work demonstrate a previously unrecognized pathway in the mercury cycle, whereby anaerobic bacteria produce MeHg when provided with dissolved Hg(0) as their sole Hg source.

  10. Desulfovibrio desulfuricans Bacteremia in an Immunocompromised Host with a Liver Graft and Ulcerative Colitis

    OpenAIRE

    Verstreken, Isabel; Laleman, Wim; Wauters, Georges; Verhaegen, Jan

    2012-01-01

    Desulfovibrio spp. are anaerobic, sulfate-reducing, nonfermenting, Gram-negative bacteria found in the digestive tract of humans. Identification of these species with conventional methods is difficult. The reported case of a Desulfovibrio desulfuricans bacteremia occurring in an immunocompromised host with ulcerative colitis confirms that this organism may be a possible opportunistic human pathogen.

  11. Immobilizing U from solution by immobilized sulfate-reducing bacteria of desulfovibrio desulfuricans

    Science.gov (United States)

    Xu, Hulfang; Barton, Larry L.

    2000-07-01

    As determined by transmission electron microscopy, the reduction of uranyl accetate by immobilized cells of Desulfovibrio desulfuricans results in the production of black uraninite nanocrystals precipitated outside the cell. Some nanocrystals are associated with outer membranes of the cell as revealed from cross sections of these metabolically active sulfate-reducing bacteria. The nanocrystals have an average diameter of 5 nm and have anhedral shape. It is proposed that cytochrome in these cells has an important role in the reduction of uranyl through transferring electron from molecular hydrogen or lactic acid to uranyl ions.

  12. Broad-temperature range spectroscopy of the two-centre modular redox metalloprotein Desulfovibrio desulfuricans desulfoferrodoxin

    DEFF Research Database (Denmark)

    Andersen, Niels Højmark; Harnung, S.E.; Trabjerg, I.; Moura, I.; Moura, J.J.G.; Ulstrup, Jens

    , MCD, CD, and EPR spectroscopy. The UV/VIS spectra of grey DFx at room temperature is characterised by broad charge transfer (CT) transitions associated with oxidised centre 1 (495 and 368 nm) and II (335 and 635 nm). The transitions are resolved at 78 K, substantiated by VT-MCD and -CD. The data offer......The electronic-vibrational couplings of the two-centre non-heme iron protein Desulfovibrio desulfuricans desulfoferrodoxin (DFx) in three oxidation states, i.e. fully oxidised (grey), half-oxidised (pink), and fully reduced (colourless), have been investigated by variable temperature (VT) UV/VIS...

  13. Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans

    Energy Technology Data Exchange (ETDEWEB)

    Omajali, Jacob B., E-mail: JBO037@bham.ac.uk, E-mail: jbomajali@gmail.com; Mikheenko, Iryna P. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom); Merroun, Mohamed L. [University of Granada, Department of Microbiology, Faculty of Sciences (Spain); Wood, Joseph [University of Birmingham, School of Chemical Engineering (United Kingdom); Macaskie, Lynne E. [University of Birmingham, Unit of Functional Bionanomaterials, School of Biosciences, Institute of Microbiology and Infection (United Kingdom)

    2015-06-15

    Early studies have focused on the synthesis of palladium nanoparticles within the periplasmic layer or on the outer membrane of Desulfovibrio desulfuricans and on the S-layer protein of Bacillus sphaericus. However, it has remained unclear whether the synthesis of palladium nanoparticles also takes place in the bacterial cell cytoplasm. This study reports the use of high-resolution scanning transmission electron microscopy with a high-angle annular dark field detector and energy dispersive X-ray spectrometry attachment to investigate the intracellular synthesis of palladium nanoparticles (Pd NPs). We show the intracellular synthesis of Pd NPs within cells of two anaerobic strains of D. desulfuricans and an aerobic strain of B. benzeovorans using hydrogen and formate as electron donors. The Pd nanoparticles were small and largely monodispersed, between 0.2 and 8 nm, occasionally from 9 to 12 nm with occasional larger nanoparticles. With D. desulfuricans NCIMB 8307 (but not D. desulfuricans NCIMB 8326) and with B. benzeovorans NCIMB 12555, the NPs were larger when made at the expense of formate, co-localizing with phosphate in the latter, and were crystalline, but were amorphous when made with H{sub 2,} with no phosphorus association. The intracellular Pd nanoparticles were mainly icosahedrons with surfaces comprising {111} facets and about 5 % distortion when compared with that of bulk palladium. The particles were more concentrated in the cell cytoplasm than the cell wall, outer membrane, or periplasm. We provide new evidence for synthesis of palladium nanoparticles within the cytoplasm of bacteria, which were confirmed to maintain cellular integrity during this synthesis.

  14. Studies on bioremoval of copper and zinc by Desulfovibrio desulfuricans isolated from Chitradurga mine sites, India

    Directory of Open Access Journals (Sweden)

    Chandraprabha M N

    2012-08-01

    Full Text Available Normal 0 false false false Normal 0 false false false This paper reports the study on the feasibility of bioremoval of copper and zinc using sulphate reducing bacteria (Desulfovibrio desulfuricans grown on low cost carbon sources like rice husk, saw dust and manure. Efficient growth of wild strain was achieved with all the low-cost carbon substrates. The inhibition effect of copper and zinc sulphate on the growth of D. desulfuricans cells was established and was found to be concentration dependent. 25 ppm Cu(II and 30 ppm Zn(II ions were able to completely inhibit the growth of cells. Strains tolerant to higher metal ion concentrations were obtained by serial subculturing and used for bioremoval studies. Direct bioremoval of copper and zinc during the growth was achieved for all the strains. Strains grown in presence of rice husk had higher bioremoval efficiency with percent removal of nearly 72% and 86% for 500 ppm of initial copper and zinc concentration respectively.

  15. Study of the cathodic depolarization theory with hydrogen permeation and the bacteria Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    A Desulfovibrio desulfuricans ssp. desulfuricans (SRB) was used to study the permeation of hydrogen, using a Devanatan and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanisms in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10% SRB concentrated at 10''8 cell/ml. the results indicate bacterial growth in the order of 10''9-10''10 cel/ml after 18 h both in the polarized and non-polarized, tests, indicating that SRB developed regardless of the surface polarized as a source of H''0, generating H2S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H* generated by the H2S dissociation (pd is not susceptible to corrosion at this condition). On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria. (Author) 8 refs

  16. Versatility of a new bioinorganic catalyst: palladized cells of Desulfovibrio desulfuricans and application to dehalogenation of flame retardant materials.

    Science.gov (United States)

    Deplanche, K; Snape, T J; Hazrati, S; Harrad, S; Macaskie, L E

    2009-06-01

    The versatility and reaction specificity of a novel bioinorganic catalyst is demonstrated in various reactions. Palladized cells (bioPd) of the sulphate-reducing bacterium Desulfovibrio desulfuricans showed an increased product selectivity and a catalytic activity comparable to a commercial Pd catalyst in several industrially relevant hydrogenations and hydrogenolyses (reductive dehalogenations). The ability of palladized cells to promote the reductive debromination of a polybrominated diphenyl ether (PBDE #47) is demonstrated, although chemically reduced Pd(II) and commercial Pd(0) were more effective debromination agents. Polybrominated diphenyl ethers are being supplanted as flame retardants by other compounds, e.g. tris(chloroisopropyl)phosphate (TCPP), the concentration of which was seen to increase approximately 10-fold in groundwater samples between 2000 and 2004. BioPd dechlorinated TCPP in groundwater samples with >90% recovery of free chloride ion, and was five times more effective than using commercial Pd(0) catalyst. Examination of the spent groundwater using 31P NMR showed a phosphorus species novel to the bioPd-treated solution, which was not evident in a commercial reference sample of TCPP. PMID:19705605

  17. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    International Nuclear Information System (INIS)

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days-1 while the half-velocity constant (Ks) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (kd) was calculated as 0.072 days-1. After reduction, U(IV) Precipitated from solution in the uraninite (UO2) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat

  18. Determination of kinetic coefficients for the simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Tucker, M.D.

    1995-05-01

    Uranium contamination of groundwaters and surface waters near abandoned mill tailings piles is a serious concern in many areas of the western United States. Uranium usually exists in either the U(IV) or the U(VI) oxidation state. U(VI) is soluble in water and, as a result, is very mobile in the environment. U(IV), however, is generally insoluble in water and, therefore, is not subject to aqueous transport. In recent years, researchers have discovered that certain anaerobic microorganisms, such as the sulfate-reducing bacteria Desulfovibrio desulfuricans, can mediate the reduction of U(VI) to U(IV). Although the ability of this microorganism to reduce U(VI) has been studied in some detail by previous researchers, the kinetics of the reactions have not been characterized. The purpose of this research was to perform kinetic studies on Desulfovibrio desulficans bacteria during simultaneous reduction of sulfate and uranium and to determine the phase in which uranium exists after it has been reduced and precipitated from solution. The studies were conducted in a laboratory-scale chemostat under substrate-limited growth conditions with pyruvate as the substrate. Kinetic coefficients for substrate utilization and cell growth were calculated using the Monod equation. The maximum rate of substrate utilization (k) was determined to be 4.70 days{sup {minus}1} while the half-velocity constant (K{sub s}) was 140 mg/l COD. The yield coefficient (Y) was determined to be 0.17 mg cells/mg COD while the endogenous decay coefficient (k{sub d}) was calculated as 0.072 days{sup {minus}1}. After reduction, U(IV) Precipitated from solution in the uraninite (UO{sub 2}) phase. Uranium removal efficiency as high as 90% was achieved in the chemostat.

  19. Reduction of technetium by Desulfovibrio desulfuricans: Biocatalyst characterization and use in a flowthrough bioreactor

    International Nuclear Information System (INIS)

    Resting cells of Desulfovibrio desulfuricans coupled the oxidation of a range of electron donors to Tc(VII) reduction. The reduced technetium was precipitated as an insoluble low-valence oxide. The optimum electron donor for the biotransformation was hydrogen, although rapid rates of reduction were also supported when formate or pyruvate was supplied to the cells. Technetium reduction was less efficient when the growth substrates lactate and ethanol were supplied as electron donors, while glycerol, succinate, acetate, and methanol supported negligible reduction. Enzyme activity was stable for several weeks and was insensitive to oxygen. Transmission electron microscopy showed that the radionuclide was precipitated at the periphery of the cell. Cells poisoned with Cu(II), which is selective for periplasmic but not cytoplasmic hydrogenases, were unable to reduce Tc(VII), a result consistent with the involvement of a periplasmic hydrogenase in Tc(VII) reduction. Resting cells, immobilized in a flowthrough membrane bioreactor and supplied with Tc(VII)-supplemented solution, accumulated substantial quantities of the radionuclide when formate was supplied as the electron donor, indicating the potential of this organism as a biocatalyst to treat Tc-contaminated wastewaters

  20. Kinetic coefficients for simultaneous reduction of sulfate and uranium by Desulfovibrio desulfuricans

    International Nuclear Information System (INIS)

    Previously it was demonstrated that bacteria are capable of transforming soluble uranyl ion, U(VI), to insoluble uraninite, U(IV); however, the rate for this transformation has not been determined. We report the kinetic coefficients for Desulfovibrio desulfuricans DSM 1924 grown in a continuous-flow chemostat where pyruvate was the electron donor and sulfate was the electron acceptor. The medium was supplemented with 1 mM uranyl nitrate, and the chemostat flow rate ranged from 1.12 ml/h to 4.75 ml/h with incubation at 28 C. The maximum rate of pyruvate utilization (k) was determined to be 4.7 days-1, while the half-velocity constant (Ks) was 127 mg/l. The yield coefficient (Y) of cells per mole of pyruvate oxidized was calculated to be 0.021 g, while the endogenous decay coefficient (kd) was determined to be 0.072 days-1. More than 90% of U(VI) was transformed to U(VI) in the chemostat under the conditions employed. (orig.)

  1. Hydrogenase Activity of Mineral-Associated and Suspended Populations of Desulfovibrio desulfuricans Essex 6

    Energy Technology Data Exchange (ETDEWEB)

    C.L. Reardon; T.S. Magnuson; E.S. Boyd; W.D. Leavitt; D.W. Reed; G.G. Geesey

    2014-02-01

    The interactions between sulfate-reducing microorganisms and iron oxides influence a number of important redox-sensitive biogeochemical processes including the formation of iron sulfides. Enzymes, such as hydrogenase which catalyze the reversible oxidation of molecular hydrogen, are known to mediate electron transfer to metals and may contribute to the formation and speciation of ferrous sulfides formed at the cell–mineral interface. In the present study, we compared the whole cell hydrogenase activity of Desulfovibrio desulfuricans strain Essex 6 growing as biofilms on hematite (hematite-associated) or as suspended populations using different metabolic pathways. Hematite-associated cells exhibited significantly greater hydrogenase activity than suspended populations during sulfate respiration but not during pyruvate fermentation. The enhanced activity of the hematite-associated, sulfate-grown cells appears to be dependent on iron availability rather than a general response to surface attachment since the activity of glass-associated cells did not differ from that of suspended populations. Hydrogenase activity of pyruvate-fermenting cells was stimulated by addition of iron as soluble Fe(II)Cl2 and, in the absence of added iron, both sulfate-reducing and pyruvate-fermenting cells displayed similar rates of hydrogenase activity. These data suggest that iron exerts a stronger influence on whole cell hydrogenase activity than either metabolic pathway or mode of growth. The location of hydrogenase to the cell envelope and the enhanced activity at the hematite surface in sulfate-reducing cells may influence the redox conditions that control the species of iron sulfides on the mineral surface.

  2. AFM study of microbial colonization and its deleterious effect on 304 stainless steel by Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans in simulated seawater

    International Nuclear Information System (INIS)

    The biofilm colonization dynamics of Pseudomonas NCIMB 2021 and Desulfovibrio desulfuricans (ATCC 27774) on 304 stainless steels (304 SS) was evaluated using atomic force microscopy (AFM) in simulated seawater-based media under aerobic and anaerobic conditions. Results showed that the biofilm formed on the coupon surface by the two strains of bacteria increased in the coverage, heterogeneity and thickness with exposure time, thus resulting in the deterioration of the steel substratum underneath the biofilm in the form of pitting corrosion. The depth of pits induced by D. desulfuricans was larger than that by Pseudomonas NCIMB 2021, which was mainly attributed to the enhanced corrosion of 304 SS coupons by the biogenic sulfide ions, as revealed by the results of X-ray photoelectron spectroscopy (XPS) and Tafel polarization curves. AFM was also used to determine cell attachment/detachment processes of the Pseudomonas and D. desulfuricans bacteria on the coupon surface by quantifying the tip-cell interaction forces. The interactive forces between the tip and the bacterial cell surface were considerably smaller than those between the tip and the cell-cell interface due to the accumulation of extra-cellular polymeric substances (EPS) for both strains. Furthermore, the adhesion forces over the Pseudomonas cells were verified to be more attractive than those of D. desulfuricans due to the former being a slime-producer.

  3. Microbial induced corrosion (MIC) on DHP copper by Desulfovibrio desulfuricans and Bacillus megaterium strains in media simulating heater waters

    International Nuclear Information System (INIS)

    The complexity and diversity of microbial populations in water heating systems of steam generators make it necessary to study the magnitude of the metabolic activity of bacteria and biofilm development that may lead to degradation of metal components through microbial induced corrosion (MIC). Electrolytes simulating the conditions found in heater water networks were used to induce biofilm formation on DHP copper coupons by Desulfovibrio desulfuricans DSMZ and Bacillus megaterium C10, a commercial strain and an isolate from these waters, respectively. In order to enhance their action, industrial waters enriched with the minimum nutrient content such as sodium lactate and sodium sulphite for the DSMZ strain and glucose, proteose peptone and starch for the C10 strain were employed. Biofilm formation was studied under controlled temperature, time, shaking, pH and concentrations of the media used in this study. Then, the samples were electrochemically tested in an artificial solution of sea water as control medium, based on the hypothesis that the action of an aggressive biofilm/electrolyte medium generates damaged and non-damaged areas on the metal surface, and assuming that the sea water trial can detect the latter. Hence, a higher anodic current was associated with a lower degradation of the metal surface by the action of one of the media under study. All these trials were performed along with bacterial count, scanning electron microscopy (SEM) and atomic absorption spectroscopy (AAS). Furthermore, it was possible to identify under which conditions MIC on DHP copper occurred and complex mechanisms from retention of cations to diffusion processes at the biofilm/tested media interface level were proposed. Surface corrosion by MIC took place on DHP copper; therefore, greater control on the treatment of industrial waters is highly desirable. (author)

  4. Microbial induced corrosion (MIC) on DHP copper by Desulfovibrio desulfuricans and Bacillus megaterium strains in media simulating heater waters

    Energy Technology Data Exchange (ETDEWEB)

    Zumelzu, E.; Cabezas, C.; Schoebitz, R.; Ugarte, R.; Rodriguez, E.D.; Rios, J. [Universidad Austral de Chile, Valdivia (Chile)

    2003-01-01

    The complexity and diversity of microbial populations in water heating systems of steam generators make it necessary to study the magnitude of the metabolic activity of bacteria and biofilm development that may lead to degradation of metal components through microbial induced corrosion (MIC). Electrolytes simulating the conditions found in heater water networks were used to induce biofilm formation on DHP copper coupons by Desulfovibrio desulfuricans DSMZ and Bacillus megaterium C10, a commercial strain and an isolate from these waters, respectively. In order to enhance their action, industrial waters enriched with the minimum nutrient content such as sodium lactate and sodium sulphite for the DSMZ strain and glucose, proteose peptone and starch for the C10 strain were employed. Biofilm formation was studied under controlled temperature, time, shaking, pH and concentrations of the media used in this study. Then, the samples were electrochemically tested in an artificial solution of sea water as control medium, based on the hypothesis that the action of an aggressive biofilm/electrolyte medium generates damaged and non-damaged areas on the metal surface, and assuming that the sea water trial can detect the latter. Hence, a higher anodic current was associated with a lower degradation of the metal surface by the action of one of the media under study. All these trials were performed along with bacterial count, scanning electron microscopy (SEM) and atomic absorption spectroscopy (AAS). Furthermore, it was possible to identify under which conditions MIC on DHP copper occurred and complex mechanisms from retention of cations to diffusion processes at the biofilm/tested media interface level were proposed. Surface corrosion by MIC took place on DHP copper; therefore, greater control on the treatment of industrial waters is highly desirable. (author)

  5. The patterns of utilization of sulfate and nitrate ions by bacteria Desulfomicrobium sp. CrR3 and Desulfovibrio desulfuricans Ya-11

    Directory of Open Access Journals (Sweden)

    L. S. Dorosh

    2015-06-01

    Full Text Available The aim of this work was to study the patterns of utilization of sulfate and nitrate ions by bacteria Desulfomicrobium sp. CrR3 and Desulfovibrio desulfuricans Ya-11 under different cultivation conditions. Chromium-resistant sulfate-reducing bacteria Desulfomicrobium sp. CrR3 and D. desulfuricans Ya-11 were used. Bacteria were grown in Posgate C medium at 30°C in 25 ml test tubes under anaerobic conditions. To test the ability of bacteria Desulfomicrobium sp. CrR3 and D. desulfuricans Ya-11 to use various substances and ions as electron acceptors, they were incubated in potassium phosphate buffer (10 mM, pH 7 with sulfate, nitrate and nitrite ions in concentrations of 1, 5 and 10 mM. At various concentrations of sulfate ions (1, 5 and 10 mM, biomass of bacteria Desulfomicrobium sp. CrR3 and D. desulfuricans Ya-11 increased with the increase of concentration of electron acceptor, the maximum biomass was equal to 3.65 and 3.05 g/l at 10 mM of sulfate ions, respectively. With the increase of concentration of nitrate ions to 5 mM the biomass increased by 70% compared to the biomass of bacteria grown in the medium with nitrate ions at the concentration 1 mM. The maximal biomass was determined in the presence of nitrate ions at a concentration of 10 mM – 3.78 and 3.15 g/l for bacteria Desulfomicrobium sp. CrR3 and D. desulfuricans Ya-11, respectively. It is found, as a result of incubation of bacteria Desulfomicrobium sp. CrR3 and D. desulfuricans Ya-11, that by introducing sulfate ions at a concentration of 5 mM bacteria Desulfomicrobium sp. CrR3 used 98%, while D. desulfuricans Ya-11 used only 86%, and under these conditions hydrogen sulfide has been detected in the incubation mixture at the concentration of 0.8–1.0 mM. In the presence of 10 mM of sulfate ions efficiency of electron acceptors utilization was equal to 85–95% for both strains. Bacteria Desulfomicrobium sp. CrR3 intensively used nitrate ions, the efficiency of electron

  6. Reclassification of the sulfate- and nitrate-reducing bacterium Desulfovibrio vulgaris subsp oxamicus as Desulfovibrio oxamicus sp nov., comb. nov

    OpenAIRE

    Lopez Cortes, A.; Fardeau, Marie-Laure; Fauque, Guy; Joulian, C.; Ollivier, Bernard

    2006-01-01

    Desulfovibrio vulgaris subsp. oxamicus (type strain, DSM 1925(T)) was found to use nitrate as a terminal electron acceptor, the latter being reduced to ammonium. Phylogenetic studies indicated that strain DSM 1925 T was distantly related to the type strain of Desulfovibrio vulgaris (95(.)4% similarity of the small-subunit rRNA gene) and had as its closest phylogenetic relatives two other nitrate- and sulfate-reducing bacteria, namely Desulfovibrio termitidis (99(.)4% similarity) and Desulfovi...

  7. Bacterial Lifestyle in a Deep-sea Hydrothermal Vent Chimney Revealed by the Genome Sequence of the Thermophilic Bacterium Deferribacter desulfuricans SSM1

    OpenAIRE

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-01-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2 234 389 bp and a megaplasmid of 308 544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily d...

  8. Bacterial lifestyle in a deep-sea hydrothermal vent chimney revealed by the genome sequence of the thermophilic bacterium Deferribacter desulfuricans SSM1.

    Science.gov (United States)

    Takaki, Yoshihiro; Shimamura, Shigeru; Nakagawa, Satoshi; Fukuhara, Yasuo; Horikawa, Hiroshi; Ankai, Akiho; Harada, Takeshi; Hosoyama, Akira; Oguchi, Akio; Fukui, Shigehiro; Fujita, Nobuyuki; Takami, Hideto; Takai, Ken

    2010-06-01

    The complete genome sequence of the thermophilic sulphur-reducing bacterium, Deferribacter desulfuricans SMM1, isolated from a hydrothermal vent chimney has been determined. The genome comprises a single circular chromosome of 2,234,389 bp and a megaplasmid of 308,544 bp. Many genes encoded in the genome are most similar to the genes of sulphur- or sulphate-reducing bacterial species within Deltaproteobacteria. The reconstructed central metabolisms showed a heterotrophic lifestyle primarily driven by C1 to C3 organics, e.g. formate, acetate, and pyruvate, and also suggested that the inability of autotrophy via a reductive tricarboxylic acid cycle may be due to the lack of ATP-dependent citrate lyase. In addition, the genome encodes numerous genes for chemoreceptors, chemotaxis-like systems, and signal transduction machineries. These signalling networks may be linked to this bacterium's versatile energy metabolisms and may provide ecophysiological advantages for D. desulfuricans SSM1 thriving in the physically and chemically fluctuating environments near hydrothermal vents. This is the first genome sequence from the phylum Deferribacteres. PMID:20189949

  9. Estudio de la teoría de despolarización catódica con permeación de hidrógeno y la bacteria Desulfovibrio desulfuricans

    Directory of Open Access Journals (Sweden)

    Pérez, O.

    2003-12-01

    Full Text Available A Desulfovibrio desulfuricans ssp. desulfuricans (SRB was used to study the permeation of hydrogen, using a Devanaran and Stachurski cell and a palladium sheet. The aim was to evaluate cathodic depolarization as a Sulfate-Reducing Bacteria action mechanism in Microbiologically Induced Corrosion. The permeation tests were run with and without cathodic polarization, using a sterile deaerated culture medium inoculated with 10 % SRB concentrated at 108 cel/ml. The results indicate bacterial growth in the order of 109-1010 cel/ml after 18 h both in the polarized and non-polarized tests, indicating that SRB developed regardless of the surface polarized as a source of H0, generating H2S as a product of the anaerobic respiration. It was also determined that, without cathodic polarization, the conditions are not enough to reduce the H+ generated by the H2S dissociation (Pd is not susceptible to corrosion at this condition. On the other hand, cathodic polarization increased the permeation current, which was associated with the maximum enzymatic activity phase of the bacteria.En este trabajo se estudió la permeación del hidrógeno proveniente de una cepa pura de bacterias sulfato reductoras-BSR (Desulfovibrio desulfuricans ssp. desulfuricans, utilizando para ello el tipo de celda de permeación de hidrógeno y una lámina de paladio (Pd. Esto se hizo con la finalidad de evaluar la despolarización catódica como mecanismo de acción de las BSR en la corrosión inducida microbiológicamente. Los ensayos de permeación se realizaron sin y con polarización catódica, utilizando un medio de cultivo estéril desaireado e inoculado con 10 % de BSR a una concentración de 108 cel/ml. Los resultados obtenidos indicaron crecimiento en 109-1010 cel/ml a las 18 h tanto en los ensayos sin polarización como en aquellos con polarización, lo cual refleja que la BSR se desarrolla independientemente de una superficie polarizada como fuente de H0, generando H2S como

  10. Oxygen-Dependent Growth of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in Coculture with Marinobacter sp. Strain MB in an Aerated Sulfate-Depleted Chemostat

    OpenAIRE

    Sigalevich, Pavel; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae and the facultatively aerobic heterotroph Marinobacter sp. strain MB was grown for 1 week under anaerobic conditions at a dilution rate of 0.05 h−1. It was then exposed to an oxygen flux of 223 μmol min−1 by gassing the growth vessel with 5% O2. Sulfate reduction persisted under these conditions, though the amount of sulfate reduced decreased by 45% compared to the amount reduced during the initial anaerobic mode....

  11. Aerotaxis in Desulfovibrio

    DEFF Research Database (Denmark)

    Wieland, Andrea Karin Eschemann; Kühl, Michael; Cypionka, H.

    1999-01-01

    Aerotaxis of two sulphate-reducing bacteria, the freshwater strain Desulfovibrio desulfuricans CSN (DSM 9104) and the marine strain Desulfovibrio oxyclinae N13 (DSM 11498), was studied using capillary microslides, microscopy and oxygen microsensors. The bacteria formed ring-shaped bands in oxygen...... density and the strain used in the suspension. Band formation did not occur in the absence of an electron donor (5 mM lactate) or when N2 gas bubbles were used. Both strains were highly motile with velocities of ˜ 32 µm s-1 during forward runs, and 7 µm s-1 during backward runs respectively. Within the...

  12. Sulfate Reduction and Possible Aerobic Metabolism of the Sulfate-Reducing Bacterium Desulfovibrio oxyclinae in a Chemostat Coculture with Marinobacter sp. Strain MB under Exposure to Increasing Oxygen Concentrations

    OpenAIRE

    Sigalevich, Pavel; Baev, Mark V.; Teske, Andreas; Cohen, Yehuda

    2000-01-01

    A chemostat coculture of the sulfate-reducing bacterium Desulfovibrio oxyclinae together with a facultative aerobe heterotroph tentatively identified as Marinobacter sp. strain MB was grown under anaerobic conditions and then exposed to a stepwise-increasing oxygen influx (0 to 20% O2 in the incoming gas phase). The coculture consumed oxygen efficiently, and no residual oxygen was detected with an oxygen supply of up to 5%. Sulfate reduction persisted at all levels of oxygen input, even at th...

  13. Biocorrosion of carbon steel alloys by an hydrogenotrophic sulfate-reducing bacterium Desulfovibrio capillatus isolated from a Mexican oil field separator

    International Nuclear Information System (INIS)

    The hydrogenotrophic sulfate-reducing bacterium (SRB) Desulfovibrio capillatus (DSM14982T) was isolated from an oil field separator with serious corrosion problems; this is the study of its role in the corrosion of carbon steels under anaerobic conditions. Immersion tests with two steel alloys, St-35.8 (typical carbon steel employed in European naval industry), and API-5XL52 (weathering alloy steel employed in Mexican oil industries) were performed. Total exposure was 45 days and different concentrations of thiosulfate as electron acceptor for bacterial growth were employed. The samples immersed in media with SRB undergo fast activation and numerous active sites form on the surface. Microscopic observations were made by environmental scanning electron microscopy (ESEM). Weight loss and electrochemical testing included open circuit potential (E corr), polarization resistance (R p), electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) were measured with and without bacteria in the culture medium in order to determine corrosion rates and mechanisms. All electrochemical techniques have shown that after the end of the exponential phase the corrosion activity notably increased due to the high concentration of bacterial metabolites. Finally, the corrosion behavior of API-5XL52 was worse than St-35.8

  14. Post-Translational Modifications of Desulfovibrio vulgaris Hildenborough Sulfate Reduction Pathway Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Gaucher, S.P.; Redding, A.M.; Mukhopadhyay, A.; Keasling, J.D.; Singh, A.K.

    2008-03-01

    Recent developments in shotgun proteomics have enabled high-throughput studies of a variety of microorganisms at a proteome level and provide experimental validation for predicted open reading frames in the corresponding genome. More importantly, advances in mass spectrometric data analysis now allow mining of large proteomics data sets for the presence of post-translational modifications(PTMs). Although PTMs are a critical aspectof cellular activity, such information eludes cell-wide studies conducted at the transcript level. Here, we analyze several mass spectrometric data sets acquired using two-dimensional liquid chromatography tandem mass spectrometry, 2D-LC/MS/MS, for the sulfate reducing bacterium, Desulfovibrio vulgaris Hildenborough. Our searches of the raw spectra led us to discover several post-translationally modified peptides in D. vulgaris. Of these, several peptides containing a lysine with a +42 Da modification were found reproducibly across all data sets. Both acetylation and trimethylation have the same nominal +42 Da mass, and are therefore candidates for this modification. Several spectra were identified having markers for trimethylation, while one is consistent with an acetylation. Surprisingly, these modified peptides predominantly mapped to proteins involved in sulfate respiration. Other highly expressed proteins in D. vulgaris, such as enzymes involved in electron transport and other central metabolic processes, did not contain this modification. Decoy database searches were used to control for random spectrum/sequence matches. Additional validation for these modifications was provided by alternate workflows, for example, two-dimensional gel electrophoresis followed by mass spectrometry analysis of the dissimilatory sulfite reductase gamma-subunit(DsrC) protein. MS data for DsrC in this alternate workflow also contained the +42 Da modification at the same loci. Furthermore, the DsrC homologue in another sulfate reducing bacterium

  15. A Marine Sulfate-Reducing Bacterium Producing Multiple Antibiotics: Biological and Chemical Investigation

    Directory of Open Access Journals (Sweden)

    Xiaoliang Wang

    2009-07-01

    Full Text Available A marine sulfate-reducing bacterium SRB-22 was isolated by means of the agar shake dilution method and identified as Desulfovibrio desulfuricans by morphological, physiological and biochemical characteristics and 16S rDNA analysis. In the bioassay, its extract showed broad-spectrum antimicrobial activity using the paper disc agar diffusion method. This isolate showed a different antimicrobial profile than either ampicillin or nystatin and was found to produce at least eight antimicrobial components by bioautography. Suitable fermentation conditions for production of the active constituents were determined to be 28 day cultivation at 25 °C to 30 °C with a 10% inoculation ratio. Under these conditions, the SRB-22 was fermented, extracted and chemically investigated. So far an antimicrobial compound, mono-n-butyl phthalate, and an inactive compound, thymine, have been isolated and characterized.

  16. Reduction of U(VI) and Toxic Metals by Desulfovibrio Cytochrome C3

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Judy D

    2013-04-11

    The central objective of our proposed research was twofold: 1) to investigate the structure-function relationship of Desulfovibrio desulfuricans (now Desulfovibrio alaskensis G20) cytochrome c3 with uranium and 2) to elucidate the mechanism for uranium reduction in vitro and in vivo. Physiological analysis of a mutant of D. desulfuricans with a mutation of the gene encoding the type 1 tetraheme cytochrome c3 had demonstrated that uranium reduction was negatively impacted while sulfate reduction was not if lactate were the electron donor. This was thought to be due to the presence of a branched pathway of electron flow from lactate leading to sulfate reduction. Our experimental plan was to elucidate the structural and mechanistic details of uranium reduction involving cytochrome c3.

  17. Desulfovibrio sp. Genes Involved in the Respiration of Sulfate during Metabolism of Hydrogen and Lactate

    OpenAIRE

    Steger, Jennifer L.; Vincent, Carr; Ballard, Jimmy D.; Lee R. Krumholz

    2002-01-01

    To develop a better understanding of respiration by sulfate-reducing bacteria, we examined transcriptional control of respiratory genes during growth with lactate or hydrogen as an electron donor. RNA extracts of Desulfovibrio desulfuricans subsp. aestuarii were analyzed by using random arbitrarily primed PCR. RNA was reverse transcribed under low-stringency conditions with a set of random primers, and candidate cDNAs were cloned, sequenced, and characterized by BLAST analysis. Putative diffe...

  18. Cobalt-, zinc- and iron-bound forms of adenylate kinase (AK) from the sulfate-reducing bacterium Desulfovibrio gigas: purification, crystallization and preliminary X-ray diffraction analysis

    International Nuclear Information System (INIS)

    Adenylate kinase (AK) from D. gigas was purified and crystallized in three different metal-bound forms: Zn2+–AK, Co2+–AK and Fe2+–AK. Adenylate kinase (AK; ATP:AMP phosphotransferase; EC 2.7.4.3) is involved in the reversible transfer of the terminal phosphate group from ATP to AMP. AKs contribute to the maintenance of a constant level of cellular adenine nucleotides, which is necessary for the energetic metabolism of the cell. Three metal ions, cobalt, zinc and iron(II), have been reported to be present in AKs from some Gram-negative bacteria. Native zinc-containing AK from Desulfovibrio gigas was purified to homogeneity and crystallized. The crystals diffracted to beyond 1.8 Å resolution. Furthermore, cobalt- and iron-containing crystal forms of recombinant AK were also obtained and diffracted to 2.0 and 3.0 Å resolution, respectively. Zn2+–AK and Fe2+–AK crystallized in space group I222 with similar unit-cell parameters, whereas Co2+–AK crystallized in space group C2; a monomer was present in the asymmetric unit for both the Zn2+–AK and Fe2+–AK forms and a dimer was present for the Co2+–AK form. The structures of the three metal-bound forms of AK will provide new insights into the role and selectivity of the metal in these enzymes

  19. Extracellular Electron Transfer Is a Bottleneck in the Microbiologically Influenced Corrosion of C1018 Carbon Steel by the Biofilm of Sulfate-Reducing Bacterium Desulfovibrio vulgaris.

    Directory of Open Access Journals (Sweden)

    Huabing Li

    Full Text Available Carbon steels are widely used in the oil and gas industry from downhole tubing to transport trunk lines. Microbes form biofilms, some of which cause the so-called microbiologically influenced corrosion (MIC of carbon steels. MIC by sulfate reducing bacteria (SRB is often a leading cause in MIC failures. Electrogenic SRB sessile cells harvest extracellular electrons from elemental iron oxidation for energy production in their metabolism. A previous study suggested that electron mediators riboflavin and flavin adenine dinucleotide (FAD both accelerated the MIC of 304 stainless steel by the Desulfovibrio vulgaris biofilm that is a corrosive SRB biofilm. Compared with stainless steels, carbon steels are usually far more prone to SRB attacks because SRB biofilms form much denser biofilms on carbon steel surfaces with a sessile cell density that is two orders of magnitude higher. In this work, C1018 carbon steel coupons were used in tests of MIC by D. vulgaris with and without an electron mediator. Experimental weight loss and pit depth data conclusively confirmed that both riboflavin and FAD were able to accelerate D. vulgaris attack against the carbon steel considerably. It has important implications in MIC failure analysis and MIC mitigation in the oil and gas industry.

  20. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Wilkins, Michael J.; Hoyt, David W.; Marshall, Matthew J.; Alderson, Paul A.; Plymale, Andrew E.; Markillie, Lye Meng; Tucker, Abigail E.; Walter, Eric D.; Linggi, Bryan E.; Dohnalkova, Alice; Taylor, Ronald C.

    2014-09-01

    Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  1. CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

    Directory of Open Access Journals (Sweden)

    Michael J Wilkins

    2014-09-01

    Full Text Available Geologic carbon dioxide (CO2 sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least four hours, and at 80 bar CO2 for two hours. The fraction of dead cells increased rapidly after four hours at 80 bar CO2. Transcriptomic (RNA-Seq measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.

  2. STUDIES ON BIOSORPTION OF ZINC(II) AND COPPER(II) ON DESULFOVIBRIO DESULFURICANS

    Science.gov (United States)

    The objectives of thes studies are to determine the equilibrium concentration and kinetics of metal sorption on sulfate-reducing bacteria (SRB) isolates. Adsorption establishes the net reversible cellular metal uptake and is related to SRB metal toxicity and the effects of enviro...

  3. The influence of nickel on the adhesion ability of Desulfovibrio desulfuricans

    OpenAIRE

    F. A. Lopes; Morin, P.; Oliveira, R; L. F. Melo

    2005-01-01

    The build-up of biofilms on metals surfaces may lead to severe corrosion, especially in the presence of sulphate-reducing bacteria (SRB). To prevent the deterioration of material caused by biofilms it is necessary to understand the processes governing biofilm development including mechanisms of cell adhesion. Additionally, corrosion of metallic surfaces due to bacteria may lead to the dissolution of metallic elements that may further affect adhesion and biofilm development. A study was car...

  4. Effect of Phosphate on the Corrosion of Carbon Steel and on the Composition of Corrosion Products in Two-Stage Continuous Cultures of Desulfovibrio desulfuricans†

    OpenAIRE

    Paul J. Weimer; Van Kavelaar, Margaret J.; Michel, Charles B.; Ng, Thomas K.

    1988-01-01

    A field isolate of Desulfovibrio desulfuricans was grown in defined medium in a two-stage continuous culture apparatus with different concentrations of phosphate in the feed medium. The first state (V1) was operated as a conventional chemostat (D = 0.045 h−1) that was limited in energy source (lactate) or phosphate. The second stage (V2) received effluent from V1 but no additional nutrients, and contained a healthy population of transiently starved or resting cells. An increase in the concent...

  5. Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam; Arkin, Adam; Bender, Kelly

    2010-05-17

    Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possess an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ~;;87 intergenic, while ~;;140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ~;;54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.

  6. Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough

    International Nuclear Information System (INIS)

    Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possess an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ∼87 intergenic, while ∼140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ∼54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.

  7. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  8. Structure of a CRISPR-associated protein Cas2 from Desulfovibrio vulgaris

    International Nuclear Information System (INIS)

    A 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. CRISPRs (clustered regularly interspaced short palindromic repeats) provide bacteria and archaea with RNA-guided acquired immunity to invasive DNAs. CRISPR-associated (Cas) proteins carry out the immune effector functions. Cas2 is a universal component of the CRISPR system. Here, a 1.35 Å resolution crystal structure of Cas2 from the bacterium Desulfovibrio vulgaris (DvuCas2) is reported. DvuCas2 is a homodimer, with each protomer consisting of an N-terminal βαββαβ ferredoxin fold (amino acids 1–78) to which is appended a C-terminal segment (amino acids 79–102) that includes a short 310-helix and a fifth β-strand. The β5 strands align with the β4 strands of the opposite protomers, resulting in two five-stranded antiparallel β-sheets that form a sandwich at the dimer interface. The DvuCas2 dimer is stabilized by a distinctive network of hydrophilic cross-protomer side-chain interactions

  9. Use of immunomagnetic separation for the detection of Desulfovibrio vulgaris from environmental samples

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, R.; Hazen, T.C.; Joyner, D.C.; Kusel, K.; Singer, M.E.; Sitte, J.; Torok, T.

    2011-04-15

    Immunomagnetic separation (IMS) has proved highly efficient for recovering microorganisms from heterogeneous samples. Current investigation targeted the separation of viable cells of the sulfate-reducing bacterium, Desulfovibrio vulgaris. Streptavidin-coupled paramagnetic beads and biotin labeled antibodies raised against surface antigens of this microorganism were used to capture D. vulgaris cells in both bioreactor grown laboratory samples and from extremely low-biomass environmental soil and subsurface drilling samples. Initial studies on detection, recovery efficiency and viability for IMS were performed with laboratory grown D. vulgaris cells using various cell densities. Efficiency of cell isolation and recovery (i.e., release of the microbial cells from the beads following separation) was followed by microscopic imaging and acridine orange direct counts (AODC). Excellent recovery efficiency encouraged the use of IMS to capture Desulfovibrio spp. cells from low-biomass environmental samples. The environmental samples were obtained from a radionuclide-contaminated site in Germany and the chromium (VI)-contaminated Hanford site, an ongoing bioremediation project of the U.S. Department of Energy. Field deployable IMS technology may greatly facilitate environmental sampling and bioremediation process monitoring and enable transcriptomics and proteomics/metabolomics-based studies directly on cells collected from the field.

  10. Desulfovibrio bacterial species are increased in ulcerative colitis.

    LENUS (Irish Health Repository)

    Rowan, Fiachra

    2012-02-01

    BACKGROUND: Debate persists regarding the role of Desulfovibrio subspecies in ulcerative colitis. Combined microscopic and molecular techniques enable this issue to be investigated by allowing precise enumeration of specific bacterial species within the colonic mucous gel. The aim of this study was to combine laser capture microdissection and quantitative polymerase chain reaction to determine Desulfovibrio copy number in crypt-associated mucous gel in health and in acute and chronic ulcerative colitis. METHODS: Colonic mucosal biopsies were harvested from healthy controls (n = 19) and patients with acute (n = 10) or chronic (n = 10) ulcerative colitis. Crypt-associated mucous gel was obtained by laser capture microdissection throughout the colon. Pan-bacterial 16S rRNA and Desulfovibrio copy number\\/mm were obtained by polymerase chain reaction at each locus. Bacterial copy numbers were interrogated for correlation with location and disease activity. Data were evaluated using a combination of ordinary linear methods and linear mixed-effects models to cater for multiple interactions. RESULTS: Desulfovibrio positivity was significantly increased in acute and chronic ulcerative colitis at multiple levels within the colon, and after normalization with total bacterial signal, the relative Desulfovibrio load was increased in acute colitis compared with controls. Desulfovibrio counts did not significantly correlate with age, disease duration, or disease activity but interlevel correlations were found in adjacent colonic segments in the healthy control and chronic ulcerative colitis groups. CONCLUSION: The presence of Desulfovibrio subspecies is increased in ulcerative colitis and the data presented suggest that these bacteria represent an increased percentage of the colonic microbiome in acute ulcerative colitis.

  11. THE RELATIONSHIP BETWEEN PROTECTIVE EFFECT AND QUANTUMCHEMICAL DESCRIPTORS OF THE MOLECULES USED AS THE HYDROGENATION INHIBITORS IN THE ENVIRONMENT MICROBIOLOGICAL CORROSION CAUSED BY DESULFOVIBRIO DESULFURICANS

    OpenAIRE

    Sikachina A. A.

    2015-01-01

    This publication examines the relationship between the structure of molecules of complexing (descriptors of electronic structure), which are used as inhibitors of hydrogen embrittlement of the steel grade St3, and the content of absorbed hydrogen in model samples-plates made of the above steel. The form of expression of this relationship is the correlation coefficient (CC) by Pearson

  12. THE RELATIONSHIP BETWEEN PROTECTIVE EFFECT AND QUANTUMCHEMICAL DESCRIPTORS OF THE MOLECULES USED AS THE HYDROGENATION INHIBITORS IN THE ENVIRONMENT MICROBIOLOGICAL CORROSION CAUSED BY DESULFOVIBRIO DESULFURICANS

    Directory of Open Access Journals (Sweden)

    Sikachina A. A.

    2015-06-01

    Full Text Available This publication examines the relationship between the structure of molecules of complexing (descriptors of electronic structure, which are used as inhibitors of hydrogen embrittlement of the steel grade St3, and the content of absorbed hydrogen in model samples-plates made of the above steel. The form of expression of this relationship is the correlation coefficient (CC by Pearson

  13. Response of Desulfovibrio vulgaris to Alkaline Stress

    Energy Technology Data Exchange (ETDEWEB)

    Stolyar, S.; He, Q.; He, Z.; Yang, Z.; Borglin, S.E.; Joyner, D.; Huang, K.; Alm, E.; Hazen, T.C.; Zhou, J.; Wall, J.D.; Arkin, A.P.; Stahl, D.A.

    2007-11-30

    The response of exponentially growing Desulfovibrio vulgarisHildenborough to pH 10 stress was studied using oligonucleotidemicroarrays and a study set of mutants with genes suggested by microarraydata to be involved in the alkaline stress response deleted. The datashowed that the response of D. vulgaris to increased pH is generallysimilar to that of Escherichia coli but is apparently controlled byunique regulatory circuits since the alternative sigma factors (sigma Sand sigma E) contributing to this stress response in E. coli appear to beabsent in D. vulgaris. Genes previously reported to be up-regulated in E.coli were up-regulated in D. vulgaris; these genes included three ATPasegenes and a tryptophan synthase gene. Transcription of chaperone andprotease genes (encoding ATP-dependent Clp and La proteases and DnaK) wasalso elevated in D. vulgaris. As in E. coli, genes involved in flagellumsynthesis were down-regulated. The transcriptional data also identifiedregulators, distinct from sigma S and sigma E, that are likely part of aD. vulgaris Hildenborough-specific stress response system.Characterization of a study set of mutants with genes implicated inalkaline stress response deleted confirmed that there was protectiveinvolvement of the sodium/proton antiporter NhaC-2, tryptophanase A, andtwo putative regulators/histidine kinases (DVU0331 andDVU2580).

  14. Oxidation of benzaldehydes to benzoic acid derivatives by three Desulfovibrio strains.

    OpenAIRE

    Zellner, G; Kneifel, H; De Winter, J.

    1990-01-01

    Desulfovibrio vulgaris Marburg, "Desulfovibrio simplex" XVI, and Desulfovibrio sp. strain MP47 used benzaldehydes such as vanillin, 3,4,5-trimethoxybenzaldehyde, protocatechualdehyde, syringaldehyde, p-anisaldehyde, p-hydroxybenzaldehyde, and 2-methoxybenzaldehyde as electron donors for sulfate reduction and carbon dioxide and/or components of yeast extract as carbon sources for cell synthesis. The aldehydes were oxidized to their corresponding benzoic acids. The three sulfate reducers oxidiz...

  15. Methanogenesis from Choline by a Coculture of Desulfovibrio sp. and Methanosarcina barkeri

    OpenAIRE

    Fiebig, K; Gottschalk, G.

    1983-01-01

    A sulfate-reducing vibrio was isolated from a methanogenic enrichment with choline as the sole added organic substrate. This organism was identified as a member of the genus Desulfovibrio and was designated Desulfovibrio strain G1. In a defined medium devoid of sulfate, a pure culture of Desulfovibrio strain G1 fermented choline to trimethylamine, acetate, and ethanol. In the presence of sulfate, more acetate and less ethanol were formed from choline than in the absence of sulfate. When grown...

  16. Generalized Schemes for High Throughput Manipulation of the Desulfovibrio vulgaris Hildenborough Genome.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil [Lawrence Berkeley National Laboratory (LBNL); Butland, Gareth [Lawrence Berkeley National Laboratory (LBNL); Elias, Dwayne A [ORNL; Chandonia, John-Marc [Lawrence Berkeley National Laboratory (LBNL); Fok, Olivia [Lawrence Berkeley National Laboratory (LBNL); Juba, tom [University of Missouri; Gorur, A. [Lawrence Berkeley National Laboratory (LBNL); Allen, S. [University of California, San Francisco; Leung, C. M. [Lawrence Berkeley National Laboratory (LBNL); Keller, Kim [University of Missouri; Reveco, S. [Lawrence Berkeley National Laboratory (LBNL); Zane, Mr. Grant M. [University of Missouri, Columbia; Semkiw, Elizabeth M. [University of Missouri; Prathapam, R. [Lawrence Berkeley National Laboratory (LBNL); Gold, B. [Lawrence Berkeley National Laboratory (LBNL); Singer, Mary [Lawrence Berkeley National Laboratory (LBNL); Ouellet, M. [Lawrence Berkeley National Laboratory (LBNL); Sazakal, E. D. [University of California, San Francisco; Jorgens, Dominique [Lawrence Berkeley National Laboratory (LBNL); Price, Morgan N. [Lawrence Berkeley National Laboratory (LBNL); Witkowska, Ewa [University of California, San Francisco; Beller, Harry R. [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); Biggin, Mark D. [Lawrence Berkeley National Laboratory (LBNL); Auer, Dr. Manfred [Lawrence Berkeley National Laboratory (LBNL); Wall, Judy D. [University of Missouri; Keasling, Jay [Lawrence Berkeley National Laboratory (LBNL)

    2011-01-01

    The ability to conduct advanced functional genomic studies of the thousands of 38 sequenced bacteria has been hampered by the lack of available tools for making high39 throughput chromosomal manipulations in a systematic manner that can be applied across 40 diverse species. In this work, we highlight the use of synthetic biological tools to 41 assemble custom suicide vectors with reusable and interchangeable DNA parts to 42 facilitate chromosomal modification at designated loci. These constructs enable an array 43 of downstream applications including gene replacement and creation of gene fusions with 44 affinity purification or localization tags. We employed this approach to engineer 45 chromosomal modifications in a bacterium that has previously proven difficult to 46 manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of 47 662 strains. Furthermore, we demonstrate how these modifications can be used for 48 examining metabolic pathways, protein-protein interactions, and protein localization. The 49 ubiquity of suicide constructs in gene replacement throughout biology suggests that this 50 approach can be applied to engineer a broad range of species for a diverse array of 51 systems biological applications and is amenable to high-throughput implementation.

  17. Analysis of a Ferric Uptake Regulator (Fur) Mutant ofDesulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Bender, Kelly S.; Yen, Huei-Che Bill; Hemme, Christopher L.; Yang, Zamin K.; He, Zhili; He, Qiang; Zhou, Jizhong; Huang, Katherine H.; Alm, Eric J.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.

    2007-09-21

    Previous experiments examining the transcriptional profileof the anaerobe Desulfovibrio vulgaris demonstrated up-regulation of theFur regulon in response to various environmental stressors. To test theinvolvement of Fur in the growth response and transcriptional regulationof D. vulgaris, a targeted mutagenesis procedure was used for deletingthe fur gene. Growth of the resulting ?fur mutant (JW707) was notaffected by iron availability, but the mutant did exhibit increasedsensitivity to nitrite and osmotic stresses compared to the wild type.Transcriptional profiling of JW707 indicated that iron-bound Fur acts asa traditional repressor for ferrous iron uptake genes (feoAB) and othergenes containing a predicted Fur binding site within their promoter.Despite the apparent lack of siderophore biosynthesis genes within the D.vulgaris genome, a large 12-gene operon encoding orthologs to TonB andTolQR also appeared to be repressed by iron-bound Fur. While other genespredicted to be involved in iron homeostasis were unaffected by thepresence or absence of Fur, alternative expression patterns that could beinterpreted as repression or activation by iron-free Fur were observed.Both the physiological and transcriptional data implicate a globalregulatory role for Fur in the sulfate-reducing bacterium D.vulgaris.

  18. Cell-Wide Responses to Low-Oxygen Exposure in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila [Lawrence Berkeley National Laboratory (LBNL); Redding, Alyssa [University of California, Berkeley; Joachimiak, Marcin [Lawrence Berkeley National Laboratory (LBNL); Arkin, Adam [Lawrence Berkeley National Laboratory (LBNL); Borglin, sharon [Lawrence Berkeley National Laboratory (LBNL); Dehal, Paramvir [Lawrence Berkeley National Laboratory (LBNL); Chakraborty, Romy [Lawrence Berkeley National Laboratory (LBNL); Geller, Jil [Lawrence Berkeley National Laboratory (LBNL); Hazen, Terry [Lawrence Berkeley National Laboratory (LBNL); HE, Qiang [ORNL; Joyner, Dominique C. [Lawrence Berkeley National Laboratory (LBNL); Martin, Vincent [Lawrence Berkeley National Laboratory (LBNL); Wall, Judy [University of Missouri, Columbia; Yang, Zamin Koo [ORNL; Zhou, Jizhong [University of Oklahoma; Keasling, Jay [Lawrence Berkeley National Laboratory (LBNL)

    2007-08-01

    The responses of the anaerobic, sulfate-reducing organism Desulfovibrio vulgaris Hildenborough to low-oxygen exposure (0.1% O2) were monitored via transcriptomics and proteomics. Exposure to 0.1% O2 caused a decrease in the growth rate without affecting viability. Concerted upregulation of the predicted peroxide stress response regulon (PerR) genes was observed in response to the 0.1% O2 exposure. Several of the candidates also showed increases in protein abundance. Among the remaining small number of transcript changes was the upregulation of the predicted transmembrane tetraheme cytochrome c3 complex. Other known oxidative stress response candidates remained unchanged during the low-O2 exposure. To fully understand the results of the 0.1% O2 exposure, transcriptomics and proteomics data were collected for exposure to air using a similar experimental protocol. In contrast to the 0.1% O2 exposure, air exposure was detrimental to both the growth rate and viability and caused dramatic changes at both the transcriptome and proteome levels. Interestingly, the transcripts of the predicted PerR regulon genes were downregulated during air exposure. Our results highlight the differences in the cell-wide responses to low and high O2 levels in D. vulgaris and suggest that while exposure to air is highly detrimental to D. vulgaris, this bacterium can successfully cope with periodic exposure to low O2 levels in its environment.

  19. Generalized schemes for high throughput manipulation of the Desulfovibrio vulgaris Hildenborough genome

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Butland, G.; Elias, D.; Chandonia, J.-M.; Fok, V.; Juba, T.; Gorur, A.; Allen, S.; Leung, C.-M.; Keller, K.; Reveco, S.; Zane, G.; Semkiw, E.; Prathapam, R.; Gold, B.; Singer, M.; Ouellet, M.; Sazakal, E.; Jorgens, D.; Price, M.; Witkowska, E.; Beller, H.; Hazen, T.C.; Biggin, M.; Auer, M.; Wall, J.; Keasling, J.

    2011-07-15

    The ability to conduct advanced functional genomic studies of the thousands of sequenced bacteria has been hampered by the lack of available tools for making high- throughput chromosomal manipulations in a systematic manner that can be applied across diverse species. In this work, we highlight the use of synthetic biological tools to assemble custom suicide vectors with reusable and interchangeable DNA “parts” to facilitate chromosomal modification at designated loci. These constructs enable an array of downstream applications including gene replacement and creation of gene fusions with affinity purification or localization tags. We employed this approach to engineer chromosomal modifications in a bacterium that has previously proven difficult to manipulate genetically, Desulfovibrio vulgaris Hildenborough, to generate a library of over 700 strains. Furthermore, we demonstrate how these modifications can be used for examining metabolic pathways, protein-protein interactions, and protein localization. The ubiquity of suicide constructs in gene replacement throughout biology suggests that this approach can be applied to engineer a broad range of species for a diverse array of systems biological applications and is amenable to high-throughput implementation.

  20. Expression profiling of hypothetical genes in Desulfovibrio vulgaris leads to improved functional annotation

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A.; Mukhopadhyay, Aindrila; Joachimiak, Marcin P.; Drury, Elliott C.; Redding, Alyssa M.; Yen, Huei-Che B.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Keasling, Jay D.; Wall, Judy D.

    2008-10-27

    Hypothetical and conserved hypothetical genes account for>30percent of sequenced bacterial genomes. For the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough, 347 of the 3634 genes were annotated as conserved hypothetical (9.5percent) along with 887 hypothetical genes (24.4percent). Given the large fraction of the genome, it is plausible that some of these genes serve critical cellular roles. The study goals were to determine which genes were expressed and provide a more functionally based annotation. To accomplish this, expression profiles of 1234 hypothetical and conserved genes were used from transcriptomic datasets of 11 environmental stresses, complemented with shotgun LC-MS/MS and AMT tag proteomic data. Genes were divided into putatively polycistronic operons and those predicted to be monocistronic, then classified by basal expression levels and grouped according to changes in expression for one or multiple stresses. 1212 of these genes were transcribed with 786 producing detectable proteins. There was no evidence for expression of 17 predicted genes. Except for the latter, monocistronic gene annotation was expanded using the above criteria along with matching Clusters of Orthologous Groups. Polycistronic genes were annotated in the same manner with inferences from their proximity to more confidently annotated genes. Two targeted deletion mutants were used as test cases to determine the relevance of the inferred functional annotations.

  1. Functional genomic study of the environmentally important Desulfovibrio /Methanococcus syntrophic co-culture.

    Science.gov (United States)

    Mukhopadhyay, A.

    2008-12-01

    The use of microbe-oriented bioremediation for ameliorating extensive environmental pollution has fostered fundamental and applied studies of environmentally relevant microorganisms such as Desulfovibrio vulgaris, Shewanella oneidensis and Geobacter metallireducens.. Concurrently, there has been an increasing appreciation that the physiology of these organisms in pure culture is not necessarily representative of its activities in the environment. To enable a better understanding of microbial physiology under more environmentally relevant conditions, the syntrophic growth between the sulfate reducing bacterium, D. vulgaris and the hydrogenotrophic methanogen, Methanococcus maripaludis serves as an ideal system for laboratory studies. Cell wide analyses using transcript, proteomics and metabolite analysis have been widely used to understand cellular activity at a molecular level. Using D. vulgaris and M. maripaludis arrays, and the iTRAQ proteomics method, we studied the physiology of the D. vulgaris / M. maripaludis syntrophic co- cultures. The results from this study allowed us to identify differences in cellular response in mono-culture vs. co-culture growth for both D. vulgaris and M. maripaludis.

  2. Study of Nitrate Stress in Desulfovibrio vulgaris Hildenborough Using iTRAQ Proteomics

    Energy Technology Data Exchange (ETDEWEB)

    Redding, A.M.; Mukhopadhyay, A.; Joyner, D.; Hazen, T.C.; Keasling, J.D.

