WorldWideScience

Sample records for bacterium bacillus subtilis

  1. Five new amicoumacins isolated from a marine-derived Bacterium bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2012-02-03

    Four novel amicoumacins, namely lipoamicoumacins A-D (1-4), and one new bacilosarcin analog (5) were isolated from culture broth of a marine-derived bacterium Bacillus subtilis, together with six known amicoumacins. Their structures were elucidated on the basis of extensive spectroscopic (2D NNR, IR, CD and MS) analysis and in comparison with data in literature. 2012 by the authors; licensee MDPI.

  2. Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403.

    Science.gov (United States)

    Chakraborty, Kajal; Thilakan, Bini; Raola, Vamshi Krishna

    2017-10-01

    Brown seaweed Anthophycus longifolius (Turner) Kützing (family Sargassaceae) associated heterotrophic bacterium Bacillus subtilis MTCC 10403 was found to be a potent isolate with broad range of antibacterial activity against important perceptive food pathogens Vibrio parahaemolyticus, V. vulnificus, and Aeromonas hydrophila. This bacterium was positive for polyketide synthetase gene (KC589397), and therefore, was selected to bioprospect specialized metabolites bearing polyketide backbone. Bioactivity-guided chromatographic fractionation of the ethyl acetate extract of the seaweed-associated bacterium segregated four homologous polyketide furanoterpenoids with potential antibacterial activities against clinically important pathogens. The minimum inhibitory concentration (MIC) assay showed that the referral antibiotics tetracycline and ampicillin were active at 25 μg/mL against the test pathogens, whereas the previously undescribed (4E)-methyl 13-((16-(furan-2-yl) ethyl)-octahydro-7-hydroxy-4-((E)-23-methylbut-21-enyl)-2H-chromen-6-yl)-4-methylpent-4-enoate (compound 1) and methyl 3-(hexahydro-9-((E)-3-methylpent-1-enyl)-4H-furo[3,2-g]isochromen-6-yl) propanoate (compound 3) displayed antibacterial activities against the test pathogens at a lesser concentration (MIC Polyketide synthase catalyzed putative biosynthetic mechanism additionally corroborated the structural ascriptions of the hitherto undescribed furanoterpenoids from seaweed-associated bacterial symbiont. The electronic and hydrophobic parameters appeared to hold a conspicuous part in directing the antibacterial properties of the compounds. Seaweed-associated B. subtilis MTCC 10403 demonstrated to represent a potential source of antimicrobial polyketides for pharmaceutical applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Bacillus subtilis

    Science.gov (United States)

    Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian

    2017-04-28

    Intestinal epithelial cells are the targets for transmissible gastroenteritis (TGE) virus (TGEV) infection. It is urgent to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotic with excellent anti-microorganism properties and one of its secretions, surfactin, has been regarded as a versatile weapon for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that B. subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose-dependent manner. Meanwhile, after incubation with TGEV for 1.5 h, B. subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of B. subtilis was closely related to the competition with TGEV for the viral entry receptors, including epidermal growth factor receptor (EGFR) and aminopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that B. subtilis could enhance the resistance of IPEC-J2 cells by up-regulating the expression of toll-like receptor (TLR)-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that B. subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention. © 2017 The Author(s).

  4. Biodegradation of Pollutants from Winery wastewater by Using Fungi Aspergillus fumigatus and Bacterium Bacillus subtilis

    OpenAIRE

    , C.S. Mahajan; , D.V. Patil; , D.B. Sarode; , R.N. Jadhav; , S.B. Attarde

    2012-01-01

    Aspergillus fumigatus was used as fungal strain and Bacillus subtilis was used as bacterial species for the biodegradation of winery wastewater pollutants. The fungal strain and bacterial species was allowed to grow on PDA and NA slant. Loop full of both fungal and bacterial culture was inoculated and incubated at room temperature for 7 days. After the incubation the sample was filtered and analyzed for the chemical characteristics to verify the degradation capacity of both species,after trea...

  5. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    Science.gov (United States)

    Li, Yongxin; Li, Zhongrui; Yamanaka, Kazuya; Xu, Ying; Zhang, Weipeng; Vlamakis, Hera; Kolter, Roberto; Moore, Bradley S.; Qian, Pei-Yuan

    2015-03-01

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning ``plug-and-play'' approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  6. Directed natural product biosynthesis gene cluster capture and expression in the model bacterium Bacillus subtilis

    KAUST Repository

    Li, Yongxin

    2015-03-24

    Bacilli are ubiquitous low G+C environmental Gram-positive bacteria that produce a wide assortment of specialized small molecules. Although their natural product biosynthetic potential is high, robust molecular tools to support the heterologous expression of large biosynthetic gene clusters in Bacillus hosts are rare. Herein we adapt transformation-associated recombination (TAR) in yeast to design a single genomic capture and expression vector for antibiotic production in Bacillus subtilis. After validating this direct cloning plug-and-playa approach with surfactin, we genetically interrogated amicoumacin biosynthetic gene cluster from the marine isolate Bacillus subtilis 1779. Its heterologous expression allowed us to explore an unusual maturation process involving the N-acyl-asparagine pro-drug intermediates preamicoumacins, which are hydrolyzed by the asparagine-specific peptidase into the active component amicoumacin A. This work represents the first direct cloning based heterologous expression of natural products in the model organism B. subtilis and paves the way to the development of future genome mining efforts in this genus.

  7. Formulations of the endophytic bacterium Bacillus subtilis Tu-100 suppress Sclerotinia sclerotiorum on oilseed rape and improve plant vigor in field trials conducted at separate locations

    Science.gov (United States)

    Sclerotinia sclerotiorum causes serious yield losses in crops in The People’s Republic of China. Two formulations of oilseed rape seed containing the endophytic bacterium Bacillus subtilis Tu-100 were evaluated for suppression of this pathogen in field trials conducted at two independent locations....

  8. Biosurfactant and Degradative Enzymes Mediated Crude Oil Degradation by Bacterium Bacillus subtilis A1

    Science.gov (United States)

    Parthipan, Punniyakotti; Preetham, Elumalai; Machuca, Laura L.; Rahman, Pattanathu K. S. M.; Murugan, Kadarkarai; Rajasekar, Aruliah

    2017-01-01

    In this work, the biodegradation of the crude oil by the potential biosurfactant producing Bacillus subtilis A1 was investigated. The isolate had the ability to synthesize degradative enzymes such as alkane hydroxylase and alcohol dehydrogenase at the time of biodegradation of hydrocarbon. The biosurfactant producing conditions were optimized as pH 7.0, temperature 40°C, 2% sucrose and 3% of yeast extract as best carbon and nitrogen sources for maximum production of biosurfactant (4.85 g l-1). Specifically, the low molecular weight compounds, i.e., C10–C14 were completely degraded, while C15–C19 were degraded up to 97% from the total hydrocarbon pools. Overall crude oil degradation efficiency of the strain A1 was about 87% within a short period of time (7 days). The accumulated biosurfactant from the biodegradation medium was characterized to be lipopeptide in nature. The strain A1 was found to be more robust than other reported biosurfactant producing bacteria in degradation efficiency of crude oil due to their enzyme production capability and therefore can be used to remove the hydrocarbon pollutants from contaminated environment. PMID:28232826

  9. Microbial genotyping and differentiating between Bacillus mojavensis and Bacillus subtilis

    Science.gov (United States)

    Bacillus mojavensis, a specie recently distinguished from its previous Bacillus subtilis classification, was discovered in corn kernels and later determined to possess endophytic character. The bacterium was also determined to have biocontrol potential due to its growth inhibition of the maize mycot...

  10. Essential Bacillus subtilis genes

    NARCIS (Netherlands)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.; Amati, G.; Andersen, K.K.; Arnaud, M.; Asai, K.; Ashikaga, S.; Aymerich, S.; Bessieres, P.; Boland, F.; Brignell, S.C.; Bron, S; Bunai, K.; Chapuis, J; Christiansen, L.C.; Danchin, A.; Debarbouille, M.; Dervyn, E.; Deuerling, E.; Devine, K.; Devine, S.K.; Dreesen, O.; Errington, J.; Fillinger, S.; Foster, S.J.; Fujita, Y.; Galizzi, A.; Gardan, R.; Eschevins, C.; Fukushima, T.; Haga, K.; Harwood, C.R; Hecker, M.; Hosoya, D.; Hullo, M.F.; Kakeshita, H.; Karamata, D.; Kasahara, Y.; Kawamura, F.; Koga, K.; Koski, P.; Kuwana, R.; Imamura, D.; Ishimaru, M.; Ishikawa, S.; Ishio, I.; Le Coq, D.; Masson, A.; Mauel, C.; Meima, Roelf; Mellado, R.P.; Moir, A.; Moriya, S.; Nagakawa, E.; Nanamiya, H.; Nakai, S.; Nygaard, P.; Ogura, M.; Ohanan, T.; O'Reilly, M.; O'Rourke, M.; Pragai, Z.; Pooley, H.M.; Rapoport, G.; Rawlins, J.P.; Rivas, L.A.; Rivolta, C.; Sadaie, A.; Sadaie, Y.; Sarvas, M; Sato, T.; Saxild, H.H.; Scanlan, E.; Schumann, W; Seegers, J.F. M. L.; Sekiguchi, J.; Sekowska, A.; Seror, S.J.; Simon, M.; Stragier, P.; Studer, R.; Takamatsu, H.; Tanaka, T.; Takeuchi, M.; Thomaides, H.B.; Vagner, V.; van Dijl, J.M.; Watabe, K.; Wipat, A; Yamamoto, H.; Yamamoto, M.; Yamamoto, Y.; Yamane, K.; Yata, K.; Yoshida, K.; Yoshikawa, H.; Zuber, U.; Ogasawara, N.; Ishio, [No Value

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were

  11. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    OpenAIRE

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in...

  12. Taxonomy Icon Data: Bacillus subtilis [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available g Bacillus_subtilis_S.png Bacillus_subtilis_NS.png http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus...+subtilis&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Bacillus+subtilis&t=NL http://biosciencedbc.jp/taxonom...y_icon/icon.cgi?i=Bacillus+subtilis&t=S http://biosciencedbc.jp/taxonomy..._icon/icon.cgi?i=Bacillus+subtilis&t=NS http://togodb.biosciencedbc.jp/togodb/view/taxonomy_icon_comment_en?species_id=214 ...

  13. Extracellular Vesicles Produced by the Gram-positive Bacterium Bacillus subtilis are Disrupted by the Lipopeptide Surfactin

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L.; Casadevall, Arturo

    2014-01-01

    Summary Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harboring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. PMID:24826903

  14. Extracellular vesicles produced by the Gram-positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin.

    Science.gov (United States)

    Brown, Lisa; Kessler, Anne; Cabezas-Sanchez, Pablo; Luque-Garcia, Jose L; Casadevall, Arturo

    2014-07-01

    Previously, extracellular vesicle production in Gram-positive bacteria was dismissed due to the absence of an outer membrane, where Gram-negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram-positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harbouring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram-positive bacteria. We also identify a new mechanism of action for surfactin. © 2014 John Wiley & Sons Ltd.

  15. Essential Bacillus subtilis genes

    DEFF Research Database (Denmark)

    Kobayashi, K.; Ehrlich, S.D.; Albertini, A.

    2003-01-01

    To estimate the minimal gene set required to sustain bacterial life in nutritious conditions, we carried out a systematic inactivation of Bacillus subtilis genes. Among approximate to4,100 genes of the organism, only 192 were shown to be indispensable by this or previous work. Another 79 genes were...... predicted to be essential. The vast majority of essential genes were categorized in relatively few domains of cell metabolism, with about half involved in information processing, one-fifth involved in the synthesis of cell envelope and the determination of cell shape and division, and one-tenth related...... to cell energetics. Only 4% of essential genes encode unknown functions. Most essential genes are present throughout a wide range of Bacteria, and almost 70% can also be found in Archaea and Eucarya. However, essential genes related to cell envelope, shape, division, and respiration tend to be lost from...

  16. Complete Genome Sequence of Bacillus subtilis BSn5, an Endophytic Bacterium of Amorphophallus konjac with Antimicrobial Activity for the Plant Pathogen Erwinia carotovora subsp. carotovora ▿

    OpenAIRE

    Deng, Yun; Zhu, Yiguang; Wang, Pengxia; Zhu, Lei; Zheng, Jinshui; Li, Rong; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2011-01-01

    Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.

  17. Complete Genome Sequence of Bacillus subtilis BSn5, an Endophytic Bacterium of Amorphophallus konjac with Antimicrobial Activity for the Plant Pathogen Erwinia carotovora subsp. carotovora ▿

    Science.gov (United States)

    Deng, Yun; Zhu, Yiguang; Wang, Pengxia; Zhu, Lei; Zheng, Jinshui; Li, Rong; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2011-01-01

    Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism. PMID:21317323

  18. Complete genome sequence of Bacillus subtilis BSn5, an endophytic bacterium of Amorphophallus konjac with antimicrobial activity for the plant pathogen Erwinia carotovora subsp. carotovora.

    Science.gov (United States)

    Deng, Yun; Zhu, Yiguang; Wang, Pengxia; Zhu, Lei; Zheng, Jinshui; Li, Rong; Ruan, Lifang; Peng, Donghai; Sun, Ming

    2011-04-01

    Here, we present the complete genome sequence of Bacillus subtilis strain BSn5, isolated from Amorphophallus konjac calli tissue and showing strong inhibitory activity to Erwinia carotovora subsp. carotovora, which causes Amorphophallus soft rot disease and affects the industry development of this organism.

  19. On the binding of BODIPY-GTP by the photosensory protein YtvA from the common soil bacterium Bacillus subtilis

    NARCIS (Netherlands)

    Nakasone, Y.; Hellingwerf, K.J.

    2011-01-01

    The YtvA protein, which is one of the proteins that comprises the network carrying out the signal transfer inducing the general stress response in Bacillus subtilis, is composed of an N-terminal LOV domain (that binds a flavin [FMN]) and a C-terminal STAS domain. This latter domain shows sequence

  20. The signal peptidase II (lsp) gene of Bacillus subtilis

    NARCIS (Netherlands)

    Pragai, Z; Tjalsma, H; Bolhuis, A; vanDijl, JM; Venema, G; Bron, S

    The gene encoding the type II signal peptidase (SPase III) of Bacillus subtilis was isolated by screening a genomic DNA library of this bacterium for the ability of increase the levels of globomycin resistance in Escherichia coli, and to complement the growth deficiency at the non-permissive

  1. Bacillus subtilis Biosensor Engineered To Assess Meat Spoilage

    NARCIS (Netherlands)

    Daszczuk, Alicja; Dessalegne, Yonathan; Drenth, Ismael; Hendriks, Elbrich; Jo, Emeraldo; van Lente, Tom; Oldebesten, Arjan; Parrish, Jonathon; Poljakova, Wlada; Purwanto, Annisa A.; van Raaphorst, Renske; Boonstra, Mirjam; van Heel, Auke; Herber, Martijn; van der Meulen, Sjoerd; Siebring, Jeroen; Sorg, Robin A.; Heinemann, Matthias; Kuipers, Oscar P.; Veening, Jan-Willem

    2014-01-01

    Here, we developed a cell-based biosensor that can assess meat freshness using the Gram-positive model bacterium Bacillus subtilis as a chassis. Using transcriptome analysis, we identified promoters that are specifically activated by volatiles released from spoiled meat. The most strongly activated

  2. Genome Sequencing of Bacillus subtilis SC-8, Antagonistic to the Bacillus cereus Group, Isolated from Traditional Korean Fermented-Soybean Food

    OpenAIRE

    Yeo, In-Cheol; Lee, Nam Keun; Hahm, Young Tae

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.

  3. Genome sequencing of Bacillus subtilis SC-8, antagonistic to the Bacillus cereus group, isolated from traditional Korean fermented-soybean food.

    Science.gov (United States)

    Yeo, In-Cheol; Lee, Nam Keun; Hahm, Young Tae

    2012-01-01

    Bacillus subtilis SC-8 is a Gram-positive bacterium displaying narrow antagonistic activity for the Bacillus cereus group. B. subtilis SC-8 was isolated from Korean traditional fermented-soybean food. Here we report the draft genome sequence of B. subtilis SC-8, including biosynthetic genes for antibiotics that may have beneficial effects for control of food-borne pathogens.

  4. Modeling the acid-base properties of bacterial surfaces: A combined spectroscopic and potentiometric study of the gram-positive bacterium Bacillus subtilis.

    Science.gov (United States)

    Leone, Laura; Ferri, Diego; Manfredi, Carla; Persson, Per; Shchukarev, Andrei; Sjöberg, Staffan; Loring, John

    2007-09-15

    In this study, macroscopic and spectroscopic data were combined to develop a surface complexation model that describes the acid-base properties of Bacillus subtilis. The bacteria were freeze-dried and then resuspended in 0.1 M NaCl ionic medium. Macroscopic measurements included potentiometric acid-base titrations and electrophoretic mobility measurements. In addition, ATR-FTIR spectra of wet pastes from suspensions of Bacillus subtilis at different pH values were collected. The least-squares program MAGPIE was used to generate a surface complexation model that takes into account the presence of three acid-base sites on the surface: tripple bond COOH, tripple bond NH+, and tripple bond PO-, which were identified previously by XPS measurements. Both potentiometric titration data and ATR-FTIR spectra were used quantitatively, and electrostatic effects at the charged bacterial surface were accounted for using the constant capacitance model. The model was calculated using two different approaches: in the first one XPS data were used to constrain the ratio of the total concentrations of all three surface sites. The capacitance of the double layer, the total buffer capacity, and the deprotonation constants of the tripple bond NH+, tripple bond POH, and tripple bond COOH species were determined in the fit. A second approach is presented in which the ratio determined by XPS of the total concentrations of tripple bond NH+ to tripple bond PO- sites is relaxed. The total concentration of tripple bond PO- sites was determined in the fit, while the deprotonation constant for tripple bond POH was manually varied until the minimization led to a model which predicted an isoelectric point that resulted in consistency with electrophoretic mobility data. The model explains well the buffering capacity of Bacillus subtilis suspensions in a wide pH range (between pH=3 and pH=9) which is of considerable environmental interest. In particular, a similar quantitative use of the IR data

  5. Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis

    NARCIS (Netherlands)

    Veening, JW; Hamoen, LW; Kuipers, OP

    Spore formation in the Gram- positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate

  6. High-Salinity Growth Conditions Promote Tat-Independent Secretion of Tat Substrates in Bacillus subtilis

    NARCIS (Netherlands)

    van der Ploeg, Rene; Monteferrante, Carmine G.; Piersma, Sjouke; Barnett, James P.; Kouwen, Thijs R. H. M.; Robinson, Colin; van Dijl, Jan Maarten

    2012-01-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins,

  7. Isolation, identification and characterization of novel Bacillus subtilis.

    Science.gov (United States)

    Lu, Zhenxiang; Guo, Weina; Liu, Chang

    2018-03-24

    In this study, we have identified a bacterium that can inhibit the growth of Staphylococcus aureus, and further analyzed its antibacterial activity and other biological characteristics and laid the foundation for its future application. Through isolation and culture of the unknown bacteria, the culture characteristics, morphology observation, biochemical test, preliminary antibacterial test, 16S rRNA PCR amplification, sequence analysis, and homology analysis were performed. It was found that the bacteria are Gram positive spore chain Bacillus. The bacteria could only ferment glucose for acid production, but could not utilize lactose and maltose. The VP test for this bacteria was positive, while indole and methyl red tests were negative. Further analysis showed that these bacteria shared a homology up to 99.4% with Bacillus subtilis DQ198162.1. Thus, this newly identified bacterium was classified as Bacillus subtilis. Importantly, the crude bacteriocin of this Bacillus subtilis could inhibit the growth of Staphylococcus aureus, Escherichia coli, Enterococcus and Salmonella, which implies its potential usage in the future.

  8. Isolation and characterization of Bacillus subtilis strain BY-3, a thermophilic and efficient cellulase-producing bacterium on untreated plant biomass.

    Science.gov (United States)

    Meng, F; Ma, L; Ji, S; Yang, W; Cao, B

    2014-09-01

    Bioconversion of biomass, particularly crop wastes, into biofuels is being developed as an alternative approach in meeting the high energy demand. In this study, a thermophilic bacterial strain BY-3 that exhibits cellulolytic potential was isolated from faecal samples of Tibetan pigs; this strain was identified as Bacillus subtilis. The strain can produce cellulase when grown on various substrates, including carboxymethyl cellulose, rice straw, corn stover, soluble starch and wheat bran. The maximum cellulase activity of the strain was up to 4·323 ± 0·065 U ml(-1) when cultivated in the medium containing corn stover (30 g l(-1) ) for 24 h. The results demonstrated that corn stover is the most suitable substrate for cellulase production by the strain BY-3. The crude cellulase of strain BY-3 was most active at pH 5·5 and 60°C, and the enzyme in acetate buffer (50 mmol l(-1) ) demonstrated a good stability at 60°C for at least 1 h. The crude cellulase exhibited a strong antibacterial activity against Staphylococcus aureus. The strain can be used in cost-efficient cellulase production for bioconversion of agricultural residual biomass into biofuels. The increased consumption of fossil fuels has caused serious energy crisis and environmental problem. Thus, an alternative energy source is necessary. Bioconversion of biomass, particularly agricultural residuals, into value-added bioproducts, such as biofuels and chemical solvents, has received considerable attention. In this study, the newly isolated thermophilic Bacillus subtilis strain BY-3 produces cellulase efficiently with the use of untreated corn stover as a sole carbon source. This strain possesses the thermostable cellulase that is active with diverse crop wastes with a broad pH range and is a highly promising candidate for agricultural waste management. © 2014 The Society for Applied Microbiology.

  9. Halotolerant, acid-alkali stable, chelator resistant and raw starch digesting α-amylase from a marine bacterium Bacillus subtilis S8-18.

    Science.gov (United States)

    Kalpana, Balu Jancy; Pandian, Shunmugiah Karutha

    2014-08-01

    A halotolerant α-amylase having the ability of digesting the insoluble raw starches was characterized from Bacillus subtilis S8-18, a marine sediment isolate from Palk Bay region. The electrophoresis techniques unveiled that the α-amylase was indeed a monomer with a molecular weight of 57 kDa. The optimum temperature and pH for the enzyme activity were 60 °C and 6.0 respectively. The enzyme was highly stable for 24 h over a wide range of pH from 4.0 to 12.0 by showing 84-94% activity. Interestingly, by retaining 72% activity even after 24 h, the enzyme also showed tolerance towards 28% NaCl. The α-amylase retained a minimum of 93% residual activity in 1 mM concentration for the selected divalent metal ions. The enzyme was found to be chelator resistant as it remained unaffected by 1 mM of EDTA and exhibited 96% activity even at 5 mM concentration. Furthermore, though 1% SDS caused remarkable reduction (68%) in amylase activity, the enzyme showed tolerance towards other detergents (1% of Triton-X and Tween 80) with 85% activity. Additionally, the α-amylase enzyme is capable of hydrolyzing the insoluble raw starch substrates which was evident from the scanning electron microscopic (SEM) and spectrophotometric analyses. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Isolation and characterization of a cold-active, alkaline, detergent stable α-amylase from a novel bacterium Bacillus subtilis N8.

    Science.gov (United States)

    Arabacı, Nihan; Arıkan, Burhan

    2018-03-21

    A cold-active alkaline amylase producer Bacillus subtilis N8 was isolated from soil samples. Amylase synthesis optimally occurred at 15°C and pH 10.0 on agar plates containing starch. The molecular weight of the enzyme was found to be 205 kDa by performing SDS-PAGE. While the enzyme exhibited the highest activity at 25°C and pH 8.0, it was highly stable in alkaline media (pH 8.0-12.0) and retained 96% of its original activity at low temperatures (10-40°C) for 24 h. While the amylase activity increased in the presence of β-mercaptoethanol (103%); Ba 2+ , Ca 2+ , Na + , Zn 2+ , Mn 2+ , H 2 O 2 and TritonX-100 slightly inhibited the activity. The enzyme showed resistance to some denaturants: such as SDS, EDTA, and urea (52, 65 and 42%, respectively). N8 α -amylase displayed the maximum remaining activity of 56% with 3% NaCl. The major final products of starch were glucose, maltose, and maltose-derived oligosaccharides. This novel cold-active α -amylase has the potential to be used in the industries of detergent and food, bioremediation process and production of prebiotics.

  11. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    OpenAIRE

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subjec...

  12. Regulation of glutamate dehydrogenase in Bacillus subtilis.

    Science.gov (United States)

    Kane, J F; Wakim, J; Fischer, R S

    1981-01-01

    The activity of the nicotinamide adenine dinucleotide-dependent glutamate dehydrogenase in Bacillus subtilis was influenced by the carbon source, but not the nitrogen source, in the growth medium. The highest specific activity for this enzyme was found when B. subtilis was grown in a minimal or rich medium that contained glutamate as the carbon source. It is proposed that glutamate dehydrogenase serves a catabolic function in the metabolism of glutamate, is induced by glutamate, and is subject to catabolite repression. PMID:6118356

  13. Bacillus subtilis Spore Inner Membrane Proteome

    NARCIS (Netherlands)

    Zheng, L.; Abhyankar, W.; Ouwerling, N.; Dekker, H.L.; van Veen, H.; van der Wel, N.N.; Roseboom, W.; de Koning, L.J.; Brul, S.; de Koster, C.G.

    2016-01-01

    The endospore is the dormant form of Bacillus subtilis and many other Firmicutes. By sporulation, these spore formers can survive very harsh physical and chemical conditions. Yet, they need to go through germination to return to their growing form. The spore inner membrane (IM) has been shown to

  14. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    phosphorylation, indicating that this post-translational modifi cation could regulate physiological processes ranging from stress response and exopolysaccharide synthesis to DNA metabolism. Some interesting work in this fi eld was done in Bacillus subtilis , and we here present the current state of knowledge...

  15. Exopolysaccharide production by Bacillus subtilis NCIM 2063 ...

    African Journals Online (AJOL)

    Three bacterial strains, Bacillus subtilis NCIM 2063, Pseudomonas aeruginosa NCIM 2862 and Streptococcus mutans MTCC 1943 were examined for their exopolysaccharide (EPS) producing ability at the laboratory level. Basal salts solution (BSS), minimal salts medium (MSM), nitrogen free medium (NFM), chemically ...

  16. Morphologies and phenotypes in Bacillus subtilis biofilms.

    Science.gov (United States)

    Wang, Xiaoling; Meng, Shuo; Han, Jingshi

    2017-08-01

    In this study, we explored Bacillus subtilis biofilm growth under various conditions such as the use of substrates with different stiffnesses and nutrient levels using a well-developed optical imaging technique to spatially and temporally track biofilm growth. We also developed a quantitative method to characterize B. subtilis biofilm morphologies under various growth conditions. To determine biofilm rim irregularities, we used the dimensionless P2A ratio, defined as P 2 /4πA, where P is the perimeter and A is the area of the biofilm. To estimate biofilm thickness from transmission images, we developed a calibration procedure based on Beer- Lambert's law and cross sectioning. Furthermore, to determine the distributions of different B. subtilis cell phenotypes during biofilm growth, we used a triple-fluorescence-labeled B. subtilis strain that expressed motility, matrix production, and sporulation. Based on this work, we are able to tune biofilm growth by changing its growing environment.

  17. Sticking together: building a biofilm the Bacillus subtilis way

    Science.gov (United States)

    Vlamakis, Hera; Chai, Yunrong; Beauregard, Pascale; Losick, Richard; Kolter, Roberto

    2014-01-01

    Preface Biofilms are ubiquitous communities of tightly associated bacteria encased in an extracellular matrix. Bacillus subtilis has long-served as a robust model organism to examine the molecular mechanisms of biofilm formation and a number of studies have revealed that this process is subject to a number of integrated regulatory pathways. In this Review, we focus on the molecular mechanisms controlling biofilm assembly and briefly summarize the current state of knowledge regarding their disassembly. We also discuss recent progress that has expanded our understanding of biofilm formation on plant roots, which are a natural habitat for this soil bacterium. PMID:23353768

  18. Pirated Siderophores Promote Sporulation in Bacillus subtilis.

    Science.gov (United States)

    Grandchamp, Gabrielle M; Caro, Lews; Shank, Elizabeth A

    2017-05-15

    In microbial communities, bacteria chemically and physically interact with one another. Some of these interactions are mediated by secreted specialized metabolites that act as either intraspecies or interspecies signals to alter gene expression and to change cell physiology. Bacillus subtilis is a well-characterized soil microbe that can differentiate into multiple cell types, including metabolically dormant endospores. We were interested in identifying microbial interactions that affected sporulation in B. subtilis Using a fluorescent transcriptional reporter, we observed that coculturing B. subtilis with Escherichia coli promoted sporulation gene expression via a secreted metabolite. To identify the active compound, we screened the E. coli Keio Collection and identified the sporulation-accelerating cue as the siderophore enterobactin. B. subtilis has multiple iron acquisition systems that are used to take up the B. subtilis- produced siderophore bacillibactin, as well as to pirate exogenous siderophores such as enterobactin. While B. subtilis uses a single substrate binding protein (FeuA) to take up both bacillibactin and enterobactin, we discovered that it requires two distinct genes to sporulate in response to these siderophores (the esterase gene besA for bacillibactin and a putative esterase gene, ybbA , for enterobactin). In addition, we found that siderophores from a variety of other microbial species also promote sporulation in B. subtilis Our results thus demonstrate that siderophores can act not only as bacterial iron acquisition systems but also as interspecies cues that alter cellular development and accelerate sporulation in B. subtilis IMPORTANCE While much is known about the genetic regulation of Bacillus subtilis sporulation, little is understood about how other bacteria influence this process. This work describes an interaction between Escherichia coli and B. subtilis that accelerates sporulation in B. subtilis The interaction is mediated by the E

  19. Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms

    DEFF Research Database (Denmark)

    Dragoš, Anna; Lakshmanan, Nivedha; Martin, Marivic

    2018-01-01

    -similarly to other species-B. subtilis diversifies into distinct colony variants. These variants dramatically differ in biofilm formation abilities and expression of biofilm-related genes. In addition, using a quantitative approach, we reveal striking differences in surface complexity and hydrophobicity......Microbial biofilms are tightly packed, heterogeneous structures that serve as arenas for social interactions. Studies on Gram negative models reveal that during evolution in structured environments like biofilms, isogenic populations commonly diversify into phenotypically and genetically distinct...... variants. These variants can settle in alternative biofilm niches and develop new types of interactions that greatly influence population productivity. Here, we explore the evolutionary diversification of pellicle biofilms of the Gram positive, spore-forming bacterium Bacillus subtilis. We discover that...

  20. Discovery of novel cell wall-active compounds using P ywaC, a sensitive reporter of cell wall stress, in the model gram-positive bacterium Bacillus subtilis.

    Science.gov (United States)

    Czarny, T L; Perri, A L; French, S; Brown, E D

    2014-06-01

    The emergence of antibiotic resistance in recent years has radically reduced the clinical efficacy of many antibacterial treatments and now poses a significant threat to public health. One of the earliest studied well-validated targets for antimicrobial discovery is the bacterial cell wall. The essential nature of this pathway, its conservation among bacterial pathogens, and its absence in human biology have made cell wall synthesis an attractive pathway for new antibiotic drug discovery. Herein, we describe a highly sensitive screening methodology for identifying chemical agents that perturb cell wall synthesis, using the model of the Gram-positive bacterium Bacillus subtilis. We report on a cell-based pilot screen of 26,000 small molecules to look for cell wall-active chemicals in real time using an autonomous luminescence gene cluster driven by the promoter of ywaC, which encodes a guanosine tetra(penta)phosphate synthetase that is expressed under cell wall stress. The promoter-reporter system was generally much more sensitive than growth inhibition testing and responded almost exclusively to cell wall-active antibiotics. Follow-up testing of the compounds from the pilot screen with secondary assays to verify the mechanism of action led to the discovery of 9 novel cell wall-active compounds. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  1. Identification of the promoter for a peptide antibiotic biosynthesis gene from Bacillus brevis and its regulation in Bacillus subtilis.

    OpenAIRE

    Marahiel, M A; Zuber, P; Czekay, G; Losick, R

    1987-01-01

    Tyrocidine is a cyclic decapeptide antibiotic which is produced and secreted by stationary-phase cells of the sporeforming bacterium Bacillus brevis. We identified the promoter for the B. brevis structural gene (tycA) for tyrocidine synthetase I, the enzyme catalyzing the first step in tyrocidine biosynthesis, and studied its regulation in cells of B. brevis and Bacillus subtilis. Transcription from the tycA promoter was induced at the end of the exponential phase of the growth cycle in B. br...

  2. Inhibition of Cell Differentiation in Bacillus subtilis by Pseudomonas protegens

    Science.gov (United States)

    Powers, Matthew J.; Sanabria-Valentín, Edgardo; Bowers, Albert A.

    2015-01-01

    ABSTRACT Interspecies interactions have been described for numerous bacterial systems, leading to the identification of chemical compounds that impact bacterial physiology and differentiation for processes such as biofilm formation. Here, we identified soil microbes that inhibit biofilm formation and sporulation in the common soil bacterium Bacillus subtilis. We did so by creating a reporter strain that fluoresces when the transcription of a biofilm-specific gene is repressed. Using this reporter in a coculture screen, we identified Pseudomonas putida and Pseudomonas protegens as bacteria that secrete compounds that inhibit biofilm gene expression in B. subtilis. The active compound produced by P. protegens was identified as the antibiotic and antifungal molecule 2,4-diacetylphloroglucinol (DAPG). Colonies of B. subtilis grown adjacent to a DAPG-producing P. protegens strain had altered colony morphologies relative to B. subtilis colonies grown next to a DAPG-null P. protegens strain (phlD strain). Using a subinhibitory concentration of purified DAPG in a pellicle assay, we saw that biofilm-specific gene transcription was delayed relative to transcription in untreated samples. These transcriptional changes also corresponded to phenotypic alterations: both biofilm biomass and spore formation were reduced in B. subtilis liquid cultures treated with subinhibitory concentrations of DAPG. Our results add DAPG to the growing list of antibiotics that impact bacterial development and physiology at subinhibitory concentrations. These findings also demonstrate the utility of using coculture as a means to uncover chemically mediated interspecies interactions between bacteria. IMPORTANCE Biofilms are communities of bacteria adhered to surfaces by an extracellular matrix; such biofilms can have important effects in both clinical and agricultural settings. To identify chemical compounds that inhibited biofilm formation, we used a fluorescent reporter to screen for bacteria that

  3. Molecular mechanisms involved in Bacillus subtilis biofilm formation

    Science.gov (United States)

    Mielich-Süss, Benjamin; Lopez, Daniel

    2014-01-01

    Summary Biofilms are the predominant lifestyle of bacteria in natural environments, and they severely impact our societies in many different fashions. Therefore, biofilm formation is a topic of growing interest in microbiology, and different bacterial models are currently studied to better understand the molecular strategies that bacteria undergo to build biofilms. Among those, biofilms of the soil-dwelling bacterium Bacillus subtilis are commonly used for this purpose. Bacillus subtilis biofilms show remarkable architectural features that are a consequence of sophisticated programs of cellular specialization and cell-cell communication within the community. Many laboratories are trying to unravel the biological role of the morphological features of biofilms, as well as exploring the molecular basis underlying cellular differentiation. In this review, we present a general perspective of the current state of knowledge of biofilm formation in B. subtilis. In particular, a special emphasis is placed on summarizing the most recent discoveries in the field and integrating them into the general view of these truly sophisticated microbial communities. PMID:24909922

  4. Towards the development of Bacillus subtilis as a cell factory for membrane proteins and protein complexes

    NARCIS (Netherlands)

    Zweers, Jessica C.; Barak, Imrich; Becher, Doerte; Driessen, Arnold J. M.; Hecker, Michael; Kontinen, Vesa P.; Saller, Manfred J.; Vavrova, L'udmila; van Dijl, Jan Maarten

    2008-01-01

    Background: The Gram-positive bacterium Bacillus subtilis is an important producer of high quality industrial enzymes and a few eukaryotic proteins. Most of these proteins are secreted into the growth medium, but successful examples of cytoplasmic protein production are also known. Therefore, one

  5. Electron transfer reactions, cyanide and O2 binding of truncated hemoglobin from Bacillus subtilis

    DEFF Research Database (Denmark)

    Fernandez, Esther; Larsson, Jonas T.; McLean, Kirsty J.

    2013-01-01

    The truncated hemoglobin from Bacillus subtilis (trHb-Bs) possesses a surprisingly high affinity for oxygen and resistance to (auto)oxidation; its physiological role in the bacterium is not understood and may be connected with its very special redox and ligand binding reactions. Electron transfer...

  6. Homolactic fermentation from glucose and cellobiose using Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Martinez Alfredo

    2009-04-01

    Full Text Available Abstract Backgroung Biodegradable plastics can be made from polylactate, which is a polymer made from lactic acid. This compound can be produced from renewable resources as substrates using microorganisms. Bacillus subtilis is a Gram-positive bacterium recognized as a GRAS microorganism (generally regarded as safe by the FDA. B. subtilis produces and secretes different kind of enzymes, such as proteases, cellulases, xylanases and amylases to utilize carbon sources more complex than the monosaccharides present in the environment. Thus, B. subtilis could be potentially used to hydrolyze carbohydrate polymers contained in lignocellulosic biomass to produce chemical commodities. Enzymatic hydrolysis of the cellulosic fraction of agroindustrial wastes produces cellobiose and a lower amount of glucose. Under aerobic conditions, B. subtilis grows using cellobiose as substrate. Results In this study, we proved that under non-aerated conditions, B. subtilis ferments cellobiose to produce L-lactate with 82% of the theoretical yield, and with a specific rate of L-lactate production similar to that one obtained fermenting glucose. Under fermentative conditions in a complex media supplemented with glucose, B. subtilis produces L-lactate and a low amount of 2,3-butanediol. To increase the L-lactate production of this organism, we generated the B subtilis CH1 alsS- strain that lacks the ability to synthesize 2,3-butanediol. Inactivation of this pathway, that competed for pyruvate availability, let a 15% increase in L-lactate yield from glucose compared with the parental strain. CH1 alsS- fermented 5 and 10% of glucose to completion in mineral medium supplemented with yeast extract in four and nine days, respectively. CH1 alsS- produced 105 g/L of L-lactate in this last medium supplemented with 10% of glucose. The L-lactate yield was up to 95% using mineral media, and the optical purity of L-lactate was of 99.5% since B. subtilis has only one gene (lctE that

  7. Suitability of different β-galactosidases as reporter enzymes in Bacillus subtilis.

    Science.gov (United States)

    Welsch, Norma; Homuth, Georg; Schweder, Thomas

    2012-01-01

    The suitability of three β-galactosidases as reporter enzymes for promoter expression analyses was investigated in Bacillus subtilis with respect to various temperature conditions during cultivation and assay procedures. Starting from the hypothesis that proteins derived from diverse habitats have different advantages as reporters at different growth temperatures, the beta-galactosidases from the thermophilic organism Bacillus stearothermophilus, from the mesophilic bacterium Escherichia coli and from the psychrophilic organism Pseudoalteromonas haloplanktis TAE79 were analysed under control of the constitutive B. subtilis lepA promoter. Subsequent expression of the β-galactosidase genes and determination of specific activities was performed at different cultivation and assay temperatures using B. subtilis as host. Surprisingly, the obtained results demonstrated that the highest activities over a broad cultivation temperature range were obtained using the β-galactosidase from the mesophilic bacterium E. coli whereas the enzymes from the thermophilic and psychrophilic bacteria revealed a more restricted usability in terms of cultivation temperature.

  8. Biodegradation of naphthalene and phenanthren by Bacillus subtilis 3KP

    Science.gov (United States)

    Ni'matuzahroh, Trikurniadewi, N.; Pramadita, A. R. A.; Pratiwi, I. A.; Salamun, Fatimah, Sumarsih, Sri

    2017-06-01

    The purposes of this research were to know growth response, degradation ability, and uptake mechanism of naphthalene and phenanthrene by Bacillus subtilis 3KP. Bacillus subtilis 3KP was grown on Mineral Synthetic (MS) medium with addition of 1% yeast extract and naphthalene and phenanthrene respectively 200 ppm in different cultures. Bacillus subtilis 3KP growth response was monitored by Total Plate Count (TPC) method, the degradation ability was monitored by UV-Vis spectrophotometer, and the uptake mechanism of hydrocarbon was monitored by emulsification activity, decrease of surface tension, and activity of Bacterial Adherence to Hydrocarbon (BATH). Bacillus subtilis 3KP was able to grow and show biphasic growth pattern on both of substrates. Naphthalene and phenanthrene were used as a carbon source for Bacillus subtilis 3KP growth that indicated by the reduction of substrate concomitant with the growth. At room temperature conditions (± 30°C) and 90 rpm of agitation for 7 days, Bacillus subtilis 3KP could degrade naphthalene in the amount of 70.5% and phenanthrene in the amount of 24.8%. Based on the analysis of UV-Vis spectrophotometer, three metabolites, 1-hydroxy-2-naphthoic acid, salicylic acid, and pyrocatechol were found in both cultures. The metabolite identification became basis of propose degradation pathway of naphthalene and phenanthrene by Bacillus subtilis 3KP. The results of hydrocarbon uptake mechanism test show that Bacillus subtilis 3KP used all of the mechanism to degrade naphthalene and phenanthrene.

  9. Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic ...

    African Journals Online (AJOL)

    Recombinant EXLX1 from Bacillus subtilis for enhancing enzymatic hydrolysis of corn stover with low cellulase loadings. ... These results provided a feasible way for the potential application of BsEXLX1 in the efficient saccharification of cellulose materials for bioethanol production. Key word: Bacillus subtilis, BsEXLX1, ...

  10. Genetic Competence Drives Genome Diversity in Bacillus subtilis

    Science.gov (United States)

    Chevreux, Bastien; Serra, Cláudia R; Schyns, Ghislain; Henriques, Adriano O

    2018-01-01

    Abstract Prokaryote genomes are the result of a dynamic flux of genes, with increases achieved via horizontal gene transfer and reductions occurring through gene loss. The ecological and selective forces that drive this genomic flexibility vary across species. Bacillus subtilis is a naturally competent bacterium that occupies various environments, including plant-associated, soil, and marine niches, and the gut of both invertebrates and vertebrates. Here, we quantify the genomic diversity of B. subtilis and infer the genome dynamics that explain the high genetic and phenotypic diversity observed. Phylogenomic and comparative genomic analyses of 42 B. subtilis genomes uncover a remarkable genome diversity that translates into a core genome of 1,659 genes and an asymptotic pangenome growth rate of 57 new genes per new genome added. This diversity is due to a large proportion of low-frequency genes that are acquired from closely related species. We find no gene-loss bias among wild isolates, which explains why the cloud genome, 43% of the species pangenome, represents only a small proportion of each genome. We show that B. subtilis can acquire xenologous copies of core genes that propagate laterally among strains within a niche. While not excluding the contributions of other mechanisms, our results strongly suggest a process of gene acquisition that is largely driven by competence, where the long-term maintenance of acquired genes depends on local and global fitness effects. This competence-driven genomic diversity provides B. subtilis with its generalist character, enabling it to occupy a wide range of ecological niches and cycle through them. PMID:29272410

  11. BIOMASS PRODUCTION AND FORMULATION OF Bacillus subtilis FOR BIOLOGICAL CONTROL

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-10-01

    Full Text Available Bacillus subtilis is a widespread bacterium found in soil, water, and air. It controls the growth of certain harmful bacteria and fungi, presumably by competing for nutrients, growth sites on plants, and by directly colonizing and attaching to fungal pathogens. When applied to seeds, it colonizes the developing root system of the plants and continues to live on the root system and provides protection throughout the growing season. The study on biomass production and formulation of B. subtilis for biological control was conducted in the laboratory of Department of Plant Pathology, College of Agriculture, University of the Philippines Los Baños (UPLB-CA, College, Laguna from May to July 2005. The objective of the study was to determine the optimum pH and a good carbon source for biomass production of B. subtilis and to develop a seed treatment formulation of B. subtilis as biological control agent. Results showed that the optimum pH for growth of B. subtilis was pH 6 (1.85 x 109 cfu/ml. In laboratory tests for biomass production using cassava flour, corn flour, rice flour, and brown sugar as carbon sources, it grew best in brown sugar plus yeast extract medium (6.8 x 108 cfu ml-1 in sterile distilled water and 7.8 x 108 cfu ml-1 in coconut water. In test for bacterial biomass carriers, talc proved to be the best in terms of number of bacteria recovered from the seeds (3.98 x 105 cfu seed-1.

  12. Protein-Tyrosine Phosphorylation in Bacillus subtilis

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Petranovic, Dina; Bottini, N.

    2005-01-01

    of protein-tyrosine phosphorylation. We discuss the approaches currently used to chart this network: ranging from studies of substrate specifi city and the physiological role of tyrosine phosphorylation of individual enzymes to the global approaches at the level of systems biology....... on protein-tyrosine phosphorylation in this gram-positive model organism. With its two kinases, two kinase modulators, three phosphatases and at least four different tyrosine-phosphorylated substrates, B. subtilis is the bacterium with the highest number of presently known participants in the global network...

  13. Bottleneck in secretion of α-amylase in Bacillus subtilis.

    Science.gov (United States)

    Yan, Shaomin; Wu, Guang

    2017-07-19

    Amylase plays an important role in biotechnology industries, and Gram-positive bacterium Bacillus subtilis is a major host to produce heterogeneous α-amylases. However, the secretion stress limits the high yield of α-amylase in B. subtilis although huge efforts have been made to address this secretion bottleneck. In this question-oriented review, every effort is made to answer the following questions, which look simple but are long-standing, through reviewing of literature: (1) Does α-amylase need a specific and dedicated chaperone? (2) What signal sequence does CsaA recognize? (3) Does CsaA require ATP for its operation? (4) Does an unfolded α-amylase is less soluble than a folded one? (5) Does α-amylase aggregate before transporting through Sec secretion system? (6) Is α-amylase sufficient stable to prevent itself from misfolding? (7) Does α-amylase need more disulfide bonds to be stabilized? (8) Which secretion system does PrsA pass through? (9) Is PrsA ATP-dependent? (10) Is PrsA reused after folding of α-amylase? (11) What is the fate of PrsA? (12) Is trigger factor (TF) ATP-dependent? The literature review suggests that not only the most of those questions are still open to answers but also it is necessary to calculate ATP budget in order to better understand how B. subtilis uses its energy for production and secretion.

  14. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    2014-09-26

    483 489. 15. Abhyankar W, Ter Beek A, Dekker H, Kort R, Brul S, et al. (2011) Gel-free proteomic identification of the Bacillus subtilis insoluble coat... identification of additional sporulation genes in Bacillus subtilis. J Mol Biol 327: 945 972. AFM of Spore Coat Architecture PLOS ONE | www.plosone.org 16 September 2014 | Volume 9 | Issue 9 | e108560 ...1ITLE AND SUBTITLE 5a CONTRACTNUMBER Architecture and assembly of the Bacillus subtilis spore coat W911NF-09-l-0286 5b. GRANT NUMBER 5c. PROGRAM

  15. FORMALDEHYDE GAS INACTIVATION OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACE MATERIALS.

    Science.gov (United States)

    Research evaluated the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface material using formaldehyde gas. Spores were dried on seven types of indoor surfaces and exposed to 1100 ppm formaldehyde gas for 10 hr. Fo...

  16. Bacillus subtilis as potential producer for polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Patel Sanjay KS

    2009-07-01

    Full Text Available Abstract Polyhydroxyalkanoates (PHAs are biodegradable polymers produced by microbes to overcome environmental stress. Commercial production of PHAs is limited by the high cost of production compared to conventional plastics. Another hindrance is the brittle nature and low strength of polyhydroxybutyrate (PHB, the most widely studied PHA. The needs are to produce PHAs, which have better elastomeric properties suitable for biomedical applications, preferably from inexpensive renewable sources to reduce cost. Certain unique properties of Bacillus subtilis such as lack of the toxic lipo-polysaccharides, expression of self-lysing genes on completion of PHA biosynthetic process – for easy and timely recovery, usage of biowastes as feed enable it to compete as potential candidate for commercial production of PHA.

  17. Analysis of Spo0M function in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Luz Adriana Vega-Cabrera

    Full Text Available Spo0M has been previously reported as a regulator of sporulation in Bacillus subtilis; however, little is known about the mechanisms through which it participates in sporulation, and there is no information to date that relates this protein to other processes in the bacterium. In this work we present evidence from proteomic, protein-protein interaction, morphological, subcellular localization microscopy and bioinformatics studies which indicate that Spo0M function is not necessarily restricted to sporulation, and point towards its involvement in other stages of the vegetative life cycle. In the current study, we provide evidence that Spo0M interacts with cytoskeletal proteins involved in cell division, which suggest a function additional to that previously described in sporulation. Spo0M expression is not restricted to the transition phase or sporulation; rather, its expression begins during the early stages of growth and Spo0M localization in B. subtilis depends on the bacterial life cycle and could be related to an additional proposed function. This is supported by our discovery of homologs in a broad distribution of bacterial genera, even in non-sporulating species. Our work paves the way for re-evaluation of the role of Spo0M in bacterial cell.

  18. DNA Repair and Genome Maintenance in Bacillus subtilis

    Science.gov (United States)

    Lenhart, Justin S.; Schroeder, Jeremy W.; Walsh, Brian W.

    2012-01-01

    Summary: From microbes to multicellular eukaryotic organisms, all cells contain pathways responsible for genome maintenance. DNA replication allows for the faithful duplication of the genome, whereas DNA repair pathways preserve DNA integrity in response to damage originating from endogenous and exogenous sources. The basic pathways important for DNA replication and repair are often conserved throughout biology. In bacteria, high-fidelity repair is balanced with low-fidelity repair and mutagenesis. Such a balance is important for maintaining viability while providing an opportunity for the advantageous selection of mutations when faced with a changing environment. Over the last decade, studies of DNA repair pathways in bacteria have demonstrated considerable differences between Gram-positive and Gram-negative organisms. Here we review and discuss the DNA repair, genome maintenance, and DNA damage checkpoint pathways of the Gram-positive bacterium Bacillus subtilis. We present their molecular mechanisms and compare the functions and regulation of several pathways with known information on other organisms. We also discuss DNA repair during different growth phases and the developmental program of sporulation. In summary, we present a review of the function, regulation, and molecular mechanisms of DNA repair and mutagenesis in Gram-positive bacteria, with a strong emphasis on B. subtilis. PMID:22933559

  19. Two Genes Encoding Uracil Phosphoribosyltransferase Are Present in Bacillus subtilis

    DEFF Research Database (Denmark)

    Martinussen, Jan; Glaser, Philippe; Andersen, Paal S.

    1995-01-01

    Uracil phosphoribosyltransferase (UPRTase) catalyzes the key reaction in the salvage of uracil in many microorganisms. Surprisingly, two genes encoding UPRTase activity were cloned from Bacillus subtilis by complementation of an Escherichia coli mutant. The genes were sequenced, and the putative...

  20. Engineering of Bacillus subtilis 168 for increased nisin resistance

    DEFF Research Database (Denmark)

    Hansen, Mette; Wangari, Romilda; Hansen, Egon Bech

    2009-01-01

    . Bacillus subtilis had been suggested as a potential host for the biosynthesis of nisin but was discarded due to its sensitivity to the lethal action of nisin. In this study, we have reevaluated the potential of B. subtilis as a host organism for the heterologous production of nisin. We applied...

  1. Development of Bacillus subtilis mutants to produce tryptophan in pigs

    DEFF Research Database (Denmark)

    Bjerre, Karin; Cantor, Mette D.; Nørgaard, Jan Værum

    2017-01-01

    Objectives To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. Results A novel concept has been investigated—to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis...

  2. Bacillus subtilis Hfq: A role in chemotaxis and motility

    Indian Academy of Sciences (India)

    Recently, in Bacillus subtilis, a role for Hfq in stationary phase survival has been suggested, although the possibilityof Hfq having an additional role(s) cannot be ruled out. In this study we show that an ortholog of Hfq in B. subtilis isregulated by the stress sigma factor, σB, in addition to the stationary phase sigma factor, σH.