    2006-10-12

    The response of Desulfovibrio vulgaris Hildenborough (DvH),a sulphate-reducing bacterium, to nitrate stress was examined usingquantitative proteomic analysis. DvH was stressed with 105 m M sodiumnitrate(NaNO3), a level that caused a 50 percent inhibition in growth.The protein profile of stressed cells was compared with that of cellsgrown in the absence of nitrate using the iTRAQ peptide labellingstrategy and tandem liquid chromatography separation coupled with massspectrometry (quadrupoletime-of-flight) detection. A total of 737 uniqueproteins were identified by two or more peptides, representing 22 percentof the total DvH proteome and spanning every functional category. Theresults indicate that this was a mild stress, as proteins involved incentral metabolism and the sulphate reduction pathway were unperturbed.Proteins involved in the nitrate reduction pathway increased. Increasesseen in transport systems for proline, glycine^ betaineandglutamateindicate that the NaNO3 exposure led to both salt stress and nitratestress.Up-regulation observed in oxidative stress response proteins (Rbr,RbO, etc.) and a large number of ABC transport systems as well as in iron^ sulphur -cluster-containing proteins, however, appear to be specific tonitrate exposure. Finally, a number of hypothetical proteins were amongthe most significant changers, indicating that there may be unknownmechanisms initiated upon nitrate stress in DvH.

  3. Global transcriptomics analysis of the Desulfovibrio vulgaris change from syntrophic growth with Methanosarcina barkeri to sulfidogenic metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Plugge, Caroline M.; Scholten, Johannes C.; Culley, David E.; Nie, Lei; Brockman, Fred J.; Zhang, Weiwen

    2010-09-01

    Abstract Desulfovibrio vulgaris is a metabolically flexible microorganism. It can use sulfate as electron acceptor to catabolize a variety of substrates, or in the absence of sulfate can utilize organic acids and alcohols by forming a syntrophic association with hydrogen scavenging partner to relieve inhibition by hydrogen. These alternativemetabolic types increase the chance of survival for D. vulgaris in environments where one of the potential external electron acceptors becomes depleted. In this work, whole-genome D. vulgaris microarrays were used to determine relative transcript levels as D. vulgaris shifted its metabolism from syntroph in a lactate-oxidizing dual-culture with Methanosarcina barkeri to a sulfidogenic metabolism. Syntrophic dual-cultures were grown in two independent chemostats and perturbation was introduced after six volume changes with the addition of sulfate. The results showed that 132 genes were differentially expressed in D. vulgaris 2 hours after addition of sulfate. Functional analyses suggested that genes involved in cell envelope and energy metabolism were the most regulated when comparing syntrophic and sulfidogenic metabolism. Up-regulation was observed for genes encoding ATPase and the membrane-integrated energy conserving hydrogenase (Ech) when cells shifted to a sulfidogenic metabolism. A five-gene cluster encoding several lipo- and membrane-bound proteins was down-regulated when cells were shifted to a sulfidogenic metabolism. Interestingly, this gene cluster has orthologs found only in another syntrophic bacterium Syntrophobacter fumaroxidans and four recently sequenced Desulfovibrio strains. This study also identified several novel c-type cytochrome encoding genes which may be involved in the sulfidogenic metabolism.

  4. The Effect of Desulfovibrio sp. Biofilms on Corrosion Behavior of Copper in Sulfide-Containing Solutions

    Science.gov (United States)

    Güngör, Nihal Doğruöz; Çotuk, Ayşın; Dışpınar, Derya

    2015-03-01

    This study aims to detect the effect of Desulfovibrio sp. on copper in terms of biofilm formation and corrosion in 722 h. In that way, appropriate strategies to inhibit microbiological corrosion in copper systems with Desulfovibrio sp. can be evaluated. For this purpose, experiments were performed in 1 L glass model system containing 28 copper coupons and pure culture of the sulfate-reducing bacteria (SRB) strain Desulfovibrio sp. in Postgate's medium C. Also, a control system with copper coupons but without Desulfovibrio sp. containing sterile Postgate's medium was studied concurrently with the test system. The test coupons were collected from systems at certain time intervals, namely 24, 168, 360, and 720 h. The samples were then subjected to several characterization analyses such as measurement of Desulfovibrio sp. numbers, corrosion resistance, EPS extraction, carbohydrate analysis, SEM, and EDS. During the experiments, the maximum Desulfovibrio sp. count in biofilm samples was found at 360 h. Carbohydrate and copper concentrations in biofilm were increased over time. EDS analysis revealed Cu, S, C, O, and Cl peaks on the surface of the samples. For the control coupons, only Cu peaks were observed. The results obtained from this study showed that copper was corroded by Desulfovibrio sp. in the model system under laboratory conditions.

  5. Impact of elevated nitrate on sulfate-reducing bacteria: A comparative study of Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    He, Q.; He, Z.; Joyner, D.C.; Joachimiak, M.; Price, M.N.; Yang, Z.K.; Yen, H.-C. B.; Hemme, C. L.; Chen, W.; Fields, M.; Stahl, D. A.; Keasling, J. D.; Keller, M.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2010-07-15

    Sulfate-reducing bacteria have been extensively studied for their potential in heavy-metal bioremediation. However, the occurrence of elevated nitrate in contaminated environments has been shown to inhibit sulfate reduction activity. Although the inhibition has been suggested to result from the competition with nitrate-reducing bacteria, the possibility of direct inhibition of sulfate reducers by elevated nitrate needs to be explored. Using Desulfovibrio vulgaris as a model sulfate-reducing bacterium, functional genomics analysis reveals that osmotic stress contributed to growth inhibition by nitrate as shown by the upregulation of the glycine/betaine transporter genes and the relief of nitrate inhibition by osmoprotectants. The observation that significant growth inhibition was effected by 70 mM NaNO{sub 3} but not by 70 mM NaCl suggests the presence of inhibitory mechanisms in addition to osmotic stress. The differential expression of genes characteristic of nitrite stress responses, such as the hybrid cluster protein gene, under nitrate stress condition further indicates that nitrate stress response by D. vulgaris was linked to components of both osmotic and nitrite stress responses. The involvement of the oxidative stress response pathway, however, might be the result of a more general stress response. Given the low similarities between the response profiles to nitrate and other stresses, less-defined stress response pathways could also be important in nitrate stress, which might involve the shift in energy metabolism. The involvement of nitrite stress response upon exposure to nitrate may provide detoxification mechanisms for nitrite, which is inhibitory to sulfate-reducing bacteria, produced by microbial nitrate reduction as a metabolic intermediate and may enhance the survival of sulfate-reducing bacteria in environments with elevated nitrate level.

  6. Hydrogen-peroxide-induced oxidative stress responses in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, A.; He, Z.; Redding-Johanson, A.M.; Mukhopadhyay, A.; Hemme, C.L.; Joachimiak, M.P.; Bender, K.S.; Keasling, J.D.; Stahl, D.A.; Fields, M.W.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.; Luo, F.; Deng, Y.; He, Q.

    2010-07-01

    To understand how sulphate-reducing bacteria respond to oxidative stresses, the responses of Desulfovibrio vulgaris Hildenborough to H{sub 2}O{sub 2}-induced stresses were investigated with transcriptomic, proteomic and genetic approaches. H{sub 2}O{sub 2} and induced chemical species (e.g. polysulfide, ROS) and redox potential shift increased the expressions of the genes involved in detoxification, thioredoxin-dependent reduction system, protein and DNA repair, and decreased those involved in sulfate reduction, lactate oxidation and protein synthesis. A gene coexpression network analysis revealed complicated network interactions among differentially expressed genes, and suggested possible importance of several hypothetical genes in H{sub 2}O{sub 2} stress. Also, most of the genes in PerR and Fur regulons were highly induced, and the abundance of a Fur regulon protein increased. Mutant analysis suggested that PerR and Fur are functionally overlapped in response to stresses induced by H{sub 2}O{sub 2} and reaction products, and the upregulation of thioredoxin-dependent reduction genes was independent of PerR or Fur. It appears that induction of those stress response genes could contribute to the increased resistance of deletion mutants to H{sub 2}O{sub 2}-induced stresses. In addition, a conceptual cellular model of D. vulgaris responses to H{sub 2}O{sub 2} stress was constructed to illustrate that this bacterium may employ a complicated molecular mechanism to defend against the H{sub 2}O{sub 2}-induced stresses.

  7. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas

    Institute of Scientific and Technical Information of China (English)

    Meeta Lavania; Priyangshu M. Sarma; Ajoy K. Mandal; Simrita Cheema; Banwari Lal

    2011-01-01

    We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate,benzyl trimethyl ammonium chloride,and formaldehyde,glutaraldehyde,to control microbial induced corrosion in oil pipelines.The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts,H2S production,Fe(II) production,production of extracellular polymeric substances and structure of biofilm.The treatment with cow urine had minimum planktonic cell counts of 3 × 102 CFU/mL as well as biofiim cell counts of 9 × 101 CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate,benzyl trimethyl ammonium chloride,formaldehyde and glutaraldehyde.Sulfide production was the lowest with cow urine (0.08 mmol/L),followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmoi/L.On day 90 of treatment,Fe(II) production was also found to be the lowest with cow urine.The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine.These results demonstrate the cow urine mediated control of microbially induced corrosion,and this is indicative of its potential as a viable substitute of toxic biocides.To the best of our knowledge,this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using.

  8. Efficacy of natural biocide on control of microbial induced corrosion in oil pipelines mediated by Desulfovibrio vulgaris and Desulfovibrio gigas.

    Science.gov (United States)

    Lavania, Meeta; Sarma, Priyangshu M; Mandal, Ajoy K; Cheema, Simrita; Lal, Banwari

    2011-01-01

    We compared the efficacy of a natural biocide with four chemical tetrakishydroxymethyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, and formaldehyde, glutaraldehyde, to control microbial induced corrosion in oil pipelines. The efficacy of biocides were monitored against Desulfovibrio vulgaris and Desulfovibrio gigas in experimental pipes by measuring cell counts, H2S production, Fe(II) production, production of extracellular polymeric substances and structure of biofilm. The treatment with cow urine had minimum planktonic cell counts of 3 x 10(2) CFU/mL as well as biofilm cell counts of 9 x 10(1) CFU/mL as compared with tetrakishydroxyl methyl phosphonium sulfonate, benzyl trimethyl ammonium chloride, formaldehyde and glutaraldehyde. Sulfide production was the lowest with cow urine (0.08 mmol/L), followed by tetrakishydroxymethyl phosphonium sulfonate 0.72 mmol/L. On day 90 of treatment, Fe(II) production was also found to be the lowest with cow urine. The scanning electron microscopic studies indicated that the biofilm bacteria were killed by cow urine. These results demonstrate the cow urine mediated control of microbially induced corrosion, and this is indicative of its potential as a viable substitute of toxic biocides. To the best of our knowledge, this seems to be the first report which screens possible biocidal activity by cow urine as compared to the most common biocides which oil industry is currently using. PMID:22128548

  9. Methods for Engineering Sulfate Reducing Bacteria of the Genus Desulfovibrio

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, Swapnil R; Keller, Kimberly L.; Wall, Judy D.

    2011-03-15

    Sulfate reducing bacteria are physiologically important given their nearly ubiquitous presence and have important applications in the areas of bioremediation and bioenergy. This chapter provides details on the steps used for homologous-recombination mediated chromosomal manipulation of Desulfovibrio vulgaris Hildenborough, a well-studied sulfate reducer. More specifically, we focus on the implementation of a 'parts' based approach for suicide vector assembly, important aspects of anaerobic culturing, choices for antibiotic selection, electroporation-based DNA transformation, as well as tools for screening and verifying genetically modified constructs. These methods, which in principle may be extended to other sulfate-reducing bacteria, are applicable for functional genomics investigations, as well as metabolic engineering manipulations.

  10. Toward a rigorous network of protein-protein interactions of the model sulfate reducer Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; Joachimiak, M.P.; Petzold, C.J.; Zane, G.M.; Price, M.N.; Gaucher, S.; Reveco, S.A.; Fok, V.; Johanson, A.R.; Batth, T.S.; Singer, M.; Chandonia, J.M.; Joyner, D.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Singh, A.K.; Keasling, J.D.

    2011-05-01

    Protein–protein interactions offer an insight into cellular processes beyond what may be obtained by the quantitative functional genomics tools of proteomics and transcriptomics. The aforementioned tools have been extensively applied to study E. coli and other aerobes and more recently to study the stress response behavior of Desulfovibrio 5 vulgaris Hildenborough, a model anaerobe and sulfate reducer. In this paper we present the first attempt to identify protein-protein interactions in an obligate anaerobic bacterium. We used suicide vector-assisted chromosomal modification of 12 open reading frames encoded by this sulfate reducer to append an eight amino acid affinity tag to the carboxy-terminus of the chosen proteins. Three biological replicates of the 10 ‘pulled-down’ proteins were separated and analyzed using liquid chromatography-mass spectrometry. Replicate agreement ranged between 35% and 69%. An interaction network among 12 bait and 90 prey proteins was reconstructed based on 134 bait-prey interactions computationally identified to be of high confidence. We discuss the biological significance of several unique metabolic features of D. vulgaris revealed by this protein-protein interaction data 15 and protein modifications that were observed. These include the distinct role of the putative carbon monoxide-induced hydrogenase, unique electron transfer routes associated with different oxidoreductases, and the possible role of methylation in regulating sulfate reduction.

  11. Antimicrobial Effects of Free Nitrous Acid on Desulfovibrio vulgaris: Implications for Sulfide-Induced Corrosion of Concrete.

    Science.gov (United States)

    Gao, Shu-Hong; Ho, Jun Yuan; Fan, Lu; Richardson, David J; Yuan, Zhiguo; Bond, Philip L

    2016-09-15

    antimicrobial mechanisms of FNA are largely unknown. In this study, we identified the key responses (decreased anaerobic respiration, reducing FNA, combating oxidative stress, and shutting down protein synthesis) of Desulfovibrio vulgaris Hildenborough, a model sewer corrosion bacterium, to FNA exposure by examining the growth, physiological, and gene expression changes. These findings provide new insight and underpinning knowledge for understanding the responses of D. vulgaris to FNA exposure, thereby benefiting the practical application of FNA for improved control of sewer corrosion and odor. PMID:27371588

  12. The electron transfer system of syntrophically grown Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Walker, C.B.; He, Z.; Yang, Z.K.; Ringbauer, Jr., J.A.; He, Q.; Zhou, J.; Voordouw, G.; Wall, J.D.; Arkin, A.P.; Hazen, T.C.; Stolyar, S.; Stahl, D.A.

    2009-05-01

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  13. The Electron Transfer System of Syntrophically Grown Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    PBD; ENIGMA; GTL; VIMSS; Walker, Christopher B.; He, Zhili; Yang, Zamin K.; Ringbauer Jr., Joseph A.; He, Qiang; Zhou, Jizhong; Voordouw, Gerrit; Wall, Judy D.; Arkin, Adam P.; Hazen, Terry C.; Stolyar, Sergey; Stahl, David A.

    2009-06-22

    Interspecies hydrogen transfer between organisms producing and consuming hydrogen promotes the decomposition of organic matter in most anoxic environments. Although syntrophic couplings between hydrogen producers and consumers are a major feature of the carbon cycle, mechanisms for energy recovery at the extremely low free energies of reactions typical of these anaerobic communities have not been established. In this study, comparative transcriptional analysis of a model sulfate-reducing microbe, Desulfovibrio vulgaris Hildenborough, suggested the use of alternative electron transfer systems dependent upon growth modality. During syntrophic growth on lactate with a hydrogenotrophic methanogen, D. vulgaris up-regulated numerous genes involved in electron transfer and energy generation when compared with sulfate-limited monocultures. In particular, genes coding for the putative membrane-bound Coo hydrogenase, two periplasmic hydrogenases (Hyd and Hyn) and the well-characterized high-molecular weight cytochrome (Hmc) were among the most highly expressed and up-regulated. Additionally, a predicted operon coding for genes involved in lactate transport and oxidation exhibited up-regulation, further suggesting an alternative pathway for electrons derived from lactate oxidation during syntrophic growth. Mutations in a subset of genes coding for Coo, Hmc, Hyd and Hyn impaired or severely limited syntrophic growth but had little affect on growth via sulfate-respiration. These results demonstrate that syntrophic growth and sulfate-respiration use largely independent energy generation pathways and imply that understanding of microbial processes sustaining nutrient cycling must consider lifestyles not captured in pure culture.

  14. Anaerobic transformation of 1,4-Tyrosol to 4-Hydoxyphenylacetate by Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Chamkh, F.; El Bakouchi, I.; Ouazzani, N.; Said Eddarir, S.; Bennisse, R.; Qatibi, A. I.

    2009-07-01

    1,4 Tyrosol (4-hydroxyphenylethanol) is a phenolic compound that is typically found in olive oil, olive brine, and olive oil mill wastewaters. Its anaerobic transformation was investigated in Desulfovibrio strain EMSSDQT (chamkh et al., 2008) and Desulgovibrio alcoholivorans (Qatibi et al., 1991) using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance ( {sup 1}3C-NMR) as analysis technic. To our knowledge, this is the first report showing the transformation of 1,4-tyrosol to 4-hydroxyphenylacetate (PHPA) by Desulfovibrio sp in anoxic conditions. (Author)

  15. Anaerobic transformation of 1,4-Tyrosol to 4-Hydoxyphenylacetate by Desulfovibrio Species

    International Nuclear Information System (INIS)

    1,4 Tyrosol (4-hydroxyphenylethanol) is a phenolic compound that is typically found in olive oil, olive brine, and olive oil mill wastewaters. Its anaerobic transformation was investigated in Desulfovibrio strain EMSSDQT (chamkh et al., 2008) and Desulgovibrio alcoholivorans (Qatibi et al., 1991) using high-performance liquid chromatography (HPLC) and nuclear magnetic resonance ( 13C-NMR) as analysis technic. To our knowledge, this is the first report showing the transformation of 1,4-tyrosol to 4-hydroxyphenylacetate (PHPA) by Desulfovibrio sp in anoxic conditions. (Author)

  16. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integratedgenomics approach

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Hoyner,Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding,Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling Jay D.

    2005-12-08

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

  17. Global Analysis of Heat Shock Response in Desulfovibrio vulgaris Hildenborough.

    Energy Technology Data Exchange (ETDEWEB)

    Chhabra, S.R.; He, Q.; Huang, K.H.; Gaucher, S.P.; Alm, E.J.; He,Z.; Hadi, M.Z.; Hazen, T.C.; Wall, J.D.; Zhou, J.; Arkin, A.P.; Singh, A.K.

    2005-09-16

    Desulfovibrio vulgaris Hildenborough belongs to a class ofsulfate-reducing bacteria (SRB) and is found ubiquitously in nature.Given the importance of SRB-mediated reduction for bioremediation ofmetal ion contaminants, ongoing research on D. vulgaris has been in thedirection of elucidating regulatory mechanisms for this organism under avariety of stress conditions. This work presents a global view of thisorganism's response to elevated growth temperature using whole-celltranscriptomics and proteomics tools. Transcriptional response (1.7-foldchange or greater; Z>1.5) ranged from 1,135 genes at 15 min to 1,463genes at 120 min for a temperature up-shift of 13oC from a growthtemperature of 37oC for this organism and suggested both direct andindirect modes of heat sensing. Clusters of orthologous group categoriesthat were significantly affected included posttranslationalmodifications; protein turnover and chaperones (up-regulated); energyproduction and conversion (down-regulated), nucleotide transport,metabolism (down-regulated), and translation; ribosomal structure; andbiogenesis (down-regulated). Analysis of the genome sequence revealed thepresence of features of both negative and positive regulation whichincluded the CIRCE element and promoter sequences corresponding to thealternate sigma factors ?32 and ?54. While mechanisms of heat shockcontrol for some genes appeared to coincide with those established forEscherichia coli and Bacillus subtilis, the presence of unique controlschemes for several other genes was also evident. Analysis of proteinexpression levels using differential in-gel electrophoresis suggestedgood agreement with transcriptional profiles of several heat shockproteins, including DnaK (DVU0811), HtpG (DVU2643), HtrA (DVU1468), andAhpC (DVU2247). The proteomics study also suggested the possibility ofposttranslational modifications in the chaperones DnaK, AhpC, GroES(DVU1977), and GroEL (DVU1976) and also several periplasmic ABCtransporters.

  18. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  19. Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions

    Energy Technology Data Exchange (ETDEWEB)

    Ilhan-Sungur, Esra, E-mail: esungur@istanbul.edu.tr [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Unsal-Istek, Tuba [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Cansever, Nurhan [Yıldız Technical University, Faculty of Chemistry-Metallurgy, Metallurgical and Materials Engineering Department, 34210 Esenler, Istanbul (Turkey)

    2015-07-15

    The effects of Ag–Cu ions on the microbiologically induced corrosion of galvanized steel in the presence of Desulfovibrio sp. and Desulfosporosinus sp. were investigated. The corrosion behavior of galvanized steel was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The biofilm, corrosion products and Ag–Cu ions on the surfaces were investigated by using scanning electron microscopy, energy dispersive X-ray spectrometry and elemental mapping. The biofilm layer formed by the Desulfovibrio sp. was stable covering the all surface of galvanized steel coupons, while that by Desulfosporosinus sp. was intermittent, highly porous and heterogeneous. It was found that both of the sulfate reducing bacteria species accelerated corrosion of the galvanized steel. However, it was detected that Desulfosporosinus sp. was more corrosive for galvanized steel than Desulfovibrio sp. Scanning electron microscopy images showed that Desulfovibrio sp. and Desulfosporosinus sp. in biofilm clustered into patches on the galvanized steel surface when the culture contained toxic Ag–Cu ions. The ions affected the growth of the sulfate reducing bacteria strains in different ways and hence the corrosion behaviors. It was observed that the Ag–Cu ions affected negatively growth of Desulfosporosinus sp. especially after 24 h of exposure leading to a decrease in the corrosion rate of galvanized steel. However, Desulfovibrio sp. showed more corrosive effect in the presence of the ions according to the ions-free culture. Energy dispersive X-ray spectrometry analysis showed that corrosion products on the surfaces were mainly composed of Zn, S, Na, O and P. - Highlights: • Galvanized steel was corroded by Desulfosporosinus sp. and Desulfovibrio sp. • Desulfosporosinus sp. is more corrosive than Desulfovibrio sp. • The Ag–Cu ions affected corrosion behavior of Desulfosporosinus sp. and Desulfovibrio sp. on galvanized steel.

  20. Microbiologically influenced corrosion of galvanized steel by Desulfovibrio sp. and Desulfosporosinus sp. in the presence of Ag–Cu ions

    International Nuclear Information System (INIS)

    The effects of Ag–Cu ions on the microbiologically induced corrosion of galvanized steel in the presence of Desulfovibrio sp. and Desulfosporosinus sp. were investigated. The corrosion behavior of galvanized steel was analyzed by potentiodynamic polarization and electrochemical impedance spectroscopy. The biofilm, corrosion products and Ag–Cu ions on the surfaces were investigated by using scanning electron microscopy, energy dispersive X-ray spectrometry and elemental mapping. The biofilm layer formed by the Desulfovibrio sp. was stable covering the all surface of galvanized steel coupons, while that by Desulfosporosinus sp. was intermittent, highly porous and heterogeneous. It was found that both of the sulfate reducing bacteria species accelerated corrosion of the galvanized steel. However, it was detected that Desulfosporosinus sp. was more corrosive for galvanized steel than Desulfovibrio sp. Scanning electron microscopy images showed that Desulfovibrio sp. and Desulfosporosinus sp. in biofilm clustered into patches on the galvanized steel surface when the culture contained toxic Ag–Cu ions. The ions affected the growth of the sulfate reducing bacteria strains in different ways and hence the corrosion behaviors. It was observed that the Ag–Cu ions affected negatively growth of Desulfosporosinus sp. especially after 24 h of exposure leading to a decrease in the corrosion rate of galvanized steel. However, Desulfovibrio sp. showed more corrosive effect in the presence of the ions according to the ions-free culture. Energy dispersive X-ray spectrometry analysis showed that corrosion products on the surfaces were mainly composed of Zn, S, Na, O and P. - Highlights: • Galvanized steel was corroded by Desulfosporosinus sp. and Desulfovibrio sp. • Desulfosporosinus sp. is more corrosive than Desulfovibrio sp. • The Ag–Cu ions affected corrosion behavior of Desulfosporosinus sp. and Desulfovibrio sp. on galvanized steel

  1. Inhibition studies of three classes of Desulfovibrio hydrogenase: application to the further characterization of the multiple hydrogenases found in Desulfovibrio vulgaris Hildenborough

    International Nuclear Information System (INIS)

    The three types of hydrogenase hitherto characterized in genus Desulfovibrio exhibit distinctive inhibition patterns of their proton-deuterium exchange activity by CO, NO and NO2-. The (Fe) and (NiFeSe) hydrogenases are the most sensitive to all three inhibitors while the (NiFe) enzymes, relatively little inhibited by CO, are still very sensitive to NO but unaffected by NO2-. These differences together with some specific catalytic properties, in particular the pH profile and the H2 to HD ratio in the exchange reaction, constitute a simple means of characterizing multiple hydrogenases present in one or different species

  2. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    OpenAIRE

    Zhou, Aifen

    2010-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gen...

  3. Transcriptomic and proteomic analyses of Desulfovibrio vulgaris biofilms: Carbon and energy flow contribute to the distinct biofilm growth state

    Directory of Open Access Journals (Sweden)

    Clark Melinda E

    2012-04-01

    Full Text Available Abstract Background Desulfovibrio vulgaris Hildenborough is a sulfate-reducing bacterium (SRB that is intensively studied in the context of metal corrosion and heavy-metal bioremediation, and SRB populations are commonly observed in pipe and subsurface environments as surface-associated populations. In order to elucidate physiological changes associated with biofilm growth at both the transcript and protein level, transcriptomic and proteomic analyses were done on mature biofilm cells and compared to both batch and reactor planktonic populations. The biofilms were cultivated with lactate and sulfate in a continuously fed biofilm reactor, and compared to both batch and reactor planktonic populations. Results The functional genomic analysis demonstrated that biofilm cells were different compared to planktonic cells, and the majority of altered abundances for genes and proteins were annotated as hypothetical (unknown function, energy conservation, amino acid metabolism, and signal transduction. Genes and proteins that showed similar trends in detected levels were particularly involved in energy conservation such as increases in an annotated ech hydrogenase, formate dehydrogenase, pyruvate:ferredoxin oxidoreductase, and rnf oxidoreductase, and the biofilm cells had elevated formate dehydrogenase activity. Several other hydrogenases and formate dehydrogenases also showed an increased protein level, while decreased transcript and protein levels were observed for putative coo hydrogenase as well as a lactate permease and hyp hydrogenases for biofilm cells. Genes annotated for amino acid synthesis and nitrogen utilization were also predominant changers within the biofilm state. Ribosomal transcripts and proteins were notably decreased within the biofilm cells compared to exponential-phase cells but were not as low as levels observed in planktonic, stationary-phase cells. Several putative, extracellular proteins (DVU1012, 1545 were also detected in the

  4. Gene : CBRC-DNOV-01-2655 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2655 Novel UN D UNKNOWN NCKX6_RAT 4.6 33% ref|YP_389963.1| L-lysine ... exporter, putat ... [Desulfovibrio desulfuricans G20] gb|ABB40268.1| L-lysine ... exporter, putative [Desulfovibrio desulfuricans G2 ...

  5. NCBI nr-aa BLAST: CBRC-BTAU-01-1528 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-1528 ref|YP_389963.1| L-lysine exporter, putative [Desulfovibrio desul...furicans G20] gb|ABB40268.1| L-lysine exporter, putative [Desulfovibrio desulfuricans G20] YP_389963.1 2.0 35% ...

  6. NCBI nr-aa BLAST: CBRC-DNOV-01-2655 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2655 ref|YP_389963.1| L-lysine exporter, putative [Desulfovibrio desul...furicans G20] gb|ABB40268.1| L-lysine exporter, putative [Desulfovibrio desulfuricans G20] YP_389963.1 2.9 38% ...

  7. NCBI nr-aa BLAST: CBRC-LAFR-01-0320 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-0320 ref|YP_388071.1| hypothetical protein Dde_1579 [Desulfovibrio des...ulfuricans G20] gb|ABB38376.1| membrane protein, putative [Desulfovibrio desulfuricans G20] YP_388071.1 0.37 27% ...

  8. NCBI nr-aa BLAST: CBRC-DRER-18-0110 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-18-0110 ref|YP_389875.1| Phage tail tape measure protein TP901, core regi...on [Desulfovibrio desulfuricans G20] gb|ABB40180.1| Phage tail tape measure protein TP901, core region [Desulfovibrio desulfuricans G20] YP_389875.1 0.005 24% ...

  9. Lactococcus lactis - a diploid bacterium

    DEFF Research Database (Denmark)

    Michelsen, Ole; Hansen, Flemming G.; Jensen, Peter Ruhdal

    In contrast to higher eukaryotes, bacteria are haploid, i.e. they store their genetic information in a single chromosome, which is then duplicated during the cell cycle. If the growth rate is sufficiently low, the bacterium is born with only a single copy of the chromosome, which gets duplicated...... before the bacterium divides. Fast-growing bacteria have overlapping rounds of replication, and can contain DNA corresponding to more than four genome equivalents. However, the terminus region of the chromosome is still present in just one copy after division, and is not duplicated until right before...... the next division. Thus, the regions of the chromosome that are the last to be replicated are haploid even in fast-growing bacteria. In contrast to this general rule for bacteria, we found that Lactococcus lactis, a bacterium which has been exploited for thousands of years for the production of fermented...

  10. Single Bacterium Detection Using Sers

    Science.gov (United States)

    Gonchukov, S. A.; Baikova, T. V.; Alushin, M. V.; Svistunova, T. S.; Minaeva, S. A.; Ionin, A. A.; Kudryashov, S. I.; Saraeva, I. N.; Zayarny, D. A.

    2016-02-01

    This work is devoted to the study of a single Staphylococcus aureus bacterium detection using surface-enhanced Raman spectroscopy (SERS) and resonant Raman spectroscopy (RS). It was shown that SERS allows increasing sensitivity of predominantly low frequency lines connected with the vibrations of Amide, Proteins and DNA. At the same time the lines of carotenoids inherent to this kind of bacterium are well-detected due to the resonance Raman scattering mechanism. The reproducibility and stability of Raman spectra strongly depend on the characteristics of nanostructured substrate, and molecular structure and size of the tested biological object.

  11. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    Energy Technology Data Exchange (ETDEWEB)

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  12. Development of a Markerless Genetic Exchange System in Desulfovibrio vulgaris Hildenborough and Its Use in Generating a Strain with Increased Transformation Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Kimberly L.; Bender, Kelly S.; Wall, Judy D.

    2009-07-21

    In recent years, the genetic manipulation of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough has seen enormous progress. In spite of this progress, the current marker exchange deletion method does not allow for easy selection of multiple sequential gene deletions in a single strain because of the limited number of selectable markers available in D. vulgaris. To broaden the repertoire of genetic tools for manipulation, an in-frame, markerless deletion system has been developed. The counterselectable marker that makes this deletion system possible is the pyrimidine salvage enzyme, uracil phosphoribosyltransferase, encoded by upp. In wild-type D. vulgaris, growth was shown to be inhibited by the toxic pyrimidine analog 5-fluorouracil (5-FU); whereas, a mutant bearing a deletion of the upp gene was resistant to 5-FU. When a plasmid containing the wild-type upp gene expressed constitutively from the aph(3')-II promoter (promoter for the kanamycin resistance gene in Tn5) was introduced into the upp deletion strain, sensitivity to 5-FU was restored. This observation allowed us to develop a two-step integration and excision strategy for the deletion of genes of interest. Since this inframe deletion strategy does not retain an antibiotic cassette, multiple deletions can be generated in a single strain without the accumulation of genes conferring antibiotic resistances. We used this strategy to generate a deletion strain lacking the endonuclease (hsdR, DVU1703) of a type I restriction-modification system, that we designated JW7035. The transformation efficiency of the JW7035 strain was found to be 100 to 1000 times greater than that of the wild-type strain when stable plasmids were introduced via electroporation.

  13. Metabolic dynamics of Desulfovibrio vulgaris biofilm grown on a steel surface.

    Science.gov (United States)

    Zhang, Yang; Pei, Guangsheng; Chen, Lei; Zhang, Weiwen

    2016-08-01

    In this study, a comparative metabolomics approach combining gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) was applied first between planktonic cells and biofilms and then between pure cultures and biofilms of Desulfovibrio vulgaris. The results revealed that the overall metabolic level of the biofilm cells was down-regulated, especially for metabolites related to the central carbon metabolism, compared to the planktonic cells and the pure culture of D. vulgaris. In addition, pathway enrichment analysis of the 58 metabolites identified by GC-MS showed that fatty acid biosynthesis in the biofilm cells was up-regulated, suggesting that fatty acids may be important for the formation, maintenance and function of D. vulgaris biofilm. This study offers a valuable perspective on the metabolic dynamics of the D. vulgaris biofilm. PMID:27299565

  14. A Preliminary Study Examining the Binding Capacity of Akkermansia muciniphila and Desulfovibrio spp., to Colonic Mucin in Health and Ulcerative Colitis.

    Directory of Open Access Journals (Sweden)

    Helen Earley

    Full Text Available Akkermansia muciniphila and Desulfovibrio spp. are commensal microbes colonising the mucus gel layer of the colon. Both species have the capacity to utilise colonic mucin as a substrate. A. muciniphila degrades colonic mucin, while Desulfovibrio spp. metabolise the sulfate moiety of sulfated mucins. Altered abundances of these microorganisms have been reported in ulcerative colitis (UC. However their capacity to bind to human colonic mucin, and whether this binding capacity is affected by changes in mucin associated with UC, remain to be defined.Mucin was isolated from resected colon from control patients undergoing resection for colonic cancer (n = 7 and patients undergoing resection for UC (n = 5. Isolated mucin was purified and printed onto mucin microarrays. Binding of reference strains and three clinical isolates of A. muciniphila and Desulfovibrio spp. to purified mucin was investigated.Both A. muciniphila and Desulfovibro spp. bound to mucin. The reference strain and all clinical isolates of A. muciniphila showed increased binding capacity for UC mucin (p < .005. The Desulfovibrio reference strain showed increased affinity for UC mucin. The mucin binding profiles of clinical isolates of Desulfovibrio spp. were specific to each isolate. Two isolates showed no difference in binding. One UC isolate bound with increased affinity to UC mucin (p < .005.These preliminary data suggest that differences exist in the mucin binding capacity of isolates of A. muciniphila and Desulfovibrio spp. This study highlights the mucin microarray platform as a means of studying the ability of bacteria to interact with colonic mucin in health and disease.

  15. The role of Rnf in ion gradient formation in Desulfovibrio alaskensis

    Science.gov (United States)

    Wang, Luyao; Bradstock, Peter; Li, Chuang; McInerney, Michael J.

    2016-01-01

    Rnf is a membrane protein complex that has been shown to be important in energy conservation. Here, Desulfovibrio alaskensis G20 and Rnf mutants of G20 were grown with different electron donor and acceptor combinations to determine the importance of Rnf in energy conservation and the type of ion gradient generated. The addition of the protonophore TCS strongly inhibited lactate-sulfate dependent growth whereas the sodium ionophore ETH2120 had no effect, indicating a role for the proton gradient during growth. Mutants in rnfA and rnfD were more sensitive to the protonophore at 5 µM than the parental strain, suggesting the importance of Rnf in the generation of a proton gradient. The electrical potential (ΔΨ), ΔpH and proton motive force were lower in the rnfA mutant than in the parental strain of D.alaskensis G20. These results provide evidence that the Rnf complex in D. alaskensis functions as a primary proton pump whose activity is important for growth. PMID:27114876

  16. Redox states of Desulfovibrio vulgaris DsrC, a key protein in dissimilatory sulfite reduction

    Energy Technology Data Exchange (ETDEWEB)

    Venceslau, Sofia S. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Cort, John R.; Baker, Erin S. [Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Chu, Rosalie K.; Robinson, Errol W. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352 (United States); Dahl, Christiane [Institut für Mikrobiologie and Biotechnologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 168, D-53115 Bonn (Germany); Saraiva, Lígia M. [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal); Pereira, Inês A.C., E-mail: ipereira@itqb.unl.pt [Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras (Portugal)

    2013-11-29

    Highlights: •DsrC is known to interact with the dissimilatory sulfite reductase enzyme (DsrAB). •We show that, however, most cellular DsrC is not associated with DsrAB. •A gel-shift assay was developed that allows monitoring of the DsrC redox state. •The DsrC intramolecularly oxidized state could only be produced by arginine treatment. -- Abstract: Dissimilatory reduction of sulfite is carried out by the siroheme enzyme DsrAB, with the involvement of the protein DsrC, which has two conserved redox-active cysteines. DsrC was initially believed to be a third subunit of DsrAB. Here, we report a study of the distribution of DsrC in cell extracts to show that, in the model sulfate reducer Desulfovibrio vulgaris, the majority of DsrC is not associated with DsrAB and is thus free to interact with other proteins. In addition, we developed a cysteine-labelling gel-shift assay to monitor the DsrC redox state and behaviour, and procedures to produce the different redox forms. The oxidized state of DsrC with an intramolecular disulfide bond, which is proposed to be a key metabolic intermediate, could be successfully produced for the first time by treatment with arginine.

  17. Transcriptional Response of Desulfovibrio vulgaris Hildenborough to Oxidative Stress Mimicking Environmental Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2008-03-12

    Sulphate-reducing bacteria are anaerobes readily found in oxic-anoxic interfaces. Multiple defence pathways against oxidative conditions were identified in these organisms and proposed to be differentially expressed under different concentrations of oxygen, contributing to their ability to survive oxic conditions. In this study, Desulfovibrio vulgaris Hildenborough cells were exposed to the highest concentration of oxygen that sulphate-reducing bacteria are likely to encounter in natural habitats, and the global transcriptomic response was determined. 307 genes were responsive, with cellular roles in energy metabolism, protein fate, cell envelope and regulatory functions, including multiple genes encoding heat shock proteins, peptidases and proteins with heat shock promoters. Of the oxygen reducing mechanisms of D. vulgaris only the periplasmic hydrogen-dependent mechanism is up-regulated, involving the [NiFeSe]hydrogenase, formate dehydrogenase(s) and the Hmc membrane complex. The oxidative defence response concentrates on damage repair by metal-free enzymes. These data, together with the down regulation of the Fur operon, which restricts the availability of iron, and the lack of response of the PerR operon, suggest that a major effect of this oxygen stress is the inactivation and/or degradation of multiple metalloproteins present in D. vulgaris as a consequence of oxidative damage to their metal clusters.

  18. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.

    Science.gov (United States)

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F; Rittmann, Bruce E

    2014-05-15

    Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor - affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3mM. Furthermore, sufficient free Fe(2+) led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics. PMID:24675611

  19. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    Energy Technology Data Exchange (ETDEWEB)

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  20. Construction and Evaluation of Desulfovibrio vulgaris Whole-Genome Oligonucleotide Microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Z. He; Q. He; L. Wu; M.E. Clark; J.D. Wall; Jizhong Zhou; Matthew W. Fields

    2004-03-17

    Desulfovibrio vulgaris Hildenborough has been the focus of biochemical and physiological studies in the laboratory, and the metabolic versatility of this organism has been largely recognized, particularly the reduction of sulfate, fumarate, iron, uranium and chromium. In addition, a Desulfovibrio sp. has been shown to utilize uranium as the sole electron acceptor. D. vulgaris is a d-Proteobacterium with a genome size of 3.6 Mb and 3584 ORFs. The whole-genome microarrays of D. vulgaris have been constructed using 70mer oligonucleotides. All ORFs in the genome were represented with 3471 (97.1%) unique probes and 103 (2.9%) non-specific probes that may have cross-hybridization with other ORFs. In preparation for use of the experimental microarrays, artificial probes and targets were designed to assess specificity and sensitivity and identify optimal hybridization conditions for oligonucleotide microarrays. The results indicated that for 50mer and 70mer oligonucleotide arrays, hybridization at 45 C to 50 C, washing at 37 C and a wash time of 2.5 to 5 minutes obtained specific and strong hybridization signals. In order to evaluate the performance of the experimental microarrays, growth conditions were selected that were expected to give significant hybridization differences for different sets of genes. The initial evaluations were performed using D. vulgaris cells grown at logarithmic and stationary phases. Transcriptional analysis of D. vulgaris cells sampled during logarithmic phase growth indicated that 25% of annotated ORFs were up-regulated and 3% of annotated ORFs were downregulated compared to stationary phase cells. The up-regulated genes included ORFs predicted to be involved with acyl chain biosynthesis, amino acid ABC transporter, translational initiation factors, and ribosomal proteins. In the stationary phase growth cells, the two most up-regulated ORFs (70-fold) were annotated as a carboxynorspermidine decarboxylase and a 2C-methyl-D-erythritol-2

  1. TupA: A Tungstate Binding Protein in the Periplasm of Desulfovibrio alaskensis G20

    Directory of Open Access Journals (Sweden)

    Ana Rita Otrelo-Cardoso

    2014-07-01

    Full Text Available The TupABC system is involved in the cellular uptake of tungsten and belongs to the ABC (ATP binding cassette-type transporter systems. The TupA component is a periplasmic protein that binds tungstate anions, which are then transported through the membrane by the TupB component using ATP hydrolysis as the energy source (the reaction catalyzed by the ModC component. We report the heterologous expression, purification, determination of affinity binding constants and crystallization of the Desulfovibrio alaskensis G20 TupA. The tupA gene (locus tag Dde_0234 was cloned in the pET46 Enterokinase/Ligation-Independent Cloning (LIC expression vector, and the construct was used to transform BL21 (DE3 cells. TupA expression and purification were optimized to a final yield of 10 mg of soluble pure protein per liter of culture medium. Native polyacrylamide gel electrophoresis was carried out showing that TupA binds both tungstate and molybdate ions and has no significant interaction with sulfate, phosphate or perchlorate. Quantitative analysis of metal binding by isothermal titration calorimetry was in agreement with these results, but in addition, shows that TupA has higher affinity to tungstate than molybdate. The protein crystallizes in the presence of 30% (w/v polyethylene glycol 3350 using the hanging-drop vapor diffusion method. The crystals diffract X-rays beyond 1.4 Å resolution and belong to the P21 space group, with cell parameters a = 52.25 Å, b = 42.50 Å, c = 54.71 Å, β = 95.43°. A molecular replacement solution was found, and the structure is currently under refinement.

  2. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris

    International Nuclear Information System (INIS)

    Highlights: • Extended incubation time to 16 days allowed significant FeS crystallization. • A weakly acidic pH greatly enhanced particle growth of mackinawite. • Microbial metabolism of different donors systematically altered the ambient pH. • Greater sulfide accumulation stimulated mackinawite transformation to greigite. - Abstract: Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor – affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3 mM. Furthermore, sufficient free Fe2+ led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics

  3. Transhydrogenase and Growth Substrate Influence Lipid Hydrogen Isotope Ratios in Desulfovibrio alaskensis G20.

    Science.gov (United States)

    Leavitt, William D; Flynn, Theodore M; Suess, Melanie K; Bradley, Alexander S

    2016-01-01

    Microbial fatty acids preserve metabolic and environmental information in their hydrogen isotope ratios ((2)H/(1)H). This ratio is influenced by parameters that include the (2)H/(1)H of water in the microbial growth environment, and biosynthetic fractionations between water and lipid. In some microbes, this biosynthetic fractionation has been shown to vary systematically with central energy metabolism, and controls on fatty acid (2)H/(1)H may be linked to the intracellular production of NADPH. We examined the apparent fractionation between media water and the fatty acids produced by Desulfovibrio alaskensis G20. Growth was in batch culture with malate as an electron donor for sulfate respiration, and with pyruvate and fumarate as substrates for fermentation and for sulfate respiration. A larger fractionation was observed as a consequence of respiratory or fermentative growth on pyruvate than growth on fumarate or malate. This difference correlates with opposite apparent flows of electrons through the electron bifurcating/confurcating transhydrogenase NfnAB. When grown on malate or fumarate, mutant strains of D. alaskensis G20 containing transposon disruptions in a copy of nfnAB show different fractionations than the wild type strain. This phenotype is muted during fermentative growth on pyruvate, and it is absent when pyruvate is a substrate for sulfate reduction. All strains and conditions produced similar fatty acid profiles, and the (2)H/(1)H of individual lipids changed in concert with the mass-weighted average. Unsaturated fatty acids were generally depleted in (2)H relative to their saturated homologs, and anteiso-branched fatty acids were generally depleted in (2)H relative to straight-chain fatty acids. Fractionation correlated with growth rate, a pattern that has also been observed in the fractionation of sulfur isotopes during dissimilatory sulfate reduction by sulfate-reducing bacteria. PMID:27445998

  4. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Chen, E-mail: chen.zhou.2@asu.edu [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Vannela, Raveender [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States); Hayes, Kim F. [Department of Civil and Environmental Engineering, University of Michigan (United States); Rittmann, Bruce E. [Swette Center for Environmental Biotechnology, Biodesign Institute, Arizona State University (United States)

    2014-05-01

    Highlights: • Extended incubation time to 16 days allowed significant FeS crystallization. • A weakly acidic pH greatly enhanced particle growth of mackinawite. • Microbial metabolism of different donors systematically altered the ambient pH. • Greater sulfide accumulation stimulated mackinawite transformation to greigite. - Abstract: Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor – affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe{sub 1+x}S). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe{sub 3}S{sub 4}) when the free sulfide concentration was 29.3 mM. Furthermore, sufficient free Fe{sup 2+} led to the additional formation of vivianite [Fe{sub 3}(PO{sub 4}){sub 2}·8(H{sub 2}O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics.

  5. Distinctive Oxidative Stress Responses to Hydrogen Peroxide in Sulfate Reducing Bacteria Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Aifen; He, Zhili; Redding, A.M.; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Joachimiak, Marcin P.; Bender, Kelly S.; Keasling, Jay D.; Stahl, David A.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2009-01-01

    Response of Desulfovibrio vulgaris Hildenborough to hydrogen peroxide (H2O2, 1 mM) was investigated with transcriptomic, proteomic and genetic approaches. Microarray data demonstrated that gene expression was extensively affected by H2O2 with the response peaking at 120 min after H2O2 treatment. Genes affected include those involved with energy production, sulfate reduction, ribosomal structure and translation, H2O2 scavenging, posttranslational modification and DNA repair as evidenced by gene coexpression networks generated via a random matrix-theory based approach. Data from this study support the hypothesis that both PerR and Fur play important roles in H2O2-induced oxidative stress response. First, both PerR and Fur regulon genes were significantly up-regulated. Second, predicted PerR regulon genes ahpC and rbr2 were derepressedin Delta PerR and Delta Fur mutants and induction of neither gene was observed in both Delta PerR and Delta Fur when challenged with peroxide, suggesting possible overlap of these regulons. Third, both Delta PerR and Delta Fur appeared to be more tolerant of H2O2 as measured by optical density. Forth, proteomics data suggested de-repression of Fur during the oxidative stress response. In terms of the intracellular enzymatic H2O2 scavenging, gene expression data suggested that Rdl and Rbr2 may play major roles in the detoxification of H2O2. In addition, induction of thioredoxin reductase and thioredoxin appeared to be independent of PerR and Fur. Considering all data together, D. vulgaris employed a distinctive stress resistance mechanism to defend against increased cellular H2O2, and the temporal gene expression changes were consistent with the slowdown of cell growth at the onset of oxidative stress.

  6. Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III)

    DEFF Research Database (Denmark)

    Vandieken, Verona; Knoblauch, Christian; Jørgensen, Bo Barker

    2006-01-01

    Strains 18T, 61T and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20-23 degrees C, were able to grow at the freezing point of sea water, -2 degrees C. The strains oxidized important fermenta......Strains 18T, 61T and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20-23 degrees C, were able to grow at the freezing point of sea water, -2 degrees C. The strains oxidized important...... absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7.1. The DNA G+C contents were 43.3 and 42.0 mol% for strains 18T and 61T, respectively. Strains 18T, 61T and 77 were most closely related to Desulfovibrio hydrothermalis (95.0-95.7 % 16S rRNA gene...... sequence similarity). Strains 18T and 77, exhibiting 99.9 % sequence similarity, represent a novel species for which the name Desulfovibrio frigidus sp. nov. is proposed. The type strain is strain 18T (=DSM 17176T = JCM 12924T). Strain 61T was closely related to strains 18T and 77 (97.6 and 97.5 % 16S r...

  7. Crystallization and preliminary X-ray analysis of a class II release factor RF3 from a sulfate-reducing bacterium

    International Nuclear Information System (INIS)

    Class II release factor 3 (RF3) from the sulfate-reducing bacterium D. vulgaris Miyazaki F has been overexpressed, purified and crystallized in complex with GDP. Class II release factor 3 (RF3) from the sulfate-reducing bacterium Desulfovibrio vulgaris Miyazaki F, which promotes rapid dissociation of a class I release factor, has been overexpressed, purified and crystallized in complex with GDP at 293 K using the sitting-drop vapour-diffusion method. A data set was collected to 1.8 Å resolution from a single crystal at 100 K using synchrotron radiation. The crystal belongs to space group P1, with unit-cell parameters a = 47.39, b = 82.80, c = 148.29 Å, α = 104.21, β = 89.78, γ = 89.63°. The asymmetric unit contains four molecules of the RF3–GDP complex. The Matthews coefficient was calculated to be 2.3 Å3 Da−1 and the solvent content was estimated to be 46.6%

  8. IDENTIFICATION OF THE BACTERIUM TOMATO STEM CANKER

    Directory of Open Access Journals (Sweden)

    Goner A. Shaker

    2014-01-01

    Full Text Available Diseased tomato samples were collected from green house was evaluated for isolation, pathogenicity and biochemical tests. The symptoms of the infected tomato plants were as sudden wilting after curled on leaves and necrotic streak regions developed at the crown and base of the stem and the cavities deepen and expand up and down, brown discoloration and necrosis occurring on xylem and phloem vasculer. All of ages of tomato plant were susceptible to bacteria when the weather condition favorable and immediately, seen collapse symptom on tomato plant at once fail and die. The bacterium was isolated from diseased plant in all regions on nutrient Agar; a yellow bacterium was isolated from infected tomato plant in green houses and fields in Abu-Ghraib, Rashiedia and Qanat Al-Geiaysh nurseries in Baghdad provinces of Iraq. The bacterium was found gram positive, rod-shaped, non-motile and capable an aerobic growth and based on the morphological and biochemical characteristics revealed that this bacterium belongs to: Clavibacter michiganensis subsp. michiganensis. (smith pathogenicity and hypersensitivity of the bacterium Cmm showed the disease index were 18.33, 6.66, 16.66, 5, 0% for tomato seedlings were inoculated treatments as the wounding roots, without wounding roots, crown of the stem, petiole and control respectively.

  9. Temporal transcriptomic analysis of Desulfovibrio vulgaris Hildenborough transition into stationary phase growth during electrondonor depletion

    Energy Technology Data Exchange (ETDEWEB)

    Clark, M.E.; He, Q.; He, Z.; Huang, K.H.; Alm, E.J.; Wan, X.-F.; Hazen, T.C.; Arkin, A.P.; Wall, J.D.; Zhou, J.-Z.; Fields, M.W.

    2006-08-01

    Desulfovibrio vulgaris was cultivated in a defined medium, and biomass was sampled for approximately 70 h to characterize the shifts in gene expression as cells transitioned from the exponential to the stationary phase during electron donor depletion. In addition to temporal transcriptomics, total protein, carbohydrate, lactate, acetate, and sulfate levels were measured. The microarray data were examined for statistically significant expression changes, hierarchical cluster analysis, and promoter element prediction and were validated by quantitative PCR. As the cells transitioned from the exponential phase to the stationary phase, a majority of the down-expressed genes were involved in translation and transcription, and this trend continued at the remaining times. There were general increases in relative expression for intracellular trafficking and secretion, ion transport, and coenzyme metabolism as the cells entered the stationary phase. As expected, the DNA replication machinery was down-expressed, and the expression of genes involved in DNA repair increased during the stationary phase. Genes involved in amino acid acquisition, carbohydrate metabolism, energy production, and cell envelope biogenesis did not exhibit uniform transcriptional responses. Interestingly, most phage-related genes were up-expressed at the onset of the stationary phase. This result suggested that nutrient depletion may affect community dynamics and DNA transfer mechanisms of sulfate-reducing bacteria via the phage cycle. The putative feoAB system (in addition to other presumptive iron metabolism genes) was significantly up-expressed, and this suggested the possible importance of Fe{sup 2+} acquisition under metal-reducing conditions. The expression of a large subset of carbohydrate-related genes was altered, and the total cellular carbohydrate levels declined during the growth phase transition. Interestingly, the D. vulgaris genome does not contain a putative rpoS gene, a common attribute

  10. Adaptive evolution of Desulfovibrio alaskensis G20 for developing resistance to perchlorate

    Science.gov (United States)

    Mehta-Kolte, M. G.; Youngblut, M.; Redford, S.; Gregoire, P.; Carlson, H. K.; Coates, J. D.

    2015-12-01

    Due to its toxic, explosive, and corrosive nature, inadvertent biological H2S production by sulfate reducing microorganisms (SRM) poses significant health and industrial operational risks. Anthropogenic sources are dominated by the oil industry where H2S in reservoir gases and fluids has an associated annual cost estimated at $90 billion globally. Our previous studies have identified perchlorate (ClO4-) as a selective and potent inhibitor of SRM in pure culture and complex microbial ecosystems. However, constant addition of inhibitors like perchlorate to natural ecosystems may result in a new adaptive selective pressure on SRM populations. With this in mind we investigated the ability of Desulfovibrio alaskensis G20, a model oil reservoir SRM, to adapt to perchlorate and develop a resistance. Serial transfers of three parallel cultures with increasing concentrations of perchlorate up to 100 mM were generated and compared to wild-type strains that were transferred for same number of generations in absence of perchlorate. Genome sequencing revealed that all three adapted strains had single non-synonymous single-nucleotide polymorphisms in the same gene, Dde_2265, the sulfate adenylytransferase (ATP sulfurylase (ATPS)) (EC 2.7.7.4). ATPS catalyzes the first committed step in sulfate reduction and is essential in all SRM. IC50s against growth for these evolved strains demonstrated a three-fold increased resistance to perchlorate compared to wild-type controls. These evolved strains also had 5x higher transcriptional abundance of Dde_2265 compared to the wild-type strain. Biochemical characterization of the purified ATPS enzyme from both wild-type and the evolved strain showed that the mutant ATPS from the evolved strain was resistant to perchlorate inhibition of ATP turnover with a KI for perchlorate that was 3x greater relative to the wild-type ATPS. These results demonstrate that a single-base pair mutation in ATPS can have a significant impact on developing

  11. Microflora of urogenital tract in pregnancy with asymptomatic bacterium

    International Nuclear Information System (INIS)

    The article contains results of research interrelationship from colonization of vagina and urinary tract diseases. E.coli one of the main factors in development asymptomatic bacterium. Presented high effects of penicillin medicaments and nitrofurans in treatment of asymptomatic bacterium

  12. Slow formation of [3Fe-4S](1+) clusters in mutant forms of Desulfovibrio africanus ferredoxin III.

    Science.gov (United States)

    Hannan, J P; Busch, J L; James, R; Thomson, A J; Moore, G R; Davy, S L

    2000-02-25

    Desulfovibrio africanus ferredoxin III (Da FdIII) readily interconverts between a 7Fe and an 8Fe form with Asp-14 believed to provide a cluster ligand in the latter form. To investigate the factors important for cluster interconversion in Fe/S cluster-containing proteins we have studied two variants of Da FdIII produced by site-directed mutagenesis, Asp14Glu and Asp14His, with cluster incorporation performed in vitro. Characterisation of these proteins by UV/visible, EPR and (1)H NMR spectroscopies revealed that the formation of the stable 7Fe form of these proteins takes some time to occur. Evidence is presented which indicates the [4Fe-4S](2+) cluster is incorporated prior to the [3Fe-4S](1+) cluster. PMID:10692579

  13. Improving interpretation of geoelectrical signatures arising from biomineralization process in porous media: Low-frequency dielectric spectroscopy measurements on Desulfovibrio vulgaris cell suspensions

    Science.gov (United States)

    Zhang, C.; Prodan, C.; Slater, L. D.; Bot, C.; Ntarlagiannis, D.

    2009-12-01

    Previous geophysical studies have demonstrated the sensitivity of complex conductivity measurements to microbial growth, biofilm formation, and microbial-mineral alternations, indicating that complex conductivity has the potential to serve as non-invasive tool for bioremediation monitoring. However, the inherent dielectric properties of microbes and how they might directly contribute to the geophysical responses observed during microbial-mineral transformations are not well understood. As a first step towards improving the understanding of electrical signals from microbial-mineral transformations in porous media, we studied the low frequency dielectric properties of sulfate-reducing bacteria (Desulfovibrio vulgaris) cell suspensions, a common soil borne microorganism involved in remediation of toxic metals in solution. We utilized a two-electrode dielectric spectroscopy measurement, common in biophysics applications,to acquire high quality dielectric dispersion curves of Desulfovibrio vulgaris cell suspensions over the frequency range 0.1 Hz to 1M Hz. Desulfovibrio vulgaris cell suspensions were placed between two parallel steel electrodes that are enclosed in a cylindrical glass tube, and the complex impedance of sample was measured relative to a known resistor. The measured impedance includes an electrode polarization impedance arising at the interface between electrodes and ionic solutions at low frequencies. This electrode impedance has traditionally precluded the reliable interpretation of two electrode techniques at low frequencies (remove the polarization impedance. The feasibility of this polarization removal technique was tested on water saturated glass beads. We show that the broadband dielectric response of Desulfovibrio vulgaris can be reliably determined with this approach. The measurements are modeled based on a dilute suspension of polarizable spheres with the polarization attributed to the surface charge on the cell walls. Our results provide

  14. Effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel in the presence of Desulfovibrio sp.

    Science.gov (United States)

    Unsal, Tuba; Ilhan-Sungur, Esra; Arkan, Simge; Cansever, Nurhan

    2016-08-01

    The utilization of Ag and Cu ions to prevent both microbial corrosion and biofilm formation has recently increased. The emphasis of this study lies on the effects of Ag and Cu ions on the microbial corrosion of 316L stainless steel (SS) induced by Desulfovibrio sp. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization were used to analyze the corrosion behavior. The biofilm formation, corrosion products and Ag and Cu ions on the surfaces were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectrometry (EDS) and elemental mapping. Through circuit modeling, EIS results were used to interpret the physicoelectric interactions between the electrode, biofilm and culture interfaces. EIS results indicated that the metabolic activity of Desulfovibrio sp. accelerated the corrosion rate of SS in both conditions with and without ions. However, due to the retardation in the growth of Desulfovibrio sp. in the presence of Ag and Cu ions, significant decrease in corrosion rate was observed in the culture with the ions. In addition, SEM and EIS analyses revealed that the presence of the ions leads to the formation on the SS of a biofilm with different structure and morphology. Elemental analysis with EDS detected mainly sulfide- and phosphorous-based corrosion products on the surfaces. PMID:27105168

  15. Isolation of a Bacterium Strain Degraded Agar

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    One in 58 strains of bacteria isolated from the compost showed clear colonies after a few days of growth on the plates containing medium made of only agar and water.Water suspension contained only agar (2 and 8g·L -1 ) with two controls (normal saline,LB medium) was inoculated with the bacterium BR5-1 to see whether there was an increasement of the alive bacteria concentration after 48 h of the growth.The results showed that there was a significant rising of the alive bacteria concentration in the agar susp...