  3. Cell Physiology and Protein Secretion of Bacillus licheniformis Compared to Bacillus subtilis

    NARCIS (Netherlands)

    Voigt, Birgit; Antelmann, Haike; Albrecht, Dirk; Ehrenreich, Armin; Maurer, Karl-Heinz; Evers, Stefan; Gottschalk, Gerhard; van Dijl, Jan Maarten; Schweder, Thomas; Hecker, Michael

    2009-01-01

    The genome sequence of Bacillus subtilis was published in 1997 and since then many other bacterial genomes have been sequenced, among them Bacillus licheniformis in 2004. B. subtilis and B. licheniformis are closely related and feature similar saprophytic lifestyles in the soil. Both species can

  4. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species

    Science.gov (United States)

    Rey, Michael W; Ramaiya, Preethi; Nelson, Beth A; Brody-Karpin, Shari D; Zaretsky, Elizabeth J; Tang, Maria; de Leon, Alfredo Lopez; Xiang, Henry; Gusti, Veronica; Clausen, Ib Groth; Olsen, Peter B; Rasmussen, Michael D; Andersen, Jens T; Jørgensen, Per L; Larsen, Thomas S; Sorokin, Alexei; Bolotin, Alexander; Lapidus, Alla; Galleron, Nathalie; Ehrlich, S Dusko; Berka, Randy M

    2004-01-01

    Background Bacillus licheniformis is a Gram-positive, spore-forming soil bacterium that is used in the biotechnology industry to manufacture enzymes, antibiotics, biochemicals and consumer products. This species is closely related to the well studied model organism Bacillus subtilis, and produces an assortment of extracellular enzymes that may contribute to nutrient cycling in nature. Results We determined the complete nucleotide sequence of the B. licheniformis ATCC 14580 genome which comprises a circular chromosome of 4,222,336 base-pairs (bp) containing 4,208 predicted protein-coding genes with an average size of 873 bp, seven rRNA operons, and 72 tRNA genes. The B. licheniformis chromosome contains large regions that are colinear with the genomes of B. subtilis and Bacillus halodurans, and approximately 80% of the predicted B. licheniformis coding sequences have B. subtilis orthologs. Conclusions Despite the unmistakable organizational similarities between the B. licheniformis and B. subtilis genomes, there are notable differences in the numbers and locations of prophages, transposable elements and a number of extracellular enzymes and secondary metabolic pathway operons that distinguish these species. Differences include a region of more than 80 kilobases (kb) that comprises a cluster of polyketide synthase genes and a second operon of 38 kb encoding plipastatin synthase enzymes that are absent in the B. licheniformis genome. The availability of a completed genome sequence for B. licheniformis should facilitate the design and construction of improved industrial strains and allow for comparative genomics and evolutionary studies within this group of Bacillaceae. PMID:15461803

  5. Functional Identification of the Product of the Bacillus subtilis yvaL Gene as a SecG Homologue

    NARCIS (Netherlands)

    Wely, Karel H.M. van; Swaving, Jelto; Broekhuizen, Cees P.; Rose, Matthias; Quax, Wim J.; Driessen, Arnold J.M.

    1999-01-01

    Protein export in Escherichia coli is mediated by translocase, a multisubunit membrane protein complex with SecA as the peripheral subunit and the SecY, SecE, and SecG proteins as the integral membrane domain. In the gram-positive bacterium Bacillus subtilis, SecA, SecY, and SecE have been

  6. Identification of Differentially Expressed Genes during Bacillus subtilis Spore Outgrowth in High-Salinity Environments Using RNA Sequencing

    NARCIS (Netherlands)

    Nagler, Katja; Krawczyk, Antonina O; De Jong, Anne; Madela, Kazimierz; Hoffmann, Tamara; Laue, Michael; Kuipers, Oscar P; Bremer, Erhard; Moeller, Ralf

    2016-01-01

    In its natural habitat, the soil bacterium Bacillus subtilis often has to cope with fluctuating osmolality and nutrient availability. Upon nutrient depletion it can form dormant spores, which can revive to form vegetative cells when nutrients become available again. While the effects of salt stress

  7. Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA

    NARCIS (Netherlands)

    Avila-Pérez, Marcela; Hellingwerf, Klaas J; Kort, Remco

    Here we present evidence for a physiologically relevant light response mediated by the LOV domain-containing protein YtvA in the soil bacterium Bacillus subtilis. The loss and overproduction of YtvA abolish and enhance, respectively, the increase in sigma(B)-controlled ctc promoter activity at

  8. DECONTAMINATION ASSESSMENT OF BACILLUS ANTHRACIS, BACILLUS SUBTILIS, AND GEOBACILLUS STEAROTHERMOPHILUS SPORES ON INDOOR SURFACTS USING A HYDROGEN PERIOXIDE GAS GENERATOR

    Science.gov (United States)

    Aims: To evaluate the decontamination of Bacillus anthracis, Bacillus subtilis, and Geobacillus stearothermophilus spores on indoor surface materials using hydrogen peroxide gas. Methods and Results: B. anthracis, B. subtilis, and G. Stearothermophilus spores were dried on seven...

  9. Production of mannanase from Bacillus Subtilis LBF-005 and its potential for manno-oligosaccharides production

    Science.gov (United States)

    Yopi, Rahmani, Nanik; Jannah, Alifah Mafatikhul; Nugraha, Irfan Pebi; Ramadana, Roni Masri

    2017-11-01

    Endo-β-1, 4-mannanase is the key enzymes for randomly hydrolyzing the β-1,4-linkages within the mannan backbone releasing manno-oligosaccharides (MOS). A marine bacterium of Bacillus subtilis LBF-005 was reported have ability to produce endo-type mannanase. The aims of this research were to compare commercial biomass Locust Bean Gum (LBG) and raw biomass contaning mannan as carbon source for mannanase production from Bacillus subtilis LBF-005, to analyze the optimum condition of mannanase production, and to find out the potential of the mannanase for MOS production. Bacillus subtilis LBF-005 was cultivated in Artificial Sea Water (ASW) medium contain NaCl and various mannan biomass as carbon source for mannanase production. The cells were grown in submerged fermentation. The maximum enzyme activity was obtained with porang potato as a substrate with concentration 1%, pH medium 8, and incubation temperature 50°C with an enzyme activity of 37.7 U/mL. The mainly MOS product released by crude mannanase produced by Bacillus subtilis LBF-005 were mannobiose (M2), mannotriose (M3), mannotetraose (M4), and mannopentaose (M5).

  10. Isolation and characterization of a novel Bacillus subtilis WD23 ...

    African Journals Online (AJOL)

    The strain Bacillus sp. WD23 exhibiting laccase activity was screened from forest soil. The M9 medium containing Cu2+ was used for enriching and isolating bacterial strains capable of oxidizing syringaldazine. One isolated strain was identified as Bacillus subtilis WD23 based on the results of physiological and biochemical ...

  11. Inhibition of quorum sensing-mediated virulence in Serratia marcescens by Bacillus subtilis R-18.

    Science.gov (United States)

    Devi, Kannan Rama; Srinivasan, Subramaniyan; Ravi, Arumugam Veera

    2018-04-13

    Serratia marcescens is an opportunistic human pathogen causing various nosocomial infections, most importantly urinary tract infections (UTIs). It exhibits increased resistance towards the conventional antibiotics. This study was aimed to evaluate the anti-virulence effect of a rhizosphere soil bacterium Bacillus subtilis strain R-18 against the uropathogen S. marcescens. First, the bacterial cell-free culture supernatant (CFCS) of B. subtilis strain R-18 was evaluated for its quorum sensing inhibitory (QSI) potential against biomarker strain Chromobacterium violaceum and the test pathogen S. marcescens. The B. subtilis R-18 CFCS effectively inhibited the quorum sensing (QS)-mediated violacein pigment production in C. violaceum and prodigiosin pigment production in S. marcescens. Furthermore, B. subtilis R-18 CFCS was successively extracted with different solvent systems. Of these solvents, B. subtilis R-18 petroleum ether (PE) extract showed inhibition in biofilm formation, protease, lipase, and hemolysin productions in S. marcescens. Fourier transform infrared spectroscopic (FT-IR) analysis revealed the alterations in the cellular components of bacterial cell pellets obtained from B. subtilis R-18 PE extract treated and untreated S. marcescens. The differential gene expression study further validated the downregulation of virulence-associated genes. Characterization of the active principle in B. subtilis R-18 PE extract by gas chromatography-mass spectrometry (GC-MS) analysis showed the presence of multiple compounds with therapeutic values, which could possibly reduce the QS-dependent phenotypes in S. marcescens. Copyright © 2018. Published by Elsevier Ltd.

  12. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex.

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42 T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as " B. amyloliquefaciens ." Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7 T , the type strain of B. amyloliquefaciens . We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7 T . Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens , (2) Bacillus siamensis , and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus , and B. amyloliquefaciens subsp. plantarum . The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7 T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as "operational group B. amyloliquefaciens " consisting of the soil borne B. amyloliquefaciens , and plant associated B. siamensis and B. velezensis , whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style.

  13. Potential synergistic effects of a mixture of mineral trioxide aggregate (MTA) cement and Bacillus subtilis in dental caries treatment.

    Science.gov (United States)

    Oka, Shunya

    2018-01-01

    Bacillus subtilis is nonpathogenic in humans and produces a number of useful substances and, therefore, this bacterium is used in probiotic therapy. There have been trials of B. subtilis for patients with periodontitis, but not for patients with caries. Similarly, mineral trioxide aggregate (MTA) cement has been widely used for endodontic treatment, but there are few reports of its use for caries. Therefore, examinations were performed regarding the benefits of addition of B. subtilis to MTA cement for treatment of dental caries. Indirect pulp capping with a mixture of MTA cement and B. subtilis spore powder is effective for avoiding pulpectomy or tooth extraction in such cases (personal communication). This study was planned to examine the scientific basis of this clinical finding, with examination of possible synergistic effects of MTA cement and B. subtilis. From these experiments, the following five results were obtained: (1) B. subtilis did not proliferate in liquid-culture media at pH ≥10. (2) B. subtilis proliferated when mixed with MTA cement. (3) There was no significant difference in proliferation of B. subtilis under aerobic and microaerobic conditions. (4) B. subtilis exhibited antibacterial effects on Staphylococcus aureus and Lactobacillus casei. (5) MTA cement exhibited antibacterial effects on S. aureus and Streptococcus mutans, but not on B. subtilis. These results support the hypothesis that a combination of B subtilis and MTA cement is likely to be clinically useful for treatment of dental caries.

  14. 40 CFR 180.1111 - Bacillus subtilis GB03; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis GB03; exemption from... FOOD Exemptions From Tolerances § 180.1111 Bacillus subtilis GB03; exemption from the requirement of a tolerance. The biofungicide Bacillus subtilis GB03 is exempted from the requirement of a tolerance in or on...

  15. 40 CFR 180.1128 - Bacillus subtilis MBI 600; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis MBI 600; exemption... FOOD Exemptions From Tolerances § 180.1128 Bacillus subtilis MBI 600; exemption from the requirement of... biofungicide Bacillus subtilis MBI 600 in or on all food commodities, including residues resulting from post...

  16. The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis.

    Science.gov (United States)

    Popp, Philipp F; Dotzler, Mona; Radeck, Jara; Bartels, Julia; Mascher, Thorsten

    2017-11-08

    Standardized and well-characterized genetic building blocks allow the convenient assembly of novel genetic modules and devices, ensuring reusability of parts and reproducibility of experiments. In the first Bacillus subtilis-specific toolbox using the BioBrick standard, we presented integrative vectors, promoters, reporter genes and epitope tags for this Gram-positive model bacterium. With the Bacillus BioBrick Box 2.0, we significantly expand the range of our toolbox by providing new integrative vectors, introducing novel tools for fine-tuning protein expression, and carefully evaluating codon-adapted fluorescence proteins in B. subtilis, which cover the whole spectrum of visible light. Moreover, we developed new reporter systems to allow evaluating the strength of promoters and ribosome binding sites. This well-evaluated extension of our BioBrick-based toolbox increases the accessibility of B. subtilis and will therefore promote the use of this model bacterium and biotechnological workhorse as a host for fundamental and applied Synthetic Biology projects.

  17. Construction of acetoin high-producing Bacillus subtilis strain

    Directory of Open Access Journals (Sweden)

    Yanjun Tian

    2016-07-01

    Full Text Available This paper describes the construction and selection of a high-producing mutant, Bacillus subtilis HB-32, with enhanced acetoin yield and productivity. The mutant was obtained by the protoplast fusion of a Bacillus subtilis mutant TH-49 (Val− producing acetoin and Bacillus licheniformis AD-30 producing α-acetolactate decarboxylase, with the fusogen polyethylene glycol and after the regeneration and selection, etc. of the fusant. The acetoin production reached 49.64 g/L, which is an increase of 61.8% compared to that of B. subtilis strain TH-49. Random amplified polymorphic DNA analysis was performed to determine the mutagenic and protoplast fusion effects and the genomic changes in the acetoin high-producing strain compared to the parent strains at the molecular level. The constructed strain was shown to be promising for large-scale acetoin production. Future studies should focus on the application of the mutant strain in practice.

  18. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose

    2001-01-01

    A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists at the ini......A hidden Markov model of sigma (A) RNA polymerase cofactor recognition sites in Bacillus subtilis, containing either the common or the extended -10 motifs, has been constructed based on experimentally verified sigma (A) recognition sites. This work suggests that more information exists...

  19. Transformation of Bacillus Subtilis with cloned thymidylate synthetases

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, Edward M. [Univ. of Rochester, NY (United States). Dept. of Radiation Biology and Biophysics

    1980-01-01

    Bacillus subtilis carries two genes, thyA and thyB, each encoding different protein products, with thymidylate synthetase (TSase) activity. Either of these genes alone is sufficient for thymidine independence in B. subtilis. In addition there exist two B. subtilis temperate bacteriophages which upon infection of thymine requiring auxotrophs results in conversion of the organism to thymine independence. Chimeric plasmids selected for Thy+ transforming activity in E. coli were constructed and then used as a source of defined highly enriched DNA with which to transform competent B. subtilis. These plasmids were studied for their: (1) abiility to transform B. subtilis to thymine independence; (2) site of integration within the B. subtilis chromosome upon transformation; (3) phenotype of Thy+ plasmid generated transformants; and (4) nucleotide sequence homology among the cloned DNA fragments conferring thymine independence. Plasmids containing the two bacteriophage thy genes displayed the phenotype associated with thyA, whereas the plasmids containing the cloned B. subtilis chromosomal genes displayed the phenotype associated with thyB. Utilizing similar technology, the ability of an entirely foreign hybred bacterial plasmiid to transform B. subtilis was examined. In this case the gene from E. coli encoding thymidylate synthetase was cloned in the plasmid pBR322. The resulting chimeric plasmid was effective in transforming both E. coli and B. subtilis to thymine prototrophy. Uncloned linear E. coli chromosomal DNA was unable to transform thymine requiring strains of B. subtilis to thymine independence. Although the Thy/sup +/ transformants of E. coli contained plasmid DNA, the Thy+ transformants derived from the transformation of B. subtilis did not contain detectable extrachromosomal DNA. Instead the DNA from the chimeric plasmid was integrated into the chromosome of B. subtilis. (ERB)

  20. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    OpenAIRE

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis.

  1. N-terminal amino acid sequence of Bacillus licheniformis alpha-amylase: comparison with Bacillus amyloliquefaciens and Bacillus subtilis Enzymes.

    Science.gov (United States)

    Kuhn, H; Fietzek, P P; Lampen, J O

    1982-01-01

    The thermostable, liquefying alpha-amylase from Bacillus licheniformis was immunologically cross-reactive with the thermolabile, liquefying alpha-amylase from Bacillus amyloliquefaciens. Their N-terminal amino acid sequences showed extensive homology with each other, but not with the saccharifying alpha-amylases of Bacillus subtilis. PMID:6172418

  2. Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors.

    Science.gov (United States)

    Allard-Massicotte, Rosalie; Tessier, Laurence; Lécuyer, Frédéric; Lakshmanan, Venkatachalam; Lucier, Jean-François; Garneau, Daniel; Caudwell, Larissa; Vlamakis, Hera; Bais, Harsh P; Beauregard, Pascale B

    2016-11-29

    Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host. Bacillus subtilis is a plant growth-promoting rhizobacterium that establishes robust interactions with roots. Many studies have now demonstrated that biofilm formation is required for long-term colonization. However, we observed that motile B. subtilis mediates the first contact with the roots. These cells differentiate into biofilm-producing cells only several hours after the bacteria first contact the root. Our study reveals that intact chemotaxis machinery is required for the bacteria to reach the

  3. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH, ammonium citrate and ...

  4. Enhanced biomass production study on probiotic Bacillus subtilis ...

    African Journals Online (AJOL)

    user

    2010-11-22

    Nov 22, 2010 ... The culture conditions of lactose fermenting, spore forming probiotic Bacillus subtilis SK09 isolated from dairy effluent were optimized by response surface methodology to maximize the biomass production. The student's t-test of the Placket-Burman screening design revealed that the effects of pH,.

  5. bmr3, a third multidrug transporter gene of Bacillus subtilis.

    OpenAIRE

    Ohki, R; Murata, M

    1997-01-01

    A third multidrug transporter gene named bmr3 was cloned from Bacillus subtilis. Although Bmr3 shows relatively low homology to Bmr and Blt, the substrate specificities of these three transporters overlap. Northern hybridization analysis showed that expression of the bmr3 gene was dependent on the growth phase.

  6. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  7. Characterization of a thermostable Bacillus subtilis β-amylase

    African Journals Online (AJOL)

    ... 70 0C respectively, and the thermal stability curve gave a maximum activity of 9.75 U at 70oC for 60 min of incubation. Bacillus subtilis â-amylase is valuable for maltose production, which can be hydrolyzed further by other groups of amylase for the production of high cassava glucose syrup used as sweeteners in the food ...

  8. Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism

    DEFF Research Database (Denmark)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and...

  9. Global Network Reorganization During Dynamic Adaptations of Bacillus subtilis Metabolism

    NARCIS (Netherlands)

    Buescher, Joerg Martin; Liebermeister, Wolfram; Jules, Matthieu; Uhr, Markus; Muntel, Jan; Botella, Eric; Hessling, Bernd; Kleijn, Roelco Jacobus; Le Chat, Ludovic; Lecointe, Francois; Maeder, Ulrike; Nicolas, Pierre; Piersma, Sjouke; Ruegheimer, Frank; Becher, Doerte; Bessieres, Philippe; Bidnenko, Elena; Denham, Emma L.; Dervyn, Etienne; Devine, Kevin M.; Doherty, Geoff; Drulhe, Samuel; Felicori, Liza; Fogg, Mark J.; Goelzer, Anne; Hansen, Annette; Harwood, Colin R.; Hecker, Michael; Hubner, Sebastian; Hultschig, Claus; Jarmer, Hanne; Klipp, Edda; Leduc, Aurelie; Lewis, Peter; Molina, Frank; Noirot, Philippe; Peres, Sabine; Pigeonneau, Nathalie; Pohl, Susanne; Rasmussen, Simon; Rinn, Bernd; Schaffer, Marc; Schnidder, Julian; Schwikowski, Benno; Van Dijl, Jan Maarten; Veiga, Patrick; Walsh, Sean; Wilkinson, Anthony J.; Stelling, Joerg; Aymerich, Stephane; Sauer, Uwe

    2012-01-01

    Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and

  10. Genome engineering reveals large dispensable regions in Bacillus subtilis

    NARCIS (Netherlands)

    Westers, Helga; Dorenbos, Ronald; Dijl, Jan Maarten van; Kabel, Jorrit; Flanagan, Tony; Devine, Kevin M.; Jude, Florence; Séror, Simone J.; Beekman, Aäron C.; Darmon, Elise; Eschevins, Caroline; Jong, Anne de; Bron, Sierd; Kuipers, Oscar P.; Albertini, Alessandra M.; Antelmann, Haike; Hecker, Michael; Zamboni, Nicola; Sauer, Uwe; Bruand, Claude; Ehrlich, Dusko S.; Alonso, Juan C.; Salas, Margarita; Quax, Wim J.

    2003-01-01

    Bacterial genomes contain 250 to 500 essential genes, as suggested by single gene disruptions and theoretical considerations. If this view is correct, the remaining nonessential genes of an organism, such as Bacillus subtilis, have been acquired during evolution in its perpetually changing

  11. Extracellular protease produced by Bacillus subtilis isolated from ...

    African Journals Online (AJOL)

    In a study to evaluate the microbiological safety of some paracetamol oral solutions sold in some Nigerian drug stores, 40.0% of the samples examined was contaminated with protease-producing Bacillus subtilis. The production of extracellular protease was induced by casein in the minimal medium and was found to be the ...

  12. Protein export in bacillus subtilis and escherichia coli

    NARCIS (Netherlands)

    Dijl, Jan Maarten van

    1990-01-01

    The export of heterologous proteins in Bacillus subtilis and Escherichia coli is often inefficient. Frequently observed problems are: 1) accumulation of the precursor form of the exported protein in the cytoplasm or in the membrane; 2), inefficient or incorrect processing of the precursor; 3),

  13. Loop grafting of Bacillus subtilis lipase A : Inversion of enantioselectivity

    NARCIS (Netherlands)

    Boersma, Y.L.; Pijning, Tjaard; Bosma, Margriet; van der Sloot, Almer Martinus; da Silva Godinho, Luis; Dröge, Melloney; Winter, R.T.; van Pouderoyen, Gertie; Dijkstra, B.W.; Quax, Wim

    2008-01-01

    Lipases are successfully applied in enantioselective biocatalysis. Most lipases contain a lid domain controlling access to the active site, but Bacillus subtilis Lipase A (LipA) is a notable exception: its active site is solvent exposed. To improve the enantioselectivity of LipA in the kinetic

  14. Gene cloning of phenolic acid decarboxylase from Bacillus subtilis ...

    African Journals Online (AJOL)

    Phenolic acid decarboxylase (PADC) gene, encoding phenolic acid decarboxylase, was cloned from Bacillus subtilis and ligated with a shuttle vector YEp352 to generate a novel plasmid YPADC. By analysis of sequencing and the restriction endonuclease digestion, the validity of construction was proved. Subsequently ...

  15. Effect of the dose rate on the radiation sensitivity of bacillus subtilis in phosphate - buffer solution

    International Nuclear Information System (INIS)

    Al-Adawi, M. A.; Shamma, M.

    1999-11-01

    Determination of the radiation sensitivity of Bacillus subtilis bacterium were accomplished in phosphate buffer solution at three different dose rates (0.71, 1.9 and 4.8 kGy/h) with the 60 Co source by applying 2,4,6,8 and 10 kGy at 20 Centigrade; and the results showed that the radiation sensitivity values were (0.826, 0.787 and 0.748 kGy) respectively, as well as there were no differences of the radiation sensitivity values comparing with the initial count of the bio burden. (author)

  16. Production of milk-clotting enzyme by Bacillus subtilis B1 from wheat ...

    African Journals Online (AJOL)

    Three strains, Bacillus subtilis B1, B. subtilis B18 and Bacillus thuringiensis B12, were screened from wheat bran to produce milk-clotting enzyme. Among them, B. subtilis B1 exhibited considerable milkclotting activity with low proteolytic activity. After response surface methodology optimization, milkclotting activity was ...

  17. Rice Seed Priming with Picomolar Rutin Enhances Rhizospheric Bacillus subtilis CIM Colonization and Plant Growth.

    Directory of Open Access Journals (Sweden)

    Akanksha Singh

    Full Text Available The effect of rutin, a bioflavonoid on the growth and biofilm formation of Bacillus subtilis strain CIM was investigated. In addition to swimming, swarming, and twitching potentials of B. subtilis CIM (BS, one picomolar (1 pM of rutin was also observed to boost the biofilm forming ability of the bacterium. Bio-priming of rice seeds with BS and rutin not only augmented root and shoot lengths but also the photosynthetic pigments like chlorophyll and carotenoid. Similarly, high accumulation of phenolic and flavonoid contents was observed in the leaves. Fluorescent microscopic images revealed that BS plus rutin enhanced callose deposition in the leaves. It was also established that the least formation of reactive oxygen species in BS plus rutin treated rice plants was due to higher free radicals scavenging activity and total antioxidant potential. The results highlight chemo attractant nature of BS towards rutin, which by enhancing biofilm formation and root colonization indirectly strengthened the plants' defensive state.

  18. Characterization of Lipase from Bacillus subtilisI-4 and Its Potential Use in Oil Contaminated Wastewater

    OpenAIRE

    Iqbal, Syeda Abeer; Rehman, Abdul

    2015-01-01

    ABSTRACTA lipase producing bacterium was isolated from oil contaminated effluents of various industries from Sheikhupura Road, Pakistan, and, on the basis of biochemical and 16S rRNA ribotyping, was identified asBacillus subtilis. The optimum temperature and pH for the growth of the culture were 37ºC and 7.0, respectively.B. subtilis I-4 had a lag phase of 4 h in LB medium while this phase prolonged to 6 h in oil containing medium. The optimum temperature and pH for the enzyme activity were 5...

  19. 77 FR 73934 - Bacillus subtilis Strain QST 713 Variant Soil; Amendment to an Exemption From the Requirement of...

    Science.gov (United States)

    2012-12-12

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 180 [EPA-HQ-OPP-2011-0669; FRL-9369-3] Bacillus... Bacillus subtilis Strain QST 713 To Include Residues of Bacillus subtilis Strain QST 713 Variant Soil... existing exemption from the requirement of a tolerance for residues of the Bacillus subtilis strain QST 713...

  20. Enhanced hydrocarbon biodegradation by a newly isolated bacillus subtilis strain

    International Nuclear Information System (INIS)

    Christova, N.; Tuleva, B.; Nikolova-Damyanova, B.

    2004-01-01

    The relation between hydrocarbon degradation and biosurfactant (rhamnolipid) production by a new bacillus subtilis 22BN strain was investigated. The strain was isolated for its capacity to utilize n-hexadecane and naphthalene and at the same time to produce surface-active compound at high concentrations (1.5 - 2.0 g l -1 ). Biosurfactant production was detected by surface tension lowering and emulsifying activity. The strain is a good degrader of both hydrocarbons used with degradability of 98.3 ± 1% and 75 ± 2% for n-hexadecane and naphthalene, respectively. Measurement of cell hydrophobicity showed that the combination of slightly soluble substrate and rhamnolipid developed higher hydrophobicity correlated with increased utilization of both hydrocarbon substrates. To our knowledge, this is the first report of bacillus subtilis strain that degrades hydrophobic compounds and at the same time produces rhamnolipid biosurfactant. (orig.)

  1. Role of Ribonucleotide Reductase in Bacillus subtilis Stress-Associated Mutagenesis.

    Science.gov (United States)

    Castro-Cerritos, Karla Viridiana; Yasbin, Ronald E; Robleto, Eduardo A; Pedraza-Reyes, Mario

    2017-02-15

    The Gram-positive microorganism Bacillus subtilis relies on a single class Ib ribonucleotide reductase (RNR) to generate 2'-deoxyribonucleotides (dNDPs) for DNA replication and repair. In this work, we investigated the influence of RNR levels on B. subtilis stationary-phase-associated mutagenesis (SPM). Since RNR is essential in this bacterium, we engineered a conditional mutant of strain B. subtilis YB955 (hisC952 metB5 leu427) in which expression of the nrdEF operon was modulated by isopropyl-β-d-thiogalactopyranoside (IPTG). Moreover, genetic inactivation of ytcG, predicted to encode a repressor (NrdR) of nrdEF in this strain, dramatically increased the expression levels of a transcriptional nrdE-lacZ fusion. The frequencies of mutations conferring amino acid prototrophy in three genes were measured in cultures under conditions that repressed or induced RNR-encoding genes. The results revealed that RNR was necessary for SPM and overexpression of nrdEF promoted growth-dependent mutagenesis and SPM. We also found that nrdEF expression was induced by H 2 O 2 and such induction was dependent on the master regulator PerR. These observations strongly suggest that the metabolic conditions operating in starved B. subtilis cells increase the levels of RNR, which have a direct impact on SPM. Results presented in this study support the concept that the adverse metabolic conditions prevailing in nutritionally stressed bacteria activate an oxidative stress response that disturbs ribonucleotide reductase (RNR) levels. Such an alteration of RNR levels promotes mutagenic events that allow Bacillus subtilis to escape from growth-limited conditions. Copyright © 2017 American Society for Microbiology.

  2. The effect of metal ions commonly present in food on gene expression of sporulating Bacillus subtilis cells in relation to spore wet heat resistance.

    NARCIS (Netherlands)

    Oomes, S.J.C.M.; Brul, S.

    2004-01-01

    Bacillus subtilis is a food spoilage spore-forming bacterium. The spores can be very heat-resistant and may cause problems in the production of foods. Varying the metal concentration in the sporulation media is known to influence the heat resistance of the spores. The effect of changing the metal

  3. Copper acquisition is mediated by YcnJ and regulated by YcnK and CsoR in Bacillus subtilis.

    NARCIS (Netherlands)

    Chillappagari, Shashi; Miethke, Marcus; Trip, Hein; Kuipers, Oscar P.; Marahiel, Mohamed A.

    2009-01-01

    Copper is an essential cofactor for many enzymes, and at over a threshold level, it is toxic for all organisms. To understand the mechanisms underlying copper homeostasis of the gram-positive bacterium Bacillus subtilis, we have performed microarray studies under copper-limiting conditions. These

  4. Bacillus subtilis contains four closely related type I signal peptidases with overlapping substrate specificities - Constitutive and temporally controlled expression of different sip genes

    NARCIS (Netherlands)

    Tjalsma, H; Noback, MA; Bron, S; Venema, G; Yamane, K; vanDijl, JM

    1997-01-01

    Most biological membranes contain one or two type I signal peptidases for the removal of signal peptides from secretory precursor proteins. In this respect, the Grampositive bacterium Bacillus subtilis seems to be exceptional, because it contains at least four chromosomally-encoded type I signal

  5. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    OpenAIRE

    Qin, X; Taber, H W

    1996-01-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or ...

  6. Characterization of spore laccase from Bacillus subtilis WD23 and ...

    African Journals Online (AJOL)

    The strain was identified as Bacillus subtilis based on its morphological and physiological properties, and 16S rDNA sequence analysis. The optimum pH and temperature for the spore-bound laccase were 6.8 and 60°C, respectively. The temperature half-life of the laccase was 2.5 h at 80°C and 68 h at 60°C. It also showed ...

  7. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi

    International Nuclear Information System (INIS)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-01-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi

  8. Endophytic Bacillus subtilis ZZ120 and its potential application in ...

    African Journals Online (AJOL)

    An endophytic bacterial strain ZZ120 that was isolated from healthy stems of Prunus mume (family: Rosaceae) was identified as Bacillus subtilis based on biochemical and physiological assays and 16s rRNA, rpoB and tetB-yyaO / yyaR genes analysis. Both the culture filtrate and the n-butanol extract of strain ZZ120 showed ...

  9. Identification and characterization of the vanillin dehydrogenase YfmT in Bacillus subtilis 3NA.

    Science.gov (United States)

    Graf, Nadja; Wenzel, Marian; Altenbuchner, Josef

    2016-04-01

    With vanillin as one of the most important flavoring agents, many efforts have been made to optimize its biotechnological production from natural abundant substrates. However, its toxicity against the hosts results in rather low yields and product concentrations. Bacillus subtilis as a soil-dwelling bacterium is a possible lignin-derived compound-degrading microorganism. Therefore, its vanillin and ferulic acid metabolism was investigated. With a rather high tolerance for vanillin up to 20 mM, it is a promising candidate to produce natural vanillin. In this study, the well-studied phenolic acid decarboxylases PadC and BsdBCD could be ascribed to function as the only enzymes in B. subtilis 3NA converting ferulic acid to 4-vinylguaiacol and vanillic acid to guaiacol, respectively. As vanillin also becomes converted to guaiacol, a previous conversion to vanillic acid was assumed. Usage of bioinformatic tools revealed YfmT, which could be shown to function as the only vanillin dehydrogenase in B. subtilis 3NA. Thus, YfmT was further characterized regarding its temperature and pH optima as well as its substrate range. Vanillin and ferulic acid metabolic routes in the tested B. subtilis strain were revealed, a direct conversion of ferulic acid to vanillin, however, could not be found.

  10. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions.

    Directory of Open Access Journals (Sweden)

    Yi-Huang Hsueh

    Full Text Available The superior antimicrobial properties of silver nanoparticles (Ag NPs are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10-50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES and extended X-ray absorption fine structure (EXAFS analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation.

  11. Metabolic engineering of Bacillus subtilis fueled by systems biology: Recent advances and future directions.

    Science.gov (United States)

    Liu, Yanfeng; Li, Jianghua; Du, Guocheng; Chen, Jian; Liu, Long

    By combining advanced omics technology and computational modeling, systems biologists have identified and inferred thousands of regulatory events and system-wide interactions of the bacterium Bacillus subtilis, which is commonly used both in the laboratory and in industry. This dissection of the multiple layers of regulatory networks and their interactions has provided invaluable information for unraveling regulatory mechanisms and guiding metabolic engineering. In this review, we discuss recent advances in the systems biology and metabolic engineering of B. subtilis and highlight current gaps in our understanding of global metabolism and global pathway engineering in this organism. We also propose future perspectives in the systems biology of B. subtilis and suggest ways that this approach can be used to guide metabolic engineering. Specifically, although hundreds of regulatory events have been identified or inferred via systems biology approaches, systematic investigation of the functionality of these events in vivo has lagged, thereby preventing the elucidation of regulatory mechanisms and further rational pathway engineering. In metabolic engineering, ignoring the engineering of multilayer regulation hinders metabolic flux redistribution. Post-translational engineering, allosteric engineering, and dynamic pathway analyses and control will also contribute to the modulation and control of the metabolism of engineered B. subtilis, ultimately producing the desired cellular traits. We hope this review will aid metabolic engineers in making full use of available systems biology datasets and approaches for the design and perfection of microbial cell factories through global metabolism optimization. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Production of Bioactive Compounds by Bacillus subtilis against Sclerotium rolfsii

    Directory of Open Access Journals (Sweden)

    Nalisha, I.

    2006-01-01

    Full Text Available This study aims to investigate the characteristic of bioactive compound produced by Bacillus subtilis against Sclerotium rolfsii and the influence of additive supplements on the antagonistic activity of B. subtilis. The fact that B. subtilis produced an antifungal substance which has inhibitory effect on wide range of fungi, including S. rolfsii, is well known. To learn the effect of pH, temperature and light condition on the production of antifungal compound, B. subtilis was inoculated in Potato Dextrose Broth at various initial pH, temperatures and light conditions, respectively. This antagonist was found to produce antifungal compound that stable at 80C with 58.3 % inhibition on S. rolfsii. The activity was constant within a wide range of pH (3–11. However, treatment with pH11 lead to higher antifungal activity (31.57 % inhibition and it was also found to produce substance that can endure dark condition (46.24 % inhibition with fungicidal effect on S. rolfsii. A series of experiments also been carried out to enhance the antifungal production by supplementing different carbon source preparation into bacterial liquid culture. B. subtilis were grown in minimal medium containing 1 % of oil palm root, Ganoderma lucidum or chitin, respectively prior to bioassay. Crude culture from oil palm root supplemented culture shown significantly reduction in S. rolfsii growth compared to other carbon source crude culture or the antagonism alone, suggesting that this approach may provide improved biocontrol efficiency.

  13. Evaluation of bottlenecks in the late stages of protein secretion in Bacillus subtilis

    NARCIS (Netherlands)

    Bolhuis, A; Tjalsma, H; Smith, H.E; Meima, R.; Venema, G; Bron, S; van Dijl, J.M

    Despite a high capacity for secretion of homologous proteins, the secretion of heterologous proteins by Bacillus subtilis is frequently inefficient. In the present studies, we have investigated and compared bottlenecks in the secretion of four heterologous proteins: Bacillus lichenifomis

  14. Screen for agents that induce autolysis in Bacillus subtilis.

    Science.gov (United States)

    Lacriola, Christopher J; Falk, Shaun P; Weisblum, Bernard

    2013-01-01

    The growing prevalence of antibiotic-resistant infections underscores the need to discover new antibiotics and to use them with maximum effectiveness. In response to these needs, we describe a screening protocol for the discovery of autolysis-inducing agents that uses two Bacillus subtilis reporter strains, SH-536 and BAU-102. To screen chemical libraries, autolysis-inducing agents were first identified with a BAU-102-based screen and then subdivided with SH-536 into two major groups: those that induce autolysis by their direct action on the cell membrane and those that induce autolysis secondary to inhibition of cell wall synthesis. SH-536 distinguishes between the two groups of autolysis-inducing agents by synthesizing and then releasing β-galactosidase (β-Gal) in late stationary phase at a time that cells have nearly stopped growing and are therefore tolerant of cell wall synthesis inhibitors. Four hits, named compound 2, compound 3, compound 5, and compound 24, obtained previously as inducers of autolysis by screening a 10,080-compound discovery library with BAU-102, were probed with SH-536 and found to release β-Gal, indicating that their mode of action was to permeabilize the B. subtilis cell membrane. The four primary hits inhibited growth in Staphylococcus aureus, Enterococcus faecium, Bacillus subtilis, and Bacillus anthracis, with MICs in the 12.5- to 25-μg/ml (20 to 60 μM) range. The four primary hits were further used to probe B. subtilis, and their action was partially characterized with respect to the dependence of induced autolysis on specific autolysins.

  15. Comparative genome analysis of Bacillus cereus group genomes withBacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Iain; Sorokin, Alexei; Kapatral, Vinayak; Reznik, Gary; Bhattacharya, Anamitra; Mikhailova, Natalia; Burd, Henry; Joukov, Victor; Kaznadzey, Denis; Walunas, Theresa; D' Souza, Mark; Larsen, Niels; Pusch,Gordon; Liolios, Konstantinos; Grechkin, Yuri; Lapidus, Alla; Goltsman,Eugene; Chu, Lien; Fonstein, Michael; Ehrlich, S. Dusko; Overbeek, Ross; Kyrpides, Nikos; Ivanova, Natalia

    2005-09-14

    Genome features of the Bacillus cereus group genomes (representative strains of Bacillus cereus, Bacillus anthracis and Bacillus thuringiensis sub spp israelensis) were analyzed and compared with the Bacillus subtilis genome. A core set of 1,381 protein families among the four Bacillus genomes, with an additional set of 933 families common to the B. cereus group, was identified. Differences in signal transduction pathways, membrane transporters, cell surface structures, cell wall, and S-layer proteins suggesting differences in their phenotype were identified. The B. cereus group has signal transduction systems including a tyrosine kinase related to two-component system histidine kinases from B. subtilis. A model for regulation of the stress responsive sigma factor sigmaB in the B. cereus group different from the well studied regulation in B. subtilis has been proposed. Despite a high degree of chromosomal synteny among these genomes, significant differences in cell wall and spore coat proteins that contribute to the survival and adaptation in specific hosts has been identified.

  16. Characterisation and profiling of Bacillus subtilis, Bacillus cereus and Bacillus licheniformis by MALDI-TOF mass fingerprinting.

    Science.gov (United States)

    Fernández-No, I C; Böhme, K; Díaz-Bao, M; Cepeda, A; Barros-Velázquez, J; Calo-Mata, P

    2013-04-01

    The Bacillus genus includes species such as Bacillus cereus, Bacillus licheniformis and Bacillus subtilis, some of which may be pathogenic or causative agents in the spoilage of food products. The main goal of this work was to apply matrix-assisted laser desorption ionisation-time of flight (MALDI-TOF) mass fingerprinting to the classification of these Bacillus species. Genetic analyses were also compared to phyloproteomic analyses. A collection of 57 Bacillus strains isolated from fresh and processed food and from culture collections were studied and their mass spectra compiled. The resulting mass fingerprints were compared and characteristic peaks at the strain and species levels were assigned. The results showed that MALDI-TOF was a good complementary approach to 16S rRNA sequencing and even a more powerful tool in the accurate classification of Bacillus species, especially for differentiating B. subtilis and B. cereus from Bacillus amyloliquefaciens and Bacillus thuringiensis, respectively. MALDI-TOF was also found to provide valuable information at both intra- and interspecies levels in the Bacillus species studied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Interspecific plasmid transfer between Streptococcus pneumoniae and Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa, M. (Inst. de Immunologia y Biologia Microbiana, Velazquez, Madrid, Spain); Lopez, P.; Perez-Urena, M.T.; Lacks, S.A.

    1982-01-01

    The streptococcal plasmids pMV158 and pLS1, grown in Streptococcus pneumoniae, were transformed to Bacillus subtilis by DNA-mediated transformation.The plasmids were unchanged in the new host; no deletions were observed in 80 instances of transfer. Hybrid plasmids were produced by recombining the EcoRI fragment of pBD6 that confers Km/sup r/ with EcoRI-cut pLS1, which confers Tc/sup r/. The simple hybrid, pMP2, was transferable to both species and expressed Tc/sup r/ and Km/sup r/ in both. A derivative, pMP5, which contained an insertion in the pBD6 component, expressed a higher level of kanomycin resistance and was more easily selected in S. pneumoniae. Another derivative, pMP3, which contained an additional EcoRI fragment, presumably of pneumococcal chromosomal DNA, could not be transferred to B. subtilis. Previous findings that monomeric plasmid forms could transform S. pneumoniae but not B. subtilis were confirmed using single plasmid preparations. Although plasmids extracted from either species were readily transferred to S. pneumoniae, successive passage in B. subtilis increased the ability of plasmid extracts to transfer the plasmid to a B. subtilis recipient. This adaptation was tentatively ascribed to an enrichment of multimeric forms in extracts of B. subtilis as compared to S. pneumoniae. A review of host ranges exhibited by plasmids of Gram-positive bacteria suggested differences in their ability to use particular host replication functions. (JMT)

  18. Improvement in the growth performance of white shrimp, Litopenaeus vannamei, by a protease-producing probiotic, Bacillus subtilis E20, from natto.

    Science.gov (United States)

    Liu, C-H; Chiu, C-S; Ho, P-L; Wang, S-W

    2009-09-01

    To isolate and identify a benefic bacterium, Bacillus subtilis E20, from natto (fermented soybeans), and incorporate it into shrimp feed to promote shrimp growth performance. A protease-producing bacterium, E20, isolated from natto was identified as B. subtilis by an API 50 CHB kit and the 16S rDNA sequence. B. subtilis E20 was able to grow at a broad range of temperatures (10-50 degrees C), pH values (5-10), and NaCl levels (0-9%). The best culture conditions for B. subtilis E20 to produce the protease were 40 degrees C, a pH of 6-8 and 0% NaCl. No shrimp died after being injected with B. subtilis E20 [up to 10(9) colony-forming units (CFU) per shrimp]. Bacillus subtilis E20 was incorporated in diets at the levels of 0 (control), 10(6), 10(7), and 10(8) CFU kg(-1) for shrimp grow-out culture, and results showed that after feeding on B. subtilis E20-containing diets (10(8) CFU kg(-1) of diet), shrimp had excellent growth performance and production compared to the control because protease activities in the digestive tract were improved by B. subtilis E20. Bacillus subtilis E20 isolated from natto is a great protease producer and is able to improve shrimp growth performance through increasing the digestibility of food. Results suggest that B. subtilis E20 is a potential candidate for use as a probiotic to improve shrimp growth performance, and consequently reduce feed costs.

  19. Investigation of biosurfactant production by Bacillus pumilus 1529 and Bacillus subtilis WPI

    Directory of Open Access Journals (Sweden)

    shila khajavi shojaei

    2016-06-01

    Full Text Available Introduction: Biosurfactants are unique amphipathic molecules with extensive application in removing organic and metal contaminants. The purpose of this study was to investigate production of biosurfactant and determine optimal conditions to produce biosurfactant by Bacillus pumilus 1529 and Bacillus subtilis WPI. Materials and methods: In this study, effect of carbon source, temperature and incubation time on biosurfactant production was evaluated. Hemolytic activity, emulsification activity, oil spreading, drop collapse, cell hydrophobicity and measurement of surface tension were used to detect biosurfactant production. Then, according to the results, the optimal conditions for biosurfactant production by and Bacillus subtilis WPI was determined. Results: In this study, both bacteria were able to produce biosurfactant at an acceptable level. Glucose, kerosene, sugarcane molasses and phenanthrene used as a sole carbon source and energy for the mentioned bacteria. Bacillus subtilis WPI produced maximum biosurfactant in the medium containing kerosene and reduced surface tension of the medium to 33.1 mN/m after 156 hours of the cultivation at 37°C. Also, the highest surface tension reduction by Bacillus pumilus 1529 occurred in the medium containing sugarcane molasses and reduce the surface tension of culture medium after 156 hours at 37°C from 50.4 to 28.83 mN/m. Discussion and conclusion: Bacillus pumilus 1529 and Bacillus subtilis WPI had high potential in production of biosurfactant and degradation of petroleum hydrocarbons and Phenanthrene. Therefore, it could be said that these bacteria had a great potential for applications in bioremediation and other environmental process.

  20. PRODIGIOSIN INDUCES AUTOLYSINS IN ACTIVELY GROWN Bacillus subtilis CELLS

    Directory of Open Access Journals (Sweden)

    Tjasa eDanevcic

    2016-01-01

    Full Text Available Prodigiosin produced by marine bacterium Vibrio ruber DSM 14379 exhibits a potent antimicrobial activity against a broad range of Gram positive and Gram negative bacteria. The mechanism of prodigiosin antimicrobial action, however, is not known. In this work, the effect of prodigiosin on B. subtilis growth, cell membrane leakage, and induction of autolysins was studied. Treating B. subtilis with prodigiosin resulted in rapid decline of optical density and increased cell membrane leakage measured by β-galactosidase activity. Cell lysis was initiated immediately after treatment with prodigiosin in the middle exponential phase and was completed within two hours. Lytic activity of prodigiosin in mutant strains with impaired autolysin genes lytABCD decreased for 80 % compared to the wild-type strain, while in lytABCDEF mutant strain prodigiosin had no bacteriolytic but only bacteriostatic effect. Fast prodigiosin lytic activity on individual B. subtilis cells was confirmed by a modified comet assay. The results indicate that prodigiosin autolysin induction in B. subtilis is growth phase dependent.

  1. Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC) Applied to Quantitative Proteomics of Bacillus subtilis

    DEFF Research Database (Denmark)

    Soufi, Boumediene; Kumar, C.; Gnad, F.

    2010-01-01

    We applied stable isotope labeling by amino acids in cell culture (SILAC) to large-scale quantitative proteomics analyses of the model bacterium Bacillus subtilis in two physiological conditions: growth on succinate and growth under phosphate starvation. Using a B. subtilis strain auxotrophic...... of the most comprehensive quantitative proteomics studies in bacteria, covering more than 75% of the B. subtilis genes expressed in the log phase of growth. Furthermore, we detect and quantify dynamics of 35 Ser/Thr/Tyr phosphorylation sites under growth on succinate, and 10 phosphorylation sites under...... for lysine and high accuracy mass spectrometry for downstream analysis, we identified and quantified changes in the levels of more than 1500 proteins in each of the tested conditions with high biological and technical reproducibility. With a total of 1928 identified proteins, this study presents one...

  2. Effect of Bacillus subtilis on the growth and survival rate of shrimp ...

    African Journals Online (AJOL)

    The effect ofBacillus subtilis, isolated from digestive tract of Macrobrachium rosenbergii was investigated on growth and survival rate of Litopenaeus vannamei during 60 days of culture. Sixteen aquaria with four replicates were used for treatments and controls. Treatment groups were consisted of Bacillus subtilis, isolated ...

  3. Effect of Bacillus subtilis natto on growth performance in Muscovy ducks

    Directory of Open Access Journals (Sweden)

    T Sheng-Qiu

    2013-09-01

    Full Text Available The aim of the present study was to determine whether dietary Bacillus subtilis natto could affect growth performance of Muscovy ducks. A total of 120 hundred Muscovy ducks at the age of 1 day were randomly assigned to four groups (30 Muscovy ducks/group, and fed with diets supplemented with 0% (control group, 0.1%, 0.2%, and 0.4% Bacillus subtilis natto, respectively during the 6-week feeding period. Weight gain, feed intake and feed conversion efficiency of Muscovy ducks were significantly improved by the dietary addition of Bacillus subtilis natto, and the results were more significant in 0.4% dietary Bacillus subtilis natto treatment group; Also, Bacillus subtilis natto reduced Escherichia coli and Salmonella colonies, and increased lactobacilli population in the ileum and the cecum. Biochemical parameters, including total protein, GOT (glutamic oxaloacetic transaminase, GPT (glutamic pyruvic transaminase, AKP (alkaline phosphatase, triiodothyronine (T3 and tetraiodothyronine (T4 contents (pBacillus subtilis natto was added to the diets (p0.05. The results of the present study indicate that diets with 0.4% Bacillus subtilis natto improved the growth performance of Muscovy ducks by increasing the absorption of protein, simulating hormone secretion, suppressing harmful microflora, and improving the duodenal structure and immune functions of Muscovy ducks. It is suggested that Bacillus subtilis natto is a potential candidate to be used use as a probiotic to improve the growth performance of Muscovy ducks.

  4. An improved protocol for harvesting Bacillus subtilis colony biofilms.

    Science.gov (United States)

    Fuchs, Felix Matthias; Driks, Adam; Setlow, Peter; Moeller, Ralf

    2017-03-01

    Bacterial biofilms cause severe problems in medicine and industry due to the high resistance to disinfectants and environmental stress of organisms within biofilms. Addressing challenges caused by biofilms requires full understanding of the underlying mechanisms for bacterial resistance and survival in biofilms. However, such work is hampered by a relative lack of systems for biofilm cultivation that are practical and reproducible. To address this problem, we developed a readily applicable method to culture Bacillus subtilis biofilms on a membrane filter. The method results in biofilms with highly reproducible characteristics, and which can be readily analyzed by a variety of methods with little further manipulation. This biofilm preparation method simplifies routine generation of B. subtilis biofilms for molecular and cellular analysis, and could be applicable to other microbial systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Production, regulation and transportation of bacillibactin in bacillus subtilis

    International Nuclear Information System (INIS)

    Raza, W.; Hussain, Q.; Shen, Q.

    2012-01-01

    Bacillus subtilis produces a catecholate type siderophore 'Bacillibactin'. This review focuses on the non-ribosomal synthesis, transport and regulation of bacillibactin. Bacillibactin biosynthetic operon contains five genes (dhbACEBF). The uptake of bacillibactin requires the FeuABC transporter, inner-membrane permease, FepDG and YusV ATPase and an esterase encoding gene, besA and while export required YmfE major facilitator super-family (MFS)-type transporter. Fur is the major iron-controlled transcriptional regulator in B. subtilis, which acts as an iron-dependent repressor of the dhb operon in vivo while an iron-independent repressor in vitro. Knowledge of the Fur regulon will be useful in interpreting other global analysis of transcriptional responses. (author)

  6. Characterization of high hydrostatic pressure-injured Bacillus subtilis cells.

    Science.gov (United States)

    Inaoka, Takashi; Kimura, Keitarou; Morimatsu, Kazuya; Yamamoto, Kazutaka

    2017-06-01

    High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.

  7. 40 CFR 180.1209 - Bacillus subtilis strain QST 713; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis strain QST 713... RESIDUES IN FOOD Exemptions From Tolerances § 180.1209 Bacillus subtilis strain QST 713; exemption from the... the microbial pesticide Bacillus subtilis strain QST 713 when used in or on all food commodities. [65...

  8. Social Interactions and Biofilm Formation in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Iztok Dogsa

    2014-01-01

    Full Text Available Quorum sensing (QS is a form of cooperative social behaviour which relies on extracellular signalling molecules that elicit the QS response across many cells and controls the development of many cooperative traits including biofilm formation. The main aim of this work is to review the published work on cooperative social behaviour of Bacillus subtilis and especially its QS system ComQXPA. This QS system involves four interacting components: the signal-processing enzyme ComQ, the ComX signal, the ComP receptor and the ComA transcriptional regulator. Phosphorylated ComA controls the transcription of many genes including those responsible for the production of surfactin and extracellular matrix, essential for biofilm formation. The ComQXPA QS shows a high degree of genetic polymorphism, which manifests itself in the separation of Bacillus subtilis strains into four different communication groups (pherotypes. The information exchange is possible between members of the same pherotype but not across pherotypes. We have recently suggested that this phenomenon is at least in part driven by the ecological divergence of strains, but may also be induced by frequency-dependent selection. The ComQXPA QS system controls the production of extracellular matrix (ECM components: polysaccharides, proteins and nucleic acids. We will address the present understanding of the ECM structure-function relationships in B. subtilis biofilms and review published results on regulation, composition and distribution of ECM components. Despite many important recent discoveries on regulation of B. subtilis biofilm development, we know little about the molecular interactions in the ECM and the role they play in the QS and stability of the biofilm. Future research needs to address these questions better.

  9. Inducing secondary metabolite production by the endophytic fungus Fusarium tricinctum through coculture with Bacillus subtilis.

    Science.gov (United States)

    Ola, Antonius R B; Thomy, Dhana; Lai, Daowan; Brötz-Oesterhelt, Heike; Proksch, Peter

    2013-11-22

    Coculturing the fungal endophyte Fusarium tricinctum with the bacterium Bacillus subtilis 168 trpC2 on solid rice medium resulted in an up to 78-fold increase in the accumulation in constitutively present secondary metabolites that included lateropyrone (5), cyclic depsipeptides of the enniatin type (6-8), and the lipopeptide fusaristatin A (9). In addition, four compounds (1-4) including (-)-citreoisocoumarin (2) as well as three new natural products (1, 3, and 4) were not present in discrete fungal and bacterial controls and only detected in the cocultures. The new compounds were identified as macrocarpon C (1), 2-(carboxymethylamino)benzoic acid (3), and (-)-citreoisocoumarinol (4) by analysis of the 1D and 2D NMR and HRMS data. Enniatins B1 (7) and A1 (8), whose production was particularly enhanced, inhibited the growth of the cocultivated B. subtilis strain with minimal inhibitory concentrations (MICs) of 16 and 8 μg/mL, respectively, and were also active against Staphylococcus aureus, Streptococcus pneumoniae, and Enterococcus faecalis with MIC values in the range 2-8 μg/mL. In addition, lateropyrone (5), which was constitutively present in F. tricinctum, displayed good antibacterial activity against B. subtilis, S. aureus, S. pneumoniae, and E. faecalis, with MIC values ranging from 2 to 8 μg/mL. All active compounds were equally effective against a multiresistant clinical isolate of S. aureus and a susceptible reference strain of the same species.

  10. Mechanisms of Action of Probiotics based on Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    A.V. Savustyanenko

    2016-04-01

    Full Text Available The bacterium B.subtilis is one of the most promi­sing probiotics studied in recent decades. Mechanisms of its probiotic action are associated with the synthesis of antimicrobial agents, increasing of non-specific and specific immunity, stimulation of growth of normal microflora of the intestine and the releasing of digestive enzymes. B.subtilis releases ribosomally synthesized peptides, non-ribosomally synthesized peptides and non-peptide substances with a broad spectrum of antimicrobial activity covering Gram-positive, Gram-negative bacteria, viruses and fungi. Resistance to these antimicrobial agents is rare. Enhancement of non-specific immunity is associated with macrophage activation and the release of pro-inflammatory cytokines from them, increasing of barrier function of the intestinal mucosa, releasing of vitamins and amino acids (including essential ones. Enhancement of specific immunity manifests by activation of T- and B-lymphocytes and the release from the latter of immunoglobulins — IgG and IgA. B.subtilis stimulates the growth of normal intestinal flora, in particular, bacteria of the genus Lactobacillus and Bifidobacterium. Furthermore, probiotic increases the diversity of intestinal microflora. Probiotic secretes all major digestive enzymes to the intestinal lumen: amylases, lipases, proteases, pectinases and cellulases. In addition to digestion, these enzymes destroy antinutritional factors and allergenic substances contained in the food. These mechanisms of action make reasonable the use of B.subtilis in the combination therapy to treat intestinal infections; prevention of respiratory infections during the cold season; prevention of antibiotic-associated diarrhea; for the correction of food digestion and movement impairments of various origin (errors in the diet, changes in the diet, diseases of the gastrointestinal tract, disorders of the autonomic nervous system, etc.. B.subtilis does not usually cause side effects. This

  11. Role of DNA repair in Bacillus subtilis spore resistance.

    OpenAIRE

    Setlow, B; Setlow, P

    1996-01-01

    Wet-heat or hydrogen peroxide treatment of wild-type Bacillus subtilis spores did not result in induction of lacZ fusions to three DNA repair-related genes (dinR, recA, and uvrC) during spore outgrowth. However, these genes were induced during outgrowth of wild-type spores treated with dry heat or UV. Wet-heat, desiccation, dry-heat, or UV treatment of spores lacking major DNA-binding proteins (termed alpha-beta- spores) also resulted in induction of the three DNA repair genes during spore ou...

  12. Functional Diversity of AAA+ Protease Complexes in Bacillus subtilis

    Science.gov (United States)

    Elsholz, Alexander K. W.; Birk, Marlene S.; Charpentier, Emmanuelle; Turgay, Kürşad

    2017-01-01

    Here, we review the diverse roles and functions of AAA+ protease complexes in protein homeostasis, control of stress response and cellular development pathways by regulatory and general proteolysis in the Gram-positive model organism Bacillus subtilis. We discuss in detail the intricate involvement of AAA+ protein complexes in controlling sporulation, the heat shock response and the role of adaptor proteins in these processes. The investigation of these protein complexes and their adaptor proteins has revealed their relevance for Gram-positive pathogens and their potential as targets for new antibiotics. PMID:28748186

  13. Multi level statistical optimization of l-asparaginase fromBacillus subtilis VUVD001.

    Science.gov (United States)

    Erva, Rajeswara Reddy; Venkateswarulu, T C; Pagala, Bangaraiah

    2018-01-01

    Physical and chemical factors influencing the anti-leukemic l-asparaginase enzyme production by Bacillus subtilis VUVD001 were optimized using multi-stage optimization on the basis of preliminary experimental outcomes obtained by conventional one-factor-at-a-time approach using shake flasks. Process variables namely carbon, nitrogen sources, pH and temperature were taken into consideration during response surface methodology (RSM) optimization. The finest enzyme activity of 0.51 IUml -1 obtained by OFAT method was enhanced by 3.2 folds using RSM optimization. Artificial neural network (ANN) modelling and genetic algorithm (GA) based optimizations were further carried out to improve the enzyme drug yield. Results were also validated by conducting experiments at optimum conditions determined by RSM and GA optimization methods. The novel bacterium yielded in 2.88 IUml -1 of enzyme activity at optimum process variables determined by GA optimization, i.e., 0.5% glucose, 8.0% beef extract, 8.3 pH and 49.9 °C temperature. The study explored the optimized culture conditions for better yielding of anti-leukemic enzyme drug from a new bacterial source namely Bacillus subtilis VUVD001 .

  14. Heterologous expression of antigenic peptides in Bacillus subtilis biofilms.

    Science.gov (United States)

    Vogt, Cédric M; Schraner, Elisabeth M; Aguilar, Claudio; Eichwald, Catherine

    2016-08-11

    Numerous strategies have been developed for the display of heterologous proteins in the surface of live bacterial carriers, which can be used as vaccines, immune-modulators, cancer therapy or bioremediation. Bacterial biofilms have emerged as an interesting approach for the expression of proteins of interest. Bacillus subtilis is a well-described, endospore-forming organism that is able to form biofilms and also used as a probiotic, thus making it a suitable candidate for the display of heterologous proteins within the biofilm. Here, we describe the use of TasA, an important structural component of the biofilms formed by B. subtilis, as a genetic tool for the display of heterologous proteins. We first engineered the fusion protein TasA-mCherry and showed that was widely deployed within the B. subtilis biofilms. A significant enhancement of the expression of TasA-mCherry within the biofilm was obtained when depleting both tasA and sinR genes. We subsequently engineered fusion proteins of TasA to antigenic peptides of the E. granulosus parasite, paramyosin and tropomyosin. Our results show that the antigens were well expressed within the biofilm as denoted by macrostructure complementation and by the detection of the fusion protein in both immunoblot and immunohistochemistry. In addition, we show that the recombinant endospores of B. subtilis preserve their biophysical and morphological properties. In this work we provide strong evidence pointing that TasA is a suitable candidate for the display of heterologous peptides, such as antigens, cytokines, enzymes or antibodies, in the B. subtilis biofilms. Finally, our data portray that the recombinant endospores preserve their morphological and biophysical properties and could be an excellent tool to facilitate the transport and the administration.

  15. Construction of novel shuttle expression vectors for gene expression in Bacillus subtilis and Bacillus pumilus.

    Science.gov (United States)

    Shao, Huanhuan; Cao, Qinghua; Zhao, Hongyan; Tan, Xuemei; Feng, Hong

    2015-01-01

    A native plasmid (pSU01) was detected by genome sequencing of Bacillus subtilis strain S1-4. Two pSU01-based shuttle expression vectors pSU02-AP and pSU03-AP were constructed enabling stable replication in B. subtilis WB600. These vectors contained the reporter gene aprE, encoding an alkaline protease from Bacillus pumilus BA06. The expression vector pSU03-AP only possessed the minimal replication elements (rep, SSO, DSO) and exhibited more stability on structure, suggesting that the rest of the genes in pSU01 (ORF1, ORF2, mob, hsp) were unessential for the structural stability of plasmid in B. subtilis. In addition, recombinant production of the alkaline protease was achieved more efficiently with pSU03-AP whose copy number was estimated to be more than 100 per chromosome. Furthermore, pSU03-AP could also be used to transform and replicate in B. pumilus BA06 under selective pressure. In conclusion, pSU03-AP is expected to be a useful tool for gene expression in Bacillus subtilis and B. pumilus.

  16. Regulatory RNAs in Bacillus subtilis: a Gram-Positive Perspective on Bacterial RNA-Mediated Regulation of Gene Expression

    Science.gov (United States)

    Mars, Ruben A. T.; Nicolas, Pierre; Denham, Emma L.

    2016-01-01

    SUMMARY Bacteria can employ widely diverse RNA molecules to regulate their gene expression. Such molecules include trans-acting small regulatory RNAs, antisense RNAs, and a variety of transcriptional attenuation mechanisms in the 5′ untranslated region. Thus far, most regulatory RNA research has focused on Gram-negative bacteria, such as Escherichia coli and Salmonella. Hence, there is uncertainty about whether the resulting insights can be extrapolated directly to other bacteria, such as the Gram-positive soil bacterium Bacillus subtilis. A recent study identified 1,583 putative regulatory RNAs in B. subtilis, whose expression was assessed across 104 conditions. Here, we review the current understanding of RNA-based regulation in B. subtilis, and we categorize the newly identified putative regulatory RNAs on the basis of their conservation in other bacilli and the stability of their predicted secondary structures. Our present evaluation of the publicly available data indicates that RNA-mediated gene regulation in B. subtilis mostly involves elements at the 5′ ends of mRNA molecules. These can include 5′ secondary structure elements and metabolite-, tRNA-, or protein-binding sites. Importantly, sense-independent segments are identified as the most conserved and structured potential regulatory RNAs in B. subtilis. Altogether, the present survey provides many leads for the identification of new regulatory RNA functions in B. subtilis. PMID:27784798

  17. Role of the ganSPQAB Operon in Degradation of Galactan by Bacillus subtilis.

    Science.gov (United States)

    Watzlawick, Hildegard; Morabbi Heravi, Kambiz; Altenbuchner, Josef

    2016-10-15

    Bacillus subtilis possesses different enzymes for the utilization of plant cell wall polysaccharides. This includes a gene cluster containing galactan degradation genes (ganA and ganB), two transporter component genes (ganQ and ganP), and the sugar-binding lipoprotein-encoding gene ganS (previously known as cycB). These genes form an operon that is regulated by GanR. The degradation of galactan by B. subtilis begins with the activity of extracellular GanB. GanB is an endo-β-1,4-galactanase and is a member of glycoside hydrolase (GH) family 53. This enzyme was active on high-molecular-weight arabinose-free galactan and mainly produced galactotetraose as well as galactotriose and galactobiose. These galacto-oligosaccharides may enter the cell via the GanQP transmembrane proteins of the galactan ABC transporter. The specificity of the galactan ABC transporter depends on the sugar-binding lipoprotein, GanS. Purified GanS was shown to bind galactotetraose and galactotriose using thermal shift assay. The energy for this transport is provided by MsmX, an ATP-binding protein. The transported galacto-oligosaccharides are further degraded by GanA. GanA is a β-galactosidase that belongs to GH family 42. The GanA enzyme was able to hydrolyze short-chain β-1,4-galacto-oligosaccharides as well as synthetic β-galactopyranosides into galactose. Thermal shift assay as well as electrophoretic mobility shift assay demonstrated that galactobiose is the inducer of the galactan operon regulated by GanR. DNase I footprinting revealed that the GanR protein binds to an operator overlapping the -35 box of the σ(A)-type promoter of Pgan, which is located upstream of ganS IMPORTANCE: Bacillus subtilis is a Gram-positive soil bacterium that utilizes different types of carbohydrates, such as pectin, as carbon sources. So far, most of the pectin degradation systems and enzymes have been thoroughly studied in B. subtilis Nevertheless, the B. subtilis utilization system of galactan, which is

  18. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an “Operational Group B. amyloliquefaciens” within the B. subtilis Species Complex

    Science.gov (United States)

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we reinvestigated the taxonomic status of FZB42 and related strains in its context to the free-living soil bacterium DSM7T, the type strain of B. amyloliquefaciens. We identified 66 bacterial genomes from the NCBI data bank with high similarity to DSM7T. Dendrograms based on complete rpoB nucleotide sequences and on core genome sequences, respectively, clustered into a clade consisting of three tightly linked branches: (1) B. amyloliquefaciens, (2) Bacillus siamensis, and (3) a conspecific group containing the type strains of B. velezensis, Bacillus methylotrophicus, and B. amyloliquefaciens subsp. plantarum. The three monophyletic clades shared a common mutation rate of 0.01 substitutions per nucleotide position, but were distantly related to Bacillus subtilis (0.1 substitutions per nucleotide position). The tight relatedness of the three clusters was corroborated by TETRA, dDDH, ANI, and AAI analysis of the core genomes, but dDDH and ANI values were found slightly below species level thresholds when B. amyloliquefaciens DSM7T genome sequence was used as query sequence. Due to these results, we propose that the B. amyloliquefaciens clade should be considered as a taxonomic unit above of species level, designated here as “operational group B. amyloliquefaciens” consisting of the soil borne B. amyloliquefaciens, and plant associated B. siamensis and B. velezensis, whose members are closely related and allow identifying changes on the genomic level due to developing the plant-associated life-style. PMID:28163698

  19. PRODUKSI ANTIBIOTIKA OLEH Bacillus subtilis M10 DALAM MEDIA UREA-SORBITOL

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2012-04-01

    Full Text Available PRODUCTION OF ANTIBIOTICS BY Bacillus subtilis M10 IN UREA-SORBITOL MEDIUM. Infection diseases still become the main health problems that suffered by people in Indonesia. Besides, there were many pathogen bacteria found to be resistant to the some antibiotics. Therefore, the efforts to get a new antibiotic require to be done continuously. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibit Serratia marcescens ATCC 27117 growth. To make efficient the local strain, mutation on Bacillus subtilis BAC4 was done by using acridine orange and a mutant cell of Bacillus subtilis M10 that overproduction for producing antibiotic was obtained. Nevertheless, the production kinetics of antibiotic by this mutant has not been reported. The objective of this research was to study the production kinetics of antibiotic by Bacillus subtilis M10 mutant. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using Serratia marcescens ATCC 27117 as bacteria assay. Research result provided that Bacillus subtilis M10 mutant with overproduction of antibiotic produced an antibiotic since 8th hour’s fermentation and optimum of it production was at 14th hours after inoculation.  Penyakit infeksi masih menjadi masalah yang utama diderita oleh masyarakat Indonesia. Di samping itu, banyak bakteri patogen yang ditemukan resisten terhadap beberapa antibiotika. Oleh karena itu, upaya-upaya untuk mendapatkan antibiotika baru perlu dilakukan secara terus-menerus. Suatu galur lokal baru Bacillus subtilis BAC4 teridentifikasi memproduksi senyawa antibiotika yang menghambat pertumbuhan Serratia marcescens ATCC27117. Untuk memberdayakan galur tersebut, terhadap Bacillus subtilis BAC4 dilakukan mutasi dengan larutan akridin oranye dan diperoleh mutan Bacillus subtilis M10 yang memproduksi antibiotika berlebihan. Namun, kinetika produksi antibiotika oleh Bacillus

  20. Prediction of Transcriptional Terminators in Bacillus subtilis and Related Species.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available In prokaryotes, genes belonging to the same operon are transcribed in a single mRNA molecule. Transcription starts as the RNA polymerase binds to the promoter and continues until it reaches a transcriptional terminator. Some terminators rely on the presence of the Rho protein, whereas others function independently of Rho. Such Rho-independent terminators consist of an inverted repeat followed by a stretch of thymine residues, allowing us to predict their presence directly from the DNA sequence. Unlike in Escherichia coli, the Rho protein is dispensable in Bacillus subtilis, suggesting a limited role for Rho-dependent termination in this organism and possibly in other Firmicutes. We analyzed 463 experimentally known terminating sequences in B. subtilis and found a decision rule to distinguish Rho-independent transcriptional terminators from non-terminating sequences. The decision rule allowed us to find the boundaries of operons in B. subtilis with a sensitivity and specificity of about 94%. Using the same decision rule, we found an average sensitivity of 94% for 57 bacteria belonging to the Firmicutes phylum, and a considerably lower sensitivity for other bacteria. Our analysis shows that Rho-independent termination is dominant for Firmicutes in general, and that the properties of the transcriptional terminators are conserved. Terminator prediction can be used to reliably predict the operon structure in these organisms, even in the absence of experimentally known operons. Genome-wide predictions of Rho-independent terminators for the 57 Firmicutes are available in the Supporting Information section.

  1. Development of Bacillus subtilis mutants to produce tryptophan in pigs.

    Science.gov (United States)

    Bjerre, Karin; Cantor, Mette D; Nørgaard, Jan V; Poulsen, Hanne D; Blaabjerg, Karoline; Canibe, Nuria; Jensen, Bent B; Stuer-Lauridsen, Birgitte; Nielsen, Bea; Derkx, Patrick M F

    2017-02-01

    To generate tryptophan-overproducing Bacillus subtilis strains for in situ use in pigs, to reduce the feed cost for farmers and nitrogen pollution. A novel concept has been investigated-to generate B. subtilis strains able to produce tryptophan (Trp) in situ in pigs. Mutagenesis by UV was combined with selection on Trp and purine analogues in an iterative process. Two mutants from different wild types were obtained, mutant 1 (M1) produced 1 mg Trp/l and mutant 2 (M2) 14 mg Trp/l. Genome sequence analysis revealed that M1 had three single nuclear polymorphisms (SNPs) and M2 had two SNPs compared to the wild type strains. In both mutants SNPs were found in genes regulating tryptophan synthesis. Reverse transcription PCR confirmed up-regulation of the tryptophan synthesis genes in both mutants, the expression was up to 3 times higher in M2 than in M1. Tryptophan-excreting B. subtilis strains were obtained with UV-mutagenesis and analogue selection and can be used in animal feed applications.

  2. A Computational Study of Phenotype Switching in Bacillus Subtilis Biofilm

    Science.gov (United States)

    Smith, Howard; Wang, Xiaoling; Jiang, Yi

    Bacillus Subtilis (B. Subtilis), is known to differentiate into three main phenotypes during biofilm growth. Novel techniques to track the spatial and temporal evolution of the three main phenotypes exhibited by B. Subtilis have been developed. However, the techniques do not explain the environmental causes of the phenotype switching and how this leads to the spatiotemporal organization of the biofilm. We hypothesize that cells switch their phenotype according to nutrients and autoinducer levels. We test the hypothesis using a hybrid agent-based and continuous model. The bacteria in our model are individual cells that can (i) grow and divide by the intake of nutrients, (ii) produce and secrete EPS, (iii) form spores and (iv) produce an auto inducer. Using a threshold for nutrient and thresholds for autoinducers, we were able to reproduce the experimental spatiotemporal dynamics. From our simulations we observed that in order to reproduce experimental results, two different autoinducers were necessary. The results also suggest that low-EPS producing biofilms generally obtained higher cell populations. Furthermore, most of the cells that become spore forming cells arise from matrix producing cells.

  3. Pulsed dielectric barrier discharge for Bacillus subtilis inactivation in water

    International Nuclear Information System (INIS)

    Hernández-Arias, A N; López-Callejas, R; De la Piedad Beneitez, A; Rodríguez-Méndez, B G; Valencia-Alvarado, R; Mercado-Cabrera, A; Peña-Eguiluz, R; Barocio, S R; Muñoz-Castro, A E

    2012-01-01

    The inactivation of Bacillus subtilis bacteria in water has been experimentally studied by means of a pulsed dielectric barrier discharge (PDBD) in a coaxial reactor endowed with an alumina dielectric. The plasma source is capable of operating at atmospheric pressure with gas, water or hybrid gas-liquid media at adjustable 25 kV pulses, 30 μs long and at a 500 Hz frequency. In order to evaluate the inactivation efficiency of the system, a set of experiments were designed on the basis of oxygen flow control. The initial data have showed a significant bacterial rate reduction of 10 3 -10 7 CFU/mL. Additional results proved that applying an oxygen flow for a few seconds during the PDBD treatment inactivates the Bacillus subtilis population with 99.99% effectiveness. As a reference, without gas flow but with the same exposure times, this percentage is reduced to ∼90%. The analysis of the relationship between inactivation rate and chemical species in the discharge has been carried out using optical emission spectroscopy as to identifying the main reactive species. Reactive oxygen species such as atomic oxygen and ozone tuned out to be the dominant germicidal species. Some proposed inactivation mechanisms of this technique are discussed.

  4. Computational design of glutamate dehydrogenase in Bacillus subtilis natto.

    Science.gov (United States)

    Chen, Li-Li; Wang, Jia-Le; Hu, Yu; Qian, Bing-Jun; Yao, Xiao-Min; Wang, Jing-Fang; Zhang, Jian-Hua

    2013-04-01

    Bacillus subtilis natto is widely used in industry to produce natto, a traditional and popular Japanese soybean food. However, during its secondary fermentation, high amounts of ammonia are released to give a negative influence on the flavor of natto. Glutamate dehydrogenase (GDH) is a key enzyme for the ammonia produced and released, because it catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD(+) or NADP(+) as co-factor during carbon and nitrogen metabolism processes. To solve this problem, we employed multiple computational methods model and re-design GDH from Bacillus subtilis natto. Firstly, a structure model of GDH with cofactor NADP(+) was constructed by threading and ab initio modeling. Then the substrate glutamate were flexibly docked into the structure model to form the substrate-binding mode. According to the structural analysis of the substrate-binding mode, Lys80, Lys116, Arg196, Thr200, and Ser351 in the active site were found could form a significant hydrogen bonding network with the substrate, which was thought to play a crucial role in the substrate recognition and position. Thus, these residues were then mutated into other amino acids, and the substrate binding affinities for each mutant were calculated. Finally, three single mutants (K80A, K116Q, and S351A) were found to have significant decrease in the substrate binding affinities, which was further supported by our biochemical experiments.

  5. Termination factor Rho: From the control of pervasive transcription to cell fate determination in Bacillus subtilis

    Science.gov (United States)

    Nicolas, Pierre; Repoila, Francis; Bardowski, Jacek; Aymerich, Stéphane

    2017-01-01

    In eukaryotes, RNA species originating from pervasive transcription are regulators of various cellular processes, from the expression of individual genes to the control of cellular development and oncogenesis. In prokaryotes, the function of pervasive transcription and its output on cell physiology is still unknown. Most bacteria possess termination factor Rho, which represses pervasive, mostly antisense, transcription. Here, we investigate the biological significance of Rho-controlled transcription in the Gram-positive model bacterium Bacillus subtilis. Rho inactivation strongly affected gene expression in B. subtilis, as assessed by transcriptome and proteome analysis of a rho–null mutant during exponential growth in rich medium. Subsequent physiological analyses demonstrated that a considerable part of Rho-controlled transcription is connected to balanced regulation of three mutually exclusive differentiation programs: cell motility, biofilm formation, and sporulation. In the absence of Rho, several up-regulated sense and antisense transcripts affect key structural and regulatory elements of these differentiation programs, thereby suppressing motility and biofilm formation and stimulating sporulation. We dissected how Rho is involved in the activity of the cell fate decision-making network, centered on the master regulator Spo0A. We also revealed a novel regulatory mechanism of Spo0A activation through Rho-dependent intragenic transcription termination of the protein kinase kinB gene. Altogether, our findings indicate that distinct Rho-controlled transcripts are functional and constitute a previously unknown built-in module for the control of cell differentiation in B. subtilis. In a broader context, our results highlight the recruitment of the termination factor Rho, for which the conserved biological role is probably to repress pervasive transcription, in highly integrated, bacterium-specific, regulatory networks. PMID:28723971

  6. Cyclic di-AMP Acts as an Extracellular Signal That ImpactsBacillus subtilisBiofilm Formation and Plant Attachment.

    Science.gov (United States)

    Townsley, Loni; Yannarell, Sarah M; Huynh, Tuanh Ngoc; Woodward, Joshua J; Shank, Elizabeth A

    2018-03-27

    There is a growing appreciation for the impact that bacteria have on higher organisms. Plant roots often harbor beneficial microbes, such as the Gram-positive rhizobacterium Bacillus subtilis , that influence their growth and susceptibility to disease. The ability to form surface-attached microbial communities called biofilms is crucial for the ability of B. subtilis to adhere to and protect plant roots. In this study, strains harboring deletions of the B. subtilis genes known to synthesize and degrade the second messenger cyclic di-adenylate monophosphate (c-di-AMP) were examined for their involvement in biofilm formation and plant attachment. We found that intracellular production of c-di-AMP impacts colony biofilm architecture, biofilm gene expression, and plant attachment in B. subtilis We also show that B. subtilis secretes c-di-AMP and that putative c-di-AMP transporters impact biofilm formation and plant root colonization. Taken together, our data describe a new role for c-di-AMP as a chemical signal that affects important cellular processes in the environmentally and agriculturally important soil bacterium B. subtilis These results suggest that the "intracellular" signaling molecule c-di-AMP may also play a previously unappreciated role in interbacterial cell-cell communication within plant microbiomes. IMPORTANCE Plants harbor bacterial communities on their roots that can significantly impact their growth and pathogen resistance. In most cases, however, the signals that mediate host-microbe and microbe-microbe interactions within these communities are unknown. A detailed understanding of these interaction mechanisms could facilitate the manipulation of these communities for agricultural or environmental purposes. Bacillus subtilis is a plant-growth-promoting bacterium that adheres to roots by forming biofilms. We therefore began by exploring signals that might impact its biofilm formation. We found that B. subtilis secretes c-di-AMP and that the

  7. Oscillating behavior of Clostridium difficile Min proteins in Bacillus subtilis.

    Science.gov (United States)

    Makroczyová, Jana; Jamroškovič, Ján; Krascsenitsová, Eva; Labajová, Nad'a; Barák, Imrich

    2016-06-01

    In rod-shaped bacteria, the proper placement of the division septum at the midcell relies, at least partially, on the proteins of the Min system as an inhibitor of cell division. The main principle of Min system function involves the formation of an inhibitor gradient along the cell axis; however, the establishment of this gradient differs between two well-studied gram-negative and gram-positive bacteria. While in gram-negative Escherichia coli, the Min system undergoes pole-to-pole oscillation, in gram-positive Bacillus subtilis, proper spatial inhibition is achieved by the preferential attraction of the Min proteins to the cell poles. Nevertheless, when E.coli Min proteins are inserted into B.subtilis cells, they still oscillate, which negatively affects asymmetric septation during sporulation in this organism. Interestingly, homologs of both Min systems were found to be present in various combinations in the genomes of anaerobic and endospore-forming Clostridia, including the pathogenic Clostridium difficile. Here, we have investigated the localization and behavior of C.difficile Min protein homologs and showed that MinDE proteins of C.difficile can oscillate when expressed together in B.subtilis cells. We have also investigated the effects of this oscillation on B.subtilis sporulation, and observed decreased sporulation efficiency in strains harboring the MinDE genes. Additionally, we have evaluated the effects of C.difficile Min protein expression on vegetative division in this heterologous host. © 2016 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  8. Bacillus subtilis 5'-nucleotidases with various functions and substrate specificities.

    Science.gov (United States)

    Terakawa, Ayako; Natsume, Ayane; Okada, Atsushi; Nishihata, Shogo; Kuse, Junko; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2016-10-26

    In Escherichia coli, nagD, yrfG, yjjG, yieH, yigL, surE, and yfbR encode 5'-nucleotidases that hydrolyze the phosphate group of 5'-nucleotides. In Bacillus subtilis, genes encoding 5'-nucleotidase have remained to be identified. We found that B. subtilis ycsE, araL, yutF, ysaA, and yqeG show suggestive similarities to nagD. Here, we expressed them in E. coli to purify the respective His 6 -tagged proteins. YcsE exhibited significant 5'-nucleotidase activity with a broader specificity, whereas the other four enzymes had rather weak but suggestive activities with various capacities and substrate specificities. In contrast, B. subtilis yktC shares high similarity with E. coli suhB encoding an inositol monophosphatase. YktC exhibited inositol monophosphatase activity as well as 5'-nucleotidase activity preferential for GMP and IMP. The ycsE, yktC, and yqeG genes are induced by oxidative stress and were dispensable, although yqeG was required to maintain normal growth on solid medium. In the presence of diamide, only mutants lacking yktC exhibited enhanced growth defects, whereas the other mutants without ycsE or yqeG did not. Accordingly, in B. subtilis, at least YcsE and YktC acted as major 5'-nucleotidases and the four minor enzymes might function when the intracellular concentrations of substrates are sufficiently high. In addition, YktC is involved in resistance to oxidative stress caused by diamide, while YqeG is necessary for normal colony formation on solid medium.

  9. TRANSDUCTION OF BACILLUS LICHENIFORMIS AND BACILLUS SUBTILIS BY EACH OF TWO PHAGES1

    Science.gov (United States)

    Taylor, Martha J.; Thorne, Curtis B.

    1963-01-01

    Taylor, Martha J. (U.S. Army Biological Laboratories, Fort Detrick, Frederick, Md.) and Curtis B. Thorne. Transduction of Bacillus licheniformis and Bacillus subtilis by each of two phages. J. Bacteriol. 86:452–461. 1963.—A second transducing bacteriophage, designated SP-15, was isolated from the same soil-sample culture filtrate that supplied the Bacillus subtilis transducing phage, SP-10, reported earlier from this laboratory. SP-10 and SP-15 differ serologically and in several other respects, but share the ability to propagate on B. subtilis W-23-Sr (streptomycin-resistant) and B. licheniformis ATCC 9945a, and to mediate general transduction in either species when propagated homologously. Attempts to transduce between the species have failed. SP-10 forms plaques readily on both W-23-Sr and 9945a; SP-15 forms minute plaques on W-23-Sr and has shown no evidence of any lytic activity on 9945a. Maximal recoveries of prototrophic colonies from mixtures of SP-10 with auxotrophs of either W-23-Sr or 9945a were obtained only when excess phage was neutralized by post-transduction treatment with specific phage antiserum. Such treatment was not necessary for maximal recovery of transductants effected by SP-15. Unlike SP-10, SP-15 propagated on W-23-Sr did not transduce B. subtilis 168 (indole−). SP-15 transduced B. licheniformis more efficiently than did SP-10. Neither phage was able to transduce B. licheniformis as efficiently as it transduced B. subtilis. The differing influences of multiplicity of infection were compared for the two phages in both species. PMID:14066421

  10. Changes in the Acetylome and Succinylome of Bacillus subtilis in Response to Carbon Source.

    Directory of Open Access Journals (Sweden)

    Saori Kosono

    Full Text Available Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is

  11. Characterization of Lipase from Bacillus subtilisI-4 and Its Potential Use in Oil Contaminated Wastewater

    Directory of Open Access Journals (Sweden)

    Syeda Abeer Iqbal

    2015-10-01

    Full Text Available ABSTRACTA lipase producing bacterium was isolated from oil contaminated effluents of various industries from Sheikhupura Road, Pakistan, and, on the basis of biochemical and 16S rRNA ribotyping, was identified asBacillus subtilis. The optimum temperature and pH for the growth of the culture were 37ºC and 7.0, respectively.B. subtilis I-4 had a lag phase of 4 h in LB medium while this phase prolonged to 6 h in oil containing medium. The optimum temperature and pH for the enzyme activity were 50ºC and 7.0, respectively. Maximum lipase activity was found in the presence of Ca ions. Olive oil and Tween 80 induced lipase gene in the bacterium while concentration of oil greater than 2% retarded the growth of the organism. In addition to lipaseB. subtilis I-4 also produced alkane hydroxylase and biosurfactant which could make this bacterium potential candidate for lipase production as well as bioremediation of oil-contaminated wastewater.

  12. Caracterización de cristales de calcita bioprecipitada por un aislamiento nativo de Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Carolina Montoya

    2005-07-01

    Full Text Available Bacillus subtilis es una bacteria útil en algunas aplicaciones biotecnológicas por poseer enzimas como las amilasas, las cuales desempeñan un papel importante en diferentes procesos industriales. Una de sus propiedades, poco estudiada, ha sido su capacidad de inducir bioprecipitación química de carbonato de calcio (Ca2+ + HCO3 3> CaCO3 + H+ mediante un mecanismo similar al observado en la formación de rocas, suelos y estructuras biológicas como huesos, conchas y dientes. En esta investigación se estudiaron los cristales producidos por un aislamiento nativo de B. subtilis, tomado de una mina de oro situada en Segovia (Antioquia. Se determinó su capacidad calcificante utilizando el medio de cultivo B4. La caracterización del cristal producido se realizó con lupa binocular, microscopio petrográfico de luz plana polarizada (MOLP en su modo de luz transmitida, microscopio electrónico de barrido con analizador de estado sólido (ESEM/EDX y espectroscopía infrarroja con transformada de Fourier (FTIR. A partir de los resultados obtenidos por medio de la caracterización utilizando la combinación de las técnicas analíticas que se mencionaron, fue posible determinar que el aislado nativo de B. subtilis generó y por ende es productor de cristales de carbonato de calcio (CaCO3 en su forma polimórfica de baja temperatura (calcite.Palabras clave: Bacillus subtilis, calcita, bioprecipitación, mineralogía aplicada, biomineralogía.ABSTRACTBacillus subtilis, a bacterium useful in some biotechnology applications, contains enzymes such as amylases, which play an important role in several industrial processes. One of its properties, not very well studied, is its capacity to induce the chemical bioprecipitation of CaCO3 (Ca2+ + HCO3 —> CaCO3 + H+, a similar mechanism commonly observed in the formation of rocks, soils and biological structures like bones, shells and teeth. In this work we have studied carbonate crystals produced by a B

  13. Lysinibacillus fusiformis M5 Induces Increased Complexity in Bacillus subtilis 168 Colony Biofilms via Hypoxanthine.

    Science.gov (United States)

    Gallegos-Monterrosa, Ramses; Kankel, Stefanie; Götze, Sebastian; Barnett, Robert; Stallforth, Pierre; Kovács, Ákos T

    2017-11-15

    In recent years, biofilms have become a central subject of research in the fields of microbiology, medicine, agriculture, and systems biology, among others. The sociomicrobiology of multispecies biofilms, however, is still poorly understood. Here, we report a screening system that allowed us to identify soil bacteria which induce architectural changes in biofilm colonies when cocultured with Bacillus subtilis We identified the soil bacterium Lysinibacillus fusiformis M5 as an inducer of wrinkle formation in B. subtilis colonies mediated by a diffusible signaling molecule. This compound was isolated by bioassay-guided chromatographic fractionation. The elicitor was identified to be the purine hypoxanthine using mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. We show that the induction of wrinkle formation by hypoxanthine is not dependent on signal recognition by the histidine kinases KinA, KinB, KinC, and KinD, which are generally involved in phosphorylation of the master regulator Spo0A. Likewise, we show that hypoxanthine signaling does not induce the expression of biofilm matrix-related operons epsABCDEFGHIJKLMNO and tasA-sipW-tapA Finally, we demonstrate that the purine permease PbuO, but not PbuG, is necessary for hypoxanthine to induce an increase in wrinkle formation of B. subtilis biofilm colonies. Our results suggest that hypoxanthine-stimulated wrinkle development is not due to a direct induction of biofilm-related gene expression but rather is caused by the excess of hypoxanthine within B. subtilis cells, which may lead to cell stress and death. IMPORTANCE Biofilms are a bacterial lifestyle with high relevance regarding diverse human activities. Biofilms can be beneficial, for instance, in crop protection. In nature, biofilms are commonly found as multispecies communities displaying complex social behaviors and characteristics. The study of interspecies interactions will thus lead to a better understanding and use of biofilms as they

  14. Identification and evaluation of strain B37 of Bacillus subtilis antagonistic to sapstain fungi on poplar wood.

    Science.gov (United States)

    Zhang, XiaoHua; Zhao, GuiHua; Li, DeWei; Li, ShunPeng; Hong, Qing

    2014-01-01

    Devaluation of poplar products by sapstain accounts for huge and unpredictable losses each year in China. We had isolated four poplar sapstain fungi, Ceratocystis adiposa Hz91, Lasiodiplodia theobromae YM0737, L. theobromae Fx46, and Fusarium sp. YM05, from five poplar varieties and 13 antagonistic bacteria from nine diverse varieties. After being experimented with agar plates, wood chips, and enzyme activities, strain B37 was identified as the best poplar sapstain biocontrol bacterium. The strain B37 was identified as Bacillus subtilis using sequences of the 16S rRNA gene, physiological biochemical, and morphological characteristics.

  15. A Generic Protocol for Intracellular Expression of Recombinant Proteins in Bacillus subtilis.

    Science.gov (United States)

    Phan, Trang; Huynh, Phuong; Truong, Tuom; Nguyen, Hoang

    2017-01-01

    Bacillus subtilis (B. subtilis) is a potential and attractive host for the production of recombinant proteins. Different expression systems for B. subtilis have been developed recently, and various target proteins have been recombinantly synthesized and purified using this host. In this chapter, we introduce a generic protocol to express a recombinant protein in B. subtilis. It includes protocols for (1) using our typical expression vector (plasmid pHT254) to introduce a target gene, (2) transformation of the target vector into B. subtilis, and (3) evaluation of the actual expression of a recombinant protein.

  16. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an ?Operational Group B. amyloliquefaciens? within the B. subtilis Species Complex

    OpenAIRE

    Fan, Ben; Blom, Jochen; Klenk, Hans-Peter; Borriss, Rainer

    2017-01-01

    The plant growth promoting model bacterium FZB42T was proposed as the type strain of Bacillus amyloliquefaciens subsp. plantarum (Borriss et al., 2011), but has been recently recognized as being synonymous to Bacillus velezensis due to phylogenomic analysis (Dunlap C. et al., 2016). However, until now, majority of publications consider plant-associated close relatives of FZB42 still as “B. amyloliquefaciens.” Here, we reinvestigated the taxonomic status of FZB42 and related strains in its con...

  17. Mutagenic effect of tritated water on spores of Bacillus subtilis

    International Nuclear Information System (INIS)

    Tanooka, H.; Munakata, N.

    1978-01-01

    The mutagenic effect of tritiated water was observed with spores of Bacillus subtilis polA strain suspended in 50 mCi/ml of tritiated water for various intervals. Dose rate given by tritium beta particles to spore core was estimated to be 400 rad/hr from some assumptions and E. coli data computed by Bockrath et al. and Sands et al. The initial mutation rate was 4.2 x 10 -9 mutants/rad, as compared with 2.4 x 10 -9 mutants/rad for 60 Co γ rays and 3.3 x 10 -9 mutants/rad for 30-kVp x rays. The mutagenic effect of tritiated water on spores is most likely due to beta particle ionizing radiation damage

  18. Transcriptional regulation of the Bacillus subtilis menp1 promoter.

    Science.gov (United States)

    Qin, X; Taber, H W

    1996-02-01

    The Bacillus subtilis men genes encode biosynthetic enzymes for formation of the respiratory chain component menaquinone. The menp1 promoter previously was shown to be the primary cis element for menFD gene expression. In the present work, it was found that either supplementation with nonfermentable carbon sources or reutilization of glycolytic end products increased menp1 activity in the late postexponential phase. The effect on menp1 activity by a particular end product (such as acetoin or acetate) was prevented by blocking the corresponding pathway for end product utilization. Alteration of a TGAAA motif within the promoter region resulted in unregulated menp1 activity throughout the culture cycle, irrespective of the carbon source added.

  19. Inventory, assembly and analysis of Bacillus subtilis ABC transport systems.

    Science.gov (United States)

    Quentin, Y; Fichant, G; Denizot, F

    1999-04-02

    We have undertaken the inventory and assembly of the ATP binding cassette (ABC) transporter systems in the complete genome of Bacillus subtilis. We combined the identification of the three protein partners that compose an ABC transporter (nucleotide-binding domain, NBD; membrane spanning domain, MSD; and solute-binding protein, SBP) with constraints on the genetic organization. This strategy allowed the identification of 86 NBDs in 78 proteins, 103 MSD proteins and 37 SBPs. The analysis of transcriptional units allows the reconstruction of 59 ABC transporters, which include at least one NBD and one MSD. A particular class of five dimeric ATPases was not associated to MSD partners and is assumed to be involved either in macrolide resistance or regulation of translation elongation. In addition, we have detected five genes encoding ATPases without any gene coding for MSD protein in their neighborhood and 11 operons that encode only the membrane and solute-binding proteins. On the bases of similarities, three ATP-binding proteins are proposed to energize ten incomplete systems, suggesting that one ATPase may be recruited by more than one transporter. Finally, we estimate that the B. subtilis genome encodes for at least 78 ABC transporters that have been split in 38 importers and 40 extruders. The ABC systems have been further classified into 11 sub-families according to the tree obtained from the NBDs and the clustering of the MSDs and the SBPs. Comparisons with Escherichia coli show that the extruders are over-represented in B. subtilis, corresponding to an expansion of the sub-families of antibiotic and drug resistance systems. Copyright 1999 Academic Press.

  20. Acid and base stress and transcriptomic responses in Bacillus subtilis.

    Science.gov (United States)

    Wilks, Jessica C; Kitko, Ryan D; Cleeton, Sarah H; Lee, Grace E; Ugwu, Chinagozi S; Jones, Brian D; BonDurant, Sandra S; Slonczewski, Joan L

    2009-02-01

    Acid and base environmental stress responses were investigated in Bacillus subtilis. B. subtilis AG174 cultures in buffered potassium-modified Luria broth were switched from pH 8.5 to pH 6.0 and recovered growth rapidly, whereas cultures switched from pH 6.0 to pH 8.5 showed a long lag time. Log-phase cultures at pH 6.0 survived 60 to 100% at pH 4.5, whereas cells grown at pH 7.0 survived base induced adaptation to a more extreme acid or base, respectively. Expression indices from Affymetrix chip hybridization were obtained for 4,095 protein-encoding open reading frames of B. subtilis grown at external pH 6, pH 7, and pH 9. Growth at pH 6 upregulated acetoin production (alsDS), dehydrogenases (adhA, ald, fdhD, and gabD), and decarboxylases (psd and speA). Acid upregulated malate metabolism (maeN), metal export (czcDO and cadA), oxidative stress (catalase katA; OYE family namA), and the SigX extracytoplasmic stress regulon. Growth at pH 9 upregulated arginine catabolism (roc), which generates organic acids, glutamate synthase (gltAB), polyamine acetylation and transport (blt), the K(+)/H(+) antiporter (yhaTU), and cytochrome oxidoreductases (cyd, ctaACE, and qcrC). The SigH, SigL, and SigW regulons were upregulated at high pH. Overall, greater genetic adaptation was seen at pH 9 than at pH 6, which may explain the lag time required for growth shift to high pH. Low external pH favored dehydrogenases and decarboxylases that may consume acids and generate basic amines, whereas high external pH favored catabolism-generating acids.

  1. In Bacillus subtilis, the SatA (Formerly YyaR) Acetyltransferase Detoxifies Streptothricin via Lysine Acetylation.

    Science.gov (United States)

    Burckhardt, Rachel M; Escalante-Semerena, Jorge C

    2017-11-01

    Soil is a complex niche, where survival of microorganisms is at risk due to the presence of antimicrobial agents. Many microbes chemically modify cytotoxic compounds to block their deleterious effects. Streptothricin is a broad-spectrum antibiotic produced by streptomycetes that affects Gram-positive and Gram-negative bacteria alike. Here we identify the SatA (for s treptothricin a ce t yltransferase A , formerly YyaR) enzyme of Bacillus subtilis as the mechanism used by this soil bacterium to detoxify streptothricin. B. subtilis strains lacking satA were susceptible to streptothricin. Ectopic expression of satA + restored streptothricin resistance to B. subtilis satA ( Bs SatA) strains. Purified Bs SatA acetylated streptothricin in vitro at the expense of acetyl-coenzyme A (acetyl-CoA). A single acetyl moiety transferred onto streptothricin by SatA blocked the toxic effects of the antibiotic. SatA bound streptothricin with high affinity ( K d [dissociation constant] = 1 μM), and did not bind acetyl-CoA in the absence of streptothricin. Expression of B. subtilis satA + in Salmonella enterica conferred streptothricin resistance, indicating that SatA was necessary and sufficient to detoxify streptothricin. Using this heterologous system, we showed that the SatA homologue from Bacillus anthracis also had streptothricin acetyltransferase activity. Our data highlight the physiological relevance of lysine acetylation for the survival of B. subtilis in the soil. IMPORTANCE Experimental support is provided for the functional assignment of gene products of the soil-dwelling bacilli Bacillus subtilis and Bacillus anthracis This study focuses on one enzyme that is necessary and sufficient to block the cytotoxic effects of a common soil antibiotic. The enzyme alluded to is a member of a family of proteins that are broadly distributed in all domains of life but poorly studied in B. subtilis and B. anthracis The initial characterization of the enzyme provides insights into its

  2. Dynamic expression of the translational machinery during Bacillus subtilis life cycle at a single cell level.

    Directory of Open Access Journals (Sweden)

    Alex Rosenberg

    Full Text Available The ability of bacteria to responsively regulate the expression of translation components is crucial for rapid adaptation to fluctuating environments. Utilizing Bacillus subtilis (B. subtilis as a model organism, we followed the dynamics of the translational machinery at a single cell resolution during growth and differentiation. By comprehensive monitoring the activity of the major rrn promoters and ribosomal protein production, we revealed diverse dynamics between cells grown in rich and poor medium, with the most prominent dissimilarities exhibited during deep stationary phase. Further, the variability pattern of translational activity varied among the cells, being affected by nutrient availability. We have monitored for the first time translational dynamics during the developmental process of sporulation within the two distinct cellular compartments of forespore and mother-cell. Our study uncovers a transient forespore specific increase in expression of translational components. Finally, the contribution of each rrn promoter throughout the bacterium life cycle was found to be relatively constant, implying that differential expression is not the main purpose for the existence of multiple rrn genes. Instead, we propose that coordination of the rrn operons serves as a strategy to rapidly fine tune translational activities in a synchronized fashion to achieve an optimal translation level for a given condition.

  3. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis

    Science.gov (United States)

    Benjdia, Alhosna; Guillot, Alain; Ruffié, Pauline; Leprince, Jérôme; Berteau, Olivier

    2017-07-01

    Ribosomally synthesized peptides are built out of L-amino acids, whereas D-amino acids are generally the hallmark of non-ribosomal synthetic processes. Here we show that the model bacterium Bacillus subtilis is able to produce a novel type of ribosomally synthesized and post-translationally modified peptide that contains D-amino acids, and which we propose to call epipeptides. We demonstrate that a two [4Fe-4S]-cluster radical S-adenosyl-L-methionine (SAM) enzyme converts L-amino acids into their D-counterparts by catalysing Cα-hydrogen-atom abstraction and using a critical cysteine residue as the hydrogen-atom donor. Unexpectedly, these D-amino acid residues proved to be essential for the activity of a peptide that induces the expression of LiaRS, a major component of the bacterial cell envelope stress-response system. Present in B. subtilis and in several members of the human microbiome, these epipeptides and radical SAM epimerases broaden the landscape of peptidyl structures accessible to living organisms.

  4. Surfactin production enhances the level of cardiolipin in the cytoplasmic membrane of Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Seydlová, G.; Fišer, R.; Čabala, R.; Kozlík, P.; Svobodová, J.; Pátek, Miroslav

    2013-01-01

    Roč. 1828, č. 11 (2013), s. 2370-2378 ISSN 0005-2736 Institutional support: RVO:61388971 Keywords : Surfactin * Bacillus subtilis * Membrane Subject RIV: EE - Microbiology, Virology Impact factor: 3.431, year: 2013

  5. The multidrug ABC transporter BmrC/BmrD of Bacillus subtilis is regulated via a ribosome-mediated transcriptional attenuation mechanism

    OpenAIRE

    Reilman, E.; Mars, R. A. T.; van Dijl, J. M.; Denham, Emma

    2014-01-01

    Expression of particular drug transporters in response to antibiotic pressure is a critical element in the development of bacterial multidrug resistance, and represents a serious concern for human health. To obtain a better understanding of underlying regulatory mechanisms, we have dissected the transcriptional activation of the ATP-binding cassette (ABC) transporter BmrC/BmrD of the Gram-positive model bacterium Bacillus subtilis. By using promoter-GFP fusions and live cell array technology,...

  6. Effect of decoyinine on the regulation of alpha-amylase synthesis in Bacillus subtilis.

    OpenAIRE

    Nicholson, W L; Chambliss, G H

    1987-01-01

    Decoyinine, an inhibitor of GMP synthetase, allows sporulation in Bacillus subtilis to initiate and proceed under otherwise catabolite-repressing conditions. The effect of decoyinine on alpha-amylase synthesis in B. subtilis, an event which exhibits regulatory features resembling sporulation initiation, was examined. Decoyinine did not overcome catabolite repression of alpha-amylase synthesis in a wild-type strain of B. subtilis but did cause premature and enhanced synthesis in a mutant strai...

  7. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  8. IDENTIFICATION OF TLPC, A NOVEL 62-KDA MCP-LIKE PROTEIN FROM BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    HANLON, DW; ROSARIO, MML; ORDAL, GW; VENEMA, G; VANSINDEREN, D

    We report the sequence and characterization of the Bacillus subtilis tlpC gene. tlpC encodes a 61.8 kDa polypeptide (TlpC) which exhibits 30% amino acid identity with the Escherichia coil methyl-accepting chemotaxis proteins (MCPs) and 38% identity with B. subtilis MCPs within the C-terminal domain.

  9. Non-functional expression of Escherichia coli signal peptidase I in Bacillus subtilis

    NARCIS (Netherlands)

    van Dijl, J M; Jong, de Anne; Smith, H; Bron, Sierd; Venema, G

    The Escherichia coli lep gene, encoding signal peptidase I (SPase I) was provided with Bacillus subtilis transcription/translation signals and expressed in this organism. When present on a low-copy-number plasmid, the amount of E. coli SPase I produced (per mg cell protein) in B. subtilis was half

  10. The Rok protein of Bacillus subtilis represses genes for cell surface and extracellular functions

    NARCIS (Netherlands)

    Albano, M; Smits, WK; Ho, LTY; Kraigher, B; Mandic-Mulec, [No Value; Kuipers, OP; Dubnau, D; Smits, Wiep Klaas; Ho, Linh T.Y.; Mandic-Mulec, Ines

    Rok is a repressor of the transcriptional activator ComK and is therefore an important regulator of competence in Bacillus subtilis (T. T. Hoa, P. Tortosa, M. Albano, and D. Dubnau, Mol. Microbiol. 43:15-26, 2002). To address the wider role of Rok in the physiology of B. subtilis, we have used a

  11. Genomic comparisons of two Bacillus subtilis biocontrol strains with different modes of actions

    Science.gov (United States)

    Bacillus subtilis strains AS 43.3 and OH131.1 were isolated from wheat anthers and shown to be efficacious in managing Fusarium head blight in greenhouse and some field trials. Chemical analysis of the cell-free culture supernatant identified B. subtilis strain AS 43.3 to be a potent producer of the...