  16. Overcoming the anaerobic hurdle in phenotypic microarrays: Generation andvisualization of growth curve data for Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Borglin, Sharon E; Joyner, Dominique; Jacobsen, Janet; Mukhopadhyay, Aindrila; Hazen, Terry C.

    2008-10-04

    Growing anaerobic microorganisms in phenotypic microarrays (PM) and 96-well microtiter plates is an emerging technology that allows high throughput survey of the growth and physiology and/or phenotype of cultivable microorganisms. For non-model bacteria, a method for phenotypic analysis is invaluable, not only to serve as a starting point for further evaluation, but also to provide a broad understanding of the physiology of an uncharacterized wild-type organism or the physiology/phenotype of a newly created mutant of that organism. Given recent advances in genetic characterization and targeted mutations to elucidate genetic networks and metabolic pathways, high-throughput methods for determining phenotypic differences are essential. Here we outline challenges presented in studying the physiology and phenotype of a sulfate reducing anaerobic delta proteobacterium, Desulfovibrio vulgaris Hildenborough. Modifications of the commercially available OmniLog(TM) system (Hayward, CA) for experimental setup, and configuration, as well as considerations in PM data analysis are presented. Also highlighted here is data viewing software that enables users to view and compare multiple PM data sets. The PM method promises to be a valuable strategy in our systems biology approach to D. vulgaris studies and is readily applicable to other anaerobic and aerobic bacteria.

  17. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.

    Science.gov (United States)

    Li, Y; Zhang, P; Cai, W; Rosenblatt, J S; Raad, I I; Xu, D; Gu, T

    2016-02-01

    Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level. PMID:26745983

  18. Purification, crystallization and preliminary X-ray analysis of the dissimilatory sulfite reductase from Desulfovibrio vulgaris Miyazaki F.

    Science.gov (United States)

    Ogata, Hideaki; Shomura, Yasuhito; Goenka Agrawal, Aruna; Kaur, Amrit Pal; Gärtner, Wolfgang; Higuchi, Yoshiki; Lubitz, Wolfgang

    2010-11-01

    Dissimilatory sulfite reductase (Dsr) plays an important role in sulfate respiration in many sulfate-reducing bacteria. Dsr from Desulfovibrio vulgaris Miyazaki F has been purified and crystallized at 277 K using the sitting-drop vapour-diffusion method with PEG 3350 and potassium thiocyanate as precipitants. A data set was collected to 3.7 Å resolution from a single crystal at 100 K using synchrotron radiation. The Dsr crystal belonged to space group P4(1)2(1)2, with unit-cell parameters a = b = 163.26, c = 435.32 Å. The crystal structure of Dsr was determined by the molecular-replacement method based on the three-dimensional structure of Dsr from D. vulgaris Hildenborough. The crystal contained three α(2)β(2)γ(2) units per asymmetric unit, with a Matthews coefficient (V(M)) of 2.35 Å(3) Da(-1); the solvent content was estimated to be 47.7%. PMID:21045297

  19. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  20. Ratoon stunting disease of sugarcane: isolation of the causal bacterium.

    Science.gov (United States)

    Davis, M J; Gillaspie, A G; Harris, R W; Lawson, R H

    1980-12-19

    A small coryneform bacterium was consistently isolated from sugarcane with ratoon stunting disease and shown to be the causal agent. A similar bacterium was isolated from Bermuda grass. Both strains multiplied in sugarcane and Bermuda grass, but the Bermuda grass strain did not incite the symptoms of ratoon stunting disease in sugarcane. Shoot growth in Bermuda grass was retarded by both strains. PMID:17817853

  1. Fluctuation-Enhanced Sensing of Bacterium Odors

    CERN Document Server

    Chang, Hung-Chih; King, Maria D; Kwan, Chiman

    2009-01-01

    The goal of this paper is to explore the possibility to detect and identify bacteria by sensing their odor via fluctuation-enhanced sensing with commercial Taguchi sensors. The fluctuations of the electrical resistance during exposure to different bacterial odors, Escherichia coli and anthrax-surrogate Bacillus subtilis, have been measured and analyzed. In the present study, the simplest method, the measurement and analysis of power density spectra was used. The sensors were run in the normal heated and the sampling-and-hold working modes, respectively. The results indicate that Taguchi sensors used in these fluctuation-enhanced modes are effective tools of bacterium detection and identification even when they are utilizing only the power density spectrum of the stochastic sensor signal.

  2. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Men, Yujie [University of California, Berkeley; Feil, Helene [University of California, Berkeley; Verberkmoes, Nathan C [ORNL; Shah, Manesh B [ORNL; Johnson, David R. [University of California, Berkeley; Lee, Patrick K. H. [University of California, Berkeley; West, Kimberlee A [University of California, Berkeley; Zinder, Stephen H. [Cornell University; Andersen, Gary L. [Lawrence Berkeley National Laboratory (LBNL); Alvarez-Cohen, Lisa [Lawrence Berkeley National Laboratory (LBNL)

    2012-01-01

    Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0 0.01 lmol per day for the co-culture and 10.1 0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8 0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0 0.5107 cells per lmol Cl released, compared with 6.8 0.9107 cells per lmol Cl released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3 1.8107 cells per lmol Cl released). The transcriptome of DE195 grown in the co-culture was analyzed using a wholegenome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.

  3. Desultovibrio frigidus sp nov and Desulfovibrio ferfireducens sp nov., psychrotolerant bacteria isolated from Arctic fiord sediments (Svalbard) with the ability to reduce Fe(III)

    DEFF Research Database (Denmark)

    Vandieken, V.; Knoblauch, C.; Jørgensen, BB

    2006-01-01

    Strains 18(T) 61(T) and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20-23 degrees C, were able to grow at the freezing point of sea water, -2 degrees C. The strains oxidized important...... absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7(.)1. The DNA G+C contents were 43(.)3 and 42(.)0 mol% for strains 18(T) and 61(T), respectively. Strains 18(T) 61(T) and 77 were most closely related to Desulfovibrio hydrothermalis (95......(.)0-95(.)7% 16S rRNA gene sequence similarity), Strains 18(T) and 77, exhibiting 99(.)9% sequence similarity, represent a novel species for which the name Desulfovibrio frigidus sp. nov. is proposed. The type strain is strain 18(T) (=DSM 17176(T)=jCM 12924(T)). Strain 61(T) was closely related to strains 18(T...

  4. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris Hildenborough and Methanobacterium congolense: Global transcriptomic and proteomic analyses

    Energy Technology Data Exchange (ETDEWEB)

    Men, Y.; Feil, H.; VerBerkmoes, N.C.; Shah, M.B.; Johnson, D.R.; Lee, P.K.H; West, K.A.; Zinder, S.H.; Andersen, G.L.; Alvarez-Cohen, L.

    2011-03-01

    Dehalococcoides ethenogenes strain 195 (DE195) was grown in a sustainable syntrophic association with Desulfovibrio vulgaris Hildenborough (DVH) as a co-culture, as well as with DVH and the hydrogenotrophic methanogen Methanobacterium congolense (MC) as a tri-culture using lactate as the sole energy and carbon source. In the co- and tri-cultures, maximum dechlorination rates of DE195 were enhanced by approximately three times (11.0±0.01 lmol per day for the co-culture and 10.1±0.3 lmol per day for the tri-culture) compared with DE195 grown alone (3.8±0.1 lmol per day). Cell yield of DE195 was enhanced in the co-culture (9.0±0.5 x 107 cells per lmol Cl{sup -} released, compared with 6.8±0.9x 107 cells per lmol Cl{sup -} released for the pure culture), whereas no further enhancement was observed in the tri-culture (7.3±1.8x 107 cells per lmol Cl{sup -} released). The transcriptome of DE195 grown in the co-culture was analyzed using a whole-genome microarray targeting DE195, which detected 102 significantly up- or down-regulated genes compared with DE195 grown in isolation, whereas no significant transcriptomic difference was observed between co- and tri-cultures. Proteomic analysis showed that 120 proteins were differentially expressed in the co-culture compared with DE195 grown in isolation. Physiological, transcriptomic and proteomic results indicate that the robust growth of DE195 in co- and tri-cultures is because of the advantages associated with the capabilities of DVH to ferment lactate to provide H2 and acetate for growth, along with potential benefits from proton translocation, cobalamin-salvaging and amino acid biosynthesis, whereas MC in the tri-culture provided no significant additional benefits beyond those of DVH.

  5. Genome Sequence of the Soil Bacterium Janthinobacterium sp. KBS0711

    OpenAIRE

    Shoemaker, William R.; Muscarella, Mario E.; Lennon, Jay T

    2015-01-01

    We present a draft genome of Janthinobacterium sp. KBS0711 that was isolated from agricultural soil. The genome provides insight into the ecological strategies of this bacterium in free-living and host-associated environments.

  6. Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium

    OpenAIRE

    Little, C. Deane; Palumbo, Anthony V; Herbes, Stephen E.; Lidstrom, Mary E.; Tyndall, Richard L.; Gilmer, Penny J.

    1988-01-01

    Trichloroethylene (TCE), a common groundwater contaminant, is a suspected carcinogen that is highly resistant to aerobic biodegradation. An aerobic, methane-oxidizing bacterium was isolated that degrades TCE in pure culture at concentrations commonly observed in contaminated groundwater. Strain 46-1, a type I methanotrophic bacterium, degraded TCE if grown on methane or methanol, producing CO2 and water-soluble products. Gas chromatography and 14C radiotracer techniques were used to determine...

  7. Taxonomic characterization of the cellulose-degrading bacterium NCIB 10462

    Energy Technology Data Exchange (ETDEWEB)

    Dees, C.; Ringleberg, D.; Scott, T.C. [Oak Ridge National Lab., TN (United States); Phelps, T. [Univ. of Tennessee, Knoxville, TN (United States)

    1994-06-01

    The gram negative cellulase-producing bacterium NCIB 10462 has been previously named Pseudomonas fluorescens subsp. or var. cellulosa. Since there is renewed interest in cellulose-degrading bacteria for use in bioconversion of cellulose to chemical feed stocks and fuels, we re-examined the characteristics of this microorganism to determine its proper taxonomic characterization and to further define it`s true metabolic potential. Metabolic and physical characterization of NCIB 10462 revealed that this was an alkalophilic, non-fermentative, gram negative, oxidase positive, motile, cellulose-degrading bacterium. The aerobic substrate utilization profile of this bacterium was found to have few characteristics consistent with a classification of P. fluorescens with a very low probability match with the genus Sphingomonas. Total lipid analysis did not reveal that any sphingolipid bases are produced by this bacterium. NCIB 10462 was found to grow best aerobically but also grows well in complex media under reducing conditions. NCIB 10462 grew slowly under full anaerobic conditions on complex media but growth on cellulosic media was found only under aerobic conditions. Total fatty acid analysis (MIDI) of NCIB 10462 failed to group this bacterium with a known pseudomonas species. However, fatty acid analysis of the bacteria when grown at temperatures below 37{degrees}C suggest that the organism is a pseudomonad. Since a predominant characteristic of this bacterium is it`s ability to degrade cellulose, we suggest it be called Pseudomonas cellulosa.

  8. Production of electrically-conductive nanoscale filaments by sulfate-reducing bacteria in the microbial fuel cell.

    Science.gov (United States)

    Eaktasang, Numfon; Kang, Christina S; Lim, Heejun; Kwean, Oh Sung; Cho, Suyeon; Kim, Yohan; Kim, Han S

    2016-06-01

    This study reports that the obligate anaerobic microorganism, Desulfovibrio desulfuricans, a predominant sulfate-reducing bacterium (SRB) in soils and sediments, can produce nanoscale bacterial appendages for extracellular electron transfer. These nanofilaments were electrically-conductive (5.81S·m(-1)) and allowed SRBs to directly colonize the surface of insoluble or solid electron acceptors. Thus, the direct extracellular electron transfer to the insoluble electrode in the microbial fuel cell (MFC) was possible without inorganic electron-shuttling mediators. The production of nanofilaments was stimulated when only insoluble electron acceptors were available for cellular respiration. These results suggest that when availability of a soluble electron acceptor for SRBs (SO4(2-)) is limited, D. desulfuricans initiates the production of conductive nanofilaments as an alternative strategy to transfer electrons to insoluble electron acceptors. The findings of this study contribute to understanding of the role of SRBs in the biotransformation of various substances in soils and sediments and in the MFC. PMID:26818576

  9. Subcellular localization of proteins in the anaerobic sulfate reducer Desulfovibrio vulgaris via SNAP-tag labeling and photoconversion

    Energy Technology Data Exchange (ETDEWEB)

    Gorur, A.; Leung, C. M.; Jorgens, D.; Tauscher, A.; Remis, J. P.; Ball, D. A.; Chhabra, S.; Fok, V.; Geller, J. T.; Singer, M.; Hazen, T. C.; Juba, T.; Elias, D.; Wall, J.; Biggin, M.; Downing, K. H.; Auer, M.

    2010-06-01

    Systems Biology studies the temporal and spatial 3D distribution of macromolecular complexes with the aim that such knowledge will allow more accurate modeling of biological function and will allow mathematical prediction of cellular behavior. However, in order to accomplish accurate modeling precise knowledge of spatial 3D organization and distribution inside cells is necessary. And while a number of macromolecular complexes may be identified by its 3D structure and molecular characteristics alone, the overwhelming number of proteins will need to be localized using a reporter tag. GFP and its derivatives (XFPs) have been traditionally employed for subcelllar localization using photoconversion approaches, but this approach cannot be taken for obligate anaerobic bacteria, where the intolerance towards oxygen prevents XFP approaches. As part of the GTL-funded PCAP project (now ENIGMA) genetic tools have been developed for the anaerobe sulfate reducer Desulfovibrio vulgaris that allow the high-throughput generation of tagged-protein mutant strains, with a focus on the commercially available SNAP-tag cell system (New England Biolabs, Ipswich, MA), which is based on a modified O6-alkylguanine-DNA alkyltransferase (AGT) tag, that has a dead-end reaction with a modified O6-benzylguanine (BG) derivative and has been shown to function under anaerobic conditions. After initial challenges with respect to variability, robustness and specificity of the labeling signal we have optimized the labeling. Over the last year, as a result of the optimized labeling protocol, we now obtain robust labeling of 20 out of 31 SNAP strains. Labeling for 13 strains were confirmed at least five times. We have also successfully performed photoconversion on 5 of these 13 strains, with distinct labeling patterns for different strains. For example, DsrC robustly localizes to the periplasmic portion of the inner membrane, where as a DNA-binding protein localizes to the center of the cell, where the

  10. Extreme Ionizing-Radiation-Resistant Bacterium

    Science.gov (United States)

    Vaishampayan, Parag A.; Venkateswaran, Kasthuri J.; Schwendner, Petra

    2013-01-01

    potential for transfer, and subsequent proliferation, on another solar body such as Mars and Europa. These organisms are more likely to escape planetary protection assays, which only take into account presence of spores. Hence, presences of extreme radiation-resistant Deinococcus in the cleanroom facility where spacecraft are assembled pose a serious risk for integrity of life-detection missions. The microorganism described herein was isolated from the surfaces of the cleanroom facility in which the Phoenix Lander was assembled. The isolated bacterial strain was subjected to a comprehensive polyphasic analysis to characterize its taxonomic position. This bacterium exhibits very low 16SrRNA similarity with any other environmental isolate reported to date. Both phenotypic and phylogenetic analyses clearly indicate that this isolate belongs to the genus Deinococcus and represents a novel species. The name Deinococcus phoenicis was proposed after the Phoenix spacecraft, which was undergoing assembly, testing, and launch operations in the spacecraft assembly facility at the time of isolation. D. phoenicis cells exhibited higher resistance to ionizing radiation (cobalt-60; 14 kGy) than the cells of the D. radiodurans (5 kGy). Thus, it is in the best interest of NASA to thoroughly characterize this organism, which will further assess in determining the potential for forward contamination. Upon the completion of genetic and physiological characteristics of D. phoenicis, it will be added to a planetary protection database to be able to further model and predict the probability of forward contamination.

  11. Molybdate Reduction to Molybdenum Blue by an Antarctic Bacterium

    OpenAIRE

    S. A. Ahmad; Shukor, M. Y.; Shamaan, N. A.; W. P. Mac Cormack; Syed, M. A.

    2013-01-01

    A molybdenum-reducing bacterium from Antarctica has been isolated. The bacterium converts sodium molybdate or Mo6+ to molybdenum blue (Mo-blue). Electron donors such as glucose, sucrose, fructose, and lactose supported molybdate reduction. Ammonium sulphate was the best nitrogen source for molybdate reduction. Optimal conditions for molybdate reduction were between 30 and 50 mM molybdate, between 15 and 20°C, and initial pH between 6.5 and 7.5. The Mo-blue produced had a unique absorption spe...

  12. [NiFe] hydrogenases from Desulfovibrio vulgaris Miyazaki F and Aquifex aeolicus studied by FTIR, EPR and electrochemical techniques: Redox intermediates, O2/CO sensitivity and light-induced effects

    OpenAIRE

    Pandelia, Maria-Eirini

    2010-01-01

    [NiFe]-Hydrogenasen sind Enzyme, die die reversible Oxidation von molekularem Wasserstoff katalysieren. Das Verständnis ihres Mechanismus ist notwendig für die Synthese biomimetischer katalytischer Systeme und für ein zukünftige “grüne“ Biotechnologie. In dieser Arbeit wurden [NiFe]-Hydrogenasen aus zwei unterschiedlichen Organismen untersucht, eine aus dem streng anaeroben Bakterium Desulfovibrio vulgaris Miyazaki F und eine aus dem mikro-aerophilen hyperthermophilen Bakterium Aquifex aeolic...

  13. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    OpenAIRE

    Escano, Jerome; Deng, Peng; Lu, Shi-En; Smith, Lief

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy.

  14. Genome of a mosquito-killing bacterium decoded

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    @@ Researchers with the CAS Wuhan Institute of Virology (WHIOV) recently completed the genome sequencing of a mosquitocidal bacterium Bacillus shaericus C3-41. The feat, first of its kind in China, is expected to further promote the bio-control studies of mosquitoes.

  15. Rnf Genes in Purple Sulfur Bacterium Allochromatium vinosum

    OpenAIRE

    DİNÇTÜRK, H. Benan; DEMİR, Volkan

    2006-01-01

    Allochromatium vinosum is a photosynthetic, diazotrophic purple sulfur bacterium that oxidizes reduced sulfur compounds hydrogen sulfide, elemental sulfur and thiosulfide. In this article, we report the presence of rnf genes in Allochromatium vinosum, some of which have been reported to take part in nitrogen fixation in some species.

  16. Draft Genome Sequence of Oral Bacterium Streptococcus mutans JH1140

    Science.gov (United States)

    Escano, Jerome; Deng, Peng; Lu, Shi-En

    2016-01-01

    Streptococcus mutans JH1140 is an oral bacterium known to produce the bacteriocin mutacin 1140, and the strain has been genetically engineered to combat dental caries. Here, we report the 2.0-Mb draft genome of S. mutans JH1140. This genome provides new insights into the strain’s superior colonization properties and its utility in replacement therapy. PMID:27257196

  17. Shotgun Genome Sequence of the Large Purple Photosynthetic Bacterium Rhodospirillum photometricum DSM122

    OpenAIRE

    Duquesne, K.; Sturgis, James N.

    2012-01-01

    Here, we present the shotgun genome sequence of the purple photosynthetic bacterium Rhodospirillum photometricum DSM122. The photosynthetic apparatus of this bacterium has been particularly well studied by microscopy. The knowledge of the genome of this oversize bacterium will allow us to compare it with the other purple bacterial organisms to follow the evolution of the photosynthetic apparatus.

  18. Multiscale simulations give insight into the hydrogen in and out pathways of [NiFe]-hydrogenases from Aquifex aeolicus and Desulfovibrio fructosovorans.

    Science.gov (United States)

    Oteri, Francesco; Baaden, Marc; Lojou, Elisabeth; Sacquin-Mora, Sophie

    2014-12-01

    [NiFe]-hydrogenases catalyze the cleavage of molecular hydrogen into protons and electrons and represent promising tools for H2-based technologies such as biofuel cells. However, many aspects of these enzymes remain to be understood, in particular how the catalytic center can be protected from irreversible inactivation by O2. In this work, we combined homology modeling, all-atom molecular dynamics, and coarse-grain Brownian dynamics simulations to investigate and compare the dynamic and mechanical properties of two [NiFe]-hydrogenases: the soluble O2-sensitive enzyme from Desulfovibrio fructosovorans, and the O2-tolerant membrane-bound hydrogenase from Aquifex aeolicus. We investigated the diffusion pathways of H2 from the enzyme surface to the central [NiFe] active site, and the possible proton pathways that are used to evacuate hydrogen after the oxidation reaction. Our results highlight common features of the two enzymes, such as a Val/Leu/Arg triad of key residues that controls ligand migration and substrate access in the vicinity of the active site, or the key role played by a Glu residue for proton transfer after hydrogen oxidation. We show specificities of each hydrogenase regarding the enzymes internal tunnel network or the proton transport pathways. PMID:25399809

  19. The influence of Desulfovibrio vulgaris on the efficiency of imidazoline as a corrosion inhibitor on low-carbon steel in seawater

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez-Rodriguez, Carlos A. [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)], E-mail: gorc74@yahoo.com; Rodriguez-Gomez, Francisco J.; Genesca-Llongueras, Joan [Facultad de Quimica UNAM, Ciudad Universitaria, C.P. 04510 Mexico, D.F. (Mexico)

    2008-12-01

    The action of Desulfovibrio vulgaris (Dv) during a corrosion process has been reported in literature, but the influence of imidazoline in the formation of biofilms is not clear, as well as the effect of bacteria on the efficiency of the corrosion inhibitors. The aim of this work is to determine the behavior of bacteria in the presence of imidazoline. Therefore, the growth of Dv, isolated and characterized from a morphological point of view, was monitored during 21 days, during which synthetic seawater was used as the culture medium, according to the ASTM D665-98 standard. Electrochemical noise (EN) was employed to establish the corrosion type generated by the microorganism on an AISI 1018 steel cylinder. The attack was observed using scanning electron microscopy (SEM). In order to evaluate the efficiency of the corrosion inhibitor, Tafel extrapolation was used; the optimum concentration of the inhibitor was used in the presence of sulphate-reducing bacteria (SRB). In general, two forms of corrosion were observed: localized corrosion (in the LAG phase) and mixed corrosion (in the LOG phase)

  20. A Streamlined Strategy for Biohydrogen Production with an Alkaliphilic Bacterium

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne A [ORNL; Wall, Judy D. [University of Missouri; Mormile, Dr. Melanie R. [Missouri University of Science and Technology; Begemann, Matthew B [University of Wisconsin, Madison

    2012-01-01

    Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, biohydrogen production remains inefficient and heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium strain sapolanicus, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. sapolanicus ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen and acetate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  1. Rock Phosphate Solubilization Mechanisms of One Fungus and One Bacterium

    Institute of Scientific and Technical Information of China (English)

    LIN Qi-mei; ZHAO Xiao-rong; ZHAO Zi-juan; LI Bao-guo

    2002-01-01

    Many microorganisms can dissolve the insoluble phosphates like apatite. However, the mechanisms are still not clear. This study was an attempt to investigate the mechanisms of rock phosphate solubilization by an Aspergillus 2TCiF2 and an Arthrobacter1TCRi7. The results indicated that the fungus produced a large amount of organic acids, mainly oxalic acid. The total quantity of the organic acids produced by the fungus was 550 times higher than that by the bacterium. Different organic acids had completely different capacities to solubilize the rock. Oxalic acid and citric acid had stronger capacity to dissolve the rock than malic acid, tartaric acid, lactic acid, acetic acid, malonic acid and succinic acid. The fungus solubilized the rock through excreting both proton and organic acids. The rock solubilization of the bacterium depended on only proton.

  2. A physical map of the hyperthermophilic bacterium Aquifex pyrophilus chromosome.

    OpenAIRE

    Shao, Z; Mages, W; Schmitt, R.

    1994-01-01

    A genomic map of the hyperthermophilic hydrogen-oxidizing bacterium Aquifex pyrophilus was established with NotI (GC/GGCCGC), SpeI (A/CTAGT), and XbaI (T/CTAGA). Linking clones and cross-hybridization of restriction fragments revealed a single circular chromosome of 1.6 Mbp. A single flagellin gene and six rRNA gene units were located on this map by Southern hybridization.

  3. Isolation of a Bacterium Capable of Degrading Peanut Hull Lignin

    OpenAIRE

    Kerr, Thomas J.; Kerr, Robert D.; Benner, Ronald

    1983-01-01

    Thirty-seven bacterial strains capable of degrading peanut hull lignin were isolated by using four types of lignin preparations and hot-water-extracted peanut hulls. One of the isolates, tentatively identified as Arthrobacter sp., was capable of utilizing all four lignin preparations as well as extracted peanut hulls as a sole source of carbon. The bacterium was also capable of degrading specifically labeled [14C]lignin-labeled lignocellulose and [14C]cellulose-labeled lignocellulose from the...

  4. Salt-inducible promoter derivable from a lactic acid bacterium, and its use in a lactic acid bacterium for production of a desired protein

    NARCIS (Netherlands)

    Sanders, Jan Willem; Kok, Jan; Venema, Gerard; Ledeboer, Adrianus Marinus

    1998-01-01

    The invention provides a salt-inducible promoter present in SEQ ID NO: 10 and derivable from a lactic acid bacterium in isolation from the coding sequence normally controlled by said promoter in a wild-type lactic acid bacterium, with modifications and important parts thereof. Also provided are a re

  5. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    NARCIS (Netherlands)

    Jonkers, Henk M.; Maarel, Marc J.E.C. van der; Gemerden, Hans van; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurre

  6. Microbially influenced corrosion visualized by atomic force microscopy

    Science.gov (United States)

    Telegdi, J.; Keresztes, Z.; Pálinkás, G.; Kálmán, E.; Sand, W.

    Corrosion, biofilm formation and the adsorption of different, corrosion-enhancing microbes (such as Desulfovibrio desulfuricans, Thiobacillus ferrooxidans, Thiobacillus intermedius, Leptospirillum ferrooxidans, and mixed cultures) to different surfaces (iron, copper, pyrite) have been studied in aqueous environment by atomic force microscopy (AFM). It is one of the most effective on-line techniques for imaging surfaces (bacterial, metallic, etc.) with high resolution.

  7. Research Progress and Perspectives of Nitrogen Fixing Bacterium, Gluconacetobacter diazotrophicus, in Monocot Plants

    Directory of Open Access Journals (Sweden)

    N. Eskin

    2014-01-01

    Full Text Available Gluconacetobacter diazotrophicus is a nitrogen fixing bacterium originally found in monocotyledon sugarcane plants in which the bacterium actively fixes atmosphere nitrogen and provides significant amounts of nitrogen to plants. This bacterium mainly colonizes intercellular spaces within the roots and stems of plants and does not require the formation of the complex root organ like nodule. The bacterium is less plant/crop specific and indeed G. diazotrophicus has been found in a number of unrelated plant species. Importantly, as the bacterium was of monocot plant origin, there exists a possibility that the nitrogen fixation feature of the bacterium may be used in many other monocot crops. This paper reviews and updates the research progress of G. diazotrophicus for the past 25 years but focuses on the recent research development.

  8. Comparison of Transcriptional Heterogeneity of Eight Genes between Batch Desulfovibrio vulgaris Biofilm and Planktonic Culture at a Single-Cell Level

    Science.gov (United States)

    Qi, Zhenhua; Chen, Lei; Zhang, Weiwen

    2016-01-01

    Sulfate-reducing bacteria (SRB) biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a mild steel (SS) and planktonic cultures, exponential and stationary phases). The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes at exponential phase, and six out of eight selected genes at stationary phase, respectively, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588), stress responses (i.e., DVU2410) and response regulator (i.e., DVU3062) in the D. vulgaris biofilm cells. Finally, the gene (DVU2571) involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397) involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms. PMID:27199927

  9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using Gas Chromatography-Mass Spectrometry and Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

    International Nuclear Information System (INIS)

    Flux distribution in central metabolic pathways of Desulfovibrio vulgaris Hildenborough was examined using 13C tracer experiments. Consistent with the current genome annotation and independent evidence from enzyme activity assays, the isotopomer results from both GC-MS and Fourier Transform-Ion Cyclotron Resonance mass spectrometry (FT-ICR MS) indicate the lack of oxidatively functional TCA cycle and an incomplete pentose phosphate pathway. Results from this study suggest that fluxes through both pathways are limited to biosynthesis. The data also indicate that >80 percent of the lactate was converted to acetate and the reactions involved are the primary route of energy production (NAD(P)H and ATP production). Independent of the TCA cycle, direct cleavage of acetyl-CoA to CO and 5,10-methyl-THF also leads to production of NADH and ATP. Although the genome annotation implicates a ferredoxin-dependent oxoglutarate synthase, isotopic evidence does not support flux through this reaction in either the oxidative or reductive mode; therefore, the TCA cycle is incomplete. FT-ICR MS was used to locate the labeled carbon distribution in aspartate and glutamate and confirmed the presence of an atypical enzyme for citrate formation suggested in previous reports (the citrate synthesized by this enzyme is the isotopic antipode of the citrate synthesized by the (S)-citrate synthase). These findings enable a better understanding of the relation between genome annotation and actual metabolic pathways in D. vulgaris, and also demonstrate FT-ICR MS as a powerful tool for isotopomer analysis, overcoming problems in both GC-MS and NMR spectroscopy

  10. Comparison of transcriptional heterogeneity of eight genes between batch Desulfovibrio vulgaris biofilm and planktonic culture at a single-cell level

    Directory of Open Access Journals (Sweden)

    Zhenhua eQi

    2016-04-01

    Full Text Available Sulfate-reducing bacteria (SRB biofilm formed on metal surfaces can change the physicochemical properties of metals and cause metal corrosion. To enhance understanding of differential gene expression in Desulfovibrio vulgaris under planktonic and biofilm growth modes, a single-cell based RT-qPCR approach was applied to determine gene expression levels of 8 selected target genes in four sets of the 31 individual cells isolated from each growth condition (i.e., biofilm formed on a stainless steel (SS) and planktonic cultures, exponential and stationary phases. The results showed obvious gene-expression heterogeneity for the target genes among D. vulgaris single cells of both biofilm and planktonic cultures. In addition, an increased gene-expression heterogeneity in the D. vulgaris biofilm when compared with the planktonic culture was also observed for seven out of eight selected genes, which may be contributing to the increased complexity in terms of structures and morphology in the biofilm. Moreover, the results showed up-regulation of DVU0281 gene encoding exopolysaccharide biosynthesis protein, and down-regulation of genes involved in energy metabolism (i.e., DVU0434 and DVU0588, stress responses (i.e., DVU2410 and response regulator (i.e., DVU3062 in the D. vulgaris biofilm cells. Finally, the gene (DVU2571 involved in iron transportation was found down-regulated, and two genes (DVU1340 and DVU1397 involved in ferric uptake repressor and iron storage were up-regulated in D. vulgaris biofilm, suggesting their possible roles in maintaining normal metabolism of the D. vulgaris biofilm under environments of high concentration of iron. This study showed that the single-cell based analysis could be a useful approach in deciphering metabolism of microbial biofilms.

  11. Effect of the deletion of qmoABC and the promoter distal gene encoding a hypothetical protein on sulfate-reduction in Desulfovibrio vulgaris Hildenborough

    Energy Technology Data Exchange (ETDEWEB)

    Zane, Grant M.; Yen, Huei-chi Bill; Wall, Judy D.

    2010-03-18

    The pathway of electrons required for the reduction of sulfate in sulfate-reducing bacteria (SRB) is not yet fully characterized. In order to determine the role of a transmembrane protein complex suggested to be involved in this process, a deletion of Desulfovibrio vulgaris Hildenborough was created by marker exchange mutagenesis that eliminated four genes putatively encoding the QmoABC complex and a hypothetical protein (DVU0851). The Qmo complex (quinone-interacting membrane-bound oxidoreductase) is proposed to be responsible for transporting electrons to the dissimilatory adenosine-5?phosphosulfate (APS) reductase in SRB. In support of the predicted role of this complex, the deletion mutant was unable to grow using sulfate as its sole electron acceptor with a range of electron donors. To explore a possible role for the hypothetical protein in sulfate reduction, a second mutant was constructed that had lost only the gene that codes for DVU0851. The second constructed mutant grew with sulfate as the sole electron acceptor; however, there was a lag that was not present with the wild-type or complemented strain. Neither deletion strain was significantly impaired for growth with sulfite or thiosulfate as terminal electron acceptor. Complementation of the D(qmoABC-DVU0851) mutant with all four genes or only the qmoABC genes restored its ability to grow by sulfate respiration. These results confirmed the prediction that the Qmo complex is in the electron pathway for sulfate-reduction and revealed that no other transmembrane complex could compensate when Qmo was lacking.

  12. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5

    OpenAIRE

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotro...

  13. A Plant Growth-Promoting Bacterium That Decreases Nickel Toxicity in Seedlings

    OpenAIRE

    Burd, Genrich I.; Dixon, D. George; Glick, Bernard R.

    1998-01-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni2+, Pb2+, Zn2+, and CrO4−, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride w...

  14. Role of formate in methanogenesis from xylan by CELLULOMONAS sp. associated with methanogens and DESULFOVIBRIO VULGARIS : inhibition of the aceticlastic reaction

    OpenAIRE

    Guyot, Jean-Pierre

    1986-01-01

    Different methanogenic defined mixed cultures, including CELLULOMONAS sp. strain ATCC21399 as a hydrolytic and fermentative bacterium, were used to show that methane production could proceed from larchwood xylan as well as from cellulose. Via the different mixtures of bacteria used, the role of formate is described. It is shown that formate inhibits methanogenesis from acetate by pure cultures of aceticlastic methanogens. (Résumé d'auteur)

  15. Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense.

    Science.gov (United States)

    Loehr, Johannes; Pfeiffer, Daniel; Schüler, Dirk; Fischer, Thomas M

    2016-04-21

    Magnetospirillum gryphiswaldense is a magnetotactic bacterium with a permanent magnetic moment capable of swimming using two bipolarly located flagella. In their natural environment these bacteria swim along the field lines of the homogeneous geomagnetic field in a typical run and reversal pattern and thereby create non-differentiable trajectories with sharp edges. In the current work we nevertheless achieve stable guidance along curved lines of mechanical instability by using a heterogeneous magnetic field of a garnet film. The successful guidance of the bacteria depends on the right balance between motility and the magnetic moment of the magnetosome chain. PMID:26972517

  16. Intracellular iron minerals in a dissimilatory iron-reducing bacterium.

    Science.gov (United States)

    Glasauer, Susan; Langley, Sean; Beveridge, Terry J

    2002-01-01

    Among prokaryotes, there are few examples of controlled mineral formation; the formation of crystalline iron oxides and sulfides [magnetite (Fe3O4) or greigite (Fe3S4)] by magnetotactic bacteria is an exception. Shewanella putrefaciens CN32, a Gram-negative, facultative anaerobic bacterium that is capable of dissimilatory iron reduction, produced microscopic intracellular grains of iron oxide minerals during growth on two-line ferrihydrite in a hydrogen-argon atmosphere. The minerals, formed at iron concentrations found in the soil and sedimentary environments where these bacteria are active, could represent an unexplored pathway for the cycling of iron by bacteria. PMID:11778045

  17. Factors Affecting Zebra Mussel Kill by the Bacterium Pseudomonas fluorescens

    Energy Technology Data Exchange (ETDEWEB)

    Daniel P. Molloy

    2004-02-24

    The specific purpose of this research project was to identify factors that affect zebra mussel kill by the bacterium Pseudomonas fluorescens. Test results obtained during this three-year project identified the following key variables as affecting mussel kill: treatment concentration, treatment duration, mussel siphoning activity, dissolved oxygen concentration, water temperature, and naturally suspended particle load. Using this latter information, the project culminated in a series of pipe tests which achieved high mussel kill inside power plants under once-through conditions using service water in artificial pipes.

  18. Screening, identification and desilication of a silicate bacterium

    Institute of Scientific and Technical Information of China (English)

    ZHOU Hong-bo; ZENG Xiao-xi; LIU Fei-fei; QIU Guan-zhou; HU Yue-hua

    2006-01-01

    The strain Lv1-2 isolated from the Henan bauxite was characterized by morphological observation, biochemical and physiological identification, and 16S rDNA sequence analysis. The influences of temperature, initial pH value, the volume of medium, shaking speed and illite concentration on the desilicating ability of the strain Lv1-2 were investigated. The results show that the bacterium is a Gram-negative rod-shaped bacterium with oval endspores and thick capsule, but without flagellum. The biochemical and physiological tests indicate that the strain Lv1-2 is similar to Bacillus mucilaginosus. In GenBank the 16S rDNA sequence similarity of the strain Lv1-2 and the B. mucilaginosus YNUCC0001 (AY571332) is more than 99 %. Based on the above results, the strain Lv1-2 is identified as B. mucilaginosus. The optimum conditions for the strain Lv1-2 to remove silicon from illite are as follows: temperature is 30℃ ;initial pH value is 7.5; medium volume in 200 mL bottle is 60 mL; shaking speed of rotary shaker is 220 r/m; illite concentration is 1%.

  19. Biological Control of Meloidogyne hapla Using an Antagonistic Bacterium

    Directory of Open Access Journals (Sweden)

    Jiyeong Park

    2014-09-01

    Full Text Available We examined the efficacy of a bacterium for biocontrol of the root-knot nematode (RKN Meloidogyne hapla in carrot (Daucus carota subsp. sativus and tomato (Solanum lycopersicum. Among 542 bacterial isolates from various soils and plants, the highest nematode mortality was observed for treatments with isolate C1-7, which was identified as Bacillus cereus based on cultural and morphological characteristics, the Biolog program, and 16S rRNA sequencing analyses. The population density and the nematicidal activity of B. cereus C1-7 remained high until the end of culture in brain heart infusion broth, suggesting that it may have sustainable biocontrol potential. In pot experiments, the biocontrol efficacy of B. cereus C1-7 was high, showing complete inhibition of root gall or egg mass formation by RKN in carrot and tomato plants, and subsequently reducing RKN damage and suppressing nematode population growth, respectively. Light microscopy of RKN-infected carrot root tissues treated with C1-7 showed reduced formation of gall cells and fully developed giant cells, while extensive gall cells and fully mature giant cells with prominent cell wall ingrowths formed in the untreated control plants infected with RKNs. These histopathological characteristics may be the result of residual or systemic biocontrol activity of the bacterium, which may coincide with the biocontrol efficacies of nematodes in pots. These results suggest that B. cereus C1-7 can be used as a biocontrol agent for M. hapla.

  20. Isolation and characterization of luminescent bacterium for sludge biodegradation.

    Science.gov (United States)

    Zahaba, Maryam; Halmi, Mohd Izuan Effendi; Ahmad, Siti Aqlima; Shukor, Mohd Yunus; Syed, Mohd Arif

    2015-11-01

    Microtox is based on the inhibition of luminescence of the bacterium Vibrio fischeri by the toxicants. This technique has been accepted by the USEPA (United States Environmental Protection Agency) as a biomonitoring tool for remediation of toxicants such as hydrocarbon sludge. In the present study, a luminescent bacterium was isolated from yellow striped scad (Selaroides leptolepis) and was tentatively identified as Vibrio sp. isolate MZ. This aerobic isolate showed high luminescence activity in a broad range of temperature from 25 to 35 °C. In addition, optimal conditions for high bioluminescence activity in range of pH 7.5 to 8.5 and 10 gl(-1) of sodium chloride, 10 gl(-1) of peptone and 10 gl(-1) of sucrose as carbon source. Bench scale biodegradation 1% sludge (w/v) was set up and degradation was determined using gas chromatography with flame ionised detector (GC-FID). In this study, Rhodococcus sp. strain AQ5NOL2 was used to degrade the sludge. Based on the preliminary results obtained, Vibrio sp. isolate MZwas able to monitor the biodegradation of sludge. Therefore, Vibrio sp. isolate MZ has the potential to be used as a biomonitoring agent for biomonitoring of sludge biodegradation particularly in the tropical ranged environment. PMID:26688958

  1. Polysaccharide degradation systems of the saprophytic bacterium Cellvibrio japonicus.

    Science.gov (United States)

    Gardner, Jeffrey G

    2016-07-01

    Study of recalcitrant polysaccharide degradation by bacterial systems is critical for understanding biological processes such as global carbon cycling, nutritional contributions of the human gut microbiome, and the production of renewable fuels and chemicals. One bacterium that has a robust ability to degrade polysaccharides is the Gram-negative saprophyte Cellvibrio japonicus. A bacterium with a circuitous history, C. japonicus underwent several taxonomy changes from an initially described Pseudomonas sp. Most of the enzymes described in the pre-genomics era have also been renamed. This review aims to consolidate the biochemical, structural, and genetic data published on C. japonicus and its remarkable ability to degrade cellulose, xylan, and pectin substrates. Initially, C. japonicus carbohydrate-active enzymes were studied biochemically and structurally for their novel polysaccharide binding and degradation characteristics, while more recent systems biology approaches have begun to unravel the complex regulation required for lignocellulose degradation in an environmental context. Also included is a discussion for the future of C. japonicus as a model system, with emphasis on current areas unexplored in terms of polysaccharide degradation and emerging directions for C. japonicus in both environmental and biotechnological applications. PMID:27263016

  2. Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium

    Science.gov (United States)

    Sparks, N.H.C.; Mann, S.; Bazylinski, D.A.; Lovley, D.R.; Jannasch, H.W.; Frankel, R.B.

    1990-01-01

    Intracellular crystals of magnetite synthesized by cells of the magnetotactic vibroid organism, MV-1, and extracellular crystals of magnetite produced by the non-magnetotactic dissimilatory iron-reducing bacterium strain GS-15, were examined using high-resolution transmission electron microscopy, electron diffraction and 57Fe Mo??ssbauer spectroscopy. The magnetotactic bacterium contained a single chain of approximately 10 crystals aligned along the long axis of the cell. The crystals were essentially pure stoichiometric magnetite. When viewed along the crystal long axis the particles had a hexagonal cross-section whereas side-on they appeared as rectangules or truncated rectangles of average dimension, 53 ?? 35 nm. These findings are explained in terms of a three-dimensional morphology comprising a hexagonal prism of {110} faces which are capped and truncated by {111} end faces. Electron diffraction and lattice imaging studies indicated that the particles were structurally well-defined single crystals. In contrast, magnetite particles produced by the strain, GS-15 were irregular in shape and had smaller mean dimensions (14 nm). Single crystals were imaged but these were not of high structural perfection. These results highlight the influence of intracellular control on the crystallochemical specificity of bacterial magnetites. The characterization of these crystals is important in aiding the identification of biogenic magnetic materials in paleomagnetism and in studies of sediment magnetization. ?? 1990.

  3. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    OpenAIRE

    Nilton Nasser

    2012-01-01

    BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatmen...

  4. Dense populations of a giant sulfur bacterium in Namibian shelf sediments

    DEFF Research Database (Denmark)

    Schulz, HN; Brinkhoff, T.; Ferdelman, TG;

    1999-01-01

    A previously unknown giant sulfur bacterium is abundant in sediments underlying the oxygen minimum zone of the Benguela Current upwelling system. The bacterium has a spherical cell that exceeds by up to 100-fold the biovolume of the largest known prokaryotes. On the basis of 16S ribosomal DNA...

  5. Draft Genome Sequence of Ensifer adhaerens M78, a Mineral-Weathering Bacterium Isolated from Soil.

    Science.gov (United States)

    Wang, Yuanli; Chen, Wei; He, Linyan; Wang, Qi; Sheng, Xia-Fang

    2016-01-01

    Ensifer adhaerens M78, a bacterium isolated from soil, can weather potash feldspar and release Fe, Si, and Al from rock under nutrient-poor conditions. Here, we report the draft genome sequence of strain M78, which may facilitate a better understanding of the molecular mechanism involved in mineral weathering by the bacterium. PMID:27609930

  6. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant-beneficial properties

    NARCIS (Netherlands)

    Sessitsch, A; Coenye, T; Sturz, AV; Vandamme, P; Barka, EA; Salles, JF; Van Elsas, JD; Faure, D; Reiter, B; Glick, BR; Wang-Pruski, G; Nowak, J

    2005-01-01

    A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJNT, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic popu

  7. Diverse Oxidative Stress Resistance Mechanisms in Sulfate-reducing Bacteria as Revealed by Global Analysis of the Impact of H2O2 Exposure on Desulfovibrio vulgaris Hildenborough

    Science.gov (United States)

    Zhou, A.; Mukhopadhyay, A.; He, Z.; Hemme, C. L.; Keasling, J. D.; Arkin, A. P.; Hazen, T. C.; Wall, J. D.; Zhou, J.

    2008-12-01

    Desulfovibrio vulgaris Hildenborough (DvH) plays important roles in the bioremediation of toxic metals. It has been shown aero-tolerant. In order to understand the molecular mechanism of DvH oxidative stress response, mid-log DvH cells were subjected to 1 mM of H2O2 and the transcriptomic changes were examined at 30, 60, 120, 240 and 480 min. The microarray data demonstrated that the gene expression was extensively affected with 29% of genes in the genome significantly up- or down-regulated after 120-min H2O2 treatment. In response to elevated cellular H2O2, expression of thiol-peroxidase genes ahpC and bcp were increased in addition to the significant induction of many thioredoxin reductase and thioredoxin genes, which represent the thiol switch in the oxidative stress response. Increased gene expression PerR regulon genes including PerR itself provided evidence for the regulatory role of PerR in oxidative stress response. The role of Fur was suggested by the significant up-regulation of Fur regulon genes. In terms of the H2O2 scavenging enzymes, different from the stress response to air where both rbr and rbr2 were induced, only rbr2 was up-regulated in response to H2O2; together with up-regulated rdl, they might be the additional players for the detoxification of H2O2. Superoxide scavenging enzyme katA was significantly down-regulated, which is in contrast to its role in facultative microbes such as E.coli and B. subtilis. The links between the up- regulated genes involved in H2O2 scavenging, protein fate, DNA metabolism and lipid metabolism and the down-regulated genes involved in sulfate reduction, energy production and translation were demonstrated by the gene co-expression network. The proteomics data provided further evidence in translation level and complemented the transcriptomics data. Taken together, the cellular response of D. vulgaris Hildenborough to H2O2 was the up-regulation of detoxification, protein and DNA repair systems and the down

  8. Effects of high LET radiation on radioresistant bacterium Deinococcus radiodurans

    International Nuclear Information System (INIS)

    It is known that Deinococcus radiodurans is extremely resistant to ionizing and ultraviolet (UV) radiations, as well as chemical agents and hyperthermia (heat treatment) which cause DNA damage. It was reported in this paper that studies on the synergistic killing effect of high LET (linear energy transfer) radiation and hyperthermia in D. radiodurans were performed in Research Reactor Institute, Kyoto University as the Visiting Researcher's Program. The difference of cellular response in this bacterium against low LET (i.e. gamma) and high LET (i.e. BNC beam and heavy ion beam) radiations was analyzed by using Kyoto University Reactor (KUR) operated at 5 MW and AVF cyclotron in Takasaki Ion Accelerator for Radiation Application (TIARA). Also, The DNA sequence specificity (hot spot) for mutation on supF gene of a shuttle vector plasmid pZ189 induced by BNC beam is being researched using Escherichia coli DNA repair capability. (author)

  9. Genome analysis of the Anerobic Thermohalophilic bacterium Halothermothrix orenii

    Energy Technology Data Exchange (ETDEWEB)

    Mavromatis, Konstantinos; Ivanova, Natalia; Anderson, Iain; Lykidis, Athanasios; Hooper, Sean D.; Sun, Hui; Kunin, Victor; Lapidus, Alla; Hugenholtz, Philip; Patel, Bharat; Kyrpides, Nikos C.

    2008-11-03

    Halothermothirx orenii is a strictly anaerobic thermohalophilic bacterium isolated from sediment of a Tunisian salt lake. It belongs to the order Halanaerobiales in the phylum Firmicutes. The complete sequence revealed that the genome consists of one circular chromosome of 2578146 bps encoding 2451 predicted genes. This is the first genome sequence of an organism belonging to the Haloanaerobiales. Features of both Gram positive and Gram negative bacteria were identified with the presence of both a sporulating mechanism typical of Firmicutes and a characteristic Gram negative lipopolysaccharide being the most prominent. Protein sequence analyses and metabolic reconstruction reveal a unique combination of strategies for thermophilic and halophilic adaptation. H. orenii can serve as a model organism for the study of the evolution of the Gram negative phenotype as well as the adaptation under thermohalophilic conditions and the development of biotechnological applications under conditions that require high temperatures and high salt concentrations.

  10. A bacterium that degrades and assimilates poly(ethylene terephthalate).

    Science.gov (United States)

    Yoshida, Shosuke; Hiraga, Kazumi; Takehana, Toshihiko; Taniguchi, Ikuo; Yamaji, Hironao; Maeda, Yasuhito; Toyohara, Kiyotsuna; Miyamoto, Kenji; Kimura, Yoshiharu; Oda, Kohei

    2016-03-11

    Poly(ethylene terephthalate) (PET) is used extensively worldwide in plastic products, and its accumulation in the environment has become a global concern. Because the ability to enzymatically degrade PET has been thought to be limited to a few fungal species, biodegradation is not yet a viable remediation or recycling strategy. By screening natural microbial communities exposed to PET in the environment, we isolated a novel bacterium, Ideonella sakaiensis 201-F6, that is able to use PET as its major energy and carbon source. When grown on PET, this strain produces two enzymes capable of hydrolyzing PET and the reaction intermediate, mono(2-hydroxyethyl) terephthalic acid. Both enzymes are required to enzymatically convert PET efficiently into its two environmentally benign monomers, terephthalic acid and ethylene glycol. PMID:26965627

  11. Algicidal lactones from the marine Roseobacter clade bacterium Ruegeria pomeroyi

    Directory of Open Access Journals (Sweden)

    Ramona Riclea

    2012-06-01

    Full Text Available Volatiles released by the marine Roseobacter clade bacterium Rugeria pomeroyi were collected by use of a closed-loop stripping headspace apparatus (CLSA and analysed by GC–MS. Several lactones were found for which structural proposals were derived from their mass spectra and unambiguously verified by the synthesis of reference compounds. An enantioselective synthesis of two exemplary lactones was performed to establish the enantiomeric compositions of the natural products by enantioselective GC–MS analyses. The lactones were subjected to biotests to investigate their activity against several bacteria, fungi, and algae. A specific algicidal activity was observed that may be important in the interaction between the bacteria and their algal hosts in fading algal blooms.

  12. The capacity of phototrophic sulfur bacterium Thiocapsa roseopersicina for chemosynthesis.

    Science.gov (United States)

    Kondratieva, E N; Zhukov, V G; Ivanovsky, R N; Petushkova, U P; Monosov, E Z

    1976-07-01

    Purple sulfur bacterium Thiocapsa roseopersicina strain BBS requiring vitamin B12 may grow in the dark in media containing no other organic compounds. Under such conditions the cells oxidize sulfide and thiosulfate with the use of O2 and assimilate carbon dioxide. After 10--30s assimilation of NaH14CO3 about 60% of radioactivity is found in phosphorylated compounds characteristic for the reductive pentose phosphate cycle. The possibility of the function of this cycle in the dark in the presence of O2 is confirmed by the capacity of cells grown under such conditions to synthesize ribulose-1,5-diphosphate carboxylase. All this evidence suggests the ability of T. roseopersicina to change from phototrophy to aerobic chemolithoautotrophy. PMID:942280

  13. Moritella viscosa, a pathogenic bacterium affecting the fillet quality in fish

    DEFF Research Database (Denmark)

    Ingerslev, Hans-Christian; Nielsen, Michael Engelbrecht

    2011-01-01

    Moritella viscosa is a bacterium belonging to the family Moritellaceae and was formerly known as Vibrio viscosus. The name ‘viscosa’ originates from the slimy nature of the bacterium. M. viscosa is considered to be the main causative agent of the phenomenon ‘winter ulcer’ or ‘cold-water ulcer......’ which affects various fish species in seawater during cold periods (Lunder et al. 1995). The bacterium is mainly a problem for farmed salmonid species, such as Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss), but has also been isolated from other fish species, including Atlantic...

  14. Treatment of common warts with the immune stimulant Propionium bacterium parvum Tratamento das verrugas vulgares com o imunoestimulante Propionium bacterium parvum

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-08-01

    Full Text Available BACKGROUND: Warts are epithelial proliferations in the skin and mucous membrane caused by various types of HPV. They can decrease spontaneously or increase in size and number according to the patient's immune status. The Propionium bacterium parvum is a strong immune stimulant and immune modulator and has important effects in the immune system and it is able to produce antibodies in the skin. OBJECTIVE: To show the efficacy of the Propionium bacterium parvum in saline solution in the treatment of skin warts. METHODS: A randomized double-blind study. Twenty patients with multiple warts were divided into two groups: one received 0,1ml intradermal injection of placebo solution in just one of the warts and the other received 0,1 ml of saline solution of Propionium bacterium parvum, one dose a month, for 3 to 5 months. RESULTS: Among the 20 patients who participated in the study, ten received the placebo and ten received the saline solution with Propionium bacterium parvum. In 9 patients treated with the Propionium bacterium parvum solution the warts disappeared without scars and in 1 patient it decreased in size. In 9 patients who received the placebo no change to the warts was observed and in 1 it decreased in size. CONCLUSIONS: The immune modulator and immune stimulant Propionium bacterium parvum produced antibodies in the skin which destroyed the warts without scars, with statistically significant results (PFUNDAMENTOS: Verrugas são proliferações epiteliais na pele e mucosas causadas por diversos tipos de HPV. Elas podem involuir espontaneameme ou aumentar em número e tamanho de acordo com estado imunitário do paciente. O Propionium bacterium parvum é urn potente imunoestimulador e imunomodulador e tem efeitos importantes no sistema imune e é capaz de produzir anticorpos na pele. OBJETIVO: Mostrar a eficácia do Propionium bacterium parvum diluído em solução salina no tratamento de verrugas cutâneas. MÊTODOS: Estudo duplo

  15. High cell density cultivation of the chemolithoautotrophic bacterium Nitrosomonas europaea.

    Science.gov (United States)

    Papp, Benedek; Török, Tibor; Sándor, Erzsébet; Fekete, Erzsébet; Flipphi, Michel; Karaffa, Levente

    2016-05-01

    Nitrosomonas europaea is a chemolithoautotrophic nitrifier, a gram-negative bacterium that can obtain all energy required for growth from the oxidation of ammonia to nitrite, and this may be beneficial for various biotechnological and environmental applications. However, compared to other bacteria, growth of ammonia oxidizing bacteria is very slow. A prerequisite to produce high cell density N. europaea cultures is to minimize the concentrations of inhibitory metabolic by-products. During growth on ammonia nitrite accumulates, as a consequence, N. europaea cannot grow to high cell concentrations under conventional batch conditions. Here, we show that single-vessel dialysis membrane bioreactors can be used to obtain substantially increased N. europaea biomasses and substantially reduced nitrite levels in media initially containing high amounts of the substrate. Dialysis membrane bioreactor fermentations were run in batch as well as in continuous mode. Growth was monitored with cell concentration determinations, by assessing dry cell mass and by monitoring ammonium consumption as well as nitrite formation. In addition, metabolic activity was probed with in vivo acridine orange staining. Under continuous substrate feed, the maximal cell concentration (2.79 × 10(12)/L) and maximal dry cell mass (0.895 g/L) achieved more than doubled the highest values reported for N. europaea cultivations to date. PMID:26358065

  16. Bioconversion of methane to lactate by an obligate methanotrophic bacterium

    Science.gov (United States)

    Henard, Calvin A.; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G.; Pienkos, Philip T.; Guarnieri, Michael T.

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to “green” chemicals and fuels. PMID:26902345

  17. Presence of an unusual methanogenic bacterium in coal gasification waste

    Energy Technology Data Exchange (ETDEWEB)

    Tomei, F.A.; Rouse, D.; Maki, J.S.; Mitchell, R.

    1988-12-01

    Methanogenic bacteria growing on a pilot-scale, anaerobic filter processing coal gasification waste were enriched in a mineral salts medium containing hydrogen and acetate as potential energy sources. Transfer of the enrichments to methanol medium resulted in the initial growth of a strain of Methanosarcina barkeri, but eventually small cocci became dominant. The cocci growing on methanol produced methane and exhibited the typical fluorescence of methanogenic bacteria. They grew in the presence of the cell wall synthesis-inhibiting antibiotics D-cycloserine, fosfomycin, penicillin G, and vancomycin as well as in the presence of kanamycin, an inhibitor of protein synthesis in eubacteria. The optimal growth temperature was 37 degrees C, and the doubling time was 7.5 h. The strain lysed after reaching stationary phase. The bacterium grew poorly with hydrogen as the energy source and failed to grow on acetate. Morphologically, the coccus shared similarities with Methanosarcina sp. Cells were 1 ..mu..m wide, exhibited the typical thick cell wall and cross-wall formation, and formed tetrads. Packets and cysts were not formed. 62 refs., 4 figs.

  18. Bioconversion of methane to lactate by an obligate methanotrophic bacterium.

    Science.gov (United States)

    Henard, Calvin A; Smith, Holly; Dowe, Nancy; Kalyuzhnaya, Marina G; Pienkos, Philip T; Guarnieri, Michael T

    2016-01-01

    Methane is the second most abundant greenhouse gas (GHG), with nearly 60% of emissions derived from anthropogenic sources. Microbial conversion of methane to fuels and value-added chemicals offers a means to reduce GHG emissions, while also valorizing this otherwise squandered high-volume, high-energy gas. However, to date, advances in methane biocatalysis have been constrained by the low-productivity and limited genetic tractability of natural methane-consuming microbes. Here, leveraging recent identification of a novel, tractable methanotrophic bacterium, Methylomicrobium buryatense, we demonstrate microbial biocatalysis of methane to lactate, an industrial platform chemical. Heterologous overexpression of a Lactobacillus helveticus L-lactate dehydrogenase in M. buryatense resulted in an initial titer of 0.06 g lactate/L from methane. Cultivation in a 5 L continuously stirred tank bioreactor enabled production of 0.8 g lactate/L, representing a 13-fold improvement compared to the initial titer. The yields (0.05 g lactate/g methane) and productivity (0.008 g lactate/L/h) indicate the need and opportunity for future strain improvement. Additionally, real-time analysis of methane utilization implicated gas-to-liquid transfer and/or microbial methane consumption as process limitations. This work opens the door to develop an array of methanotrophic bacterial strain-engineering strategies currently employed for biocatalytic sugar upgrading to "green" chemicals and fuels. PMID:26902345

  19. Electromicrobiology of Dissimilatory Sulfur Reducing Bacterium Desulfuromonas acetexigens

    KAUST Repository

    Bin Bandar, Khaled

    2014-12-01

    Bioelectrochmical systems (BES) are engineered electrochemical devices that harness hidden chemical energy of the wastewater in to the form of electricity or hydrogen. Unique microbial communities enrich in these systems for oxidation of organic matter as well as transfer of resulted electron to anode, known them as “electricigens” communities. Exploring novel electricigenesis microbial communities in the nature and understanding their electromicrobiology is one the important aspect for BES systems scale up. Herein, we report first time the electricigenesis property of an anaerobic, fresh water sediment, sulfur reducing bacterium Desulfuromona acetexigens. The electrochemical behavior of D. acetexigens biofilms grown on graphite-rod electrodes in batch-fed mode under an applied potential was investigated with traditional electroanalytical tools, and correlate the electron transfer from biofilms to electrode with a model electricigen Geobacter sulfurreducens electrochemical behavior. Research findings suggest that D. acetexigens has the ability to use electrode as electron acceptor in BES systems through establishing the direct contact with anode by expressing the membrane bound redox proteins, but not due to the secretion of soluble redox mediators. Preliminary results revealed that D. acetexigens express three distinct redox proteins in their membranes for turnover of the electrons from biofilm to electrode, and the 4 whole electricigenesis process observed to be unique in the D. acetexigens compared to that of well-studied model organism G. sulfurreducens.

  20. Molecular study on cloned endoglucanase gene from rumen bacterium.

    Science.gov (United States)

    Ozkose, Emin; Akyol, Ismail; Ekinci, Mehmet Sait

    2004-01-01

    An endoglucanase gene was subcloned from anaerobic rumen bacterium Ruminococcus flavefaciens strain 17. To express endoglucanase gene in Escherichia coli and Streptococcus bovis JB1, an endoglucanase gene fragment was inserted into pVA838-based shuttle vectors. Removal of endoglucanase gene promoter and expression of endoglucanase by promoter of S. bovis JB1 alpha-amylase gene (pACMCS) was also achieved. Survival of constructs pVACMCI, pTACMC and pACMCS, which carry endoglucanase gene, and stability of endoglucanase gene in S. bovis JB1, were observed. Maximal endoglucanase activities from S. bovis JB1/pVACMCI were 2- to 3-fold higher than from E. coli/pVACMCI. Specific cell activity of E. coli/pACMCS was found to be approximately 2- to -3 fold higher than the both E. coli/pVACMCI and E. coli/pTACMC. Specific cell activity of S. bovis JB1/pACMCS was also found to be approximately 2-fold higher than the both S. bovis/pVACMCI and S. bovis JB1/pTACMC. PMID:15925902

  1. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium.

    Science.gov (United States)

    Zheng, Haiyan; Liu, Ying; Sun, Guangdong; Gao, Xiyan; Zhang, Qingling; Liu, Zhipei

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium, strain S1-1, was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system. Strain S1-1 was preliminarily identified as Psychrobacter sp. based on the analysis of its 16S rRNA gene sequence, which showed 100% sequence similarity to that of Psychrobacter sp. TSBY-70. Strain S1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite, and the total nitrogen removal rates could reach to 46.48% and 31.89%, respectively. The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low level accumulation of nitrite, suggesting that the aerobic denitrification process of strain S1-1 occurred mainly in this phase. The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1. Finally, factors affecting the growth of strain S1-1 and its aerobic denitrifying ability were also investigated. Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source, C/N ratio15, salinity 10 g/L NaCl, incubation temperature 20 degrees C and initial pH 6.5. PMID:22432315

  2. Denitrification characteristics of a marine origin psychrophilic aerobic denitrifying bacterium

    Institute of Scientific and Technical Information of China (English)

    Haiyan Zheng; Ying Liu; Guangdong Sun; Xiyan Gao; Qingling Zhang; Zhipei Liu

    2011-01-01

    A psychrophilic aerobic denitrifying bacterium,strain S1-1,was isolated from a biological aerated filter conducted for treatment of recirculating water in a marine aquaculture system.Strain S1-1 was preliminarily identified as Psychrobacter sp.based on the analysis of its 16S rRNA gene sequence,which showed 100% sequence similarity to that of Psychrobacter sp.TSBY-70.Strain S 1-1 grew well either in high nitrate or high nitrite conditions with a removal of 100% nitrate or 63.50% nitrite,and the total nitrogen removal rates could reach to 46.48% and 31.89%,respectively.The results indicated that nitrate was mainly reduced in its logarithmic growth phase with a very low leve 1 accumulation of nitrite,suggesting that the aerobic denitrification process of strain S l-1 occurred mainly in this phase.The GC-MS results showed that N2O was formed as the major intermediate during the aerobic denitrifying process of strain S1-1.Finally,factors affecting the growth of strain Sl-1 and its aerobic denitrifying ability were also investigated.Results showed that the optimum aerobic denitrification conditions for strain S1-1 were sodium succinate as carbon source,C/N ratio15,salinity 10 g/L NaCl,incubation temperature 20℃ and initial pH 6.5.

  3. Isolation and characterization of Caldicellulosiruptor lactoaceticus sp. nov., an extremely thermophilic, cellulolytic, anaerobic bacterium

    DEFF Research Database (Denmark)

    Mladenovska, Zuzana; Mathrani, Indra M.; Ahring, Birgitte Kiær

    1995-01-01

    An anaerobic, extremely thermophilic, cellulolytic, non-spore-forming bacterium, strain 6A, was isolated from an alkaline hot spring in Hverageroi, Iceland. The bacterium was non-motile, rod-shaped (1.5-3.5 x 0.7 mu m) and occurred singly, in pairs or in chains and stained gram-negative. The growth...... temperature was between 50 and 78 degrees C with a temperature optimum near 68 degrees C. Growth occurred between pH 5.8 and 8.2 with an optimum mum near 7.0. The bacterium fermented microcrystalline cellulose (Avicel) and produced lactate, acetate and H-2 as the major fermentation products, and CO2...... and ethanol occurred as minor fermentation products. Only a restricted number of carbon sources (cellulose, xylan, starch, pectin, cellobiose, xylose, maltose and lactose) were used as substrates. During growth on Avicel, the bacterium produced free cellulases with carboxymethylcellulase and avicelase...

  4. Dinoroseobacter shibae gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates

    Czech Academy of Sciences Publication Activity Database

    Biebl, H.; Allgaier, M.; Tindall, B. J.; Koblížek, Michal; Lünsdorf, H.; Pukall, R.; Wagner-Döbler, I.

    2005-01-01

    Roč. 55, - (2005), s. 1089-1096. ISSN 1466-5026 Institutional research plan: CEZ:AV0Z50200510 Keywords : Dinoroseobacter shibae * phototrophic bacterium Subject RIV: EE - Microbiology, Virology Impact factor: 2.744, year: 2005

  5. Carbohydrate utilization patterns for the extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus reveal broad growth substrate preferences

    NARCIS (Netherlands)

    Vanfossen, A.L.; Verhaart, M.R.A.; Kengen, S.W.M.; Kelly, R.M.

    2009-01-01

    Co-utilization of hexoses and pentoses derived from lignocellulose is an attractive trait in microorganisms considered for consolidated biomass processing to biofuels. This issue was examined for the H2-producing, extremely thermophilic bacterium Caldicellulosiruptor saccharolyticus growing on indiv

  6. Genome Sequence of the Haloalkaliphilic Methanotrophic Bacterium Methylomicrobium alcaliphilum 20Z

    OpenAIRE

    Vuilleumier, Stéphane; Khmelenina, Valentina N; Bringel, Françoise; Reshetnikov, Alexandr S.; Lajus, Aurélie; Mangenot, Sophie; Rouy, Zoé; Op Den Camp, Huub J M; Jetten, Mike S. M.; DiSpirito, Alan A.; Dunfield, Peter; Klotz, Martin G.; Semrau, Jeremy D.; Stein, Lisa Y.; Barbe, Valérie

    2012-01-01

    Methylomicrobium strains are widespread in saline environments. Here, we report the complete genome sequence of Methylomicrobium alcaliphilum 20Z, a haloalkaliphilic methanotrophic bacterium, which will provide the basis for detailed characterization of the core pathways of both single-carbon metabolism and responses to osmotic and high-pH stresses. Final assembly of the genome sequence revealed that this bacterium contains a 128-kb plasmid, making M. alcaliphilum 20Z the first methanotrophic...

  7. Effect of alginic acid decomposing bacterium on the growth of Laminaria japonica (Phaeophyceae)

    Institute of Scientific and Technical Information of China (English)

    WANG You; TANG Xue-xi; YANG Zhen; YU Zhi-ming

    2006-01-01

    We collected the diseased blades of Laminaria japonica from Yantai Sea Farm from October to December 2002, and the alginic acid decomposing bacterium on the diseased blade was isolated and purified, and was identified as Alteromonas espejiana. This bacterium was applied as the causative pathogen to infect the blades of L. japonica under laboratory conditions. The aim of the present study was to identify the effects of the bacterium on the growth of L. japonica, and to find the possibly effective mechanism. Results showed that: (1)The blades of L.japonica exhibited symptoms of lesion,bleaching and deterioration when infected by the bacterium,and their growth and photosynthesis were dramatically suppressed. At the same time, the reactive oxygen species (ROS) generation enhanced obviously, and the relative membrane permeability increased significantly. The contents of malonaldehyde (MDA) and free fatty acid in the microsomol membrane greatly elevated, but the phospholipid content decreased. Result suggested an obvious peroxidation and deesterrification in the blades of L. japonica when infected by the bacterium. (2) The simultaneous assay on the antioxidant enzyme activities demonstrated that superoxide dismutase (SOD) and catalase (CAT) increased greatly when infected by the bacterium, but glutathione peroxidase (Gpx) and ascorbate peroxidase (APX) did not exhibit active responses to the bacterium throughout the experiment. (3) The histomorphological observations gave a distinctive evidence of the severity of the lesions as well as the relative abundance in the bacterial population on the blades after infection. The bacterium firstly invaded into the endodermis of L. japonica and gathered around there, and then resulted in the membrane damage, cells corruption and ultimately, the death of L.japonica.

  8. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    OpenAIRE

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papi...

  9. Draft Genome Sequence of DLB, a Dyella-Like Bacterium from the Planthopper Hyalesthes obsoletus

    Science.gov (United States)

    Lahav, Tamar; Zchori-Fein, Einat; Naor, Vered; Freilich, Shiri

    2016-01-01

    We report here the draft genome sequence of a Dyella-like bacterium (DLB) isolated from Hyalesthes obsoletus, the insect vector of the uncultivable mollicute bacterium “Candidatus Phytoplasma.” This isolate inhibits Spiroplasma melliferum, a cultivable mollicute. The draft genome of DLB consists of 4,196,214 bp, with a 68.6% G+C content, and 3,757 genes were predicted. PMID:27445378

  10. Biosynthesis Of Gold Nanoparticles By Marine Purple Non Sulphur Bacterium, Rhodopseudomonas Sp.

    OpenAIRE

    Abirami. G; Asmathunisha. N; Kathiresan. K

    2013-01-01

    This paper describes for the first time that an anaerobic marine bacterium is capable of producing gold nanoparticles. A marine purple non-sulphur bacterium was isolated from mangrove sediment and identified as Rhodopseudomonas sp. . The bacterial culture was tested for the synthesis of gold nanoparticles by using aqueous HAuCl4 solution as substrate in darkness. The gold nanoparticles synthesized were found to be of cubical structure in the size range of 10–20 nm.

  11. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316

    International Nuclear Information System (INIS)

    This work investigates microbially-influenced corrosion (MIC) of stainless steel AISI 316 by two sulphate-reducing bacteria, Desulfovibrio desulfuricans and a local marine isolate. The biofilm and pit morphology that developed with time were analyzed using atomic force microscopy (AFM). Electrochemical impedance spectroscopy (EIS) results were interpreted with an equivalent circuit to model the physicoelectric characteristics of the electrode/biofilm/solution interface. D. desulfuricans formed one biofilm layer on the metal surface, while the marine isolate formed two layers: a biofilm layer and a ferrous sulfide deposit layer. AFM images corroborated results from the EIS modeling which showed biofilm attachment and subsequent detachment over time

  12. Carbonate biomineralization induced by soil bacterium Bacillus megaterium

    Science.gov (United States)

    Lian, Bin; Hu, Qiaona; Chen, Jun; Ji, Junfeng; Teng, H. Henry

    2006-11-01

    Biogenic carbonates spawned from microbial activities are common occurrences in soils. Here, we investigate the carbonate biomineralization mediated by the bacterium Bacillus megaterium, a dominant strain separated from a loess profile in China. Upon completing bacterial cultivation, the ensuring products are centrifuged, and the resultant supernatant and the concentrated bacterial sludge as well as the un-separated culture are added separately into a Ca-CO 3 containing solution for crystallization experiments. Results of XRD and SEM analysis indicate that calcite is the dominant mineral phase formed when the bacteria are present. When the supernatant alone is used, however, a significant portion of vaterite is also precipitated. Experimental results further reveal that the bacteria have a strong tendency to colonize the center area of the calcite {1 0 1¯ 4} faces. Observed crystal morphology suggests that the bacterial colony may promote the growth normal to each individual {1 0 1¯ 4} face of calcite when the cell concentration is high, but may retard it or even cause dissolution of the immediate substrate surfaces when the concentration is low. SEM images taken at earlier stages of the crystallization experiments demonstrate the nucleation of calcite on the bacterial cell walls but do not show obvious morphological changes on the nanometer- to submicron-sized nuclei. δ 13C measurements unveil that the crystals grown in the presence of bacteria are further enriched in the heavy carbon isotope, implying that the bacterial metabolism may not be the carbon sources for the mineralization. Based upon these findings, we propose a mechanism for the B. megaterium mediated calcite mineralization and conclude that the whole process involves epi- and inter-cellular growth in the local microenvironments whose conditions may be controlled by cell sequestration and proton pumping during bacterial respiration.

  13. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Science.gov (United States)

    Braakman, Rogier; Smith, Eric

    2014-01-01

    Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA) cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere. PMID:24516572

  14. Interaction of Cadmium With the Aerobic Bacterium Pseudomonas Mendocina

    Science.gov (United States)

    Schramm, P. J.; Haack, E. A.; Maurice, P. A.

    2006-05-01

    The fate of toxic metals in the environment can be heavily influenced by interaction with bacteria in the vadose zone. This research focuses on the interactions of cadmium with the strict aerobe Pseudomonas mendocina. P. mendocina is a gram-negative bacterium that has shown potential in the bioremediation of recalcitrant organic compounds. Cadmium is a common environmental contaminant of wide-spread ecological consequence. In batch experiments P. mendocina shows typical bacterial growth curves, with an initial lag phase followed by an exponential phase and a stationary to death phase; concomitant with growth was an increase in pH from initial values of 7 to final values at 96 hours of 8.8. Cd both delays the onset of the exponential phase and decreases the maximum population size, as quantified by optical density and microscopic cell counts (DAPI). The total amount of Cd removed from solution increases over time, as does the amount of Cd removed from solution normalized per bacterial cell. Images obtained with transmission electron microscopy (TEM) showed the production of a cadmium, phosphorus, and iron containing precipitate that was similar in form and composition to precipitates formed abiotically at elevated pH. However, by late stationary phase, the precipitate had been re-dissolved, perhaps by biotic processes in order to obtain Fe. Stressed conditions are suggested by TEM images showing the formation of pili, or nanowires, when 20ppm Cd was present and a marked decrease in exopolysaccharide and biofilm material in comparison to control cells (no cadmium added).

  15. Metabolic evolution of a deep-branching hyperthermophilic chemoautotrophic bacterium.

    Directory of Open Access Journals (Sweden)

    Rogier Braakman

    Full Text Available Aquifex aeolicus is a deep-branching hyperthermophilic chemoautotrophic bacterium restricted to hydrothermal vents and hot springs. These characteristics make it an excellent model system for studying the early evolution of metabolism. Here we present the whole-genome metabolic network of this organism and examine in detail the driving forces that have shaped it. We make extensive use of phylometabolic analysis, a method we recently introduced that generates trees of metabolic phenotypes by integrating phylogenetic and metabolic constraints. We reconstruct the evolution of a range of metabolic sub-systems, including the reductive citric acid (rTCA cycle, as well as the biosynthesis and functional roles of several amino acids and cofactors. We show that A. aeolicus uses the reconstructed ancestral pathways within many of these sub-systems, and highlight how the evolutionary interconnections between sub-systems facilitated several key innovations. Our analyses further highlight three general classes of driving forces in metabolic evolution. One is the duplication and divergence of genes for enzymes as these progress from lower to higher substrate specificity, improving the kinetics of certain sub-systems. A second is the kinetic optimization of established pathways through fusion of enzymes, or their organization into larger complexes. The third is the minimization of the ATP unit cost to synthesize biomass, improving thermodynamic efficiency. Quantifying the distribution of these classes of innovations across metabolic sub-systems and across the tree of life will allow us to assess how a tradeoff between maximizing growth rate and growth efficiency has shaped the long-term metabolic evolution of the biosphere.

  16. Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium.

    Science.gov (United States)

    Rivas, Raúl; Mateos, Pedro F; Martínez-Molina, Eustoquio; Velázquez, Encarna

    2005-01-01

    During a search for xylan-degrading micro-organisms, a sporulating bacterium was recovered from xylan-containing agar plates exposed to air in a research laboratory (Salamanca University, Spain). The airborne isolate (designated strain XIL14T) was identified by 16S rRNA gene sequencing as representing a Paenibacillus species most closely related to Paenibacillus illinoisensis JCM 9907T (99.3 % sequence similarity) and Paenibacillus pabuli DSM 3036T (98 % sequence similarity). Phenotypic, chemotaxonomic and DNA-DNA hybridization data indicated that the isolate belongs to a novel species of the genus Paenibacillus. Cells of strain XIL14T were motile, sporulating, rod-shaped, Gram-positive and facultatively anaerobic. The predominant cellular fatty acids were anteiso-C(15 : 0) and C(16 : 0). The DNA G+C content of strain XIL14T was 50.5 mol%. Growth was observed with many carbohydrates, including xylan, as the only carbon source and gas production was not observed from glucose. Catalase was positive and oxidase was negative. The airborne isolate produced a variety of hydrolytic enzymes, including xylanases, amylases, gelatinase and beta-galactosidase. DNA-DNA hybridization levels between strain XIL14T and P. illinoisensis DSM 11733T and P. pabuli DSM 3036T were 43.3 and 36.3 %, respectively. According to the data obtained, strain XIL14T is considered to represent a novel species for which the name Paenibacillus xylanilyticus sp. nov. is proposed (=LMG 21957T=CECT 5839T). PMID:15653909

  17. Regulation of Polyhydroxybutyrate Synthesis in the Soil Bacterium Bradyrhizobium diazoefficiens.

    Science.gov (United States)

    Quelas, J I; Mesa, S; Mongiardini, E J; Jendrossek, D; Lodeiro, A R

    2016-07-15

    Polyhydroxybutyrate (PHB) is a carbon and energy reserve polymer in various prokaryotic species. We determined that, when grown with mannitol as the sole carbon source, Bradyrhizobium diazoefficiens produces a homopolymer composed only of 3-hydroxybutyrate units (PHB). Conditions of oxygen limitation (such as microoxia, oxic stationary phase, and bacteroids inside legume nodules) were permissive for the synthesis of PHB, which was observed as cytoplasmic granules. To study the regulation of PHB synthesis, we generated mutations in the regulator gene phaR and the phasin genes phaP1 and phaP4 Under permissive conditions, mutation of phaR impaired PHB accumulation, and a phaP1 phaP4 double mutant produced more PHB than the wild type, which was accumulated in a single, large cytoplasmic granule. Moreover, PhaR negatively regulated the expression of phaP1 and phaP4 as well as the expression of phaA1 and phaA2 (encoding a 3-ketoacyl coenzyme A [CoA] thiolases), phaC1 and phaC2 (encoding PHB synthases), and fixK2 (encoding a cyclic AMP receptor protein [CRP]/fumarate and nitrate reductase regulator [FNR]-type transcription factor of genes for microoxic lifestyle). In addition to the depressed PHB cycling, phaR mutants accumulated more extracellular polysaccharides and promoted higher plant shoot dry weight and competitiveness for nodulation than the wild type, in contrast to the phaC1 mutant strain, which is defective in PHB synthesis. These results suggest that phaR not only regulates PHB granule formation by controlling the expression of phasins and biosynthetic enzymes but also acts as a global regulator of excess carbon allocation and symbiosis by controlling fixK2 IMPORTANCE: In this work, we investigated the regulation of polyhydroxybutyrate synthesis in the soybean-nodulating bacterium Bradyrhizobium diazoefficiens and its influence in bacterial free-living and symbiotic lifestyles. We uncovered a new interplay between the synthesis of this carbon reserve polymer

  18. Photoactive yellow protein from the halophilic bacterium Salinibacter ruber.

    Science.gov (United States)

    Memmi, Samy; Kyndt, John; Meyer, Terry; Devreese, Bart; Cusanovich, Michael; Van Beeumen, Jozef

    2008-02-19

    A gene for photoactive yellow protein (PYP) was identified from the genome sequence of the extremely halophilic aerobic bacterium Salinibacter ruber (Sr). The sequence is distantly related to the prototypic PYP from Halorhodospira halophila (Hh) (37% identity) and contains most of the amino acid residues identified as necessary for function. However, the Sr pyp gene is not flanked by its two biosynthetic genes as in other species. To determine as to whether the Sr pyp gene encodes a functional protein, we cloned and expressed it in Escherichia coli, along with the genes for chromophore biosynthesis from Rhodobacter capsulatus. The Sr PYP has a 31-residue N-terminal extension as compared to other PYPs that appears to be important for dimerization; however, truncation of these extra residues did not change the spectral and photokinetic properties. Sr PYP has an absorption maximum at 431 nm, which is at shorter wavelengths than the prototypical Hh PYP (at 446 nm). It is also photoactive, being reversibly bleached by either blue or white light. The kinetics of dark recovery is slower than any of the PYPs reported to date (4.27 x 10(-4) s(-1) at pH 7.5). Sr PYP appears to have a normal photocycle with the I1 and I2 intermediates. The presence of the I2' intermediate is also inferred on the basis of the effects of temperature and alchohol on recovery. Sr PYP has an intermediate spectral form in equilibrium with the 431 nm form, similar to R. capsulatus PYP and the Y42F mutant of Hh PYP. Increasing ionic strength stabilizes the 431 nm form at the expense of the intermediate spectral form, and the kinetics of recovery is accelerated 6.4-fold between 0 and 3.5 M salt. This is observed with ions from both the chaotropic and the kosmotropic series. Ionic strength also stabilizes PYP against thermal denaturation, as the melting temperature is increased from 74 degrees C in buffer alone to 92 degrees C in 2 M KCl. Sr accumulates KCl in the cytoplasm, like Halobacterium, to

  19. A plant growth-promoting bacterium that decreases nickel toxicity in seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Burd, G.I.; Dixon, D.G.; Glick, B.R. [Univ. of Waterloo, Ontario (Canada). Dept. of Biology

    1998-10-01

    A plant growth-promoting bacterium, Kluyvera ascorbata SUD165, that contained high levels of heavy metals was isolated from soil collected near Sudbury, Ontario, Canada. The bacterium was resistant to the toxic effects of Ni{sup 2+}, Pb{sup 2+}, Zn{sup 2+}, and CrO{sub 4}{sup {minus}}, produced a siderophore(s), and displayed 1-aminocyclopropane-1-carboxylic acid deaminase activity. Canola seeds inoculated with this bacterium and then grown under gnotobiotic conditions in the presence of high concentrations of nickel chloride were partially protected against nickel toxicity. In addition, protection by the bacterium against nickel toxicity was evident in pot experiments with canola and tomato seeds. The presence of K. ascorbata SUD165 had no measurable influence on the amount of nickel accumulated per milligram (dry weight) of either roots or shoots of canola plants. Therefore, the bacterial plant growth-promoting effect in the presence of nickel was probably not attributable to the reduction of nickel uptake by seedlings. Rather, it may reflect the ability of the bacterium to lower the level of stress ethylene induced by the nickel.

  20. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    LI,Xi(李曦); LIU,Yi(刘义); WU,Jun(吴军); QU,Song-Sheng(屈松生)

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hy drochloride and 4-(N-selenomorpholine)-2-butanone hydrochloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry. Differences in their capacities to affect the metabolism of this bacterium were observed. The kinetics shows that the selenomorphline compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus. The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant. The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds, but their relationship is different. As deduced from the rate constant (k) of the studied bacterium (in log phase) and the half inhibitory concentration (IC50), the experimental results reveal that the studied selenomorphline compounds all have good antibiotic activity and better antibacterial activity on Staphylococcus aureus than on Escherichia coli.

  1. Studies on the pathogenic bacterium of ulcer disease in Epinephelus awoara

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Studies were conducted to determine the cause of the acute mortality of cage-cultured Epinephelus awoara in the Tong'an Bay of Xiamen, China during the summer of 2002. Predominant bacteria strain TS-628 was isolated from the diseased grouper. The virulence test confirmed that TS-628 was the pathogenic bacterium. Biochemical characteristics of the isolates were determined using the automatic bacterial identification system and standard tube tests. To further confirm the identification, a 1 121 bp 16S rRNA gene sequence of the isolate was amplified by PCR, which had been deposited into Genbank (accession number: AY747308). According to the biochemical characteristics and by comparing the 16S rRNA gene homology of the isolate, the pathogenic bacterium was identified as Vibrio harveyi. Drug sensitivity tests showed that this pathogenic bacterium was sensitive to 16 antibacterials, especially to chloramphenicol and actinospectacin, but completely resistant to antibacterials likes vancomycin, penicillin, lincomycin, and so on.

  2. Action of the Selenomorpholine Compounds on the Bacterium Growth by Microcalorimetry

    Institute of Scientific and Technical Information of China (English)

    李曦; 刘义; 等

    2002-01-01

    The action of β-(N-selenomorpholine) ethyl phenyl ketone hydrochloride and 4-(N-selenomorpholine)-2-butanone hydro-chloride on Escherichia coli and Staphylococcus aureus was studied by microcalorimetry,Differences in their capacities to affect the metabolism of this bacterium were observed.The kinetics shows that the selenomorpholine compounds had action on the metabolism process of Escherichia coli and Staphylococcus aureus.The rate constant (k) of the studied bacterium in the presence of the drugs are concentration-dependant.The growth rate constants decrease with an increase in the mass of the selenomorpholine compounds ,but their relationship is different.As deduced from the rate constant(k) of the studied bacterium(in log phase )and the half inhibitory concentration (IC50),the experimental results reveal that the studied selenomorpholine compounds all have good antibiotic activity and better antibacterial activity on Staphylcoccus aureus than on Escherichia coli.

  3. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  4. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  5. Removal of corper(II) Ions from aqueous solution by a lactic acid bacterium

    OpenAIRE

    M. Yilmaz(Department of Physics, Gazi University, Ankara); T. Tay; M. Kivanc; H. Turk

    2010-01-01

    Enterococcus faecium, a lactic acid bacterium (LAB), was evaluated for its ability to remove copper(II) ions from water. The effects of the pH, contact time, initial concentration of copper(II) ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II) ions used to determine the maximum amount of biosorbed copper(II) ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attain...

  6. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  7. Physiological and taxonomic description of the novel autotrophic, metal oxidizing bacterium, Pseudogulbenkiania sp. strain 2002

    OpenAIRE

    Weber, Karrie A; Hedrick, David B.; Peacock, Aaron D.; Thrash, J. Cameron; White, David C.; Achenbach, Laurie A.; Coates, John D.

    2009-01-01

    A lithoautotrophic, Fe(II) oxidizing, nitrate-reducing bacterium, strain 2002 (ATCC BAA-1479; =DSM 18807), was isolated as part of a study on nitrate-dependent Fe(II) oxidation in freshwater lake sediments. Here we provide an in-depth phenotypic and phylogenetic description of the isolate. Strain 2002 is a gram-negative, non-spore forming, motile, rod-shaped bacterium which tested positive for oxidase, catalase, and urease. Analysis of the complete 16S rRNA gene sequence placed strain 2002 in...

  8. Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium

    OpenAIRE

    Baena, S.; Fardeau, Marie-Laure; Ollivier, Bernard; Labat, Marc; Thomas, P; Garcia, Jean-Louis; Patel, B.K.C.

    1999-01-01

    A novel, asaccharolytic, amino-acid-degrading bacterium, designated strain GLU-3T, was isolated from an anaerobic lagoon of a dairy wastewater treatment plant. Strain GLU-3T stained Gram-negative and was an obligately anaerobic, non-spore-forming, slightly curved, rod-shaped bacterium (0.3 x 4.0-6.0 micrometers) which existed singly or in pairs. The DNA G+C content was 43 mol%. Optimum growth occurred at 35°C and pH 7.5 on arginine, histidine, threonine and glycine. Acetate was the end-produc...

  9. Genome sequence of Symbiobacterium thermophilum, an uncultivable bacterium that depends on microbial commensalism

    OpenAIRE

    Ueda, Kenji; YAMASHITA Atsushi; Ishikawa, Jun; Shimada, Masafumi; Watsuji, Tomo-o; Morimura, Kohji; Ikeda, Haruo; Hattori, Masahira; Beppu, Teruhiko

    2004-01-01

    Symbiobacterium thermophilum is an uncultivable bacterium isolated from compost that depends on microbial commensalism. The 16S ribosomal DNA-based phylogeny suggests that this bacterium belongs to an unknown taxon in the Gram-positive bacterial cluster. Here, we describe the 3.57 Mb genome sequence of S.thermophilum. The genome consists of 3338 protein-coding sequences, out of which 2082 have functional assignments. Despite the high G + C content (68.7%), the genome is closest to that of Fir...

  10. Marinobacter hydrocarbonoclasticus NY-4, a novel denitrifying, moderately halophilic marine bacterium

    OpenAIRE

    Li, Rongpeng; Zi, Xiaoli; Wang, Xinfeng; Zhang, Xia; Gao, Haofeng; Hu, Nan

    2013-01-01

    The isolation and characterization of a novel halophilic denitrifying marine bacterium is described. The halophilic bacterium, designated as NY-4, was isolated from soil in Yancheng City, China, and identified as Marinobacter hydrocarbonoclasticus by 16S rRNA gene sequence phylogenetic analysis. This organism can grow in NaCl concentrations ranging from 20 to 120 g/L. Optimum growth occurs at 80 g/L NaCl and pH 8.0. The organism can grow on a broad range of carbon sources and demonstrated eff...

  11. Purification and Characterization of Haloalkaline, Organic Solvent Stable Xylanase from Newly Isolated Halophilic Bacterium-OKH

    OpenAIRE

    Sanghvi, Gaurav; Jivrajani, Mehul; Patel, Nirav; Jivrajani, Heta; Bhaskara, Govinal Badiger; Patel, Shivani

    2014-01-01

    A novel, alkali-tolerant halophilic bacterium-OKH with an ability to produce extracellular halophilic, alkali-tolerant, organic solvent stable, and moderately thermostable xylanase was isolated from salt salterns of Mithapur region, Gujarat, India. Identification of the bacterium was done based upon biochemical tests and 16S rRNA sequence. Maximum xylanase production was achieved at pH 9.0 and 37°C temperature in the medium containing 15% NaCl and 1% (w/v) corn cobs. Sugarcane bagasse and whe...

  12. Enhanced Cadmium (Cd) Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    OpenAIRE

    Kunchaya Setkit; Acharaporn Kumsopa; Jaruwan Wongthanate; Benjaphorn Prapagdee

    2014-01-01

    A cadmium (Cd)-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also signifi...

  13. Isolation from swine feces of a bacterium which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol).

    OpenAIRE

    L. A. Ward; Johnson, K A; Robinson, I.M.; Yokoyama, M T

    1987-01-01

    An obligate anaerobe has been isolated from swine feces which decarboxylates p-hydroxyphenylacetic acid to 4-methylphenol (p-cresol). The bacterium was an ovoid rod, gram positive, nonsporeforming, and nonmotile. Lactate and acetate were major end products of glucose fermentation. Based on its characteristics, the bacterium is tentatively assigned to the genus Lactobacillus.

  14. Dicty_cDB: Contig-U11527-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available as denitrificans DSM ... 163 3e-38 CP000708_272( CP000708 |pid:none) Brucella ovis ATCC 25840 ch...e yeiT; ... 167 3e-39 CP000112_1250( CP000112 |pid:none) Desulfovibrio desulfuricans G20... 167 3e-39 CU9281...7 CU928158_2147( CU928158 |pid:none) Escherichia fergusonii ATCC 354... 161 2e-37 CP001338_1738( CP001338 |pid:non...CC 8739, com... 160 2e-37 CU928158_2146( CU928158 |pid:none) Escherichia fergusonii ATCC 354... 160 3e-37 EU...; ... 151 1e-34 CP001358_1960( CP001358 |pid:none) Desulfovibrio desulfuricans sub... 151 2e-34 CP000627_1905( CP000627 |pid:non

  15. Microbial control of the production of hydrogen sulfide by sulfate-reducing bacteria.

    Science.gov (United States)

    Montgomery, A D; McLnerney, M J; Sublette, K L

    1990-03-01

    A sulfide-resistant ctrain of Thiobacillus denitrificans, strain F, prevented the accumulation of sulfide by Desulfovibrio desulfuricans when both organisms were grown in liquid medium or in Berea sandstone cores. The wild-type strain of T. denitrificans did not prevent the accumulation of sulfide produced by D. desulfuricans. Strain F also prevented the accumulation of sulfide by a mixed population of sulfate-reducing bacteria enriched from an oil field brine. Fermentation balances showed that strain F stoichiometrically oxidized the sulfide produced by D. desulfuricans and the oil field brine enrichment to sulfate. These data suggest that strain F would be effective in controlling sulfide production in oil reservoirs and other environments. PMID:18592547

  16. New recombinant bacterium comprises a heterologous gene encoding glycerol dehydrogenase and/or an up-regulated native gene encoding glycerol dehydrogenase, useful for producing ethanol

    DEFF Research Database (Denmark)

    2010-01-01

    TECHNOLOGY FOCUS - BIOTECHNOLOGY - Preparation (claimed): Producing recombinant bacterium having enhanced ethanol production characteristics when cultivated in growth medium comprising glycerol comprises: (a) transforming a parental bacterium by (i) the insertion of a heterologous gene encoding...... glycerol dehydrogenase; and/or (ii) up-regulating a native gene encoding glycerol dehydrogenase; and (b) obtaining the recombinant bacterium. Preferred Bacterium: In the recombinant bacterium above, the inserted heterologous gene and/or the up-regulated native gene is encoding a glycerol dehydrogenase...... dehydrogenase encoding region of the bacterium, or is inserted into a phosphotransacetylase encoding region of the bacterium, or is inserted into an acetate kinase encoding region of the bacterium. It is operably linked to an inducible, a regulated or a constitutive promoter. The up-regulated glycerol...

  17. Isolation and Structure Elucidation of a Novel Yellow Pigment from the Marine Bacterium Pseudoalteromonas tunicata

    Directory of Open Access Journals (Sweden)

    N. Kumar

    2005-10-01

    Full Text Available The marine environment is a major source for many novel natural compounds. A new yellow pigment has been isolated from the marine bacterium P. tunicata and identified as a new member of the tambjamine class of compounds. The structural identification was achieved by a combination of 1D and 2D-NMR spectroscopy and high resolution mass spectrometry data.

  18. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium.

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn; Mandal, Abul

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  19. Identification and Characterization of Clostridium paraputrificum, a Chitinolytic Bacterium of Human Digestive Tract

    Czech Academy of Sciences Publication Activity Database

    Šimůnek, Jiří; Kopečný, Jan; Hodrová, Blanka; Bartoňová, Hana

    2002-01-01

    Roč. 47, č. 5 (2002), s. 559-564. ISSN 0015-5632 R&D Projects: GA AV ČR KSK5020115; GA ČR GA525/00/0984; GA AV ČR KSK5052113 Keywords : Clostridium paraputrificum * Chitinolytic bacterium * digestive tract Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  20. Complete genome sequence of the bioleaching bacterium Leptospirillum sp. group II strain CF-1.

    Science.gov (United States)

    Ferrer, Alonso; Bunk, Boyke; Spröer, Cathrin; Biedendieck, Rebekka; Valdés, Natalia; Jahn, Martina; Jahn, Dieter; Orellana, Omar; Levicán, Gloria

    2016-03-20

    We describe the complete genome sequence of Leptospirillum sp. group II strain CF-1, an acidophilic bioleaching bacterium isolated from an acid mine drainage (AMD). This work provides data to gain insights about adaptive response of Leptospirillum spp. to the extreme conditions of bioleaching environments. PMID:26853478

  1. Draft Genome Sequence of the Moderately Thermophilic Bacterium Schleiferia thermophila Strain Yellowstone (Bacteroidetes)

    OpenAIRE

    Thiel, Vera; Hamilton, Trinity L.; Tomsho, Lynn P.; Burhans, Richard; Gay, Scott E.; Ramaley, Robert F.; Stephan C Schuster; Steinke, Laurey; Bryant, Donald A.

    2014-01-01

    The draft genome sequence of the moderately thermophilic bacterium Schleiferia thermophila strain Yellowstone (Bacteroidetes), isolated from Octopus Spring (Yellowstone National Park, WY, USA) was sequenced and comprises 2,617,694 bp in 35 contigs. The draft genome is predicted to encode 2,457 protein coding genes and 37 tRNA encoding genes and two rRNA operons.

  2. Genome Sequence of the Acetogenic Bacterium Moorella mulderi DSM 14980T

    Science.gov (United States)

    Castillo Villamizar, Genis Andrés

    2016-01-01

    Here, we report the draft genome sequence of Moorella mulderi DSM 14980T, a thermophilic acetogenic bacterium, which is able to grow autotrophically on H2 plus CO2 using the Wood-Ljungdahl pathway. The genome consists of a circular chromosome (2.99 Mb). PMID:27231372

  3. Removal of zinc from aqueous solution by metal resistant symbiotic bacterium Mesorhizobium amorphae

    DEFF Research Database (Denmark)

    Hao, Xiuli; Mohamad, Osama Abdalla; Xie, Pin;

    2014-01-01

    Biosorption of zinc by living biomasses of metal resistant symbiotic bacterium Mesorhizobium amorphae CCNWGS0123 was investigated under optimal conditions at pH 5.0, initial metal concentrations of 100 mg L-1, and a dose of 1.0 g L-1. M. amorphae exhibited an efficient removal of Zn2+ from aqueous...

  4. Cloning, sequencing, and sequence analysis of two novel plasmids from the thermophilic anaerobic bacterium Anaerocellum thermophilum

    DEFF Research Database (Denmark)

    Clausen, Anders; Mikkelsen, Marie Just; Schrøder, I.;

    2004-01-01

    The nucleotide sequence of two novel plasmids isolated from the extreme thermophilic anaerobic bacterium Anaerocellum thermophilum DSM6725 (A. thermophilum), growing optimally at 70degreesC, has been determined. pBAS2 was found to be a 3653 bp plasmid with a GC content of 43%, and the sequence...

  5. Thermaerobacter litoralis sp. nov., a strictly aerobic and thermophilic bacterium isolated from a coastal hydrothermal field

    DEFF Research Database (Denmark)

    Tanaka, Reiji; Kawaichi, Satoshi; Nishimura, Hiroshi;

    2006-01-01

    A novel thermophilic bacterium, strain KW1T, was isolated from a coastal hydrothermal field on the Satsuma Peninsula, Kagoshima Prefecture, Japan. The variably Gram-stained cells were motile rods with flagella, did not form spores and proliferated at 52-78°C (optimum, 70°C), pH 5-8 (optimum, pH 7...

  6. The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes

    DEFF Research Database (Denmark)

    Belstrøm, Daniel; Holmstrup, Palle; Damgaard, Christian;

    2011-01-01

    A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows the bacter......A relationship between periodontitis and coronary heart disease has been investigated intensively. A pathogenic role for the oral bacterium Porphyromonas gingivalis has been suggested for both diseases. We examined whether complement activation by P. gingivalis strain ATCC 33277 allows...... the bacterium to adhere to human red blood cells (RBCs) and thereby evade attack by circulating phagocytes. On incubation with normal human serum, the P. gingivalis strain efficiently fixed complement component 3 (C3). Incubation of bacteria with washed whole blood cells suspended in autologous serum resulted......) and that by monocytes after between 15 min and 30 min of incubation (by 66% and 53%, respectively). The attachment of C3b/iC3b to bacterium-bearing RBCs decreased progressively after 15 min, indicating that conversion of C3 fragments into C3dg occurred, decreasing the affinity for CR1 on RBCs. We propose that P...

  7. Isolation and algae-lysing characteristics of the algicidal bacterium B5

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Water blooms have become a worldwide environmental problem. Recently, algicidal bacteria have attracted wide attention as possible agents for inhibiting algal water blooms. In this study, one strain of algicidal bacterium B5 was isolated from activated sludge. On the basis of analysis of its physiological characteristics and 16S rDNA gene sequence, it was identified as Bacillus fusiformis. Its algae-lysing characteristics on Microcystis aeruginosa, Chlorella and Scenedesmus were tested. The results showed that: (1) the algicidal bacterium B5 is a Gram-negative bacterium. The 16S rDNA nucleotide sequence homology of strain B5 with 2 strains of B. fusiformis reached 99.86%, so B5 was identified as B. fusiformis; (2) the algal-lysing effects of the algicidal bacterium B5 on M. aeruginosa, Chlorella and Scenedesmus were pronounced. The initial bacterial and algal cell densities strongly influence the removal rates of chlorophyll-a. The greater the initial bacterial cell density, the faster the degradation of chlorophyll-a. The greater the initial algal cell density, the slower the degradation of chlorophyll-a. When the bacterial cell density was 3.6 × 107 cells/ml, nearly 90% of chlorophyll-a was removed. When the chlorophyll-a concentration was less than 550 μg/L, about 70 % was removed; (3) the strain B5 lysed algae not directly but by secreting metabolites and these metabolites could bear heat treatment.

  8. Engineering a predatory bacterium as a proficient killer agent for intracellular bio-products recovery

    DEFF Research Database (Denmark)

    Martinez, Virginia; Herencias, Cristina; Jurkevitch, Edouard;

    2016-01-01

    This work examines the potential of the predatory bacterium Bdellovibrio bacteriovorus HD100, an obligate predator of other Gram-negative bacteria, as an external cell-lytic agent for recovering valuable intracellular bio-products produced by prey cultures. The bio-product targets to be recovered...

  9. The Mechanism and Usage for Enhanced Oil Recovery by Chemotaxis of Bacterium BS2

    Institute of Scientific and Technical Information of China (English)

    LiYiqian; JingGuicheng; GaoShusheng; XungWei

    2005-01-01

    Due to its chemotaxis, the motion ability of bacterium BS2 is very strong, and under the microscope, the distribution grads of bacterium concentration can be seen at the oil-water interface. During the experiments in glass box, it can be observed, with eyes, because of the chemotaxis, that muddy gets thicker and thicker at the interface gradually, and it is measured there, from sampling, that the bacterium concentration is 109 cells/mL, pH value 4.4 and the concentration of bio-surfactant 2.87%; The microbial oil-displacement experiments are carried out in emulational network models, and the oil-displacement mechanism by the bacterium and its metabolizing production is studied. And, during oil-displacement experiments in the gravel-input glass models, because of the profile control of thalli and the production, the sweep area of subsequent waterflood becomes wider, which can be seen with eyes and the recovery is enhanced by 13.6%. Finally, the successful field test is introduced in brief: the ratio of response producers is 85.7%, and the water-cut degrades by 6.4%, while 20038t oil has increased in accumulative total in 2 years.

  10. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM

    DEFF Research Database (Denmark)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten;

    2012-01-01

    Lactobacillus acidophilus NCFM (NCFM) is a well‐documented probiotic bacterium isolated from human gut. Detailed 2D gel‐based NCFM proteomics addressed the so‐called alkaline range, i.e., pH 6–11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D...

  11. Photobacterium galatheae sp. nov., a bioactive bacterium isolated from a mussel in the Solomon Sea

    DEFF Research Database (Denmark)

    Machado, Henrique; Giubergia, Sonia; Mateiu, Ramona Valentina;

    2015-01-01

    A novel, Gram-negative marine bacterium, S2753T, was isolated from a mussel of the Solomon Sea, Solomon Islands. Analysis of the 16S rRNA gene sequence and whole genome sequence data placed strain S2753T in the genus Photobacterium with the closest relative being Photobacterium halotolerans...

  12. Design of semi industrial radium separator by a new bacterium MGF-48

    International Nuclear Information System (INIS)

    Following of a research work which has been recently published in AEOI scientific Bulletin no. 14, a semi industrial bioreactor has been designed for separation of radium using a new bacterium MGF-48. This bioreactor could be utilized for a high rate separation of radium in semi industrial scale. (author)

  13. Complete Genome Sequence of Sphingomonas sp. Strain NIC1, an Efficient Nicotine-Degrading Bacterium

    Science.gov (United States)

    Zhu, Xiongyu; Wang, Weiwei; Xu, Ping

    2016-01-01

    Sphingomonas sp. strain NIC1, an efficient nicotine-degrading bacterium, was isolated from tobacco leaves. Here, we present the complete genome sequence of strain NIC1, which contains one circular chromosome and two circular plasmids. The genomic information will provide insights into its molecular mechanism for nicotine degradation. PMID:27417841

  14. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T.

    Science.gov (United States)

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb). PMID:27174286

  15. First Insights into the Genome of the Moderately Thermophilic Bacterium Clostridium tepidiprofundi SG 508T

    OpenAIRE

    Poehlein, Anja; Friedrich, Ines; Krüger, Larissa; Daniel, Rolf

    2016-01-01

    The moderately thermophilic bacterium Clostridium tepidiprofundi is Gram-positive and belongs to clostridial cluster I. It was isolated from a hydrothermal vent chimney. Substrates utilized by C. tepidiprofundi include casein, peptone, tryptone, yeast extract, beef extract, starch, maltose, and glucose. The genome consists of one replicon (3.06 Mb).

  16. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes.

    Science.gov (United States)

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M; Tisa, Louis S

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes. PMID:26988056

  17. Draft Genome Sequence of Photorhabdus luminescens subsp. laumondii HP88, an Entomopathogenic Bacterium Isolated from Nematodes

    OpenAIRE

    Ghazal, Shimaa; Oshone, Rediet; Simpson, Stephen; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Khalil, Kamal M.; Tisa, Louis S.

    2016-01-01

    Photorhabdus luminescens subsp. laumondii HP88 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.27-Mbp draft genome sequence for P. luminescens subsp. laumondii HP88, with a G+C content of 42.4% and containing 4,243 candidate protein-coding genes.

  18. Draft Genome Sequence of the Ionic Liquid-Tolerant Bacterium Bacillus amyloliquefaciens CMW1

    OpenAIRE

    Kurata, Atsushi; Hirose, Yuu; Misawa, Naomi; Hurunaka, Kohei; Kishimoto, Noriaki

    2014-01-01

    Here, we report the draft genome sequence of an ionic liquid-tolerant bacterium, Bacillus amyloliquefaciens CMW1, which is newly isolated from a Japanese fermented soybean paste. The genome sequence will allow for a characterization of the molecular mechanism of its ionic liquid tolerance.

  19. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    OpenAIRE

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert.

  20. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome.

    Science.gov (United States)

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E; Gómez-Silva, Benito; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  1. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower.

    Science.gov (United States)

    Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M P

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake. PMID:25838494

  2. Genome Sequence of Bacillus mycoides B38V, a Growth-Promoting Bacterium of Sunflower

    OpenAIRE

    Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; de Souza, Rocheli; Tadra-Sfeir, Michele; Faoro, Helisson; Alvarenga, Samuel M.; Pedrosa, Fabio Oliveira; Souza, Emanuel Maltempi; Passaglia, Luciane M. P.

    2015-01-01

    Bacillus mycoides B38V is a bacterium isolated from the sunflower rhizosphere that is able to promote plant growth and N uptake. The genome of the isolate has approximately 5.80 Mb and presents sequence codifiers for plant growth-promoting characteristics, such as nitrate reduction and ammonification and iron-siderophore uptake.

  3. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    OpenAIRE

    Yi, Langbo; Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong; Chai, Liyuan

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism.

  4. Draft Genome Sequence of Perfluorooctane Acid-Degrading Bacterium Pseudomonas parafulva YAB-1

    Science.gov (United States)

    Tang, Chongjian; Peng, Qingjing; Peng, Qingzhong

    2015-01-01

    Pseudomonas parafulva YAB-1, isolated from perfluorinated compound-contaminated soil, has the ability to degrade perfluorooctane acid (PFOA) compound. Here, we report the draft genome sequence and annotation of the PFOA-degrading bacterium P. parafulva YAB-1. The data provide the basis to investigate the molecular mechanism of PFOA metabolism. PMID:26337877

  5. Comment on "A bacterium that degrades and assimilates poly(ethylene terephthalate)".

    Science.gov (United States)

    Yang, Yu; Yang, Jun; Jiang, Lei

    2016-08-19

    Yoshida et al (Report, 11 March 2016, p. 1196) reported that the bacterium Ideonella sakaiensis 201-F6 can degrade and assimilate poly(ethylene terephthalate) (PET). However, the authors exaggerated degradation efficiency using a low-crystallinity PET and presented no straightforward experiments to verify depolymerization and assimilation of PET. Thus, the authors' conclusions are rather misleading. PMID:27540159

  6. Draft Genome Sequence of Burkholderia cenocepacia Strain 869T2, a Plant-Beneficial Endophytic Bacterium.

    Science.gov (United States)

    Ho, Ying-Ning; Huang, Chieh-Chen

    2015-01-01

    An endophytic bacterium, Burkholderia cenocepacia 869T2, isolated from vetiver grass, has shown its abilities for both in planta biocontrol and plant growth promotion. Its draft genome sequence was determined to provide insights into those metabolic pathways involved in plant-beneficial activity. This is the first genome report for endophytic B. cenocepacia. PMID:26564046

  7. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans

    OpenAIRE

    Peng, Ji-Bin; Yan, Wang-Ming; Bao, Xue-Zhen

    1994-01-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host.

  8. Draft Genome Sequence of Sphingobium yanoikuyae TJ, a Halotolerant Di-n-Butyl-Phthalate-Degrading Bacterium

    Science.gov (United States)

    Jin, Decai; Zhu, Ying; Wang, Xinxin; Kong, Xiao; Liu, Huijun; Wang, Yafeng

    2016-01-01

    Sphingobium yanoikuyae TJ is a halotolerant di-n-butyl-phthalate-degrading bacterium, isolated from the Haihe estuary in Bohai Bay, Tianjin, China. Here, we report the 5.1-Mb draft genome sequence of this strain, which will provide insights into the diversity of Sphingobium spp. and the mechanism of phthalate ester degradation in the estuary. PMID:27313307

  9. Whole-Genome Shotgun Sequence of Pseudomonas viridiflava, a Bacterium Species Pathogenic to Arabidopsis thaliana

    OpenAIRE

    Lefort, Francois; Calmin, Gautier; Crovadore, Julien; Osteras, Magne; Farinelli, Laurent

    2013-01-01

    We report here the first whole-genome shotgun sequence of Pseudomonas viridiflava strain UASWS38, a bacterium species pathogenic to the biological model plant Arabidopsis thaliana but also usable as a biological control agent and thus of great scientific interest for understanding the genetics of plant-microbe interactions.

  10. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    NARCIS (Netherlands)

    Bielen, A.A.M.; Verhaart, M.R.A.; Oost, van der J.; Kengen, S.W.M.

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit fo

  11. Genome sequence of the mycorrhizal helper bacterium Pseudomonas fluorescens BBc6R8

    Energy Technology Data Exchange (ETDEWEB)

    Deveau, Aurelie [French National Insitute for Agricultural Research (INRA); Grob, Harald [University of Bonn, Germany; Morin, Emmanuelle [INRA, Nancy, France; Karpinets, Tatiana V [ORNL; Utturkar, Sagar M [ORNL; Mehnaz, Samina [University of the Punjab, Pakistan; Kurz, Sven [University of Bonn, Germany; Martin, Francis [INRA, Nancy, France; Frey-Klett, Pascale [INRA, Nancy, France; Labbe, Jessy L [ORNL

    2014-01-01

    We report the draft genome sequence of the mycorrhiza helper bacterium Pseudomonas fluorescens strain BBc6R8 . Several traits which could be involved in the mycorrhiza helper ability of the bacterial strain such as multiple secretion systems, auxin metabolism and phosphate mobilization were evidenced in the genome.

  12. Complete genome sequence of a novel chlorpyrifos degrading bacterium, Cupriavidus nantongensis X1.

    Science.gov (United States)

    Fang, Lian-Cheng; Chen, Yi-Fei; Zhou, Yan-Long; Wang, Dao-Sheng; Sun, Le-Ni; Tang, Xin-Yun; Hua, Ri-Mao

    2016-06-10

    Cupriavidus nantongensis X1 is a chlorpyrifos degrading bacterium, which was isolated from sludge collected at the drain outlet of a chlorpyrifos manufacture plant. It is the first time to report the complete genome sequence of C. nantongensis species, which has been reported as a novel species of Cupriavidus genus. It could provide further pathway information in chlorpyrifos degradation. PMID:27063140

  13. Toxicity of herbicides used in the sugarcane crop to diazotrophic bacterium Herbaspirillum seropedicae

    OpenAIRE

    Sergio de Oliveira Procópio; Marcelo Ferreira Fernandes; Daniele Araújo Teles; José Guedes Sena Filho; Alberto Cargnelutti Filho; Marcelo Araújo Resende; Leandro Vargas

    2014-01-01

    The objective of this work was to identify herbicides used in the sugarcane crop that affects neither the growth, the development, of nor the process of biological nitrogen fixation (BNF) by the diazotrophic bacterium Herbaspirillum seropedicae. Eighteen herbicides (paraquat, ametryne, tebuthiuron, amicarbazone, diuron, metribuzin, [hexazinone + diuron], [hexazinone + clomazone], clomazone, isoxaflutole, sulfentrazone, oxyfluorfen, imazapic, imazapyr, [trifloxysulfuron sodium + ametryne], gly...

  14. An ATP transport system in the intracellular bacterium, Bdellovibrio bacteriovorus 109J.

    OpenAIRE

    Ruby, E G; McCabe, J B

    1986-01-01

    The intracellularly growing bacterium Bdellovibrio bacteriovorus 109J transports intact ATP by a specific, energy-requiring process. ATP transport does not involve either an ADP-ATP or an AMP-ATP exchange mechanism but, instead, has characteristics of an active transport permease. Kinetically distinct systems for ATP transport are expressed by the two developmental stages of the bdellovibrio life cycle.

  15. Complete Genome Sequence of Enterobacter cloacae B2-DHA, a Chromium-Resistant Bacterium

    Science.gov (United States)

    Rahman, Aminur; Nahar, Noor; Olsson, Björn

    2016-01-01

    Previously, we reported a chromium-resistant bacterium, Enterobacter cloacae B2-DHA, isolated from the landfills of tannery industries in Bangladesh. Here, we investigated its genetic composition using massively parallel sequencing and comparative analysis with other known Enterobacter genomes. Assembly of the sequencing reads revealed a genome of ~4.21 Mb in size. PMID:27257201

  16. Draft Genome Sequence of the Radioresistant Bacterium Deinococcus grandis, Isolated from Freshwater Fish in Japan

    Science.gov (United States)

    Onodera, Takefumi; Omoso, Kota; Takeda-Yano, Kiyoko; Katayama, Takeshi; Oono, Yutaka; Narumi, Issay

    2016-01-01

    Deinococcus grandis is a radioresistant bacterium isolated from freshwater fish in Japan. Here we reported the draft genome sequence of D. grandis (4.1 Mb), which will be useful for elucidating the common principles of radioresistance in Deinococcus species through the comparative analysis of genomic sequences. PMID:26868384

  17. Genome Sequence of the Spinosyns-Producing Bacterium Saccharopolyspora spinosa NRRL 18395 ▿

    Science.gov (United States)

    Pan, Yuanlong; Yang, Xi; Li, Jing; Zhang, Ruifen; Hu, Yongfei; Zhou, Yuguang; Wang, Jun; Zhu, Baoli

    2011-01-01

    Saccharopolyspora spinosa is a Gram-positive bacterium that produces spinosad, a well-known biodegradable insecticide that is used for agricultural pest control and has an excellent environmental and mammalian toxicological profile. Here, we present the first draft genome sequence of the type strain Saccharopolyspora spinosa NRRL 18395, which consists of 22 scaffolds. PMID:21478350

  18. Genome Sequence of Marichromatium gracile YL-28, a Purple Sulfur Bacterium with Bioremediation Potential

    Science.gov (United States)

    Zhang, Xiaobo; Zhao, Chungui; Hong, Xuan

    2016-01-01

    The draft genome sequence of Marichromatium gracile YL-28 contains 3,840,251 bp, with a G+C content of 68.84%. The annotated genome sequence provides the genetic basis for revealing its role as a purple sulfur bacterium in the harvesting of energy and the development of bioremediation applications. PMID:27151789

  19. Draft Genome Sequence of the Oyster Larval Probiotic Bacterium Vibrio sp. Strain OY15

    OpenAIRE

    Harold J. Schreier; Schott, Eric J.