  12. Engineering the Xylan Utilization System in Bacillus subtilis for Production of Acidic Xylooligosaccharides

    Science.gov (United States)

    Mun Su Rhee; Lusha Wei; Neha Sawhney; John D. Rice; Franz J. St. John; Jason C. Hurlbert; James F. Preston

    2014-01-01

    Xylans are the predominant polysaccharides in hemicelluloses and an important potential source of biofuels and chemicals. The ability of Bacillus subtilis subsp. subtilis strain 168 to utilize xylans has been ascribed to secreted glycoside hydrolase family 11 (GH11) and GH30 endoxylanases, encoded by the xynA and...

  13. Production and applications of biosurfactant from Bacillus subtilis MUV4

    Directory of Open Access Journals (Sweden)

    Aran H-Kittikun

    2008-04-01

    Full Text Available Bacillus subtilis MUV4 produced biosurfactant in shake-flask culture (200 rpm at 30oC with modified Mckeen medium containing 1% glucose as a carbon source, 1% monosodium glutamate and 0.3% yeast extract as nitrogen sources. The supernatant of B. subtilis MUV4 reduced the surface tension of the medium from 53.50 mN/m to 33.50 mN/m after 48 h of cultivation. The yield of crude biosurfactant from B. subtilis MUV4 after precipitating the supernatant with 6N HCl was 0.652 g/L. Growth kinetics studies showed the specific growth rate (μ of 0.14 h-1, yield of biomass to substrate (Yx/s of 0.713, yield of product to substrate (Yp/s of 0.072 and yield of product to biomass (Yp/x of 0.101. Moreover, B. subtilis MUV4 produced 0.30 g/L crude biosurfactant after 96 h of cultivation in the fermentor with agitation rate of 200 rpm without aeration and uncontrolled pH condition. The crude biosurfactant was dissolved in methanol and dried by vacuum evaporator (crude methanol. The supernatant, the crude biosurfactant and the crude methanol retained the biosurfactant activity over the pH range of 1-6, 7-10 and 4-10, respectively and the emulsion stability at 24 h (E24 at pH 7 were 66.67%, 33.33% and 33.33%, respectively. The supernatant and the crude biosurfactant showed surface tension activity at 4oC, room temperature (30±2oC and 50oC after incubation for 5 h. However, only crude methanol still retained surface tension activity after 100oC for 5 h. The surface tension activity of the supernatant and the crude biosurfactant was stable in 3-10% (w/v NaCl while crude methanol showed stability in 3-20% (w/v NaCl. However, all samples lost emulsion stability when NaCl concentration was higher than 5% (w/v. With sand pack column technique, crude methanol enhanced the recovery of crude oil and kerosene oil by 41.85% and 75.00%, respectively. In hydrocarbon degradation application study, the crude biosurfactant was added to the culture medium containing 0.3% crude oil

  14. Isolation and Characterization of Phages Infecting Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Anna Krasowska

    2015-01-01

    Full Text Available Bacteriophages have been suggested as an alternative approach to reduce the amount of pathogens in various applications. Bacteriophages of various specificity and virulence were isolated as a means of controlling food-borne pathogens. We studied the interaction of bacteriophages with Bacillus species, which are very often persistent in industrial applications such as food production due to their antibiotic resistance and spore formation. A comparative study using electron microscopy, PFGE, and SDS-PAGE as well as determination of host range, pH and temperature resistance, adsorption rate, latent time, and phage burst size was performed on three phages of the Myoviridae family and one phage of the Siphoviridae family which infected Bacillus subtilis strains. The phages are morphologically different and characterized by icosahedral heads and contractile (SIOΦ, SUBω, and SPOσ phages or noncontractile (ARπ phage tails. The genomes of SIOΦ and SUBω are composed of 154 kb. The capsid of SIOΦ is composed of four proteins. Bacteriophages SPOσ and ARπ have genome sizes of 25 kbp and 40 kbp, respectively. Both phages as well as SUBω phage have 14 proteins in their capsids. Phages SIOΦ and SPOσ are resistant to high temperatures and to the acid (4.0 and alkaline (9.0 and 10.0 pH.

  15. Architecture and Assembly of the Bacillus subtilis Spore Coat

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J.

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of “nanodot” particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  16. Architecture and assembly of the Bacillus subtilis spore coat.

    Science.gov (United States)

    Plomp, Marco; Carroll, Alicia Monroe; Setlow, Peter; Malkin, Alexander J

    2014-01-01

    Bacillus spores are encased in a multilayer, proteinaceous self-assembled coat structure that assists in protecting the bacterial genome from stresses and consists of at least 70 proteins. The elucidation of Bacillus spore coat assembly, architecture, and function is critical to determining mechanisms of spore pathogenesis, environmental resistance, immune response, and physicochemical properties. Recently, genetic, biochemical and microscopy methods have provided new insight into spore coat architecture, assembly, structure and function. However, detailed spore coat architecture and assembly, comprehensive understanding of the proteomic composition of coat layers, and specific roles of coat proteins in coat assembly and their precise localization within the coat remain in question. In this study, atomic force microscopy was used to probe the coat structure of Bacillus subtilis wild type and cotA, cotB, safA, cotH, cotO, cotE, gerE, and cotE gerE spores. This approach provided high-resolution visualization of the various spore coat structures, new insight into the function of specific coat proteins, and enabled the development of a detailed model of spore coat architecture. This model is consistent with a recently reported four-layer coat assembly and further adds several coat layers not reported previously. The coat is organized starting from the outside into an outermost amorphous (crust) layer, a rodlet layer, a honeycomb layer, a fibrous layer, a layer of "nanodot" particles, a multilayer assembly, and finally the undercoat/basement layer. We propose that the assembly of the previously unreported fibrous layer, which we link to the darkly stained outer coat seen by electron microscopy, and the nanodot layer are cotH- and cotE- dependent and cotE-specific respectively. We further propose that the inner coat multilayer structure is crystalline with its apparent two-dimensional (2D) nuclei being the first example of a non-mineral 2D nucleation crystallization

  17. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Directory of Open Access Journals (Sweden)

    François Gagné-Bourque

    Full Text Available Plant growth-promoting bacteria (PGB induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to

  18. Accelerated Growth Rate and Increased Drought Stress Resilience of the Model Grass Brachypodium distachyon Colonized by Bacillus subtilis B26.

    Science.gov (United States)

    Gagné-Bourque, François; Mayer, Boris F; Charron, Jean-Benoit; Vali, Hojatollah; Bertrand, Annick; Jabaji, Suha

    2015-01-01

    Plant growth-promoting bacteria (PGB) induce positive effects in plants, for instance, increased growth and reduced abiotic stresses susceptibility. The mechanisms by which these bacteria impact the host plant are numerous, diverse and often specific. Here, we studied the agronomical, molecular and biochemical effects of the endophytic PGB Bacillus subtilis B26 on the full life cycle of Brachypodium distachyon Bd21, an established model species for functional genomics in cereal crops and temperate grasses. Inoculation of Brachypodium with B. subtilis strain B26 increased root and shoot weights, accelerated growth rate and seed yield as compared to control plants. B. subtilis strain B26 efficiently colonized the plant and was recovered from roots, stems and blades as well as seeds of Brachypodium, indicating that the bacterium is able to migrate, spread systemically inside the plant, establish itself in the aerial plant tissues and organs, and is vertically transmitted to seeds. The presence of B. subtilis strain B26 in the seed led to systemic colonization of the next generation of Brachypodium plants. Inoculated Brachypodium seedlings and mature plants exposed to acute and chronic drought stress minimized the phenotypic effect of drought compared to plants not harbouring the bacterium. Protection from the inhibitory effects of drought by the bacterium was linked to upregulation of the drought-response genes, DREB2B-like, DHN3-like and LEA-14-A-like and modulation of the DNA methylation genes, MET1B-like, CMT3-like and DRM2-like, that regulate the process. Additionally, total soluble sugars and starch contents increased in stressed inoculated plants, a biochemical indication of drought tolerance. In conclusion, we show a single inoculation of Brachypodium with a PGB affected the whole growth cycle of the plant, accelerating its growth rates, shortening its vegetative period, and alleviating drought stress effects. These effects are relevant to grasses and cereal

  19. Evaluation of in situ valine production by Bacillus subtilis in young pigs.

    Science.gov (United States)

    Nørgaard, J V; Canibe, N; Soumeh, E A; Jensen, B B; Nielsen, B; Derkx, P; Cantor, M D; Blaabjerg, K; Poulsen, H D

    2016-11-01

    Mutants of Bacillus subtilis can be developed to overproduce Val in vitro. It was hypothesized that addition of Bacillus subtilis mutants to pig diets can be a strategy to supply the animal with Val. The objective was to investigate the effect of Bacillus subtilis mutants on growth performance and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild type. Average daily feed intake, daily weight gain and feed conversion ratio were measured on days 7, 14 and 21. On day 17, blood samples were taken and analyzed for AAs. On days 24 to 26, six pigs from each dietary treatment were fitted with a permanent jugular vein catheter, and blood samples were taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (PBacillus subtilis mutant 2 and the wild type did not result in a growth performance different from the negative and positive controls. In conclusion, results obtained with the mutant strains of Bacillus subtilis were not better than results obtained with the wild-type strain, and for both strains, the results were not different than the negative control.

  20. TatAc, the Third TatA Subunit of Bacillus subtilis, Can Form Active Twin-Arginine Translocases with the TatCd and TatCy Subunits

    NARCIS (Netherlands)

    Monteferrante, Carmine G.; Baglieri, Jacopo; Robinson, Colin; van Dijl, Jan Maarten

    Two independent twin-arginine translocases (Tat) for protein secretion were previously identified in the Gram-positive bacterium Bacillus subtilis. These consist of the TatAd-TatCd and TatAy-TatCy subunits. The function of a third TatA subunit named TatAc was unknown. Here, we show that TatAc can

  1. High levels of DegU-P activate an Esat-6-like secretion system in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Catarina Baptista

    Full Text Available The recently discovered Type VII/Esat-6 secretion systems seem to be widespread among bacteria of the phyla Actinobacteria and Firmicutes. In some species they play an important role in pathogenic interactions with eukaryotic hosts. Several studies have predicted that the locus yukEDCByueBC of the non-pathogenic, Gram-positive bacterium Bacillus subtilis would encode an Esat-6-like secretion system (Ess. We provide here for the first time evidences for the functioning of this secretion pathway in an undomesticated B. subtilis strain. We show that YukE, a small protein with the typical features of the secretion substrates from the WXG100 superfamily is actively secreted to culture media. YukE secretion depends on intact yukDCByueBC genes, whose products share sequence or structural homology with known components of the S. aureus Ess. Biochemical characterization of YukE indicates that it exists as a dimer both in vitro and in vivo. We also show that the B. subtilis Ess essentially operates in late stationary growth phase in absolute dependence of phosphorylated DegU, the response regulator of the two-component system DegS-DegU. We present possible reasons that eventually have precluded the study of this secretion system in the B. subtilis laboratory strain 168.

  2. Tryptophan provision by dietary supplementation of a Bacillus subtilis mutant strain in piglets

    DEFF Research Database (Denmark)

    Torres-Pitarch, A; Nielsen, B.; Canibe, Nuria

    2015-01-01

    Supplementing Bacillus (B.) subtilis mutants selected to overproduce a specific amino acid (AA) may be an alternative method to provide essential AA in pig diets. Two experiments on a B. subtilis strain selected to overproduce Trp were conducted using 8-kg pigs fed Trp-deficient diets for 20 d. B...... to counterbalance the Trp deficiency in any of the two experiments. No effect of B. subtilis supplementation to piglet diets was observed on the plasma AA profile. In conclusion, this mutant strain of B. subtilis was not able to compensate a Trp deficiency in the tested doses....

  3. The expression of a plasmid-specified exported protein causes structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Cordes, C.; Meima, R; Twiest, B; Kazemier, B; Venema, G; vanDijl, JM; Bron, S

    The rolling-circle plasmid pGP1 was used to study the effects of the expression of a plasmid-specified exported protein on structural plasmid stability in Bacillus subtilis. pGP1 contains a fusion between the Bacillus licheniformis penP gene, encoding a C-terminally truncated penicillinase, and the

  4. Subunit II of Bacillus subtilis cytochrome c oxidase is a lipoprotein

    NARCIS (Netherlands)

    Bengtsson, J; Tjalsma, H; Rivolta, C; Hederstedt, L

    The sequence of the N-terminal end of the deduced ctaC gene product of Bacillus species has the features of a bacterial lipoprotein. CtaC is the subunit II of cytochrome caa(3), which is a cytochrome c oxidase. Using Bacillus subtilis mutants blocked in lipoprotein synthesis, we show that CtaC is a

  5. Formulations of Bacillus subtilis BY-2 suppress Sclerotinia sclerotiorum on oilseed rape in the field

    Science.gov (United States)

    We are developing a collection of Bacillus strains, isolated from different environments, for use in controlling Sclerotinia sclerotiorum on oilseed rape in China and elsewhere. Strain BY-2, isolated from internal tissues of an oilseed rape root, was demonstrated to be Bacillus subtilis based on bi...

  6. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto)-fermented pigeon pea

    OpenAIRE

    Bao-Hong Lee; Yi-Syuan Lai; She-Ching Wu

    2015-01-01

    Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained us...

  7. MEKANISME ANTIBIOSIS BACILLUS SUBTILIS B315 UNTUK PENGENDALIAN PENYAKIT LAYU BAKTERI KENTANG

    Directory of Open Access Journals (Sweden)

    Nur Prihatiningsih

    2015-03-01

    Full Text Available Antibiosis mechanism of Bacillus subtilis B315 for controlling potato bacterial wilt disease. Bacillus subtilis B315 isolated from rhizospheric potato has antibiosis mechanism against Ralstonia solanacearum in vitro and become potentially used as controlling method of bacterial wilt in the field. The objectives of this research were to study the mechanism of B.subtilis B315 in controlling bacterial wilt disease, to study of B. subtilis B315 potency as both biocontrol and plant growth promoter, and to evaluate the mechanism as biocontrol agent. This green house experiment used CRD (Completely Randomized Design with 5 treatments and 6 replicates. The treatments were control (without B. subtilis B315, B. subtilis B315 wild type, antibiosis mutant M16, antibiosis mutant M4, and antibiosis mutant M14. Variables observed were incubation period, disease index, infection rate, effectiveness of control, and growth components (i.e number of bud, plant height, leaf area, plant fresh and dry weight. The result of this research showed that B. subtilis B315 could delay incubation period, suppressed the disease index up to 64,9% and could promote the plant growth (leaf area. B. subtilis B315 had the antibiosis and other mechanisms that induced sistemic resistance. The implication of this research was that B. subtilis B315 could be used for biocontrol the bacterial wilt and promoted the potato growth.

  8. Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment

    DEFF Research Database (Denmark)

    Compaore, C. S.; Nielsen, Dennis S.; Ouoba, L. I. I.

    2013-01-01

    Bikalga is a Hibiscus sabdariffa seed fermented condiment widely consumed in Burkina Faso and neighboring countries. The fermentation is dominated by Bacillus subtilis group species. Ten B. subtilis subsp. subtilis (six isolates) and Bacillus licheniformis (four isolates) isolated from traditional...... and Bacillus cereus, while CFS of 2 B. licheniformis (E3 and F9) strains only inhibited M. luteus. The antimicrobial substance(s) produced by B. subtilis subsp. subtilis H4 was further characterized. The antimicrobial substance(s) produced by H4 was detected from mid-exponential growth phase. The activity...... bikalga were examined for their antimicrobial activity against a panel of 36 indicator organisms including Gram-positive and Gram-negative bacteria and yeasts. The Bacillus spp. isolates showed variable inhibitory abilities depending on the method used. Both Gram-positive and Gram-negative bacteria were...

  9. Two purine nucleoside phosphorylases in Bacillus subtilis. Purification and some properties of the adenosine-specific phosphorylase

    DEFF Research Database (Denmark)

    Jensen, Kaj Frank

    1978-01-01

    Two purine nucleoside phosphorylases (purine-nucleoside:orthophosphate ribosyltransferase, EC 2.4.2.1) were purified from vegetative Bacillus subtilis cells. One enzyme, inosine-guanosine phosphorylase, showed great similarity to the homologous enzyme of Bacillus cereus. It appeared...

  10. Probing phenotypic growth in expanding Bacillus subtilis biofilms.

    Science.gov (United States)

    Wang, Xiaoling; Koehler, Stephan A; Wilking, James N; Sinha, Naveen N; Cabeen, Matthew T; Srinivasan, Siddarth; Seminara, Agnese; Rubinstein, Shmuel; Sun, Qingping; Brenner, Michael P; Weitz, David A

    2016-05-01

    We develop an optical imaging technique for spatially and temporally tracking biofilm growth and the distribution of the main phenotypes of a Bacillus subtilis strain with a triple-fluorescent reporter for motility, matrix production, and sporulation. We develop a calibration procedure for determining the biofilm thickness from the transmission images, which is based on Beer-Lambert's law and involves cross-sectioning of biofilms. To obtain the phenotype distribution, we assume a linear relationship between the number of cells and their fluorescence and determine the best combination of calibration coefficients that matches the total number of cells for all three phenotypes and with the total number of cells from the transmission images. Based on this analysis, we resolve the composition of the biofilm in terms of motile, matrix-producing, sporulating cells and low-fluorescent materials which includes matrix and cells that are dead or have low fluorescent gene expression. We take advantage of the circular growth to make kymograph plots of all three phenotypes and the dominant phenotype in terms of radial distance and time. To visualize the nonlocal character of biofilm growth, we also make kymographs using the local colonization time. Our technique is suitable for real-time, noninvasive, quantitative studies of the growth and phenotype distribution of biofilms which are either exposed to different conditions such as biocides, nutrient depletion, dehydration, or waste accumulation.

  11. Tip-enhanced Raman scattering of bacillus subtilis spores

    Science.gov (United States)

    Rusciano, G.; Zito, G.; Pesce, G.; Sasso, A.; Isticato, R.; Ricca, E.

    2015-07-01

    Understanding of the complex interactions of molecules at biological interfaces is a fundamental issue in biochemistry, biotechnology as well as biomedicine. A plethora of biological processes are ruled by the molecular texture of cellular membrane: cellular communications, drug transportations and cellular recognition are just a few examples of such chemically-mediated processes. Tip-Enhanced Raman Scattering (TERS) is a novel, Raman-based technique which is ideally suited for this purpose. TERS relies on the combination of scanning probe microscopy and Raman spectroscopy. The basic idea is the use of a metalled tip as a sort of optical nano-antenna, which gives place to SERS effect close to the tip end. Herein, we present the application of TERS to analyze the surface of Bacillus subtilis spores. The choice of this biological systems is related to the fact that a number of reasons support the use of spores as a mucosal delivery system. The remarkable and well-documented resistance of spores to various environmental and toxic effects make them clear potentials as a novel, surface-display system. Our experimental outcomes demonstrate that TERS is able to provide a nano-scale chemical imaging of spore surface. Moreover, we demonstrate that TERS allows differentiation between wilde-type spore and genetically modified strains. These results hold promise for the characterization and optimization of spore surface for drug-delivery applications.

  12. Nutrient depletion in Bacillus subtilis biofilms triggers matrix production

    International Nuclear Information System (INIS)

    Zhang, Wenbo; Seminara, Agnese; Suaris, Melanie; Angelini, Thomas E; Brenner, Michael P; Weitz, David A

    2014-01-01

    Many types of bacteria form colonies that grow into physically robust and strongly adhesive aggregates known as biofilms. A distinguishing characteristic of bacterial biofilms is an extracellular polymeric substance (EPS) matrix that encases the cells and provides physical integrity to the colony. The EPS matrix consists of a large amount of polysaccharide, as well as protein filaments, DNA and degraded cellular materials. The genetic pathways that control the transformation of a colony into a biofilm have been widely studied, and yield a spatiotemporal heterogeneity in EPS production. Spatial gradients in metabolites parallel this heterogeneity in EPS, but nutrient concentration as an underlying physiological initiator of EPS production has not been explored. Here, we study the role of nutrient depletion in EPS production in Bacillus subtilis biofilms. By monitoring simultaneously biofilm size and matrix production, we find that EPS production increases at a critical colony thickness that depends on the initial amount of carbon sources in the medium. Through studies of individual cells in liquid culture we find that EPS production can be triggered at the single-cell level by reducing nutrient concentration. To connect the single-cell assays with conditions in the biofilm, we calculate carbon concentration with a model for the reaction and diffusion of nutrients in the biofilm. This model predicts the relationship between the initial concentration of carbon and the thickness of the colony at the point of internal nutrient deprivation. (paper)

  13. Self-sensing in Bacillus subtilis quorum-sensing systems.

    Science.gov (United States)

    Bareia, Tasneem; Pollak, Shaul; Eldar, Avigdor

    2018-01-01

    Bacterial cell-cell signalling, or quorum sensing, is characterized by the secretion and groupwide detection of small diffusible signal molecules called autoinducers. This mechanism allows cells to coordinate their behaviour in a density-dependent manner. A quorum-sensing cell may directly respond to the autoinducers it produces in a cell-autonomous and quorum-independent manner, but the strength of this self-sensing effect and its impact on bacterial physiology are unclear. Here, we explore the existence and impact of self-sensing in the Bacillus subtilis ComQXP and Rap-Phr quorum-sensing systems. By comparing the quorum-sensing response of autoinducer-secreting and non-secreting cells in co-culture, we find that secreting cells consistently show a stronger response than non-secreting cells. Combining genetic and quantitative analyses, we demonstrate this effect to be a direct result of self-sensing and rule out an indirect regulatory effect of the autoinducer production genes on response sensitivity. In addition, self-sensing in the ComQXP system affects persistence to antibiotic treatment. Together, these findings indicate the existence of self-sensing in the two most common designs of quorum-sensing systems of Gram-positive bacteria.

  14. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  15. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Cameron Habib

    Full Text Available The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR, which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA. Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA, which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  16. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis.

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe; Chai, Yunrong

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms.

  17. Characterization of the regulation of a plant polysaccharide utilization operon and its role in biofilm formation in Bacillus subtilis

    Science.gov (United States)

    Habib, Cameron; Yu, Yiyang; Gozzi, Kevin; Ching, Carly; Shemesh, Moshe

    2017-01-01

    The soil bacterium Bacillus subtilis is often found in association with plants in the rhizosphere. Previously, plant polysaccharides have been shown to stimulate formation of root-associated multicellular communities, or biofilms, in this bacterium, yet the underlying mechanism is not fully understood. A five-gene gan operon (ganSPQAB) in B. subtilis has recently been shown to be involved in utilization of the plant-derived polysaccharide galactan. Despite these findings, molecular details about the regulation of the operon and the role of the operon in biofilm formation remain elusive. In this study, we performed comprehensive genetic analyses on the regulation of the gan operon. We show that this operon is regulated both by a LacI-like transcription repressor (GanR), which directly binds to pairs of inverted DNA repeats in the promoter region of the operon, and by the catabolite control protein A (CcpA). Derepression can be triggered by the presence of the inducer β-1,4-galactobiose, a hydrolysis product of galactan, or in situ when B. subtilis cells are associated with plant roots. In addition to the transcriptional regulation, the encoded ß-galactosidase GanA (by ganA), which hydrolyzes ß-1,4-galactobiose into galactose, is inhibited at the enzymatic level by the catalytic product galactose. Thus, the galactan utilization pathway is under complex regulation involving both positive and negative feedback mechanisms in B. subtilis. We discuss about the biological significance of such complex regulation as well as a hypothesis of biofilm induction by galactan via multiple mechanisms. PMID:28617843

  18. Plant methyl salicylate induces defense responses in the rhizobacterium Bacillus subtilis.

    Science.gov (United States)

    Kobayashi, Kazuo

    2015-04-01

    Bacillus subtilis is a rhizobacterium that promotes plant growth and health. Cultivation of B. subtilis with an uprooted weed on solid medium produced pleat-like architectures on colonies near the plant. To test whether plants emit signals that affect B. subtilis colony morphology, we examined the effect of plant-related compounds on colony morphology. Bacillus subtilis formed mucoid colonies specifically in response to methyl salicylate, which is a plant-defense signal released in response to pathogen infection. Methyl salicylate induced mucoid colony formation by stimulating poly-γ-glutamic acid biosynthesis, which formed enclosing capsules that protected the cells from exposure to antimicrobial compounds. Poly-γ-glutamic acid synthesis depended on the DegS-DegU two-component regulatory system, which activated DegSU-dependent gene transcription in response to methyl salicylate. Bacillus subtilis did not induce plant methyl salicylate production, indicating that the most probable source of methyl salicylate in the rhizosphere is pathogen-infected plants. Methyl salicylate induced B. subtilis biosynthesis of the antibiotics bacilysin and fengycin, the latter of which exhibited inhibitory activity against the plant pathogenic fungus Fusarium oxysporum. We propose that B. subtilis may sense plants under pathogen attack via methyl salicylate, and express defense responses that protect both B. subtilis and host plants in the rhizosphere. © 2014 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Preliminary Studies on Antimicrobial Activity of Extracts from Aloe Vera Leaf, Citrus Hystrix Leaf, Zingiber Officinale and Sabah Snake Grass Against Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Uda M.N.A.

    2018-01-01

    Full Text Available Herbal plants have several potential antimicrobial activities either as antifungal or antibacterial to fight against the disease and pathogen that attack the plants. The extractions of the Aloe vera leaf, Citrus hystrix leaf, Zingiber officinale rhizome and Sabah snake grass were selected in this study to fight against Bacillus subtilis. B. subtilis is a Gram-positive bacterium, rodshaped and catalase-positive that lives on decayed organic material. It is known as Gram-positive bacteria because of its thick peptidoglycan and would appear purple when subjected to Gram test. This species is commonly found in the upper layers of the soil, in meat or vegetables, in pastry, cooked meat, in bread or poultry products. The extracts of Sabah Snake Grass found to be most effective than A.vera leaf, Z. officinale, and C. hystrix against the B. subtilis.

  20. Transport of valine across the small intestinal epithelium in pigs fed different valine levels and Bacillus subtilis

    DEFF Research Database (Denmark)

    Blaabjerg, K; Nørgaard, J V; Nielsen, B

    2018-01-01

    Mutants of Bacillus subtilis overproducing valine (B. subtilis VAL) could be an approach to supply pigs dietary valine (Val). In the study, 18 gilts were fed: (i) negative diet with a standardized ileal digestible (SID) Val:Lys of 0.63:1 (Neg); (ii) Neg added B. subtilis VAL (1.28 × 1011 cfu/kg as...

  1. GLYCOGEN IN BACILLUS-SUBTILIS - MOLECULAR CHARACTERIZATION OF AN OPERON ENCODING ENZYMES INVOLVED IN GLYCOGEN BIOSYNTHESIS AND DEGRADATION

    NARCIS (Netherlands)

    KIEL, JAKW; BOELS, JM; BELDMAN, G; VENEMA, G

    Although it has never been reported that Bacillus subtilis is capable of accumulating glycogen, we have isolated a region from the chromosome of B. subtilis containing a glycogen operon. The operon is located directly downstream from trnB, which maps at 275 degrees on the B. subtilis chromosome. It

  2. Effect of Bacillus subtilis mutants on growth performance of piglets fed tryptophan- and valine-deficient diets

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham

    2016-01-01

    The objective was to determine the concentration of l-Trp and l-Val to be substituted by feeding piglets Bacillus subtilis strains developed to overproduce Trp (B. subtilis Trp mutant [BsTrp]) and Val (B. subtilis Val mutant [BsVal]) and by using equations obtained in 3 dose–response studies with...

  3. Carbohydrate Coating Reduces Adhesion of Biofilm-Forming Bacillus subtilis to Gold Surfaces

    Science.gov (United States)

    Kesel, S.; Mader, A.; Seeberger, P. H.; Lieleg, O.

    2014-01-01

    The growth of bacterial biofilms in pipes and food tanks causes severe problems in industry. Biofilms growing on medical implants or catheters are of great concern, as they can cause serious infections and decrease the functionality of the medical device. The prevention of bacterial adhesion—the first step in colonization and biofilm formation—is therefore very important. Current research comprises alterations in surface properties, the prevention of adhesin biosynthesis, inhibition with receptor analogs, or the development of anti-adhesive vaccines. We present a new approach that allows us to study bacterial adhesion with high sensitivity in real-time while testing several different surfaces in parallel. Using the cantilever-array technique we demonstrate that coating of gold surfaces with mono- or disaccharides results in a reduction of the bacterial adhesion of the biofilm-forming bacterium Bacillus subtilis NCIB 3610 to these gold surfaces. This reduction in bacterial adhesion is independent of the studied carbohydrate. Using several mutant strains, we investigate the underlying molecular interactions, and our results suggest that adhesion to gold surfaces is mediated by thiol groups present in proteins of the bacterial cell membrane or biofilm matrix proteins expressed at low levels by the wild-type strain. Furthermore, our data indicate that the adhesion of B. subtilis NCIB 3610 to carbohydrate-coated gold surfaces is facilitated by interactions between carbohydrates installed on the cantilever gold surface and an exopolysaccharide expressed by this strain. Understanding general and specific contributions of molecular interactions mediating bacterial adhesion will enable its prevention in the future. PMID:25038098

  4. A Mutation in the Bacillus subtilis rsbU Gene That Limits RNA Synthesis during Sporulation.

    Science.gov (United States)

    Rothstein, David M; Lazinski, David; Osburne, Marcia S; Sonenshein, Abraham L

    2017-07-15

    Mutants of Bacillis subtilis that are temperature sensitive for RNA synthesis during sporulation were isolated after selection with a 32 P suicide agent. Whole-genome sequencing revealed that two of the mutants carried an identical lesion in the rsbU gene, which encodes a phosphatase that indirectly activates SigB, the stress-responsive RNA polymerase sigma factor. The mutation appeared to cause RsbU to be hyperactive, because the mutants were more resistant than the parent strain to ethanol stress. In support of this hypothesis, pseudorevertants that regained wild-type levels of sporulation at high temperature had secondary mutations that prevented expression of the mutant rsbU gene. The properties of these RsbU mutants support the idea that activation of SigB diminishes the bacterium's ability to sporulate. IMPORTANCE Most bacterial species encode multiple RNA polymerase promoter recognition subunits (sigma factors). Each sigma factor directs RNA polymerase to different sets of genes; each gene set typically encodes proteins important for responses to specific environmental conditions, such as changes in temperature, salt concentration, and nutrient availability. A selection for mutants of Bacillus subtilis that are temperature sensitive for RNA synthesis during sporulation unexpectedly yielded strains with a point mutation in rsbU , a gene that encodes a protein that normally activates sigma factor B (SigB) under conditions of salt stress. The mutation appears to cause RsbU, and therefore SigB, to be active inappropriately, thereby inhibiting, directly or indirectly, the ability of the cells to transcribe sporulation genes. Copyright © 2017 American Society for Microbiology.

  5. 40 CFR 180.1243 - Bacillus subtilis var. amyloliquefaciens strain FZB24; exemption from the requirement of a...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Bacillus subtilis var... var. amyloliquefaciens strain FZB24; exemption from the requirement of a tolerance. An exemption from the requirement of a tolerance for residues of the Bacillus subtilis var. amyloliquefaciens strain...

  6. Effects of Bacillus subtilis natto and Different Components in Culture on Rumen Fermentation and Rumen Functional Bacteria In Vitro.

    Science.gov (United States)

    Sun, Peng; Li, Jinan; Bu, Dengpan; Nan, Xuemei; Du, Hong

    2016-05-01

    This study was to investigate the effects of live or autoclaved Bacillus subtilis natto, their fermented products and media on rumen fermentation and rumen functional bacteria in vitro. Rumen fluid from three multiparous lactating Holstein cows was combined and transferred into serum bottles after diluted. Fifteen serum bottles were divided into five treatments, which were designed as following: CTR (the fermentation of 0.5 g TMR and ruminal fluids from dairy cows), LBS (CTR plus a minimum of 10(11) cfu live Bacillus subtilis natto), ABS (CTR plus a minimum of 10(11) cfu autoclaved Bacillus subtilis natto), BSC (CTR plus 1 ml Bacillus subtilis natto fermentation products without bacteria), and BSM (CTR plus 1 ml liquid fermentation medium). When separated from the culture, live Bacillus subtilis natto individually increased the concentrations of ammonia-N (P Bacillus subtilis natto has the similar function with the live bacteria except for the ratio of acetate and propionate. Except B. fibrisolvens, live or autoclaved Bacillus subtilis natto did not influence or decreased the 16S rRNA gene quantification of the detected bacteria. BSC and BSM altered the relative expression of certain functional bacteria in the rumen. These results indicated that it was Bacillus subtilis natto thalli that played the important role in promoting rumen fermentation when applied as a probiotic in dairy ration.

  7. LODO INDUSTRIAL COMO ALTERNATIVA DE MEIO DE CULTURA PARA Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Fábio Fernando de Araújo

    2006-06-01

    Full Text Available The objective of this study was to demonstrate that industrial wastewater sludge, class II, originary of alimenticeous industry, could be used as a sole raw material to sustain growth of Bacillus subtilis. The growth of one strain of Bacillus subtilis (AP-3, antagonist of phytopathogens, was evaluated in culture media based in diluitions with differents concentrations of sludge obtained in biologicals treatments of wastewater. The sludge showed concentration of organic components in 76,5% that contributed for growth and survival of B. subtilis. The dose of sludge (20% p/v evaluated was satisfactory para growth of bacteria. Nutrient enrichement did not increased growth of B. subtilis in media with sludge. Culture media based in industrial sludge evaluated would be indicated with of big potential for use large scale.

  8. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.

    Science.gov (United States)

    Bridier, Arnaud; Le Coq, Dominique; Dubois-Brissonnet, Florence; Thomas, Vincent; Aymerich, Stéphane; Briandet, Romain

    2011-01-18

    The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.

  9. The spatial architecture of Bacillus subtilis biofilms deciphered using a surface-associated model and in situ imaging.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The formation of multicellular communities known as biofilms is the part of bacterial life cycle in which bacteria display cooperative behaviour and differentiated phenotypes leading to specific functions. Bacillus subtilis is a Gram-positive bacterium that has served for a decade as a model to study the molecular pathways that control biofilm formation. Most of the data on B. subtilis biofilms have come from studies on the formation of pellicles at the air-liquid interface, or on the complex macrocolonies that develop on semi-solid nutritive agar. Here, using confocal laser scanning microcopy, we show that B. subtilis strains of different origins are capable of forming biofilms on immersed surfaces with dramatically protruding "beanstalk-like" structures with certain strains. Indeed, these structures can reach a height of more than 300 µm with one undomesticated strain from a medical environment. Using 14 GFP-labeled mutants previously described as affecting pellicle or complex colony formation, we have identified four genes whose inactivation significantly impeded immersed biofilm development, and one mutation triggering hyperbiofilm formation. We also identified mutations causing the three-dimensional architecture of the biofilm to be altered. Taken together, our results reveal that B. subtilis is able to form specific biofilm features on immersed surfaces, and that the development of these multicellular surface-associated communities involves regulation pathways that are common to those governing the formation of pellicle and/or complex colonies, and also some specific mechanisms. Finally, we propose the submerged surface-associated biofilm as another relevant model for the study of B. subtilis multicellular communities.

  10. Enhancement of extracellular expression of Bacillus naganoensis pullulanase from recombinant Bacillus subtilis: Effects of promoter and host.

    Science.gov (United States)

    Song, Wan; Nie, Yao; Mu, Xiao Qing; Xu, Yan

    2016-08-01

    Pullulanase plays an important role in industrial applications of starch processing. However, extracellular production of pullulanase from recombinant Bacillus subtilis is yet limited due to the issues on regulatory elements of B. subtilis expression system. In this study, the gene encoding B. naganoensis pullulanase (PUL) was expressed in B. subtilis WB800 under the promoter PHpaII in the shuttle vector pMA0911. The extracellular activity of expressed pullulanase was 3.9 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-PHpaII-pul. To further enhance the yield of PUL, the promoter PHpaII in pMA0911 was replaced by a stronger constitutive promoter P43. Then the activity was increased to 8.7 U ml(-1) from the recombinant B. subtilis WB800/pMA0911-P43-pul. Effect of host on pullulanase expression was further investigated by comparison between B. subtilis WB600 and B. subtilis WB800. In addition to the available B. subtilis WB800 recombinants, the constructed plasmids pMA0911-PHpaII-pul and pMA0911-P43-pul were transformed into B. subtilis WB600, respectively. Consequently, the extracellular production of PUL was significantly enhanced by B. subtilis WB600/pMA0911-P43-pul, resulting in the extracellular pullulanase activity of 24.5 U ml(-1). Therefore, promoter and host had an impact on pullulanase expression and their optimization would be useful to improve heterologous protein expression in B. subtilis. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ferrisiderophore reductase activity associated with an aromatic biosynthetic enzyme complex in Bacillus subtilis.

    OpenAIRE

    Gaines, C G; Lodge, J S; Arceneaux, J E; Byers, B R

    1981-01-01

    The cytoplasmic fractions obtained from Bacillus subtilis strains W168 and WB2802 catalyzed reductive release of iron from the ferric chelate of 2,3-dihydroxybenzoic acid (ferri-DHB), the ferrisiderophore produced by B. subtilis. Ferrisiderophore reductase activity may insert iron into metabolism. This activity required a reductant (reduced nicotinamide adenine dinucleotide phosphate was preferred), was oxygen sensitive, and was stimulated by flavin mononucleotide plus certain divalent cation...

  12. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics

    Science.gov (United States)

    Ramya, T. N. C.; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions. PMID:27258038

  13. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Directory of Open Access Journals (Sweden)

    Indu Khatri

    Full Text Available Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  14. Complete Genomes of Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, Two Phylogenetically Distinct Probiotics.

    Science.gov (United States)

    Khatri, Indu; Sharma, Shailza; Ramya, T N C; Subramanian, Srikrishna

    2016-01-01

    Several spore-forming strains of Bacillus are marketed as probiotics due to their ability to survive harsh gastrointestinal conditions and confer health benefits to the host. We report the complete genomes of two commercially available probiotics, Bacillus coagulans S-lac and Bacillus subtilis TO-A JPC, and compare them with the genomes of other Bacillus and Lactobacillus. The taxonomic position of both organisms was established with a maximum-likelihood tree based on twenty six housekeeping proteins. Analysis of all probiotic strains of Bacillus and Lactobacillus reveal that the essential sporulation proteins are conserved in all Bacillus probiotic strains while they are absent in Lactobacillus spp. We identified various antibiotic resistance, stress-related, and adhesion-related domains in these organisms, which likely provide support in exerting probiotic action by enabling adhesion to host epithelial cells and survival during antibiotic treatment and harsh conditions.

  15. Evidence for synergistic control of glutamate biosynthesis by glutamate dehydrogenases and glutamate in Bacillus subtilis.

    Science.gov (United States)

    Stannek, Lorena; Thiele, Martin J; Ischebeck, Till; Gunka, Katrin; Hammer, Elke; Völker, Uwe; Commichau, Fabian M

    2015-09-01

    In the Gram-positive bacterium, Bacillus subtilis glutamate is synthesized by the glutamine synthetase and the glutamate synthase (GOGAT). During growth with carbon sources that exert carbon catabolite repression, the rocG glutamate dehydrogenase (GDH) gene is repressed and the transcription factor GltC activates the expression of the GOGAT encoding gltAB genes. In the presence of amino acids of the glutamate family, the GDH RocG is synthesized and the enzyme prevents GltC from binding to DNA. The dual control of glutamate biosynthesis allows the efficient utilization of the available nutrients. Here we provide genetic and biochemical evidence that, like RocG, also the paralogous GDH GudB can inhibit the transcription factor GltC, thereby controlling glutamate biosynthesis. Contradictory previous observations show that high level of GDH activity does not result in permanent inhibition of GltC. By controlling the intracellular levels of glutamate through feeding with exogenous arginine, we observed that the GDH-dependent control of GltC and thus expression of the gltAB genes inversely correlates with the glutamate pool. These results suggest that the B. subtilis GDHs RocG and GudB in fact act as glutamate sensors. In conclusion, the GDH-mediated control of glutamate biosynthesis seems to depend on the intracellular glutamate concentration. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  16. Exponential fed-batch strategy for enhancing biosurfactant production by Bacillus subtilis.

    Science.gov (United States)

    Amin, G A

    2014-01-01

    Surfactin produced by Bacillus subtilis BDCC-TUSA-3 from Maldex-15 was used as a growth-associated product in a conventional batch process. Maldex-15 is a cheap industrial by-product recovered during manufacturing of high fructose syrup from corn starch. Surfactin production was greatly improved in exponential fed-batch fermentation. Maldex-15 and other nutrients were exponentially fed into the culture based on the specific growth rate of the bacterium. In order to maximize surfactin yield and productivity, conversion of different quantities of Maldex-15 into surfactin was investigated in five different fermentation runs. In all runs, most of the Maldex-15 was consumed and converted into surfactin and cell biomass with appreciable efficiencies. The best results were obtained with the fermentation run supplied with 204 g Maldex-15. Up to 36.1 g l(-1) of surfactin and cell biomass of 31.8 g l(-1) were achieved in 12 h. Also, a marked substrate yield of 0.272 g g(-1) and volumetric reactor productivity of 2.58 g 1(-1) h(-1) were obtained, confirming the establishment of a cost-effective commercial surfactin production.

  17. Effect of biofilm formation by Bacillus subtilis natto on menaquinone-7 biosynthesis.

    Science.gov (United States)

    Berenjian, Aydin; Chan, Natalie Li-Cheng; Mahanama, Raja; Talbot, Andrea; Regtop, Hubert; Kavanagh, John; Dehghani, Fariba

    2013-06-01

    Bacillus subtilis natto is the key microorganism for the industrial production of menaquinone-7. The fermentation of this bacterium in static culture is associated with biofilm formation. The objective of this study was to determine the effect of biofilm formation on menaquinone-7 production to develop a suitable bio-reactor for the production of menaquinone-7. In the static culture, menaquinone-7 biosynthesis showed a linear correlation with biofilm formation (R (2) = 0.67) and cell density (R (2) = 0.7). The amount of biofilm, cell density and menaquinone-7 formation were a function of nutrient and processing conditions. Glycerol, soy peptone, and yeast extract mixture and 40 °C were found to be the optimum nutrients and temperature for accelerating both biofilm and menaquinone-7 biosynthesis in static culture. However, glucose, mixture of soy peptone and yeast extract and 45 °C were found to be the optima for cell density. As compared to the static culture, the biofilm formation was significantly inhibited when a shaken fermentation was used. However, shaking caused only a small decrease on menaquinone-7 production. These results demonstrate that the biofilm formation is not essential for menaquinone-7 biosynthesis. This study underlines the feasibility of using large scale stirred fermentation process for menaquinone-7 production.

  18. Model-based definition of population heterogeneity and its effects on metabolism in sporulating Bacillus subtilis.

    Science.gov (United States)

    Morohashi, Mineo; Ohashi, Yoshiaki; Tani, Saeka; Ishii, Kotaro; Itaya, Mitsuhiro; Nanamiya, Hideaki; Kawamura, Fujio; Tomita, Masaru; Soga, Tomoyoshi

    2007-08-01

    The soil bacterium Bacillus subtilis forms dormant, robust spores as a tactic to ensure survival under conditions of starvation. However, the sporulating culture includes sporulating and non-sporulating cells, because a portion of the cell population initiates sporulation in wild-type strain. We anticipated that the population effect must be considered carefully to analyse samples yielding population heterogeneity. We first built a mathematical model and simulated for signal transduction of the sporulation cue to see what mechanisms are responsible for generating the heterogeneity. The simulated results were confirmed experimentally, where heterogeneity is primarily modulated by negative feedback circuits, resulting in generation of a bistable response within the sporulating culture. We also confirmed that mutants relevant to negative feedback yield either sporulating or non-sporulating subpopulations. To see the effect of molecular mechanism between sporulating and non-sporulating cells in distinct manner, metabolome analysis was conducted using the above mutants. The metabolic profiles exhibited distinct characteristics with time regardless of whether sporulation was initiated or not. In addition, several distinct characteristics of metabolites were observed between strains, which was inconsistent with previously reported data. The results imply that careful consideration must be made in the interpretation of data obtained from cells yielding population heterogeneity.

  19. Immobilization of Cellulase from Bacillus subtilis UniMAP-KB01 on Multi-walled Carbon Nanotubes for Biofuel Production

    Science.gov (United States)

    Naresh, Sandrasekaran; Hoong Shuit, Siew; Kunasundari, Balakrishnan; Hoo Peng, Yong; Qi, Hwa Ng; Teoh, Yi Peng

    2018-03-01

    Bacillus subtilis UniMAP-KB01, a cellulase producer was isolated from Malaysian mangrove soil. Through morphological identification it was observed that the B. subtilis appears to be in rod shaped and identified as a gram positive bacterium. Growth profile of isolated B. subtilis was established by measuring optical density (OD) at 600 nm for every 1 hour intervals. Polymath software was employed to plot the growth profile and the non-linear plot established gave the precision value of linear regression, R2 of 0.9602, root mean square deviation (RMSD) of 0.0176 and variance of 0.0025. The hydrolysis capacity testing revealed the cellulolytic index of 2.83 ± 0.46 after stained with Gram’s Iodine. The harvested crude enzyme after 24 hours incubation in carboxymethylcellulose (CMC) broth at 45°C and 100 RPM, was tested for enzyme activity. Through Filter Paper Assay (FPA), the cellulase activity was calculated to be 0.05 U/mL. The hydrolysis capacity testing and FPA shown an acceptable value for thermophilic bacterial enzyme activity. Thus, this isolated strain reasoned to be potential for producing thermostable cellulase which will be immobilized onto multi-walled carbon nanotubes and the cellulolytic activity will be characterized for biofuel production.

  20. Ultrastructural characterisation of Bacillus subtilis TatA complexes suggests they are too small to form homooligomeric translocation pores.

    Science.gov (United States)

    Beck, Daniel; Vasisht, Nishi; Baglieri, Jacopo; Monteferrante, Carmine G; van Dijl, Jan Maarten; Robinson, Colin; Smith, Corinne J

    2013-08-01

    Tat-dependent protein transport permits the traffic of fully folded proteins across membranes in bacteria and chloroplasts. The mechanism by which this occurs is not understood. Current theories propose that a key step requires the coalescence of a substrate-binding TatC-containing complex with a TatA complex, which forms pores of varying sizes that could accommodate different substrates. We have studied the structure of the TatAd complex from Bacillus subtilis using electron microscopy to generate the first 3D model of a TatA complex from a Gram-positive bacterium. We observe that TatAd does not exhibit the remarkable heterogeneity of Escherichia coli TatA complexes but instead forms ring-shaped complexes of 7.5-9nm diameter with potential pores of 2.5-3nm diameter that are occluded at one end. Such structures are consistent with those seen for E. coli TatE complexes. Furthermore, the small diameter of the TatAd pore, and the homogeneous nature of the complexes, suggest that TatAd cannot form the translocation channel by itself. Biochemical data indicate that another B. subtilis TatA complex, TatAc, has similar properties, suggesting a common theme for TatA-type complexes from Bacillus. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Menaquinone and iron are essential for complex colony development in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Gidi Pelchovich

    Full Text Available Cells of undomesticated species of Bacillus subtilis frequently form complex colonies during spreading on agar surfaces. Given that menaquinone is involved in another form of coordinated behavior, namely, sporulation, we looked for a possible role for menaquinone in complex colony development (CCD in the B. subtilis strain NCIB 3610. Here we show that inhibition of menaquinone biosynthesis in B. subtilis indeed abolished its ability to develop complex colonies. Additionally some mutations of B. subtilis which confer defective CCD could be suppressed by menaquinone derivatives. Several such mutants mapped to the dhb operon encoding the genes responsible for the biosynthesis of the iron siderophore, bacillibactin. Our results demonstrate that both menaquinone and iron are essential for CCD in B. subtilis.

  2. Endophytic colonisation of Bacillus subtilis in the roots of Robinia pseudoacacia L.

    Science.gov (United States)

    Huang, B; Lv, C; Zhuang, P; Zhang, H; Fan, L

    2011-11-01

    The endophytic colonisation of Bacillus subtilis strain GXJM08, isolated from roots of Podocarpus imbricatus B1. Enum. P1. Jav., in roots of the leguminous plant Robinia pseudoacacia L. was investigated. Ultrastructure observations showed that B. subtilis caused morphological changes in the root hair and colonised the plant through infected root hairs. The structure of the infection thread was similar to that of rhizobia, but the structure of infected cells was different. B. subtilis is also different from rhizobia and plant pathogens in terms of the formation of a peribacteroid membrane and the mode of penetration through the host cell wall. Our results provide a basis for studying development of the mutualistic symbiotic relationship between B. subtilis and plants, and a basis for studying the mechanism of the B. subtilis-plant interaction. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Bacillus subtilis biofilm extends Caenorhabditis elegans longevity through downregulation of the insulin-like signalling pathway

    Science.gov (United States)

    Donato, Verónica; Ayala, Facundo Rodríguez; Cogliati, Sebastián; Bauman, Carlos; Costa, Juan Gabriel; Leñini, Cecilia; Grau, Roberto

    2017-01-01

    Beneficial bacteria have been shown to affect host longevity, but the molecular mechanisms mediating such effects remain largely unclear. Here we show that formation of Bacillus subtilis biofilms increases Caenorhabditis elegans lifespan. Biofilm-proficient B. subtilis colonizes the C. elegans gut and extends worm lifespan more than biofilm-deficient isogenic strains. Two molecules produced by B. subtilis — the quorum-sensing pentapeptide CSF and nitric oxide (NO) — are sufficient to extend C. elegans longevity. When B. subtilis is cultured under biofilm-supporting conditions, the synthesis of NO and CSF is increased in comparison with their production under planktonic growth conditions. We further show that the prolongevity effect of B. subtilis biofilms depends on the DAF-2/DAF-16/HSF-1 signalling axis and the downregulation of the insulin-like signalling (ILS) pathway. PMID:28134244

  4. The Bacillus subtilis Acyl Lipid Desaturase Is a Δ5 Desaturase

    Science.gov (United States)

    Altabe, Silvia G.; Aguilar, Pablo; Caballero, Gerardo M.; de Mendoza, Diego

    2003-01-01

    Bacillus subtilis was recently reported to synthesize unsaturated fatty acids (UFAs) with a double bond at positions Δ5, Δ7, and Δ9 (M. H. Weber, W. Klein, L. Muller, U. M. Niess, and M. A. Marahiel, Mol. Microbiol. 39:1321-1329, 2001). Since this finding would have considerable importance in the double-bond positional specificity displayed by the B. subtilis acyl lipid desaturase, we have attempted to confirm this observation. We report that the double bond of UFAs synthesized by B. subtilis is located exclusively at the Δ5 position, regardless of the growth temperature and the length chain of the fatty acids. PMID:12730185

  5. Bacillus subtilis generates a major specific deletion in pAM beta 1.

    OpenAIRE

    van der Lelie, D; Venema, G

    1987-01-01

    pAM beta 1, a 26.5-kilobase plasmid originally isolated from Streptococcus faecalis, was conjugally transferred from Streptococcus lactis to Bacillus subtilis. No conjugal transfer of pAM beta 1 from B. subtilis to S. lactis was observed. In addition, pAM beta 1 which had been reintroduced in S. lactis after cycling through B. subtilis had lost its conjugal transferability to Streptococcus cremoris, although under the same conditions noncycled pAM beta 1 was transferred at high efficiency. Re...