    2014-01-01

    We report the draft genome sequence of Vibrio sp. strain OY15, a Gram-negative marine bacterium isolated from an oyster (Crassostrea virginica) digestive tract and shown to possess probiotic activity. The availability of this genome sequence will facilitate the study of the mechanisms of probiotic activity as well as virulence capacity.

  20. Genome Sequence of the Highly Efficient Arsenite-Oxidizing Bacterium Achromobacter arsenitoxydans SY8

    OpenAIRE

    Li, Xiangyang; Hu, Yao; Gong, Jing; Lin, Yanbing; Johnstone, Laurel; Rensing, Christopher; Wang, Gejiao

    2012-01-01

    We report the draft genome sequence of Achromobacter arsenitoxydans SY8, the first reported arsenite-oxidizing bacterium belonging to the genus Achromobacter and containing a genomic arsenic island, an intact type III secretion system, and multiple metal(loid) transporters. The genome may be helpful to explore the mechanisms intertwining metal(loid) resistance and pathogenicity.

  1. Dimethylsulfoxide reduction by marine sulfate-reducing bacteria

    OpenAIRE

    Jonkers, Henk M.; van der Maarel, Marc J. E. C.; van Gemerden, Hans; Hansen, Theo A.

    1996-01-01

    Dimethylsulfoxide (DMSO) reduction occurred in five out of nine strains of sulfate-reducing bacteria from marine or saline environments, but not in three freshwater isolates. DMSO reduction supported growth in all positive strains. In Desulfovibrio desulfuricans strain PA2805, DMSO reduction occurred simultaneously-with sulfate reduction and was not effectively inhibited by molybdate, a specific inhibitor of sulfate reduction. The growth yield per mol lactate was 26% higher with DMSO than wit...

  2. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sublette, K.L.

    1993-12-31

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  3. 137Cs sorption onto Fullers' Earth (calcium montmorillonite) -the influence of sulphate reducing bacteria

    International Nuclear Information System (INIS)

    The influences of Desulfovibrio desulfuricans on the sorption of 137Cs onto Fullers' Earth (Calcium montmorillonite) has been studied using batch sorption methods. Results were expressed as distributions ratios (Rd) and as Freundlich and Dubinin-Radushkevich isotherms. They show that microbes present naturally in the Fullers' Earth did not influence sorption data, however the addition of microbes in the aqueous phase alters the sorption properties in a complex manner. (author)

  4. A commensal symbiotic interrelationship for the growth of Symbiobacterium toebii with its partner bacterium, Geobacillus toebii

    Directory of Open Access Journals (Sweden)

    Masui Ryoji

    2011-10-01

    Full Text Available Abstract Background Symbiobacterium toebii is a commensal symbiotic thermophile that absolutely requires its partner bacterium Geobacillus toebii for growth. Despite development of an independent cultivation method using cell-free extracts, the growth of Symbiobacterium remains unknown due to our poor understanding of the symbiotic relationship with its partner bacterium. Here, we investigated the interrelationship between these two bacteria for growth of S. toebii using different cell-free extracts of G. toebii. Results Symbiobacterium toebii growth-supporting factors were constitutively produced through almost all growth phases and under different oxygen tensions in G. toebii, indicating that the factor may be essential components for growth of G. toebii as well as S. toebii. The growing conditions of G. toebii under different oxygen tension dramatically affected to the initial growth of S. toebii and the retarded lag phase was completely shortened by reducing agent, L-cysteine indicating an evidence of commensal interaction of microaerobic and anaerobic bacterium S. toebii with a facultative aerobic bacterium G. toebii. In addition, the growth curve of S. toebii showed a dependency on the protein concentration of cell-free extracts of G. toebii, demonstrating that the G. toebii-derived factors have nutrient-like characters but not quorum-sensing characters. Conclusions Not only the consistent existence of the factor in G. toebii during all growth stages and under different oxygen tensions but also the concentration dependency of the factor for proliferation and optimal growth of S. toebii, suggests that an important biosynthetic machinery lacks in S. toebii during evolution. The commensal symbiotic bacterium, S. toebii uptakes certain ubiquitous and essential compound for its growth from environment or neighboring bacteria that shares the equivalent compounds. Moreover, G. toebii grown under aerobic condition shortened the lag phase of S

  5. Evaluation of Biosynthetic Pathways of 2Н- and 13С-Labeled Amino Acids by an Obligate Methylotrophic Bacterium Methylobacillus Flagellatum and a Facultative Methylotrophic Bacterium Brevibacterium Methylicum

    Directory of Open Access Journals (Sweden)

    Oleg Mosin

    2016-06-01

    Full Text Available By the method of electron impact mass-spectrometry was studied the pathways of biosynthesis of 2H, 13C-labeled amino acids of a facultative methylotrophic bacterium Brevibacterium methylicum and an obligate methylotrophic bacterium Methylobacillus flagellatum obtained on growth media containing as a source of stable isotopes [2H]methanol, [13C]methanol and 2H2O. For mass-spectrometric analysis the multicomponential mixtures of 2H- and 13C-labeled amino acids, derived from cultural media and protein hydrolysates after hydrolysis in 6 M 2HСl (3 % phenol and 2 M Ва(OH2 were modified into N-benzyloxycarbonyl-derivatives of amino acids as well as into methyl esters of N-5-(dimethylaminonaphthalene-1-sulfonyl chloride (dansyl derivatives of [2H, 13С]amino acids, which were preparative separated using a method of reverse-phase HCLP. Biosynthetically obtained 2H- and 13C-labeled amino acids represented the mixtures differing in quantities of isotopes incorporated into molecule. The levels of 2H and 13С enrichment of secreted amino acids and amino acid resigues of protein were found to vary from 20,0 atom % to L-leucine/isoleucine up to 97,5 atom % for L-alanine depending on concentration of 2H- and 13C-labelled substrates.

  6. Influence of pH and Oxidant Ozone to Amount of Bacterium Coliform at Hospital Waste

    International Nuclear Information System (INIS)

    Influence of pH and oxidant ozone to amount of bacterium coliform at hospital waste have been done. As sample is liquid waste Public Hospital of town (RSUD) Yogyakarta. Sample waste processed by 3 kinds of treatment, that is first certain ozone waste during, that is waste given by the third and just chalk of waste given by the certain and ozonization chalk during. From third the treatment, in the reality third treatment which can give the maximal result, that is waste given the chalk until pH waste 8.5 and ozonization during 40 minute give the following result : bacterium coliform from 810.000 MPN become 0 MPN ( cell / 100 mL). This result have fulfilled the conditions as according to decision of Governor of DIY no. 65 year 1999 for the waste of faction II, that is waste used for the irrigation of fishery and agriculture. (author)

  7. Crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus

    Science.gov (United States)

    Nikonova, E. Yu.; Tishchenko, S. V.; Gabdulkhakov, A. G.; Shklyaeva, A. A.; Garber, M. B.; Nikonov, S. V.; Nevskaya, N. A.

    2011-07-01

    The crystal structure of ribosomal protein L1 from the bacterium Aquifex aeolicus was solved by the molecular-replacement method and refined to R cryst = 19.4% and R free = 25.1% at 2.1 Å protein consists of two domains linked together by a flexible hinge region. In the structure under consideration, the domains are in close proximity and adopt a closed conformation. Earlier, this conformation has been found in the structure of protein L1 from the bacterium Thermus thermophilus, whereas the structures of archaeal L1 proteins and the structures of all L1 proteins in the RNA-bound form have an open conformation. The fact that a closed conformation was found in the structures of two L1 proteins which crystallize in different space groups and belong to different bacteria suggests that this conformation is a characteristic feature of L1 bacterial proteins in the free form.

  8. Isolation and characterization of a new arsenic methylating bacterium from soil

    Energy Technology Data Exchange (ETDEWEB)

    Honschopp, S. [Bremen Univ. (Germany). Abt. Mikrobiologie; Brunken, N. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie; Nehrkorn, A. [Bremen Univ. (Germany). Abt. Mikrobiologie; Breunig, H.J. [Bremen Univ. (Germany). Inst. fuer Anorganische und Physikalische Chemie

    1996-12-31

    An arsenic resistant and arsenic methylating bacterium belonging to the Flavobacterium-Cytophaga group was isolated from soil with an arsenic content of 1.5 ppm. The growth of the bacterium is enhanced in the presence of As compounds in concentrations up to 200 ppm in the cultural media with a stronger effect of As(V) than of As(III) compounds. As a volatile product of the methylation of both NaH{sub 2}AsO{sub 3} and NaH{sub 2}AsO{sub 4} exclusively, Me{sub 3}As was formed and detected by mass spectrometry. Quantitative aspects of the methylation were studied with GC/MS. The intracellular accumulation of arsenic in the methylating strain was compared with two non methylating strains from the same soil. (orig.)

  9. Effect of Sulfate Reduced Bacterium on Corrosion Behavior of 10CrMoAl Steel

    Institute of Scientific and Technical Information of China (English)

    WANG Hua; LIANG Cheng-hao

    2007-01-01

    The effects of sulfate reduced bacterium (SRB) on the corrosion behavior of 10CrMoAl steel in seawater were studied by chemical immersion, potentiodynamic polarization, electrochemical impedance spectroscopy measurement, and scanning electron microscope techniques. The results show that the content of element sulfur in the corrosion product of 10CrMoAl steel in seawater with SRB is up to 9.23%, which is higher than that of the same in sterile seawater. X-ray diffraction demonstrates that the main corrosion product is FeS. SRB increases the corrosion rate by anodic depolarization of the metabolized sulfide product. SEM observation indicates that the corrosion product is not distributed continuously; in addition, bacilliform sulfate-reduced bacterium accumulates on the local surface of 10CrMoAl steel. Hence, SRB enhances sensitivity to the localized corrosion of 10CrMoAl steel in seawater.

  10. Isolation and biological characteristics of aerobic marine magnetotactic bacterium YSC-1

    Institute of Scientific and Technical Information of China (English)

    GAO Jun; PAN Hongmiao; YUE Haidong; SONG Tao; ZHAO Yong; CHEN Guanjun; Wu Longfei; XIAO Tian

    2006-01-01

    Magnetotactic bacteria have become a hot spot of research in microbiology attracting intensive interest of researchers in multiple disciplinary fields. However, the studies were limited in few fastidious bacteria. The objective of this study aims at isolating new marine magnetic bacteria and better comprehension of magnetotactic bacteria. In this study, an aerobic magnetotactic bacterium YSC-1 was isolated from sediments in the Yellow Sea Cold Water Mass (YSCWM). In TEM, magnetic cells have one or several circular magnetosomes in dimeter of 100nm, and consist of Fe and Co shown on energy dispersive X-ray spectrum. The biological and physiological characteristics of this bacterium were also described. The colour of YSC-1 colony is white in small rod. The gran stain is negative. Results showed that Strain YSC-1 differs from microaerophile magnetotactic bacteria MS-1 and WD-1 in biology.

  11. Microbiologically influenced corrosion of NiZn alloy coatings by Delftia acidovorans bacterium

    International Nuclear Information System (INIS)

    Highlights: ► Delftia acidovorans isolated from water treatment pipe system. ► Bacterium attached to the alloy coatings. ► Ecorr exhibited cathodic shift. ► Mass loss reached highest value after inoculation. ► Crevice corrosion was observed on the surface due to bacterium. - Abstract: In this study, Delftia acidovorans was isolated from water treatment pipe system and used to demonstrate microbiologically influenced corrosion of NiZn alloy coatings using electrochemical techniques. The surface morphologies and the corrosion products were determined using scanning electron microscopy (SEM) and energy dispersive X-ray spectra (EDS) analysis. Results showed that when the metabolic activity reached maximum level, corrosion activity of NiZn alloy coatings significantly increased in correlation with Ecorr, Icorr, QCM and Rct. Furthermore, crevice corrosion which has been seen due to bacterial adhesion confirms that D. acidovorans plays an important role in corrosion of NiZn alloy coating.

  12. N-Acyl Dehydrotyrosines, Tyrosinase Inhibitors from the Marine Bacterium Thalassotalea sp. PP2-459.

    Science.gov (United States)

    Deering, Robert W; Chen, Jianwei; Sun, Jiadong; Ma, Hang; Dubert, Javier; Barja, Juan L; Seeram, Navindra P; Wang, Hong; Rowley, David C

    2016-02-26

    Thalassotalic acids A-C and thalassotalamides A and B are new N-acyl dehydrotyrosine derivatives produced by Thalassotalea sp. PP2-459, a Gram-negative bacterium isolated from a marine bivalve aquaculture facility. The structures were elucidated via a combination of spectroscopic analyses emphasizing two-dimensional NMR and high-resolution mass spectrometric data. Thalassotalic acid A (1) displays in vitro inhibition of the enzyme tyrosinase with an IC50 value (130 μM) that compares favorably to the commercially used control compounds kojic acid (46 μM) and arbutin (100 μM). These are the first natural products reported from a bacterium belonging to the genus Thalassotalea. PMID:26824128

  13. Economic Game Theory to Model the Attenuation of Virulence of an Obligate Intracellular Bacterium.

    Science.gov (United States)

    Tago, Damian; Meyer, Damien F

    2016-01-01

    Diseases induced by obligate intracellular pathogens have a large burden on global human and animal health. Understanding the factors involved in the virulence and fitness of these pathogens contributes to the development of control strategies against these diseases. Based on biological observations, a theoretical model using game theory is proposed to explain how obligate intracellular bacteria interact with their host. The equilibrium in such a game shows that the virulence and fitness of the bacterium is host-triggered and by changing the host's defense system to which the bacterium is confronted, an evolutionary process leads to an attenuated strain. Although, the attenuation procedure has already been conducted in practice in order to develop an attenuated vaccine (e.g., with Ehrlichia ruminantium), there was a lack of understanding of the theoretical basis behind this process. Our work provides a model to better comprehend the existence of different phenotypes and some underlying evolutionary mechanisms for the virulence of obligate intracellular bacteria. PMID:27610355

  14. The bacterium Xenorhabdus nematophila inhibits phospholipases A2 from insect, prokaryote, and vertebrate sources

    Science.gov (United States)

    Park, Youngjin; Kim, Yonggyun; Stanley, David

    The bacterium, Xenorhabdus nematophila, is a virulent insect pathogen. Part of its pathogenicity is due to impairing cellular immunity by blocking biosynthesis of eicosanoids, the major recognized signal transduction system in insect cellular immunity. X. nematophila inhibits the first step in eicosanoid biosynthesis, phospholipase A2 (PLA2). Here we report that the bacterium inhibits PLA2 from two insect immune tissues, hemocytes and fat body, as well as PLA2s selected to represent a wide range of organisms, including prokaryotes, insects, reptiles, and mammals. Our finding on a bacterial inhibitor of PLA2 activity contributes new insight into the chemical ecology of microbe-host interactions, which usually involve actions rather than inhibitors of PLA2s.

  15. A Streamlined Strategy for Biohydrogen Production with Halanaerobium hydrogeniformans, an Alkaliphilic Bacterium

    Directory of Open Access Journals (Sweden)

    Matthew eBegemann

    2012-03-01

    Full Text Available Biofuels are anticipated to enable a shift from fossil fuels for renewable transportation and manufacturing fuels, with biohydrogen considered attractive since it could offer the largest reduction of global carbon budgets. Currently, lignocellulosic biohydrogen production remains inefficient with pretreatments that are heavily fossil fuel-dependent. However, bacteria using alkali-treated biomass could streamline biofuel production while reducing costs and fossil fuel needs. An alkaliphilic bacterium, Halanaerobium hydrogeniformans, is described that is capable of biohydrogen production at levels rivaling neutrophilic strains, but at pH 11 and hypersaline conditions. H. hydrogeniformans ferments a variety of 5- and 6- carbon sugars derived from hemicellulose and cellulose including cellobiose, and forms the end products hydrogen, acetate and formate. Further, it can also produce biohydrogen from switchgrass and straw pretreated at temperatures far lower than any previously reported and in solutions compatible with growth. Hence, this bacterium can potentially increase the efficiency and efficacy of biohydrogen production from renewable biomass resources.

  16. Chlorhexidine resistance in a Gram-negative bacterium isolated from an aquatic source

    OpenAIRE

    Sekavec, Jeffrey G.; Moore, William T.; Gillock, Eric T.

    2013-01-01

    Aeromonas hydrophila is a Gram-negative bacterium of considerable importance in both clinical, especially nosocomial infections, and zoonotic respects, both aquatic and terrestrial infections. In addition to the ability to thrive in a wide range of conditions, A. hydrophila is resistant to numerous antibiotics and antimicrobials. In conjunction with Kansas State University and the Kansas Water Office, water samples from various locations within Kansas were screened for organisms resistant to ...

  17. Sensitivity of ribosomes of the hyperthermophilic bacterium Aquifex pyrophilus to aminoglycoside antibiotics.

    OpenAIRE

    Bocchetta, M; Huber, R.; Cammarano, P

    1996-01-01

    A poly(U)-programmed cell-free system from the hyperthermophilic bacterium Aquifex pyrophilus has been developed, and the susceptibility of Aquifex ribosomes to the miscoding-inducing and inhibitory actions of all known classes of aminoglycoside antibiotics has been assayed at temperatures (75 to 80 degrees C) close to the physiological optimum for cell growth. Unlike Thermotoga maritima ribosomes, which are systematically refractory to all known classes of aminoglycoside compounds (P. Londei...

  18. Calcium-ion mediated assembly and function of glycosylated flagellar sheath of marine magnetotactic bacterium

    OpenAIRE

    Lefèvre, Christopher T; Santini, Claire-Lise; Bernadac, Alain; Zhang, Wei-Jia; Ying LI; Wu, Long-Fei

    2010-01-01

    Abstract Flagella of some pathogens or marine microbes are sheathed by an apparent extension of the outer cell membrane. Although flagellar sheath has been reported for almost 60 years, little is known about its function and the mechanism of its assembly. Recently, we have observed a novel type of sheath that encloses a flagellar bundle, instead of a single flagellum, in a marine magnetotactic bacterium MO-1. Here, we reported isolation and characterization of the sheath which can ...

  19. Campylobacter pylori, the spiral bacterium associated with human gastritis, is not a true Campylobacter sp.

    OpenAIRE

    Romaniuk, P J; Zoltowska, B; Trust, T J; Lane, D J; Olsen, G.J.; Pace, N R; Stahl, D A

    1987-01-01

    Comparison of partial 16S rRNA sequences from representative Campylobacter species indicates that the Campylobacter species form a previously undescribed basic eubacterial group, which is related to the other major groups only by very deep branching. This analysis was extended to include the spiral bacterium associated with human gastritis, Campylobacter pylori (formerly Campylobacter pyloridis). The distance between C. pylori and the other Campylobacter species is sufficient to exclude the p...

  20. The Complete Genome Sequence of the Plant Growth-Promoting Bacterium Pseudomonas sp. UW4

    OpenAIRE

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J.; Bernard R. Glick

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 gen...

  1. Physiological Adaptation of the Bacterium Lactococcus lactis in Response to the Production of Human CFTR*

    OpenAIRE

    A. Steen; Wiederhold, E.; T Gandhi; Breitling, R.; D. J. Slotboom

    2010-01-01

    Biochemical and biophysical characterization of CFTR (the cystic fibrosis transmembrane conductance regulator) is thwarted by difficulties to obtain sufficient quantities of correctly folded and functional protein. Here we have produced human CFTR in the prokaryotic expression host Lactococcus lactis. The full-length protein was detected in the membrane of the bacterium, but the yields were too low (< 0.1% of membrane proteins) for in vitro functional and structural characterization, and indu...

  2. Bioinformatic Prediction of Gene Functions Regulated by Quorum Sensing in the Bioleaching Bacterium Acidithiobacillus ferrooxidans

    OpenAIRE

    Alvaro Banderas; Nicolas Guiliani

    2013-01-01

    The biomining bacterium Acidithiobacillus ferrooxidans oxidizes sulfide ores and promotes metal solubilization. The efficiency of this process depends on the attachment of cells to surfaces, a process regulated by quorum sensing (QS) cell-to-cell signalling in many Gram-negative bacteria. At. ferrooxidans has a functional QS system and the presence of AHLs enhances its attachment to pyrite. However, direct targets of the QS transcription factor AfeR remain unknown. In this study, a bioinforma...

  3. Functional Genomic Analysis of Three Nitrogenase Isozymes in the Photosynthetic Bacterium Rhodopseudomonas palustris‡

    OpenAIRE

    Oda, Yasuhiro; Samanta, Sudip K.; Rey, Federico E.; Wu, Liyou; Liu, Xiudan; Yan, Tingfen; Zhou, Jizhong; Harwood, Caroline S.

    2005-01-01

    The photosynthetic bacterium Rhodopseudomonas palustris is one of just a few prokaryotes described so far that has vnf and anf genes for alternative vanadium cofactor (V) and iron cofactor (Fe) nitrogenases in addition to nif genes for a molybdenum cofactor (Mo) nitrogenase. Transcriptome data indicated that the 32 genes in the nif gene cluster, but not the anf or vnf genes, were induced in wild-type and Mo nitrogenase-expressing strains grown under nitrogen-fixing conditions in Mo-containing...

  4. Identifying the assembly pathway of cyanophage inside the marine bacterium using electron cryo-tomography

    Directory of Open Access Journals (Sweden)

    Wei Dai

    2014-01-01

    Full Text Available Advances in electron cryo-tomography open up a new avenue to visualize the 3-D internal structure of a single bacterium before and after its infection by bacteriophages in its native environment, without using chemical fixatives, fluorescent dyes or negative stains. Such direct observation reveals the presence of assembly intermediates of the bacteriophage and thus allows us to map out the maturation pathway of the bacteriophage inside its host.

  5. Two New Cholic Acid Derivatives from the Marine Ascidian-Associated Bacterium Hasllibacter halocynthiae

    Directory of Open Access Journals (Sweden)

    Sung Hun Kim

    2012-10-01

    Full Text Available The investigation of secondary metabolites in liquid cultures of a recently discovered marine bacterium, Hasllibacter halocynthiae strain KME 002T, led to the isolation of two new cholic acid derivatives. The structures of these compounds were determined to be 3,3,12-trihydroxy-7-ketocholanic acid (1 and 3,3,12-trihydroxy-7-deoxycholanic acid (2 through HRFABMS and NMR data analyses.

  6. Draft Genome Sequence of Uncultured SAR324 Bacterium lautmerah10, Binned from a Red Sea Metagenome

    KAUST Repository

    Haroon, Mohamed F.

    2016-02-11

    A draft genome of SAR324 bacterium lautmerah10 was assembled from a metagenome of a surface water sample from the Red Sea, Saudi Arabia. The genome is more complete and has a higher G+C content than that of previously sequenced SAR324 representatives. Its genomic information shows a versatile metabolism that confers an advantage to SAR324, which is reflected in its distribution throughout different depths of the marine water column.

  7. Draft Genome Sequence of the Antitrypanosomally Active Sponge-Associated Bacterium Actinokineospora sp. Strain EG49

    KAUST Repository

    Harjes, Janno

    2014-03-06

    The marine sponge-associated bacterium Actinokineospora sp. strain EG49 produces the antitrypanosomal angucycline-like compound actinosporin A. The draft genome of Actinokineospora sp. EG49 has a size of 7.5 megabases and a GC content of 72.8% and contains 6,629 protein-coding sequences (CDS). antiSMASH predicted 996 genes residing in 36 secondary metabolite gene clusters.

  8. Encapsulated in silica: genome, proteome and physiology of the thermophilic bacterium Anoxybacillus flavithermus WK1

    OpenAIRE

    Saw, Jimmy H; Mountain, Bruce W; Feng, Lu; Omelchenko, Marina V; Hou, Shaobin; Saito, Jennifer A.; Stott, Matthew B.; Li, Dan; Zhao, Guang; Wu, Junli; Galperin, Michael Y.; Koonin, Eugene V.; Makarova, Kira S.; Wolf, Yuri I; Rigden, Daniel J.

    2008-01-01

    Background Gram-positive bacteria of the genus Anoxybacillus have been found in diverse thermophilic habitats, such as geothermal hot springs and manure, and in processed foods such as gelatin and milk powder. Anoxybacillus flavithermus is a facultatively anaerobic bacterium found in super-saturated silica solutions and in opaline silica sinter. The ability of A. flavithermus to grow in super-saturated silica solutions makes it an ideal subject to study the processes of sinter formation, whic...

  9. The Genome Sequence of the Obligately Chemolithoautotrophic, Facultatively Anaerobic Bacterium Thiobacillus denitrificans

    OpenAIRE

    Beller, Harry R.; Chain, Patrick S. G.; Letain, Tracy E.; Chakicherla, Anu; Larimer, Frank W.; Richardson, Paul M.; Coleman, Matthew A.; Wood, Ann P.; Kelly, Donovan P.

    2006-01-01

    The complete genome sequence of Thiobacillus denitrificans ATCC 25259 is the first to become available for an obligately chemolithoautotrophic, sulfur-compound-oxidizing, β-proteobacterium. Analysis of the 2,909,809-bp genome will facilitate our molecular and biochemical understanding of the unusual metabolic repertoire of this bacterium, including its ability to couple denitrification to sulfur-compound oxidation, to catalyze anaerobic, nitrate-dependent oxidation of Fe(II) and U(IV), and to...

  10. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    OpenAIRE

    Amable J. Rivas; Lemos, Manuel L.; Osorio, Carlos R.

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role...

  11. A Highly Stable d-Amino Acid Oxidase of the Thermophilic Bacterium Rubrobacter xylanophilus

    OpenAIRE

    Takahashi, Shouji; Furukawara, Makoto; Omae, Keishi; Tadokoro, Namiho; Saito, Yayoi; Abe, Katsumasa; Kera, Yoshio

    2014-01-01

    d-Amino acid oxidase (DAO) is a biotechnologically attractive enzyme that can be used in a variety of applications, but its utility is limited by its relatively poor stability. A search of a bacterial genome database revealed a gene encoding a protein homologous to DAO in the thermophilic bacterium Rubrobacter xylanophilus (RxDAO). The recombinant protein expressed in Escherichia coli was a monomeric protein containing noncovalently bound flavin adenine dinucleotide as a cofactor. This protei...

  12. Sexual transmission of a plant pathogenic bacterium, Candidatus Liberibacter asiaticus, between conspecific insect vectors during mating.

    Directory of Open Access Journals (Sweden)

    Rajinder S Mann

    Full Text Available Candidatus Liberibacter asiaticus is a fastidious, phloem-inhabiting, gram-negative bacterium transmitted by Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Psyllidae. The bacterium is the presumed causal agent of huanglongbing (HLB, one of the most destructive and economically important diseases of citrus. We investigated whether Las is transmitted between infected and uninfected D. citri adults during courtship. Our results indicate that Las was sexually transmitted from Las-infected male D. citri to uninfected females at a low rate (<4% during mating. Sexual transmission was not observed following mating of infected females and uninfected males or among adult pairs of the same sex. Las was detected in genitalia of both sexes and also in eggs of infected females. A latent period of 7 days or more was required to detect the bacterium in recipient females. Rod shaped as well as spherical structures resembling Las were observed in ovaries of Las-infected females with transmission electron microscopy, but were absent in ovaries from uninfected D. citri females. The size of the rod shaped structures varied from 0.39 to 0.67 µm in length and 0.19 to 0.39 µm in width. The spherical structures measured from 0.61 to 0.80 µm in diameter. This investigation provides convincing evidence that a plant pathogenic bacterium is sexually transmitted from male to female insects during courtship and established evidence that bacteria persist in reproductive organs. Moreover, these findings provide an alternative sexually horizontal mechanism for the spread of Las within populations of D. citri, even in the absence of infected host trees.

  13. Expression of Heterogenous Arsenic Resistance Genes in the Obligately Autotrophic Biomining Bacterium Thiobacillus ferrooxidans.

    Science.gov (United States)

    Peng, J B; Yan, W M; Bao, X Z

    1994-07-01

    Two arsenic-resistant plasmids were constructed and introduced into Thiobacillus ferrooxidans strains by conjugation. The plasmids with the replicon of wide-host-range plasmid RSF1010 were stable in T. ferrooxidans. The arsenic resistance genes originating from the heterotroph were expressed in this obligately autotrophic bacterium, but the promoter derived from T. ferrooxidans showed no special function in its original host. PMID:16349341

  14. Physiological features of Halomonas lionensis sp. nov., a novel bacterium isolated from a Mediterranean Sea sediment

    OpenAIRE

    Gaboyer, Frederic; Vandenabeele-Trambouze, Odile; Cao, Junwei; Ciobanu, Maria-Cristina; Jebbar, Mohamed; Le Romancer, Marc; Alain, Karine

    2014-01-01

    A novel halophilic bacterium, strain RHS90T, was isolated from marine sediments from the Gulf of Lions, in the Mediterranean Sea. Its metabolic and physiological characteristics were examined under various cultural conditions, including exposure to stressful ones (oligotrophy, high pressure and high concentrations of metals). Based on phylogenetic analysis of the 16S rRNA gene, the strain was found to belong to the genus Halomonas in the class Gammaproteobacteria. Its closest relatives are H....

  15. The Potential Biotechnological Applications of the Exopolysaccharide Produced by the Halophilic Bacterium Halomonas almeriensis

    OpenAIRE

    Victoria Béjar; Emilia Quesada; Juan Antonio Mata; Inmaculada Llamas; Hakima Amjres

    2012-01-01

    We have studied the extracellular polysaccharide (EPS) produced by the type strain, M8T, of the halophilic bacterium Halomonas almeriensis, to ascertain whether it might have any biotechnological applications. All the cultural parameters tested influenced both bacterial growth and polysaccharide production. EPS production was mainly growth-associated and under optimum environmental and nutritional conditions M8T excreted about...

  16. Biohydrogen Production by the Thermophilic Bacterium Caldicellulosiruptor saccharolyticus: Current Status and Perspectives

    OpenAIRE

    Kengen, Servé W. M.; Verhaart, Marcel R. A.; John van der Oost; Abraham A. M. Bielen

    2013-01-01

    Caldicellulosiruptor saccharolyticus is one of the most thermophilic cellulolytic organisms known to date. This Gram-positive anaerobic bacterium ferments a broad spectrum of mono-, di- and polysaccharides to mainly acetate, CO2 and hydrogen. With hydrogen yields approaching the theoretical limit for dark fermentation of 4 mol hydrogen per mol hexose, this organism has proven itself to be an excellent candidate for biological hydrogen production. This review provides an overview of the resear...

  17. Copper-induced production of copper-binding supernatant proteins by the marine bacterium Vibrio alginolyticus.

    OpenAIRE

    Harwood-Sears, V; Gordon, A S

    1990-01-01

    Growth of the marine bacterium Vibrio alginolyticus is temporarily inhibited by micromolar levels of copper. During the copper-induced lag phase, supernatant compounds which complex and detoxify copper are produced. In this study two copper-inducible supernatant proteins having molecular masses of ca. 21 and 19 kilodaltons (CuBP1 and CuBP2) were identified; these proteins were, respectively, 25 and 46 times amplified in supernatants of copper-challenged cultures compared with controls. Experi...

  18. Dynamic detection of a single bacterium: nonlinear rotation rate shifts of driven magnetic microsphere stages

    OpenAIRE

    McNaughton, Brandon H.; Agayan, Rodney R.; Kopelman, Raoul

    2006-01-01

    We report on a new technique which was used to detect single Escherichia coli that is based on the changes in the nonlinear rotation of a magnetic microsphere driven by an external magnetic field. The presence of one Escherichia Coli bacterium on the surface of a 2.0 micron magnetic microsphere caused an easily measurable change in the drag of the system and, therefore, in the nonlinear rotation rate. The straight-forward measurement uses standard microscopy techniques and the observed averag...

  19. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  20. Novel Poly[(R)-3-Hydroxybutyratel-producing bacterium isolated from a bolivian hypersaline lake

    OpenAIRE

    Rodríguez Contreras, Alejandra María; Koller, Martin; de Sousa Dias, Miranda; Calafell Monfort, Margarita; Braunegg, Gerhart; Marqués Calvo, M. Soledad

    2013-01-01

    Poly [ ( R )-3-hydroxybutyrate ] (PHB) constitutes a biopolymer synthesized from renew- able resources by various microorganisms. This work focuses on finding a new PHB-produc- ing bacterium capable of growing in conventional media used for industrial biopolymer production, its taxonomical identification, and characterization of its biopolymer. Thus, a bacterial isolation process was carried out from environmental samples of water and mud. Among the isolates, ...

  1. Purification and Characterization of a Feruloyl Esterase from the Intestinal Bacterium Lactobacillus acidophilus

    OpenAIRE

    Wang, Xiaokun; Geng, Xin; Egashira, Yukari; Sanada, Hiroo

    2004-01-01

    Dietary ferulic acid (FA), a significant antioxidant substance, is currently the subject of extensive research. FA in cereals exists mainly as feruloylated sugar ester. To release FA from food matrices, it is necessary to cleave ester cross-linking by feruloyl esterase (FAE) (hydroxycinnamoyl esterase; EC 3.1.1.73). In the present study, the FAE from a human typical intestinal bacterium, Lactobacillus acidophilus, was isolated, purified, and characterized for the first time. The enzyme was pu...

  2. Cadmium resistance and uptake by bacterium, Salmonella enterica 43C, isolated from industrial effluent.

    Science.gov (United States)

    Khan, Zaman; Rehman, Abdul; Hussain, Syed Z; Nisar, Muhammad A; Zulfiqar, Soumble; Shakoori, Abdul R

    2016-12-01

    Cadmium resistant bacterium, isolated from industrial wastewater, was characterized as Salmonella enterica 43C on the basis of biochemical and 16S rRNA ribotyping. It is first ever reported S. enterica 43C bared extreme resistance against heavy metal consortia in order of Pb(2+)>Cd(2+)>As(3+)>Zn(2+)>Cr(6+)>Cu(2+)>Hg(2+). Cd(2+) stress altered growth pattern of the bacterium in time dependent manner. It could remove nearly 57 % Cd(2+) from the medium over a period of 8 days. Kinetic and thermodynamic studies based on various adsorption isotherm models (Langmuir and Freundlich) depicted the Cd(2+) biosorption as spontaneous, feasible and endothermic in nature. Interestingly, the bacterium followed pseudo first order kinetics, making it a good biosorbent for heavy metal ions. The S. enterica 43C Cd(2+) processivity was significantly influenced by temperature, pH, initial Cd(2+) concentration, biomass dosage and co-metal ions. FTIR analysis of the bacterium revealed the active participation of amide and carbonyl moieties in Cd(2+) adsorption confirmed by EDX analysis. Electron micrographs beckoned further surface adsorption and increased bacterial size due to intracellular Cd(2+) accumulation. An overwhelming increase in glutathione and other non-protein thiols levels played a significant role in thriving oxidative stress generated by metal cations. Presence of metallothionein clearly depicted the role of such proteins in bacterial metal resistance mechanism. The present study results clearly declare S. enterica 43C a suitable candidate for green chemistry to bioremediate environmental Cd(2+). PMID:27491862

  3. Studies of the Extracellular Glycocalyx of the Anaerobic Cellulolytic Bacterium Ruminococcus albus 7▿

    OpenAIRE

    Weimer, Paul J.; Price, Neil P. J.; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M.; Van Zyl, Willem H

    2006-01-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied b...

  4. Purification and Characterization of EDTA Monooxygenase from the EDTA-Degrading Bacterium BNC1

    OpenAIRE

    Payne, Jason W.; Bolton, Harvey; Campbell, James A.; XUN, Luying

    1998-01-01

    The synthetic chelating agent EDTA can mobilize radionuclides and heavy metals in the environment. Biodegradation of EDTA should reduce this mobilization. Although several bacteria have been reported to mineralize EDTA, little is known about the biochemistry of EDTA degradation. Understanding the biochemistry will facilitate the removal of EDTA from the environment. EDTA-degrading activities were detected in cell extracts of bacterium BNC1 when flavin mononucleotide (FMN), NADH, and O2 were p...

  5. Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum

    OpenAIRE

    Frauke eGrimm; Bettina eFranz; Christiane eDahl

    2011-01-01

    In the purple sulfur bacterium Allochromatium vinosum, thiosulfate oxidation is strictly dependent on the presence of three periplasmic Sox proteins encoded by the soxBXAK and soxYZ genes. It is also well documented that proteins encoded in the dissimilatory sulfite reductase (dsr) operon, dsrABEFHCMKLJOPNRS, are essential for the oxidation of sulfur that is stored intracellularly as an obligatory intermediate during the oxidation of thiosulfate and sulfide. Until recently, detailed knowledge...

  6. Comprehensive insights into the response of Alexandrium tamarense to algicidal component secreted by a marine bacterium

    OpenAIRE

    Lei, Xueqian; Li, Dong; Li, Yi; Chen, Zhangran; Chen, Yao; Cai, Guanjing; Yang, Xujun; Zheng, Wei; Zheng, Tianling

    2015-01-01

    Harmful algal blooms occur throughout the world, threatening human health, and destroying marine ecosystems. Alexandrium tamarense is a globally distributed and notoriously toxic dinoflagellate that is responsible for most paralytic shellfish poisoning incidents. The culture supernatant of the marine algicidal bacterium BS02 showed potent algicidal effects on A. tamarense ATGD98-006. In this study, we investigated the effects of this supernatant on A. tamarense at physiological and biochemica...

  7. Isolation and characterization of an anaerobic ruminal bacterium capable of degrading hydrolyzable tannins.

    OpenAIRE

    Nelson, K E; A. N. Pell; Schofield, P; Zinder, S

    1995-01-01

    An anaerobic diplococcoid bacterium able to degrade hydrolyzable tannins was isolated from the ruminal fluid of a goat fed desmodium (Desmodium ovalifolium), a tropical legume which contains levels as high as 17% condensed tannins. This strain grew under anaerobic conditions in the presence of up to 30 g of tannic acid per liter and tolerated a range of phenolic monomers, including gallic, ferulic, and p-coumaric acids. The predominant fermentation product from tannic acid breakdown was pyrog...

  8. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    OpenAIRE

    Arora Pankaj; Sharma Ashutosh; Mehta Richa; Shenoy Belle; Srivastava Alok; Singh Vijay

    2012-01-01

    Abstract Background Chloronitrophenols (CNPs) are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP) is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium s...

  9. Coregulation of beta-galactoside uptake and hydrolysis by the hyperthermophilic bacterium Thermotoga neapolitana

    OpenAIRE

    Galperin, MY; Noll, KM; Romano, AH

    1997-01-01

    Regulation of the beta-galactoside transport system in response to growth substrates in the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable analog methyl-beta-D-thiogalactopyranoside (TMG) as the transport substrate. T. neapolitana cells grown on galactose or lactose accumulated TMG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external galactose or lactose and showed induced levels of be...

  10. Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium

    OpenAIRE

    Plugge, C. M.; Balk, M.; Stams, A.J.M.

    2002-01-01

    From granular sludge from a laboratory-scale upflow anaerobic sludge bed reactor operated at 55 degrees C with a mixture of volatile fatty acids as feed, a novel anaerobic, moderately thermophilic, syntrophic, spore-forming bacterium, strain TPO, was enriched on propionate in co-culture with Methanobacterium thermoautotrophicum Z245. The axenic culture was obtained by using pyruvate as the sole source of carbon and energy. The cells were straight rods with pointed ends and became lens-shaped ...

  11. Direct bioconversion of brown algae into ethanol by thermophilic bacterium Defluviitalea phaphyphila

    OpenAIRE

    Ji, Shi-Qi; Wang, Bing; Lu, Ming; Li, Fu-Li

    2016-01-01

    Background Brown algae are promising feedstocks for biofuel production with inherent advantages of no structural lignin, high growth rate, and no competition for land and fresh water. However, it is difficult for one microorganism to convert all components of brown algae with different oxidoreduction potentials to ethanol. Defluviitalea phaphyphila Alg1 is the first characterized thermophilic bacterium capable of direct utilization of brown algae. Results Defluviitalea phaphyphila Alg1 can si...

  12. Fourier transform infrared spectroscopic study of intact cells of the nitrogen-fixing bacterium Azospirillum brasilense

    Science.gov (United States)

    Kamnev, A. A.; Ristić, M.; Antonyuk, L. P.; Chernyshev, A. V.; Ignatov, V. V.

    1997-06-01

    The data of Fourier transform infrared (FTIR) spectroscopic measurements performed on intact cells of the soil nitrogen-fixing bacterium Azospirillum brasilense grown in a standard medium and under the conditions of an increased metal uptake are compared and discussed. The structural FTIR information obtained is considered together with atomic absorption spectrometry (AAS) data on the content of metal cations in the bacterial cells. Some methodological aspects concerning preparation of bacterial cell samples for FTIR measurements are also discussed.

  13. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens

    OpenAIRE

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    Bacillus thuringiensis is the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium Bacillus thuringiensis strain KB1, which exhibits antagonism against phytopathogens.

  14. Genome Sequence of the Endophytic Bacterium Bacillus thuringiensis Strain KB1, a Potential Biocontrol Agent against Phytopathogens.

    Science.gov (United States)

    Jeong, Haeyoung; Jo, Sung Hee; Hong, Chi Eun; Park, Jeong Mee

    2016-01-01

    ITALIC! Bacillus thuringiensisis the most widely known microbial pesticide used in agricultural applications. Herein, we report a draft genome sequence of the endophytic bacterium ITALIC! Bacillus thuringiensisstrain KB1, which exhibits antagonism against phytopathogens. PMID:27103716

  15. Draft Genome Sequence of Paenibacillus polymyxa EBL06, a Plant Growth-Promoting Bacterium Isolated from Wheat Phyllosphere

    OpenAIRE

    Liang, Shengxian; Jin, Decai; Wang, Xinxin; Fan, Haiyan; Bai, Zhihui

    2015-01-01

    Paenibacillus polymyxa strain EBL06 is a plant growth-promoting bacterium with high antifungal activity. The estimated genome of this strain is 5.68 Mb in size and harbors 4,792 coding sequences (CDSs).

  16. Phosphate enhances levan production in the endophytic bacterium Gluconacetobacter diazotrophicus Pal5.

    Science.gov (United States)

    Idogawa, Nao; Amamoto, Ryuta; Murata, Kousaku; Kawai, Shigeyuki

    2014-01-01

    Gluconacetobacter diazotrophicus is a gram-negative and endophytic nitrogen-fixing bacterium that has several beneficial effects in host plants; thus, utilization of this bacterium as a biofertilizer in agriculture may be possible. G. diazotrophicus synthesizes levan, a D-fructofuranosyl polymer with β-(2→6) linkages, as an exopolysaccharide and the synthesized levan improves the stress tolerance of the bacterium. In this study, we found that phosphate enhances levan production by G. diazotrophicus Pal5, a wild type strain that showed a stronger mucous phenotype on solid medium containing 28 mM phosphate than on solid medium containing 7 mM phosphate. A G. diazotrophicus Pal5 levansucrase disruptant showed only a weak mucous phenotype regardless of the phosphate concentration, indicating that the mucous phenotype observed on 28 mM phosphate medium was caused by levan. To our knowledge, this is the first report of the effect of a high concentration of phosphate on exopolysaccharide production. PMID:24717418

  17. Studies on culture condition of new marine bacterium Zooshikella sp. SY01

    Institute of Scientific and Technical Information of China (English)

    Wenjian LAN; Linfeng MO; Chuanghua CAI; Yipin ZHOU; Junhua YAO; Houjin LI

    2008-01-01

    New marine bacterium Zooshikella sp. SY01, producer of prodigiosin, was isolated from the seawaters of Sanya Bay. The culture conditions of this bacterium were investigated. Zooshikella sp. SY01 was cultured in 2216E media which contained tryptophan, histidine, lac-tonic acid, camphor, limonene, casein, diphenyl guani-dine, coumarin and 1,3-dinitrobenzene, respectively. After 5 days cultivation, the extracts of different culture broths were detected by direct infusion mass spectroscopy using positive ESI mode. As the results, tryptophan, his-tidine and casein didn't show any observable influences on the biosynthesis of prodigiosin. Lactonic acid, camphor, limonene, diphenyl guanidine, coumarin could inhibit the bacterium growth and prodigiosin biosynthesis to a cer-tain extent, slower the culture broth to turn red. However, 1, 3-dinitrobenzene inhibited the bacteria to produce pro-digiosin completely. MS data suggested that various metabolites with chemodiversity were produced in differ-ent culture media. In particular, a series of high-molecu-lar-weight compounds with high relative abundances were observed in the medium containing limonene. To further optimize the culture condition, more new prodigiosin ana-logues and lead compounds can be obtained and the goal of "one strain-many compounds" can be achieved.

  18. Programmed cell death in Laminaria japonica (Phaeophyta) tissues infected with alginic acid decomposing bacterium

    Institute of Scientific and Technical Information of China (English)

    WANG Gaoge; LIN Wei; ZHANG Lijing; YAN Xiaojun; DUAN Delin

    2004-01-01

    TdT-mediated dUTP-biotin nick end labeling (TUNEL) is a sensitive and valid method for detecting DNA cleavage in programmed cell death (PCD). Using this method, DNA cleavage was observed in Laminaria japonica sporophytic tissues, which were infected with alginic acid decomposing bacterium. It was found that DNA cleavage occurred 5 min after the infection, the fragments with 3′-OH groups of cleaved nuclear DNA increased with time of infection and spread from the infection site. Although no typical DNA ladder (200 bp/180 bp) was detected by routine agarose gel electrophoresis, the cleavage of nuclear DNA fragments of 97~48.5 kb could be detected by pulsed field gel electrophoresis (PFGE). By using CaspGLOWTM fluorescein active caspase-3 staining method, caspase-3 activity has been detected in response to the infection of alginic acid decomposing bacterium. Our results are similar to the observations in hypersensitive response (HR) of higher plant, suggesting that the rapid cell death of L. Japonica infected by alginic acid decomposing bacterium might be involved in PCD, and indicating that the occurrence of PCD is an active defense process against the pathogen's infection.

  19. Antagonism and Molecular Identification of an Antibiotic Bacterium BS04 Against Phytopathogenic Fungi and Bacteria

    Institute of Scientific and Technical Information of China (English)

    Xie Jing(谢晶); Ge Shaorong; Tao Yong; Gao Ping; Liu Kun; Liu Shigui

    2004-01-01

    Through a modified agar well diffusion assay, antagonism of bacterium BS04 is tested. The data show that BS04 has antibiotic activity against phytopathogenic fungi and bacteria, including Phoma wasabiae Yokogi, Cochlibolus Heterostrophu, Exserohilum Turcicum, Curuvularia Lunata (Walk) Boed, Thantephorus cucumris, Fusarium graminearum, Xanthomonas axonopodis pv. Citri (Hasse) Dye and Xanthomonas zingiberi (Uyeda) Savulescu. The products of bacterium BS04 can endure the treatment of a wide range of pH, and maintain the antibiotic activity after treatment of 100℃ for 30 min. The result suggests that bacterium BS04 has the potential as a promising biocontrol agent. In order to determine the taxonomic placement, the molecular identification of BS04 is performed. The comparative analysis of 16s rDNA sequences indicates that the 16s rDNA sequence of BS04 is highly homologous with sequences of typical Paenibacillus bacteria from the RPD library (from 92% to 99%). And the constructed phylogenetic tree by using maximum-likelihood method with Bootstrap Trial 1000 proves that BS04 is subjected to Paenibacillus polymyxa.

  20. The effect of Pseudoxanthomonas sp. as manganese oxidizing bacterium on the corrosion behavior of carbon steel

    International Nuclear Information System (INIS)

    The present study investigated the role of manganese oxidizing bacterium (MOB), namely Pseudoxanthomonas sp. on the corrosion behavior of carbon steel. This bacterium was isolated from sewage treatment plants and identified by biochemical and molecular methods. The electrochemical techniques such as open circuit potentiometry, electrochemical impedance spectroscopy, potentiodynamic and cyclic polarization were used to measure the corrosion rate and observe the corrosion mechanism. Also, scanning electron microscopy and X-ray diffraction studies were applied to surface analysis. This study revealed the strong adhesion of the biofilm on the metal surface in the presence of Pseudoxanthomonas sp. that enhanced the corrosion of carbon steel. X-ray diffraction patterns identified a high content of MnO2 deposition within these biofilms. This is the first report that discloses the involvement of Pseudoxanthomonas sp. as manganese oxidizing bacteria on the corrosion of carbon steel. - Highlights: ► A new type of manganese oxidizing bacteria, namely Pseudoxanthomonas sp. was indicated. ► This bacterium can create a biofilm on the part of metal surface and affect localized corrosion. ► In the presence of biofilm, the diffusion of oxygen vacancies and manganese ions has occurred.

  1. Chitin Degradation Proteins Produced by the Marine Bacterium Vibrio harveyi Growing on Different Forms of Chitin

    Science.gov (United States)

    Svitil, A. L.; Chadhain, S.; Moore, J. A.; Kirchman, D. L.

    1997-01-01

    Relatively little is known about the number, diversity, and function of chitinases produced by bacteria, even though chitin is one of the most abundant polymers in nature. Because of the importance of chitin, especially in marine environments, we examined chitin-degrading proteins in the marine bacterium Vibrio harveyi. This bacterium had a higher growth rate and more chitinase activity when grown on (beta)-chitin (isolated from squid pen) than on (alpha)-chitin (isolated from snow crab), probably because of the more open structure of (beta)-chitin. When exposed to different types of chitin, V. harveyi excreted several chitin-degrading proteins into the culture media. Some chitinases were present with all of the tested chitins, while others were unique to a particular chitin. We cloned and identified six separate chitinase genes from V. harveyi. These chitinases appear to be unique based on DNA restriction patterns, immunological data, and enzyme activity. This marine bacterium and probably others appear to synthesize separate chitinases for efficient utilization of different forms of chitin and chitin by-products. PMID:16535505

  2. Antimicrobial activity and biosynthesis of nanoparticles by endophytic bacterium inhabiting Coffee arabica L.

    Directory of Open Access Journals (Sweden)

    Syed Baker

    2012-12-01

    Full Text Available The interface between endophytes and nanomaterials is a relatively new and unexplored area the present study evaluates screening of bacterial endophytes from surfaced sterilized leaf and stem segments of agro economical plant Coffee arabica L. towards synthesis of silver nanoparticles and antimicrobial metabolites. Among thirty two endophytes isolated nine isolates exhibited antimicrobial activity among which one bacterium was capable of extracellular synthesis of silver nanoparticles upon evaluation of supernatant with 1 mM of silver nitrate, biosynthesis of silver nanoparticles were assessed by UV-Visible Spectroscopy and the bacterium was capable of secreting antimicrobial secondary metabolites upon crude ethyl acetate extract evaluated for antimicrobial activity against panel of both gram positive and gram negative as well as phytopathogenic fungi. Partial characterization was carried out via bioautographic technique with Rf value 0.3 and 0.6 exhibiting antimicrobial activity against MRSA strain. Further studies in this area will be promising enough for molecular characterization of endophytic bacterium and chemical profiling of antimicrobial metabolites at the same time physiochemical characterization of nanoparticles will be valuable to reveal the size and shape. 

  3. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes. Final Report

    International Nuclear Information System (INIS)

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions

  4. Deinococcus mumbaiensis sp. nov., a radiation-resistant pleomorphic bacterium isolated from Mumbai, India.

    Science.gov (United States)

    Shashidhar, Ravindranath; Bandekar, Jayant R

    2006-01-01

    A radiation-resistant, Gram-negative and pleomorphic bacterium (CON-1) was isolated from a contaminated tryptone glucose yeast extract agar plate in the laboratory. It was red pigmented, nonmotile, nonsporulating, and aerobic, and contained MK-8 as respiratory quinone. The cell wall of this bacterium contained ornithine. The major fatty acids were C16:0, C16:1, C17:0, C18:1 and iso C18:0. The DNA of CON-1 had a G+C content of 70 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that CON-1 exhibited a maximum similarity (94.72%) with Deinococcus grandis. Based on the genotypic, phenotypic and chemotaxonomic characteristics, the bacterium CON-1 was identified as a new species of the genus Deinococcus, for which the name Deinococcus mumbaiensis sp. nov. is proposed. The type strain of D. mumbaiensis is CON-1 (MTCC 7297(T)=DSM 17424(T)). PMID:16445756

  5. Genetic Engineering of a Radiation-Resistant Bacterium for Biodegradation of Mixed Wastes--Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mary E. Lidstrom

    2003-12-26

    Aqueous mixed low level wastes (MLLW) containing radionuclides, solvents, and/or heavy metals represent a serious current and future problem for DOE environmental management and cleanup. In order to provide low-cost treatment alternatives under mild conditions for such contained wastes, we have proposed to use the radiation-resistant bacterium, Deinococcus radiodurans. This project has focused on developing D. radiodurans strains for dual purpose processes: cometabolic treatment of haloorganics and other solvents and removal of heavy metals from waste streams in an above-ground reactor system. The characteristics of effective treatment strains that must be attained are: (a) high biodegradative and metal binding activity; (b) stable treatment characteristics in the absence of selection and in the presence of physiological stress; (c) survival and activity under harsh chemical conditions, including radiation. The result of this project has been a suite of strains with high biodegradative capabilities that are candidates for pilot stage treatment systems. In addition, we have determined how to create conditions to precipitate heavy metals on the surface of the bacterium, as the first step towards creating dual-use treatment strains for contained mixed wastes of importance to the DOE. Finally, we have analyzed stress response in this bacterium, to create the foundation for developing treatment processes that maximize degradation while optimizing survival under high stress conditions.

  6. The Role of Exopolymers in Protection of Ralstonia sp., a Cadmium-resistant Bacterium, from Cadmium Toxicity

    OpenAIRE

    Anchulee Watcharamusik; Benjaphorn Prapagdee

    2008-01-01

    Production of exopolymers is one of heavy metal resistance mechanisms in bacteria. Ralstonia sp. TAK1, a cadmium-resistant bacterium, was isolated from a high cadmium (Cd) contaminated soil at the zinc mine, Tak province, Thailand. The bacterium was cultivated in LB broth and its growth was monitored. The yields of exopolymers were measured by the phenol-sulfuric method at different growth phases. The levels of Cd resistance were quantitatively determined by survival cell assay. The highest a...

  7. Photoproduction of hydrogen by a non-sulphur bacterium isolated from root zones of water fern Azolla pinnata

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.P.; Srivastava, S.C.; Pandey, K.D. (Banaras Hindu Univ., Varanasi (IN). Centre of Advanced Study in Botany)

    1990-01-01

    A photosynthetic bacterium Rhodopseudomonas sp. BHU strain 1 was isolated from the root zone of water fern Azolla pinnata. The bacterium was found to produce hydrogen with potato starch under phototrophic conditions. The immobilized bacterial cells showed sustained hydrogen production with a more than 4-fold difference over free cell suspensions. The data have been discussed in the light of possible utilization of relatively cheaper raw materials by non-sulphur bacteria to evolve hydrogen. (author).

  8. Anaerobic, Nitrate-Dependent Oxidation of U(IV) Oxide Minerals by the Chemolithoautotrophic Bacterium Thiobacillus denitrificans

    Energy Technology Data Exchange (ETDEWEB)

    Beller, H R

    2004-06-25

    Under anaerobic conditions and at circumneutral pH, cells of the widely-distributed, obligate chemolithoautotrophic bacterium Thiobacillus denitrificans oxidatively dissolved synthetic and biogenic U(IV) oxides (uraninite) in nitrate-dependent fashion: U(IV) oxidation required the presence of nitrate and was strongly correlated to nitrate consumption. This is the first report of anaerobic U(IV) oxidation by an autotrophic bacterium.

  9. Pontibacter diazotrophicus sp. nov., a novel nitrogen-fixing bacterium of the family Cytophagaceae.

    Directory of Open Access Journals (Sweden)

    Linghua Xu

    Full Text Available Few diazotrophs have been found to belong to the family Cytophagaceae so far. In the present study, a Gram-negative, rod-shaped bacterium that forms red colonies, was isolated from sands of the Takalamakan desert. It was designated H4XT. Phylogenetic and biochemical analysis indicated that the isolate is a new species of the genus Pontibacter. The 16S rRNA gene of H4XT displays 94.2-96.8% sequence similarities to those of other strains in Pontibacter. The major respiratory quinone is menaquinone-7 (MK-7. The DNA G+C content is 46.6 mol%. The major cellular fatty acids are iso-C15∶0, C16∶1ω5c, summed feature 3 (containing C16∶1ω6c and/or C16∶1ω7c and summed feature 4 (comprising anteiso-C17∶1B and/or iso-C17∶1I. The major polar lipids are phosphatidylethanolamine (PE, one aminophospholipid (APL and some unknown phospholipids (PLs. It is interesting to see that this bacterium can grow very well in a nitrogen-free medium. PCR amplification suggested that the bacterium possesses at least one type of nitrogenase gene. Acetylene reduction assay showed that H4XT actually possesses nitrogen-fixing activity. Therefore, it can be concluded that H4XT is a new diazotroph. We thus referred it to as Pontibacter diazotrophicus sp. nov. The type strain is H4XT ( = CCTCC AB 2013049T = NRRL B-59974T.

  10. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.