  6. Antitrypanosomal Alkaloids from the Marine Bacterium Bacillus pumilus

    Directory of Open Access Journals (Sweden)

    Sergio Martínez-Luis

    2012-09-01

    Full Text Available Fractionation of the ethyl acetate extract of the marine bacterium Bacillus pumilus isolated from the black coral Antipathes sp. led to the isolation of five compounds: cyclo-(L-Leu-L-Pro (1, 3-hydroxyacetylindole (2, N-acetyl-b-oxotryptamine (3, cyclo-(L-Phe-L-Pro (4, and 3-formylindole (5. The structures of compounds 1−5 were established by spectroscopic analyses, including HRESITOF-MS and NMR (1H, 13C, HSQC, HMBC and COSY. Compounds 2, 3 and 5 caused the inhibition on the growth of Trypanosoma cruzi (T. cruzi, with IC50 values of 20.6, 19.4 and 26.9 μM, respectively, with moderate cytotoxicity against Vero cells. Compounds 1−5 were found to be inactive when tested against Plasmodium falciparum and Leishmania donovani, therefore showing selectivity against T. cruzi parasites.

  7. Bioaccumulation of copper, zinc, cadmium and lead by Bacillus sp., Bacillus cereus, Bacillus sphaericus and Bacillus subtilis Bioacumulação de cobre, zinco, cádmio e chumbo por Bacillus sp., Bacillus cereus, Bacillus sphaericus e Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Augusto da Costa

    2001-03-01

    Full Text Available This work presents some results on the use of microbes from the genus Bacillus for uptake of cadmium, zinc, copper and lead ions. Maximum copper bioaccumulations were 5.6 mol/g biomass for B. sphaericus, 5.9 mol/g biomass for B. cereus and B. subtilis, and 6.4 mol/g biomass for Bacillus sp. Maximum zinc bioaccumulations were 4.3 mol/g biomass for B. sphaericus, 4.6 mol/g biomass for B. cereus, 4.8 mol/g biomass for Bacillus sp. and 5.0 mol/g biomass for B. subtilis. Maximum cadmium bioaccumulations were 8.0 mol/g biomass for B. cereus, 9.5 mol/g biomass for B. subtilis, 10.8 mol/g biomass for Bacillus sp. and 11.8 mol/g biomass for B. sphaericus. Maximum lead biomaccumulations were 0.7 mol/g biomass for B. sphaericus, 1.1 mol/g biomass for B. cereus, 1.4 mol/g biomass for Bacillus sp. and 1.8 mol/g biomass for B. subtilis. The different Bacillus strains tested presented distinct uptake capacities, and the best results were obtained for B. subtilis and B. cereus.Este trabalho apresenta resultados de acumulação dos íons metálicos cádmio, zinco, cobre e chumbo por bactérias do gênero Bacillus. A bioacumulação máxima de cobre foi 5,6 mol/g biomassa para B. sphaericus, 5,9 mol/g biomassa para B. cereus e B. subtilis, e 6,4 mol/g biomassa para Bacillus sp.. A bioacumulação máxima de zinco foi 4,3 mol/g biomassa para B. sphaericus, 4,6 mol/g biomassa para B. cereus, 4,8 mol/g biomassa para Bacillus sp. e 5,0 mol/g biomassa para B. subtilis. A bioacumulação máxima de cádmio foi 8,0 mol/g biomassa para B. cereus, 9,5 mol/g biomassa para B. subtilis, 10,8 mol/g biomassa para Bacillus sp. e 11,8 mol/g biomassa para B. sphaericus. A bioacumulação máxima de chumbo foi 0,7 mol/g biomassa para B. sphaericus, 1,1 mol/g biomassa para B. cereus, 1,4 mol/g biomassa para Bacillus sp. e 1,8 mol/g biomassa para B. subtilis. As distintas linhagens de Bacillus testadas apresentaram variáveis capacidades de carregamento de íons metálicos, sendo os

  8. Use of bacillus subtilis strains to inhibit postharvest pathogenic fungi; Attivita` antagonista di alcuni ceppi di bacillus subtilis nei confronti di funghi patogeni

    Energy Technology Data Exchange (ETDEWEB)

    Arras, G.; Gambella, F.; Demontis, S.; Petretto, A.

    1995-09-01

    An isolate (87) of the bacillus subtilis strains isolated from cold stored citrus fruit 13 proved to inhibit the growth in vitro of the penicillium italicum used in the experiment (from 50.6% to 92.2%) and to inhibit botrytis cinerea (from 65.3% to 95.9%). A further test, superimposing on plates containing PDA strains Nos. 13, 173, and 160, totally inhibited the fungi. Tested in vivo on artificially bruised oranges, they significantly inhibited two fungi.

  9. Efektivitas Formula Bacillus subtilis TM4 untuk Pengendalian Penyakit pada Tanaman Jagung

    Directory of Open Access Journals (Sweden)

    Nurasiah Djaenuddin

    2017-11-01

    Full Text Available Banded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB .Key words: Bacillus subtilis, biopesticide, Bipolaris maydis, leaf blight diseaseBanded leaf and sheath blight (BLSB and maydis leaf blight (MLB caused by Rhizoctonia solani and Bipolaris maydis, respectively are considered as important diseases in maize.   The use of biopesticides is an alternative method to control the diseases. This study was conducted to determine the effectiveness of bacterial formula Bacillus subtilis to inhibit the development of BLSB and MLB on the plant. Testing of biopesticide formula was done in two different applications, i.e. seed treatment for BLSB control and leaf spraying in the field for MLB. The results showed that the B.subtilis formula effectively suppressed the development of BLSB but it was not effectively suppressed the development of MLB.

  10. Bacillus subtilis HJ18-4 from traditional fermented soybean food inhibits Bacillus cereus growth and toxin-related genes.

    Science.gov (United States)

    Eom, Jeong Seon; Lee, Sun Young; Choi, Hye Sun

    2014-11-01

    Bacillus subtilis HJ18-4 isolated from buckwheat sokseongjang, a traditional Korean fermented soybean food, exhibits broad-spectrum antimicrobial activity against foodborne pathogens, including Bacillus cereus. In this study, we investigated the antibacterial efficacy and regulation of toxin gene expression in B. cereus by B. subtilis HJ18-4. Expression of B. cereus toxin-related genes (groEL, nheA, nheC, and entFM) was downregulated by B. subtilis HJ18-4, which also exhibited strong antibacterial activity against B. cereus. We also found that water extracts of soy product fermented with B. subtilis HJ18-4 significantly inhibited the growth of B. cereus and toxin expression. These results indicate that B. subtilis HJ18-4 could be used as an antimicrobial agent to control B. cereus in the fermented soybean food industry. Our findings also provide an opportunity to develop an efficient biological control agent against B. cereus. © 2014 The Authors. Journal of Food Science published by Wiley Periodicals, Inc. on behalf of Institute of Food Technologists®

  11. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  12. The LuxS based quorum sensing governs lactose induced biofilm formation by Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Danielle eDuanis-Assaf

    2016-01-01

    Full Text Available Bacillus species present a major concern in the dairy industry as they can form biofilms in pipelines and on surfaces of equipment and machinery used in the entire line of production. These biofilms represent a continuous hygienic problem and can lead to serious economic losses due to food spoilage and equipment impairment. Biofilm formation by Bacillus subtilis is apparently dependent on LuxS quorum sensing (QS by Autoinducer-2 (AI-2. However, the link between sensing environmental cues and AI-2 induced biofilm formation remains largely unknown. The aim of this study is to investigate the role of lactose, the primary sugar in milk, on biofilm formation by B. subtilis and its possible link to QS processes. Our phenotypic analysis shows that lactose induces formation of biofilm bundles as well as formation of colony type biofilms. Furthermore, using reporter strain assays, we observed an increase in AI-2 production by B. subtilis in response to lactose in a dose dependent manner. Moreover, we found that expression of eps and tapA operons, responsible for extracellular matrix synthesis in B. subtilis, were notably up-regulated in response to lactose. Importantly, we also observed that LuxS is essential for B. subtilis biofilm formation in the presence of lactose. Overall, our results suggest that lactose may induce biofilm formation by B. subtilis through the LuxS pathway.

  13. In vitro characterization of the Bacillus subtilis protein tyrosine phosphatase YwqE

    DEFF Research Database (Denmark)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains...

  14. Plasmids replicatable in Bacillus subtilis, E. coli and lactic acid streptococcus bacteria

    NARCIS (Netherlands)

    Kok, Jan; Maat, Jan; van der Vossen, Josephus Mauritius; Venema, Gerard

    1997-01-01

    The claimed invention is drawn to a recombinant plasmid which can replicate in Bacillus subtilis, Escherichia coli, and lactic acid Streptococcus bacteria comprising the replication of origin from Streptococcus cremoris plasmid pWV01 as its origin of replication, in addition to coding marker genes

  15. Nuclear and cell division in Bacillus subtilis. Antibiotic-induced morphological changes

    NARCIS (Netherlands)

    van Iterson, W.; Aten, J. A.

    1976-01-01

    Incubation of Bacillus subtilis after outgrowth from spores in the presence of four different antibiotics in two different concentrations, showed that septation can occur without termination of nuclear division. Septation is then only partially uncoupled from the normal division cycle. Observations

  16. THE BACILLUS-SUBTILIS ADDAB GENES ARE FULLY FUNCTIONAL IN ESCHERICHIA-COLI

    NARCIS (Netherlands)

    KOOISTRA, J; HAIJEMA, BJ; VENEMA, G

    An Escherichia coli recBCD deletion mutant was transformed with plasmids containing the Bacillus subtilis add genes. The transformants had relatively high ATP-dependent exonuclease- and ATP-dependent helicase activities, and their viability, the ability to repair u.v.-damaged DNA and the

  17. Purification and properties of phosphoribosyl-diphosphate synthetase from Bacillus subtilis

    DEFF Research Database (Denmark)

    Arnvig, Kirsten; Hove-Jensen, Bjarne; Switzer, Robert L.

    1990-01-01

    Phosphoribosyl-diphosphate (PPRibP) synthetase from Bacillus subtiliis has been purified to near homogeneity from an Escherichia coli Δprs strain bearing the cloned B. subtilis prs gene, encoding PPRibP synthentase, on a plasmid. The Mr of the subunit (34,000) and its amino-terminal amino acid se...

  18. Differences in cold adaptation of .i.Bacillus subtilis./i. under anaerobic and aerobic conditions

    Czech Academy of Sciences Publication Activity Database

    Beranová, J.; Mansilla, M.C.; de Mendoza, D.; Elhottová, Dana; Konopásek, I.

    2010-01-01

    Roč. 192, č. 16 (2010), s. 4164-4171 ISSN 0021-9193 R&D Projects: GA MŠk LC06066 Institutional research plan: CEZ:AV0Z60660521 Keywords : cold adaptation * Bacillus subtilis * anaerobiosis Subject RIV: EE - Microbiology, Virology Impact factor: 3.726, year: 2010

  19. Binding of phage displayed Bacillus subtilis lipase A to a phosphonate suicide inhibitor

    NARCIS (Netherlands)

    Dröge, M.J; Ruggeberg, C.J.; van der Sloot, Almer Martinus; Schimmel, J.; Dijkstra, Durk; Verhaert, R.M D; Reetz, M.T.; Quax, Wim; Droge, MJ; Dijkstra, DS

    2003-01-01

    Phage display can be used as a protein engineering tool to select proteins with desirable binding properties from a library of randomly constructed mutants. Here, we describe the development of this method for the directed evolution of Bacillus subtilis lipase A, an enzyme that has marked properties

  20. Characterization of ftsZ mutations that render Bacillus subtilis resistant to MinC

    NARCIS (Netherlands)

    de Oliveira, I.F.F.; Sousa Borges, A.; Kooij, V.; Bartosiak-Jentys, J.; Luirink, S.; Scheffers, D.J.

    2010-01-01

    Background: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins

  1. Characterization of ftsZ Mutations that Render Bacillus subtilis Resistant to MinC

    NARCIS (Netherlands)

    Fernandes de Oliveira, Inês Filipa; Sousa Borges, Anabela de; Kooij, Viola; Bartosiak-Jentys, Jeremy; Luirink, Joen; Scheffers, Dirk-Jan

    2010-01-01

    Background: Cell division in Bacillus subtilis occurs precisely at midcell. Positional control of cell division is exerted by two mechanisms: nucleoid occlusion, through Noc, which prevents division through nucleoids, and the Min system, where the combined action of the MinC, D and J proteins

  2. Simple, Inexpensive, and Rapid Way to Produce Bacillus subtilis Spores for the Guthrie Bioassay

    Science.gov (United States)

    Franklin, Martha L.; Clark, William A.

    1981-01-01

    Esculin agar has been found to be a simple, inexpensive, rapid, and reliable means to promote production of spores of inhibitor-sensitive clones of Bacillus subtilis strains ATCC 6051 and 6633 for use in the Guthrie bioassay screening tests for genetic metabolic disorders. Images PMID:6790564

  3. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-07-17

    Jul 17, 2012 ... Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in.

  4. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    Science.gov (United States)

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  5. Functional analysis of the sortase YhcS in Bacillus subtilis

    NARCIS (Netherlands)

    Fasehee, Hamidreza; Westers, Helga; Bolhuis, Albert; Antelmann, Haike; Hecker, Michael; Quax, Wim J.; Mirlohi, Agha F.; van Dijl, Jan Maareten; Ahmadian, Gholamreza

    2011-01-01

    Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase

  6. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Sojka, Luděk; Fučík, Vladimír; Krásný, Libor; Barvík, I.; Jonák, Jiří

    2007-01-01

    Roč. 189, č. 13 (2007), s. 4809-4814 ISSN 0021-9193 R&D Projects: GA AV ČR IAA5052206 Institutional research plan: CEZ:AV0Z50520514 Keywords : ybxF * ymxC * ribosomes * Bacillus subtilis * GFP * growth phase Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.013, year: 2007

  7. Expression of Bacillus subtilis levanase gene in Lactobacillus plantarum and Lactobacillus casei

    NARCIS (Netherlands)

    Wanker, E.; Leer, R.J.; Pouwels, P.H.; Schwab, H.

    1995-01-01

    Two Lactobacillus-Escherichia coli shuttle vectors, harbouring the levanase gene from Bacillus subtilis under the control of its own promoter (pLPEW1) or behind the E. coli tac promoter (pE-SIEW2), were constructed. Lactobacillus plantarum showed the same growth characteristics on selective plates

  8. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    NARCIS (Netherlands)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-01-01

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor

  9. Preliminary X-ray Study of Naproxen Esterase from Bacillus subtilis

    NARCIS (Netherlands)

    van der Laan, Jan; Teplyakov, A.V.; Lammers, A.A.; Dijkstra, B.W.

    1993-01-01

    Single crystals of naproxen esterase from Bacillus subtilis have been obtained from PEG6000 solutions at pH 8.0 by liquid-liquid diffusion while applying a temperature gradient from 4°C to room temperature over a period of four weeks. The crystals belong to the trigonal space group P3121 or P3221

  10. Induction of prophages in spores of Bacillus subtilis by ultraviolet irradiation from synchrotron orbital radiation

    Energy Technology Data Exchange (ETDEWEB)

    Sadaie, Y.; Kada, T.; Ohta, Y. (National Inst. of Genetics, Mishima, Shizuoka (Japan)); Kobayashi, K.; Hieda, K.; Ito, T.

    1984-06-01

    Prophages were induced from Bacillus subtilis spores lysogenic with SP02 by ultraviolet (160 nm to 240 nm) irradiation from synchrotron orbital radiation (SR UV). SR UV at around 220 nm was most effective in the inactivation of spores and prophage induction from lysogenic spores, suggesting that the lesions are produced on the DNA molecule which eventually induces signals to inactivate the phage repressor.

  11. Bacillus subtilis at near-zero specific growth rates : Adaptations to extreme caloric restriction

    NARCIS (Netherlands)

    Overkamp, Wout

    2015-01-01

    Bacillus subtilis is an important soil-dwelling bacteria species that is used for the production of e.g. vitamins, enzymes and medicines. In both the natural and industrial environment the availability of energy sources can be limited. In contrary to a situation of complete ‘nutrient depletion’,

  12. Transcriptome analysis documents induced competence of Bacillus subtilis during nitrogen limiting conditions

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Berka, R.; Knudsen, Steen

    2002-01-01

    DNA microarrays were used to analyze the changes in gene expression in Bacillus subtilis strain 168 when nitrogen limiting (glutamate) and nitrogen excess (ammonium plus glutamate) growth conditions were compared. Among more than 100 genes that were significantly induced during nitrogen starvatio...

  13. Translational coupling in Escherichia coli of a heterologous Bacillus subtilis-Escherichia coli gene fusion.

    OpenAIRE

    Zaghloul, T I; Doi, R H

    1986-01-01

    The efficient expression in Escherichia coli of the Tn9-derived chloramphenicol acetyltransferase (EC 2.3.1.28) gene fused distal to the promoter and N terminus of the Bacillus subtilis aprA gene was dependent on the initiation of translation from the ribosome-binding site in the aprA gene.

  14. Rendering one autolysis site in Bacillus subtilis neutral protease resistant to cleavage reveals a new fission

    NARCIS (Netherlands)

    Van den Burg, B; Eijsink, VGH; Vriend, G; Veltman, OR; Venema, G

    Autolytic degradation of the thermolysin-like proteinase of Bacillus subtilis (TLP-sub) is responsible for the irreversible inactivation of the enzyme at elevated temperatures. Previously we have reported five cleavage sites in Tip-sub [Van den Burg et al, (1990) Biochem. J. 272, 93-97]. In an

  15. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent mut...

  16. Clp-dependent proteolysis down-regulates central metabolic pathways in glucose-starved Bacillus subtilis

    NARCIS (Netherlands)

    Gerth, Ulf; Kock, Holger; Kusters, Ilja; Michalik, Stephan; Switzer, Robert L.; Hecker, Michael

    Entry into stationary phase in Bacillus subtilis is linked not only to a redirection of the gene expression program but also to posttranslational events such as protein degradation. Using S-35-labeled methionine pulse-chase labeling and two-dimensional polyacrylamide gel electrophoresis we monitored

  17. Bacillus subtilis YqjG is required for genetic competence development

    NARCIS (Netherlands)

    Saller, Manfred J.; Otto, Andreas; Berrelkamp-Lahpor, Greetje A.; Becher, Doerte; Hecker, Michael; Driessen, Arnold J. M.

    Members of the evolutionary conserved Oxa1/Alb3/YidC family have been shown to play an important role in membrane protein insertion, folding and/or assembly. Bacillus subtilis contains two YidC-like proteins, denoted as SpoIIIJ and YqjG. SpoIIIJ and YqjG are largely exchangeable, but SpoIIIJ is

  18. Identification of a Bacillus subtilis secretion mutant using a beta-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, M F; Borchert, T V; Kontinen, V P

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...

  19. A novel screening system for secretion of heterologous proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Trip, Hein; van der Veek, Patricia J.; Renniers, Ton C.; Meima, Rob; Sagt, Cees M.; Mohrmann, Lisette; Kuipers, Oscar P.

    High-level production of secretory proteins in Bacillus subtilis leads to a stress response involving the two-component system CssRS and its target genes htrA and htrB. Here, we used this sensing system in a reporter strain in which gfp is under control of P(htrA), the secretion stress responsive

  20. A positive selection vector for the analysis of structural plasmid instability in Bacillus subtilis

    NARCIS (Netherlands)

    Meima, R; Venema, G; Bron, S

    A system for the positive selection of structural plasmid rearrangements in Bacillus subtilis was developed. Random deletions removing a transcription terminator structure in the assay plasmid, designated pGP100, resulted in expression of the cat-86 gene, under control of a constitutive

  1. DNA repair and its relation to recombination-deficient and other mutations in Bacillus subtilis

    International Nuclear Information System (INIS)

    Ganesan, A.T.

    1975-01-01

    DNA repair processes operating in Bacillus subtilis are similar to other transformable bacterial systems. Radiation-sensitive, recombination-deficient mutants are blocked in distinct steps leading to recombination. DNA polymerase I is essential for the repair of x-ray-induced damage to DNA but not for recombination

  2. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    NARCIS (Netherlands)

    Marciniak, Bogumila C.; Trip, Hein; van-der Veek, Patricia J.; Kuipers, Oscar P.; Marciniak, Bogumiła C.

    2012-01-01

    Background: Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe) status, its genetic accessibility and its capacity to grow in large

  3. Phylogenetic analysis of Bacillus subtilis strains applicable to natto (fermented soybean) production

    Science.gov (United States)

    Spore-forming Bacillus strains that produce extracellular poly-'-glutamic acid were screened for their application to natto (fermented soybean food) fermentation. Among the 365 strains, including B. subtilis and B. amyloliquefaciens, which we isolated from rice straw, 59 were capable of fermenting n...

  4. Cucumber rhizosphere microbial community response to biocontrol agent Bacillus subtilis B068150

    Science.gov (United States)

    Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum f. sp. Cucumerinum. However, their survival ability in cucumber rhizosphere and non-rhizosphere as well as their influence on native microbial communities has not been fully i...

  5. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  6. Bacillus subtilis-based direct-fed microbials augment macrophage function in broiler chickens

    Science.gov (United States)

    The present study was conducted to evaluate the function of Bacillus subtilis-based direct-fed microbials (DFMs) on macrophage functions, i.e., nitric oxide (NO) production and phagocytosis in broiler chickens. DFMs used in this study were eight single strains designated as Bs2084, LSSAO1, 3AP4, Bs1...

  7. Antagonistic activity of Bacillus subtilis SB1 and its biocontrol effect on tomato bacterial wilt

    Science.gov (United States)

    A potential biocontrol agent of bacterial wilt, Bacillus subtilis SB1, isolated from tomato roots, showed a broad-spectrum of antimicrobial activity in in vitro experiments. It inhibited the growth of many plant pathogens, including Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, Fusarium ox...

  8. Mutation breeding of Bacillus subtilis YTB4 with high yield of ...

    African Journals Online (AJOL)

    Helium-neon (He-Ne) laser irradiation is a highly efficient mutation breeding technology and is widely applied to various fields of biological science. Using Bacillus subtilis YTB4 with high yield of multienzyme complex as original strain, mutation breeding was carried out by He-Ne laser irradiation in this study. Based on the ...

  9. SEQUENCE AND ANALYSIS OF THE GENETIC-LOCUS RESPONSIBLE FOR SURFACTIN SYNTHESIS IN BACILLUS-SUBTILIS

    NARCIS (Netherlands)

    COSMINA, P; RODRIGUEZ, F; DEFERRA, F; GRANDI, G; PEREGO, M; VENEMA, G; VANSINDEREN, D

    The chromosomal region of Bacillus subtilis comprising the entire srfA operon, sfp and about four kilobases in between have been completely sequenced and functionally characterized. The srfA gene codes for three large subunits of surfactin synthetase, 402, 401 and 144 kDa, respectively, arranged in

  10. Recent progress in Bacillus subtilis spore-surface display: concept, progress, and future.

    Science.gov (United States)

    Wang, He; Wang, Yunxiang; Yang, Ruijin

    2017-02-01

    With the increased knowledge on spore structure and advances in biotechnology engineering, the newly developed spore-surface display system confers several inherent advantages over other microbial cell-surface display systems including enhanced stability and high safety. Bacillus subtilis is the most commonly used Bacillus species for spore-surface display. The expression of heterologous antigen or protein on the surface of B. subtilis spores has now been practiced for over a decade with noteworthy success. As an update and supplement to other previous reviews, we comprehensively summarize recent studies in the B. subtilis spore-surface display technique. We focus on its benefits as well as the critical factors affecting its display efficiency and offer suggestions for the future success of this field.

  11. Investigating the efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot in peach fruit.

    Science.gov (United States)

    Wang, Xiaoli; Wang, Jing; Jin, Peng; Zheng, Yonghua

    2013-06-17

    The efficacy of Bacillus subtilis SM21 on controlling Rhizopus rot caused by Rhizopus stolonifer in postharvest peach fruit and the possible mechanisms were investigated. The results indicated B. subtilis SM21 treatment reduced lesion diameter and disease incidence by 37.2% and 26.7% on the 2nd day of inoculation compared with the control. The in vitro test showed significant inhibitory effect of B. subtilis SM21 on mycelial growth of R. stolonifer with an inhibition rate of 48.9%. B. subtilis SM21 treatment significantly enhanced activities of chitinase and β-1,3-glucanase, and promoted accumulation of H2O2. Total phenolic content and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity were also increased by this treatment. Transcription of seven defense related genes was much stronger in fruit treated with B. subtilis SM21 or those both treated with B. subtilis SM21 and inoculated with R. stolonifer compared with fruit inoculated with R. stolonifer alone. These results suggest that B. subtilis SM21 can effectively inhibit Rhizopus rot caused by R. stolonifer in postharvest peach fruit, possibly by directly inhibiting growth of the pathogen, and indirectly inducing disease resistance in the fruit. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Chromosomal integration of sfp gene in Bacillus subtilis to enhance bioavailability of hydrophobic liquids.

    Science.gov (United States)

    Lee, Young-Ki; Kim, Seong-Bin; Park, Chan-Sun; Kim, Jong-Guk; Oh, Hee-Mock; Yoon, Byung-Dae; Kim, Hee-Sik

    2005-06-01

    Bacillus subtilis C9 effectively degrades aliphatic hydrocarbons up to a chain length of C19 and produces a lipopeptide-type biosurfactant, surfactin, yet it has no genetic competency. Therefore, to obtain a transformable surfactin producer, the sfp gene cloned from B. subtilis C9 was integrated into the chromosome of B. subtilis 168, a non-surfactin producer, by homologous recombination. The transformants reduced the surface tension of the culture broth from 70.0 mN/m to 28.0 mN/m, plus the surface-active compound produced by the transformants exhibited the same Rf value as that from B. subtilis C9 and authentic surfactin in a thin-layer chromatographic analysis. The integration of the sfp gene into the chromosome of B. subtilis 168 was confirmed by Southern hybridization. Like B. subtilis C9, the transformants readily degraded n-hexadecane, although the original strain did not. It was also statistically confirmed that the hydrocarbon degradation of the transformants was highly correlated to their surfactin production by the determination of the correlation coefficient (r2 = 0.997, P < 0.01). Therefore, these results indicate that the surfactin produced from B. subtilis enhances the bioavailability of hydrophobic liquids.

  13. Antimicrobial and plant growth-promoting properties of the cacao endophyte Bacillus subtilis ALB629.

    Science.gov (United States)

    Falcäo, L L; Silva-Werneck, J O; Vilarinho, B R; da Silva, J P; Pomella, A W V; Marcellino, L H

    2014-06-01

    To investigate the effects of the endophyte Bacillus subtilisALB629 on the growth of cacao seedlings at early developmental stage and to evaluate its antimicrobial properties. Germinating cacao seeds were inoculated with ALB629, and seedlings growth was evaluated 30 days later. Significant increase (P cacao-grafting procedure in the field, ALB629 increased the grafting success rate (24%), indicating its protective effect. In addition, this Bacillus secretes an antagonist compound, as shown by the antifungal activity of the cell-free culture. Bacillus subtilisALB629 promotes cacao root growth, besides promoting growth of the aerial part of cacao seedlings. It has antimicrobial properties and produces an antifungal compound. ALB629 presented beneficial characteristics for cacao cultivation, being a good biological control agent candidate. Furthermore, it is a potential source of antifungal compound with potential for commercial exploitation. © 2014 The Society for Applied Microbiology.

  14. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis.

    Science.gov (United States)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-07-07

    Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. Alternation between motile and sessile behaviors is central to bacterial adaptation, survival, and colonization. However, how is the collective

  15. Oligomerization of Bacillus subtilis DesR is required for fine tuning regulation of membrane fluidity.

    Science.gov (United States)

    Najle, Sebastián R; Inda, María E; de Mendoza, Diego; Cybulski, Larisa E

    2009-10-01

    The DesK-DesR two-component system regulates the order of membrane lipids in the bacterium Bacillus subtilis by controlling the expression of the des gene coding for the delta 5-acyl-lipid desaturase. To activate des transcription, the membrane-bound histidine kinase DesK phosphorylates the response regulator DesR. This covalent modification of the regulatory domain of dimeric DesR promotes, in a cooperative fashion, the hierarchical occupation of two adjacent, non-identical, DesR-P binding sites, so that there is a shift in the equilibrium toward the tetrameric active form of the response regulator. However, the mechanism of regulation of DesR activity by phosphorylation and oligomerization is not well understood. We employed deletion analysis and reporter fusions to study the role of the N-terminal domain on DesR activity. In addition, electromobility shift assays were used to analyze the binding capacity of the transcription factor to deletion mutants of the des promoter. We show that DesR lacking the N-terminal domain is still able to bind to the des promoter. We also demonstrate that if the RA site is moved closer to the -35 region of Pdes, the adjacent site RB is dispensable for activation. Our results indicate that the unphosphorylated regulatory domain of DesR obstructs the access of the recognition helix of DesR to its DNA target. In addition, we present evidence showing that RB is physiologically relevant to control the activation of the des gene when the levels of DesR-P reach a critical threshold.

  16. Fluctuations in spo0A transcription control rare developmental transitions in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Nicolas Mirouze

    2011-04-01

    Full Text Available Phosphorylated Spo0A is a master regulator of stationary phase development in the model bacterium Bacillus subtilis, controlling the formation of spores, biofilms, and cells competent for transformation. We have monitored the rate of transcription of the spo0A gene during growth in sporulation medium using promoter fusions to firefly luciferase. This rate increases sharply during transient diauxie-like pauses in growth rate and then declines as growth resumes. In contrast, the rate of transcription of an rRNA gene decreases and increases in parallel with the growth rate, as expected for stable RNA synthesis. The growth pause-dependent bursts of spo0A transcription, which reflect the activity of the spo0A vegetative promoter, are largely independent of all known regulators of spo0A transcription. Evidence is offered in support of a "passive regulation" model in which RNA polymerase stops transcribing rRNA genes during growth pauses, thus becoming available for the transcription of spo0A. We show that the bursts are followed by the production of phosphorylated Spo0A, and we propose that they represent initial responses to stress that bring the average cell closer to the thresholds for transition to bimodally expressed developmental responses. Measurement of the numbers of cells expressing a competence marker before and after the bursts supports this hypothesis. In the absence of ppGpp, the increase in spo0A transcription that accompanies the entrance to stationary phase is delayed and sporulation is markedly diminished. In spite of this, our data contradicts the hypothesis that sporulation is initiated when a ppGpp-induced depression of the GTP pool relieves repression by CodY. We suggest that, while the programmed induction of sporulation that occurs in stationary phase is apparently provoked by increased flux through the phosphorelay, bet-hedging stochastic transitions to at least competence are induced by bursts in transcription.

  17. Bistable forespore engulfment in Bacillus subtilis by a zipper mechanism in absence of the cell wall.

    Directory of Open Access Journals (Sweden)

    Nikola Ojkic

    2014-10-01

    Full Text Available To survive starvation, the bacterium Bacillus subtilis forms durable spores. The initial step of sporulation is asymmetric cell division, leading to a large mother-cell and a small forespore compartment. After division is completed and the dividing septum is thinned, the mother cell engulfs the forespore in a slow process based on cell-wall degradation and synthesis. However, recently a new cell-wall independent mechanism was shown to significantly contribute, which can even lead to fast engulfment in [Formula: see text] 60 [Formula: see text] of the cases when the cell wall is completely removed. In this backup mechanism, strong ligand-receptor binding between mother-cell protein SpoIIIAH and forespore-protein SpoIIQ leads to zipper-like engulfment, but quantitative understanding is missing. In our work, we combined fluorescence image analysis and stochastic Langevin simulations of the fluctuating membrane to investigate the origin of fast bistable engulfment in absence of the cell wall. Our cell morphologies compare favorably with experimental time-lapse microscopy, with engulfment sensitive to the number of SpoIIQ-SpoIIIAH bonds in a threshold-like manner. By systematic exploration of model parameters, we predict regions of osmotic pressure and membrane-surface tension that produce successful engulfment. Indeed, decreasing the medium osmolarity in experiments prevents engulfment in line with our predictions. Forespore engulfment may thus not only be an ideal model system to study decision-making in single cells, but its biophysical principles are likely applicable to engulfment in other cell types, e.g. during phagocytosis in eukaryotes.

  18. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    Science.gov (United States)

    de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Hölscher, Theresa; Kuipers, Oscar P.

    2015-01-01

    ABSTRACT Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcription factor Spo0A~Pi (phosphorylated Spo0A) governs the flagellum-independent mechanism of social sliding motility. A Spo0A-deficient strain was totally unable to slide and colonize plant roots, evidencing the important role that sliding might play in natural settings. Microarray experiments plus subsequent genetic characterization showed that the machineries of sliding and biofilm formation share the same main components (i.e., surfactin, the hydrophobin BslA, exopolysaccharide, and de novo-formed fatty acids). Sliding proficiency was transduced by the Spo0A-phosphorelay histidine kinases KinB and KinC. We discovered that potassium, a previously known inhibitor of KinC-dependent biofilm formation, is the specific sliding-activating signal through a thus-far-unnoticed cytosolic domain of KinB, which resembles the selectivity filter sequence of potassium channels. The differential expression of the Spo0A~Pi reporter abrB gene and the different levels of the constitutively active form of Spo0A, Sad67, in Δspo0A cells grown in optimized media that simultaneously stimulate motile and sessile behaviors uncover the spatiotemporal response of KinB and KinC to potassium and the gradual increase in Spo0A~Pi that orchestrates the sequential activation of sliding, followed by sessile biofilm formation and finally sporulation in the same population. Overall, these results provide insights into how multicellular behaviors formerly believed to be antagonistic are coordinately activated in benefit of the bacterium and its interaction with the host. PMID:26152584

  19. Genetic characterization of the inducible SOS-like system of Bacillus subtilis

    Energy Technology Data Exchange (ETDEWEB)

    Love, P.E.; Yasbin, R.E.

    1984-12-01

    The SOS-like system of Bacillus subtilis consists of several coordinately induced phenomena which are expressed after cellular insult such as DNA damage of inhibition of DNA replication. Mutagenesis of the bacterial chromosomes and the development of maintenance of competence also appear to be involved in the SOS-like response in this bacterium. The genetic characterization of the SOS-like system has involved an analysis of (i) the effects of various DNA repair mutations on the expression of inducible phenomena and (ii) the tsi-23 mutation, which renders host strains thermally inducible for each of the SOS-like functions. Bacterial filamentation was unaffected by any of the DNA repair mutations studied. In contrast, the induction of prophage after thermal or UV pretreatment was abolished in strains carrying the recE4, recA1, recB2, or recG13 mutation. The Weigle reactivation of UV-damaged bacteriophage was also inhibited by the recE4, recA1, recB2, or recG13 mutation, whereas levels of Weigle reactivation were lower in strains which carried the uvrA42, polA5, or rec-961 mutation than in the DNA repair-proficient strain. Strains which carried the recE4 mutation were incapable of chromosomal DNA-mediated transformation, and the frequency of this event was decreased in strains carrying recA1, recB2, or tsi-23 mutation. Plasmid DNA transformation efficiency was decreased only in strains carrying the tsi-23 mutation in addition to the recE4, recA1, or recB2 mutation. The results indicate that the SOS-like system of B. subtilis is regulated at different levels by two or more gene products. In this report, the current data regarding the genetic regulation of inducible phenomena are summarized, and a model is proposed to explain the mechanism of SOS-like induction in B. subtillis. 50 references, 3 figures, 6 tables.

  20. The structure of the transposable genetic element ISBsu2 from the cryptic plasmid p1516 of a soil Bacillus subtilis strain and the presence of homologues of this element in the chromosomes of various Bacillus subtilis strains

    NARCIS (Netherlands)

    Holsappel, S; Gagarina, EY; Poluektova, EU; Nezametdinova, VZ; Gel'fand, MS; Prozorov, AA; Bron, S

    2003-01-01

    A cryptic plasmid from a soil strain of Bacillus subtilis was found to contain a sequence having features of an IS element. Homologous sequences were also found in the chromosome of this strain and in the chromosomes of some other B. subtilis strains.

  1. In vivo characterization of the scaffold activity of flotillin on the membrane kinase KinC of Bacillus subtilis

    Science.gov (United States)

    Schneider, Johannes; Mielich-Süss, Benjamin; Böhme, Richard; Lopez, Daniel

    2015-01-01

    Summary Scaffold proteins are ubiquitous chaperones that bind to proteins and facilitate the physical interaction of the components of signal transduction pathways or multi-enzymatic complexes. In this study, we used a biochemical approach to dissect the molecular mechanism of a membrane-associated scaffold protein, FloT, a flotillin-homolog protein that is localized in Functional Membrane Microdomains of the bacterium Bacillus subtilis. This study provides unambiguous evidence that FloT physically binds to and interacts with the membrane-bound sensor kinase KinC. This sensor kinase activates biofilm formation in B. subtilis in response to the presence of the self-produced signal surfactin. Furthermore, we have characterized the mechanism by which the interaction of FloT with KinC benefits the activity of KinC. Two separate and synergistic effects constitute this mechanism: first, the scaffold activity of FloT promotes more efficient self-interaction of KinC and facilitates dimerization into its active form. Second, the selective binding of FloT to KinC prevents the occurrence of unspecific aggregation between KinC and other proteins that may generate dead-end intermediates that could titrate the activity of KinC. Flotillin proteins appear to play an important role in prokaryotes in promoting effective binding of signaling proteins with their correct protein partners. PMID:26297017

  2. Metabolism of isoeugenol via isoeugenol-diol by a newly isolated strain of Bacillus subtilis HS8.

    Science.gov (United States)

    Zhang, Yongmei; Xu, Ping; Han, Shuai; Yan, Haiqin; Ma, Cuiqing

    2006-12-01

    A bacterium designated as HS8 was newly isolated from soil based on its ability to degrade isoeugenol. The strain was identified as Bacillus subtilis according to its 16S rDNA sequence analysis and biochemical characteristics. The metabolic pathway for the degradation of isoeugenol was examined. Isoeugenol-diol, for the first time, was detected as an intermediate from isoeugenol to vanillin by a bacterial strain. Isoeugenol was converted to vanillin via isoeugenol-diol, and vanillin was then metabolized via vanillic acid to guaiacol by strain HS8. These metabolites, vanillin, vanillic acid, and guaiacol, are all valuable aromatic compounds in flavor production. At the same time, the bipolymerization of isoeugenol was observed, which produced dehydrodiisoeugenol and decreased the vanillin yield. High level of vanillic acid decarboxylase activity was detected in cell-free extract. These findings provided a detailed profile of isoeugenol metabolism by a B. subtilis strain for the first time, which would improve the production of valuable aromatic compounds by biotechnology.

  3. Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain.

    OpenAIRE

    Beveridge, T J; Davies, J A

    1983-01-01

    Exponentially growing cells of Bacillus subtilis and Escherichia coli were Gram stained with potassium trichloro(eta 2-ethylene)platinum(II) (TPt) in place of the usual KI-I2 mordant. This electron-dense probe allowed the staining mechanism to be followed and compared with cellular perturbations throughout the staining process. A crystal violet (CV)-TPt chemical complex was formed within the cell substance and at the cell surface of B. subtilis when the dye and Pt mordant were added. The etha...

  4. Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens

    Directory of Open Access Journals (Sweden)

    A. Alfonzo

    2009-05-01

    Full Text Available Antagonistic substances produced by a Bacillus subtilis strain (AG1, which were previously found to slow down the growth of esca fungi in vitro, were produced in an artificial medium, isolated from the cell-free medium by precipitation and acidification (to less than pH 2.5 and extracted from the precipitate with 96% ethanol. The crude extract employed in antibiotic assays confirmed, in vitro, the antagonism of B. subtilis against Phaeoacremonium aleophilum and Phaeomoniella chlamydospora, and also showed an antifungal activity toward Verticillium dahliae and Botryosphaeria rhodina.

  5. Autolysis of Escherichia coli and Bacillus subtilis cells in low gravity

    Science.gov (United States)

    Kacena, M. A.; Smith, E. E.; Todd, P.

    1999-01-01

    The role of gravity in the autolysis of Bacillus subtilis and Escherichia coli was studied by growing cells on Earth and in microgravity on Space Station Mir. Autolysis analysis was completed by examining the death phase or exponential decay of cells for approximately 4 months following the stationary phase. Consistent with published findings, the stationary-phase cell population was 170% and 90% higher in flight B. subtilis and E. coli cultures, respectively, than in ground cultures. Although both flight autolysis curves began at higher cell densities than control curves, the rate of autolysis in flight cultures was identical to that of their respective ground control rates.

  6. Identification of a Bacillus subtilis secretion mutant using a ß-galactosidase screening procedure

    DEFF Research Database (Denmark)

    Jacobs, Myra F.; Andersen, Jens Bo; Borchert, Torben V.

    1995-01-01

    High-level synthesis of exportable beta-galactosidase (LacZ) fusion proteins in Bacillus subtilis results in a lethal phenotype, and has been suggested as a tool for the selection of secretion mutants. We tested a plasmid-based, inducible lacZ fusion gene system for this purpose, but frequent...... mutations in cis, which reduced expression of the fusion gene, forced abandonment of the induction-selection strategy. Instead, after modification of the indicator plasmid, a screening procedure for increased basal LacZ activity levels was adopted. This led to the identification of a conditional B. subtilis...

  7. Safety assessment of Bacillus subtilis CU1 for use as a probiotic in humans.

    Science.gov (United States)

    Lefevre, Marie; Racedo, Silvia M; Denayrolles, Muriel; Ripert, Gabrielle; Desfougères, Thomas; Lobach, Alexandra R; Simon, Ryan; Pélerin, Fanny; Jüsten, Peter; Urdaci, Maria C

    2017-02-01

    Bacillus subtilis CU1 is a recently described probiotic strain with beneficial effects on immune health in elderly subjects. The following work describes a series of studies supporting the safety of the strain for use as an ingredient in food and supplement preparations. Using a combination of 16S rDNA and gyrB nucleotide analyses, the species was identified as a member of the Bacillus subtilis complex (B. subtilis subsp. spizizenii). Further characterization of the organism at the strain level was achieved using random amplified polymorphic DNA polymerase chain reaction (RAPD PCR) and pulsed field gel electrophoresis (PFGE) analyses. B. subtilis CU1 did not demonstrate antibiotic resistance greater than existing regulatory cutoffs against clinically important antibiotics, did not induce hemolysis or produce surfactant factors, and was absent of toxigenic activity in vitro. Use of B. subtilis CU1 as a probiotic has recently been evaluated in a 16-week randomized, double-blind, placebo-controlled, parallel-arm study, in which 2 × 10 9 spores per day of B. subtilis CU1 were administered for a total 40 days to healthy elderly subjects (4 consumption periods of 10 days separated by 18-day washouts). This work describes safety related endpoints not previously reported. B. subtilis CU1 was safe and well-tolerated in the clinical subjects without undesirable physiological effects on markers of liver and kidney function, complete blood counts, hemodynamic parameters, and vital signs. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Process optimization by response surface methodology for extracellular alkaline protease production from bacillus subtilis

    International Nuclear Information System (INIS)

    Mushtaq, Z.; Adnan, A.; Mehmood, Z.

    2014-01-01

    Three microbial cultures Bacillus subtilis DSM 1970, Bacillus subtilis GCU-8 and Bacillus licheniformis DSM 1969 were screened for protease production by casein agar plate method. Among these Bacillus subtilis GCU-8 was found to be the most potent protease producer in wide pH range (5.0 to 8.0). Fermentation conditions were optimized for the production of alkaline protease using two statistical tools: Placket Burmen Model for linear regression study and Response Surface Model for interactive effects of significant factors on production. The alkaline protease was optimally produced after 48 hours of incubation at 37 degree C in fermentation media containing equal amounts of substrates (soybean meal and wheat bran, 7.5 g), MgSO/sub 4/ 7H/sub 2/O, 0.10 g and yeast extract 0.55 g. The protease was purified to homogeneity by salt precipitation, ion-exchange chromatography and size exclusion chromatography. The homogeneity and molecular weights were checked by SDS-PAGE. The protease was 45 KDa protein, predominantly alkaline and optimally active at pH 8.0. (author)

  9. Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis

    NARCIS (Netherlands)

    Krom, BP; Warner, JB; Konings, WN; Lolkema, JS; Warner, Jessica B.

    2000-01-01

    Citrate uptake in Bacillus subtilis is stimulated by a wide range of divalent metal ions. The metal ions were separated into two groups based on the expression pattern of the uptake system. The two groups correlated with the metal ion specificity of two homologous B, subtilis secondary citrate

  10. EVALUASI LIMA JENIS INNER CARRIER DAN FORMULASI BACILLUS SUBTILIS UNTUK PENGENDALIAN HAWAR PELEPAH JAGUNG (RHIZOCTONIA SOLANI KUHN

    Directory of Open Access Journals (Sweden)

    Amran Muis

    2016-03-01

    Full Text Available Evaluation of five inner carriers and Bacillus subtilis formulation to control banded leaf and sheath blight (Rhizoctonia solani Kuhn. One alternative control method against plant pathogens is the use of antagonistic microorganisms, such as Bacillus subtilis. The use of the antagonistic bacteria on corn especially in Indonesia is still lack. The objective of this research was to evaluate some inner carrier and to make formulated antagonistic B. subtilis to be used as biological control agents on corn diseases. This research consists of laboratory and greenhouse activities. The laboratory activities consist of B. subtilis biomass production, formulation of B. subtilis, and evaluation of five types of inner carrier. In the greenhouse, testing the formulation B. subtilis with talc as an inner carrier, which is compared with the treatment solution of B. subtilis, nordox, metalaxyl fungicides. The data collected in this study were percentage of germination, damping off due to pathogen R. solani, plant height, plant fresh weight, and percentages of R. solani incidence on 14 DAP. The results showed that talc powder and corn flour were the best inner carrier to be used in sorage formulation of antagonistic Bacillus. Formulated Bacillus subtilis TM4 showed no negative affect on seed germination and able to suppress the development of R. solani in greenhouse.

  11. Genomic analysis of Bacillus subtilis OH 131.1 and coculturing with Cryptococcus flavescens for control of fusarium head blight

    Science.gov (United States)

    Bacillus subtilis OH131.1 is a bacterial antagonist of Fusarium graminearum, a plant pathogen which causes Fusarium head blight in wheat. The genome of B. subtilis OH131.1 was sequenced, annotated and analyzed to understand its potential to produce bioactive metabolites. The analysis identified 6 sy...

  12. Production of Xylanase by Recombinant Bacillus subtilis DB104 Cultivated in Agroindustrial Waste Medium

    Directory of Open Access Journals (Sweden)

    Is Helianti

    2016-07-01

    Full Text Available A recombinant Bacillus subtilis DB104 strain harbouring recombinant plasmid pSKE194 containing an Open Reading Frame (ORF of endoxylanase and its indigenous promoter from the wild-type B. subtilis AQ1 strain was constructed. This recombinant B. subtilis DB104 strain had higher endoxylanase activity than the nonrecombinant B. subtilis DB104 strain in standard media, such as Luria Bertani (LB and LB with xylan. The agroindustrial wastes corncobs and tofu liquid waste were chosen as cost-effective carbon and nitrogen sources, respectively, to test the economics of xylanase production using the recombinant B. subtilis DB104 at a larger scale. Submerged fermentation using a 4.5 L working volume fermentor with tofu liquid waste and 4% corncobs produced maximum xylanase activity of 1296 ± 1.2 U/mg (601.7 ± 0.6 U/mL after 48-hour fermentation at 37°C with 150 rpm agitation; this is more than twofold higher than the activity produced in an Erlenmeyer flask. This is the first report of high xylanase activity produced from recombinant B. subtilis using inexpensive medium. During fermentation, the xylanase degrades corncobs into xylooligosaccharides, showing its potential as an enzyme feed additive or in xylooligosaccharide production.

  13. Bacillus subtilis as a tool for vaccine development: from antigen factories to delivery vectors

    Directory of Open Access Journals (Sweden)

    Luís C.S. Ferreira

    2005-03-01

    Full Text Available Bacillus subtilis and some of its close relatives have a long history of industrial and biotechnological applications. Search for antigen expression systems based on recombinant B. subtilis strains sounds attractive both by the extensive genetic knowledge and the lack of an outer membrane, which simplify the secretion and purification of heterologous proteins. More recently, genetically modified B. subtilis spores have been described as indestructible delivery vehicles for vaccine antigens. Nonetheless both production and delivery of antigens by B. subtilis strains face some inherent obstacles, as unstable gene expression and reduced immunogenicity that, otherwise, can be overcome by already available gene technology approaches. In the present review we present the status of B. subtilis-based vaccine research, either as protein factories or delivery vectors, and discuss some alternatives for a better use of genetically modified strains.Bacillus subtilis e alguns de seus parentes mais próximos possuem uma longa história de aplicações industriais e biotecnológicas. A busca de sistemas de expressão de antígenos baseados em linhagens recombinants de B. subtilis mostra-se atrativa em função do conhecimento genético disponível e ausência de uma membrana externa, o que simplifica a secreção e a purificação de proteínas heterólogas. Mais recentemente, esporos geneticamente modificados de B. subtilis foram descritos com veículos indestrutíveis para o transporte de antígenos vacinais. Todavia a produção e o transporte de antígenos por linhagens de B. subtilis encontra obstáculos, como a expressão gênica instável e imunogenicidade reduzida, que podem ser superados com o auxílio de tecnologias genéticas atualmente disponíveis. Apresentamos nesta revisão o estado atual da pesquisa em vacinas baseadas em B. subtilis, empregado tanto como fábrica de proteínas ou veículos, e discute algumas alternativas para o uso mais

  14. Sensitivity of the bacterium Bacillus Thuringiensis as an insect disease agent to gamma-rays

    International Nuclear Information System (INIS)

    Merdam, A.I.; Abdu, R.M.

    1977-01-01

    The effect of gamma radiation on the viability of the entomopathogenic spore-forming bacterium, Bacillus thuringiensis, was tested. The different gamma doses varied much in their effect on such bacterium. All irradiated Bacillus suspensions with doses below 85 krad showed different degrees of inhibitory activity. However, bacterial suspensions irradiated at a dose of 90 krad. proved to promote spore germination. Changes in the physiological, and morphological characters of the irradiated Bacillus at these levels were detected. The new observed characters were induced at a particular dose level of 90 krad. These new characters are assumed to be due to genetic changes induced at this particular gamma dose

  15. The dtd gene from Bacillus amyloliquefaciens encodes a putative D-tyrosyl-tRNATyr deacylase and is a selectable marker for Bacillus subtilis.

    Science.gov (United States)

    Geraskina, Natalia V; Butov, Ivan A; Yomantas, Yurgis A V; Stoynova, Nataliya V

    2015-02-01

    Genetically engineered microbes are of high practical importance due to their cost-effective production of valuable metabolites and enzymes, and the search for new selectable markers for genetic manipulation is of particular interest. Here, we revealed that the soil bacterium Bacillus amyloliquefaciens A50 is tolerant to the non-canonical amino acid D-tyrosine (D-Tyr), in contrast to the closely related Bacillus strain B. subtilis 168, which is a widely used "domesticated" laboratory strain. The gene responsible for resistance to D-Tyr was identified. The resistance was associated with the activity of a potential D-tyrosyl-tRNA(Tyr) deacylase. Orthologs of this enzyme are capable of hydrolyzing the ester bond and recycling misacetylated D-aminoacyl-tRNA molecules into free tRNAs and D-amino acids. This gene, yrvI (dtd), is applicable as a convenient, small selectable marker for non-antibiotic resistance selection in experiments aimed at genome editing of D-Tyr-sensitive microorganisms. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Sensitivity of thermally treated Bacillus subtilis spores to subsequent irradiation

    International Nuclear Information System (INIS)

    Mostafa, S.A.; El-Zawahry, Y.A.; Awny, N.M.

    1986-01-01

    B. subtilis spores exposed to thermal treatment at 70 or 80 0 C for 1 hr were more sensitive to subsequent radiation exposure than non-heated spores. Deactivation of previously heated spores by increasing dose of 0-radiation followed an exponential function while, for non-heated spores a shoulder followed by exponential deactivation was noticed. Combined heat-radiation treatment exhibited a synergistic effect on spore deactivation at low irradiation doses, while at high irradiation doses, the effect was more or less additive. Added values of spore injury was higher for B. subtilis spores that received heat and radiation separately than the observed injury for spores that received combined treatment (heat followed by radiation). Results of spore deactivation and injury due to heat followed by radiation treatment are discussed in comparison to those of spores that received radiation-heat sequence

  17. Sigma A recognition sites in the Bacillus subtilis genome

    DEFF Research Database (Denmark)

    Jarmer, Hanne Østergaard; Larsen, Thomas Schou; Krogh, Anders Stærmose

    2001-01-01

    at the initiation site of transcription in both types of promoters than previously thought. When tested on the entire B. subtilis genome, the model predicts that approximately half of the sigma (A) recognition sites are of the extended type. Some of the response-regulator aspartate phosphatases were among...... the predictions of promoters containing extended sites. The expression of rapA and rapB was confirmed by site-directed mutagenesis to depend on the extended -10 region....

  18. YbxF, a protein associated with exponential-phase ribosomes in Bacillus subtilis.

    Science.gov (United States)

    Sojka, Ludĕk; Fucík, Vladimír; Krásný, Libor; Barvík, Ivan; Jonák, Jirí

    2007-07-01

    The ybxF gene is a member of the streptomycin operon in a wide range of gram-positive bacteria. In Bacillus subtilis, it codes for a small basic protein (82 amino acids, pI 9.51) of unknown function. We demonstrate that, in B. subtilis, YbxF localizes to the ribosome, primarily to the 50S subunit, with dependence on growth phase. Based on three-dimensional structures of YbxF generated by homology modeling, we identified helix 2 as important for the interaction with the ribosome. Subsequent mutational analysis of helix 2 revealed Lys24 as crucial for the interaction. Neither the B. subtilis ybxF gene nor its paralogue, the ymxC gene, is essential, as shown by probing DeltaybxF, DeltaymxC, or DeltaybxF DeltaymxC double deletion strains in several functional assays.

  19. In Vitro Characterization of the Bacillus subtilis Protein Tyrosine Phosphatase YwqE

    Science.gov (United States)

    Mijakovic, Ivan; Musumeci, Lucia; Tautz, Lutz; Petranovic, Dina; Edwards, Robert A.; Jensen, Peter Ruhdal; Mustelin, Tomas; Deutscher, Josef; Bottini, Nunzio

    2005-01-01

    Both gram-negative and gram-positive bacteria possess protein tyrosine phosphatases (PTPs) with a catalytic Cys residue. In addition, many gram-positive bacteria have acquired a new family of PTPs, whose first characterized member was CpsB from Streptococcus pneumoniae. Bacillus subtilis contains one such CpsB-like PTP, YwqE, in addition to two class II Cys-based PTPs, YwlE and YfkJ. The substrates for both YwlE and YfkJ are presently unknown, while YwqE was shown to dephosphorylate two phosphotyrosine-containing proteins implicated in UDP-glucuronate biosynthesis, YwqD and YwqF. In this study, we characterize YwqE, compare the activities of the three B. subtilis PTPs (YwqE, YwlE, and YfkJ), and demonstrate that the two B. subtilis class II PTPs do not dephosphorylate the physiological substrates of YwqE. PMID:15866923

  20. Decolorization of indigo carmine by laccase displayed on Bacillus subtilis spores.

    Science.gov (United States)

    Cho, Eun-Ah; Seo, Jiyoung; Lee, Dong-Woo; Pan, Jae-Gu

    2011-06-10

    Blue multicopper oxidases, laccases displayed on the surface of Bacillus spores were used to decolorize a widely used textile dyestuff, indigo carmine. The laccase-encoding gene of Bacillus subtilis, cotA, was cloned and expressed in B. subtilis DB104, and the expressed enzyme was spontaneously localized on Bacillus spores. B. subtilis spores expressing laccase exhibited maximal activity for the oxidation of 2,2'-azino-bis (3-ethylthiazoline-6-sulfonate) (ABTS) at pH 4.0 and 80°C, and for the decolorization of indigo carmine at pH 8.0 and 60°C. The displayed enzyme retained 80% of its original activity after pre-treatment with organic solvents such as 50% acetonitrile and n-hexane for 2h at 37°C. The apparent K(m) of the enzyme displayed on spores was 443±124 μM for ABTS with a V(max) of 150 ± 16 U/mg spores. Notably, 1mg of spores displaying B. subtilis laccase (3.4 × 10(2)U for ABTS as a substrate) decolorized 44.6 μg indigo carmine in 2h. The spore reactor (0.5 g of spores corresponding to 1.7×10(5)U in 50 mL) in a consecutive batch recycling mode decolorized 223 mg indigo carmine/L to completion within 42 h at pH 8.0 and 60°C. These results suggest that laccase displayed on B. subtilis spores can serve as a powerful environmental tool for the treatment of textile dye effluent. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. ABILITY OF BACTERIAL CONSORTIUM: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp. and Pseudomonas putida IN BIOREMEDIATION OF WASTE WATER IN CISIRUNG WASTE WATER TREATMENT PLANT

    Directory of Open Access Journals (Sweden)

    Ratu SAFITRI

    2015-10-01

    Full Text Available This study was conducted in order to determine the ability of bacterial consortium: Bacillus coagulans, Bacilus licheniformis, Bacillus pumilus, Bacillus subtilis, Nitrosomonas sp., and Pseudomonas putida in bioremediation of wastewater origin Cisirung WWTP. This study uses an experimental method completely randomized design (CRD, which consists of two treatment factors (8x8 factorial design. The first factor is a consortium of bacteria (K, consisting of 8 level factors (k1, k2, k3, k4, k5, k6, k7, and k8. The second factor is the time (T, consisting of a 7 level factors (t0, t1, t2, t3, t4, t5, t6, and t7. Test parameters consist of BOD (Biochemical Oxygen Demand, COD (Chemical Oxygen Demand, TSS (Total Suspended Solid, Ammonia and Population of Microbes during bioremediation. Data were analyzed by ANOVA, followed by Duncan test. The results of this study showed that the consortium of Bacillus pumilus, Bacillus subtilis, Bacillus coagulans, Nitrosomonas sp., and Pseudomonas putida with inoculum concentration of 5% (k6 is a consortium of the most effective in reducing BOD 71.93%, 64.30% COD, TSS 94.85%, and 88.58% of ammonia.

  2. Crystallization of the Effector-Binding Domain of Repressor DeoR from Bacillus subtilis

    Czech Academy of Sciences Publication Activity Database

    Písačková, Jana; Procházková, Kateřina; Fábry, Milan; Řezáčová, Pavlína

    2013-01-01

    Roč. 13, č. 2 (2013), s. 844-848 ISSN 1528-7483 R&D Projects: GA MŠk ME08016; GA MŠk(CZ) LK11205; GA ČR GA203/09/0820 Institutional research plan: CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : X-ray crystallography * deoxyribonucleoside regulator * Bacillus subtilis * thermofluor assay Subject RIV: CE - Biochemistry Impact factor: 4.558, year: 2013

  3. Influence of Bacillus subtilis and acetic acid on Cobb500 intestinal microflora.

    Directory of Open Access Journals (Sweden)

    Martin Král

    2014-10-01

    Full Text Available The beneficial modes of probiotic action include regulation of intestinal microbial homeostasis, stabilization of the gastrointestinal barrier function expression of bacteriocins and interference with the ability of pathogens to colonize and infect the mucosa. Organic acids as feed additives have been used to reduce or eliminate pathogenic bacteria and fungal contamination, control microbial growth and reduction of microbial metabolites. The aim of this study was to determine the effect of Bacillus subtilis, acetic acid and their combination on the intestinal microflora of broiler chickens (Cobb 500. The experiment was carried out on 4 groups each contains 100 chicks as follows: control (without addition, treatment 1 (acetic acid, treatment 2 (Bacillus subtilis and treatment 3 (acetic acid + Bacillus subtilis. Six samples from each group were selected as a sample (mixed sex. The highest average number of log CFU.g-1 Lactobacillus sp. was in the treatment 3 – 7.11 log CFU.g-1 and the lowest was in the control group – 6.85. The highest average number of log CFU.g-1 Enterococcus sp. was in the treatment 2 – 7.17 log CFU.g-1 and the lowest was in the control group – 5.65. In both observing additions of Bacillus subtilis and acetic acid increase the number of log CFU.g-1 Lactobacillus sp. and Enterococcus sp. compared with control group. The lower average number of log CFU.g-1 coliform bacteria was in the treatment 2 – 5.9 log CFU.g-1 and the higher was in control group – 6.98. The additional supplement decreased the number of log CFU.g-1 coliform bacteria in the treatment groups compared with the control.

  4. The Composition of the Cell Envelope Affects Conjugation in Bacillus subtilis

    OpenAIRE

    Johnson, Christopher M; Grossman, Alan Davis

    2016-01-01

    Conjugation in bacteria is the contact-dependent transfer of DNA from one cell to another via donor-encoded conjugation machinery. It is a major type of horizontal gene transfer between bacteria. Conjugation of the integrative and conjugative element ICEBs1 into Bacillus subtilis is affected by the composition of phospholipids in the cell membranes of the donor and recipient. We found that reduction (or elimination) of lysyl-phosphatidylglycerol caused by loss of mprF caused a decrease in con...

  5. Antibiotics from bacillus subtilis AECL90 - effect of trace elements and carbohydrates on antibiotic production

    International Nuclear Information System (INIS)

    Malik, M.A.; Shaukat, G.A.; Ahmed, M.S.

    1990-01-01

    Three types of antibiotics S, X and F characteristically bioactive against staphylococcic, xanthomonas and fungi are elaborated by Bacillus Subtilis AECL 69 when grown in molasses peptone malt extract sucrose. No antibiotic production was observed when molasses was omitted from the growth medium. A mineral salt mixture was devised that could replace molasses and restore the production of antibiotics. Influence of various carbohydrates on the production of antibiotics was also studied. Mannose and mannitol had inhibitory effect on the antibiotic production. (author)

  6. Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr.

    OpenAIRE

    Klyachko, K A; Schuldiner, S; Neyfakh, A A

    1997-01-01

    The Bacillus subtilis multidrug transporter Bmr, a member of the major facilitator superfamily of transporters, causes the efflux of a number of structurally unrelated toxic compounds from cells. We have shown previously that the activity of Bmr can be inhibited by the plant alkaloid reserpine. Here we demonstrate that various substitutions of residues Phe143 and Phe306 of Bmr not only reduce its sensitivity to reserpine inhibition but also significantly change its substrate specificity. Cros...

  7. Growth of and valine production by a Bacillus subtilis mutant in the small intestine of pigs

    DEFF Research Database (Denmark)

    Canibe, Nuria; Poulsen, Henrik Vestergaard; Nørgaard, Jan Værum

    2016-01-01

    :Lys of 0.63:1 (Neg), 2) the Neg diet with added Bacillus subtilis-valine (1.28 × 108 cfu/g feed) (+Bac), and 3) the Neg diet with added L-Val to a Val:Lys of 0.69:1 (+Val). Eighteen gilts (6 on each treatment) with initial weights of ∼15 kg were fed the diets for 23 d before the animals were euthanized...

  8. Stability function in the Bacillus subtilis plasmid pTA 1060

    NARCIS (Netherlands)

    Bron, S.; Bosma, P.; van Belkum, M.; Luxen, E.

    1987-01-01

    Plasmid pBB2 (11.3 kb) was constructed by genetically labeling the cryptic Bacillus subtilis plasmid pTA 1060 with the pC194-derived CmR and the pUB110-derived KmR markers. In nonselective media pBB2 was segregationally almost completely stable (loss rates less than or equal to 0.02% per cell

  9. Complete genome sequence of Bacillus subtilis BSD-2, a microbial germicide isolated from cultivated cotton.

    Science.gov (United States)

    Liu, Hongwei; Yin, Shuli; An, Likang; Zhang, Genwei; Cheng, Huicai; Xi, Yanhua; Cui, Guanhui; Zhang, Feiyan; Zhang, Liping

    2016-07-20

    Bacillus subtilis BSD-2, isolated from cotton (Gossypium spp.), had strong antagonistic activity to Verticillium dahlia Kleb and Botrytis cinerea. We sequenced and annotated the BSD-2 complete genome to help us the better use of this strain, which has surfactin, bacilysin, bacillibactin, subtilosin A, Tas A and a potential class IV lanthipeptide biosynthetic pathways. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Mutation induction in spores of Bacillus subtilis by accelerated very heavy ions

    International Nuclear Information System (INIS)

    Baltschukat, K.; Horneck, G.; Buecker, H.; Facius, R.; Schaefer, M.

    1986-01-01

    Mutation induction (resistance to sodium azide) in spores of Bacillus subtilis was investigated after irradiation with heavy ions from Neon to Uranium with specific particle energies between 0.17 and 18.6 MeV/u. A strong dependence of the mutation induction cross section on particle charge and energy was observed. From the results it was concluded that mutation induction in bacterial spores by very heavy ions is mainly caused by secondary electrons. (orig.)

  11. MUTATION ON Bacillus subtilis BAC4 USING ACRIDINE ORANGE AS AN EFFORT FOR INCREASING ANTIBIOTIC PRODUCTION

    Directory of Open Access Journals (Sweden)

    Supartono Supartono

    2010-06-01

    Full Text Available The efforts to get a new antibiotic require to be done continuously, because infection diseases still become the main health problems in Indonesia. A new local strain of Bacillus subtilis BAC4 has been known producing an antibiotic that inhibites Serratia marcescens ATCC 27117 growth. Nevertheless, the optimum conditions have not been studied seriously. The objective of this research was to conduct mutation on B. subtilis BAC4 in order to obtain a mutant cell that overproduct in producing antibiotic. The mutation process was performed by using acridine orange of 1 g.L-1 randomly at various volumes. The production of antibiotic was conducted using batch fermentation and antibiotic assay was performed with agar absorption method using S.  marcescens ATCC 27117 as bacteria assay. Research result provided a B. subtilis M10 mutant with overproduction of antibiotic. Characterization of B. subtilis M10 mutant showed that the mutant cell has size of (0.5-1.0 µm x (1.85-2.5 µm; spore has the form of ellipse with thick wavy wall, positive reaction for catalase, and forming acid from glucose and xylose.   Keywords: mutant, Bacillus, acridin, and antibiotics

  12. Not so simple, not so subtle: the interspecies competition between Bacillus simplex and Bacillus subtilis and its impact on the evolution of biofilms

    Science.gov (United States)

    Rosenberg, Gili; Steinberg, Nitai; Oppenheimer-Shaanan, Yaara; Olender, Tsvia; Doron, Shany; Ben-Ari, Julius; Sirota-Madi, Alexandra; Bloom-Ackermann, Zohar; Kolodkin-Gal, Ilana

    2016-01-01

    Bacillus subtilis biofilms have a fundamental role in shaping the soil ecosystem. During this process, they unavoidably interact with neighbour bacterial species. We studied the interspecies interactions between biofilms of the soil-residing bacteria B. subtilis and related Bacillus species. We found that proximity between the biofilms triggered recruitment of motile B. subtilis cells, which engulfed the competing Bacillus simplex colony. Upon interaction, B. subtilis secreted surfactin and cannibalism toxins, at concentrations that were inert to B. subtilis itself, which eliminated the B. simplex colony, as well as colonies of Bacillus toyonensis. Surfactin toxicity was correlated with the presence of short carbon-tail length isomers, and synergistic with the cannibalism toxins. Importantly, during biofilm development and interspecies interactions a subpopulation in B. subtilis biofilm lost its native plasmid, leading to increased virulence against the competing Bacillus species. Overall, these findings indicate that genetic programs and traits that have little effect on biofilm development when each species is grown in isolation have a dramatic impact when different bacterial species interact. PMID:28721238

  13. Expression of the neutral protease gene from a thermophilic Bacillus sp BT1 strain in Bacillus subtilis and its natural host : Identification of a functional promoter

    NARCIS (Netherlands)

    Vecerek, B; Venema, G

    The expression of the neutral protease gene (npr) from the thermophilic Bacillus sp. BT1 strain was studied in its natural host and in mesophilic Bacillus subtilis. In the thermophilic BT1 strain, the transcription of the protease gene is initiated from its own promoter, just 5' to the gene. In

  14. Reconstitution of nucleotide excision nuclease with UvrA and UvrB proteins from Escherichia coli and UvrC protein from Bacillus subtilis

    International Nuclear Information System (INIS)

    Lin, J.J.; Sancar, A.

    1990-01-01

    Recently, an open reading frame which has a deduced amino acid sequence that shows 38% homology to Escherichia coli UvrC protein was found upstream of the aspartokinase II gene (ask) in Bacillus subtilis. We found that plasmids containing this open reading frame complement the uvrC mutations in E. coli. We joined the open reading frame to a tac promoter to amplify the gene product in E. coli and purified the protein to near homogeneity. The apparent molecular weight of the gene product is 69,000, which is consistent with the calculated molecular weight of 69,378 fro the deduced gene product of the open reading frame. The purified gene product causes the nicking of DNA at the 8th phosphodiester bond 5' and the 5th phosphodiester bond 3' to a thymine dimer when mixed with E. coli UvrA and UvrB proteins and a DNA substrate containing a uniquely located thymine dimer. We conclude that the gene product of the open reading frame is the B. subtilis UvrC protein. Our results suggest that the B. subtilis nucleotide excision repair system is quite similar to that of E. coli. Furthermore, complementation of the UvrA and UvrB proteins from a Gram-negative bacterium with the UvrC protein of Gram-positive B. subtilis indicates a significant evolutionary conservation of the nucleotide excision repair system

  15. Biocontrol of gray mold on Rosa Hybrida cv. Baccara with Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    E. S. Mousavi

    2017-06-01

    Full Text Available The bacteria Bacillus subtilis was investigated for control of gray mold, postharvest quality and antioxidant enzymes of Rosa hybrida cv. Baccara. The results indicated that the treatment of Bacillus subtilis suspension of 1 × 108cfu mL−1 with resulted in a remarkably improved control of Botrytis cinerea infections. CAT activity in treated flower by antagonism were significantly more than those control (P ≤ 0.05 at 25◦C, RH 60-70%. POD activity cut flowers increased during the flower bud development with the lowest activity present at water-sprayed control. Enhanced by antagonism could be due to either induced resistance or direct effects of these chemicals on Botrytis. The proper concentration of Bacillus subtilis can thus provide an effective strategy to increase postharvest vase life of Rosa. Postharvest antagonism application prolonged vase-life in cut rose flowers by improving the reactive oxygen species (ROS scavenging capacity related to CAT and POD activity

  16. Integrated biological and chemical control of rice sheath blight by Bacillus subtilis NJ-18 and jinggangmycin.

    Science.gov (United States)

    Peng, Di; Li, Shandong; Wang, Jianxin; Chen, Changjun; Zhou, Mingguo

    2014-02-01

    Sheath blight caused by Rhizoctonia solani Kühn is a major disease of rice that greatly reduces yield and grain quality and jinggangmycin is the most widely used fungicide to control this disease in China. Bacillus subtilis NJ-18 has broad antimicrobial activity to many phytopathogenic bacteria and fungi; it is especially effective against Rhizoctonia solani. Laboratory, greenhouse and field tests were conducted to determine the effect of combining the biological control agent Bacillus subtilis NJ-18 with the fungicide jinggangmycin for control of rice sheath blight. Growth of NJ-18 in vitro was not affected by jinggangmycin. In a greenhouse experiment, disease control was greater with a mixture of NJ-18 and jinggangmycin than with either alone; a mixture of NJ-18 at 10(8)  cfu mL(-1) and jinggangmycin at 50 or 100 mg L(-1) reduced lesion length by 35% and 20%, respectively, and the combinations showed a synergistic action. In three field trials, disease control was significantly greater with a mixture of NJ-18 at 10(8)  cfu mL(-1) and jinggangmycin at 75 or 150 g a.i. ha(-1) than with either component alone. The results of the study indicate that, when Bacillus subtilis NJ-18 strain was combined with jinggangmycin, there was an increased suppression of rice sheath blight, and thus could provide an alternative disease control option. © 2013 Society of Chemical Industry.

  17. Effect of culture medium on biocalcification by Pseudomonas Putida, Lysinibacillus Sphaericus and Bacillus Subtilis

    Directory of Open Access Journals (Sweden)

    Márcia Aiko Shirakawa

    2011-06-01

    Full Text Available The objective of this study is to investigate the efficiency of calcium carbonate bioprecipitation by Lysinibacillus sphaericus, Bacillus subtilis and Pseudomonas putida, obtained from the Coleção de Culturas do Instituto Nacional de Controle de Qualidade em Saúde (INCQS, as a first step in determining their potential to protect building materials against water uptake. Two culture media were studied: modified B4 containing calcium acetate and 295 with calcium chloride. Calcium consumption in the two media after incubation with and without the bacterial inoculum was determined by atomic absorption analysis. Modified B4 gave the best results and in this medium Pseudomonas putida INQCS 113 produced the highest calcium carbonate precipitation, followed by Lysinibacillus sphaericus INQCS 414; the lowest precipitation was produced by Bacillus subtilis INQCS 328. In this culture medium XRD analysis showed that Pseudomonas putida and Bacillus subtilis precipitated calcite and vaterite polymorphs while Lysinibacillus sphaericus produced only vaterite. The shape and size of the crystals were affected by culture medium, bacterial strain and culture conditions, static or shaken. In conclusion, of the three strains Pseudomonas putida INQCS 113 in modified B4 medium gave the best results precipitating 96% of the calcium, this strain thus has good potential for use on building materials.

  18. A Study on Effect of different culture media on amylase enzyme production by a native strain of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    ziba Akbari

    2015-12-01

    Full Text Available Introduction: Amylases are among the most important enzymes and have great significance in present-day biotechnology. Amylase with commercial applications is mainly derived from the genus Bacillus. The main purpose of this study is identification and isolatation amylase enzyme producer Bacillus, determining the amylase enzyme activity and affecting a number of culture medium on amylase enzyme production. Materials and methods: Soil, water and wastewater samples were collected from agricultural area, choghakhor lake in chahar mahal e bakhtiari province and from food factory in Esfahan. Bacillus isolates were screened for amylolytic properties by starch hydrolysis test on starch agar plate. Amylase producing Bacillus were identified biochemical tests and molecular experiments. Amylase enzyme activity of isolates was measured using di-nitro salicylic acid (DNS method. Enzyme production was studied in variose medium culture TSB, NB, Yeast extract, molases and milk medium. Results: The enzyme amylase-producing strains, one sample showed was the highest amylase activity. The Bacillus has been detected as a member of Bacillus subtilis according to Bergey's Manual of Systematic Bacteriology and molecular recognition. The enzyme activity of Bacillus subtilis was measured 7/21 (U/ml in production media. Trough medium culture maximum amylase production for Bacillus subtilis was achieved in molases medium. Discussion and conclusion: In this study, Bacillus subtilis strains isolated from wastewater of a significant amount of enzyme producing 7/21 (U/ml as indicated. Among the medium-amylase from Bacillus subtilis highest enzyme activity was observed in beet molasses. According to this study, the use of Bacillus strains is an efficient way to achieve the amylase enzyme.

  19. Live-imaging of Bacillus subtilis spore germination and outgrowth

    NARCIS (Netherlands)

    Pandey, R.

    2014-01-01

    Spores of Gram-positive bacteria such as Bacillus and Clostridium cause huge economic losses to the food industry. In food products, spores survive under food preservation conditions and subsequent germination and outgrowth eventually causes food spoilage. Therefore efforts are being made to

  20. Different toxic and hormetic responses of Bombus impatiens to Beauveria bassiana, Bacillus subtilis and spirotetramat.

    Science.gov (United States)

    Ramanaidu, Krilen; Cutler, G Christopher

    2013-08-01

    Pollinator exposure to pesticides is a concern in agricultural systems that depend on pollinators for crop production. However, not all pesticides elicit toxic effects, and response to a pesticide will vary depending on dose and exposure route. The effects of biopesticide formulations of Bacillus subtilis and Beauveria bassiana and of the tetramic acid insecticide spirotetramat on the common eastern bumblebee, Bombus impatiens, were evaluated. Microcolonies of bees were exposed to field-rate or lower concentrations, and data were collected over 60 days. When ingested, field rates of spirotetramat caused high mortality after 10 days, and B. subtilis significantly reduced drone production, number of days to oviposition and number of days to drone emergence. Converse to effects observed following ingestion, topical applications of B. subtilis at concentrations less than the recommended field rate resulted in a hormetic response, with significantly increased drone production. Topical application of spirotetramat and oral or topical application of B. bassiana had no effects on bees. Spirotetramat and B. subtilis can induce adverse effects on B. impatiens, but hormetic effects following B. subtilis treatment can also occur, depending on exposure route. Additional experiments are required to determine whether similar toxic or hormetic effects occur under more realistic field conditions. © 2012 Society of Chemical Industry.

  1. Differential Actions of Chlorhexidine on the Cell Wall of Bacillus subtilis and Escherichia coli

    Science.gov (United States)

    Cheung, Hon-Yeung; Wong, Matthew Man-Kin; Cheung, Sau-Ha; Liang, Longman Yimin; Lam, Yun-Wah; Chiu, Sung-Kay

    2012-01-01

    Chlorhexidine is a chlorinated phenolic disinfectant used commonly in mouthwash for its action against bacteria. However, a comparative study of the action of chlorhexidine on the cell morphology of Gram-positive and Gram-negative bacteria is lacking. In this study, the actions of chlorhexidine on the cell morphology were identified with the aids of electron microscopy. After exposure to chlorhexidine, numerous spots of indentation on the cell wall were found in both Bacillus subtilis and Escherichia coli. The number of indentation spots increased with time of incubation and increasing chlorhexidine concentration. Interestingly, the dented spots found in B. subtilis appeared mainly at the hemispherical caps of the cells, while in E. coli the dented spots were found all over the cells. After being exposed to chlorhexidine for a prolonged period, leakage of cellular contents and subsequent ghost cells were observed, especially from B subtilis. By using 2-D gel/MS-MS analysis, five proteins related to purine nucleoside interconversion and metabolism were preferentially induced in the cell wall of E. coli, while three proteins related to stress response and four others in amino acid biosynthesis were up-regulated in the cell wall materials of B. subtilis. The localized morphological damages together with the biochemical and protein analysis of the chlorhexidine-treated cells suggest that chlorhexidine may act on the differentially distributed lipids in the cell membranes/wall of B. subtilis and E. coli. PMID:22606280

  2. Potential application of cyclic lipopeptide biosurfactants produced by Bacillus subtilis strains in laundry detergent formulations.

    Science.gov (United States)

    Mukherjee, A K

    2007-09-01

    Crude cyclic lipopeptide (CLP) biosurfactants from two Bacillus subtilis strains (DM-03 and DM-04) were studied for their compatibility and stability with some locally available commercial laundry detergents. CLP biosurfactants from both B. subtilis strains were stable over the pH range of 7.0-12.0, and heating them at 80 degrees C for 60 min did not result in any loss of their surface-active property. Crude CLP biosurfactants showed good emulsion formation capability with vegetable oils, and demonstrated excellent compatibility and stability with all the tested laundry detergents. CLP biosurfactants from B. subtilis strains act additively with other components of the detergents to further improve the wash quality of detergents. The thermal resistance and extreme alkaline pH stability of B. subtilis CLP biosurfactants favour their inclusion in laundry detergent formulations. This study has great significance because it is already known that microbial biosurfactants are considered safer alternative to chemical or synthetic surfactants owing to lower toxicity, ease of biodegradability and low ecological impact. The present study provides further evidence that CLP biosurfactants from B. subtilis strains can be employed in laundry detergents.

  3. Antagonistic action of Bacillus subtilis strain SG6 on Fusarium graminearum.

    Directory of Open Access Journals (Sweden)

    Yueju Zhao

    Full Text Available Fusarium graminearum causes Fusarium head blight (FHB, a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI, FHB index and DON (P ≤ 0.05. Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.

  4. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.

    Science.gov (United States)

    Yi, Jun; Cheng, Jinping

    2017-07-01

    The growing use of silver nanoparticles (AgNPs) has created concerns about its potential impacts on natural microbial communities. In this study, the physicochemical properties of AgNPs and its toxicity on natural bacteria Bacillus subtilis (B. subtilis) were investigated in aqueous conditions. The characterization data showed that AgNPs highly aggregated in aqueous conditions, and the hydrodynamic diameter of AgNPs in aqueous conditions was larger than its primary size. The studied AgNPs was less toxic to B. subtilis in estuarine water as compared to that in Milli-Q water and artificial seawater, which might be due to the observed enhanced aggregation of AgNPs in estuarine water. The toxicity of AgNPs to B. subtilis was greatly reduced when their surface contact was blocked by a dialysis membrane. Scanning electron microscope images showed that exposure contact to AgNPs resulted in damage of the microbial cell wall and enhanced formation of fibrillar structures. These results suggest that particle-cell contact is largely responsible for the observed toxicity of AgNPs in B. subtilis. This study can help to understand the potential impacts of AgNPs to natural microbes, especially in the complex aquatic environments.

  5. An Exogenous Surfactant-Producing Bacillus subtilis Facilitates Indigenous Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting

    2016-01-01

    This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery. PMID:26925051

  6. Free and attached cells of Bacillus subtilis as starters for production of a soup flavouring (“ogiri egusi”

    Directory of Open Access Journals (Sweden)

    Peter-Ikechukwu, A. I.

    2013-01-01

    Full Text Available Aims: This Bacillus subtilis has been identified to be the main fermenting bacterium during indigenous production of “ogiri egusi”; a traditional soup flavouring rich in protein. Evaluation of the use of starter and broth cultures of this bacterium in the production of ‘ogiri egusi’ was therefore undertaken with the view to improve the fermentation process and quality of product. Methodology and Results: Cowpea granules in association with Bacillus subtilis cells were developed as starter cultures for the fermentation. Results obtained showed that the starter cultures resulted in an increase in the aminonitrogen from 1.67±0.02 to 19.96±0.05 mg N/100 g dry matter in 48 h while the broth cultures increased the aminonitrogen from 1.63±0.03 to 16.54±0.05 mg N/100 g dry matter in 72 h. There was also a corresponding increase in the protease activity of the fermentation conducted with the starter cultures from 2.69±0.03 to 54.98±0.04 mg N/min in 48 h. The broth cultures produced an increase from 2.65±0.02 to 47.61±0.06 mg N/min in 72 h. Changes in these parameters for the natural process were gradual and reached their peaks at 120 h with values of 9.89±0.13 mg N/100g dry matter and 31.92±0.03 mg N/min respectively. Peroxide values for the fermentation processes increased throughout the period; however the starter cultures produced the lowest value (10.20±0.10 meq/kg showing that rancidity may not occur in the product fermented by the starter culture. Conclusion, significance and impact of study: The starter cultures significantly reduced fermentation time from 96 – 120 h in the natural process to 48 h. Thus use of starter cultures optimized the process of fermentation and will eliminate chances of contamination of product with pathogens and spoilage organisms. This ultimately will improve product quality.

  7. Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Suresh Mickymaray

    2018-02-01

    Full Text Available Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347, a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA. Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.

  8. Adsorption of β-galactosidase of Alicyclobacillus acidocaldarius on wild type and mutants spores of Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Sirec Teja

    2012-08-01

    Full Text Available Abstract Background The Bacillus subtilis spore has long been used as a surface display system with potential applications in a variety of fields ranging from mucosal vaccine delivery, bioremediation and biocatalyst development. More recently, a non-recombinant approach of spore display has been proposed and heterologous proteins adsorbed on the spore surface. We used the well-characterized β-galactosidase from the thermoacidophilic bacterium Alicyclobacillus acidocaldarius as a model to study enzyme adsorption, to analyze whether and how spore-adsorption affects the properties of the enzyme and to improve the efficiency of the process. Results We report that purified β-galactosidase molecules were adsorbed to purified spores of a wild type strain of B. subtilis retaining ca. 50% of their enzymatic activity. Optimal pH and temperature of the enzyme were not altered by the presence of the spore, that protected the adsorbed β-galactosidase from exposure to acidic pH conditions. A collection of mutant strains of B. subtilis lacking a single or several spore coat proteins was compared to the isogenic parental strain for the adsorption efficiency. Mutants with an altered outermost spore layer (crust were able to adsorb 60-80% of the enzyme, while mutants with a severely altered or totally lacking outer coat adsorbed 100% of the β-galactosidase molecules present in the adsorption reaction. Conclusion Our results indicate that the spore surface structures, the crust and the outer coat layer, have an negative effect on the adhesion of the β-galactosidase. Electrostatic forces, previously suggested as main determinants of spore adsorption, do not seem to play an essential role in the spore-β-galactosidase interaction. The analysis of mutants with altered spore surface has shown that the process of spore adsorption can be improved and has suggested that such improvement has to be based on a better understanding of the spore surface structure

  9. Comparative transcriptional analysis of Bacillus subtilis cells overproducing either secreted proteins, lipoproteins or membrane proteins

    Directory of Open Access Journals (Sweden)

    Marciniak Bogumiła C

    2012-05-01

    Full Text Available Abstract Background Bacillus subtilis is a favorable host for the production of industrially relevant proteins because of its capacity of secreting proteins into the medium to high levels, its GRAS (Generally Recognized As Safe status, its genetic accessibility and its capacity to grow in large fermentations. However, production of heterologous proteins still faces limitations. Results This study aimed at the identification of bottlenecks in secretory protein production by analyzing the response of B. subtilis at the transcriptome level to overproduction of eight secretory proteins of endogenous and heterologous origin and with different subcellular or extracellular destination: secreted proteins (NprE and XynA of B. subtilis, Usp45 of Lactococcus lactis, TEM-1 β-lactamase of Escherichia coli, membrane proteins (LmrA of L. lactis and XylP of Lactobacillus pentosus and lipoproteins (MntA and YcdH of B. subtilis. Responses specific for proteins with a common localization as well as more general stress responses were observed. The latter include upregulation of genes encoding intracellular stress proteins (groES/EL, CtsR regulated genes. Specific responses include upregulation of the liaIHGFSR operon under Usp45 and TEM-1 β-lactamase overproduction; cssRS, htrA and htrB under all secreted proteins overproduction; sigW and SigW-regulated genes mainly under membrane proteins overproduction; and ykrL (encoding an HtpX homologue specifically under membrane proteins overproduction. Conclusions The results give better insights into B. subtilis responses to protein overproduction stress and provide potential targets for genetic engineering in order to further improve B. subtilis as a protein production host.

  10. The two authentic methionine aminopeptidase genes are differentially expressed in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Wang YiPing

    2005-10-01

    Full Text Available Abstract Background Two putative methionine aminopeptidase genes, map (essential and yflG (non-essential, were identified in the genome sequence of Bacillus subtilis. We investigated whether they can function as methionine aminopeptidases and further explored possible reasons for their essentiality or dispensability in B. subtilis. Results In silico analysis of MAP evolution uncovered a coordinated pattern of MAP and deformylase that did not correlate with the pattern of 16S RNA evolution. Biochemical assays showed that both MAP (MAP_Bs and YflG (YflG_Bs from B. subtilis overproduced in Escherichia coli and obtained as pure proteins exhibited a methionine aminopeptidase activity in vitro. Compared with MAP_Bs, YflG_Bs was approximately two orders of magnitude more efficient when assayed on synthetic peptide substrates. Both map and yflG genes expressed in multi-copy plasmids could complement the function of a defective map gene in the chromosomes of both E. coli and B. subtilis. In contrast, lacZ gene transcriptional fusions showed that the promoter activity of map was 50 to 100-fold higher than that of yflG. Primer extension analysis detected the transcription start site of the yflG promoter. Further work identified that YvoA acted as a possible weak repressor of yflG expression in B. subtilis in vivo. Conclusion Both MAP_Bs and YflG_Bs are functional methionine aminopeptidases in vitro and in vivo. The high expression level of map and low expression level of yflG may account for their essentiality and dispensality in B. subtilis, respectively, when cells are grown under laboratory conditions. Their difference in activity on synthetic substrates suggests that they have different protein targets in vivo.

  11. Effects of Bacillus subtilis natto on milk production, rumen fermentation and ruminal microbiome of dairy cows.

    Science.gov (United States)

    Sun, P; Wang, J Q; Deng, L F

    2013-02-01

    Two experiments were conducted to evaluate the effects of Bacillus subtilis natto, which was initially isolated from fermented soybeans on milk production, rumen fermentation and ruminal microbiome in dairy cows. In Experiment 1, 36 early lactation Chinese Holstein dairy cows (56 ± 23 days in milk) were randomly assigned to three groups: Control, cows were fed total mixed ration (TMR); BSNLOW, TMR plus 0.5 × 1011 colony-forming units (cfu) of B. subtilis natto/cow per day; and BSNHIGH, TMR plus 1.0 × 1011 cfu of B. subtilis natto/cow per day. During the 70-day treatment period, daily milk production and daily milk composition were determined in individual cows. The results showed that supplementing dairy cows with 0.5 × 1011 and 1.0 × 1011 cfu of B. subtilis natto linearly increased (P dairy cows were fed the basal diet from 1 to 7 days (pre-trial period) and rumen samples were collected on days 6 and 7; the same cows then were fed 1.0 × 1011 cfu/day B. subtilis natto from days 8 to 21 (trial period) and rumen samples were collected on days 20 and 21. B. subtilis natto was discontinued from days 22 to 28 (post-trial period) and rumen samples were collected on days 27 and 28. Compared with the pre- and post-periods, ruminal pH decreased by 2.7% to 3.0% during the trial period (P probiotic for dairy cows.

  12. Immobilizing Bacillus subtilis on the carrier of poly (acrylic acid)/sodium bentonite for treating sludge from Pangasius fish ponds

    International Nuclear Information System (INIS)

    Nguyen Thanh Duoc; Doan Binh; Pham Thi Thu Hong

    2016-01-01

    Sodium bentonite (NaBent) was modified by poly(acrylic acid) (PAAc) to prepare the carriers for immobilization of Bacillus subtilis. Different mixtures of NaBent/AAc were regularly dispersed in distilled water and irradiated under gamma rays at an absorbed dose of 6.5 kGy with dose rate of 0.85 kGy/hr in air for polymerization of acrylic acid and formation of poly(acrylic acid)/sodium bentonite (PAAc-NaBent). The reaction yield was determined with the initial concentration of acrylic acid (AAc). The functional group properties of the resulting PAAc-NaBent were analyzed by Fourier Transform Infrared spectra (FTIR). Bacillus subtilis cells were immobilized on both NaBent and PAAc-NaBent as carriers by adsorption method for treating the sludge contaminated by fish feces and residual feed from the Pangasius farming ponds. The results showed that immobilization capacity of Bacillus subtilis on the PAAc-NaBent was better than that on non-modified NaBent. Analysis of BOD for the farming pond water containing Bacillus subtilis and the bacteria immobilized carriers with time revealed the lower BOD values obtained with the samples containing PAAc-NaBent, suggested that degradation of organic pollutants by Bacillus subtilis immobilized on the PAAc-Na Bent was faster than that by free bacteria. (author)

  13. Galactose Metabolism Plays a Crucial Role in Biofilm Formation by Bacillus subtilis

    Science.gov (United States)

    Chai, Yunrong; Beauregard, Pascale B.; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2012-01-01

    ABSTRACT Galactose is a common monosaccharide that can be utilized by all living organisms via the activities of three main enzymes that make up the Leloir pathway: GalK, GalT, and GalE. In Bacillus subtilis, the absence of GalE causes sensitivity to exogenous galactose, leading to rapid cell lysis. This effect can be attributed to the accumulation of toxic galactose metabolites, since the galE mutant is blocked in the final step of galactose catabolism. In a screen for suppressor mutants restoring viability to a galE null mutant in the presence of galactose, we identified mutations in sinR, which is the major biofilm repressor gene. These mutations caused an increase in the production of the exopolysaccharide (EPS) component of the biofilm matrix. We propose that UDP-galactose is the toxic galactose metabolite and that it is used in the synthesis of EPS. Thus, EPS production can function as a shunt mechanism for this toxic molecule. Additionally, we demonstrated that galactose metabolism genes play an essential role in B. subtilis biofilm formation and that the expressions of both the gal and eps genes are interrelated. Finally, we propose that B. subtilis and other members of the Bacillus genus may have evolved to utilize naturally occurring polymers of galactose, such as galactan, as carbon sources. PMID:22893383

  14. Properties of Bac W42, a bacteriocin produced by Bacillus subtilis W42 isolated from Cheonggukjang.

    Science.gov (United States)

    Kindoli, Salum; Lee, Hwang A; Kim, Jeong Hwan

    2012-08-01

    Ten Bacillus strains with antimicrobial activities were isolated from Cheonggukjang produced at different parts in Korea. They all inhibited Listeria monocytogenes ATCC 19111 and nine inhibited Bacillus cereus ATCC 14579. Four isolates (W42, H27, SKE 12, and K21) showing strong inhibiting activities were identified as B. subtilis. B. subtilis W42 was the most inhibiting strain. The antimicrobial activity of culture supernatant from B. subtilis W42 was destroyed completely by proteinase K treatment, indicating that a bacteriocin was the responsible agent. The bacteriocin, Bac W42, was most stable at pH 7 and stable between pH 3-6 and 8-9. Bac W42 was stable up to 80°C. BHI (brain heart infusion) and TSB (tryptic soy broth) were the best media for the activity (320 AU/ml) followed by LB (160 AU/ml). Bac W42 was partially purified by column chromatographies. The specific activity was increased from 1,151.2 AU/ml to 9,043.5 AU/ml and the final yield was 26.3%. Bac W42 was 5.4 kDa in size as determined by SDS-PAGE. Bac W42 showed bactericidal activity against L. monocytogenes ATCC 19111.

  15. Antioxidation, angiotensin converting enzyme inhibition activity, nattokinase, and antihypertension of Bacillus subtilis (natto-fermented pigeon pea

    Directory of Open Access Journals (Sweden)

    Bao-Hong Lee

    2015-12-01

    Full Text Available Because of the high incidence of cardiovascular diseases in Asian countries, traditional fermented foods from Asia have been increasingly investigated for antiatherosclerotic effects. This study investigated the production of nattokinase, a serine fibrinolytic enzyme, in pigeon pea by Bacillus subtilis fermentation. B. subtilis 14714, B. subtilis 14715, B. subtilis 14716, and B. subtilis 14718 were employed to produce nattokinase. The highest nattokinase activity in pigeon pea was obtained using B. subtilis 14715 fermentation for 32 hours. In addition, the levels of antioxidants (phenolics and flavonoids and angiotensin converting enzyme inhibitory activity were increased in B. subtilis 14715-fermented pigeon pea, compared with those in nonfermented pigeon pea. In an animal model, we found that both water extracts of pigeon pea (100 mg/kg body weight and water extracts of B. subtilis-fermented pigeon pea (100 mg/kg body weight significantly improved systolic blood pressure (21 mmHg and diastolic blood pressure (30 mmHg in spontaneously hypertensive rats. These results suggest that Bacillus-fermented pigeon pea has benefits for cardiovascular health and can be developed as a new dietary supplement or functional food that prevents hypertension.

  16. Genome wide identification of regulatory motifs in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Siggia Eric D

    2003-05-01

    Full Text Available Abstract Background To explain the vastly different phenotypes exhibited by the same organism under different conditions, it is essential that we understand how the organism's genes are coordinately regulated. While there are many excellent tools for predicting sequences encoding proteins or RNA genes, few algorithms exist to predict regulatory sequences on a genome wide scale with no prior information. Results To identify motifs involved in the control of transcription, an algorithm was developed that searches upstream of operons for improbably frequent dimers. The algorithm was applied to the B. subtilis genome, which is predicted to encode for approximately 200 DNA binding proteins. The dimers found to be over-represented could be clustered into 317 distinct groups, each thought to represent a class of motifs uniquely recognized by some transcription factor. For each cluster of dimers, a representative weight matrix was derived and scored over the regions upstream of the operons to predict the sites recognized by the cluster's factor, and a putative regulon of the operons immediately downstream of the sites was inferred. The distribution in number of operons per predicted regulon is comparable to that for well characterized transcription factors. The most highly over-represented dimers matched σA, the T-box, and σW sites. We have evidence to suggest that at least 52 of our clusters of dimers represent actual regulatory motifs, based on the groups' weight matrix matches to experimentally characterized sites, the functional similarity of the component operons of the groups' regulons, and the positional biases of the weight matrix matches. All predictions are assigned a significance value, and thresholds are set to avoid false positives. Where possible, we examine our false negatives, drawing examples from known regulatory motifs and regulons inferred from RNA expression data. Conclusions We have demonstrated that in the case of B. subtilis

  17. Inactivation of Bacillus subtilis spores by combined pulsed light and thermal treatments.

    Science.gov (United States)

    Artíguez, Mari Luz; Martínez de Marañón, Iñigo

    2015-12-02

    The combined effect of pulsed light (PL) and heat processing was evaluated on the inactivation of Bacillus subtilis spores. Those processes were applied separately and the time between both treatments was modified to evaluate whether the effect of the first treatment is maintained for a long time. B. subtilis spores subjected to sublethal pre-treatments were more sensitive to subsequent treatments (PL or thermal treatments) than untreated spores. Heating followed by PL was the most effective combination in reducing B. subtilis counts. Bacterial spores remained sensitized to subsequent treatment for at least 24 h of storage in water, whatever the temperature was (4 or 30°C). Sensitivity of B. subtilis cells to PL or heat processing increased after germination in a nutrient broth, being equally sensitive from 3 to 24 h. Vegetative cells maintained their enhanced sensitivity to subsequent processing after spore germination. The results of this work demonstrate that the combination of heating and PL treatment is a promising preservation method for microbial inactivation. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Stress resistance of Escherichia coli and Bacillus subtilis is modulated by auxins.

    Science.gov (United States)

    Repar, J; Šućurović, S; Zahradka, K; Zahradka, D; Ćurković-Perica, M

    2013-11-01

    Two bacterial species, Gram-negative Escherichia coli and Gram-positive Bacillus subtilis, were exposed to different auxins to examine possible effects of these substances on bacterial stress tolerance. Bacterial resistance to UV irradiation, heat shock, and streptomycin was assessed with and without previous exposure to the following auxins: indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), and 1-naphthalene acetic acid (NAA). Escherichia coli and B. subtilis cultures pretreated with any of the 3 auxins survived UV irradiation better than the untreated cultures. Also, B. subtilis cultures pretreated with IBA or NAA survived prolonged heat exposure better than the untreated cultures, while IAA pretreatment had no effect on heat shock survival. In contrast, auxin pretreatment rendered E. coli more sensitive to heat shock. Escherichia coli cultures pretreated with auxins were also more sensitive to streptomycin, while auxin pretreatment had no effect on sensitivity of B. subtilis to streptomycin. These results show that auxins may either enhance or reduce bacterial tolerance to different stressors, depending on the bacterial species and the type and level of the stress. Auxins usually had similar effects on the same bacterial species in cases when the same type and level of stress were applied.

  19. Effect of Coat Layers in Bacillus Subtilis Spores Resistance to Photo-Catalytic Inactivation

    Directory of Open Access Journals (Sweden)

    Luz del Carmen Huesca-Espitia

    2017-10-01

    Full Text Available Different water treatment processes (physical and chemical exist to obtain safe water for human or food industry supply. The advanced oxidation technologies are rising as a new alternative to eliminate undesirable chemicals and waterborne diseases. In this work, we analyze the power of the photo-assisted Fenton process using Fe(II/H2O2 and UV radiation (365 nm to inactivate Bacillus subtilis spores, considered among the most resistant biological structures known. Different concentrations of Fe(II, H2O2 and UV radiation (365 nm were used to inactivate wt and some coat spore mutants of B. subtilis. Wt spores of B. subtilis were inactivated after 60 min using this process. In general, all defective coat mutants were more sensitive than the wt spores and, particularly, the double mutant was 10 folds more sensitive than others being inactivated during the first 10 minutes using soft reaction conditions. Presence of Fe(II ions was found essential for spore inactivating process and, for those spores inactivated using the Fe(II/H2O2 under UV radiation process, it is suggested that coat structures are important to their resistance to the treatment process. The photo-assisted Fenton process using Fe(II, H2O2 and UV radiation (365 nm can be used to inactivate any water microorganisms with the same or less resistance that B. subtilis spores to produce safe drinking water in relatively short treatment time.

  20. Partial biochemical characterization of crude extract extracellular chitinase enzyme from Bacillus subtilis B 298

    Science.gov (United States)

    Lestari, P.; Prihatiningsih, N.; Djatmiko, H. A.

    2017-02-01

    Extraction and characterization of extracellular chitinase from Bacillus subtilis B 298 have been done. Growth curve determination of B. subtilis B 298, production curve determination of crude extract chitinase from B. subtilis B 298, and partial biochemical characterization of crude extract chitinase have been achieved in this study. Optimum growth of B. subtilis B 298 was achieved at logarithmic phase within 9 hours incubation time, so it was used as inoculum for enzyme production. According to production curve of the enzyme, it was known that incubation time which gave the highest chitinase activity of 15 hours with activity of 6.937 U/mL respectively. Effect of various temperatures on chitinase activity showed that optimum activity was achieved at 40°C with an activity of 5.764 U/mL respectively. Meanwhile, the optimum pH for chitinase activity was achieved at pH of 5.0 with an activity of 6.813 U/mL respectively. This enzyme was then classified as metalloenzyme due to the decline of the activity by EDTA addition. All divalent cations tested acted as inhibitors.

  1. Bacillus subtilis Intramembrane Protease RasP Activity in Escherichia coli andIn Vitro.

    Science.gov (United States)

    Parrell, Daniel; Zhang, Yang; Olenic, Sandra; Kroos, Lee

    2017-10-01

    RasP is a predicted intramembrane metalloprotease of Bacillus subtilis that has been proposed to cleave the stress response anti-sigma factors RsiW and RsiV, the cell division protein FtsL, and remnant signal peptides within their transmembrane segments. To provide evidence for direct effects of RasP on putative substrates, we developed a heterologous coexpression system. Since expression of catalytically inactive RasP E21A inhibited expression of other membrane proteins in Escherichia coli , we added extra transmembrane segments to RasP E21A, which allowed accumulation of most other membrane proteins. A corresponding active version of RasP appeared to promiscuously cleave coexpressed membrane proteins, except those with a large periplasmic domain. However, stable cleavage products were not observed, even in clpP mutant E. coli Fusions of transmembrane segment-containing parts of FtsL and RsiW to E. coli maltose-binding protein (MBP) also resulted in proteins that appeared to be RasP substrates upon coexpression in E. coli , including FtsL with a full-length C-terminal domain (suggesting that prior cleavage by a site 1 protease is unnecessary) and RsiW designed to mimic the PrsW site 1 cleavage product (suggesting that further trimming by extracytoplasmic protease is unnecessary). Purified RasP cleaved His 6 -MBP-RsiW(73-118) in vitro within the RsiW transmembrane segment based on mass spectrometry analysis, demonstrating that RasP is an intramembrane protease. Surprisingly, purified RasP failed to cleave His 6 -MBP-FtsL(23-117). We propose that the lack of α-helix-breaking residues in the FtsL transmembrane segment creates a requirement for the membrane environment and/or an additional protein(s) in order for RasP to cleave FtsL. IMPORTANCE Intramembrane proteases govern important signaling pathways in nearly all organisms. In bacteria, they function in stress responses, cell division, pathogenesis, and other processes. Their membrane-associated substrates are

  2. A single methyltransferase YefA (RlmCD) catalyses both m5U747 and m5U1939 modifications in Bacillus subtilis 23S rRNA

    DEFF Research Database (Denmark)

    Desmolaize, Benoit; Fabret, Céline; Brégeon, Damien

    2011-01-01

    Escherichia coli possesses three paralogues. These comprise the methyltransferases TrmA that targets U54 in tRNAs, RlmC that modifies U747 in 23S rRNA and RlmD that is specific for U1939 in 23S rRNA. The tRNAs and rRNAs of the Gram-positive bacterium Bacillus subtilis have the same three m(5)U modifications....... However, as previously shown, the m(5)U54 modification in B. subtilis tRNAs is catalysed in a fundamentally different manner by the folate-dependent enzyme TrmFO, which is unrelated to the E. coli TrmA. Here, we show that methylation of U747 and U1939 in B. subtilis rRNA is catalysed by a single enzyme...

  3. High-Throughput Genetic Screens Identify a Large and Diverse Collection of New Sporulation Genes in Bacillus subtilis

    Science.gov (United States)

    Brady, Jacqueline; Lim, Hoong Chuin; Bernhardt, Thomas G.; Rudner, David Z.