    Science.gov (United States)

    Watts, Mathew P; Khijniak, Tatiana V; Boothman, Christopher; Lloyd, Jonathan R

    2015-08-15

    Chromium in its toxic Cr(VI) valence state is a common contaminant particularly associated with alkaline environments. A well-publicized case of this occurred in Glasgow, United Kingdom, where poorly controlled disposal of a cementitious industrial by-product, chromite ore processing residue (COPR), has resulted in extensive contamination by Cr(VI)-contaminated alkaline leachates. In the search for viable bioremediation treatments for Cr(VI), a variety of bacteria that are capable of reduction of the toxic and highly soluble Cr(VI) to the relatively nontoxic and less mobile Cr(III) oxidation state, predominantly under circumneutral pH conditions, have been isolated. Recently, however, alkaliphilic bacteria that have the potential to reduce Cr(VI) under alkaline conditions have been identified. This study focuses on the application of a metal-reducing bacterium to the remediation of alkaline Cr(VI)-contaminated leachates from COPR. This bacterium, belonging to the Halomonas genus, was found to exhibit growth concomitant to Cr(VI) reduction under alkaline conditions (pH 10). Bacterial cells were able to rapidly remove high concentrations of aqueous Cr(VI) (2.5 mM) under anaerobic conditions, up to a starting pH of 11. Cr(VI) reduction rates were controlled by pH, with slower removal observed at pH 11, compared to pH 10, while no removal was observed at pH 12. The reduction of aqueous Cr(VI) resulted in the precipitation of Cr(III) biominerals, which were characterized using transmission electron microscopy and energy-dispersive X-ray analysis (TEM-EDX) and X-ray photoelectron spectroscopy (XPS). The effectiveness of this haloalkaliphilic bacterium for Cr(VI) reduction at high pH suggests potential for its use as an in situ treatment of COPR and other alkaline Cr(VI)-contaminated environments. PMID:26048926

  11. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7.

    Science.gov (United States)

    Weimer, Paul J; Price, Neil P J; Kroukamp, Otini; Joubert, Lydia-Marie; Wolfaardt, Gideon M; Van Zyl, Willem H

    2006-12-01

    Anaerobic cellulolytic bacteria are thought to adhere to cellulose via several mechanisms, including production of a glycocalyx containing extracellular polymeric substances (EPS). As the compositions and structures of these glycocalyces have not been elucidated, variable-pressure scanning electron microscopy (VP-SEM) and chemical analysis were used to characterize the glycocalyx of the ruminal bacterium Ruminococcus albus strain 7. VP-SEM revealed that growth of this strain was accompanied by the formation of thin cellular extensions that allowed the bacterium to adhere to cellulose, followed by formation of a ramifying network that interconnected individual cells to one another and to the unraveling cellulose microfibrils. Extraction of 48-h-old whole-culture pellets (bacterial cells plus glycocalyx [G] plus residual cellulose [C]) with 0.1 N NaOH released carbohydrate and protein in a ratio of 1:5. Boiling of the cellulose fermentation residue in a neutral detergent solution removed almost all of the adherent cells and protein while retaining a residual network of adhering noncellular material. Trifluoroacetic acid hydrolysis of this residue (G plus C) released primarily glucose, along with substantial amounts of xylose and mannose, but only traces of galactose, the most abundant sugar in most characterized bacterial exopolysaccharides. Linkage analysis and characterization by nuclear magnetic resonance suggested that most of the glucosyl units were not present as partially degraded cellulose. Calculations suggested that the energy demand for synthesis of the nonprotein fraction of EPS by this organism represents only a small fraction (<4%) of the anabolic ATP expenditure of the bacterium. PMID:17028224

  12. Adhesive properties of a symbolic bacterium from a wood-boreing marine shipworm

    International Nuclear Information System (INIS)

    Adhesive properties of cellulolytic, nitrogen-fixing bacterium isolated from a marine shipworm are described. 35S-labeled cells of the shipworm bacterium bound preferentially Whatman no.1 cellulose filter paper, compared with its binding to other cellulose substrata or substrata lacking cellulose. The ability of the bacteria to bind to Whatman no. 1 filter paper was significantly reduced by glutaraldehyde or heat treatment of cells. Pretreatment of cells with azide, valinomycin, gramicidin-D, bis-hexafluoroacetylacetone (1799), or carbonyl cyanide-p-trifluoromethoxyphenylhydrazone inhibited adhesion activity. Cells pretreated with pronase or trypsin also exhibited reduced binding activity, but chymotrypsin and peptidase had no effect on adhesion activity. Cellodextrins and methyl cellulose 15 inhibited the adhesion of the shipworm bacteria to filter paper, whereas glucose, cellobiose, and soluble carboxymethyl cellulose had no significant effect. The divalent cation chelators EDTA and EGTA [ethylene hlycol-bis(β-aminoethyl ether)-N,N,N'N'-tetraacetic acid] had little or no effect on adhesive properties of shipworm bacteria. Also, preabsorbing the substratum with extracellular endoglucanase isolated from the ship worm bacterium or 1% bovine serum albumin had no apparent effect on bacterial binding. Low concentration (0.01%) of sodium dodecyl sulfate solubilized a fraction from whole cells, which appeared to be involved in cellular binding activity. After removal of sodium dodecyl, sulfate, several proteins in this fraction associated with intact cells. These cells exhibited up to 50% enhanced binding to filter paper in comparison to cells which had not been exposed to the sodium dodecyl sulfate-solubilized fraction

  13. Biochemical Analyses of Multiple Endoxylanases from the Rumen Bacterium Ruminococcus albus 8 and Their Synergistic Activities with Accessory Hemicellulose-Degrading Enzymes ▿ †

    OpenAIRE

    Moon, Young Hwan; Iakiviak, Michael; Bauer, Stefan; Roderick I. Mackie; Cann, Isaac K. O.

    2011-01-01

    Ruminococcus albus 8 is a ruminal bacterium capable of metabolizing hemicellulose and cellulose, the major components of the plant cell wall. The enzymes that allow this bacterium to capture energy from the two polysaccharides, therefore, have potential application in plant cell wall depolymerization, a process critical to biofuel production. For this purpose, a partial genome sequence of R. albus 8 was generated. The genomic data depicted a bacterium endowed with multiple forms of plant cell...

  14. Leucyl-tRNA synthetase from the ancestral bacterium Aquifex aeolicus contains relics of synthetase evolution

    OpenAIRE

    Zhao, Ming-Wei; Zhu, Bin; Hao, Rui; Xu, Min-Gang; Eriani, Gilbert; Wang, En-Duo

    2005-01-01

    The editing reactions catalyzed by aminoacyl-tRNA synthetases are critical for the faithful protein synthesis by correcting misactivated amino acids and misaminoacylated tRNAs. We report that the isolated editing domain of leucyl-tRNA synthetase from the deep-rooted bacterium Aquifex aeolicus (αβ-LeuRS) catalyzes the hydrolytic editing of both mischarged tRNALeu and minihelixLeu. Within the domain, we have identified a crucial 20-amino-acid peptide that confers editing capacity when transplan...

  15. Microbial coal desulfurization in an airlift bioreactor by sulfur-oxidizing bacterium Thiobacillus ferooxidans

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, H.W.; Chang, Y.K.; Kim, S.D. (Korea Advanced Institute of Science and Technology, Taejon (Republic of Korea). Dept. of Chemical Engineering and BioProcess Engineering Research Center)

    1993-12-01

    Microbial desulfurization of a domestic anthracite coal by using an acidophilic, sulfur-oxidizing bacterium, [ital Thiobacillus ferrooxidans] has been studied in an airlift slurry reactor of 12 L volume. Effects of coal slurry density and CO[sub 2] supplement on microbial pyrite removal have been evaluated. High sulfur removal rates have been obtained even for very high coal slurry densities (up to 70% w/v). About 90-95% of the sulfur in the coal could be removed in 15-20 days. The efficiency of microbial desulfurization was significantly improved with CO[sub 2] enriched air supply for high coal slurry densities. 17 refs., 5 figs.

  16. Biodegradation of bisphenol A and other bisphenols by a gram-negative aerobic bacterium.

    OpenAIRE

    Lobos, J. H.; Leib, T K; Su, T. M.

    1992-01-01

    A novel bacterium designated strain MV1 was isolated from a sludge enrichment taken from the wastewater treatment plant at a plastics manufacturing facility and shown to degrade 2,2-bis(4-hydroxyphenyl)propane (4,4'-isopropylidenediphenol or bisphenol A). Strain MV1 is a gram-negative, aerobic bacillus that grows on bisphenol A as a sole source of carbon and energy. Total carbon analysis for bisphenol A degradation demonstrated that 60% of the carbon was mineralized to CO2, 20% was associated...

  17. Isolation and Characterization of a Sulfate-Reducing Bacterium That Anaerobically Degrades Alkanes

    OpenAIRE

    So, Chi Ming; Young, L. Y.

    1999-01-01

    An alkane-degrading, sulfate-reducing bacterial strain, AK-01, was isolated from an estuarine sediment with a history of chronic petroleum contamination. The bacterium is a short, nonmotile, non-spore-forming, gram-negative rod. It is mesophilic and grows optimally at pH 6.9 to 7.0 and at an NaCl concentration of 1%. Formate, fatty acids (C4 to C16) and hydrogen were readily utilized as electron donors. Sulfate, sulfite, and thiosulfate were used as electron acceptors, but sulfur, nitrite, an...

  18. Aggregation of the rhizospheric bacterium Azospirillum brasilense in response to oxygen

    Science.gov (United States)

    Abdoun, Hamid; McMillan, Mary; Pereg, Lily

    2016-04-01

    Azospirillum brasilense spp. have ecological, scientific and agricultural importance. As model plant growth promoting rhizobacteria they interact with a large variety of plants, including important food and cash crops. Azospirillum strains are known for their production of plant growth hormones that enhance root systems and for their ability to fix nitrogen. Azospirillum cells transform in response to environmental cues. The production of exopolysaccharides and cell aggregation during cellular transformation are important steps in the attachment of Azospirillum to roots. We investigate signals that induce cellular transformation and aggregation in the Azospirillum and report on the importance of oxygen to the process of aggregation in this rhizospheric bacterium.

  19. Bisucaberin B, a Linear Hydroxamate Class Siderophore from the Marine Bacterium Tenacibaculum mesophilum

    Directory of Open Access Journals (Sweden)

    Ryuichi Sakai

    2013-04-01

    Full Text Available A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1 was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2, and was previously described as a bacterial degradation product of desferrioxamine B (4, the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes.

  20. Bisucaberin B, a linear hydroxamate class siderophore from the marine bacterium Tenacibaculum mesophilum.

    Science.gov (United States)

    Fujita, Masaki J; Nakano, Koji; Sakai, Ryuichi

    2013-01-01

    A siderophore, named bisucaberin B, was isolated from Tenacibaculum mesophilum bacteria separated from a marine sponge collected in the Republic of Palau. Using spectroscopic and chemical methods, the structure of bisucaberin B (1) was clearly determined to be a linear dimeric hydroxamate class siderophore. Although compound 1 is an open form of the known macrocyclic dimer bisucaberin (2), and was previously described as a bacterial degradation product of desferrioxamine B (4), the present report is the first description of the de novo biosynthesis of 1. To the best of our knowledge, compound 1 is the first chemically characterized siderophore isolated from a bacterium belonging to the phylum Bacteroidetes. PMID:23549298

  1. Isolation and identification of a novel alginate-degrading bacterium, Ochrobactrum sp.

    Directory of Open Access Journals (Sweden)

    Xiao-wei Zhao

    2008-03-01

    Full Text Available An alginate-degrading bacterium, identified as Ochrobactrum sp. on the basis of 16S rDNA gene sequencing, was isolated from brown algal samples collected from the waters in close vicinity to the Dongtou Isles in the East China Sea. The strain, designated WZUH09-1, is a short rod, gram-negative, obligatory aerobic, grows under the following conditions: 5-40oC, pH 3-9, and 0-2 times of the seawater concentration, and is able to depolymerize alginates with higher enzyme activity than that of others reported so far.

  2. Mutagenesis and reparation processes in the methylotrophic bacterium Pseudomonas methanolica after UV irradiation

    International Nuclear Information System (INIS)

    High resistance of cells of methylotrophic bacterium Pseudomonas methanolica to bactericidal and mutagenous effects of ultraviolet irradiation is shown as well as activity of reparation processes after UV irradiation. The presence of low photoreactivating activity in P. methanolica is shown as well. Observed recovery in innutritious medium and decrease of irradiated cells survival rates under effect of reparation inhibitors (coffeine and acriflavine) testify to activity of excision reparation and, perhaps, recombination branch of postreplicative reparation. No manifestation of inducible reparation system is discovered. It is concluded that increased resistance of P. methanolica cells to bactericidal and mutagenous effects of short-wave ultraviolet radiation is related to activity of exact reparation systems

  3. Aerobic Reduction of Arsenate by a Bacterium Isolated From Activated Sludge

    Science.gov (United States)

    Kozai, N.; Ohnuki, T.; Hanada, S.; Nakamura, K.; Francis, A. J.

    2006-12-01

    Microlunatus phosphovorus strain NM-1 is a polyphosphate-accumulating bacterium isolated from activated sludge. This bacterium takes up a large amount of polyphosphate under aerobic conditions and release phosphate ions by hydrolysis of polyphosphate to orthophosphate under anaerobic conditions to derive energy for taking up substrates. To understand the nature of this strain, especially, influence of potential contaminants in sewage and wastewater on growth, we have been investigating behavior of this bacterium in media containing arsenic. The present paper mainly reports reduction of arsenate by this bacterium under aerobic conditions. The strain NM-1 (JCM 9379) was aerobically cultured at 30 °C in a nutrient medium containing 2.5 g/l peptone, 0.5 g/l glucose, 1.5 g/l yeast extract, and arsenic [Na2HAsO4 (As(V)) or Na3AsO3 (As(III))] at concentrations between 0 and 50 mM. The cells collected from arsenic-free media were dispersed in buffer solutions containing 2mM HEPES, 10mM NaCl, prescribed concentrations of As(V), and 0-0.2 percent glucose. Then, this cell suspension was kept at 20 °C under aerobic or anaerobic conditions. The speciation of arsenic was carried out by ion chromatography and ICP-MS. The growth of the strain under aerobic conditions was enhanced by the addition of As(V) at the concentration between 1 and 10 mM. The maximum optical density of the culture in the medium containing 5mM As(V) was 1.4 times greater than that of the control culture. Below the As(V) concentration of 10mM, most of the As(V) was reduced to As(III). The growth of the strain under anaerobic conditions has not been observed so far. The cells in the buffer solutions reduced As(V) under aerobic condition. The reduction was enhanced by the addition of glucose. However, the cell did not reduce As(V) under anaerobic conditions. The strain NM-1 showed high resistance to As(V) and As(III). The maximum optical density of the culture grown in a medium containing 50 mM As(V) was only

  4. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    OpenAIRE

    Khanit Suwanborirux; Anuchit Plubrukarn; Kornkanok Ingkaninan; Akkharawit Kanjana-opas; Supreeya Yuenyongsawad; Oraphan Sakulkeo; Yutthapong Sangnoi

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 mM). Two related pyrrole derivatives, 3-(2'-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 froma natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifac...

  5. Acetylcholinesterase-Inhibiting Activity of Pyrrole Derivatives from a Novel Marine Gliding Bacterium, Rapidithrix thailandica

    OpenAIRE

    Sangnoi, Yutthapong; Sakulkeo, Oraphan; Yuenyongsawad, Supreeya; Kanjana-opas, Akkharawit; Ingkaninan, Kornkanok; Plubrukarn, Anuchit; Suwanborirux, Khanit

    2008-01-01

    Acetylcholinesterase-inhibiting activity of marinoquinoline A (1), a new pyrroloquinoline from a novel species of a marine gliding bacterium Rapidithrix thailandica, was assessed (IC50 4.9 μM). Two related pyrrole derivatives, 3-(2′-aminophenyl)-pyrrole (3) and 2,2-dimethyl-pyrrolo-1,2-dihydroquinoline (4), were also isolated from two other strains of R. thailandica. The isolation of 3 from a natural source is reported here for the first time. Compound 4 was proposed to be an isolation artifa...

  6. Complete genome sequence of Pseudomonas azotoformans S4, a potential biocontrol bacterium.

    Science.gov (United States)

    Fang, Yang; Wu, Lijuan; Chen, Guoqing; Feng, Guozhong

    2016-06-10

    Pseudomonas azotoformans is a Gram-negative bacterium and infects cereal grains, especially rice. P. azotoformans S4 from soil sample derived from Lijiang, Yunnan Province, China, appeared to be strong inhibitory activity against Fusarium fujikurio, a serious rice fungal pathogen. Here, we present the complete genome of P. azotoformans S4, which consists of 6,859,618bp with a circle chromosome, 5991 coding DNA sequences, 70 tRNA and 19 rRNA. The genomic analysis revealed that 9 candidate gene clusters are involved in the biosynthesis of secondary metabolites. PMID:27080451

  7. Genome sequence of the marine bacterium Corynebacterium maris type strain Coryn-1T (= DSM 45190T)

    OpenAIRE

    Schaffert, Lena; Albersmeier, Andreas; Bednarz, Hanna; Niehaus, Karsten; Kalinowski, Jörn; Rückert, Christian

    2013-01-01

    Corynebacterium maris Coryn-1T Ben-Dov et al. 2009 is a member of the genus Corynebacterium which contains Gram-positive, non-spore forming bacteria with a high G+C content. C. maris was isolated from the mucus of the Scleractinian coral Fungia granulosa and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium Corynebacterium halotolerans . As this is a type strain in a subgroup of Corynebacterium without com...

  8. A bacterium that can grow by using arsenic instead of phosphorus

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2010-11-01

    Life is mostly composed of the elements carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus. Although these six elements make up nucleic acids, proteins and lipids and thus the bulk of living matter, it is theoretically possible that some other elements in the periodic table could serve the same functions. Here we describe a bacterium, strain GFAJ-1 of the Halomonadaceae, isolated from Mono Lake, CA, which substitutes arsenic for phosphorus to sustain its growth. Our data show evidence for arsenate in macromolecules that normally contain phosphate, most notably nucleic acids and proteins. Exchange of one of the major bio-elements may have profound evolutionary and geochemical significance.

  9. Characterization of Two New Glycosyl Hydrolases from the Lactic Acid Bacterium Carnobacterium piscicola Strain BA

    OpenAIRE

    Coombs, Jonna; Brenchley, Jean E.

    2001-01-01

    Three genes with homology to glycosyl hydrolases were detected on a DNA fragment cloned from a psychrophilic lactic acid bacterium isolate, Carnobacterium piscicola strain BA. A 2.2-kb region corresponding to an α-galactosidase gene, agaA, was followed by two genes in the same orientation, bgaB, encoding a 2-kb β-galactosidase, and bgaC, encoding a structurally distinct 1.76-kb β-galactosidase. This gene arrangement had not been observed in other lactic acid bacteria, including Lactococcus la...

  10. Role for Vitamin B12 in Light Induction of Gene Expression in the Bacterium Myxococcus xanthus

    OpenAIRE

    Cervantes, María; Murillo, Francisco J.

    2002-01-01

    A light-inducible promoter (PB) drives the carB operon (carotenoid genes) of the bacterium Myxococcus xanthus. A gene encoding a regulator of carotenoid biosynthesis was identified by studying mutant strains carrying a transcriptional fusion to PB and deletions in three candidate genes. Our results prove that the identified gene, named carA, codes for a repressor of the PB promoter in the dark. They also show that the carA gene product does not participate in the light activation of two other...

  11. Halomonas olivaria sp nov., a moderately halophilic bacterium isolated from olive-processing effluents

    OpenAIRE

    Amouric, A.; Liebgott, Pierre-Pol; Joseph, Manon; Brochier-Armanet, C; LORQUIN, Jean

    2014-01-01

    A moderately halophilic, Gram-stain-negative, non-sporulating bacterium designed as strain TYRC17(T) was isolated from olive-processing effluents. The organism was a straight rod, motile by means of peritrichous flagella and able to respire both oxygen and nitrate. Growth occurred with 0-25 % (w/v) NaCl (optimum, 7%), at pH 5-11 (optimum, pH 7.0) and at 4-50 degrees C (optimally at 35 degrees C). It accumulated poly-beta-hydroxyalkanoate granules and produced exopolysaccharides. The predomina...

  12. Sequencing and Characterization of the xyl Operon of a Gram-Positive Bacterium, Tetragenococcus halophila

    OpenAIRE

    TAKEDA, YASUO; Takase, Kazuma; Yamato, Ichiro; Abe, Keietsu

    1998-01-01

    The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive ...

  13. Mageeibacillus indolicus gen. nov., sp. nov: A novel bacterium isolated from the female genital tract

    OpenAIRE

    Austin, Michele N.; Rabe, Lorna K.; Srinivasan, Sujatha; Fredricks, David N.; Wiesenfeld, Harold C.; Hillier, Sharon L.

    2014-01-01

    Three isolates of a bacterium recovered from human endometrium using conventional culture methods were characterized biochemically and subjected to 16S rRNA gene sequencing and phylogenetic analysis. Isolates were non-motile, obligately anaerobic, non-spore forming, asaccharolytic, non-cellulolytic, indole positive, Gram positive rods. Cell wall fatty acid profiling revealed C14:0, C16:0, C18:2 ω6, 9c, C18:1 ω9c and C18:0 to be the major fatty acid composition. The DNA mol % G+C was determine...

  14. Ercella succinigenes gen. nov., sp. nov., ananaerobic succinate-producing bacterium

    OpenAIRE

    Van Gelder, A.H.; Sousa, D.Z.; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A. J. M.; Sánchez-Andrea, I.

    2014-01-01

    A novel anaerobic succinate-producing bacterium, strain ZWBT, was isolated from sludge collected from a biogas desulfurization bioreactor (Eerbeek, The Netherlands). Cells were non-spore forming, motile, slightly curved rods (0.4 to 0.5 µm in diameter and 2 to 3 µm in length), and stained Gram-negative. The temperature range for growth was 25 to 40°C, with an optimum at 37°C. The pH range for growth was 7.0 to 9.0, with an optimum at pH 7.5. Strain ZWBT ferments glycerol and several carbohydr...

  15. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  16. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; Gelder, van, M.; Rijpstra, I.; Sinninghe-Damsté, J.S.; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually a...

  17. Pseudomonas chloritidismutans sp. nov., a non-denitrifying chlorate-reducing bacterium

    OpenAIRE

    Wolterink, A.F.W.M.; Jonker, A.B.; Kengen, S.W.M.; Stams, A.J.M.

    2002-01-01

    A Gram-negative, facultatively anaerobic, rod-shaped, dissimilatory chlorate-reducing bacterium, strain AW-1(T), was isolated from biomass of an anaerobic chlorate-reducing bioreactor. Phylogenetic analysis of the 16S rDNA sequence showed 100␜equence similarity to Pseudomonas stutzeri DSM 50227 and 98.6␜equence similarity to the type strain of P. stutzeri (DSM 5190(T)). The species P. stutzeri possesses a high degree of genotypic and phenotypic heterogeneity. Therefore, eight genomic groups, ...

  18. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage

    OpenAIRE

    Balk, M.; Mehboob, F.; van Gelder, T; Rijpstra, W.I.C.; J. S. Sinninghe Damsté; Stams, A.J.M.

    2010-01-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5–0.8 μm in diameter, and 2–8 μm in length, growing as single cells or in pairs. The cells grew optimally at 37°C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H2/CO2 to acetate, usually as the only product. ...

  19. Genome Sequence of the Boron-Tolerant and -Requiring Bacterium Bacillus boroniphilus

    OpenAIRE

    ÇÖL, Bekir; Özkeserli, Zeynep; Kumar, Dibyendu; ÖZDAĞ, Hilal; Alakoç, Yeşim D.

    2014-01-01

    Bacillus boroniphilus is a highly boron-tolerant bacterium that also requires this element for its growth. The complete genome sequence of B. boroniphilus was determined by a combination of shotgun sequencing and paired-end sequencing using 454 pyrosequencing technology. A total of 84,872,624 reads from shotgun sequencing and a total of 194,092,510 reads from paired-end sequencing were assembled using Newbler 2.3. The estimated size of the draft genome is 5.2 Mb.

  20. Clostridium peptidivorans sp. nov., a peptide-fermenting bacterium from an olive mill wastewater treatment digester

    OpenAIRE

    Mechichi, T.; Fardeau, Marie-Laure; Labat, Marc; Garcia, Jean-Louis; Verhé, F.; Patel, B.K.C.

    2000-01-01

    A new peptid-degrading, strictly anaerobic bacterium, designated strain TMC4T, was isolated from an olive mill wastewater treatment digester. Cells of strain TMC4T were motile, rod-shaped (5-10 x 0.6-1.2 microns), stained Gram-positive and formed terminal to subterminal spores that distended the cells. Optimal growth occurred at 37°C and pH 7 in an anaerobic basal medium containing 0.5% Casamino acids. Arginine, lysine, cysteine, methionine, histidine, serine, isoleucine, yeast extract, pepto...

  1. p-cresol methylhydroxylase from a denitrifying bacterium involved in anaerobic degradation of p-cresol.

    OpenAIRE

    Hopper, D. J.; Bossert, I D; Rhodes-Roberts, M E

    1991-01-01

    A bacterium, strain PC-07, previously isolated as part of a coculture capable of growing on p-cresol under anaerobic conditions with nitrate as the acceptor was identified as an Achromobacter sp. The first enzyme of the pathway, p-cresol methylhydroxylase, which converts its substrate into p-hydroxybenzyl alcohol, was purified. The enzyme had an Mr of 130,000 and the spectrum of a flavocytochrome. It was composed of flavoprotein subunits of Mr 54,000 and cytochrome subunits of Mr 12,500. The ...

  2. Response to Comments on "A Bacterium That Can Grow Using Arsenic Instead of Phosphorus"

    Energy Technology Data Exchange (ETDEWEB)

    Wolfe-Simon, F; Blum, J S; Kulp, T R; Gordon, G W; Hoeft, S E; Pett-Ridge, J; Stolz, J F; Webb, S M; Weber, P K; Davies, P W; Anbar, A D; Oremland, R S

    2011-03-07

    Concerns have been raised about our recent study describing a bacterium that can grow using arsenic (As) instead of phosphorus (P). Our data suggested that As could act as a substitute for P in major biomolecules in this organism. Although the issues raised are of investigative interest, we contend that they do not invalidate our conclusions. We argue that while no single line of evidence we presented was sufficient to support our interpretation of the data, taken as an entire dataset we find no plausible alternative to our conclusions. Here we reply to the critiques and provide additional arguments supporting the assessment of the data we reported.

  3. Coarse grained simulation reveals antifreeze properties of hyperactive antifreeze protein from Antarctic bacterium Colwellia sp.

    Science.gov (United States)

    Nguyen, Hung; Van, Thanh Dac; Le, Ly

    2015-10-01

    The novel hyperactive antifreeze protein (AFP) of Antarctic sea ice bacterium Colwellia sp. provides a target for studying the protection of psychrophilic microgoranisms against freezing environment. Interestingly, the Colwellia sp. hyperactive antifreeze protein (ColAFP) was crystallized without the structural dynamic characteristics. Here, the result indicated, through coarse grained simulation of ColAFP under various subfreezing temperature, that ColAFP remains active at temperature of equal and greater than 275 K (∼2 °C). Extensive simulation analyses also revealed the adaptive mechanism of ColAFP in subfreezing environment. Our result provides a structural dynamic understanding of the ColAFP.

  4. Penetration of the Coral-Bleaching Bacterium Vibrio shiloi into Oculina patagonica

    OpenAIRE

    Banin, E.; Israely, T.; Kushmaro, A.; Y. Loya; Orr, E; Rosenberg, E

    2000-01-01

    Inoculation of the coral-bleaching bacterium Vibrio shiloi into seawater containing its host Oculina patagonica led to adhesion of the bacteria to the coral surface via a β-d-galactose receptor, followed by penetration of the bacteria into the coral tissue. The internalized V. shiloi cells were observed inside the exodermal layer of the coral by electron microscopy and fluorescence microscopy using specific anti-V. shiloi antibodies to stain the intracellular bacteria. At 29°C, 80% of the bac...

  5. Complete Genome Sequence of the Filamentous Anoxygenic Phototrophic Bacterium Chloroflexus aurantiacus

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Kuo-Hsiang [Washington University, St. Louis; Barry, Kerrie [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Han, Cliff [Los Alamos National Laboratory (LANL); Hauser, Loren John [ORNL; Honchak, Barbara M [Washington University, St. Louis; Karbach, Lauren E [Washington University, St. Louis; Land, Miriam L [ORNL; Lapidus, Alla L. [Joint Genome Institute, Walnut Creek, California; Larimer, Frank W [ORNL; Mikhailova, Natalia [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [Joint Genome Institute, Walnut Creek, California; Pierson, Beverly K [University of Puget Sound, Tacoma, WA

    2011-01-01

    Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP) bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria.

  6. Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium

    OpenAIRE

    Singh, Rahul; Grigg, Jason C.; Qin, Wei; Kadla, John F.; Murphy, Michael E. P.; Eltis, Lindsay D.

    2013-01-01

    DypB, a dye-decolorizing peroxidase from the lignolytic soil bacterium Rhodococcus jostii RHA1, catalyzes the peroxide-dependent oxidation of divalent manganese (Mn2+), albeit less efficiently than fungal manganese peroxidases. Substitution of Asn246, a distal heme residue, with alanine, increased the enzyme’s apparent kcat and kcat/Km values for Mn2+ by 80- and 15-fold, respectively. A 2.2 Å resolution X-ray crystal structure of the N246A variant revealed the Mn2+ to be bound within a pocket...

  7. Inflammasomes Coordinate Pyroptosis and Natural Killer Cell Cytotoxicity to Clear Infection by a Ubiquitous Environmental Bacterium.

    Science.gov (United States)

    Maltez, Vivien I; Tubbs, Alan L; Cook, Kevin D; Aachoui, Youssef; Falcone, E Liana; Holland, Steven M; Whitmire, Jason K; Miao, Edward A

    2015-11-17

    Defective neutrophils in patients with chronic granulomatous disease (CGD) cause susceptibility to extracellular and intracellular infections. Microbes must first be ejected from intracellular niches to expose them to neutrophil attack, so we hypothesized that inflammasomes detect certain CGD pathogens upstream of neutrophil killing. Here, we identified one such ubiquitous environmental bacterium, Chromobacterium violaceum, whose extreme virulence was fully counteracted by the NLRC4 inflammasome. Caspase-1 protected via two parallel pathways that eliminated intracellular replication niches. Pyroptosis was the primary bacterial clearance mechanism in the spleen, but both pyroptosis and interleukin-18 (IL-18)-driven natural killer (NK) cell responses were required for liver defense. NK cells cleared hepatocyte replication niches via perforin-dependent cytotoxicity, whereas interferon-γ was not required. These insights suggested a therapeutic approach: exogenous IL-18 restored perforin-dependent cytotoxicity during infection by the inflammasome-evasive bacterium Listeria monocytogenes. Therefore, inflammasomes can trigger complementary programmed cell death mechanisms, directing sterilizing immunity against intracellular bacterial pathogens. PMID:26572063

  8. Hyperthermostable and oxygen resistant hydrogenases from a hyperthermophilic bacterium Aquifex aeolicus: Physicochemical properties

    Energy Technology Data Exchange (ETDEWEB)

    Guiral, Marianne; Tron, Pascale; Belle, Valerie; Aubert, Corinne; Leger, Christophe; Guigliarelli, Bruno; Giudici-Orticoni, Marie-Therese [Laboratoire de Bioenergetique et Ingenierie des Proteines (BIP) IBSM, CNRS, 31 Chemin Joseph Aiguier, 13402 Marseille cedex 20 (France)

    2006-09-15

    The discovery of hydrogenases in hyperthermophiles has important ramifications not only in microbial physiology and evolution but also in biotechnologies. These organisms are the source of extremely stable enzymes (regarding temperature, pressure, and O{sub 2}). Aquifex aeolicus is a microaerophilic, hyperthermophilic bacterium containing three [NiFe] hydrogenases. It is the most hyperthermophilic bacterium known to date and grows at 85{sup o}C under a H{sub 2}/CO{sub 2}/O{sub 2} atmosphere. The Aquificales represent the earliest branching order of the bacterial domain indicating that they are the most ancient bacteria. Two Aquifex hydrogenases (one membrane-bound and one soluble) have been purified and characterized. In contrast to the majority of the [NiFe] hydrogenases, the hydrogenases from A. aeolicus are rather tolerant to oxygen. The molecular basis of the oxygen resistance of Aquifex hydrogenases has been investigated. The great stability of Aquifex hydrogenases with respect to oxygen and high temperatures make these enzymes good candidates for biotechnological uses. (author)

  9. Enrichment and physiological characterization of a novel Nitrospira-like bacterium obtained from a marine sponge.

    Science.gov (United States)

    Off, Sandra; Alawi, Mashal; Spieck, Eva

    2010-07-01

    Members of the nitrite-oxidizing genus Nitrospira are most likely responsible for the second step of nitrification, the conversion of nitrite (NO(2)(-)) to nitrate (NO(3)(-)), within various sponges. We succeeded in obtaining an enrichment culture of Nitrospira derived from the mesohyl of the marine sponge Aplysina aerophoba using a traditional cultivation approach. Electron microscopy gave first evidence of the shape and ultrastructure of this novel marine Nitrospira-like bacterium (culture Aa01). We characterized these bacteria physiologically with regard to optimal incubation conditions, especially the temperature and substrate range in comparison to other Nitrospira cultures. Best growth was obtained at temperatures between 28 degrees C and 30 degrees C in mineral medium with 70% North Sea water and a substrate concentration of 0.5 mM nitrite under microaerophilic conditions. The Nitrospira culture Aa01 is very sensitive against nitrite, because concentrations higher than 1.5 mM resulted in a complete inhibition of growth. Sequence analyses of the 16S rRNA gene revealed that the novel Nitrospira-like bacterium is separated from the sponge-specific subcluster and falls together with an environmental clone from Mediterranean sediments (98.6% similarity). The next taxonomically described species Nitrospira marina is only distantly related, with 94.6% sequence similarity, and therefore the culture Aa01 represents a novel species of nitrite-oxidizing bacteria. PMID:20511427

  10. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    KAUST Repository

    Balk, Melike

    2010-08-03

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts.

  11. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Science.gov (United States)

    Zhang, Junjie; Zou, Wenzheng; Yan, Qingpi

    2008-08-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  12. Evaluation of nitrate removal by continuous culturing of an aerobic denitrifying bacterium, Paracoccus pantotrophus.

    Science.gov (United States)

    Hasegawa-Kurisu, K; Otani, Y; Hanaki, K

    2006-01-01

    Nitrate removal under aerobic conditions was investigated using pure cultures of Paracoccus pantotrophus, which is a well-known aerobic-denitrifying (AD) bacterium. When a high concentration of cultures with a high carbon/nitrogen (C/N) ratio was preserved at the beginning of batch experiments, subsequently added nitrate was completely removed. When continuous culturing was perpetuated, a high nitrate removal rate (66.5%) was observed on day 4 post-culture, although gradual decreases in AD ability with time were observed. The attenuation in AD ability was probably caused by carbon limitation, because when carbon concentration of inflow water was doubled, nitrate removal efficiency improved from 18.1% to 59.6%. Bacterial community analysis using the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) method showed that P. pantotrophus disappeared in the suspended medium on day 8 post-culture, whereas other bacterial communities dominated by Acidovorax sp. appeared. Interestingly, this replaced bacterial community also showed AD ability. As P. pantotrophus was detected as attached colonies around the membrane and bottom of the reactor, this bacterium can therefore be introduced in a fixed form for treatment of wastewater containing nitrate with a high C/N ratio. PMID:17163031

  13. Non-specific immune response of bullfrog Rana catesbeiana to intraperitoneal injection of bacterium Aeromonas hydrophila

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Non-specific immune response of bullfrog Rana catesbeiana to pathogenic Aeromonas hydrophila was studied to 60 individuals in two groups. Each bullfrog in bacterium-injected group was injected intraperitoneally (i.p.) with 0.2 ml bacterial suspension at a density of 5.2 × 106 CFU/ml, while each one in control group injected i.p. with 0.2 ml sterile saline solution (0.85%, w/v). Three bullfrogs in both groups were sampled at 0, 1, 3, 7, 11, 15 and 20 days post-injection (dpi) for the evaluation of non-specific immune parameters. It was observed that intraperitoneal injection of A. hydrophila significantly increased the number of leucocytes and that of NBT-positive cells in peripheral blood. Significant increases in serum bactericidal activity and serum acid phosphatase activity were also observed in the bacterium-injected frogs when compared with those in the control group. However, a significant reduction was detected in vitro in phagocytosis activity of peripheral blood phagocytes. No significant difference in changes in the number of peripheral erythrocytes, serum superoxide dismutase (SOD) activity, and lysozyme activity was detected between the two groups. It is suggested that bullfrogs may produce a series of non-specific immune reactions in response to the A. hydrophila infection.

  14. Biogenesis of antibacterial silver nanoparticles using the endophytic bacterium Bacillus cereus isolated from Garcinia xanthochymus

    Institute of Scientific and Technical Information of China (English)

    Swetha Sunkar; C Valli Nachiyar

    2012-01-01

    Objective:To synthesize the ecofriendly nanoparticles, which is viewed as an alternative to the chemical method which initiated the use of microbes like bacteria and fungi in their synthesis. Methods: The current study uses the endophytic bacterium Bacillus cereus isolated from the Garcinia xanthochymus to synthesize the silver nanoparticles (AgNPs). The AgNPs were synthesized by reduction of silver nitrate solution by the endophytic bacterium after incubation for 3-5 d at room temperature. The synthesis was initially observed by colour change from pale white to brown which was confirmed by UV-Vis spectroscopy. The AgNPs were further characterized using FTIR, SEM-EDX and TEM analyses. Results:The synthesized nanoparticles were found to be spherical with the size in the range of 20-40 nm which showed a slight aggregation. The energy-dispersive spectra of the nanoparticle dispersion confirmed the presence of elemental silver. The AgNPs were found to have antibacterial activity against a few pathogenic bacteria like Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella typhi and Klebsiella pneumoniae. Conclusions:The endophytic bacteria identified as Bacillus cereus was able to synthesize silver nanoparticles with potential antibacterial activity.

  15. Production and characterization of bioemulsifier from a marine bacterium, Acinetobacter calcoaceticus subsp. anitratus SM7

    Directory of Open Access Journals (Sweden)

    Kulnaree Phetrong

    2008-05-01

    Full Text Available Marine bacterium strain SM7 was isolated as a bioemulsifier-producing bacterium from oil-spilled seawater in Songkhla lagoon, Thailand. It was identified as Acinetobacter calcoaceticus subsp. anitratus based on morphology, biochemicalcharacteristics and 16S rRNA sequence. A. calcoaceticus subsp. anitratus SM7 produced an extracellular emulsifying agent when grown in a minimal salt medium (pH 7.0 containing 0.3% (v/v n-heptadecane and 0.1% (w/v ammoniumhydrogen carbonate as carbon source and nitrogen source, respectively, at 30oC with agitation rate of 200 rpm. Crude bioemulsifier was recovered from the culture supernatant by ethanol precipitation with a yield of 2.94 g/l and had a criticalemulsifier concentration of 0.04 g/ml. The crude bioemulsifier was capable of emulsifying n-hexadecane in a broad pH range (6-12, temperatures (30-121oC and in the presence of NaCl up to 12% (w/v. The bioemulsifier was stable in saltsolution ranging from 0 to 0.1% (w/v of MgCl2 and CaCl2. The broad range of pH stability, thermostability and salt tolerance suggested that the bioemulsifier from A. calcoaceticus subsp. anitratus SM7 could be useful in environmentalapplication, especially bioremediation of oil-polluted seawater.

  16. Microfabrication of patterns of adherent marine bacterium Phaeobacter inhibens using soft lithography and scanning probe lithography.

    Science.gov (United States)

    Zhao, Chuan; Burchardt, Malte; Brinkhoff, Thorsten; Beardsley, Christine; Simon, Meinhard; Wittstock, Gunther

    2010-06-01

    Two lithographic approaches have been explored for the microfabrication of cellular patterns based on the attachment of marine bacterium Phaeobacter inhibens strain T5. Strain T5 produces a new antibiotic that makes this bacterium potentially interesting for the pharmaceutical market and as a probiotic organism in aquacultures and in controlling biofouling. The microcontact printing (microCP) method is based on the micropatterning of self-assembled monolayers (SAMs) terminated with adhesive end groups such as CH(3) and COOH and nonadhesive groups (e.g., short oligomers of ethylene glycol (OEG)) to form micropatterned substrates for the adhesion of strain T5. The scanning probe lithographic method is based on the surface modification of OEG SAM by using a microelectrode, the probe of a scanning electrochemical microscope (SECM). Oxidizing agents (e.g., Br(2)) were electrogenerated in situ at the microelectrodes from Br(-) in aqueous solution to remove OEG SAMs locally, which allows the subsequent adsorption of bacteria. Various micropatterns of bacteria could be formed in situ on the substrate without a prefabricated template. The fabricated cellular patterns may be applied to a variety of marine biological studies that require the analysis of biofilm formation, cell-cell and cell-surface interactions, and cell-based biosensors and bioelectronics. PMID:20397716

  17. INDISIM-Paracoccus, an individual-based and thermodynamic model for a denitrifying bacterium.

    Science.gov (United States)

    Araujo Granda, Pablo; Gras, Anna; Ginovart, Marta; Moulton, Vincent

    2016-08-21

    We have developed an individual-based model for denitrifying bacteria. The model, called INDISIM-Paracoccus, embeds a thermodynamic model for bacterial yield prediction inside the individual-based model INDISIM, and is designed to simulate the bacterial cell population behavior and the product dynamics within the culture. The INDISIM-Paracoccus model assumes a culture medium containing succinate as a carbon source, ammonium as a nitrogen source and various electron acceptors such as oxygen, nitrate, nitrite, nitric oxide and nitrous oxide to simulate in continuous or batch culture the different nutrient-dependent cell growth kinetics of the bacterium Paracoccus denitrificans. The individuals in the model represent microbes and the individual-based model INDISIM gives the behavior-rules that they use for their nutrient uptake and reproduction cycle. Three previously described metabolic pathways for P. denitrificans were selected and translated into balanced chemical equations using a thermodynamic model. These stoichiometric reactions are an intracellular model for the individual behavior-rules for metabolic maintenance and biomass synthesis and result in the release of different nitrogen oxides to the medium. The model was implemented using the NetLogo platform and it provides an interactive tool to investigate the different steps of denitrification carried out by a denitrifying bacterium. The simulator can be obtained from the authors on request. PMID:27179457

  18. Data supporting functional diversity of the marine bacterium Cobetia amphilecti KMM 296.

    Science.gov (United States)

    Balabanova, Larissa; Nedashkovskaya, Olga; Podvolotskaya, Anna; Slepchenko, Lubov; Golotin, Vasily; Belik, Alexey; Shevchenko, Ludmila; Son, Oksana; Rasskazov, Valery

    2016-09-01

    Data is presented in support of functionality of hyper-diverse protein families encoded by the Cobetia amphilecti KMM 296 (formerly Cobetia marina KMM 296) genome ("The genome of the marine bacterium Cobetia marina KMM 296 isolated from the mussel Crenomytilus grayanus (Dunker, 1853)" [1]) providing its nutritional versatility, adaptability and biocontrol that could be the basis of the marine bacterium evolutionary and application potential. Presented data include the information of growth and biofilm-forming properties of the food-associated isolates of Pseudomonas, Bacillus, Listeria, Salmonella and Staphylococcus under the conditions of their co-culturing with C. amphilecti KMM 296 to confirm its high inter-species communication and anti-microbial activity. Also included are the experiments on the crude petroleum consumption by C. amphilecti KMM 296 as the sole source of carbon in the presence of sulfate or nitrate to ensure its bioremediation capacity. The multifunctional C. amphilecti KMM 296 genome is a promising source for the beneficial psychrophilic enzymes and essential secondary metabolites. PMID:27508225

  19. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans

    Directory of Open Access Journals (Sweden)

    Amable J. Rivas

    2013-09-01

    Full Text Available Photobacterium damselae subsp. damselae (formerly Vibrio damsela is a pathogen of a variety of marine animals including fish, crustaceans, molluscs and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of P. damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts.

  20. Photobacterium damselae subsp. damselae, a bacterium pathogenic for marine animals and humans.

    Science.gov (United States)

    Rivas, Amable J; Lemos, Manuel L; Osorio, Carlos R

    2013-01-01

    Photobacterium damselae subsp. damselae (formerly Vibrio damsela) is a pathogen of a variety of marine animals including fish, crustaceans, molluscs, and cetaceans. In humans, it can cause opportunistic infections that may evolve into necrotizing fasciitis with fatal outcome. Although the genetic basis of virulence in this bacterium is not completely elucidated, recent findings demonstrate that the phospholipase-D Dly (damselysin) and the pore-forming toxins HlyApl and HlyAch play a main role in virulence for homeotherms and poikilotherms. The acquisition of the virulence plasmid pPHDD1 that encodes Dly and HlyApl has likely constituted a main driving force in the evolution of a highly hemolytic lineage within the subspecies. Interestingly, strains that naturally lack pPHDD1 show a strong pathogenic potential for a variety of fish species, indicating the existence of yet uncharacterized virulence factors. Future and deep analysis of the complete genome sequence of Photobacterium damselae subsp. damselae will surely provide a clearer picture of the virulence factors employed by this bacterium to cause disease in such a varied range of hosts. PMID:24093021

  1. The fate of a nitrobenzene-degrading bacterium in pharmaceutical wastewater treatment sludge.

    Science.gov (United States)

    Ren, Yuan; Yang, Juan; Chen, Shaoyi

    2015-12-01

    This paper describes the fate of a nitrobenzene-degrading bacterium, Klebsiella oxytoca NBA-1, which was isolated from a pharmaceutical wastewater treatment facility. The 90-day survivability of strain NBA-1 after exposure to sludge under anaerobic and aerobic conditions was investigated. The bacterium was inoculated into sludge amended with glucose and p-chloronitrobenzene (p-CNB) to compare the bacterial community variations between the modified sludge and nitrobenzene amendment. The results showed that glucose had no obvious effect on nitrobenzene biodegradation in the co-metabolism process, regardless of the presence/absence of oxygen. When p-CNB was added under anaerobic conditions, the biodegradation rate of nitrobenzene remained unchanged although p-CNB inhibited the production of aniline. The diversity of the microbial community increased and NBA-1 continued to be one of the dominant strains. Under aerobic conditions, the degradation rate of both nitrobenzene and p-CNB was only 20% of that under anaerobic conditions. p-CNB had a toxic effect on the microorganisms in the sludge so that most of the DGGE (denaturing gradient gel electrophoresis) bands, including that of NBA-1, began to disappear under aerobic conditions after 90days of exposure. These data show that the bacterial community was stable under anaerobic conditions and the microorganisms, including NBA-1, were more resistant to the adverse environment. PMID:26086561

  2. Structural characterization of the lipid A from the LPS of the haloalkaliphilic bacterium Halomonas pantelleriensis.

    Science.gov (United States)

    Carillo, Sara; Pieretti, Giuseppina; Casillo, Angela; Lindner, Buko; Romano, Ida; Nicolaus, Barbara; Parrilli, Michelangelo; Giuliano, Mariateresa; Cammarota, Marcella; Lanzetta, Rosa; Corsaro, Maria Michela

    2016-09-01

    Halomonas pantelleriensis DSM9661(Τ) is a Gram-negative haloalkaliphilic bacterium isolated from the sand of the volcanic Venus mirror lake, closed to seashore in the Pantelleria Island in the south of Italy. It is able to optimally grow in media containing 3-15 % (w/v) total salt and at pH between 9 and 10. To survive in these harsh conditions, the bacterium has developed several strategies that probably concern the bacteria outer membrane, a barrier regulating the exchange with the environment. In such a context, the lipopolysaccharides (LPSs), which are among the major constituent of the Gram-negative outer membrane, are thought to contribute to the restrictive membrane permeability properties. The structure of the lipid A family derived from the LPS of Halomonas pantelleriensis DSM 9661(T) is reported herein. The lipid A was obtained from the purified LPS by mild acid hydrolysis. The lipid A, which contains different numbers of fatty acids residues, and its partially deacylated derivatives were completely characterized by means of ESI FT-ICR mass spectrometry and chemical analysis. Preliminary immunological assays were performed, and a comparison with the lipid A structure of the phylogenetic proximal Halomonas magadiensis is also reported. PMID:27329160

  3. Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata.

    Science.gov (United States)

    Eslami, Maryam; Amoozegar, Mohammad Ali; Asad, Sedigheh

    2016-04-01

    Azo dyes are a major class of colorants used in various industries including textile, paper and food. These dyes are regarded as pollutant since they are not readily reduced under aerobic conditions. Halomonas elongata, a halophilic bacterium, has the ability to decolorize different mono and di-azo dyes in anoxic conditions. In this study the putative azoreductase gene of H. elongata, formerly annotated as acp, was isolated, heterologously expressed in Escherichia coli, purified and characterized. The gene product, AzoH, was found to have a molecular mass of 22 kDa. The enzyme requires NADH, as an electron donor for its activity. The apparent Km was 63 μM for NADH and 12 μM for methyl red as a mono-azo dye substrate. The specific activity for methyl red was 0.27 μmol min(-1)mg(-1). The optimum enzyme activity was achieved in 50mM sodium phosphate buffer at pH 6. Although increased salinity resulted in reduced activity, AzoH could decolorize azo dye at NaCl concentrations up to 15% (w/v). The enzyme was also shown to be able to decolorize remazol black B as a representative of di-azo dyes. This is the first report describing the sequence and activity of an azo-reducing enzyme from a halophilic bacterium. PMID:26724685

  4. Emulsification potential of a newly isolated biosurfactant-producing bacterium, Rhodococcus sp. strain TA6.

    Science.gov (United States)

    Shavandi, Mahmoud; Mohebali, Ghasemali; Haddadi, Azam; Shakarami, Heidar; Nuhi, Ashrafossadat

    2011-02-01

    An indigenous biosurfactant producing bacterium, Rhodococcus sp. strain TA6 was isolated from Iranian oil contaminated soil using an efficient enrichment and screening method. During growth on sucrose and several hydrocarbon substrates as sole carbon source, the bacterium could produce biosurfactants. As a result of biosurfactant synthesis, the surface tension of the growth medium was reduced from 68mNm(-1) to values below 30mNm(-1). The biosurfactant was capable of forming stable emulsions with various hydrocarbons ranging from pentane to light motor oil. Preliminary chemical characterization revealed that the TA6 biosurfactant consisted of extracellular lipids and glycolipids. The biosurfactant was stable during exposure to high salinity (10% NaCl), elevated temperatures (120°C for 15min) and within a wide pH range (4.0-10.0). The culture broth was effective in recovering up to 70% of the residual oil from oil-saturated sand packs which indicates the potential value of the biosurfactant in enhanced oil recovery. PMID:21030223

  5. (Per)chlorate reduction by an acetogenic bacterium, Sporomusa sp., isolated from an underground gas storage.

    Science.gov (United States)

    Balk, Melike; Mehboob, Farrakh; van Gelder, Antonie H; Rijpstra, W Irene C; Damsté, Jaap S Sinninghe; Stams, Alfons J M

    2010-09-01

    A mesophilic bacterium, strain An4, was isolated from an underground gas storage reservoir with methanol as substrate and perchlorate as electron acceptor. Cells were Gram-negative, spore-forming, straight to curved rods, 0.5-0.8 microm in diameter, and 2-8 microm in length, growing as single cells or in pairs. The cells grew optimally at 37 degrees C, and the pH optimum was around 7. Strain An4 converted various alcohols, organic acids, fructose, acetoin, and H(2)/CO(2) to acetate, usually as the only product. Succinate was decarboxylated to propionate. The isolate was able to respire with (per)chlorate, nitrate, and CO(2). The G+C content of the DNA was 42.6 mol%. Based on the 16S rRNA gene sequence analysis, strain An4 was most closely related to Sporomusa ovata (98% similarity). The bacterium reduced perchlorate and chlorate completely to chloride. Key enzymes, perchlorate reductase and chlorite dismutase, were detected in cell-free extracts. PMID:20680263

  6. Enhanced Cadmium (Cd Phytoextraction from Contaminated Soil using Cd-Resistant Bacterium

    Directory of Open Access Journals (Sweden)

    Kunchaya Setkit

    2014-01-01

    Full Text Available A cadmium (Cd-resistant bacterium, Micrococcus sp. MU1, is able to produce indole-3-acetic acid and promotes root elongation and plant growth. The potential of this bacterium on enhancement of Cd uptake and bioaccumulation of Cd in Helianthus annuus L. planted in Cd-contaminated soil was evaluated in greenhouse condition. The results showed that Micrococcus sp. MU1promoted the growth of H. annuus L. by increasing the root length, stem height, dry biomass, root to shoot ratio and also significantly increased Cd accumulation in the root and above-ground tissues of H. annuus L. compared to uninoculated control. Re-inoculation with Micrococcus sp. MU1in contaminated soil helped in promoting plant growth and Cd phytoextraction throughout the cultivation period. In addition, phytoextraction coefficient and translocation factor (TF of H. annuus L. inoculated with Micrococcus sp. MU1were higher than that of uninoculated control and TF continuously increased with time. Our results suggested that Micrococcus sp. MU1 has an ability to enhance plant growth and Cd uptake in H. annuus L. Synergistic interaction between Micrococcus sp. MU1 and H. annuus L. could be further applied for Cd phytoextraction in polluted areas.

  7. Melanin from the nitrogen-fixing bacterium Azotobacter chroococcum: a spectroscopic characterization.

    Directory of Open Access Journals (Sweden)

    Aulie Banerjee

    Full Text Available Melanins, the ubiquitous hetero-polymer pigments found widely dispersed among various life forms, are usually dark brown/black in colour. Although melanins have variety of biological functions, including protection against ultraviolet radiation of sunlight and are used in medicine, cosmetics, extraction of melanin from the animal and plant kingdoms is not an easy task. Using complementary physicochemical techniques (i.e. MALDI-TOF, FTIR absorption and cross-polarization magic angle spinning solid-state (13C NMR, we report here the characterization of melanins extracted from the nitrogen-fixing non-virulent bacterium Azotobacter chroococcum, a safe viable source. Moreover, considering dihydroxyindole moiety as the main constituent, an effort is made to propose the putative molecular structure of the melanin hetero-polymer extracted from the bacterium. Characterization of the melanin obtained from Azotobacter chroococcum would provide an inspiration in extending research activities on these hetero-polymers and their use as protective agent against UV radiation.

  8. Removal of corper(II Ions from aqueous solution by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    M. Yilmaz

    2010-06-01

    Full Text Available Enterococcus faecium, a lactic acid bacterium (LAB, was evaluated for its ability to remove copper(II ions from water. The effects of the pH, contact time, initial concentration of copper(II ions, and temperature on the biosorption rate and capacity were studied. The initial concentrations of copper(II ions used to determine the maximum amount of biosorbed copper(II ions onto lyophilised lactic acid bacterium varied from 25 mg L-1 to 500 mg L-1. Maximum biosorption capacities were attained at pH 5.0 and 6.0. Temperature variation between 20°C and 40°C did not affect the biosorption capacity of the bacterial biomass. The highest copper(II ion removal capacity was 106.4 mg per g dry biomass. The correlation regression coefficients show that the biosorption process can be well defined by the Freundlich equation. The change in biosorption capacity with time was found to fit a pseudo-second-order equation.

  9. The algae-lytic ability of bacterium DC10 and the influence of environmental factors on the ability

    Institute of Scientific and Technical Information of China (English)

    SHI; Shunyu; LIU; Yongding; SHEN; Yinwu; LI; Genbao

    2005-01-01

    A lysing-bacterium DC10, isolated from Dianchi Lake of Yunnan Province, was characterized to be Pseudomonas sp. It was able to lyse some algae well, such as Microcystis viridis, Selenastrum capricornutum, and so on. In this study, it was shown that the bacterium lysed the algae by releasing a substance; the best lytic effects were achieved at Iow temperatures and in the dark. Different concentrations of CaCI2 and NaNO3 influenced the lytic effects;the ability to lyse algae decreased in the following order: pH 4 > pH 9 > pH 7 > pH 5.5. It was significant to develop a special technology with this kind of bacterium for controlling the bloomforming planktonic microalgae.

  10. Cloning of the cnr operon into a strain of Bacillaceae bacterium for the development of a suitable biosorbent.

    Science.gov (United States)

    Fosso-Kankeu, Elvis; Mulaba-Bafubiandi, Antoine F; Piater, Lizelle A; Tlou, Matsobane G

    2016-07-01

    In this study, a potential microbial biosorbent was engineered to improve its capacity to remediate heavy metal contaminated water resources. A Bacillaceae bacterium isolated from a mining area was transformed with a plasmid carrying the (pECD312)-based cnr operon that encodes nickel and cobalt resistance. The bioadsorption ability of the transformed strain was evaluated for removal of nickel from metallurgical water relative to the wildtype strain. Results showed that transformation improved the adsorption capacity of the bacterium by 37 % at nickel concentrations equivalent to 150 mg/L. Furthermore it was possible to apply prediction modelling to study the bioadsorption behaviour of the transformed strain. As such, this work may be extended to the design of a nickel bioremediation plant utilising the newly developed Bacillaceae bacterium as a biosorbent. PMID:27263009

  11. Antibacterial Property of a Coral-Associated Bacterium Pseudoalteromonas luteoviolacea Against Shrimp Pathogenic Vibrio harveyi (In Vitro Study

    Directory of Open Access Journals (Sweden)

    OCKY KARNA RADJASA

    2005-06-01

    Full Text Available A coral-associated bacterium was successfully screened for secondary metabolites production based on PCR amplification of the nonribosomal peptide synthetase gene and was identified as closely related to Pseudoalteromonas luteoviolacea based on its 16S rDNA.The bacterium was found to inhibit the growth of shrimp pathogenic bacterium tested, Vibrio harveyi. To characterize the inhibiting metabolite, a 279 bp long DNA fragment was obtained and the deduced amino acid sequence showed conserved signature regions for peptide synthetases and revealed a high similarity to NosD (40% identity, a multifunctional peptide synthetase from Nostoc sp. GSV224, and NdaB (44% identity, a peptide synthetase module of Nodularia spumigena.