    2016-01-01

    The differentiation of the bacterium Bacillus subtilis into a dormant spore is among the most well-characterized developmental pathways in biology. Classical genetic screens performed over the past half century identified scores of factors involved in every step of this morphological process. More recently, transcriptional profiling uncovered additional sporulation-induced genes required for successful spore development. Here, we used transposon-sequencing (Tn-seq) to assess whether there were any sporulation genes left to be discovered. Our screen identified 133 out of the 148 genes with known sporulation defects. Surprisingly, we discovered 24 additional genes that had not been previously implicated in spore formation. To investigate their functions, we used fluorescence microscopy to survey early, middle, and late stages of differentiation of null mutants from the B. subtilis ordered knockout collection. This analysis identified mutants that are delayed in the initiation of sporulation, defective in membrane remodeling, and impaired in spore maturation. Several mutants had novel sporulation phenotypes. We performed in-depth characterization of two new factors that participate in cell–cell signaling pathways during sporulation. One (SpoIIT) functions in the activation of σE in the mother cell; the other (SpoIIIL) is required for σG activity in the forespore. Our analysis also revealed that as many as 36 sporulation-induced genes with no previously reported mutant phenotypes are required for timely spore maturation. Finally, we discovered a large set of transposon insertions that trigger premature initiation of sporulation. Our results highlight the power of Tn-seq for the discovery of new genes and novel pathways in sporulation and, combined with the recently completed null mutant collection, open the door for similar screens in other, less well-characterized processes. PMID:26735940

  4. Intracellular Biosynthesis of Fluorescent CdSe Quantum Dots in Bacillus subtilis: A Strategy to Construct Signaling Bacterial Probes for Visually Detecting Interaction Between Bacillus subtilis and Staphylococcus aureus.

    Science.gov (United States)

    Yan, Zheng-Yu; Ai, Xiao-Xia; Su, Yi-Long; Liu, Xin-Ying; Shan, Xiao-Hui; Wu, Sheng-Mei

    2016-02-01

    In this work, fluorescent Bacillus subtilis (B. subtilis) cells were developed as probes for imaging applications and to explore behaviorial interaction between B. subtilis and Staphylococcus aureus (S. aureus). A novel biological strategy of coupling intracellular biochemical reactions for controllable biosynthesis of CdSe quantum dots by living B. subtilis cells was demonstrated, through which highly luminant and photostable fluorescent B. subtilis cells were achieved with good uniformity. With the help of the obtained fluorescent B. subtilis cells probes, S. aureus cells responded to co-cultured B. subtilis and to aggregate. The degree of aggregation was calculated and nonlinearly fitted to a polynomial model. Systematic investigations of their interactions implied that B. subtilis cells inhibit the growth of neighboring S. aureus cells, and this inhibition was affected by both the growth stage and the amount of surrounding B. subtilis cells. Compared to traditional methods of studying bacterial interaction between two species, such as solid culture medium colony observation and imaging mass spectrometry detection, the procedures were more simple, vivid, and photostable due to the efficient fluorescence intralabeling with less influence on the cells' surface, which might provide a new paradigm for future visualization of microbial behavior.

  5. [An Efficient Method for Genetic Certification of Bacillus subtilis strains, Prospective Producers of Biopreparations].

    Science.gov (United States)

    Terletskiy, V P; Tyshenko, V I; Novikova, I I; Boikova, I V; Tyulebaev, S D; Shakhtamirov, I Ya

    2016-01-01

    Genetic certification of commercial strains of bacteria antagonistic to phytopathogenic microorganisms guarantees their unequivocal identification and confirmation of safety. In Russia, unlike EU countries, genetic certification of Bacillus subtilis strains is not used. Based on the previously proposed double digestion selective label (DDSL) fingerprinting, a method for genetic identification and certification of B. subtilis strains was proposed. The method was tested on several strains differing in their physiological and biochemical properties and in the composition of secondary metabolites responsible for the spectrum of antibiotic activity. High resolving power of this approach was shown. Optimal restriction endonucleases (SgsI and Eco32I) were determined and validated. A detailed protocol for genetic certification of this bacterial species was developed. DDSL is a universal method, which may be adapted for genetic identification and certification of other bacterial species.

  6. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  7. The Bacillus subtilis and Bacillus halodurans Aspartyl-tRNA Synthetases Retain Recognition of tRNA(Asn).

    Science.gov (United States)

    Nair, Nilendra; Raff, Hannah; Islam, Mohammed Tarek; Feen, Melanie; Garofalo, Denise M; Sheppard, Kelly

    2016-02-13

    Synthesis of asparaginyl-tRNA (Asn-tRNA(Asn)) in bacteria can be formed either by directly ligating Asn to tRNA(Asn) using an asparaginyl-tRNA synthetase (AsnRS) or by synthesizing Asn on the tRNA. In the latter two-step indirect pathway, a non-discriminating aspartyl-tRNA synthetase (ND-AspRS) attaches Asp to tRNA(Asn) and the amidotransferase GatCAB transamidates the Asp to Asn on the tRNA. GatCAB can be similarly used for Gln-tRNA(Gln) formation. Most bacteria are predicted to use only one route for Asn-tRNA(Asn) formation. Given that Bacillus halodurans and Bacillus subtilis encode AsnRS for Asn-tRNA(Asn) formation and Asn synthetases to synthesize Asn and GatCAB for Gln-tRNA(Gln) synthesis, their AspRS enzymes were thought to be specific for tRNA(Asp). However, we demonstrate that the AspRSs are non-discriminating and can be used with GatCAB to synthesize Asn. The results explain why B. subtilis with its Asn synthetase genes knocked out is still an Asn prototroph. Our phylogenetic analysis suggests that this may be common among Firmicutes and 30% of all bacteria. In addition, the phylogeny revealed that discrimination toward tRNA(Asp) by AspRS has evolved independently multiple times. The retention of the indirect pathway in B. subtilis and B. halodurans likely reflects the ancient link between Asn biosynthesis and its use in translation that enabled Asn to be added to the genetic code. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Enhancement of Bacillus subtilis Lipopeptide Biosurfactants Production through Optimization of Medium Composition and Adequate Control of Aeration

    OpenAIRE

    Ghribi, Dhouha; Ellouze-Chaabouni, Semia

    2011-01-01

    Interest in biosurfactants has increased considerably in recent years, as they are potentially used in many commercial applications in petroleum, pharmaceuticals, biomedical, and food processing industries. Since improvement of their production was of great importance to reduce the final coast, cultural conditions were analyzed to optimize biosurfactants production from Bacillus subtilis SPB1 strain. A high yield of biosurfactants was obtained from a culture of B. subtilis using carbohydrate ...

  9. Development of new formulations of Bacillus subtilis for management of tomato damping-off caused by Pythium aphanidermatum

    Energy Technology Data Exchange (ETDEWEB)

    Jayaraj, J.; Radhakrishnan, N.V.; Kannan, R.; Sakthivel, K.; Suganya, D.; Venkatesan, S.; Velazhahan, R. [Simon Fraser University, Burnaby, B (Canada). Dept. of Biological Science

    2005-02-15

    Formulations of a strain of Bacillus subtilis AUBS-1 inhibitory to the growth of the damping-off pathogen, Pythium aphanidermatum, were developed for seed treatment. The formulations included a talc-based powder, lignite-based powder, lignite + fly ash-based powder, wettable powder, bentonite-paste, polyethylene glycol (PEG) paste and a water-dispersible tablet. Formulations were stored at room temperature for 2 years and frequently sampled to test their shelf life. Populations of bacteria in the formulations were stable for up to 2 years storage at room temperature (28{degree}C). Viability of propagules in lignite, lignite + fly ash, bentonite paste, wettable powder and water dispersible tablet formulations was 100% for up to 1 year. However, the viability of propagules was significantly reduced in talc, wettable powder, PEG paste and tablet formulations beyond 1 year of storage. Seed treatment of tomato with these formulations resulted in effective control of damping-off caused by P. aphanidermatum, and also enhanced plant biomass under glasshouse and field conditions. Active rhizosphere colonization by the bacterium was observed on tomato plants grown from seeds treated with the above formulations.

  10. Disinfection and regrowth potential of bacillus subtilis spores by ozone, ultraviolet rays and gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hae Yeon; Lee, O Mi; Kim, Tae Hun; Lee, Myun Joo; Yu, Seung Ho [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-06-15

    Chlorination has been the most commonly adopted disinfection process for the treatment of drinking water. However, Cryptosporidium parvum oocysts and Giardia lamblia cysts were not treated effectively by the common chlorine-based disinfectants. Additionally the regrowth of pathogenic microorganisms is associated with hygienic and aesthetic problems for the consumers of drinking water. Study on alternative disinfection processes such as ozone, UV-C, VUV and gamma irradiation were conducted. Bacillus subtilis spores have been used as a surrogate microorganism for Cryptosporidium parvum oocysts and Giardia lamblia cyst. Inactivation efficiency by ozone was from 30% to 96% within the range of 5 min to 120 min exposures. Inactivation efficiencies by UV-C and VUV were 95.18%, 95.07% at 30 sec, respectively. Inactivation efficiency at gamma irradiation dose of 2 kGy was 99.4%. Microbial regrowths after ozone, UV-C, VUV and gamma irradiation disinfections were also evaluated for 4 days. Bacillus subtilis spores after ozone treatment for 120 min exposure at the rate of 1.68 mg {center_dot} min{sup -1} showed 96.02% disinfection efficiency and significant microbial regrowth. Bacillus subtilis spores after UV-C (99.25% disinfection efficiency) and VUV (99.67% disinfection efficiency) treatments for 5 min showed gradual regrowth. However, inactivation efficiency of gamma irradiation at dose of 1 kGy was 98.8% and the disinfected sample showed no microbial regrowth for 4 days. Therefore, gamma irradiation is the most effective process for the disinfection of pathogenic microorganisms such as oocysts of protozoan parasites among four disinfection process.

  11. Antagonismo de Trichoderma SPP. E Bacillus subtilis (UFV3918 a Fusarium sambucinum em Pinus elliottii engelm

    Directory of Open Access Journals (Sweden)

    Caciara Gonzatto Maciel

    2014-06-01

    Full Text Available Pinus elliottii é uma espécie de importância no setor florestal e apresenta vulnerabilidade na qualidade sanitária de suas sementes, especialmente pela associação de Fusarium spp., responsável por perdas de plântulas no viveiro. Este trabalho teve como objetivo avaliar a ação antagonista in vitro e in vivo dos agentes Trichoderma spp. e Bacillus subtilis (UFV3918 no controle de Fusarium sambucinum, responsável por danos em plântulas de Pinus elliottii. O controle in vitro foi avaliado através da inibição do crescimento micelial (confronto pareado de culturas, após a incubação a 25±2 ºC e fotoperíodo de 12 h. Para os testes in vivo (desenvolvidos em condições de viveiro, as sementes inicialmente foram inoculadas com o patógeno e, na sequência, microbiolizadas com os agentes antagônicos, para posterior semeadura. Utilizaram-se as técnicas de contato com o biocontrolador em meio BDA por 48 h e peliculização, como formas de microbiolização. Tanto Trichoderma spp. quanto Bacillus subtilis (UFV3918 foram eficientes no controle in vitro de F. sambucinum, e no teste de biocontrole in vivo o produto Bacillus subtilis (UFV3918 destacou-se, reduzindo as perdas de plântulas causadas pelo patógeno, assim como potencializando as variáveis de comprimento de plântula, massa verde e massa seca.

  12. Molecular Cloning and Production of Recombinant Phytase from Bacillus subtilis ASUIA243 in Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Nor Soleha Mohd Dali

    2011-12-01

    Full Text Available Phytase gene obtained from Bacillus subtilis ASUIA243 was cloned into a medium vector and transformed into E. coli. Restriction enzyme digestion was conducted to get blunt-ended phytase gene and ligated into the Pichia expression vector, pPICZαA. The recombinant vector, pPICZαA-243HPp was then linearized with PmeI and transformed into P. pastoris strain X33. Screening for multi copy gene number of transformants was done by re-plating the selected colonies on increasing concentration of zeocin. One positive clone, X243HPp#2 was then grown in BMGY media as the starting culture, followed by induction in BMMY media for protein expression study. The supernatant was then analysed by SDS-PAGE and Western blot method to check the protein expression.ABSTRAK: Gen fitase yang didapati daripada Bacillus subtilis ASUIA243 diklonkan sebagai vektor perantara dan berubah menjadi E. coli. Sekatan pencernaan enzim dijalankan untuk mendapatkan gen fitase berhujung tumpul dan diligatkan dengan vektor ekspresi Pichia, pPICZαA. Vektor rekombinan, pPICZαA-243HPp kemudian dilinearkan dengan PmeI dan berubah menjadi P. pastoris strain X33. Penyaringan untuk nombor gen berbilang salinan yang menjalani transformasi genetik dijalankan dengan menyalur semula koloni terpilih dengan penambahan kepekatan zeocin. Satu klon positif, X243HPp#2 kemudian dibiarkan hidup dalam perantara BMGY sebagai kultur permulaan, diikuti dengan aruhan dalam perantara BMMY untuk kajian penglahiran protein. Supernatan kemudian dikaji dengan SDS-PAGE dan kaedah sap Western untuk menyemak penglahiran protein.KEYWORDS:  phytase, Bacillus subtilis, Pichia pastoris, gene cloning.

  13. Comparative Genomic Analysis of Bacillus amyloliquefaciens and Bacillus subtilis Reveals Evolutional Traits for Adaptation to Plant-Associated Habitats

    Science.gov (United States)

    Zhang, Nan; Yang, Dongqing; Kendall, Joshua R. A.; Borriss, Rainer; Druzhinina, Irina S.; Kubicek, Christian P.; Shen, Qirong; Zhang, Ruifu

    2016-01-01

    Bacillus subtilis and its sister species B. amyloliquefaciens comprise an evolutionary compact but physiologically versatile group of bacteria that includes strains isolated from diverse habitats. Many of these strains are used as plant growth-promoting rhizobacteria (PGPR) in agriculture and a plant-specialized subspecies of B. amyloliquefaciens—B. amyloliquefaciens subsp. plantarum, has recently been recognized, here we used 31 whole genomes [including two newly sequenced PGPR strains: B. amyloliquefaciens NJN-6 isolated from Musa sp. (banana) and B. subtilis HJ5 from Gossypium sp. (cotton)] to perform comparative analysis and investigate the genomic characteristics and evolution traits of both species in different niches. Phylogenomic analysis indicated that strains isolated from plant-associated (PA) habitats could be distinguished from those from non-plant-associated (nPA) niches in both species. The core genomes of PA strains are more abundant in genes relevant to intermediary metabolism and secondary metabolites biosynthesis as compared with those of nPA strains, and they also possess additional specific genes involved in utilization of plant-derived substrates and synthesis of antibiotics. A further gene gain/loss analysis indicated that only a few of these specific genes (18/192 for B. amyloliquefaciens and 53/688 for B. subtilis) were acquired by PA strains at the initial divergence event, but most were obtained successively by different subgroups of PA stains during the evolutional process. This study demonstrated the genomic differences between PA and nPA B. amyloliquefaciens and B. subtilis from different niches and the involved evolutional traits, and has implications for screening of PGPR strains in agricultural production. PMID:28066362

  14. Identification and molecular characterization of a Bacillus subtilis IS13 strain involved in the biodegradation of 4,5,6-trichloroguaiacol.

    Science.gov (United States)

    Andretta, C W S; Rosa, R M; Tondo, E C; Gaylarde, C C; Henriques, J A P

    2004-04-01

    4,5,6-Trichloroguaiacol (4,5,6-TCG) is a recalcitrant organochlorine compound produced during pulp bleaching and a potential environmental hazard in paper mill effluents. We report here the identification by biochemical tests and molecular biological analysis, using 16S ribotyping, of a 4,5,6-TCG-degrading bacterium, identified as a strain of Bacillus subtilis that is most closely related according to the phylogenetic analysis to B. subtilis strain Lactipan (alignment score 99%). Biodegradation of 4,5,6-TCG by this organism in a mineral salts medium was shown to occur only when the inoculum was composed of cells in the stationary phase of growth and to be accelerated by an additional carbon source, such as glucose, sucrose, glycerol or molasses. An additional nitrogen source (as ammonium sulfate) did not affect the rate of 4,5,6-TGC removal. No plasmids were detected in the bacterial cells. This is the first strain of B. subtilis which degrades chlorophenols and shows that 4,5,6-TCG is not degraded by cometabolism and that the gene encoding this characteristic is probably located on the chromosome. The lack of requirement for additional nitrogen source, the ability to enhance biodegradation by adding cheap carbon sources such as molasses, and the fact the trait is likely to be stable since it is encoded on the cell chromosome, are all characteristics that make the organism an attractive possibility for treatment of wastes and environments polluted with organochlorine compounds.

  15. Impact of plant growth promoting bacillus subtilis on growth and physiological parameters of bassia indica (indian bassia) grown udder salt stress

    International Nuclear Information System (INIS)

    Abeer, H.; Asma, A. H.; Allah, A.; Qarawi, A.; Shalawi, A.; Dilfuza, E.

    2015-01-01

    In this study, the role of a salt-tolerant plant growth-promoting bacterium (PGPR), Bacillus subtilis, in the alleviation of salinity stress during the growth of Indian bassia (Bassia indica (Wight) A.J. Scott), was studied under ccontrolled growth chamber conditions following seed inoculation. Physiological parameters such as neutral and phospholipids, fatty acid composition as well as photosynthetic pigments, were investigated. Salinity inhibited shoot and root length by 16 and 42 percentage, dry weight by 37 and 23 percentage respectively and negatively affected physiological parameters. Inoculation of unstressed and salt-stressed Indian bassia with B. subtilis significantly improved root and shoot growth, total lipid content, the phospholipid fraction, photosynthetic pigments (chlorophyll a and b and carotenoid contents) and also increased oleic (C 18:1 ), linoleic (C 18:2 ) and linolenic (C 18:3 ) acids in plant leaves compared to uninoculated plants. The salt-tolerant PGPR, B. subtilis could act synergistically to promote the growth and fitness of Indian bassia plants under salt stress by providing an additional supply of an auxin (IAA) and induce salt stress resistance by reducing stress ethylene levels. (author)

  16. Salt-sensitivity of σH and Spo0A prevents sporulation of Bacillus subtilis at high osmolarity avoiding death during cellular differentiation

    Science.gov (United States)

    Widderich, Nils; Rodrigues, Christopher D.A.; Commichau, Fabian M.; Fischer, Kathleen E.; Ramirez-Guadiana, Fernando H.; Rudner, David Z.; Bremer, Erhard

    2016-01-01

    Summary The spore-forming bacterium Bacillus subtilis frequently experiences high osmolarity as a result of desiccation in the soil. The formation of a highly desiccation-resistant endospore might serve as a logical osmostress escape route when vegetative growth is no longer possible. However, sporulation efficiency drastically decreases concomitant with an increase in the external salinity. Fluorescence microscopy of sporulation-specific promoter fusions to gfp revealed that high salinity blocks entry into the sporulation pathway at a very early stage. Specifically, we show that both Spo0A- and SigH-dependent transcription are impaired. Furthermore, we demonstrate that the association of SigH with core RNA polymerase is reduced under these conditions. Suppressors that modestly increase sporulation efficiency at high salinity map to the coding region of sigH and in the regulatory region of kinA, encoding one the sensor kinases that activates Spo0A. These findings led us to discover that B. subtilis cells that overproduce KinA can bypass the salt-imposed block in sporulation. Importantly, these cells are impaired in the morphological process of engulfment and late forespore gene expression and frequently undergo lysis. Altogether our data indicate that B. subtilis blocks entry into sporulation in high-salinity environments preventing commitment to a developmental program that it cannot complete. PMID:26712348

  17. Purification and reconstitution of the glutamate carrier GltT of the thermophilic bacterium Bacillus stearothermophilus

    NARCIS (Netherlands)

    Gaillard, Isabelle; Slotboom, Dirk-Jan; Knol, Jan; Lolkema, Juke S.; Konings, Wil N.

    1996-01-01

    An affinity tag consisting of six adjacent histidine residues followed by an enterokinase cleavage site was genetically engineered at the N-terminus of the glutamate transport protein GltT of the thermophilic bacterium Bacillus stearothermophilus. The fusion protein was expressed in Escherichia coli

  18. Rates of mutant production in Bacillus subtilis by dry heat and gamma irradiation. A preliminary report

    International Nuclear Information System (INIS)

    Dillon, R.T.; Conley, M.B.

    1975-04-01

    Bacillus subtilis var. niger spores were inactivated by dry heat, gamma irradiation, and combination of the two. The percentage of auxotrophic mutants among the survivors was determined as a function of treatment time over seven decimal reductions of the initial population. For dry heat inactivation the percentage of mutants increased to a maximum and then decreased. In general, similar results were obtained with gamma irradiation although there were more peaks and valleys in the percentage of mutants as a function of irradiation. For some combinations of dry heat and simultaneous irradiation the percentage of mutants obtained was greatly reduced. (U.S.)

  19. Translation activity of chimeric ribosomes composed of Escherichia coli and Bacillus subtilis or Geobacillus stearothermophilus subunits

    Directory of Open Access Journals (Sweden)

    Sayaka Tsuji

    2017-07-01

    Full Text Available Ribosome composition, consisting of rRNA and ribosomal proteins, is highly conserved among a broad range of organisms. However, biochemical studies focusing on ribosomal subunit exchangeability between organisms remain limited. In this study, we show that chimeric ribosomes, composed of Escherichia coli and Bacillus subtilis or E. coli and Geobacillus stearothermophilus subunits, are active for β-galactosidase translation in a highly purified E. coli translation system. Activities of the chimeric ribosomes showed only a modest decrease when using E. coli 30 S subunits, indicating functional conservation of the 50 S subunit between these bacterial species.

  20. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis.

    Science.gov (United States)

    Lopez, J M; Thoms, B

    1977-01-01

    Many phosphorylated intermediates exert catabolite repression on the enzyme acetoin dehydrogenase in Bacillus subtilis. This was shown with strains that are blocked at different positions in central metabolism when they receive sugars that cannot be metabolized past enzymatic block(s). In the case of sorbitol, transport events were not involved in catabolite repression, for this sugar cannot repress acetoin dehydrogenase in a strain lacking sorbitol dehydrogenase but otherwise able to take up sorbitol. The presence of glucose did not markedly influence the uptake of acetoin. PMID:401492

  1. Destruction of Bacillus subtilis cells using an atmospheric-pressure dielectric capillary electrode discharge plasma

    International Nuclear Information System (INIS)

    Panikov, N.S.; Paduraru, S.; Crowe, R.; Ricatto, P.J.; Christodoulatos, C.; Becker, K.

    2002-01-01

    The results of experiments aimed at the investigation of the destruction of spore-forming bacteria, which are believed to be among the most resistant microorganisms, using a novel atmospheric-pressure dielectric capillary electrode discharge plasma are reported. Various well-characterized cultures of Bacillus subtilis were prepared, subjected to atmospheric-pressure plasma jets emanating from a plasma shower reactor operated either in He or in air (N 2 /O 2 mixture) at various power levels and exposure times, and analyzed after plasma treatment. Reductions in colony-forming units ranged from 10 4 (He plasma) to 10 8 (air plasma) for plasma exposure times of less than 10 minutes. (author)

  2. High Pressure Germination of Bacillus subtilis Spores with Alterations in Levels and Types of Germination Proteins

    Science.gov (United States)

    2014-01-01

    Microbiol 102, 65 76. Butzin, X.Y., Troiano, A.J., Coleman , W.H., Griffiths , K.K., Doona, C.J., Feeherry, F.E., Wang, G., Li, Y. Q. et al. (2012...germination, possibly because it is essential for organization of GRs in a complex in spores’ inner membrane ( Griffiths et aL 2011). Journal of... Griffiths , K.K., Zhang, J., Cowan, A.E., Yu, J. and Setlow, P. (2011) Germination proteins in the inner membrane of dormant Bacillus subtilis spores

  3. The Clp Proteases of Bacillus subtilis Are Directly Involved in Degradation of Misfolded Proteins

    OpenAIRE

    Krüger, Elke; Witt, Elke; Ohlmeier, Steffen; Hanschke, Renate; Hecker, Michael

    2000-01-01

    The presence of the heat stress response-related ATPases ClpC and ClpX or the peptidase ClpP in the cell is crucial for tolerance of many forms of stress in Bacillus subtilis. Assays for detection of defects in protein degradation suggest that ClpC, ClpP, and ClpX participate directly in overall proteolysis of misfolded proteins. Turnover rates for abnormal puromycyl peptides are significantly decreased in clpC, clpP, and clpX mutant cells. Electron-dense aggregates, most likely due to the ac...

  4. Bacillus subtilis Biofilm Development – A Computerized Study of Morphology and Kinetics

    Directory of Open Access Journals (Sweden)

    Sarah Gingichashvili

    2017-11-01

    Full Text Available Biofilm is commonly defined as accumulation of microbes, embedded in a self-secreted extra-cellular matrix, on solid surfaces or liquid interfaces. In this study, we analyze several aspects of Bacillus subtilis biofilm formation using tools from the field of image processing. Specifically, we characterize the growth kinetics and morphological features of B. subtilis colony type biofilm formation and compare these in colonies grown on two different types of solid media. Additionally, we propose a model for assessing B. subtilis biofilm complexity across different growth conditions. GFP-labeled B. subtilis cells were cultured on agar surfaces over a 4-day period during which microscopic images of developing colonies were taken at equal time intervals. The images were used to perform a computerized analysis of few aspects of biofilm development, based on features that characterize the different phenotypes of B. subtilis colonies. Specifically, the analysis focused on the segmented structure of the colonies, consisting of two different regions of sub-populations that comprise the biofilm – a central “core” region and an “expanding” region surrounding it. Our results demonstrate that complex biofilm of B. subtillis grown on biofilm-promoting medium [standard lysogeny broth (LB supplemented with manganese and glycerol] is characterized by rapidly developing three-dimensional complex structure observed at its core compared to biofilm grown on standard LB. As the biofilm develops, the core size remains largely unchanged during development and colony expansion is mostly attributed to the expansion in area of outer cell sub-populations. Moreover, when comparing the bacterial growth on biofilm-promoting agar to that of colonies grown on LB, we found a significant decrease in the GFP production of colonies that formed a more complex biofilm. This suggests that complex biofilm formation has a diminishing effect on cell populations at the biofilm

  5. Efficient biosynthesis of polysaccharides chondroitin and heparosan by metabolically engineered Bacillus subtilis.

    Science.gov (United States)

    Jin, Peng; Zhang, Linpei; Yuan, Panhong; Kang, Zhen; Du, Guocheng; Chen, Jian

    2016-04-20

    Chondroitin and heparosan, important polysaccharides and key precursors of chondroitin sulfate and heparin/heparan sulfate, have drawn much attention due to their wide applications in many aspects. In this study, we designed two independent synthetic pathways of chondroitin and heparosan in food-grade Bacillus subtilis, integrating critical synthases genes derived from Escherichia coli into B. subtilis genome. By RT-PCR analysis, we confirmed that synthases genes transcripted an integral mRNA chain, suggesting co-expression. In shaken flask, chondroitin and heparosan were produced at a level of 1.83gL(-1) and 1.71gL(-1), respectively. Since B. subtilis endogenous tuaD gene encodes the limiting factor of biosynthesis, overexpressing tuaD resulted in enhanced chondroitin and heparosan titers, namely 2.54gL(-1) and 2.65gL(-1). Moreover, production reached the highest peaks of 5.22gL(-1) and 5.82gL(-1) in 3-L fed-batch fermentation, respectively, allowed to double the production that in shaken flask. The weight-average molecular weight of chondroitin and heparosan from B. subtilis E168C/pP43-D and E168H/pP43-D were 114.07 and 67.70kDa, respectively. This work provided alternative safer synthetic pathways for metabolic engineering of chondroitin and heparosan in B. subtilis and a useful approach for enhancing production, which can be optimized for further improvement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Nucleosides as a carbon source in Bacillus subtilis: characterization of the drm-pupG operon.

    Science.gov (United States)

    Schuch, R; Garibian, A; Saxild, H H; Piggot, P J; Nygaard, P

    1999-10-01

    In Bacillus subtilis, nucleosides are readily taken up from the growth medium and metabolized. The key enzymes in nucleoside catabolism are nucleoside phosphorylases, phosphopentomutase, and deoxyriboaldolase. The characterization of two closely linked loci, drm and pupG, which encode phosphopentomutase (Drm) and guanosine (inosine) phosphorylase (PupG), respectively, is reported here. When expressed in Escherichia coli mutant backgrounds, drm and pupG confer phosphopentomutase and purine-nucleoside phosphorylase activity. Northern blot and enzyme analyses showed that drm and pupG form a dicistronic operon. Both enzymes are induced when nucleosides are present in the growth medium. Using mutants deficient in nucleoside catabolism, it was demonstrated that the low-molecular-mass effectors of this induction most likely were deoxyribose 5-phosphate and ribose 5-phosphate. Both Drm and PupG activity levels were higher when succinate rather than glucose served as the carbon source, indicating that the expression of the operon is subject to catabolite repression. Primer extension analysis identified two transcription initiation signals upstream of drm; both were utilized in induced and non-induced cells. The nucleoside-catabolizing system in B. subtilis serves to utilize the base for nucleotide synthesis while the pentose moiety serves as the carbon source. When added alone, inosine barely supports growth of B. subtilis. This slow nucleoside catabolism contrasts with that of E. coli, which grows rapidly on a nucleoside as a carbon source. When inosine was added with succinate or deoxyribose, however, a significant increase in growth was observed in B. subtilis. The findings of this study therefore indicate that the B. subtilis system for nucleoside catabolism differs greatly from the well-studied system in E. coli.

  7. Characterization of dacC, which encodes a new low-molecular-weight penicillin-binding protein in Bacillus subtilis

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Murray, T; Popham, D L

    1998-01-01

    The pbp gene (renamed dacC), identified by the Bacillus subtilis genome sequencing project, encodes a putative 491-residue protein with sequence homology to low-molecular-weight penicillin-binding proteins. Use of a transcriptional dacC-lacZ fusion revealed that dacC expression (i) is initiated...... at the end of stationary phase; (ii) depends strongly on transcription factor sigmaH; and (iii) appears to be initiated from a promoter located immediately upstream of yoxA, a gene of unknown function located upstream of dacC on the B. subtilis chromosome. A B. subtilis dacC insertional mutant grew...

  8. The comparative investigation of gene mutation induction in Bacillus subtilis and Escherichia coli cells after irradiation by different LET radiation

    International Nuclear Information System (INIS)

    Borejko, A.V.; Bulah, A.P.

    2005-01-01

    The data of mutagenetic action of ionizing radiation with different physical characteristics on bacterial cells with various genotypes are presented. It was shown that regularities of inducible mutagenesis in Bacillus subtilis and E. coli are consimilar. The dose-response dependence for both types of cells is described by the linear-quadratic function. The RBE on LET relationship has a local maximum at 20 keV/μm. The crucial role in inducible mutagenesis in E. coli and Bacillus subtilis cells is played by the error-prone SOS-repair

  9. Biolarvicidal activity of Peanibacillus macerans and Bacillus subtilis isolated from the dead larvae against Aedes aegypti - Vector for Chikungunya

    OpenAIRE

    A. Ramathilaga; A.G. Murugesan; C. Sathesh. Prabu

    2012-01-01

    Two bacterial species were isolated from dead mosquito larvae. They were identified as Peanibacillus macerans and Bacillus Subtilis. They were examined for their mosquito larvicidal activity against chikunguya vector Aedes aegypti (Diptera: Culucidae). The LC50 values of P. macerans and B. subtilis were recorded 70.99, 50*10^6 cells /ml and 58.97, 49*10^6 cells /ml for 24h and 48h, respectively. The LC50 value of the procured culture Bacillus thuringiensis subsp israelensis also detected. It ...

  10. Isothermal titration calorimetry and surface plasmon resonance allow quantifying substrate binding to different binding sites of Bacillus subtilis xylanase

    DEFF Research Database (Denmark)

    Cuyvers, Sven; Dornez, Emmie; Abou Hachem, Maher

    2012-01-01

    Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first was a cat......Isothermal titration calorimetry and surface plasmon resonance were tested for their ability to study substrate binding to the active site (AS) and to the secondary binding site (SBS) of Bacillus subtilis xylanase A separately. To this end, three enzyme variants were compared. The first...

  11. Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633

    Directory of Open Access Journals (Sweden)

    Marylane de Sousa

    2014-04-01

    Full Text Available Glycerol, a co-product of the biodiesel industry, may be a suitable raw material for the production of high added-value compounds by the microorganisms. This study aimed to use the glycerol obtained from the biodiesel production process as the main carbon source for biosurfactant production by Bacillus subtilis ATCC 6633. Results indicated that the strain lowered the surface tension of the cell-free fermented broth to 31.5 ± 1.6 mN/m, indicating the production of biosurfactant. The critical micelle concentration (CMC = 33.6 mN/m obtained was similar to the previously reported for biossurfactants isolated from other Bacillus. The produced biosurfactant was able to emulsify n-hexadecane and soybean oil.

  12. Optimization of Effective Minerals on Riboflavin Production by Bacillus subtilis subsp. subtilis ATCC 6051 Using Statistical Designs.

    Science.gov (United States)

    Oraei, Marjan; Razavi, Seyed Hadi; Khodaiyan, Faramarz

    2018-01-01

    Riboflavin (vitamin B 2 ) is an essential component of the basic metabolism, and an important nutritional and growth factor in humans, animals, plants and micro-organisms. It has been widely used in the fields of pharmaceuticals, feed and food additives. The industrial production of riboflavin mostly relies on the microbial fermentation. Designing an appropriate fermentation medium is of crucial importance to improve the riboflavin production. In this study, sequential methodology combining a screening test of minerals by Plackett-Burman (PB) and an optimization test by Central Composite Design (CCD) was applied to enhance riboflavin production by Bacillus subtilis ATCC 6051 in shake flasks. Initially, one-factor-at-a-time approach was applied to evaluate the effect of different carbon sources. The results showed that fructose was significantly most effective on biomass and riboflavin production. After that, 13 minerals [CaCl 2 , CuCl, FeCl 3 , FeSO 4 , AlCl 3 , Na 3 MoO 4 , Co(NO 3 ) 2 , NaCl, KH 2 PO 4 , K 2 HPO 4 , MgSO 4 , ZnSO 4 , and MnSO 4 ] were studied with the screening test. The results revealed that concentration of MgSO 4 , K 2 HPO 4 , and FeSO 4 had greater influence on riboflavin production (psalts, which are available to the industrial riboflavin production.

  13. Enantioselective transesterification of glycidol catalysed by a novel lipase expressed from Bacillus subtilis.

    Science.gov (United States)

    Wang, Lei; Tai, Jian-Dong; Wang, Ren; Xun, Er-Na; Wei, Xiao-Fei; Wang, Lei; Wang, Zhi

    2010-05-10

    A novel plasmid (pBSR2) was constructed by incorporating a strong lipase promoter and a terminator into the original pBD64. The lipase gene from Bacillus subtilis strain IFFI10210 was cloned into the plasmid pBSR2 and transformed into B. subtilis A.S.1.1655 to obtain an overexpression strain. The recombinant lipase [BSL2 (B. subtilis lipase 2)] has been expressed from the novel constructed strain and used in kinetic resolution of glycidol through enantioselective transesterification. The effects of reaction conditions on the activity as well as enantioselectivity were investigated. BSL2 showed a satisfying enantioselectivity (E>30) under the optimum conditions [acyl donor: vinyl butyrate; the mole ratio of vinyl butyrate to glycidol was 3:1; organic medium: 1,2-dichloroethane with water activity (a(w))=0.33; temperature 40 degrees C]. The remaining (R)-glycidol with a high enantiomeric purity [ee (enantiomeric excess) >99%] could be obtained when the conversion was approx. 60%. The results clearly show a good potential for industrial application of BSL2 in the resolution of glycidol through enantioselective transesterification.

  14. Metabolic engineering of carbon overflow metabolism of Bacillus subtilis for improved N-acetyl-glucosamine production.

    Science.gov (United States)

    Ma, Wenlong; Liu, Yanfeng; Shin, Hyun-Dong; Li, Jianghua; Chen, Jian; Du, Guocheng; Liu, Long

    2018-02-01

    Bacillus subtilis is widely used as cell factories for the production of important industrial biochemicals. Although many studies have demonstrated the effects of organic acidic byproducts, such as acetate, on microbial fermentation, little is known about the effects of blocking the neutral byproduct overflow, such as acetoin, on bioproduction. In this study, we focused on the influences of modulating overflow metabolism on the production of N-acetyl-d-glucosamine (GlcNAc) in engineered B. subtilis. We found that acetoin overflow competes with GlcNAc production, and blocking acetoin overflow increased GlcNAc titer and yield by 1.38- and 1.39-fold, reaching 48.9 g/L and 0.32 g GlcNAc/g glucose, respectively. Further blocking acetate overflow inhibited cell growth and GlcNAc production may be induced by inhibiting glucose uptake. Taken together, our results show that blocking acetoin overflow is a promising strategy for enhancing GlcNAc production. The strategies developed in this work may be useful for engineering strains of B. subtilis for producing other important biochemicals. Copyright © 2017. Published by Elsevier Ltd.

  15. Enhanced dipicolinic acid production during the stationary phase in Bacillus subtilis by blocking acetoin synthesis.

    Science.gov (United States)

    Toya, Yoshihiro; Hirasawa, Takashi; Ishikawa, Shu; Chumsakul, Onuma; Morimoto, Takuya; Liu, Shenghao; Masuda, Kenta; Kageyama, Yasushi; Ozaki, Katsuya; Ogasawara, Naotake; Shimizu, Hiroshi

    2015-01-01

    Bacterial bio-production during the stationary phase is expected to lead to a high target yield because the cells do not consume the substrate for growth. Bacillus subtilis is widely used for bio-production, but little is known about the metabolism during the stationary phase. In this study, we focused on the dipicolinic acid (DPA) production by B. subtilis and investigated the metabolism. We found that DPA production competes with acetoin synthesis and that acetoin synthesis genes (alsSD) deletion increases DPA productivity by 1.4-fold. The mutant showed interesting features where the glucose uptake was inhibited, whereas the cell density increased by approximately 50%, resulting in similar volumetric glucose consumption to that of the parental strain. The metabolic profiles revealed accumulation of pyruvate, acetyl-CoA, and the TCA cycle intermediates in the alsSD mutant. Our results indicate that alsSD-deleted B. subtilis has potential as an effective host for stationary-phase production of compounds synthesized from these intermediates.

  16. DNA-damage-inducible (din) loci are transcriptionally activated in competent Bacillus subtilis

    International Nuclear Information System (INIS)

    Love, P.E.; Lyle, M.J.; Yasbin, R.E.

    1985-01-01

    DNA damage-inducible (din) operon fusions were generated in Bacillus subtilis by transpositional mutagenesis. These YB886(din::Tn917-lacZ) fusion isolates produced increased β-galactosidase when exposed to mitomycin C, UV radiation, or ethyl methanesulfonate, indicating that the lacZ structural gene had inserted into host transcriptional units that are induced by a variety of DNA-damaging agents. One of the fusion strains was DNA-repair deficient and phenotypically resembled a UV-sensitive mutant of B. subtilis. Induction of β-galactosidase also occurred in the competent subpopulation of each of the din fusion strains, independent of exposure to DNA-damaging agents. Both the DNA-damage-inducible and competence-inducible components of β-galactosidase expression were abolished by the recE4 mutation, which inhibits SOS-like (SOB) induction but does not interfere with the development of the component state. The results indicate that gene expression is stimulated at specific loci within the B. subtilis chromosome both by DNA-damaging agents and by the development of competence and that this response is under the control of the SOB regulatory system. Furthermore, they demonstrate that at the molecular level SOB induction and the development of competence are interrelated cellular events

  17. Molecular insights into frataxin-mediated iron supply for heme biosynthesis in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Andreas Mielcarek

    Full Text Available Iron is required as an element to sustain life in all eukaryotes and most bacteria. Although several bacterial iron acquisition strategies have been well explored, little is known about the intracellular trafficking pathways of iron and its entry into the systems for co-factor biogenesis. In this study, we investigated the iron-dependent process of heme maturation in Bacillus subtilis and present, for the first time, structural evidence for the physical interaction of a frataxin homologue (Fra, which is suggested to act as a regulatory component as well as an iron chaperone in different cellular pathways, and a ferrochelatase (HemH, which catalyses the final step of heme b biogenesis. Specific interaction between Fra and HemH was observed upon co-purification from crude cell lysates and, further, by using the recombinant proteins for analytical size-exclusion chromatography. Hydrogen-deuterium exchange experiments identified the landscape of the Fra/HemH interaction interface and revealed Fra as a specific ferrous iron donor for the ferrochelatase HemH. The functional utilisation of the in vitro-generated heme b co-factor upon Fra-mediated iron transfer was confirmed by using the B. subtilis nitric oxide synthase bsNos as a metabolic target enzyme. Complementary mutational analyses confirmed that Fra acts as an essential component for maturation and subsequent targeting of the heme b co-factor, hence representing a key player in the iron-dependent physiology of B. subtilis.

  18. In Vivo Behavior of the Tandem Glycine Riboswitch in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Arianne M. Babina

    2017-10-01

    Full Text Available In many bacterial species, the glycine riboswitch is composed of two homologous ligand-binding domains (aptamers that each bind glycine and act together to regulate the expression of glycine metabolic and transport genes. While the structure and molecular dynamics of the tandem glycine riboswitch have been the subject of numerous in vitro studies, the in vivo behavior of the riboswitch remains largely uncharacterized. To examine the proposed models of tandem glycine riboswitch function in a biologically relevant context, we characterized the regulatory activity of mutations to the riboswitch structure in Bacillus subtilis using β-galactosidase assays. To assess the impact disruptions to riboswitch function have on cell fitness, we introduced these mutations into the native locus of the tandem glycine riboswitch within the B. subtilis genome. Our results indicate that glycine does not need to bind both aptamers for regulation in vivo and mutations perturbing riboswitch tertiary structure have the most severe effect on riboswitch function and gene expression. We also find that in B. subtilis, the glycine riboswitch-regulated gcvT operon is important for glycine detoxification.

  19. Preparation, crystallization and preliminary X-ray analysis of YjcG protein from Bacillus subtilis

    International Nuclear Information System (INIS)

    Li, Dan; Chan, Chiomui; Liang, Yu-He; Zheng, Xiaofeng; Li, Lanfen; Su, Xiao-Dong

    2005-01-01

    B. subtilis YjcG protein was expressed, purified and crystallized. A complete diffraction data set was collected at BSRF beamline 3W1A and processed to 2.3 Å resolution. Bacillus subtilis YjcG is a functionally uncharacterized protein with 171 residues that has no structural homologue in the Protein Data Bank. However, it shows sequence homology to bacterial and archaeal 2′–5′ RNA ligases. In order to identify its exact function via structural studies, the yjcG gene was amplified from B. subtilis genomic DNA and cloned into the expression vector pET21-DEST. The protein was expressed in a soluble form in Escherichia coli and was purified to homogeneity. Crystals suitable for X-ray analysis were obtained that diffracted to 2.3 Å and belonged to space group C2, with unit-cell parameters a = 99.66, b = 73.93, c = 61.77 Å, β = 113.56°

  20. Control of Initiation of DNA Replication in Bacillus subtilis and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katie H. Jameson

    2017-01-01

    Full Text Available Initiation of DNA Replication is tightly regulated in all cells since imbalances in chromosomal copy number are deleterious and often lethal. In bacteria such as Bacillus subtilis and Escherichia coli, at the point of cytokinesis, there must be two complete copies of the chromosome to partition into the daughter cells following division at mid-cell during vegetative growth. Under conditions of rapid growth, when the time taken to replicate the chromosome exceeds the doubling time of the cells, there will be multiple initiations per cell cycle and daughter cells will inherit chromosomes that are already undergoing replication. In contrast, cells entering the sporulation pathway in B. subtilis can do so only during a short interval in the cell cycle when there are two, and only two, chromosomes per cell, one destined for the spore and one for the mother cell. Here, we briefly describe the overall process of DNA replication in bacteria before reviewing initiation of DNA replication in detail. The review covers DnaA-directed assembly of the replisome at oriC and the multitude of mechanisms of regulation of initiation, with a focus on the similarities and differences between E. coli and B. subtilis.

  1. Cloned Bacillus subtilis alkaline protease (aprA) gene showing high level of keratinolytic activity.

    Science.gov (United States)

    Zaghloul, T I

    1998-01-01

    The Bacillus subtilis alkaline protease(aprA) gene was previously cloned on a pUBHO-derivative plasmid. High levels of expression and gene stability were demonstrated when B. subtilis cells were grown on the laboratory medium 2XSG. B. subtilis cells harboring the multicopy aprA gene were grown on basal medium, supplemented with 1 % chicken feather as a source of energy, carbon, and nitrogen. Proteolytic and keratinolytic activities were monitored throughout the cultivation time. A high level of keratinolytic activity was obtained, and this indicates that alkaline protease is acting as a keratinase. Furthermore, considerable amounts of soluble proteins and free amino acids were obtained as a result of the enzymatic hydrolysis of feather. Biodegradation of feather waste using these cells represents an alternative way to improve the nutritional value of feather, since feather waste is currently utilized on a limited basis as a dietary protein supplement for animal feedstuffs. Moreover, the release of free amino acids from feather and the secreted keratinase enzyme would promote industries based on feather waste.

  2. Disruption of Autolysis in Bacillus subtilis using TiO2 Nanoparticles.

    Science.gov (United States)

    McGivney, Eric; Han, Linchen; Avellan, Astrid; VanBriesen, Jeanne; Gregory, Kelvin B

    2017-03-17

    In contrast to many nanotoxicity studies where nanoparticles (NPs) are observed to be toxic or reduce viable cells in a population of bacteria, we observed that increasing concentration of TiO 2 NPs increased the cell survival of Bacillus subtilis in autolysis-inducing buffer by 0.5 to 5 orders of magnitude over an 8 hour exposure. Molecular investigations revealed that TiO 2 NPs prevent or delay cell autolysis, an important survival and growth-regulating process in bacterial populations. Overall, the results suggest two potential mechanisms for the disruption of autolysis by TiO 2 NPs in a concentration dependent manner: (i) directly, through TiO 2 NP deposition on the cell wall, delaying the collapse of the protonmotive-force and preventing the onset of autolysis; and (ii) indirectly, through adsorption of autolysins on TiO 2 NP, limiting the activity of released autolysins and preventing further lytic activity. Enhanced darkfield microscopy coupled to hyperspectral analysis was used to map TiO 2 deposition on B. subtilis cell walls and released enzymes, supporting both mechanisms of autolysis interference. The disruption of autolysis in B. subtilis cultures by TiO 2 NPs suggests the mechanisms and kinetics of cell death may be influenced by nano-scale metal oxide materials, which are abundant in natural systems.

  3. Levan from Bacillus subtilis Natto: its effects in normal and in streptozotocin-diabetic rats

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Bazani Cabral de Melo

    2012-12-01

    Full Text Available Levan is an exopolysaccharide of fructose primarily linked by β-(2→6 glycosidic bonds with some β-(2→1 branched chains. Due to its chemical properties, levan has possible applications in both the food and pharmaceutical industries. Bacillus subtilis is a promising industrial levan producer, as it ferments sucrose and has a high levan-formation capacity. A new strain of B. subtilis was recently isolated from Japanese food natto, and it has produced levan in large quantities. For future pharmaceutical applications, this study aimed to investigate the effects of levan produced by B. subtilis Natto, mainly as potential hypoglycemic agent, (previously optimized with a molecular weight equal to 72.37 and 4,146 kDa in Wistar male rats with diabetes induced by streptozotocin and non-diabetic rats and to monitor their plasma cholesterol and triacylglycerol levels. After 15 days of experimentation, the animals were sacrificed, and their blood samples were analyzed. The results, compared using analysis of variance, demonstrated that for this type of levan, a hypoglycemic effect was not observed, as there was no improvement of diabetes symptoms during the experiment. However, levan did not affect any studied parameters in normal rats, indicating that the exopolysaccharide can be used for other purposes.

  4. Further studies on the regulation of amino sugar metabolism in Bacillus subtilis

    Science.gov (United States)

    Bates, C. J.; Pasternak, C. A.

    1965-01-01

    1. Glucosamine 6-phosphate deaminase [2-amino-2-deoxy-d-glucose 6-phosphate ketol-isomerase (deaminating), EC 5.3.1.10] of Bacillus subtilis has been partially purified. Its Km is 3·0mm. 2. Extracts of B. subtilis contain N-acetylglucosamine 6-phosphate deacetylase (Km 1·4mm), glucosamine 1-phosphate acetylase and amino sugar kinases (EC 2.7.1.8 and 2.7.1.9). 3. Glucosamine 6-phosphate synthetase (l-glutamine–d-fructose 6-phosphate aminotransferase, EC 2.6.1.16) is repressed by growth of B. subtilis in the presence of glucosamine, N-acetylglucosamine, N-propionylglucosamine or N-formylglucosamine. Glucosamine 6-phosphate deaminase and N-acetylglucosamine 6-phosphate deacetylase are induced by N-acetylglucosamine. Amino sugar kinases are induced by glucose, glucosamine and N-acetylglucosamine. The synthesis of glucosamine 1-phosphate acetylase is unaffected by amino sugars. 4. Glucose in the growth medium prevents the induction of glucosamine 6-phosphate deaminase and of N-acetylglucosamine 6-phosphate deacetylase caused by N-acetylglucosamine; glucose also alleviates the repression of glucosamine 6-phosphate synthetase caused by amino sugars. 5. Glucosamine 6-phosphate deaminase increases in bacteria incubated beyond the exponential phase of growth. This increase is prevented by glucose. PMID:14343123

  5. Ectopic integration vectors for generating fluorescent promoter fusions in Bacillus subtilis with minimal dark noise.

    Directory of Open Access Journals (Sweden)

    Stephanie Trauth

    Full Text Available Fluorescent protein promoter reporters are important tools that are widely used for diverse purposes in microbiology, systems biology and synthetic biology and considerable engineering efforts are still geared at improving the sensitivity of the reporter systems. Here we focus on dark noise, i.e. the signal that is generated by the empty vector control. We quantitatively characterize the dark noise of a few common bacterial reporter systems by single cell microscopy. All benchmarked reporter systems generated significant amounts of dark noise that exceed the cellular autofluorescence to different extents. We then reengineered a multicolor set of fluorescent ectopic integration vectors for Bacillus subtilis by introducing a terminator immediately upstream of the promoter insertion site, resulting in an up to 2.7-fold reduction of noise levels. The sensitivity and dynamic range of the new high-performance pXFP_Star reporter system is only limited by cellular autofluorescence. Moreover, based on studies of the rapE promoter of B. subtilis we show that the new pXFP_Star reporter system reliably reports on the weak activity of the rapE promoter whereas the original reporter system fails because of transcriptional interference. Since the pXFP_Star reporter system properly isolates the promoter from spurious transcripts, it is a particularly suitable tool for quantitative characterization of weak promoters in B. subtilis.

  6. Regulation of proteolysis in Bacillus subtilis: effects of calcium ions and energy poisons

    International Nuclear Information System (INIS)

    O'Hara, M.B.; Hageman, J.H.

    1987-01-01

    Bacillus subtilis cells carry out extensive intracellular proteolysis (k = 0.15-0.23/h) during sporulation. Protein degradation was measured in cells growing in chemically defined sporulation medium, by following the release of [ 14 C]-leucine from the cells during spore formation. Sodium arsenate, carbonyl cyanide 3-chlorophenyl hydrazone, and sodium azide strongly inhibited proteolysis without altering cell viability greatly, which suggested that bulk proteolysis in B. subtilis is energy dependent. The authors have tested the hypothesis that the energy requirement may be for pumping in Ca 2+ . When [Ca 2+ ] was -6 , rates of proteolysis in sporulating cells were reduced 4-8 times that in cells in calcium ion- sufficient medium. Further, omission of Ca 2+ from the medium prevented the increase in the activity of the major intracellular serine protease. However, the presence of energy poisons in the media at levels which inhibited proteolysis, had no detectable effect on the uptake of by cells [ 45 Ca]. The authors concluded that B. subtilis cells required both metabolic energy and calcium ions for normal proteolysis

  7. Two distinct groups within the Bacillus subtilis group display significantly different spore heat resistance properties.