  12. Draft Genome Sequence of the Endophytic Bacterium Enterobacter spp. MR1, Isolated from Drought Tolerant Plant (Butea monosperma)

    OpenAIRE

    Parakhia, Manoj V.; Tomar, Rukam S.; Malaviya, Bipin J.; Dhingani, Rashmin M.; Rathod, Visha M.; Thakkar, Jalpa R.; Golakiya, B. A.

    2013-01-01

    Enterobacter sp. MR1 an endophytic plant growth promoting bacterium was isolated from the roots of Butea monosperma, a drought tolerant plant. Genome sequencing of Enterobacter spp. MR1 was carried out in Ion Torrent (PGM), Next Generation Sequencer. The data obtained revealed 640 contigs with genome size of 4.58 Mb and G+C content of 52.8 %. This bacterium may contain genes responsible for inducing drought tolerance in plant, including genes for phosphate solubilization, growth hormones and ...

  13. Bacterium-like Particles for efficient immune stimulation of existing vaccines and new subunit vaccines in mucosal applications

    Directory of Open Access Journals (Sweden)

    Natalija eVan Braeckel-Budimir

    2013-09-01

    Full Text Available The successful development of a mucosal vaccine critically depends on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle derived from bacteria in mucosal subunit vaccines. The non-living particles, designated Bacterium-like Particles (BLPs are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine.

  14. Bacterium-Like Particles for Efficient Immune Stimulation of Existing Vaccines and New Subunit Vaccines in Mucosal Applications

    Science.gov (United States)

    Van Braeckel-Budimir, Natalija; Haijema, Bert Jan; Leenhouts, Kees

    2013-01-01

    The successful development of a mucosal vaccine depends critically on the use of a safe and effective immunostimulant and/or carrier system. This review describes the effectiveness and mode of action of an immunostimulating particle, derived from bacteria, used in mucosal subunit vaccines. The non-living particles, designated bacterium-like particles are based on the food-grade bacterium Lactococcus lactis. The focus of the overview is on the development of intranasal BLP-based vaccines to prevent diseases caused by influenza and respiratory syncytial virus, and includes a selection of Phase I clinical data for the intranasal FluGEM vaccine. PMID:24062748

  15. Dehalobacter restrictus gen. nov. and sp. nov., a strictly anaerobic bacterium that reductively dechlorinates tetra- and trichloroethene in an anaerobic respiration

    NARCIS (Netherlands)

    Holliger, C; Hahn, D; Harmsen, H; Ludwig, W; Schumacher, W; Tindall, B; Vazquez, F; Weiss, N; Zehnder, AJB

    1998-01-01

    The highly enriched anaerobic bacterium that couples the reductive dechlorination of tetrachloroethene to growth, previously referred to as PER-K23, was obtained in pure culture and characterized. The bacterium, which does not form spores, is a small, gram-negative rod with one lateral flagellum. It

  16. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio.

    Directory of Open Access Journals (Sweden)

    Sascha Knauf

    Full Text Available The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum, yaws (ssp. pertenue, and endemic syphilis (ssp. endemicum in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90% baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560 versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7. Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication

  17. High Prevalence of Antibodies against the Bacterium Treponema pallidum in Senegalese Guinea Baboons (Papio papio)

    Science.gov (United States)

    Knauf, Sascha; Barnett, Ulrike; Maciej, Peter; Klapproth, Matthias; Ndao, Ibrahima; Frischmann, Sieghard; Fischer, Julia; Zinner, Dietmar; Liu, Hsi

    2015-01-01

    The bacterium Treponema pallidum is known to cause syphilis (ssp. pallidum), yaws (ssp. pertenue), and endemic syphilis (ssp. endemicum) in humans. Nonhuman primates have also been reported to be infected with the bacterium with equally versatile clinical manifestations, from severe skin ulcerations to asymptomatic. At present all simian strains are closely related to human yaws-causing strains, an important consideration for yaws eradication. We tested clinically healthy Guinea baboons (Papio papio) at Parc National Niokolo Koba in south eastern Senegal for the presence of anti-T. pallidum antibodies. Since T. pallidum infection in this species was identified 50 years ago, and there has been no attempt to treat non-human primates for infection, it was hypothesized that a large number of West African baboons are still infected with simian strains of the yaws-bacterium. All animals were without clinical signs of treponematoses, but 18 of 20 (90%) baboons tested positive for antibodies against T. pallidum based on treponemal tests. Yet, Guinea baboons seem to develop no clinical symptoms, though it must be assumed that infection is chronic or comparable to the latent stage in human yaws infection. The non-active character is supported by the low anti-T. pallidum serum titers in Guinea baboons (median = 1:2,560) versus serum titers that are found in genital-ulcerated olive baboons with active infection in Tanzania (range of medians among the groups of initial, moderate, and severe infected animals = 1:15,360 to 1:2.097e+7). Our findings provide evidence for simian infection with T. pallidum in wild Senegalese baboons. Potentially, Guinea baboons in West Africa serve as a natural reservoir for human infection, as the West African simian strain has been shown to cause sustainable yaws infection when inoculated into humans. The present study pinpoints an area where further research is needed to support the currently on-going second WHO led yaws eradication campaign with

  18. Metabolism of 4-chloro-2-nitrophenol in a Gram-positive bacterium, Exiguobacterium sp. PMA

    Directory of Open Access Journals (Sweden)

    Arora Pankaj

    2012-11-01

    Full Text Available Abstract Background Chloronitrophenols (CNPs are widely used in the synthesis of dyes, drugs and pesticides, and constitute a major group of environmental pollutants. 4-Chloro-2-nitrophenol (4C2NP is an isomer of CNPs that has been detected in various industrial effluents. A number of physicochemical methods have been used for treatment of wastewater containing 4C2NP. These methods are not as effective as microbial degradation, however. Results A 4C2NP-degrading bacterium, Exiguobacterium sp. PMA, which uses 4C2NP as the sole carbon and energy source was isolated from a chemically-contaminated site in India. Exiguobacterium sp. PMA degraded 4C2NP with the release of stoichiometeric amounts of chloride and ammonium ions. The effects of different substrate concentrations and various inoculum sizes on degradation of 4C2NP were investigated. Exiguobacterium sp. PMA degraded 4C2NP up to a concentration of 0.6 mM. High performance liquid chromatography and gas chromatography–mass spectrometry identified 4-chloro-2-aminophenol (4C2AP and 2-aminophenol (2AP as possible metabolites of the 4C2NP degradation pathway. The crude extract of 4C2NP-induced PMA cells contained enzymatic activity for 4C2NP reductase and 4C2AP dehalogenase, suggesting the involvement of these enzymes in the degradation of 4C2NP. Microcosm studies using sterile and non-sterile soils spiked with 4C2NP were carried out to monitor the bioremediation potential of Exiguobacterium sp. PMA. The bioremediation of 4C2NP by Exiguobacterium sp. PMA was faster in non-sterilized soil than sterilized soil. Conclusions Our studies indicate that Exiguobacterium sp. PMA may be useful for the bioremediation of 4C2NP-contaminated sites. This is the first report of (i the formation of 2AP in the 4C2NP degradation pathway by any bacterium and (iii the bioremediation of 4C2NP by any bacterium.

  19. Reduction of Uranium(VI) under Sulfate-reducing Conditions in the Presence of Fe(III)-(hydr)oxides

    Energy Technology Data Exchange (ETDEWEB)

    Sani, Rajesh K.; Peyton, Brent M.; Amonette, James E.; Geesey, Gill G.

    2004-06-01

    U(VI) dissolved in a modified lactate-C medium (either sulfate- or lactate-limited) was reacted with a mixture of an Fe(III)-(hydr)oxide mineral (hematite, goethite, or ferrihydrite) and quartz under anoxic conditions and equivalent mineral surface areas. After sorption equilibration, the suspensions were inoculated with a sulfate-reducing bacterium (SRB, Desulfovibrio desulfuricans G20). Inoculation of the suspensions containing sulfate-limited medium yielded significant SRB growth, along with concomitant reduction of sulfate and removal of U(VI) from solution. Inoculation of the suspensions containing lactate-limited medium yielded similar results while lactate was still present. Once the lactate was depleted, however, some of the U that had been removed from solution was re-solubilized in the hematite treatment and, to a lesser extent, in the goethite treatment. No re-solubilization was observed in the lactate-limited ferrihydrite treatment even after a prolonged incubation of four months. Analysis by U L3-edge XANES spectroscopy of mineral specimens sampled without inoculation yielded a typical U(VI) spectrum. Mineral specimens sampled at the end of the experiment yielded spectra similar to that of uraninite, thus providing strong evidence for SRB-promoted removal of U(VI) from solution by reductive precipitation of uraninite. Consequently, U re-solubilization was attributed to re-oxidation of the uraninite by Fe(III) present in the (hydr)oxide phases. Our results thus suggest that inoculation with SRB mediates reduction of soluble U(VI) to an insoluble U(IV) oxide so long as a suitable electron donor is available. Depletion of the electron donor may result in partial re-oxidation of the U(IV) to soluble U(VI) species when the surfaces of crystalline Fe(III) (hydr)oxides are incompletely reduced by reaction with SRB-generated sulfide.

  20. Uranium Immobilization by Sulfate-reducing Biofilms

    International Nuclear Information System (INIS)

    Hexavalent uranium [U(VI)] was immobilized using biofilms of the sulfate-reducing bacterium (SRB) Desulfovibrio desulfuricans G20. The biofilms were grown in flat-plate continuous-flow reactors using lactate as the electron donor and sulfate as the electron acceptor. U(VI) was continuously fed into the reactor for 32 weeks at a concentration of 126 ?M. During this time, the soluble U(VI) was removed (between 88 and 96% of feed) from solution and immobilized in the biofilms. The dynamics of U immobilization in the sulfate-reducing biofilms were quantified by estimating: (1) microbial activity in the SRB biofilm, defined as the hydrogen sulfide (H2S) production rate and estimated from the H2S concentration profiles measured using microelectrodes across the biofilms; (2) concentration of dissolved U in the solution; and (3) the mass of U precipitated in the biofilm. Results suggest that U was immobilized in the biofilms as a result of two processes: (1) enzymatically and (2) chemically, by reacting with microbially generated H2S. Visual inspection showed that the dissolved sulfide species reacted with U(VI) to produce a black precipitate. Synchrotron-based U L3-edge X-ray absorption near edge structure (XANES) spectroscopy analysis of U precipitated abiotically by sodium sulfide indicated that U(VI) had been reduced to U(IV). Selected-area electron diffraction pattern and crystallographic analysis of transmission electron microscope lattice-fringe images confirmed the structure of precipitated U as being that of uraninite

  1. Isolation of pigmentation mutants of the green filamentous photosynthetic bacterium Chloroflexus aurantiacus

    International Nuclear Information System (INIS)

    Mutants deficient in the production of bateriochlorophyll c (Bchl c) and one mutant lacking colored carotenoids were isolated from the filamentous gliding bacterium Chloroflexus aurantiacus, Mutagenesis was achieved by using UV radiation or N-methyl-N'-nitro-N-nitrosoguanidine. Several clones were isolated that were deficient in Bchl c synthesis. All reverted. One double mutant deficient both in Bchl c synthesis and in the synthesis of colored carotenoids under anaerobic conditions was isolated. Isolation of a revertant in Bchl c synthesis from this double mutant produced a mutant strain of Chloroflexus that grew photosynthetically under anaerobic conditions and lacked colored carotenoids. Analysis of pigment contents and growth rates of the mutants revealed a positive association between growth rate and content of Bchl c under light-limiting conditions. 11 references, 4 figures, 3 tables

  2. Two-dimensional gel-based alkaline proteome of the probiotic bacterium Lactobacillus acidophilus NCFM.

    Science.gov (United States)

    Majumder, Avishek; Cai, Liyang; Ejby, Morten; Schmidt, Bjarne G; Lahtinen, Sampo J; Jacobsen, Susanne; Svensson, Birte

    2012-04-01

    Lactobacillus acidophilus NCFM (NCFM) is a well-documented probiotic bacterium isolated from human gut. Detailed 2D gel-based NCFM proteomics addressed the so-called alkaline range, i.e., pH 6-11. Proteins were identified in 150 of the 202 spots picked from the Coomassie Brilliant Blue stained 2D gel using MALDI-TOF-MS. The 102 unique gene products among the 150 protein identifications were assigned to different functional categories, and evaluated by considering a calculated distribution of abundance as well as grand average of hydrophobicity values. None of the very few available lactic acid bacteria proteome reference maps included the range of pI >7.0. The present report of such data on the proteome of NCFM fundamentally complements current knowledge on protein profiles limited to the acid and neutral pH range. PMID:22522807

  3. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Institute of Scientific and Technical Information of China (English)

    Liu Qingmei; Yao Jianming; Pan Renrui; Yu Zengliang

    2005-01-01

    As reported in this paper, a strain of oil-degrading bacterium Sp- 5- 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery(MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 10TM N+/cm2 of dose - the optimum condition, a mutant,S - 34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  4. A Mutant Strain of a Surfactant-Producing Bacterium with Increased Emulsification Activity

    Science.gov (United States)

    Liu, Qingmei; Yao, Jianming; Pan, Renrui; Yu, Zengliang

    2005-06-01

    As reported in this paper, a strain of oil-degrading bacterium Sp-5-3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2 × 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsification activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.

  5. Genome sequence of the marine bacterium Corynebacterium maris type strain Coryn-1(T) (= DSM 45190(T)).

    Science.gov (United States)

    Schaffert, Lena; Albersmeier, Andreas; Bednarz, Hanna; Niehaus, Karsten; Kalinowski, Jörn; Rückert, Christian

    2013-07-30

    Corynebacterium maris Coryn-1(T) Ben-Dov et al. 2009 is a member of the genus Corynebacterium which contains Gram-positive, non-spore forming bacteria with a high G+C content. C. maris was isolated from the mucus of the Scleractinian coral Fungia granulosa and belongs to the aerobic and non-haemolytic corynebacteria. It displays tolerance to salts (up to 10%) and is related to the soil bacterium Corynebacterium halotolerans. As this is a type strain in a subgroup of Corynebacterium without complete genome sequences, this project, describing the 2.78 Mbp long chromosome and the 45.97 kbp plasmid pCmaris1, with their 2,584 protein-coding and 67 RNA genes, will aid the G enomic E ncyclopedia of Bacteria and Archaea project. PMID:24501635

  6. The Antitumor Components from Marine-derived Bacterium Streptoverticillium luteoverticillatum 11014 Ⅱ

    Institute of Scientific and Technical Information of China (English)

    LI Dehai; ZHU Tianjiao; FANG Yuchun; LIU Hongbing; GU Qianqun; ZHU Weiming

    2007-01-01

    Eight known compounds were isolated from a marine-derived bacterium Streptoverticillium luteoverticillatum 11014 using bioassay-guided fractionations. Their structures were identified by spectral analysis as bis (4-hydroxybenzyl) ether (1), p-hydroxyphenylethyl alcohol (2), N-(4-hydroxyphenethyl) acetamide (3), indole-3 carboxylic acid methyl ester (4), dibenzo[b,e] [1,4]dioxine (5), thymine (6), cytosine deoxyribonucleoside (7) and 2, 3-butanediol (8). These compounds were evaluated for their cytotoxic activities against K562 cell line with the SRB method for the first time. Compounds 2 and 4 showed cytotoxcities with IC50 values of 101.1 and 165.3 μmolL-1, respectively. All compounds were isolated from S. luteoverticillatum 11014 for the first time.

  7. Analysis of convergent gene transcripts in the obligate intracellular bacterium Rickettsia prowazekii.

    Directory of Open Access Journals (Sweden)

    Andrew Woodard

    Full Text Available Termination of transcription is an important component of bacterial gene expression. However, little is known concerning this process in the obligate intracellular pathogen and model for reductive evolution, Rickettsia prowazekii. To assess transcriptional termination in this bacterium, transcripts of convergent gene pairs, some containing predicted intrinsic terminators, were analyzed. These analyses revealed that, rather than terminating at a specific site within the intervening region between the convergent genes, most of the transcripts demonstrated either a lack of termination within this region, which generated antisense RNA, or a putative non-site-specific termination that occurred throughout the intervening sequence. Transcripts terminating at predicted intrinsic terminators, as well as at a putative Rho-dependant terminator, were also examined and found to vary based on the rickettsial host environment. These results suggest that transcriptional termination, or lack thereof, plays a role in rickettsial gene regulation.

  8. Identification of a denitrifying bacterium and verification of its anaerobic ammonium oxidation ability

    Institute of Scientific and Technical Information of China (English)

    HU; Baolan; ZHENG; Ping; LI; Jinye; XU; Xiangyang; JIN; Rencun

    2006-01-01

    A strain D3 of denitrifying bacterium was isolated from an anammox reactor, and identified as Pseudomonas mendocina based on the morphological and physiological assay, Vitek test,Biolog test, (G+C) mol% content, and 16S rDNA phylogenetic analysis. As a typical denitrifying bactration of 88.5 mg N/L. The optimal pH and growth temperature were 7.84 and 34.9℃, respectively.Strain D3 was able to oxidize ammonia under anaerobic condition. The maximum nitrate and ammoof ammonia to nitrate was 1:1.91. Electron microscopic observation revealed peculiar cell inclusions in strain D3. Because of its relation to anammox activity, strain D3 was presumed to be anammoxosome.The present investigation proved that denitrifying bacteria have the anammox ability, and the results have engorged the range of anammox populations.

  9. Plague bacterium as a transformer species in prairie dogs and the grasslands of western North America.

    Science.gov (United States)

    Eads, David A; Biggins, Dean E

    2015-08-01

    Invasive transformer species change the character, condition, form, or nature of ecosystems and deserve considerable attention from conservation scientists. We applied the transformer species concept to the plague bacterium Yersinia pestis in western North America, where the pathogen was introduced around 1900. Y. pestis transforms grassland ecosystems by severely depleting the abundance of prairie dogs (Cynomys spp.) and thereby causing declines in native species abundance and diversity, including threatened and endangered species; altering food web connections; altering the import and export of nutrients; causing a loss of ecosystem resilience to encroaching invasive plants; and modifying prairie dog burrows. Y. pestis poses an important challenge to conservation biologists because it causes trophic-level perturbations that affect the stability of ecosystems. Unfortunately, understanding of the effects of Y. pestis on ecosystems is rudimentary, highlighting an acute need for continued research. PMID:25817984

  10. The glucose transport system of the hyperthermophilic anaerobic bacterium Thermotoga neapolitana

    Energy Technology Data Exchange (ETDEWEB)

    Galperin, M.Y.; Noll, K.M.; Romano, A.H. [Univ. of Connecticut, Storrs, CT (United States)

    1996-08-01

    The glucose transport system of the extremely thermophilic anaerobic bacterium Thermotoga neapolitana was studied with the nonmetabolizable glucose analog 2-deoxy-D-glucose (2-DOG). T. neapolitana accumulated 2-DOG against a concentration gradient in an intracellular free sugar pool that was exchangeable with external D-glucose. This active transport of 2-DOG was dependent upon the presence of sodium ion and an external source of energy, such as pyruvate, and was inhibited by arsenate and gramicidin D. There was no phosphoenolpyruvate-dependent phosphorylation of glucose, 2-DOG, or fructose by cell extracts or toluene-treated cells, indicating the absence of a phosphoenolpyruvate:sugar phosphotransferase system. These data indicate that D-glucose is taken up by T.neapolitana via an active transport system that is energized by an ion gradient generated by ATP, derived from substrate-level phosphorylation. 33 refs., 3 figs., 1 tab.

  11. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Sha; Tian Jintao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Lei Yanhua; Chang Xueting; Liu Tao [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (R{sub ct}) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  12. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens: (II) Corrosion mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Yin Yansheng, E-mail: yys2006@ouc.edu.cn [Institute of Ocean Materials and Engineering, Shanghai Maritime University, Shanghai 200135 (China); Cheng Sha [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Chen Shougang, E-mail: sgchen@ouc.edu.cn [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China); Tian Jintao; Liu Tao; Chang Xueting [Institute of Materials Science and Engineering, Ocean University of China, Qingdao 266100 (China)

    2009-04-30

    Electrochemical techniques (electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves) and surface analysis (scanning electron microscopy (SEM)) were carried out to determine the possible mechanism of the microbially influenced corrosion of 303 stainless steel (303 SS) by marine bacterium Vibrio natriegens (V. natriegens). In order to clarify the mechanism, 303 SS coupons were immersed in four different mediums. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that N{sub 2}-fixation actually promoted the corrosion of 303 SS; however, the influence of the produced NH{sub 3} was negligible. It can be speculated that the electron transfer and/or the nitrogenase catalyzing the process may influence the corrosion.

  13. Uncoupling effect of fatty acids in halo- and alkalotolerant bacterium Bacillus pseudofirmus FTU.

    Science.gov (United States)

    Popova, I V; Bodrova, M E; Mokhova, E N; Muntyan, M S

    2004-10-01

    Natural uncouplers of oxidative phosphorylation, long-chain non-esterified fatty acids, cause uncoupling in the alkalo- and halotolerant bacterium Bacillus pseudofirmus FTU. The uncoupling effect in the bacterial cells was manifested as decrease of membrane potential and increase of respiratory activity. The membrane potential decrease was detected only in bacterial cells exhausted by their endogenous substrates. In proteoliposomes containing reconstituted bacterial cytochrome c oxidase, fatty acids caused a "mild" uncoupling effect by reducing membrane potential only at low rate of membrane potential generation. "Free respiration" induced by the "mild" uncouplers, the fatty acids, can be considered as possible mechanism responsible for adaptation of the bacteria to a constantly changed environment. PMID:15527418

  14. Vibrio ruber (S2A1, a Marine Bacterium that Exhibits Significant Antimicrobial Activity

    Directory of Open Access Journals (Sweden)

    Wan Norhana, N.

    2005-01-01

    Full Text Available A potential antimicrobial-producing marine bacterium, designated as S2A1, was isolated from a seagrass collected in Setiu Lagoon, Terengganu. S2A1 was a Gram negative rod that was motile by means of a polar flagellum. Phenotypic and genotypic characterisation indicated that strain S2A1 represented a species in the genus Vibrio. The antimicrobial activities of S2A1 against a number of test microorganisms showed a broad antimicrobial spectrum property with inhibition towards 25 out of 29 test microorganisms. The antimicrobial compound(s of S2A1 was more effective against Gram-positive bacteria with 100% inhibition, compared to yeast (88.8% and Gram-negative bacteria (75.0% tested. High activity scores were observed when using whole cells compared to cell free extract.

  15. Microbially influenced corrosion of 303 stainless steel by marine bacterium Vibrio natriegens: (II) Corrosion mechanism

    International Nuclear Information System (INIS)

    Electrochemical techniques (electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves) and surface analysis (scanning electron microscopy (SEM)) were carried out to determine the possible mechanism of the microbially influenced corrosion of 303 stainless steel (303 SS) by marine bacterium Vibrio natriegens (V. natriegens). In order to clarify the mechanism, 303 SS coupons were immersed in four different mediums. EIS results were interpreted with different equivalent circuits to model the physicoelectric characteristics of the electrode/biofilm/solution interface. The results showed that N2-fixation actually promoted the corrosion of 303 SS; however, the influence of the produced NH3 was negligible. It can be speculated that the electron transfer and/or the nitrogenase catalyzing the process may influence the corrosion.

  16. Microbially influenced corrosion of stainless steel by marine bacterium Vibrio natriegens: (I) Corrosion behavior

    International Nuclear Information System (INIS)

    The microbially influenced corrosion of stainless steel (SS) by marine bacterium Vibrio natriegens (V. natriegens) was investigated using surface analysis (atomic force microscopy (AFM), scanning electron microscopy (SEM), and energy dispersive X-ray analysis (EDXA)) and electrochemical techniques (the open circuit potential, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization curves ). AFM images corroborated the results from the EIS models which show biofilm attachment and subsequent detachment over time. The SEM images revealed the occurrence of micro-pitting corrosion underneath the biofilms on the metal surface after the biofilm removal. The presence of carbon, oxygen, phosphor and sulfur obtained from EDXA proved the formation of biofilm. The electrochemical results showed that the corrosion of SS was accelerated in the presence of V. natriegens based on the decrease in the resistance of the charge transfer resistance (Rct) obtained from EIS and the increase in corrosion current densities obtained from potentiodynamic polarization curves.

  17. A cultured greigite-producing magnetotactic bacterium in a novel group of sulfate-reducing bacteria.

    Science.gov (United States)

    Lefèvre, Christopher T; Menguy, Nicolas; Abreu, Fernanda; Lins, Ulysses; Pósfai, Mihály; Prozorov, Tanya; Pignol, David; Frankel, Richard B; Bazylinski, Dennis A

    2011-12-23

    Magnetotactic bacteria contain magnetosomes--intracellular, membrane-bounded, magnetic nanocrystals of magnetite (Fe(3)O(4)) or greigite (Fe(3)S(4))--that cause the bacteria to swim along geomagnetic field lines. We isolated a greigite-producing magnetotactic bacterium from a brackish spring in Death Valley National Park, California, USA, strain BW-1, that is able to biomineralize greigite and magnetite depending on culture conditions. A phylogenetic comparison of BW-1 and similar uncultured greigite- and/or magnetite-producing magnetotactic bacteria from freshwater to hypersaline habitats shows that these organisms represent a previously unknown group of sulfate-reducing bacteria in the Deltaproteobacteria. Genomic analysis of BW-1 reveals the presence of two different magnetosome gene clusters, suggesting that one may be responsible for greigite biomineralization and the other for magnetite. PMID:22194580

  18. An outbreak in 1965 of severe respiratory illness caused by the Legionnaires' disease bacterium.

    Science.gov (United States)

    Thacker, S B; Bennett, J V; Tsai, T F; Fraser, D W; McDade, J E; Shepard, C C; Williams, K H; Stuart, W H; Dull, H B; Eickhoff, T C

    1978-10-01

    In January 1977 an unsolved outbreak of infection at St. Elizabeth's Hospital (Washington, D.C.) that occurred in 1965 was linked with Legionnaires' disease. The link was made by fluorescent antibody testing with the bacterium isolated from tissues of persons with Legionnaires' disease in the 1976 outbreak in Philadelphia. In July and August 1965, an epidemic of severe respiratory disease characterized by abrupt onset of high fever, weakness, malaise, and nonproductive cough, frequently accompanied by radiographic evidence of pneumonia, affected at least 81 patients at St. Elizabeth's Hospital, a general psychiatric hospital. Fourteen (17%) of the affected patients died. Intensive epidemiologic and laboratory investigations in 1965 did not determine the etiology. The etiologic organism may have become airborne from sites of soil excavation. PMID:361897

  19. DNA Microarray Analysis of Gene Expression in Antifungal Bacterium of Bacillus lenthmorbus WJ5

    International Nuclear Information System (INIS)

    This simultaneous expression levels of antifungal activity related was analyzed by DNA microarray. We constructured DNA chips contained 2,000 randomly digested genome spots of the antifungal bacterium of Bacillus lentimorbus WJ5 and compared it squantitative aspect with 7 antifungal activity deficient mutants induced by gamma radiation . From the analysis of microarray hybridization by the Gene Cluster, totally 408 genes were expressed and 20 genes among them were significantly suppressed in mutants. pbuX, ywbA, ptsG,yufO, and ftsY were simultaneously down-regulated in all muatants. It suggested that they were supposed to be related to the antifungal activity of B. lentimorbus WJ5

  20. Brevibacterium rufescens nov. comb. , a facultative anaerobic methylotrophic bacterium from oil-bearing strata

    Energy Technology Data Exchange (ETDEWEB)

    Nazina, T.N.

    1981-03-01

    The paper presents the results of studying the bacterial population from the microaerophilic zone of oil-bearing strata of the Apsheron Peninsula. The incidence of bacteria capable of growing at the account of organic substances present in stratal water could reach dozens of thousands of cells in 1 ml. A bacterium predominant in the bacterial cenosis of the microaerophilic zone was islated as a pure culture. A new combination, Brevibacterium rufescens nov. comb. was created on the basis of morphological, physiologo-biochemical properties and the GC content in the DNA of the organism under study. The microorganism is adapted to its habitat in a number of properties. The necessity of recreating the genus Brevibacterium is discussed.

  1. UV-induced variability of the amylolytic thermophilic bacterium Bacillus diastaticus

    International Nuclear Information System (INIS)

    UV-induced variability of a thermophilic bacterium Bacillus diastaticus 13 by amylase formation has been studied. It has been shown, that variability limits in amylase biosynthesis vary from 2.2 to 158.7% under UV irradiation. At 41.8x102 erg/mm2 UV dose a ''plus-variant'' designated as the UV1 mutant has been prepared. Its subsequent selection without using mutagene permitted to select the UV 1-25 variant, exceeding the initial strain in amylase biosynthesis by 43.3%. Under UV irradiation two low-active in biosynthesis amylases of the mutant were prepared. Demands for growth factors of some mutant have been studied as well

  2. Triplet excited state spectra and dynamics of carotenoids from the thermophilic purple photosynthetic bacterium Thermochromatium tepidum

    Energy Technology Data Exchange (ETDEWEB)

    Niedzwiedzki, Dariusz; Kobayashi, Masayuki; Blankenship, R. E.

    2011-01-13

    Light-harvesting complex 2 from the anoxygenic phototrophic purple bacterium Thermochromatium tepidum was purified and studied by steady-state absorption, fluorescence and flash photolysis spectroscopy. Steady-state absorption and fluorescence measurements show that carotenoids play a negligible role as supportive energy donors and transfer excitation to bacteriochlorophyll-a with low energy transfer efficiency of ~30%. HPLC analysis determined that the dominant carotenoids in the complex are rhodopin and spirilloxanthin. Carotenoid excited triplet state formation upon direct (carotenoid) or indirect (bacteriochlorophyll-a Q{sub x} band) excitation shows that carotenoid triplets are mostly localized on spirilloxanthin. In addition, no triplet excitation transfer between carotenoids was observed. Such specific carotenoid composition and spectroscopic results strongly suggest that this organism optimized carotenoid composition in the light-harvesting complex 2 in order to maximize photoprotective capabilities of carotenoids but subsequently drastically suppressed their supporting role in light-harvesting process.

  3. Structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC118

    International Nuclear Information System (INIS)

    The crystal structure of ribose 5-phosphate isomerase has been determined to 1.72 Å resolution and is presented with a brief comparison to other known ribose 5-phosphate isomerase A structures. The structure of ribose 5-phosphate isomerase from the probiotic bacterium Lactobacillus salivarius UCC188 has been determined at 1.72 Å resolution. The structure was solved by molecular replacement, which identified the functional homodimer in the asymmetric unit. Despite only showing 57% sequence identity to its closest homologue, the structure adopted the typical α and β d-ribose 5-phosphate isomerase fold. Comparison to other related structures revealed high homology in the active site, allowing a model of the substrate-bound protein to be proposed. The determination of the structure was expedited by the use of in situ crystallization-plate screening on beamline I04-1 at Diamond Light Source to identify well diffracting protein crystals prior to routine cryocrystallography

  4. Separation and characterization of a radioresistant bacterium strain BR501 from radiation polluted soil

    International Nuclear Information System (INIS)

    Strain BR501, an extremely radioresistant bacterium isolated from the radioactive experimental soil. The optimal temperature for the growth of strain BR501 was 30 degree C. The UV radiation and γ-radiation survival curves showed the strain BR501 had highly radio-resistance. The strain was sensitive to Amp, Km, Rif, Cm and Tc. The 16S rDNA of the BR501 shared highly similarity to those of species in genus Deinococcus, especially to that of D.radiodurans r1(99%). Based on the 16S rDNA sequence analysis and the phenotype characteristics, the BR501 belongs to the evolution branch of Deinococcus and was designated Deinococcus sp. BR501. (authors)

  5. Extraction and physicochemical characteristics of a red pigment produced by marine bacterium strain S-9801

    Institute of Scientific and Technical Information of China (English)

    田黎; 何培青; 刘晨临; 边际; 苗金来

    2002-01-01

    -- A red pigment that has better biological properties is produced by marine bacterium strain S- 9801. The extraction methods, physicochemical and toxicity of the pigment have been studied.Dissolubility of pigment in the five organic solvent has been tested, and ethanol is optimally chosen for extraction. Physicochemical characteristics of this pigment was stable. The absorbance of the pigment solution was no losing when put under natural light for 10 days or treated by UV for 30 minutes, color of the pigment unchanged after 100 ℃ hythere for 1 h or 80 ℃ xerother for 2 h. The median lethal dose (LD50) of the rat by celiac injection was 670.04 mg/kg and minimum lethal dose of oral was greater than 2 000 mg/kg.

  6. Genetic manipulation of carotenoid biosynthesis in the green sulfur bacterium Chlorobium tepidum

    DEFF Research Database (Denmark)

    Frigaard, Niels-Ulrik; Maresca, Julia A; Yunker, Colleen E;

    2004-01-01

    The green sulfur bacterium Chlorobium tepidum is a strict anaerobe and an obligate photoautotroph. On the basis of sequence similarity with known enzymes or sequence motifs, nine open reading frames encoding putative enzymes of carotenoid biosynthesis were identified in the genome sequence of C....... tepidum, and all nine genes were inactivated. Analysis of the carotenoid composition in the resulting mutants allowed the genes encoding the following six enzymes to be identified: phytoene synthase (crtB/CT1386), phytoene desaturase (crtP/CT0807), zeta-carotene desaturase (crtQ/CT1414), gamma......-carotene desaturase (crtU/CT0323), carotenoid 1',2'-hydratase (crtC/CT0301), and carotenoid cis-trans isomerase (crtH/CT0649). Three mutants (CT0180, CT1357, and CT1416 mutants) did not exhibit a discernible phenotype. The carotenoid biosynthetic pathway in C. tepidum is similar to that in cyanobacteria and plants...

  7. Bioluminescent reporter bacterium for toxicity monitoring in biological wastewater treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Kelly, C.J.; Lajoie, C.A.; Layton, A.C.; Sayler, G.S.

    1999-01-01

    Toxic shock due to certain chemical loads in biological wastewater treatment systems can result in death of microorganisms and loss of floc structure. To overcome the limitations of existing approaches to toxicity monitoring, genes encoding enzymes for light production were inserted to a bacterium (Shk 1) isolated from activated sludge. The Shk 1 bioreporter indicated a toxic response to concentrations of cadmium, 2,4-dinitrophenol, and hydroquinone by reductions in initial levels of bioluminescence on exposure to the toxicant. The decrease in bioluminescence was more severe with increasing toxicant concentration. Bioluminescence did not decrease in response to ethanol concentrations up to 1,000 mg/L or to pH conditions between 6.1 and 7.9. A continuous toxicity monitoring system using this bioreporter was developed for influent wastewater and tested with hydroquinone. The reporter exhibited a rapid and proportional decrease in bioluminescence in response to increasing hydroquinone concentrations.

  8. Genomic Sequence of Burkholderia multivorans NKI379, a Soil Bacterium That Inhibits the Growth of Burkholderia pseudomallei

    OpenAIRE

    Hsueh, Pei-Tan; Liu, Jong-Kang; Chen, Ya-Lei; Liu, Pei-Ju; Ni, Wen-Fan; Chen, Yao-Shen; Wu, Keh-Ming; Lin, Hsi-Hsun

    2015-01-01

    Burkholderia multivorans NKI379 is a soil bacterium that exhibits an antagonistic effect against the growth of Burkholderia pseudomallei, the causative agent of the infectious disease melioidosis. We report the draft genomic sequence of B. multivorans NKI379, which has a G+C content of 67% and 5,203 candidate protein-encoding genes.

  9. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract

    OpenAIRE

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides.

  10. Thermoanaerobacter pentosaceus sp. nov., an anaerobic, extreme thermophilic, high ethanol-yielding bacterium isolated from household waste

    DEFF Research Database (Denmark)

    Tomás, Ana Faria; Karakashev, Dimitar Borisov; Angelidaki, Irini

    2013-01-01

    An extremely thermophilic, xylanolytic, spore-forming and strict anaerobic bacterium DTU01(T) was isolated from a continuously stirred tank reactor fed with xylose and household waste. Cells stained Gram-negative and were rod-shaped (0.5-2 µm in length). Spores were terminal with a diameter...

  11. Marinimicrobium haloxylanilyticum sp. nov., a new moderately halophilic, polysaccharide-degrading bacterium isolated from Great Salt Lake, Utah

    DEFF Research Database (Denmark)

    Fogh Møller, Mette; Kjeldsen, Kasper Urup; Ingvorsen, Kjeld

    2010-01-01

    A new moderately halophilic, strictly aerobic, Gram-negative bacterium, strain SX15T, was isolated from hypersaline surface sediment of the southern arm of Great Salt Lake (Utah, USA). The strain grew on a number of carbohydrates and carbohydrate polymers such as xylan, starch, carboxymethyl...

  12. Complete Genome Sequence of the Bacterium Aalborg_AAW-1, Representing a Novel Family within the Candidate Phylum SR1

    DEFF Research Database (Denmark)

    Dueholm, Morten Simonsen; Albertsen, Mads; Stokholm-Bjerregaard, Mikkel;

    2015-01-01

    Here, we present the complete genome sequence of the candidate phylum SR1 bacterium Aalborg_AAW-1. Its 16S rRNA gene is only 85.5% similar to that of the closest relative, RAAC1_SR1, and the genome of Aalborg_AAW-1 consequently represents the first of a novel family within the candidate phylum SR1....

  13. Concentration and Transport of Nitrate by the Mat-Forming Sulfur Bacterium Thioploca Rid E-1821-2011

    DEFF Research Database (Denmark)

    FOSSING, H.; GALLARDO, VA; JØRGENSEN, BB;

    1995-01-01

    , at between 40 and 280 m water depth. The metabolism of this marine bacterium(5,6) remained a mystery until long after its discovery(1,7). We report here that Thioploca cells are able to concentrate nitrate to up to 500 mM in a liquid vacuole that occupies >80% of the cell volume. Gliding filaments transport...

  14. Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum▿

    OpenAIRE

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-01-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level.

  15. Extraction of DNA from orange juice and detection of bacterium Candidatus Liberibacter asiaticus by real-time PCR

    Science.gov (United States)

    Orange juice processed from Huanglongbing (HLB) affected fruit is often associated with bitter taste and/or off-flavor. HLB disease in Florida is associated with Candidatus Liberibacter asiaticus (CLas), a phloem limited bacterium. The current standard to confirm CLas for citrus trees is to take sam...

  16. Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt.

    Science.gov (United States)

    Ghazal, Shimaa; Hurst, Sheldon G; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M; Hussein, Mona A; Abouzaied, Mohamed A; Khalil, Kamal M; Tisa, Louis S

    2014-01-01

    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes. PMID:24786955

  17. Draft Genome Sequence of Photorhabdus temperata Strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes

    OpenAIRE

    Hurst, Sheldon G.; Ghazal, Shimaa; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M.; Hussein, Mona A.; AbouZaied, Mohamed A.; Khalil, Kamal M.; Tisa, Louis S.

    2014-01-01

    Photorhabdus temperata strain Meg1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 4.9-Mbp draft genome sequence for P. temperata strain Meg1, with a G+C content of 43.18% and containing 4,340 candidate protein-coding genes.

  18. Draft Genome Sequence of Photorhabdus temperata Strain Meg1, an Entomopathogenic Bacterium Isolated from Heterorhabditis megidis Nematodes.

    Science.gov (United States)

    Hurst, Sheldon G; Ghazal, Shimaa; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M; Hussein, Mona A; AbouZaied, Mohamed A; Khalil, Kamal M; Tisa, Louis S

    2014-01-01

    Photorhabdus temperata strain Meg1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 4.9-Mbp draft genome sequence for P. temperata strain Meg1, with a G+C content of 43.18% and containing 4,340 candidate protein-coding genes. PMID:25502670

  19. Draft Genome Sequence of Photorhabdus luminescens Strain BA1, an Entomopathogenic Bacterium Isolated from Nematodes Found in Egypt

    OpenAIRE

    Ghazal, Shimaa; Hurst, Sheldon G.; Morris, Krystalynne; Abebe-Akele, Feseha; Thomas, W Kelley; Badr, Usama M.; Hussein, Mona A.; AbouZaied, Mohamed A.; Khalil, Kamal M.; Tisa, Louis S.

    2014-01-01

    Photorhabdus luminescens strain BA1 is an entomopathogenic bacterium that forms a symbiotic association with Heterorhabditis nematodes. We report here a 5.0-Mbp draft genome sequence for P. luminscens strain BA1, with a G+C content of 42.46% and 4,250 candidate protein-coding genes.

  20. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment

    OpenAIRE

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant’Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio de Oliveira; Souza, Emanuel Maltempi; Adriano BRANDELLI; Passaglia, Luciane M. P.

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments.

  1. Whole-Genome Shotgun Sequence of the Keratinolytic Bacterium Lysobacter sp. A03, Isolated from the Antarctic Environment.

    Science.gov (United States)

    Pereira, Jamile Queiroz; Ambrosini, Adriana; Sant'Anna, Fernando Hayashi; Tadra-Sfeir, Michele; Faoro, Helisson; Pedrosa, Fábio Oliveira; Souza, Emanuel Maltempi; Brandelli, Adriano; Passaglia, Luciane M P

    2015-01-01

    Lysobacter sp. strain A03 is a protease-producing bacterium isolated from decomposing-penguin feathers collected in the Antarctic environment. This strain has the ability to degrade keratin at low temperatures. The A03 genome sequence provides the possibility of finding new genes with biotechnological potential to better understand its cold-adaptation mechanism and survival in cold environments. PMID:25838495

  2. Thermoregulation of N-Acyl Homoserine Lactone-Based Quorum Sensing in the Soft Rot Bacterium Pectobacterium atrosepticum▿

    Science.gov (United States)

    Latour, Xavier; Diallo, Stéphanie; Chevalier, Sylvie; Morin, Danièle; Smadja, Bruno; Burini, Jean-François; Haras, Dominique; Orange, Nicole

    2007-01-01

    The psychrotolerant bacterium Pectobacterium atrosepticum produces four N-acyl homoserine lactones under a wide range of temperatures. Their thermoregulation differs from that of the exoenzyme production, described as being under quorum-sensing control. A mechanism involved in this thermoregulation consists of controlling N-acyl homoserine lactones synthase production at a transcriptional level. PMID:17468275

  3. Complete Genome Sequence of Streptococcus salivarius HSISS4, a Human Commensal Bacterium Highly Prevalent in the Digestive Tract.

    Science.gov (United States)

    Mignolet, Johann; Fontaine, Laetitia; Kleerebezem, Michiel; Hols, Pascal

    2016-01-01

    The human commensal bacterium Streptococcus salivarius plays a major role in the equilibrium of microbial communities of the digestive tract. Here, we report the first complete genome sequence of a Streptococcus salivarius strain isolated from the small intestine, namely, HSISS4. Its circular chromosome comprises 1,903 coding sequences and 2,100,988 nucleotides. PMID:26847886

  4. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk

    Science.gov (United States)

    Meneghel, Julie; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  5. Isolation and characterization of an Enterococcus-like bacterium causing muscle necrosis and mortality in Macrobrachium rosenbergii in Taiwan.

    Science.gov (United States)

    Cheng, W; Chen, J C

    1998-10-01

    A Gram-positive, ovoid, diplococoid bacterium tentatively identified as Enterococcus-like was isolated from diseased Macrobrachium rosenbergii in Taiwanese aquaculture ponds. The diseased prawns displayed poor growth, anorexia, inactivity, opaque and whitish musculature, and mortality. In histological preparations, melanized hemocytic granulomas were seen in the connective tissue around hemal sinuses together with hemocytic aggregation in necrotic musculature. Five isolates of diplococci were collected from diseased prawns at 4 farms and these were evaluated for 93 characteristics including morphology, physiology, biochemistry and sensitivity to antibiotics. The results indicated that the isolates belonged to a single species. They grew in 0.5 to 6.0% NaCl, at 10 to 40 degrees C, at pH 9.6 and on bile esculin medium, gave positive pyrrolidonylarylamidase, arginine dehydrolase and Voges-Proskauer tests, were resistant to bacitracin and SXT, and were CAMP-negative and non-hemolytic on sheep blood agar. These findings indicated an Enterococcus-like bacterium closely related to Enterococcus seriolicida (recently reduced to synonymy with Lactococcus garvieae). Experimental injection of 3 x 10(5) cells of strain KM002 of this Enterococcus-like bacterium into the ventral sinus of the prawn cephalothorax caused 100% mortality in 11 d, and induced muscular necrosis and hepatopancreatitis, gross signs and histopathology similar to those observed in the naturally infected prawns. It was concluded that this Enterococcus-like bacterium was the etiological agent associated with mortality of the farmed, diseased prawns. PMID:9828405

  6. Complete genome of Pandoraea pnomenusa RB-38, an oxalotrophic bacterium isolated from municipal solid waste landfill site.

    Science.gov (United States)

    Lim, Yan-Lue; Ee, Robson; Yong, Delicia; Tee, Kok-Keng; Yin, Wai-Fong; Chan, Kok-Gan

    2015-11-20

    Pandoraea pnomenusa RB-38 is a bacterium isolated from a former sanitary landfill site. Here, we present the complete genome of P. pnomenusa RB38 in which an oxalate utilization pathway was identified. The genome analysis suggested the potential of this strain as an effective biocontrol agent against oxalate-producing phytopathogens. PMID:26393955

  7. Draft Genome Sequence of the Extremely Halophilic Bacterium Halomonas salina Strain CIFRI1, Isolated from the East Coast of India

    OpenAIRE

    Behera, Bijay Kumar; Das, Priyanka; Maharana, Jitendra; Paria, Prasenjit; Mandal, Shambhu Nath; Meena, Dharmendra Kumar; Sharma, Anil Prakash; Jayarajan, Rijith; Dixit, Vishal; Verma, Ankit; Vellarikkal, Shamsudheen Karuthedath; Scaria, Vinod; Sivasubbu, Sridhar; Rao, Atmakuri Ramakrishna; Mohapatra, Trilochan

    2015-01-01

    Halomonas salina strain CIFRI1 is an extremely salt-stress-tolerant bacterium isolated from the salt crystals of the east coast of India. Here we report the annotated 3.45-Mb draft genome sequence of strain CIFRI1 having 86 contigs with 3,139 protein coding loci, including 62 RNA genes.

  8. Antioxidants keep the potentially probiotic but highly oxygen-sensitive human gut bacterium Faecalibacterium prausnitzii alive at ambient air

    NARCIS (Netherlands)

    Khan, M. Tanweer; van Dijl, Jan Maarten; Harmsen, Hermie J M

    2014-01-01

    The beneficial human gut microbe Faecalibacterium prausnitzii is a 'probiotic of the future' since it produces high amounts of butyrate and anti-inflammatory compounds. However, this bacterium is highly oxygen-senstive, making it notoriously difficult to cultivate and preserve. This has so far precl

  9. Draft Genome Sequence of Bacillus farraginis R-6540T (DSM 16013), a Spore-Forming Bacterium Isolated at Dairy Farms

    Science.gov (United States)

    Wang, Jie-ping; Liu, Guo-hong; Ge, Ci-bin; Xiao, Rong-feng; Zheng, Xue-fang; Shi, Huai

    2016-01-01

    Bacillus farraginis R-6540T is a Gram-positive, aerobic, and spore-forming bacterium with very high intrinsic heat resistance. Here, we report the 5.32-Mb draft genome sequence of B. farraginis R-6540T, which is the first genome sequence of this species and will promote its fundamental research. PMID:27313303

  10. Draft Genome Sequence of Lactobacillus delbrueckii subsp. bulgaricus CFL1, a Lactic Acid Bacterium Isolated from French Handcrafted Fermented Milk.

    Science.gov (United States)

    Meneghel, Julie; Dugat-Bony, Eric; Irlinger, Françoise; Loux, Valentin; Vidal, Marie; Passot, Stéphanie; Béal, Catherine; Layec, Séverine; Fonseca, Fernanda

    2016-01-01

    Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) is a lactic acid bacterium widely used for the production of yogurt and cheeses. Here, we report the genome sequence of L. bulgaricus CFL1 to improve our knowledge on its stress-induced damages following production and end-use processes. PMID:26941141

  11. Draft Genome Sequence of Nitrosospira sp. Strain APG3, a Psychrotolerant Ammonia-Oxidizing Bacterium Isolated from Sandy Lake Sediment

    OpenAIRE

    Garcia, Juan C.; Urakawa, Hidetoshi; Le, Vang Q.; Stein, Lisa Y.; Klotz, Martin G; Nielsen, Jeppe L.

    2013-01-01

    Bacteria in the genus Nitrosospira play vital roles in the nitrogen cycle. Nitrosospira sp. strain APG3 is a psychrotolerant betaproteobacterial ammonia-oxidizing bacterium isolated from freshwater lake sediment. The draft genome revealed that it represents a new species of cluster 0 Nitrosospira, which is presently not represented by described species.

  12. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica.

    Science.gov (United States)

    Parmeciano Di Noto, Gisela; Vázquez, Susana C; MacCormack, Walter P; Iriarte, Andrés; Quiroga, Cecilia

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  13. Complete Genome Sequence of Dyella thiooxydans ATSB10, a Thiosulfate-Oxidizing Bacterium Isolated from Sunflower Fields in South Korea.

    Science.gov (United States)

    Hwangbo, Kyeong; Um, Yurry; Chung, Hee; Yoo, Jemin; Kim, Ki Yoon; Madhaiyan, Munusamy; Sa, Tong Min; Lee, Yi

    2016-01-01

    Dyella thiooxydans ATSB10 (KACC 12756(T) = LMG 24673(T)) is a thiosulfate-oxidizing bacterium isolated from rhizosphere soils of sunflower plants. In this study, we completely sequenced the genome of D. thiooxydans ATSB10 and identified the genes involved in thiosulfate oxidation and the metabolism of aromatic intermediates. PMID:27340060

  14. Draft Genome Sequence of Anaeromyxobacter sp. Strain PSR-1, an Arsenate-Respiring Bacterium Isolated from Arsenic-Contaminated Soil

    OpenAIRE

    Tonomura, Mimori; Ehara, Ayaka; Suzuki, Haruo; Amachi, Seigo

    2015-01-01

    Here, we report a draft genome sequence of Anaeromyxobacter sp. strain PSR-1, an arsenate-respiring bacterium isolated from arsenic-contaminated soil. It contained three distinct arsenic resistance gene clusters (ars operons), while no respiratory arsenate reductase gene (arr) was identified.

  15. Genome Sequence of Pseudomonas sp. Strain S9, an Extracellular Arylsulfatase-Producing Bacterium Isolated from Mangrove Soil ▿

    OpenAIRE

    Long, Mengxian; Ruan, Lingwei; Yu, Ziniu; Xu, Xun

    2011-01-01

    Pseudomonas sp. strain S9 was originally isolated from mangrove soil in Xiamen, China. It is an aerobic bacterium which shows extracellular arylsulfatase activity. Here, we describe the 4.8-Mb draft genome sequence of Pseudomonas sp. S9, which exhibits novel cysteine-type sulfatases.

  16. Complete Genome Sequence of Raoultella ornithinolytica Strain S12, a Lignin-Degrading Bacterium Isolated from Forest Soil

    OpenAIRE

    Bao, Wenying; Zhou, Yun; Jiang, Jingwei; Xu, Zhihui; Hou, Liyuan; Leung, Frederick Chi-Ching

    2015-01-01

    We report the complete genome sequence of Raoultella ornithinolytica strain S12, isolated from a soil sample collected from areas bordering rotten wood and wet soil on Mt. Zijin, Nanjing. The complete genome of this bacterium may contribute toward the discovery of efficient lignin-degrading pathways.

  17. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3.

    Science.gov (United States)

    Yamatsu, Atsushi; Matsumi, Rie; Atomi, Haruyuki; Imanaka, Tadayuki

    2006-10-01

    We have isolated a poly(vinyl alcohol) (PVA)-degrading bacterium from an activated sludge sample obtained from the drainage of a dyeing factory. Enrichment cultures were performed in media containing PVA as the sole or major carbon source. After several rounds of cultivation on liquid and solid media, we were able to isolate a single colony with PVA-degrading ability (strain PVA3). The bacterium could degrade PVA in the absence of symbionts or cofactors such as pyrroloquinoline quinone (PQQ). Over 90% of PVA, at an initial concentration of 0.1%, was degraded within a 6-day cultivation. Degradation was confirmed by both iodometric methods and gel permeation chromatography. Examination of the PVA attached to the cells revealed a large increase in carbonyl groups, suggesting the oxidation of hydroxyl groups of the polymer on the surfaces of cells. Addition of PQQ to the culture medium did not enhance the growth and the PVA-degrading rates of strain PVA3. Furthermore, we found that cells grown on PVA generated hydrogen peroxide upon the addition of PVA. The results strongly suggest that the initial oxidation of PVA is mediated via a PVA oxidase, and not a PQQ-dependent dehydrogenase. A biochemical and phylogenetic characterization of the bacterium was performed. The sequence of the 16S ribosomal RNA gene of the bacterium indicated a phylogenetic position of the strain within the genus Sphingopyxis, and the strain was therefore designated Sphingopyxis sp. PVA3. PMID:16583228

  18. The use of fluorescent probes to assess viability of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis by flow cytometry

    NARCIS (Netherlands)

    Chitarra, L.G.; Breeuwer, P.; Abee, T.; Bulk, van den R.W.

    2006-01-01

    Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter

  19. THE ENDOPHYTE CURTOBACTERIUM FLACCUMFACIENS REDUCES SYMPTOMS CAUSED BY XYLELLA FASTIDIOSA IN CATHARANTHUS ROSEUSAN ENDOPHYTIC BACTERIUM FROM CITRUS

    Science.gov (United States)

    Citrus variegated chlorosis (CVC) is a disease of sweet orange (Citrus sinensis (L.)) caused by Xylella fastidiosa subsp. pauca, a phytopathogenic bacterium that can infect all sweet orange cultivars. Sweet orange trees are sometimes observed to be infected by Xylella fastidiosa without showing seve...

  20. A Comparative biochemical study on two marine endophytes, Bacterium SRCnm and Bacillus sp. JS, Isolated from red sea algae.

    Science.gov (United States)

    Ahmed, Eman Fadl; Hassan, Hossam Mokhtar; Rateb, Mostafa Ezzat; Abdel-Wahab, Noha; Sameer, Somayah; Aly Taie, Hanan Anwar; Abdel-Hameed, Mohammed Sayed; Hammouda, Ola

    2016-01-01

    Two marine endophytic bacteria were isolated from the Red Sea algae; a red alga; Acanthophora dendroides and the brown alga Sargassum sabrepandum. The isolates were identified based on their 16SrRNA sequences as Bacterium SRCnm and Bacillus sp. JS. The objective of this study was to investigate the potential anti-microbial and antioxidant activities of the extracts of the isolated bacteria grown in different nutrient conditions. Compared to amoxicillin (25μg/disk) and erythromycin (15μg/disk), the extracts of Bacterium SRCn min media II, III, IV and V were potent inhibitors of the gram-positive bacterium Sarcina maxima even at low concentrations. Also, the multidrug resistant Staphylococcus aureus(MRSA) was more sensitive to the metabolites produced in medium (II) of the same endophyte than erythromycin (15μg/disk). A moderate activity of the Bacillus sp. JS extracts of media I and II was obtained against the same pathogen. The total compounds (500ug/ml) of both isolated endophytes showed moderate antioxidant activities (48.9% and 46.1%, respectively). LC/MS analysis of the bacterial extracts was carried out to investigate the likely natural products produced. Cyclo(D-cis-Hyp-L-Leu), dihydrosphingosine and 2-Amino-1,3-hexadecanediol were identified in the fermentation medium of Bacterium SRCnm, whereas cyclo (D-Pro-L-Tyr) and cyclo (L-Leu-L-Pro) were the suggested compounds of Bacillus sp. JS. PMID:26826831

  1. Draft Genome of Shewanella frigidimarina Ag06-30, a Marine Bacterium Isolated from Potter Peninsula, King George Island, Antarctica

    Science.gov (United States)

    Parmeciano Di Noto, Gisela; Vázquez, Susana C.; MacCormack, Walter P.; Iriarte, Andrés

    2016-01-01

    We present the draft genome of Shewanella frigidimarina Ag06-30, a marine bacterium from King George Island, Antarctica, which encodes the carbapenemase SFP-1. The assembly contains 4,799,218 bp (G+C content 41.24%). This strain harbors several mobile genetic elements that provide insight into lateral gene transfer and bacterial plasticity and evolution. PMID:27151790

  2. Upregulation of Intestinal Mucin Expression by the Probiotic Bacterium E. coli Nissle 1917.

    Science.gov (United States)

    Hafez, Mohamed M

    2012-06-01

    The probiotic E. coli Nissle 1917 (EcN) has been reported to have various health benefits; however, very little is known about their underlying mechanisms. In this regard, the present study aimed to elucidate the effect of the bacterium on mucin production by intestinal epithelial cells. Incubation of HT-29 cells with EcN lead to a contact time-dependent rise in mRNA levels of the MUC2, MUC3, MUC5AC, and MUC5A. The expression was markedly higher with MUC5AC gene. In most cases, MUC genes expression was more pronounced in polarized cells compared to non-polarized ones. In contrast to MUC3, the basal stimulation of polarized cells brought about markedly higher levels of other tested mucins. Similar but milder results were observed when living EcN was replaced by inactivated bacteria. With exception of MUC3, the conditioned media showed no significant effect on the mRNA level of the tested mucins. The above-mentioned mRNA results were confirmed on protein level using enzyme-linked lectin assay (ELLA) and enzyme-linked immunosorbant assay (ELISA). In contrast to other treatments, basal stimulation of polarized cells showed a growth phase-dependent MUC induction with more prominent effect by stationary-phase bacteria. In contrast to MUC 2 and MUC3, the induction of MUC5AC and MUC5B showed a bacterial count-dependent pattern. In conclusion, EcN was found to stimulate MUC gene expression in HT-29 intestinal cells. This stimulation was more distinct with polarized cells. Such observation may partially interpret some health benefits of the probiotic bacterium including antagonizing pathogen adhesion and protection of the intestinal mucosa. PMID:26781849

  3. Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum

    Directory of Open Access Journals (Sweden)

    ChristianeDahl

    2011-03-01

    Full Text Available In the purple sulfur bacterium Allochromatium vinosum, thiosulfate oxidation is strictly dependent on the presence of three periplasmic Sox proteins encoded by the soxBXAK and soxYZ genes. It is also well documented that proteins encoded in the dsr (dissimilatory sulfite reductase operon, dsrABEFHCMKLJOPNRS, are essential for the oxidation of sulfur that is stored intracellularly as an obligatory intermediate during the oxidation of thiosulfate and sulfide. Until recently, detailed knowledge about the regulation of the sox genes was not available. We started to fill this gap and show that these genes are expressed on a low constitutive level in A. vinosum in the absence of reduced sulfur compounds. Thiosulfate and possibly sulfide lead to an induction of sox gene transcription. Additional translational regulation was not apparent. Regulation of soxXAK is probably performed by a two-component system consisting of a multisensor histidine kinase and a regulator with proposed di-guanylate cyclase activity. Previous work already provided some information about regulation of the dsr genes encoding the second important sulfur-oxidizing enzyme system in the purple sulfur bacterium. The expression of most dsr genes was found to be at a low basal level in the absence of reduced sulfur compounds and enhanced in the presence of sulfide. In the present work, we focused on the role of DsrS, a protein encoded by the last gene of the dsr locus in A. vinosum. Transcriptional and translational gene fusion experiments suggest a participation of DsrS in the post-transcriptional control of the dsr operon. Characterization of an A. vinosum ΔdsrS mutant showed that the monomeric cytoplasmic 41.1 kDa protein DsrS is important though not essential for the oxidation of sulfur stored in the intracellular sulfur globules.

  4. Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress.

    Science.gov (United States)

    Chen, Yanmei; Chao, Yuanqing; Li, Yaying; Lin, Qingqi; Bai, Jun; Tang, Lu; Wang, Shizhong; Ying, Rongrong; Qiu, Rongliang

    2016-01-01

    Plant-associated bacteria are of great interest because of their potential use in phytoremediation. However, their ability to survive and promote plant growth in metal-polluted soils remains unclear. In this study, a soilborne Cd-resistant bacterium was isolated and identified as Enterobacter sp. strain EG16. It tolerates high external Cd concentrations (Cd(2+) MIC, >250 mg liter(-1)) and is able to produce siderophores and the plant hormone indole-3-acetic acid (IAA), both of which contribute to plant growth promotion. Surface biosorption in this strain accounted for 31% of the total Cd accumulated. The potential presence of cadmium sulfide, shown by energy-dispersive X-ray (EDX) analysis, suggested intracellular Cd binding as a Cd response mechanism of the isolate. Cd exposure resulted in global regulation at the transcriptomic level, with the bacterium switching to an energy-conserving mode by inhibiting energy-consuming processes while increasing the production of stress-related proteins. The stress response system included increased import of sulfur and iron, which become deficient under Cd stress, and the redirection of sulfur metabolism to the maintenance of intracellular glutathione levels in response to Cd toxicity. Increased production of siderophores, responding to Cd-induced Fe deficiency, not only is involved in the Cd stress response systems of EG16 but may also play an important role in promoting plant growth as well as alleviating the Cd-induced inhibition of IAA production. The newly isolated strain EG16 may be a suitable candidate for microbially assisted phytoremediation due to its high resistance to Cd and its Cd-induced siderophore production, which is likely to contribute to plant growth promotion. PMID:26729719

  5. Production of polyhydroxybutyrate by the marine photosynthetic bacterium Rhodovulum sulfidophilum P5

    Science.gov (United States)

    Cai, Jinling; Wei, Ying; Zhao, Yupeng; Pan, Guanghua; Wang, Guangce

    2012-07-01

    The effects of different NaCl concentrations, nitrogen sources, carbon sources, and carbon to nitrogen molar ratios on biomass accumulation and polyhydroxybutyrate (PHB) production were studied in batch cultures of the marine photosynthetic bacterium Rhodovulum sulfidophilum P5 under aerobic-dark conditions. The results show that the accumulation of PHB in strain P5 is a growth-associated process. Strain P5 had maximum biomass and PHB accumulation at 2%-3% NaCl, suggesting that the bacterium can maintain growth and potentially produce PHB at natural seawater salinity. In the nitrogen source test, the maximum biomass accumulation (8.10±0.09 g/L) and PHB production (1.11±0.13 g/L and 14.62%±2.2 of the cell dry weight) were observed when peptone and ammonium chloride were used as the sole nitrogen source. NH{4/+}-N was better for PHB production than other nitrogen sources. In the carbon source test, the maximum biomass concentration (7.65±0.05 g/L) was obtained with malic acid as the sole carbon source, whereas the maximum yield of PHB (5.03±0.18 g/L and 66.93%±1.69% of the cell dry weight) was obtained with sodium pyruvate as the sole carbon source. In the carbon to nitrogen ratios test, sodium pyruvate and ammonium chloride were selected as the carbon and nitrogen sources, respectively. The best carbon to nitrogen molar ratio for biomass accumulation (8.77±0.58 g/L) and PHB production (6.07±0.25 g/L and 69.25%±2.05% of the cell dry weight) was 25. The results provide valuable data on the production of PHB by R. sulfidophilum P5 and further studies are on-going for best cell growth and PHB yield.

  6. Lethal Effect on Bacterium of Decay of Incorporated Radioactive Atoms (3H, 14C, 32P)

    International Nuclear Information System (INIS)

    The biological effect of decay of 3H, 14C and 32P incorporated into a bacterium depends on the nature of the organic molecule labelled, on the position of the isotope within it and on the isotope itself. In sum, results obtained to date show that: The decay of 3H atoms incorporated into certain macromolecules of a bacterium causes sterilization through ionization by the ß- particle emitted; transmutation is of negligible importance. This self-irradiation is comparable in effect with X-rays and is affected in a similar manner by the same factors: temperature, presence of a radioprotector, radiosensitivity of the strain. Decay of 14C or 32P atoms incorporated into bacterial DNA is lethal because of the transmutation effect; ionizations produced by emitted ß- particles may be disregarded. Survival curves for 32P transmutations depend on the experimental conditions. Some of the results obtained with 32P are similar to those obtained with X-rays, e.g. effects of temperature, radical capture and oxygen, while others are similar to those of u.v. light, e.g., effect of growth conditions. Comparative tests made with 32P indicate that the recoil energy of transmutation is not the phenomenon responsible for the lethal effect observed. Comparison of the results obtained after X-irradiation or decay of 3H or 32P incorporated into the DNA of bacteria of the same strain of E. coli shows that the efficiency of a 32P transmutation is about four times greater than that of an ionization produced at random within the same DNA. (author)

  7. Metabolism of Kaempferia parviflora polymethoxyflavones by human intestinal bacterium Bautia sp. MRG-PMF1.

    Science.gov (United States)

    Kim, Mihyang; Kim, Nayoung; Han, Jaehong

    2014-12-24

    Poylmethoxyflavones (PMFs) are major bioactive flavonoids, which exhibit various biological activities, such as anticancer effects. The biotransformation of PMFs and characterization of a PMF-metabolizing human intestinal bacterium were studied herein for the first time. Hydrolysis of aryl methyl ether functional groups by human fecal samples was observed from the bioconversion of various PMFs. Activity-guided screening for PMF-metabolizing intestinal bacteria under anaerobic conditions resulted in the isolation of a strict anaerobic bacterium, which was identified as Blautia sp. MRG-PMF1. The isolated MRG-PMF1 was able to metabolize various PMFs to the corresponding demethylated flavones. The microbial conversion of bioactive 5,7-dimethoxyflavone (5,7-DMF) and 5,7,4'-trimethoxyflavone (5,7,4'-TMF) was studied in detail. 5,7-DMF and 5,7,4'-TMF were completely metabolized to 5,7-dihydroxyflavone (chrysin) and 5,7,4'-trihydroxyflavone (apigenin), respectively. From a kinetics study, the methoxy group on the flavone C-7 position was found to be preferentially hydrolyzed. 5-Methoxychrysin, the intermediate of 5,7-DMF metabolism by Blautia sp. MRG-PMF1, was isolated and characterized by nuclear magnetic resonance spectroscopy. Apigenin was produced from the sequential demethylation of 5,7,4'-TMF, via 5,4'-dimethoxy-7-hydroxyflavone and 7,4'-dihydroxy-5-methoxyflavone (thevetiaflavone). Not only demethylation activity but also deglycosylation activity was exhibited by Blautia sp. MRG-PMF1, and various flavonoids, including isoflavones, flavones, and flavanones, were found to be metabolized to the corresponding aglycones. The unprecedented PMF demethylation activity of Blautia sp. MRG-PMF1 will expand our understanding of flavonoid metabolism in the human intestine and lead to novel bioactive compounds. PMID:25437273

  8. Co-metabolism of DDT by the newly isolated bacterium, Pseudoxanthomonas sp. wax

    Directory of Open Access Journals (Sweden)

    Guangli Wang

    2010-06-01

    Full Text Available Microbial degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenylethane (DDT is the most promising way to clean up DDT residues found in the environment. In this paper, a bacterium designated as wax, which was capable of co-metabolizing DDT with other carbon sources, was isolated from a long-term DDT-contaminated soil sample by an enrichment culture technique. The new isolate was identified as a member of the Pseudoxanthomonas sp., based on its morphological, physiological and biochemical properties, as well as by 16S rRNA gene analysis. In the presence of 100 mg l-1 glucose, the wax strain could degrade over 95% of the total DDT, at a concentration of 20 mg l-1, in 72 hours, and could degrade over 60% of the total DDT, at a concentration of 100 mg l-1, in 144 hours. The wax strain had the highest degradation efficiency among all of the documented DDT-degrading bacteria. The wax strain could efficiently degrade DDT at temperatures ranging from 20 to 37ºC, and with initial pH values ranging from 7 to 9. The bacterium could also simultaneously co-metabolize 1,1-dichloro-2,2-bis(p-chlorophenylethane (DDD, 2,2-bis(p-chlorophenyl-1,1-dichlorethylene (DDE, and other organochlorine compounds. The wax strain could also completely remove 20 mg kg-1 of DDT from both sterile and non-sterile soils in 20 days. This study demonstrates the significant potential use of Pseudoxanthomonas sp. wax for the bioremediation of DDT in the environment.

  9. Genome sequence of the pattern forming Paenibacillus vortex bacterium reveals potential for thriving in complex environments

    Directory of Open Access Journals (Sweden)

    Leshkowitz Dena

    2010-12-01

    Full Text Available Abstract Background The pattern-forming bacterium Paenibacillus vortex is notable for its advanced social behavior, which is reflected in development of colonies with highly intricate architectures. Prior to this study, only two other Paenibacillus species (Paenibacillus sp. JDR-2 and Paenibacillus larvae have been sequenced. However, no genomic data is available on the Paenibacillus species with pattern-forming and complex social motility. Here we report the de novo genome sequence of this Gram-positive, soil-dwelling, sporulating bacterium. Results The complete P. vortex genome was sequenced by a hybrid approach using 454 Life Sciences and Illumina, achieving a total of 289× coverage, with 99.8% sequence identity between the two methods. The sequencing results were validated using a custom designed Agilent microarray expression chip which represented the coding and the non-coding regions. Analysis of the P. vortex genome revealed 6,437 open reading frames (ORFs and 73 non-coding RNA genes. Comparative genomic analysis with 500 complete bacterial genomes revealed exceptionally high number of two-component system (TCS genes, transcription factors (TFs, transport and defense related genes. Additionally, we have identified genes involved in the production of antimicrobial compounds and extracellular degrading enzymes. Conclusions These findings suggest that P. vortex has advanced faculties to perceive and react to a wide range of signaling molecules and environmental conditions, which could be associated with its ability to reconfigure and replicate complex colony architectures. Additionally, P. vortex is likely to serve as a rich source of genes important for agricultural, medical and industrial applications and it has the potential to advance the study of social microbiology within Gram-positive bacteria.

  10. Isolation and characterization of a radiation resistant thermophilic bacterium from radon hot spring

    International Nuclear Information System (INIS)

    A radiation resistant and thermophilic bacterium strain R4-33 was isolated from radon hot spring water samples, pretreated with 60Co γ-rays and UV irradiation. Tests on morphological, physiological and biochemical characters, fatty acid compositions, (G + C) mol% contents, and 16S rDNA sequencing were conducted. The results showed that strain R4-33 was of rod-shape, Gram-negative, atrichous, and endospore-forming. The optimum growth temperature and pH were 60 ℃ and 7.5, respectively. The strain utilized glucose, maltose and trehalose as carbon sources, and hydrolyzed casein and starch. Its catalase positive. The strain was sensitive to penicillin, neomycin, erythromycin, vancomycin, streptomycin, gentamycin, amikacin and ampicillin. The major cellular fatty acids were C14:1 (48.8%) and C15:1 (15.2%). The (G + C) mol% content of DNA was 58.2%. Phylogenetic tree based on 16S rDNA sequence showed R4-33 shared highly similarity to those of species in genus Anoxybacillus, especially to that of Anoxybacillus gonensis (99.5%). Based on the above, the strain R4-33 was proposed to the evolution branch of Anoxybacillus and designated as Anoxybacillu sp. R4-33. The UV and γ-radiation tests showed that the strain R4-33 had an ability of resistance to UV of 396 J/m2 and 60Co γ-rays irradiation of 14.0 kGy, indicating that the strain was a radiation resistant and thermophilic bacterium. (authors)

  11. Genome Sequence of the Plant Growth Promoting Endophytic Bacterium Enterobacter sp. 638

    Energy Technology Data Exchange (ETDEWEB)

    Taghavi, S.; van der Lelie, D.; Hoffman, A.; Zhang, Y.-B.; Walla, M. D.; Vangronsveld, J.; Newman, L.; Monchy, S.

    2010-05-13

    Enterobacter sp. 638 is an endophytic plant growth promoting gamma-proteobacterium that was isolated from the stem of poplar (Populus trichocarpa x deltoides cv. H11-11), a potentially important biofuel feed stock plant. The Enterobacter sp. 638 genome sequence reveals the presence of a 4,518,712 bp chromosome and a 157,749 bp plasmid (pENT638-1). Genome annotation and comparative genomics allowed the identification of an extended set of genes specific to the plant niche adaptation of this bacterium. This includes genes that code for putative proteins involved in survival in the rhizosphere (to cope with oxidative stress or uptake of nutrients released by plant roots), root adhesion (pili, adhesion, hemagglutinin, cellulose biosynthesis), colonization/establishment inside the plant (chemiotaxis, flagella, cellobiose phosphorylase), plant protection against fungal and bacterial infections (siderophore production and synthesis of the antimicrobial compounds 4-hydroxybenzoate and 2-phenylethanol), and improved poplar growth and development through the production of the phytohormones indole acetic acid, acetoin, and 2,3-butanediol. Metabolite analysis confirmed by quantitative RT-PCR showed that, the production of acetoin and 2,3-butanediol is induced by the presence of sucrose in the growth medium. Interestingly, both the genetic determinants required for sucrose metabolism and the synthesis of acetoin and 2,3-butanediol are clustered on a genomic island. These findings point to a close interaction between Enterobacter sp. 638 and its poplar host, where the availability of sucrose, a major plant sugar, affects the synthesis of plant growth promoting phytohormones by the endophytic bacterium. The availability of the genome sequence, combined with metabolome and transcriptome analysis, will provide a better understanding of the synergistic interactions between poplar and its growth promoting endophyte Enterobacter sp. 638. This information can be further exploited to

  12. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium

    Directory of Open Access Journals (Sweden)

    Ma YF

    2013-06-01

    Full Text Available Yufan Ma,1 Zhao Wang,1,2 Wen Zhao,1 Tingli Lu,1 Rutao Wang,1,2 Qibing Mei,1 Tao Chen1–3 1Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, People's Republic of China; 2Shaanxi Liposome Research Center, Xi'an, Shaanxi, People's Republic of China; 3Xi'an Libang Pharmaceuticals Co, Ltd, Xi'an, People's Republic of China Background: Pseudomonas aeruginosa represents a good model of antibiotic resistance. These organisms have an outer membrane with a low level of permeability to drugs that is often combined with multidrug efflux pumps, enzymatic inactivation of the drug, or alteration of its molecular target. The acute and growing problem of antibiotic resistance of Pseudomonas to conventional antibiotics made it imperative to develop new liposome formulations to overcome these mechanisms, and investigate the fusion between liposome and bacterium. Methods: The rigidity, stability and charge properties of phospholipid vesicles were modified by varying the cholesterol, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE, and negatively charged lipids 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol sodium salt (DMPG, 1,2-dimyristoyl-sn-glycero-3-phopho-L-serine sodium salt (DMPS, 1,2-dimyristoyl-sn-glycero-3-phosphate monosodium salt (DMPA, nature phosphatidylserine sodium salt from brain and nature phosphatidylinositol sodium salt from soybean concentrations in liposomes. Liposomal fusion with intact bacteria was monitored using a lipid-mixing assay. Results: It was discovered that the fluid liposomes-bacterium fusion is not dependent on liposomal size and lamellarity. A similar degree of fusion was observed for liposomes with a particle size from 100 to 800 nm. The fluidity of liposomes is an essential pre-request for liposomes fusion with bacteria. Fusion was almost completely inhibited by incorporation of cholesterol into fluid liposomes. The increase in the

  13. Computational prediction of essential genes in an unculturable endosymbiotic bacterium, Wolbachia of Brugia malayi

    Directory of Open Access Journals (Sweden)

    Carlow Clotilde KS

    2009-11-01

    Full Text Available Abstract Background Wolbachia (wBm is an obligate endosymbiotic bacterium of Brugia malayi, a parasitic filarial nematode of humans and one of the causative agents of lymphatic filariasis. There is a pressing need for new drugs against filarial parasites, such as B. malayi. As wBm is required for B. malayi development and fertility, targeting wBm is a promising approach. However, the lifecycle of neither B. malayi nor wBm can be maintained in vitro. To facilitate selection of potential drug targets we computationally ranked the wBm genome based on confidence that a particular gene is essential for the survival of the bacterium. Results wBm protein sequences were aligned using BLAST to the Database of Essential Genes (DEG version 5.2, a collection of 5,260 experimentally identified essential genes in 15 bacterial strains. A confidence score, the Multiple Hit Score (MHS, was developed to predict each wBm gene's essentiality based on the top alignments to essential genes in each bacterial strain. This method was validated using a jackknife methodology to test the ability to recover known essential genes in a control genome. A second estimation of essentiality, the Gene Conservation Score (GCS, was calculated on the basis of phyletic conservation of genes across Wolbachia's parent order Rickettsiales. Clusters of orthologous genes were predicted within the 27 currently available complete genomes. Druggability of wBm proteins was predicted by alignment to a database of protein targets of known compounds. Conclusion Ranking wBm genes by either MHS or GCS predicts and prioritizes potentially essential genes. Comparison of the MHS to GCS produces quadrants representing four types of predictions: those with high confidence of essentiality by both methods (245 genes, those highly conserved across Rickettsiales (299 genes, those similar to distant essential genes (8 genes, and those with low confidence of essentiality (253 genes. These data facilitate

  14. A Novel Treatment Protects Chlorella at Commercial Scale from the Predatory Bacterium Vampirovibrio chlorellavorus.

    Science.gov (United States)

    Ganuza, Eneko; Sellers, Charles E; Bennett, Braden W; Lyons, Eric M; Carney, Laura T

    2016-01-01

    The predatory bacterium, Vampirovibrio chlorellavorus, can destroy a Chlorella culture in just a few days, rendering an otherwise robust algal crop into a discolored suspension of empty cell walls. Chlorella is used as a benchmark for open pond cultivation due to its fast growth. In nature, V. chlorellavorus plays an ecological role by controlling this widespread terrestrial and freshwater microalga, but it can have a devastating effect when it attacks large commercial ponds. We discovered that V. chlorellavorus was associated with the collapse of four pilot commercial-scale (130,000 L volume) open-pond reactors. Routine microscopy revealed the distinctive pattern of V. chlorellavorus attachment to the algal cells, followed by algal cell clumping, culture discoloration and ultimately, growth decline. The "crash" of the algal culture coincided with increasing proportions of 16s rRNA sequencing reads assigned to V. chlorellavorus. We designed a qPCR assay to predict an impending culture crash and developed a novel treatment to control the bacterium. We found that (1) Chlorella growth was not affected by a 15 min exposure to pH 3.5 in the presence of 0.5 g/L acetate, when titrated with hydrochloric acid and (2) this treatment had a bactericidal effect on the culture (2-log decrease in aerobic counts). Therefore, when qPCR results indicated a rise in V. chlorellavorus amplicons, we found that the pH-shock treatment prevented the culture crash and doubled the productive longevity of the culture. Furthermore, the treatment could be repeatedly applied to the same culture, at the beginning of at least two sequential batch cycles. In this case, the treatment was applied preventively, further increasing the longevity of the open pond culture. In summary, the treatment reversed the infection of V. chlorellavorus as confirmed by observations of bacterial attachment to Chlorella cells and by detection of V. chlorellavorus by 16s rRNA sequencing and qPCR assay. The p

  15. Sphaerotilus natans, a neutrophilic iron-related filamentous bacterium : mechanisms of uranium scavenging

    International Nuclear Information System (INIS)

    Heavy metals and radionuclides are present in some ecosystems worldwide due to natural contaminations or anthropogenic activities. The use of microorganisms to restore those polluted ecosystems, a process known as bioremediation, is of increasing interest, especially under near-neutral pH conditions. Iron minerals encrusting neutrophilic iron-related bacteria, especially Bacterio-genic Iron Oxides (BIOS), have a poorly crystalline structure, which in addition to their large surface area and reactivity make them excellent scavengers for inorganic pollutants. In this PhD work we studied the different mechanisms of uranium scavenging by the neutrophilic bacterium Sphaerotilus natans, chosen as a model bacterium for iron-related sheath-forming filamentous microorganisms. S. natans can grow as single cells and filaments. The latter were used to investigate U(VI) bio-sorption and U(VI) sorption onto BIOS. In addition, uranium sorption onto the abiotic analogues of such iron minerals was assessed. In order to use S. natans filaments for U(VI) scavenging, it was necessary to identify factors inducing S. natans filamentation. The influence of oxygen was ascertained by using molecular biology techniques and our results revealed that while saturated oxygen conditions resulted in single cell growth, a moderate oxygen depletion to ∼ 3 mg O2.L-1 led to the desired filamentous growth of S. natans. BIOS attached to S. natans filaments as well as the abiotic analogues were analysed by XAS at Fe K-edge. Both materials were identified as amorphous iron(III) phosphates with a small component of Fe(II), with a high reactivity towards scavenging of inorganic pollutants. In addition, EXAFS at the U LIII-edge revealed a common structure for the O shells, while those for P, Fe and C were different for each sorbent. An integrated approach combining experimental techniques and speciation calculations made it possible to describe U(VI) adsorption isotherms by using a surface complexation

  16. Halomonas urumqiensis sp. nov., a moderately halophilic bacterium isolated from a saline-alkaline lake.

    Science.gov (United States)

    Zhang, Shanshan; Pan, Jiao; Lu, Weidong; Yan, Yanchun; Wang, Haisheng; Wiegel, Jurgen; Zhao, Baisuo

    2016-05-01

    A moderately halophilic, aerobic bacterium, strain BZ-SZ-XJ27T, belonging to the genus Halomonas, was isolated from a saline-alkaline lake in the Xinjiang Uyghur Autonomous Region of China. Phylogenetic analysis based on 16S rRNA gene sequences and a multilocus sequence analysis using the 16S rRNA, gyrB and rpoD genes demonstrated that strain BZ-SZ-XJ27T represents a member of the genus Halomonas. On the basis of 16S rRNA gene sequence similarity, the closest relatives were Halomonas campaniensis 5AGT, H. fontilapidosi 5CRT, H. korlensis XK1T and H. sinaiensis ALO SharmT, with similarities of 96.2-97.2 %. DNA-DNA hybridization with H. korlensis CGMCC 1.6981T (the nearest phylogenetic neighbour) and H. campaniensis DSM 15293T (the highest 16S rRNA gene sequence similarity) showed relatedness values of 53 and 38 %, respectively, demonstrating the separateness of the three taxa. The bacterium stained Gram-negative and the cells were motile and rod-shaped. The strain formed creamy-white colonies and grew under optimal conditions of 1.42 M Na+ (range 0.22-4.32 M Na+), pH 8.0-8.5 (range pH 6.0-10.0) and 39 °C (range 4-43 °C). The dominant fatty acids were summed feature 8 (C18 : 1ω7c/C18 : 1ω6c; 36.6 %), C16 : 0 (25.9 %) and summed feature 3 (C16 : 1ω7c/C16 : 1ω6c; 21.2 %). The dominant polar lipids were two unknown phospholipids, phosphatidylethanolamine and phosphatidylglycerol, and the main respiratory quinones were ubiquinone 9 (Q-9; 89 %) and ubiquinone 8 (Q-8; 10 %). The genomic DNA G+C content was 61.7 ± 0.8 mol% (Tm). On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain BZ-SZ-XJ27T is proposed to represent a novel species, Halomonas urumqiensis sp. nov., within the genus Halomonas of the family Halomonadaceae. The type strain is BZ-SZ-XJ27T ( = JCM 30202T = CGMCC 1.12917T). PMID:26873696

  17. Sequencing and characterization of the xyl operon of a gram-positive bacterium, Tetragenococcus halophila.

    Science.gov (United States)

    Takeda, Y; Takase, K; Yamato, I; Abe, K

    1998-07-01

    The xyl operon of a gram-positive bacterium, Tetragenococcus halophila (previously called Pediococcus halophilus), was cloned and sequenced. The DNA was about 7.7 kb long and contained genes for a ribose binding protein and part of a ribose transporter, xylR (a putative regulatory gene), and the xyl operon, along with its regulatory region and transcription termination signal, in this order. The DNA was AT rich, the GC content being 35.8%, consistent with the GC content of this gram-positive bacterium. The xyl operon consisted of three genes, xylA, encoding a xylose isomerase, xylB, encoding a xylulose kinase, and xylE, encoding a xylose transporter, with predicted molecular weights of 49,400, 56,400, and 51,600, respectively. The deduced amino acid sequences of the XylR, XylA, XylB, and XylE proteins were similar to those of the corresponding proteins in other gram-positive and -negative bacteria, the similarities being 37 to 64%. Each polypeptide of XylB and XylE was expressed functionally in Escherichia coli. XylE transported D-xylose in a sodium ion-dependent manner, suggesting that it is the first described xylose/Na+ symporter. The XylR protein contained a consensus sequence for binding catabolites of glucose, such as glucose-6-phosphate, which has been discovered in glucose and fructose kinases in bacteria. Correspondingly, the regulatory region of this operon contained a putative binding site of XylR with a palindromic structure. Furthermore, it contained a consensus sequence, CRE (catabolite-responsive element), for binding CcpA (catabolite control protein A). We speculate that the transcriptional regulation of this operon resembles the regulation of catabolite-repressible operons such as the amy, lev, xyl, and gnt operons in various gram-positive bacteria. We discuss the significance of the regulation of gene expression of this operon in T. halophila. PMID:9647823

  18. Complete genome sequence of the filamentous anoxygenic phototrophic bacterium Chloroflexus aurantiacus

    Directory of Open Access Journals (Sweden)

    Larimer Frank W

    2011-06-01

    Full Text Available Abstract Background Chloroflexus aurantiacus is a thermophilic filamentous anoxygenic phototrophic (FAP bacterium, and can grow phototrophically under anaerobic conditions or chemotrophically under aerobic and dark conditions. According to 16S rRNA analysis, Chloroflexi species are the earliest branching bacteria capable of photosynthesis, and Cfl. aurantiacus has been long regarded as a key organism to resolve the obscurity of the origin and early evolution of photosynthesis. Cfl. aurantiacus contains a chimeric photosystem that comprises some characters of green sulfur bacteria and purple photosynthetic bacteria, and also has some unique electron transport proteins compared to other photosynthetic bacteria. Methods The complete genomic sequence of Cfl. aurantiacus has been determined, analyzed and compared to the genomes of other photosynthetic bacteria. Results Abundant genomic evidence suggests that there have been numerous gene adaptations/replacements in Cfl. aurantiacus to facilitate life under both anaerobic and aerobic conditions, including duplicate genes and gene clusters for the alternative complex III (ACIII, auracyanin and NADH:quinone oxidoreductase; and several aerobic/anaerobic enzyme pairs in central carbon metabolism and tetrapyrroles and nucleic acids biosynthesis. Overall, genomic information is consistent with a high tolerance for oxygen that has been reported in the growth of Cfl. aurantiacus. Genes for the chimeric photosystem, photosynthetic electron transport chain, the 3-hydroxypropionate autotrophic carbon fixation cycle, CO2-anaplerotic pathways, glyoxylate cycle, and sulfur reduction pathway are present. The central carbon metabolism and sulfur assimilation pathways in Cfl. aurantiacus are discussed. Some features of the Cfl. aurantiacus genome are compared with those of the Roseiflexus castenholzii genome. Roseiflexus castenholzii is a recently characterized FAP bacterium and phylogenetically closely related to Cfl

  19. Identification of a cyclic-di-GMP-modulating response regulator that impacts biofilm formation in a model sulfate reducing bacterium

    Directory of Open Access Journals (Sweden)

    AindrilaMukhopadhyay

    2014-07-01

    Full Text Available We surveyed the eight putative cyclic-di-GMP-modulating response regulators (RRs in Desulfovibrio vulgaris Hildenborough that are predicted to function via two-component signaling. Using purified proteins, we examined cyclic-di-GMP production or turnover in vitro of all eight proteins. The two RRs containing only GGDEF domains (DVU2067, DVU0636 demonstrated cyclic-di-GMP production activity in vitro. Of the remaining proteins, three RRs with HD-GYP domains (DVU0722, DVUA0086 and DVU2933 were confirmed to be Mn2+ dependent phosphodiesterases in vitro and converted cyclic-di-GMP to its linear form, pGpG. DVU0408, containing both cyclic-di-GMP production (GGDEF and degradation domains (EAL, showed cyclic-di-GMP turnover activity in vitro also with production of pGpG. No cyclic-di-GMP related activity could be assigned to the RR DVU0330, containing a metal-dependent phosphohydrolase HD-OD domain, or to the HD-GYP domain RR, DVU1181. Studies included examining the impact of overexpressed cyclic-di-GMP-modulating RRs in the heterologous host E. coli and led to the identification of one RR, DVU0636, with increased cellulose production. Evaluation of a transposon mutant in DVU0636 indicated that the strain was impaired in biofilm formation and demonstrated an altered carbohydrate:protein ratio relative to the D. vulgaris wild type biofilms. However, grown in liquid lactate/sulfate medium, the DVU0636 transposon mutant showed no growth impairment relative to the wild-type strain. Among the eight candidates, only the transposon disruption mutant in the DVU2067 RR presented a growth defect in liquid culture. Our results indicate that, of the two diguanylate cyclases that function as part of two-component signaling, DVU0636 plays an important role in biofilm formation while the function of DVU2067 has pertinence in planktonic growth.

  20. Draft genome sequence of Bacillus okhensis Kh10-101T, a halo-alkali tolerant bacterium from Indian saltpan

    Directory of Open Access Journals (Sweden)

    Pilla Sankara Krishna

    2015-12-01

    Full Text Available We report the 4.86-Mb draft genome sequence of Bacillus okhensis strain Kh10-101T, a halo-alkali tolerant rod shaped bacterium isolated from a salt pan near port of Okha, India. This bacterium is a potential model to study the molecular response of bacteria to salt as well as alkaline stress, as it thrives under both high salt and high pH conditions. The draft genome consist of 4,865,284 bp with 38.2% G + C, 4952 predicted CDS, 157 tRNAs and 8 rRNAs. Sequence was deposited at DDBJ/EMBL/GenBank under the project accession JRJU00000000.

  1. Isolation and characterization of Bacillus subtilis EB-28, an endophytic bacterium strain displaying biocontrol activity against Botrytis cinerea Pers

    Institute of Scientific and Technical Information of China (English)

    Shutong WANG; Tongle HU; Yanling JIAO; Jianjian WEI; Keqiang CAO

    2009-01-01

    The fungal pathogen Botrytis cinerea Pers. causes severe rotting on tomato fruits during storage and shelf life. As a biological control agent, endophytic bacterium was regarded as an effective alternative to chemical control. Out of 238 endophytic bacterial isolates, three strains (EB-15, EB-28, and EB-122) isolated from Lycopersicum esculentum Mill., Speranskia tuberculata (Bge.) Baill, and Dictamnus dasycarpus Turcz. respectively were found to be strongly antagonistic to the pathogen in vitro and were selected for further in vivo tests. One endophytic bacterium strain, encoded EB-28, was selected from the three in vivo tested isolates. The inhibitive rate of EB-28 reached 71.1% in vitro and 52.4% in vivo. EB-28 was identified as Bacillus subtilis according to its morphological, physiological, and biochemical characteristics and 16S rDNA sequence analysis.

  2. Isolation and characterization of endophytic bacterium LRE07 from cadmium hyperaccumulator Solanum nigrum L. and its potential for remediation.

    Science.gov (United States)

    Luo, Shenglian; Wan, Yong; Xiao, Xiao; Guo, Hanjun; Chen, Liang; Xi, Qiang; Zeng, Guangming; Liu, Chengbin; Chen, Jueliang

    2011-03-01

    Valuable endophytic strains facilitating plants growth and detoxification of heavy metals are required because the application of plant-endophyte symbiotic system is a promising potential technique to improve efficiency of phytoremediation. In this study, endophytic bacterium LRE07 was isolated from cadmium hyperaccumulator Solanum nigrum L. It was identified as Serratia sp. by 16S rRNA sequence analysis. The endophytic bacterium LRE07 was resistant to the toxic effects of heavy metals, solubilized mineral phosphate, and produced indoleacetic acid and siderophore. The heavy metal detoxification was studied in growing LRE07 cells. The strain bound over 65% of cadmium and 35% of zinc in its growing cells from single metal solutions 72 h after inoculation. Besides the high removal efficiencies in single-ion system, an analogous removal phenomenon was also observed in multi-ions system, indicating that the endophyte possesses specific and remarkable heavy metal remediation abilities. PMID:20953602

  3. Interaction between the bacterium Pseudomonas fluorescens and vermiculite: Effects on chemical, mineralogical, and mechanical properties of vermiculite

    Science.gov (United States)

    Müller, Barbara; DéFago, GenèVieve

    2006-06-01

    On an expanded and crushed vermiculite, changes in chemical, mineralogical, and rheological properties of the mineral affected by microbial activity were investigated. Determination of the water content, grain size, X-ray diffraction pattern, intercrystalline swelling with glycerol, layer charge, CEC, exchangeable cations, BET surface, and rheology provided the necessary information about the differences between pure vermiculite, vermiculite suspensions containing the nutrient medium, and vermiculite suspensions containing the nutrient medium and the bacterium Pseudomonas fluorescens strain CHA0. The aerobic bacterium Pseudomonas fluorescens causes a decrease in grain size, aggregation of vermiculite grains as evidenced by smaller BET surfaces, and enhanced viscosity of the bacteria containing slurries. Layer charge, intercrystalline swelling, and CEC were not affected by the microbial activity, nor did the bacteria count for the exchange of potassium and magnesium against sodium in the vermiculite. The microbes inhibited this exchange process during the first stage of the experiments; however, increasing run time favors the exchange as well.

  4. Complete genome sequence of the complex carbohydrate-degrading marine bacterium, Saccharophagus degradans strain 2-40 T.

    Directory of Open Access Journals (Sweden)

    Ronald M Weiner

    2008-05-01

    Full Text Available The marine bacterium Saccharophagus degradans strain 2-40 (Sde 2-40 is emerging as a vanguard of a recently discovered group of marine and estuarine bacteria that recycles complex polysaccharides. We report its complete genome sequence, analysis of which identifies an unusually large number of enzymes that degrade >10 complex polysaccharides. Not only is this an extraordinary range of catabolic capability, many of the enzymes exhibit unusual architecture including novel combinations of catalytic and substrate-binding modules. We hypothesize that many of these features are adaptations that facilitate depolymerization of complex polysaccharides in the marine environment. This is the first sequenced genome of a marine bacterium that can degrade plant cell walls, an important component of the carbon cycle that is not well-characterized in the marine environment.

  5. Abscesses associated with a Brucella inopinata-like bacterium in a big-eyed tree frog (Leptopelis vermiculatus).

    Science.gov (United States)

    Fischer, Dominik; Lorenz, Nadja; Heuser, Wenke; Kämpfer, Peter; Scholz, Holger C; Lierz, Michael

    2012-09-01

    A 4-yr-old big-eyed tree frog (Leptopelis vermiculatus) was submitted with two pea-sized (4-mm diameter), firm, and painful masses on the right side of its back. The two abscess-like masses were surgically opened, and a whitish-yellow pasty content was removed. A Brucella inopinata-like bacterium was obtained in pure culture and was resistant against ampicillin and tylosin but sensitive to the 8 other antibiotics tested. The organism was identified by polymerase chain reaction and sequencing of the 16S ribosomal ribonucleic acid (acc. no. HE608873) and recA (acc. no. HE608874) genes after preliminary misidentification as Ochrobactrum anthropi when using a commercial identification system. To the authors' knowledge, a B. inopinata-like bacterium has not been reported previously in amphibians. The organism is a potential human pathogen and may present a risk for people handling amphibians. PMID:23082529

  6. Microbial selenite reduction with organic carbon and electrode as sole electron donor by a bacterium isolated from domestic wastewater.

    Science.gov (United States)

    Nguyen, Van Khanh; Park, Younghyun; Yu, Jaecheul; Lee, Taeho

    2016-07-01

    Selenium is said to be multifaceted element because it is essential at a low concentration but very toxic at an elevated level. For the purpose of screening a potential microorganism for selenite bioremediation, we isolated a bacterium, named strain THL1, which could perform both heterotrophic selenite reduction, using organic carbons such as acetate, lactate, propionate, and butyrate as electron donors under microaerobic condition, and electrotrophic selenite reduction, using an electrode polarized at -0.3V (vs. standard hydrogen electrode) as the sole electron donor under anaerobic condition. This bacterium determined to be a new strain of the genus Cronobacter, could remove selenite with an efficiency of up to 100%. This study is the first demonstration on a pure culture could take up electrons from an electrode to perform selenite reduction. The selenium nanoparticles produced by microbial selenite reduction might be considered for recovery and use in the nanotechnology industry. PMID:27099943

  7. DNA cloning, characterization, and inhibition studies of an α-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Isik, Semra; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Scozzafava, Andrea; Supuran, Claudiu T; Capasso, Clemente

    2012-12-13

    We have cloned, purified, and characterized an α-carbonic anhydrase (CA, EC 4.2.1.1) from the human pathogenic bacterium Vibrio cholerae, VchCA. The new enzyme has significant catalytic activity, and an inhibition study with sulfonamides and sulfamates led to the detection of a large number of low nanomolar inhibitors, among which are methazolamide, acetazolamide, ethoxzolamide, dorzolamide, brinzolamide, benzolamide, and indisulam (KI values in the range 0.69-8.1 nM). As bicarbonate is a virulence factor of this bacterium and since ethoxzolamide was shown to inhibit the in vivo virulence, we propose that VchCA may be a target for antibiotic development, exploiting a mechanism of action rarely considered until now. PMID:23181552

  8. Microbial Oxidation of Hg(0) - Its Effect on Hg Stable Isotope Fractionation and Methylmercury Production

    Energy Technology Data Exchange (ETDEWEB)

    Yee, Nathan [Rutgers Univ., New Brunswick, NJ (United States); Barkay, Tamar [Rutgers Univ., New Brunswick, NJ (United States); Reinfelder, John [Rutgers Univ., New Brunswick, NJ (United States)

    2016-06-28

    Mercury (Hg) associated with mixed waste generated by nuclear weapons manufacturing has contaminated vast areas of the Oak Ridge Reservation (ORR). Neurotoxic methylmercury (MeHg) has been formed from the inorganic Hg wastes discharged into headwaters of East Fork Poplar Creek (EFPC). Thus, understanding the processes and mechanisms that lead to Hg methylation along the flow path of EFPC is critical to predicting the impacts of the contamination and the design of remedial action at the ORR. In part I of our project, we investigated Hg(0) oxidation and methylation by anaerobic bacteria. We discovered that the anaerobic bacterium Desulfovibrio desulfuricans ND132 can oxidize elemental mercury [Hg(0)]. When provided with dissolved elemental mercury, D. desulfuricans ND132 converts Hg(0) to Hg(II) and neurotoxic methylmercury [MeHg]. We also demonstrated that diverse species of subsurface bacteria oxidizes dissolved elemental mercury under anoxic conditions. The obligate anaerobic bacterium Geothrix fermentans H5, and the facultative anaerobic bacteria Shewanella oneidensis MR-1 and Cupriavidus metallidurans AE104 can oxidize Hg(0) to Hg(II) under anaerobic conditions. In part II of our project, we established anaerobic enrichment cultures and obtained new bacterial strains from the DOE Oak Ridge site. We isolated three new bacterial strains from subsurface sediments collected from Oak Ridge. These isolates are Bradyrhizobium sp. strain FRC01, Clostridium sp. strain FGH, and a novel Negativicutes strain RU4. Strain RU4 is a completely new genus and species of bacteria. We also demonstrated that syntrophic interactions between fermentative bacteria and sulfate-reducing bacteria in Oak Ridge saprolite mediate iron reduction via multiple mechanisms. Finally, we tested the impact of Hg on denitrification in nitrate reducing enrichment cultures derived from subsurface sediments from the Oak Ridge site, where nitrate is a major contaminant. We showed that there is an inverse

  9. Decolourization of 4-chloro-2-nitrophenol by a soil bacterium, Bacillus subtilis RKJ 700.

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    Full Text Available A 4-Chloro-2-nitrophenol (4C2NP decolourizing strain RKJ 700 was isolated from soil collected from a pesticide contaminated site of India and identified as Bacillus subtilis on the basis of the 16S rRNA gene sequence analysis. Bacillus subtilis RKJ 700 decolourized 4C2NP up to concentration of 1.5 mM in the presence of additional carbon source. The degradation pathway of 4C2NP was studied and 4-chloro-2-aminophenol, 4-chloro-2-acetaminophenol and 5-chloro-2-methylbenzoxazole (5C2MBZ were identified as metabolites by high performance liquid chromatography and gas chromatography-mass spectrometry. Resting cell studies showed that Bacillus subtilis RKJ 700 depleted 4C2NP completely with stoichiometric formation of 5C2MBZ. This is the first report of (i the degradation of 4C2NP at high concentration (1.5 mM and, (ii the formation of 5C2MBZ by a soil bacterium.

  10. Synergism between gamma and ultrasonic irradiation of the bacterium E. coli. B

    International Nuclear Information System (INIS)

    Using simple and conventional culture techniques for the bacterium E.Coli.B synergism between independently lethal doses of ultrasonic and cobalt-60 gamma irradiation is established by comparing the observed surviving fractions for sequential irradiations with the values expected from independent measurements. The effects on gamma irradiation of three different preliminary doses of ultrasonic irradiation at 13 kHz, which independently yield surviving fractions of the order of 0.5, 0.05 and 0.005, are investigated by measuring at various gamma ray surviving fractions, down to 0.001, the relative sensitivity of sonicated and non-sonicated samples. The results of these investigations indicate two things: pre-sonicated samples are relatively more sensitive than non-treated samples by a factor which increases with the magnitude of the ultrasonic dose; the relative sensitivity of samples with identical presonication doses decreases with increasing gamma ray dose, ie in simple terms a shouldered survival curve becomes less shouldered following presonication. Gamma ray dosimetry was performed by the Fricke method and ultrasonic dosimetry by measuring the initial rate of increase in temperature. This thermometric method of ultrasonic dosimetry also permitted an investigation into the temperature behavior of the samples during sonication and from these measurements the authors deduce that the observed synergism cannot be explained in terms of the heating effect reported to be of critical importance in previously observed synergism between non-lethal ultrasonic doses and X-rays

  11. Sulfonamide inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Del Prete, Sonia; Vullo, Daniela; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Osman, Sameh M; AlOthman, Zeid; Supuran, Claudiu T; Capasso, Clemente

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. VchCA, the α-CA from this species was investigated earlier, whereas the β-class enzyme, VchCAβ was recently cloned, characterized kinetically and its X-ray crystal structure reported by this group. Here we report an inhibition study with sulfonamides and one sulfamate of this enzyme. The best VchCAβ inhibitors were deacetylated acetazolamide and methazolamide and hydrochlorothiazide, which showed inhibition constants of 68.2-87.0nM. Other compounds, with medium potency against VchCAβ, (KIs in the range of 275-463nM), were sulfanilamide, metanilamide, sulthiame and saccharin whereas the clinically used agents such as acetazolamide, methazolamide, ethoxzolamide, dorzolamide, zonisamide and celecoxib were micromolar inhibitors (KIs in the range of 4.51-8.57μM). Identification of potent and possibly selective inhibitors of VchCA and VchCAβ over the human CA isoforms, may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzymes. PMID:26850377

  12. Anion inhibition studies of the β-carbonic anhydrase from the pathogenic bacterium Vibrio cholerae.

    Science.gov (United States)

    Vullo, Daniela; Del Prete, Sonia; De Luca, Viviana; Carginale, Vincenzo; Ferraroni, Marta; Dedeoglu, Nurcan; Osman, Sameh M; AlOthman, Zeid; Capasso, Clemente; Supuran, Claudiu T

    2016-03-01

    The genome of the pathogenic bacterium Vibrio cholerae encodes for three carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the α-, β- and γ-classes. Here we report and anion inhibition study of the β-CA, VchCAβ with anions and other small molecules which inhibit metalloenzymes. The best VchCAβ anion inhibitors were sulfamide, sulfamate, phenylboronic acid and phenylarsonic acid, which showed KIs in the range of 54-86μM. Diethyldithiocarbonate was also an effective VchCAβ inhibitor, with an inhibition constant of 0.73mM. The halides, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrate, nitrite, stannate, selenate, tellurate, divanadate, tetraborate, perrhenate, perruthenate, peroxydisulfate, selenocyanide, trithiocarbonate, and fluorosulfonate showed affinity in the low millimolar range, with KIs of 2.3-9.5mM. Identification of selective inhibitors of VchCAβ (over the human CA isoforms) may lead to pharmacological tools useful for understanding the physiological role(s) of this under-investigated enzyme. PMID:26853167

  13. Rhodobase, a meta-analytical tool for reconstructing gene regulatory networks in a model photosynthetic bacterium.

    Science.gov (United States)

    Moskvin, Oleg V; Bolotin, Dmitry; Wang, Andrew; Ivanov, Pavel S; Gomelsky, Mark

    2011-02-01

    We present Rhodobase, a web-based meta-analytical tool for analysis of transcriptional regulation in a model anoxygenic photosynthetic bacterium, Rhodobacter sphaeroides. The gene association meta-analysis is based on the pooled data from 100 of R. sphaeroides whole-genome DNA microarrays. Gene-centric regulatory networks were visualized using the StarNet approach (Jupiter, D.C., VanBuren, V., 2008. A visual data mining tool that facilitates reconstruction of transcription regulatory networks. PLoS ONE 3, e1717) with several modifications. We developed a means to identify and visualize operons and superoperons. We designed a framework for the cross-genome search for transcription factor binding sites that takes into account high GC-content and oligonucleotide usage profile characteristic of the R. sphaeroides genome. To facilitate reconstruction of directional relationships between co-regulated genes, we screened upstream sequences (-400 to +20bp from start codons) of all genes for putative binding sites of bacterial transcription factors using a self-optimizing search method developed here. To test performance of the meta-analysis tools and transcription factor site predictions, we reconstructed selected nodes of the R. sphaeroides transcription factor-centric regulatory matrix. The test revealed regulatory relationships that correlate well with the experimentally derived data. The database of transcriptional profile correlations, the network visualization engine and the optimized search engine for transcription factor binding sites analysis are available at http://rhodobase.org. PMID:21070832

  14. Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium.

    Science.gov (United States)

    Takekawa, Norihiro; Nishiyama, Masayoshi; Kaneseki, Tsuyoshi; Kanai, Tamotsu; Atomi, Haruyuki; Kojima, Seiji; Homma, Michio

    2015-01-01

    Aquifex aeolicus is a hyperthermophilic, hydrogen-oxidizing and carbon-fixing bacterium that can grow at temperatures up to 95 °C. A. aeolicus has an almost complete set of flagellar genes that are conserved in bacteria. Here we observed that A. aeolicus has polar flagellum and can swim with a speed of 90 μm s(-1) at 85 °C. We expressed the A. aeolicus mot genes (motA and motB), which encode the torque generating stator proteins of the flagellar motor, in a corresponding mot nonmotile mutant of Escherichia coli. Its motility was slightly recovered by expression of A. aeolicus MotA and chimeric MotB whose periplasmic region was replaced with that of E. coli. A point mutation in the A. aeolicus MotA cytoplasmic region remarkably enhanced the motility. Using this system in E. coli, we demonstrate that the A. aeolicus motor is driven by Na(+). As motor proteins from hyperthermophilic bacteria represent the earliest motor proteins in evolution, this study strongly suggests that ancient bacteria used Na(+) for energy coupling of the flagellar motor. The Na(+)-driven flagellar genes might have been laterally transferred from early-branched bacteria into late-branched bacteria and the interaction surfaces of the stator and rotor seem not to change in evolution. PMID:26244427

  15. The complete genome sequence of the plant growth-promoting bacterium Pseudomonas sp. UW4.

    Science.gov (United States)

    Duan, Jin; Jiang, Wei; Cheng, Zhenyu; Heikkila, John J; Glick, Bernard R

    2013-01-01

    The plant growth-promoting bacterium (PGPB) Pseudomonas sp. UW4, previously isolated from the rhizosphere of common reeds growing on the campus of the University of Waterloo, promotes plant growth in the presence of different environmental stresses, such as flooding, high concentrations of salt, cold, heavy metals, drought and phytopathogens. In this work, the genome sequence of UW4 was obtained by pyrosequencing and the gaps between the contigs were closed by directed PCR. The P. sp. UW4 genome contains a single circular chromosome that is 6,183,388 bp with a 60.05% G+C content. The bacterial genome contains 5,423 predicted protein-coding sequences that occupy 87.2% of the genome. Nineteen genomic islands (GIs) were predicted and thirty one complete putative insertion sequences were identified. Genes potentially involved in plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, trehalose production, siderophore production, acetoin synthesis, and phosphate solubilization were determined. Moreover, genes that contribute to the environmental fitness of UW4 were also observed including genes responsible for heavy metal resistance such as nickel, copper, cadmium, zinc, molybdate, cobalt, arsenate, and chromate. Whole-genome comparison with other completely sequenced Pseudomonas strains and phylogeny of four concatenated "housekeeping" genes (16S rRNA, gyrB, rpoB and rpoD) of 128 Pseudomonas strains revealed that UW4 belongs to the fluorescens group, jessenii subgroup. PMID:23516524

  16. Rapid, specific and quantitative assays for the detection of the endophytic bacterium Methylobacterium mesophilicum in plants.

    Science.gov (United States)

    Lacava, P T; Li, W B; Araújo, W L; Azevedo, J L; Hartung, J S

    2006-06-01

    Xylella fastidiosa is a xylem-limited bacterium that causes citrus variegated chlorosis disease in sweet orange. There is evidence that X. fastidiosa interacts with endophytic bacteria present in the xylem of sweet orange, and that these interactions, particularly with Methylobacterium mesophilicum, may affect disease progress. However, these interactions cannot be evaluated in detail until efficient methods for detection and enumeration of these bacteria in planta are developed. We have previously developed standard and quantitative PCR-based assays specific for X. fastidiosa using the LightCycler system [Li, W.B., Pria Jr., L.P.M.W.D., X. Qin, and J.S. Hartung, 2003. Presence of Xylella fastidiosa in sweet orange fruit and seeds and its transmission to seedlings. Phytopathology 93:953-958.], and now report the development of both standard and quantitative PCR assays for M. mesophilicum. The assays are specific for M. mesophilicum and do not amplify DNA from other species of Methylobacterium or other bacteria commonly associated with citrus or plant tissue. Other bacteria tested included Curtobacterium flaccumfaciens, Pantoea agglomerans, Enterobacter cloacae, Bacillus sp., X. fastidiosa, Xanthomonas axonopodis pv. citri, and Candidatus Liberibacter asiaticus. We have demonstrated that with these methods we can quantitatively monitor the colonization of xylem by M. mesophilicum during the course of disease development in plants artificially inoculated with both bacteria. PMID:16266765

  17. Degradation of γ-irradiated cellulose by the accumulating culture of a cellulose bacterium

    International Nuclear Information System (INIS)

    Possibility of degradation of γ-irradiated cellulose by the accumulating culture of an anaerobic cellulose bacterium has been investigated. Cellulose irradiation by γ-quanta (Co60) has been carried out using the RKh-30 device with 35.9 Gy/min dose rate. Radiation monitoring has been carried out by the standard ferrosulfate method. Samples have been irradiated in dry state or when water presenting with MGy. It is detected that the accumulating culture with the growth on the irradiated cellulose has a lag-phase, which duration reduces when the cellulose cleaning by flushing with distillation water. The culture has higher growth and substrate consumption rate when growing by cellulose irradiated in comparison with non-irradiated one. The economical coefficient is the same in using both the irradiated and non-irradiated cellulose. The quantity of forming reducing saccharides, organic acids, methane and carbon dioxide is the same both when cultivating by irradiated cellulose and by non-irradiated. pH of the culture liquid is shifted to the acid nature in the process of growth

  18. Identification a Novel Raw-Starch-Degrading-α-Amylase from a Tropical Marine Bacterium

    Directory of Open Access Journals (Sweden)

    Zeily Nurachman

    2010-01-01

    Full Text Available Problem statement: Bacteria from the surface of the tropical marine hard coral Acropora sp. were screened for producing raw-starch-degrading-á-amylase. Approach: Based on its 16s rDNA sequence, a bacterium that produced the highest amylolitic activity was identified as Bacillus amyloliquifaciens ABBD. The bacterial isolate secreted a á-amylase extracellularly and then the enzyme was partially purified by ammonium sulfate precipitation followed by anion exchange chromatography. Results: Electrophoresis results both SDS-PAGE and native PAGE suggested that the enzyme was a heterodimeric protein (97 kDa consisting of 45 and 55 kDa subunits. The á-amylase had an optimum pH of 7.0 and temperature of 60°C. More than 80% activity of the enzyme was retained under high salt conditions (up to 20% NaCl. The enzyme remained stable at 50°C for 1 h. Starch hydrolysis by the enzyme at 70°C yielded oligosaccharides (G2-G4 and at room temperature yielded glucose/maltose (G1 and G2. Conclusion: The B. amyloliquifaciens ABBD á-amylase was capable of degrading various raw starch granules from corn, rice, cassava and sago at room temperature.

  19. A mycorrhiza helper bacterium enhances ectomycorrhizal and endomycorrhizal symbiosis of Australian Acacia species.

    Science.gov (United States)

    Duponnois, R; Plenchette, C

    2003-04-01

    The aims of this study were to test the effects of a mycorrhiza helper bacterium (MHB), Pseudomonas monteilii strain HR13 on the mycorrhization of (1) an Australian Acacia, A. holosericea, by several ectomycorrhizal fungi or one endomycorrhizal fungus Glomus intraradices, and (2) several Australian Acacia species by Pisolithus alba strain IR100 under glasshouse conditions. Bacterial inoculant HR13 significantly promoted ectomycorrhizal colonization for all the Acacia species, from 45.8% ( A. mangium) to 70.3% ( A. auriculiformis). A stimulating effect of HR13 on the ectomycorrhizal establishment was recorded with all the fungal isolates (strains of Pisolithus and Scleroderma). The same effect of bacteria on the frequency of endomycorrhizal colonization of A. holosericea seedlings by G. intraradices with vesicles and hyphae frequencies was recorded. The stimulation of saprophytic fungal growth by MHB is usually the main mechanism that could explain this bacterial effect on mycorrhizal establishment. MHB could stimulate the production of phenolic compounds such as hypaphorine and increase the aggressiveness of the fungal symbiont. However, no significant effect of MHB on fungal growth was recorded with Scleroderma isolates under axenic conditions but positive bacterial effects were observed with Pisolithus strains. From a practical viewpoint, it appears that MHB could stimulate the mycorrhizal colonization of Australian Acacia species with ectomycorrhizal or endomycorrhizal fungi, and could also facilitate controlled mycorrhization in nursery practices where Acacia species are grown for forestation purposes. PMID:12682830

  20. Molecular cloning and characterization of a new peptide deformylase from human pathogenic bacterium Helicobacter pylori

    International Nuclear Information System (INIS)

    Helicobacter pylori is a gram-negative pathogenic bacterium, which is associated with peptic ulcer disease and gastric cancer. It is urgent to discover novel drug targets for appropriate antimicrobial agents against this human pathogen. In bacteria, peptide deformylase (PDF) catalyzes the removal of a formyl group from the N-termini of nascent polypeptides. Due to its essentiality and absence in mammalian cells, PDF has been considered as an attractive target for the discovery of novel antibiotics. In this work, a new PDF gene (def) from H. pylori strain SS1 was cloned, expressed, and purified in Escherichia coli system. Sequence alignment shows that H. pylori PDF (HpPDF) shares about 40% identity to E. coli PDF (EcPDF). The enzymatic properties of HpPDF demonstrate its relatively high activity toward formyl-Met-Ala-Ser, with Kcat of 3.4 s-1, Km of 1.7 mM, and Kcat/Km of 2000 M-1 s-1. HpPDF enzyme appears to be fully active at pH between 8.0 and 9.0, and temperature 50 deg. C. The enzyme activity of Co2+-containing HpPDF is apparently higher than that of Zn2+-containing HpPDF. This present work thereby supplies a potential platform that facilitates the discovery of novel HpPDF inhibitors and further of possible antimicrobial agents against H. pylori