    Science.gov (United States)

    Berendsen, Erwin M; Zwietering, Marcel H; Kuipers, Oscar P; Wells-Bennik, Marjon H J

    2015-02-01

    The survival of bacterial spores after heat treatment and the subsequent germination and outgrowth in a food product can lead to spoilage of the food product and economical losses. Prediction of time-temperature conditions that lead to sufficient inactivation requires access to detailed spore thermal inactivation kinetics of relevant model strains. In this study, the thermal inactivation kinetics of spores of fourteen strains belonging to the Bacillus subtilis group were determined in detail, using both batch heating in capillary tubes and continuous flow heating in a micro heater. The inactivation data were fitted using a log linear model. Based on the spore heat resistance data, two distinct groups (p subtilis group could be identified. One group of strains had spores with an average D120 °C of 0.33 s, while the spores of the other group displayed significantly higher heat resistances, with an average D120 °C of 45.7 s. When comparing spore inactivation data obtained using batch- and continuous flow heating, the z-values were significantly different, hence extrapolation from one system to the other was not justified. This study clearly shows that heat resistances of spores from different strains in the B. subtilis group can vary greatly. Strains can be separated into two groups, to which different spore heat inactivation kinetics apply. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Bacillus subtilis iolU encodes an additional NADP+-dependent scyllo-inositol dehydrogenase.

    Science.gov (United States)

    Kang, Dong-Min; Tanaka, Kosei; Takenaka, Shinji; Ishikawa, Shu; Yoshida, Ken-Ichi

    2017-05-01

    Bacillus subtilis genes iolG, iolW, iolX, ntdC, yfiI, yrbE, yteT, and yulF belong to the Gfo/Idh/MocA family. The functions of iolG, iolW, iolX, and ntdC are known; however, the functions of the others are unknown. We previously reported the B. subtilis cell factory simultaneously overexpressing iolG and iolW to achieve bioconversion of myo-inositol (MI) into scyllo-inositol (SI). YulF shares a significant similarity with IolW, the NADP + -dependent SI dehydrogenase. Transcriptional abundance of yulF did not correlate to that of iol genes involved in inositol metabolism. However, when yulF was overexpressed instead of iolW in the B. subtilis cell factory, SI was produced from MI, suggesting a similar function to iolW. In addition, we demonstrated that recombinant His 6 -tagged YulF converted scyllo-inosose into SI in an NADPH-dependent manner. We have thus identified yulF encoding an additional NADP + -dependent SI dehydrogenase, which we propose to rename iolU.

  9. Draft Genome Sequence of a Biosurfactant-Producing Bacillus subtilis UMX-103 Isolated from Hydrocarbon-Contaminated Soil in Terengganu, Malaysia.

    Science.gov (United States)

    Abdelhafiz, Yousri Abdelmutalab; Manaharan, Thamilvaani; BinMohamad, Saharuddin; Merican, Amir Feisal

    2017-07-01

    The draft genome here presents the sequence of Bacillus subtilis UMX-103. The bacterial strain was isolated from hydrocarbon-contaminated soil from Terengganu, Malaysia. The whole genome of the bacterium was sequenced using Illumina HiSeq 2000 sequencing platform. The genome was assembled using de novo approach. The genome size of UMX-103 is 4,234,627 bp with 4399 genes comprising 4301 protein-coding genes and 98 RNA genes. The analysis of assembled genes revealed the presence of 25 genes involved in biosurfactant production, where 14 of the genes are related to biosynthesis and 11 of the genes are in the regulation of biosurfactant productions. This draft genome will provide insights into the genetic bases of its biosurfactant-producing capabilities.

  10. Heterologous expression and characterization of a new heme-catalase in Bacillus subtilis 168.

    Science.gov (United States)

    Philibert, Tuyishime; Rao, Zhiming; Yang, Taowei; Zhou, Junping; Huang, Genshu; Irene, Komera; Samuel, Niyomukiza

    2016-06-01

    Reactive oxygen species (ROS) is an inherent consequence to all aerobically living organisms that might lead to the cells being lethal and susceptible to oxidative stress. Bacillus pumilus is characterized by high-resistance oxidative stress that stimulated our interest to investigate the heterologous expression and characterization of heme-catalase as potential biocatalyst. Results indicated that recombinant enzyme significantly exhibited the high catalytic activity of 55,784 U/mg expressed in Bacillus subtilis 168 and 98.097 µmol/min/mg peroxidatic activity, the apparent K m of catalytic activity was 59.6 ± 13 mM with higher turnover rate (K cat = 322.651 × 10(3) s(-1)). The pH dependence of catalatic and peroxidatic activity was pH 7.0 and pH 4.5 respectively with temperature dependence of 40 °C and the recombinant heme-catalase exhibited a strong Fe(2+) preference. It was further revealed that catalase KatX2 improved the resistance oxidative stress of B. subtilis. These findings suggest that this B. pumilus heme-catalase can be considered among the industrially relevant biocatalysts due to its exceptional catalytic rate and high stability and it can be a potential candidate for the improvement of oxidative resistance of industrially produced strains.

  11. Hg(II) removal from aqueous solutions by bacillus subtilis biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xue Song; Li, Fei Yan; He, Wen; Miao, Hua Hua [Department of Chemical Engineering, Huaihai Institute of Technology, Lianyungang (China)

    2010-01-15

    The biosorption of Hg(II) from aqueous solutions using Bacillus subtilis biomass was investigated in this study. The adsorbent was characterized by FTIR. Various factors including solution pH, initial concentration of Hg(II), contact time, reaction temperature and ionic strength were taken into account and promising results were obtained. An initial solution pH of 5.0 was most favorable for Hg(II) removal. The kinetic data was also analyzed using pseudo first order and pseudo second order equations. The results suggested that Hg(II) bioadsorption was best represented by the pseudo second order equation. Freundlich, Langmuir and Langmuir-Freundlich isotherms for the present systems were analyzed. The most satisfactory interpretation for the equilibrium data at different temperatures was given by the Langmuir-Freundlich isotherm. The effect of ionic strength on bioadsorption was significant. Bacillus subtilis biomass could serve as low cost adsorbent to remove Hg(II) from aqueous solutions, especially at lower concentrations of Hg(II) (<20 mg Hg/L). (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  12. Production of Acetoin through Simultaneous Utilization of Glucose, Xylose, and Arabinose by Engineered Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    Full Text Available Glucose, xylose and arabinose are the three most abundant monosaccharide found in lignocellulosic biomass. Effectively and simultaneously utilization of these sugars by microorganisms for production of the biofuels and bio-chemicals is essential toward directly fermentation of the lignocellulosic biomass. In our previous study, the recombinant Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain was already shown to efficiently utilize xylose for production of acetoin, with a yield of 0.36 g/g xylose. In the current study, the Bacillus subtilis168ARSRCPΔacoAΔbdhA strain was further engineered to produce acetoin from a glucose, xylose, and arabinose mixtures. To accomplish this, the endogenous xylose transport protein AraE, the exogenous xylose isomerase gene xylA and the xylulokinase gene xylB from E. coli were co-overexpressed in the Bacillus subtilis 168ARSRCPΔacoAΔbdhA strain, which enabled the resulting strain, denoted ZB02, to simultaneously utilize glucose and xylose. Unexpectedly, the ZB02 strain could simultaneously utilize glucose and arabinose also. Further results indicated that the transcriptional inhibition of the arabinose transport protein gene araE was the main limiting factor for arabinose utilization in the presence of glucose. Additionally, the arabinose operon in B. subtilis could be activated by the addition of arabinose, even in the presence of glucose. Through fed-batch fermentation, strain ZB02 could simultaneously utilize glucose, xylose, and arabinose, with an average sugar consumption rate of 3.00 g/l/h and an average production of 62.2 g/l acetoin at a rate of 0.864 g/l/h. Finally, the strain produced 11.2 g/l acetoin from lignocellulosic hydrolysate (containing 20.6g/l glucose, 12.1 g/l xylose and 0.45 g/l arabinose in flask cultivation, with an acetoin yield of 0.34 g/g total sugar. The result demonstrates that this strain has good potential for the utilization of lignocellulosic hydrolysate for production of acetoin.

  13. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation; Aislamiento de Bacillus subtilis como indicador en la desinfeccion de aguas residuales mediante radiacion gamma

    Energy Technology Data Exchange (ETDEWEB)

    Mata J, M.; Colin C, A. [Facultad de Quimica, UAEM, Paseo Colon esq. Tollocan s/n, Toluca, 50000 Estado de Mexico (Mexico); Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  14. Functional analysis of the sortase YhcS in Bacillus subtilis.

    Science.gov (United States)

    Fasehee, Hamidreza; Westers, Helga; Bolhuis, Albert; Antelmann, Haike; Hecker, Michael; Quax, Wim J; Mirlohi, Agha F; van Dijl, Jan Maareten; Ahmadian, Gholamreza

    2011-10-01

    Sortases of Gram-positive bacteria catalyze the covalent C-terminal anchoring of proteins to the cell wall. Bacillus subtilis, a well-known host organism for protein production, contains two putative sortases named YhcS and YwpE. The present studies were aimed at investigating the possible sortase function of these proteins in B. subtilis. Proteomics analyses revealed that sortase-mutant cells released elevated levels of the putative sortase substrate YfkN into the culture medium upon phosphate starvation. The results indicate that YfkN required sortase activity of YhcS for retention in the cell wall. To analyze sortase function in more detail, we focused attention on the potential sortase substrate YhcR, which is co-expressed with the sortase YhcS. Our results showed that the sortase recognition and cell-wall-anchoring motif of YhcR is functional when fused to the Bacillus pumilus chitinase ChiS, a readily detectable reporter protein that is normally secreted. The ChiS fusion protein is displayed at the cell wall surface when YhcS is co-expressed. In the absence of YhcS, or when no cell-wall-anchoring motif is fused to ChiS, the ChiS accumulates predominately in the culture medium. Taken together, these novel findings show that B. subtilis has a functional sortase for anchoring proteins to the cell wall. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Direct Comparison of Physical Properties of Bacillus subtilis NCIB 3610 and B-1 Biofilms

    Science.gov (United States)

    Kesel, Sara; Grumbein, Stefan; Gümperlein, Ina; Tallawi, Marwa; Marel, Anna-Kristina

    2016-01-01

    Many bacteria form surface-attached communities known as biofilms. Due to the extreme resistance of these bacterial biofilms to antibiotics and mechanical stresses, biofilms are of growing interest not only in microbiology but also in medicine and industry. Previous studies have determined the extracellular polymeric substances present in the matrix of biofilms formed by Bacillus subtilis NCIB 3610. However, studies on the physical properties of biofilms formed by this strain are just emerging. In particular, quantitative data on the contributions of biofilm matrix biopolymers to these physical properties are lacking. Here, we quantitatively investigated three physical properties of B. subtilis NCIB 3610 biofilms: the surface roughness and stiffness and the bulk viscoelasticity of these biofilms. We show how specific biomolecules constituting the biofilm matrix formed by this strain contribute to those biofilm properties. In particular, we demonstrate that the surface roughness and surface elasticity of 1-day-old NCIB 3610 biofilms are strongly affected by the surface layer protein BslA. For a second strain, B. subtilis B-1, which forms biofilms containing mainly γ-polyglutamate, we found significantly different physical biofilm properties that are also differently affected by the commonly used antibacterial agent ethanol. We show that B-1 biofilms are protected from ethanol-induced changes in the biofilm's stiffness and that this protective effect can be transferred to NCIB 3610 biofilms by the sole addition of γ-polyglutamate to growing NCIB 3610 biofilms. Together, our results demonstrate the importance of specific biofilm matrix components for the distinct physical properties of B. subtilis biofilms. PMID:26873313

  16. Effect of nanocomposite packaging containing ZnO on growth of Bacillus subtilis and Enterobacter aerogenes

    Energy Technology Data Exchange (ETDEWEB)

    Esmailzadeh, Hakimeh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Sangpour, Parvaneh, E-mail: Sangpour@merc.ac.ir [Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Karaj (Iran, Islamic Republic of); Shahraz, Farzaneh [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hejazi, Jalal [Department of Biochemistry and Nutrition, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan (Iran, Islamic Republic of); Khaksar, Ramin [National Nutrition and Food Technology Research Institute, Faculty of Nutrition and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of)

    2016-01-01

    Recent advances in nanotechnology have opened new windows in active food packaging. Nano-sized ZnO is an inexpensive material with potential antimicrobial properties. The aim of the present study is to evaluate the antibacterial effect of low density Polyethylene (LDPE) containing ZnO nanoparticles on Bacillus subtilis and Enterobacter aerogenes. ZnO nanoparticles have been synthesized by facil molten salt method and have been characterized by X-ray diffraction (XRD), and scanning electron microscopy (SEM). Nanocomposite films containing 2 and 4 wt.% ZnO nanoparticles were prepared by melt mixing in a twin-screw extruder. The growth of both microorganisms has decreased in the presence of ZnO containing nanocomposites compared with controls. Nanocomposites with 4 wt.% ZnO nanoparticles had stronger antibacterial effect against both bacteria in comparison with the 2 wt.% ZnO containing nanocomposites. B. subtilis as Gram-positive bacteria were more sensitive to ZnO containing nanocomposite films compared with E. aerogenes as Gram-negative bacteria. There were no significant differences between the migration of Zn ions from 2 and 4 wt.% ZnO containing nanocomposites and the released Zn ions were not significantly increased in both groups after 14 days compared with the first. Regarding the considerable antibacterial effects of ZnO nanoparticles, their application in active food packaging can be a suitable solution for extending the shelf life of food. - Highlights: • ZnO containing nanocomposites decreased growth of both B. subtilis and E. aerogenes. • B. subtilis was more sensitive to ZnO containing nanocomposites. • The migration of Zn ions from nanocomposites was negligible.

  17. Promoter Screening from Bacillus subtilis in Various Conditions Hunting for Synthetic Biology and Industrial Applications.

    Directory of Open Access Journals (Sweden)

    Yafeng Song

    Full Text Available The use of Bacillus subtilis in synthetic biology and metabolic engineering is highly desirable to take advantage of the unique metabolic pathways present in this organism. To do this, an evaluation of B. subtilis' intrinsic biological parts is required to determine the best strategies to accurately regulate metabolic circuits and expression of target proteins. The strengths of promoter candidates were evaluated by measuring relative fluorescence units of a green fluorescent protein reporter, integrated into B. subtilis' chromosome. A total of 84 predicted promoter sequences located upstream of different classes of proteins including heat shock proteins, cell-envelope proteins, and proteins resistant against toxic metals (based on similarity and other kinds of genes were tested. The expression levels measured ranged from 0.0023 to 4.53-fold of the activity of the well-characterized strong promoter P43. No significant shifts were observed when strains, carrying different promoter candidates, were cultured at high temperature or in media with ethanol, but some strains showed increased activity when cultured under high osmotic pressure. Randomly selected promoter candidates were tested and found to activate transcription of thermostable β-galactosidase (bgaB at a similar level, implying the ability of these sequences to function as promoter elements in multiple genetic contexts. In addition, selected promoters elevated the final production of both cytoplasmic bgaB and secreted protein α-amylase to about fourfold and twofold, respectively. The generated data allows a deeper understanding of B. subtilis' metabolism and will facilitate future work to develop this organism for synthetic biology.

  18. Rational improvement of the engineered isobutanol-producing Bacillus subtilis by elementary mode analysis

    Directory of Open Access Journals (Sweden)

    Li Shanshan

    2012-08-01

    Full Text Available Abstract Background Isobutanol is considered as a leading candidate for the replacement of current fossil fuels, and expected to be produced biotechnologically. Owing to the valuable features, Bacillus subtilis has been engineered as an isobutanol producer, whereas it needs to be further optimized for more efficient production. Since elementary mode analysis (EMA is a powerful tool for systematical analysis of metabolic network structures and cell metabolism, it might be of great importance in the rational strain improvement. Results Metabolic network of the isobutanol-producing B. subtilis BSUL03 was first constructed for EMA. Considering the actual cellular physiological state, 239 elementary modes (EMs were screened from total 11,342 EMs for potential target prediction. On this basis, lactate dehydrogenase (LDH and pyruvate dehydrogenase complex (PDHC were predicted as the most promising inactivation candidates according to flux flexibility analysis and intracellular flux distribution simulation. Then, the in silico designed mutants were experimentally constructed. The maximal isobutanol yield of the LDH- and PDHC-deficient strain BSUL05 reached 61% of the theoretical value to 0.36 ± 0.02 C-mol isobutanol/C-mol glucose, which was 2.3-fold of BSUL03. Moreover, this mutant produced approximately 70 % more isobutanol to the maximal titer of 5.5 ± 0.3 g/L in fed-batch fermentations. Conclusions EMA was employed as a guiding tool to direct rational improvement of the engineered isobutanol-producing B. subtilis. The consistency between model prediction and experimental results demonstrates the rationality and accuracy of this EMA-based approach for target identification. This network-based rational strain improvement strategy could serve as a promising concept to engineer efficient B. subtilis hosts for isobutanol, as well as other valuable products.

  19. Differences in Cold Adaptation of Bacillus subtilis under Anaerobic and Aerobic Conditions▿

    Science.gov (United States)

    Beranová, Jana; Mansilla, María C.; de Mendoza, Diego; Elhottová, Dana; Konopásek, Ivo

    2010-01-01

    Bacillus subtilis, which grows under aerobic conditions, employs fatty acid desaturase (Des) to fluidize its membrane when subjected to temperature downshift. Des requires molecular oxygen for its activity, and its expression is regulated by DesK-DesR, a two-component system. Transcription of des is induced by the temperature downshift and is decreased when membrane fluidity is restored. B. subtilis is also capable of anaerobic growth by nitrate or nitrite respiration. We studied the mechanism of cold adaptation in B. subtilis under anaerobic conditions that were predicted to inhibit Des activity. We found that in anaerobiosis, in contrast to aerobic growth, the induction of des expression after temperature downshift (from 37°C to 25°C) was not downregulated. However, the transfer from anaerobic to aerobic conditions rapidly restored the downregulation. Under both aerobic and anaerobic conditions, the induction of des expression was substantially reduced by the addition of external fluidizing oleic acid and was fully dependent on the DesK-DesR two-component regulatory system. Fatty acid analysis proved that there was no desaturation after des induction under anaerobic conditions despite the presence of high levels of the des protein product, which was shown by immunoblot analysis. The cold adaptation of B. subtilis in anaerobiosis is therefore mediated exclusively by the increased anteiso/iso ratio of branched-chain fatty acids and not by the temporarily increased level of unsaturated fatty acids that is typical under aerobic conditions. The degrees of membrane fluidization, as measured by diphenylhexatriene fluorescence anisotropy, were found to be similar under both aerobic and anaerobic conditions. PMID:20581210

  20. Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis

    Science.gov (United States)

    Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris

    2002-01-01

    The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313

  1. Osmoprotection of Bacillus subtilis through Import and Proteolysis of Proline-Containing Peptides

    Science.gov (United States)

    Zaprasis, Adrienne; Brill, Jeanette; Thüring, Marietta; Wünsche, Guido; Heun, Magnus; Barzantny, Helena; Hoffmann, Tamara

    2013-01-01

    Bacillus subtilis can attain cellular protection against the detrimental effects of high osmolarity through osmotically induced de novo synthesis and uptake of the compatible solute l-proline. We have now found that B. subtilis can also exploit exogenously provided proline-containing peptides of various lengths and compositions as osmoprotectants. Osmoprotection by these types of peptides is generally dependent on their import via the peptide transport systems (Dpp, Opp, App, and DtpT) operating in B. subtilis and relies on their hydrolysis to liberate proline. The effectiveness with which proline-containing peptides confer osmoprotection varies considerably, and this can be correlated with the amount of the liberated and subsequently accumulated free proline by the osmotically stressed cell. Through gene disruption experiments, growth studies, and the quantification of the intracellular proline pool, we have identified the PapA (YqhT) and PapB (YkvY) peptidases as responsible for the hydrolysis of various types of Xaa-Pro dipeptides and Xaa-Pro-Xaa tripeptides. The PapA and PapB peptidases possess overlapping substrate specificities. In contrast, osmoprotection by peptides of various lengths and compositions with a proline residue positioned at their N terminus was not affected by defects in the PapA and PapB peptidases. Taken together, our data provide new insight into the physiology of the osmotic stress response of B. subtilis. They illustrate the flexibility of this ubiquitously distributed microorganism to effectively exploit environmental resources in its acclimatization to sustained high-osmolarity surroundings through the accumulation of compatible solutes. PMID:23144141

  2. Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis

    Science.gov (United States)

    Vargas-Bautista, Carol; Rahlwes, Kathryn

    2014-01-01

    Bacillus subtilis is adaptable to many environments in part due to its ability to produce a broad range of bioactive compounds. One such compound, bacillaene, is a linear polyketide/nonribosomal peptide. The pks genes encode the enzymatic megacomplex that synthesizes bacillaene. The majority of pks genes appear to be organized as a giant operon (>74 kb from pksC-pksR). In previous work (P. D. Straight, M. A. Fischbach, C. T. Walsh, D. Z. Rudner, and R. Kolter, Proc. Natl. Acad. Sci. U. S. A. 104:305–310, 2007, doi:10.1073/pnas.0609073103), a deletion of the pks operon in B. subtilis was found to induce prodiginine production by Streptomyces coelicolor. Here, colonies of wild-type B. subtilis formed a spreading population that induced prodiginine production from Streptomyces lividans, suggesting differential regulation of pks genes and, as a result, bacillaene. While the parent colony showed widespread induction of pks expression among cells in the population, we found the spreading cells uniformly and transiently repressed the expression of the pks genes. To identify regulators that control pks genes, we first determined the pattern of pks gene expression in liquid culture. We next identified mutations in regulatory genes that disrupted the wild-type pattern of pks gene expression. We found that expression of the pks genes requires the master regulator of development, Spo0A, through its repression of AbrB and the stationary-phase regulator, CodY. Deletions of degU, comA, and scoC had moderate effects, disrupting the timing and level of pks gene expression. The observed patterns of expression suggest that complex regulation of bacillaene and other antibiotics optimizes competitive fitness for B. subtilis. PMID:24187085

  3. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    Science.gov (United States)

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Bacillus subtilis affects miRNAs and flavanoids production in Agrobacterium-Tobacco interaction.

    Science.gov (United States)

    Nazari, Fahimeh; Safaie, Naser; Soltani, Bahram Mohammad; Shams-Bakhsh, Masoud; Sharifi, Mohsen

    2017-09-01

    Agrobacterium tumefaciens is a very destructive plant pathogen. Selection of effective biological agents against this pathogen depends on more insight into molecular plant defence responses during the biocontrol agent-pathogen interaction. Auxin as a phytohormone is a key contributor in pathogenesis and plant defence and accumulation of auxin transport carriers are accompanied by increasing in flavonoid and miRNAs concentrations during plant interactions with bacteria. The aim of this research was molecular analysis of Bacillus subtilis (ATCC21332) biocontrol effect against A. tumefaciens (IBRC-M10701) pathogen interacting with Nicotiana tabacum plants. Tobacco plants were either treated with both or one of the challenging bacteria and the expression of miRNAs inside the plants were analysed through qRT-PCR. The results indicated that the bacterial treatments affect expression level of nta-miRNAs. In tobacco plants treated only with A. tumefaciens the expression of nta-miR393 was more than that was recorded for nta-miR167 (3.8 folds, P subtilis (2.1 folds, P subtilis alone, was similar to the amount recorded for the plants challenged with the both bacteria. This study suggests a relationship between the upregulation of nta-miR167, nta-miR393 and accumulation of flavanoid compounds. Overall, the expression of these miRNAs as well as flavonoid derivatives has the potential of being used as biomarkers for the interaction of B. subtilis and A. tumefaciens model system in N. tabacum. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Effects of the electrolytic treatment on Bacillus subtilis Efeito do tratamento eletrolítico em Bacillus subtis

    Directory of Open Access Journals (Sweden)

    Rodolfo Tolentino-Bisneto

    2003-11-01

    Full Text Available Conventional processes of water disinfection can generate toxic composites. It is the case of the trihalomethanes (carcinogenic formed in the contact of chlorine with organic substances present in the water. The electrolytic treatment can be a substitute for the chlorination process without the need for addition of chemical substances to the process. The effect of the electrolytic treatment using carbon cathode on the viability of the microorganism Bacillus subtilis was tested to determine the death process. By means of electronic microscopy, it was observed that the main cause of the microorganism's death was the cellular lysis due to the electroporation in the cell membrane.Processos convencionais de desinfecção de águas podem gerar compostos tóxicos. Esse é o caso dos trialometanos formados na reação do cloro com compostos orgânicos presentes na água. O tratamento eletrolítico pode ser um substituto à cloração com vantagem de não requer a adição de nenhum composto na água. O efeito do tratamento eletrolítico, utilizando eletrodos de carbono, na viabilidade de Bacillus subtilis foi testado para se determinar o mecanismo de morte. Através de microscopia eletrônica, foi possível evidenciar que a morte do microrganismo se deu pela lise celular, provavelmente provocada pela eletroporação irreversível da membrana celular.

  6. A comprehensive proteomic analysis of totarol induced alterations in Bacillus subtilis by multipronged quantitative proteomics.

    Science.gov (United States)

    Reddy, Panga Jaipal; Ray, Sandipan; Sathe, Gajanan J; Gajbhiye, Akshada; Prasad, T S Keshava; Rapole, Srikanth; Panda, Dulal; Srivastava, Sanjeeva

    2015-01-30

    The rapid emergence of microbial drug resistance indicates the urgent need for development of new antimicrobial agents. Bacterial cell division machinery is considered as a promising antimicrobial target. Totarol is a naturally existing diterpenoid, which has the ability to restrain bacterial growth by perturbing the cell division. The present study was conducted to investigate the proteomic alterations in Bacillus subtilis as a consequence of totarol treatment to decipher its mechanism of action and possible molecular targets. Cellular proteome of the totarol treated B. subtilis AH75 strain was analyzed by using multiple complementary proteomic approaches. After the drug treatment, 12, 38 and 139 differentially expressed (1.5 fold change) proteins were identified using 2-DE, DIGE and iTRAQ analyses, respectively. In silico functional analysis of the identified differentially expressed proteins indicated a possible effect of totarol on the central metabolism for energy production, heme biosynthesis and chemotaxis. Interestingly, the primary dehydrogenases, which play a vital role in generating the reducing equivalent, were found to be repressed after totarol treatment indicating an apparent metabolic shutdown. Consequently, multiple cellular assays including resazurin assay and FACS analysis of 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) staining confirmed the effect of totarol on respiratory activity and cellular metabolism. The exact mechanism of action of totarol is still unclear and further investigations are essential to identify the molecular/cellular targets of this potential antimicrobial agent. The present study demonstrates the application of differential proteome to decipher the mechanism of action and molecular targets of totarol in B. subtilis. Our quantitative proteome analysis revealed that totarol induced alterations in the expression levels of 139 proteins (1.5 fold change and ≥2 peptides) in B. subtilis. Findings obtained from this study

  7. Editing of the Bacillus subtilis Genome by the CRISPR-Cas9 System.

    Science.gov (United States)

    Altenbuchner, Josef

    2016-09-01

    The clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) systems are adaptive immune systems of bacteria. A type II CRISPR-Cas9 system from Streptococcus pyogenes has recently been developed into a genome engineering tool for prokaryotes and eukaryotes. Here, we present a single-plasmid system which allows efficient genome editing of Bacillus subtilis The plasmid pJOE8999 is a shuttle vector that has a pUC minimal origin of replication for Escherichia coli, the temperature-sensitive replication origin of plasmid pE194(ts) for B. subtilis, and a kanamycin resistance gene working in both organisms. For genome editing, it carries the cas9 gene under the control of the B. subtilis mannose-inducible promoter PmanP and a single guide RNA (sgRNA)-encoding sequence transcribed via a strong promoter. This sgRNA guides the Cas9 nuclease to its target. The 20-nucleotide spacer sequence at the 5' end of the sgRNA sequence, responsible for target specificity, is located between BsaI sites. Thus, the target specificity is altered by changing the spacer sequences via oligonucleotides fitted between the BsaI sites. Cas9 in complex with the sgRNA induces double-strand breaks (DSBs) at its target site. Repair of the DSBs and the required modification of the genome are achieved by adding homology templates, usually two PCR fragments obtained from both sides of the target sequence. Two adjacent SfiI sites enable the ordered integration of these homology templates into the vector. The function of the CRISPR-Cas9 vector was demonstrated by introducing two large deletions in the B. subtilis chromosome and by repair of the trpC2 mutation of B. subtilis 168. In prokaryotes, most methods used for scarless genome engineering are based on selection-counterselection systems. The disadvantages are often the lack of a suitable counterselection marker, the toxicity of the compounds needed for counterselection, and the requirement of certain mutations in the target

  8. The ability of the biological control agent Bacillus subtilis, strain BB, to colonise vegetable brassicas endophytically following seed inoculation

    NARCIS (Netherlands)

    Wulff, E.G.; Vuurde, van J.W.L.; Hockenhull, J.

    2003-01-01

    The ability of Bacillus subtilis, strain BB, to colonise cabbage seedlings endophytically was examined following seed inoculation. Strain BB was recovered from different plant parts including leaves (cotyledons), stem (hypocotyl) and roots. While high bacterial populations persisted in the roots and

  9. Modulation of Thiol-Disulfide Oxidoreductases for Increased Production of Disulfide-Bond-Containing Proteins in Bacillus subtilis

    NARCIS (Netherlands)

    Kouwen, Thijs R. H. M.; Dubois, Jean-Yves F.; Freudl, Roland; Quax, Wim J.; van Dijl, Jan Maarten

    2008-01-01

    Disulfide bonds are important for the correct folding, structural integrity, and activity of many biotechnologically relevant proteins. For synthesis and subsequent secretion of these proteins in bacteria, such as the well-known "cell factory" Bacillus subtilis, it is often the correct formation of

  10. Transcriptome analysis of temporal regulation of carbon metabolism by CcpA in Bacillus subtilis reveals additional target genes

    NARCIS (Netherlands)

    Lulko, Andrzej T.; Buist, Girbe; Kok, Jan; Kuipers, Oscar P.

    2007-01-01

    The pleiotropic regulator of carbon metabolism in Grampositive bacteria, CcpA, regulates gene expression by binding to so-called cre elements, which are located either upstream or in promoter regions, or in open-reading frames. In this study we compared the transcriptomes of Bacillus subtilis 168

  11. Evaluation of in situ valine production by Bacillus subtilis in young pigs

    DEFF Research Database (Denmark)

    Nørgaard, Jan Værum; Canibe, Nuria; Assadi Soumeh, Elham

    2016-01-01

    and blood amino acid (AA) concentrations when fed to piglets. Experiment 1 included 18 pigs (15.0±1.1 kg) fed one of three diets containing either 0.63 or 0.69 standardized ileal digestible (SID) Val : Lys, or 0.63 SID Val : Lys supplemented with a Bacillus subtilis mutant (mutant 1). Blood samples were...... obtained 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding and analyzed for AAs. In Experiment 2, 80 piglets (9.1±1.1 kg) were fed one of four diets containing 0.63 or 0.67 SID Val : Lys, or 0.63 SID Val : Lys supplemented with another Bacillus subtilis mutant (mutant 2) or its parent wild...... taken for AA analysis 0.5 h before feeding and at 1, 2, 3, 4, 5 and 6 h after feeding. In experiment 1, Bacillus subtilis mutant 1 tended (PExperiment 2. In Experiment 2, Bacillus subtilis mutant 2...

  12. Autoregulation of subtilin biosynthesis in Bacillus subtilis: the role of the spa-box in subtilin-responsive promoters

    NARCIS (Netherlands)

    Kleerebezem, M.; Bongers, R.; Rutten, G.; Vos, de W.M.; Kuipers, O.P.

    2004-01-01

    The production of the type 1 antimicrobial peptide (AMP) subtilin by Bacillus subtilis is regulated in a cell-density-dependent manner [Kleerebezem M, de Vos WM, Kuipers OP. The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winans SC,

  13. Phage display of an intracellular carboxylesterase of Bacillus subtilis : Comparison of sec and tat pathway export capabilities

    NARCIS (Netherlands)

    Droge, Melloney J.; Boersma, Ykelien L.; Braun, Peter G.; Buining, Robbert Jan; Julsing, Mattijs K.; Selles, Karin G. A.; van Dijl, Jan Maarten; Quax, Wim J.

    Using the phage display technology, a protein can be displayed at the surface of bacteriophages as a fusion to one of the phage coat proteins. Here we describe development of this method for fusion of an intracellular carboxylesterase of Bacillus subtilis to the phage minor coat protein g3p. The

  14. Analysis of the synergistic effect of radiation and heat on bacteriophage T4 and spores Bacillus subtilis

    International Nuclear Information System (INIS)

    Komarov, V.P.; Petin, V.G.

    1987-01-01

    Experimental data are interpreted in terms of a half-empiric model of synergism obtained for bacteriophage T4 and Bacillus subtilis spores exposed to ionizing radiation of different dose rates at elevated temperatures. The model permits to optimize the ratio of both factors for effective sterilization

  15. Bacillus subtilis strains at low-pressure: 5 kPa versus 101 kPa growth

    Data.gov (United States)

    National Aeronautics and Space Administration — Comparing the transcriptional responses of Bacillus subtilis strains WN624 and WN1106 at 5 kPa and 101 kPa. WN1106 is a 5 kPa-evolved strain with increased fitness...

  16. Temporal Expression of the Bacillus subtilis secA Gene, Encoding a Central Component of the Preprotein Translocase

    NARCIS (Netherlands)

    Herbort, Markus; Klein, Michael; Manting, Erik H.; Driessen, Arnold J.M.; Freudl, Roland

    1999-01-01

    In Bacillus subtilis, the secretion of extracellular proteins strongly increases upon transition from exponential growth to the stationary growth phase. It is not known whether the amounts of some or all components of the protein translocation apparatus are concomitantly increased in relation to the

  17. DNA-binding properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σ(D) proteins.

    Science.gov (United States)

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A Osman; Helmann, John D

    2011-01-01

    σ(D) proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the -10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.

  18. DNA-Binding Properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD Proteins▿

    Science.gov (United States)

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A. Osman; Helmann, John D.

    2011-01-01

    σD proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the −10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity. PMID:21097624

  19. DNA-Binding Properties of the Bacillus subtilis and Aeribacillus pallidus AC6 σD Proteins▿

    OpenAIRE

    Sevim, Elif; Gaballa, Ahmed; Beldüz, A. Osman; Helmann, John D.

    2010-01-01

    σD proteins from Aeribacillus pallidus AC6 and Bacillus subtilis bound specifically, albeit weakly, to promoter DNA even in the absence of core RNA polymerase. Binding required a conserved CG motif within the −10 element, and this motif is known to be recognized by σ region 2.4 and critical for promoter activity.

  20. Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi

    NARCIS (Netherlands)

    Wang, C.T.; Ji, B.P.; Li, B.; Nout, M.J.R.; Li, P.L.; Ji, H.; Chen, L.F.

    2006-01-01

    Bacillus subtilis DC33 producing a novel fibrinolytic enzyme was isolated from Ba-bao Douchi, a traditional soybean-fermented food in China. The strong fibrin-specific enzyme subtilisin FS33 was purified to electrophoretic homogeneity using the combination of various chromatographic steps. The

  1. Isolation of Bacillus subtilis as indicator in the disinfection of residual water by means of gamma radiation

    International Nuclear Information System (INIS)

    Mata J, M.; Colin C, A.; Lopez V, H.; Brena V, M.; Carrasco A, H.; Pavon R, S.

    2002-01-01

    In the attempt to get more alternatives of disinfection of residual water, the Bacillus subtilis was isolated by means of gamma radiation as a bio indicator of disinfection since it turned out to be resistant to the 5 KGy dose, comparing this one with other usual microorganisms as biondicators like E. coli and S typhimurium which turn out more sensitive to such dose. (Author)

  2. In vivo mutational analysis of YtvA from Bacillus subtilis: Mechanism of light activation of the general stress response

    NARCIS (Netherlands)

    Avila-Pérez, M.; Vreede, J.; Tang, Y.; Bende, O.; Losi, A.; Gärtner, W.; Hellingwerf, K.

    2009-01-01

    The general stress response of Bacillus subtilis can be activated by stimuli such as the addition of salt or ethanol and with blue light. In the latter response, YtvA activates sigma(B) through a cascade of Rsb proteins, organized in stressosomes. YtvA is composed of an N-terminal LOV (light,

  3. Effect of Mono and Di-rhamnolipids on Biofilms Pre-formed by Bacillus subtilis BBK006.

    Science.gov (United States)

    De Rienzo, Mayri A Díaz; Martin, Peter J

    2016-08-01

    Different microbial inhibition strategies based on the planktonic bacterial physiology have been known to have limited efficacy on the growth of biofilms communities. This problem can be exacerbated by the emergence of increasingly resistant clinical strains. Biosurfactants have merited renewed interest in both clinical and hygienic sectors due to their potential to disperse microbial biofilms. In this work, we explore the aspects of Bacillus subtilis BBK006 biofilms and examine the contribution of biologically derived surface-active agents (rhamnolipids) to the disruption or inhibition of microbial biofilms produced by Bacillus subtilis BBK006. The ability of mono-rhamnolipids (Rha-C10-C10) produced by Pseudomonas aeruginosa ATCC 9027 and the di-rhamnolipids (Rha-Rha-C14-C14) produced by Burkholderia thailandensis E264, and phosphate-buffered saline to disrupt biofilm of Bacillus subtilis BBK006 was evaluated. The biofilm produced by Bacillus subtilis BBK006 was more sensitive to the di-rhamnolipids (0.4 g/L) produced by Burkholderia thailandensis than the mono-rhamnolipids (0.4 g/L) produced by Pseudomonas aeruginosa ATCC 9027. Rhamnolipids are biologically produced compounds safe for human use. This makes them ideal candidates for use in new generations of bacterial dispersal agents and useful for use as adjuvants for existing microbial suppression or eradication strategies.

  4. Heterologous Gene Expression in Lactococcus lactis subsp. lactis : Synthesis, Secretion, and Processing of the Bacillus subtilis Neutral Protease

    NARCIS (Netherlands)

    Guchte, Maarten van de; Kodde, Jan; Vossen, Jos M.B.M. van der; Kok, Jan; Venema, Gerard

    1990-01-01

    The Bacillus subtilis nprE gene lacking its own promoter sequence was inserted in the lactococcal expression vector pMG36e. Upon introduction of the recombinant plasmid into Lactococcus lactis subsp. lactis strain MG1363, neutral protease activity could be visualized by the appearance of large

  5. Transcriptional regulation and adaptation to a high-fiber environment in Bacillus subtilis HH2 isolated from feces of the giant panda.

    Directory of Open Access Journals (Sweden)

    Ziyao Zhou

    Full Text Available In the giant panda, adaptation to a high-fiber environment is a first step for the adequate functioning of intestinal bacteria, as the high cellulose content of the gut due to the panda's vegetarian appetite results in a harsh environment. As an excellent producer of several enzymes and vitamins, Bacillus subtilis imparts various advantages to animals. In our previous study, we determined that several strains of B. subtilis isolated from pandas exhibited good cellulose decomposition ability, and we hypothesized that this bacterial species can survive in and adapt well to a high-fiber environment. To evaluate this hypothesis, we employed RNA-Seq technology to analyze the differentially expressed genes of the selected strain B. subtilis HH2, which demonstrates significant cellulose hydrolysis of different carbon sources (cellulose and glucose. In addition, we used bioinformatics software and resources to analyze the functions and pathways of differentially expressed genes. Interestingly, comparison of the cellulose and glucose groups revealed that the up-regulated genes were involved in amino acid and lipid metabolism or transmembrane transport, both of which are involved in cellulose utilization. Conversely, the down-regulated genes were involved in non-essential functions for bacterial life, such as toxin and bacteriocin secretion, possibly to conserve energy for environmental adaptation. The results indicate that B. subtilis HH2 triggered a series of adaptive mechanisms at the transcriptional level, which suggests that this bacterium could act as a probiotic for pandas fed a high-fiber diet, despite the fact that cellulose is not a very suitable carbon source for this bacterial species. In this study, we present a model to understand the dynamic organization of and interactions between various functional and regulatory networks for unicellular organisms in a high-fiber environment.

  6. Bacillus subtilis BY-kinase PtkA controls enzyme activity and localization of its protein substrates

    DEFF Research Database (Denmark)

    Jers, Carsten; Pedersen, Malene Mejer; Paspaliari, Dafni Katerina

    2010-01-01

    P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine-phosphorylated prote......P>Bacillus subtilis BY-kinase PtkA was previously shown to phosphorylate, and thereby regulate the activity of two classes of protein substrates: UDP-glucose dehydrogenases and single-stranded DNA-binding proteins. Our recent phosphoproteome study identified nine new tyrosine......-phosphorylated proteins in B. subtilis. We found that the majority of these proteins could be phosphorylated by PtkA in vitro. Among these new substrates, single-stranded DNA exonuclease YorK, and aspartate semialdehyde dehydrogenase Asd were activated by PtkA-dependent phosphorylation. Because enzyme activity...

  7. Characterisation of Potential Antimicrobial Targets in Bacillus spp. I. Aminotransferases and Methionine Regeneration in Bacillus subtilis

    Science.gov (United States)

    2002-07-01

    m6thionine A partir de kdtomdthiobutyrate, en utilisant les aminoacides aromatiques et de chaine ramifi6e. Le produit g6nmtique ybgE 6tait le plus actif de...Ia ph6nylalanine et Ia tyrosine comme donneurs amines. Par consequent, deux transaminases aminoacides putatives de chaine ramifi~e ont 6t6 identifi...canaline against B. subtilis in nutrient broth is possibly due to antagonism by exogenous Met or binding of canaline to exogenous protein. Experiments are

  8. The immunological characteristics and probiotic function of recombinant Bacillus subtilis spore expressing Clonorchis sinensis cysteine protease.

    Science.gov (United States)

    Tang, Zeli; Shang, Mei; Chen, Tingjin; Ren, Pengli; Sun, Hengchang; Qu, Hongling; Lin, Zhipeng; Zhou, Lina; Yu, Jinyun; Jiang, Hongye; Zhou, Xinyi; Li, Xuerong; Huang, Yan; Xu, Jin; Yu, Xinbing

    2016-12-19

    Clonorchiasis, a food-borne zoonosis, is caused by Clonorchis sinensis. The intestinal tract and bile ducts are crucial places for C. sinensis metacercariae to develop into adult worms. The endospore of Bacillus subtilis is an ideal oral immunization vehicle for delivery of heterologous antigens to intestine. Cysteine protease of C. sinensis (CsCP) is an endogenous key component in the excystment of metacercariae and other physiological or pathological processes. We constructed a fusion gene of CotC (a coat protein)-CsCP and obtained B. subtilis spores with recombinant plasmid of pEB03-CotC-CsCP (B.s-CotC-CsCP). CotC-CsCP expressed on spores' surface was detected by Western blotting and immunofluorescence. Immunological characteristics of recombinant spore coat protein were evaluated in a mouse model. The levels of CsCP-specific antibodies were detected by ELISA. Effects of recombinant spores on mouse intestine were evaluated by histological staining. The activities of biochemical enzymes in serum were assayed by microplate. Liver sections of infected mice were evaluated by Ishak score after Masson's trichrome. The B.s-CotC-CsCP spores displayed CsCP on their coat. Specific IgG and isotypes were significantly induced by coat proteins of B.s-CotC-CsCP spores after subcutaneous immunization. IgA levels in intestinal mucus and bile of B.s-CotC-CsCP orally treated mice significantly increased. Additionally, more IgA-secreting cells were observed in enteraden and lamina propria regions of the mouse jejunum, and an increased amount of acidic mucins in intestines were also observed. There were no significant differences in enzyme levels of serum among groups. No inflammatory injury was observed in the intestinal tissues of each group. The degree of liver fibrosis was significantly reduced after oral immunization with B.s-CotC-CsCP spores. Bacillus subtilis spores maintained the original excellent immunogenicity of CsCP expressed on their surface. Both local and systemic

  9. Bacillus subtilis subsp. subtilis CBMDC3f with antimicrobial activity against Gram-positive foodborne pathogenic bacteria: UV-MALDI-TOF MS analysis of its bioactive compounds.

    Science.gov (United States)

    Torres, M J; Petroselli, G; Daz, M; Erra-Balsells, R; Audisio, M C

    2015-06-01

    In this work a new Bacillus sp. strain, isolated from honey, was characterized phylogenetically. Its antibacterial activity against three relevant foodborne pathogenic bacteria was studied; the main bioactive metabolites were analyzed using ultraviolet matrix assisted laser desorption-ionization mass spectrometry (UV-MALDI MS). Bacillus CBMDC3f was phylogenetically characterized as Bacillus subtilis subsp. subtilis after rRNA analysis of the 16S subunit and the gyrA gene (access codes Genbank JX120508 and JX120516, respectively). Its antibacterial potential was evaluated against Listeria monocytogenes (9 strains), B. cereus (3 strains) and Staphylococcus aureus ATCC29213. Its cell suspension and cell-free supernatant (CFS) exerted significant anti-Listeria and anti-S. aureus activities, while the lipopeptides fraction (LF) also showed anti-B. cereus effect. The UV-MALDI-MS analysis revealed surfactin, iturin and fengycin in the CFS, whereas surfactin predominated in the LF. The CFS from CBMDC3f contained surfactin, iturin and fengycin with four, two and four homologues per family, respectively, whereas four surfactin, one iturin and one fengycin homologues were identified in the LF. For some surfactin homologues, their UV-MALDI-TOF/TOF (MS/MS; Laser Induced Decomposition method, LID) spectra were also obtained. Mass spectrometry analysis contributed with relevant information about the type of lipopeptides that Bacillus strains can synthesize. From our results, surfactin would be the main metabolite responsible for the antibacterial effect.

  10. EFEKTIVITAS BIOPESTISIDA BACILLUS SUBTILIS BNt 8 DAN PESTISIDA NABATI UNTUK PENGENDALIAN PENYAKIT HAWAR PELEPAH DAN UPIH DAUN JAGUNG

    Directory of Open Access Journals (Sweden)

    Nurasiah Djaenuddin

    2017-05-01

    Full Text Available Effectiveness of the biopesticide of Bacillus subtilis BNt 8 and botanical pesticide in controlling banded leaf and sheath blight disease on maize. Banded leaf and sheath blight disease (BLSB caused by the fungus Rhizoctonia solani is difficult to control because it pertained soil borne fungus that can survive in a long time in the soil. Control the disease with synthetic pesticide causing contamination to the environment, so that an environmentally friendly alternative control is needed. This study aimed to obtain a Bacillus subtilis formulation as biological agents and selected botanical pesticides that effective to control BLSB in the field. The study was conducted at the Plant Pathology Laboratory of Indonesia Cereals Research Institute in Maros and at the Bajeng Experimental Farm in Gowa, held from February to August 2015. The reatments consists of several botanical pesticides, B. subtilis formulation, a synthetic fungicide, positive and negative controls. In vitro test was inhibition test between botanical pesticide with R. solani and antagonistic test between the B. subtilis and botanical pesticides, each of them consists of 6 treatments and 3 replications, while the field activity consists of test of effectiveness of single treatment and combination between B. subtilis formulation and botanical pesticides. The results showed that combination of formulated B. subtilis with botanical pesticide of cloves leaves, betel leaves, and turmeric were not significantly different from single treatment of formulated B. subtilis and botanical pesticides. Formulated B. subtilis suppressed the severity of BLSB as much as 39.1% and yield reached 8.4 t/ha.

  11. Decontamination of Bacillus subtilis Spores in a Sealed Package Using a Non-thermal Plasma System

    Science.gov (United States)

    Keener, Kevin M.; Jensen, J. L.; Valdramidis, V. P.; Byrne, E.; Connolly, J.; Mosnier, J. P.; Cullen, P. J.

    The safety of packaged food and medical devices is a major concern to consumers and government officials. Recent inventions (PK-1 and PK-2) based on the principles of non-thermal, atmospheric plasma has shown significant reduction in bacterial contamination inside a sealed package. The objective of this study was to evaluate the PK-1 and PK-2 systems in the reduction of Bacillus subtilis spores using packages containing air or modified atmosphere (MA) gas (65% O2/30% CO2/5% N2). The experimental design consisted of the following parameters: (1) two voltage conditions: 13.5 kV with 1.0 cm electrode gap (PK-1) and 80 kV with 4.5 cm electrode gap (PK-2), (2) two treatment conditions: inside and outside the field of ionization, (3) PK-1 and PK-2 optimized treatment times: 300 and 120 s, respectively, and (4) two package gas types: air and modified atmosphere (MA) gas (65% O2/30% CO2/5% N2). Measurements included: (1) bacterial reductions of Bacillus subtilis var. niger (B. atrophaeus), (2) ozone, nitrous oxides (NOx), and carbon monoxide concentrations, and (3) relative humidity. Bacillus subtilis (1.7 × 106/strip) were loaded into sterile uncovered petri dishes and treated with ionization generated in packages using air or MA gas blend. Samples were treated for 300 s (PK-1) or 120 s (PK-2) and stored at room ­temperature for 24 h. Results documented relative humidity (RH) ranged from 20% to 30%. After 300 s of PK-1 treatment (13.5 kV/44 W/1.0 cm gap), ozone concentrations were 6,000 ppm (air) and 7,500 ppm (MA). After 120 s of PK-2 treatment (80 kV/150 W/4.5 cm), ozone concentrations were 7,500 ppm (air) and 12,000 ppm (MA). Ozone and NOx concentrations were non-detect (ND) after 24 h. PK-1 carbon monoxide levels were package ionization process.

  12. Isolation and characterization of radioresistant mutants in Bacillus subtilis and Bacillus thuringiensis

    International Nuclear Information System (INIS)

    Kalinin, V.L.; Petrov, V.N.; Petrova, T.M.

    1981-01-01

    Vegetative cells of Bac. thuringiensis var. galleriae (the wild-type strain 351) are much more sensitive to lethal effects of UV light and 60 Co-γ-rays than those of Bac. subtilis (the wild-type strain 168). This difference is less pronounced for spores of these strains. By means of repeated γ-irradiation-regrowth cycles radioresistant mutants Bac. thuringiensis Gamsup(r) 14 and Bac. subtilis Gamsup(r) 9 were selected. The vegetative cells of these mutants are correspondingly 19 times and 3.9 times more resistant to lethal effects of γ-radiation than the cells of the parental strains. The resistance of the Gamsup(r) mutant cells to lethal effects of UV light and H 2 O 2 is also increased. The spores of the Gamsup(r) 14 mutant are 1.5-1.7 times more resistant to γ-radiation and UV light than the wild-type spores. The radioresistant mutants and the parental strains do not vary in their capacity for host-cell reactivation of UV- or γ-irradiated phages Tg13 and 105

  13. Acción adyuvante de esporas de Bacillus subtilis por vía mucosa

    Directory of Open Access Journals (Sweden)

    Fabiana Tub-Chafer

    2016-04-01

    Full Text Available Las esporas de Bacillus subtilis, generalmente reconocidas como seguras, han recibido una creciente atención en aplicaciones biotecnológicas en formulaciones vacunales, sobre todo como adyuvantes. Este trabajo presenta una revisión actualizada de la acción adyuvante de las esporas de B. subtilis y conjuntamente se expone nuestra experiencia por vía oral (o.r e intranasal (i.n como adyuvante frente antígenos modelos ovoalbúmina (Ova y toxoide tetánico (TT. Se realizó una revisión documental sobre B. subtilis, adyuvante, vacuna y vía mucosal en MEDLINE a través de PubMed; también se revisaron las bases de datos SciELO y LILACS. Para la exploración de la capacidad adyuvante se trabajó con esporas de B. subtilis (cepa RG 4365. Se inmunizaron ratones Balb/c por vía mucosal con esporas coadministradas con los antígenos modelos, y se midió las respuesta de anticuerpos específicos en suero, saliva y heces por método de ELISA. La revisión realizada evidenció la existencia de varios trabajos que utilizan las esporas de B. subtilis por diferentes metodologías y vías de administración como adyuvante, siendo la expresión de antígenos recombinantes la más utilizada, así como la vía o.r entre la aplicación mucosa. En nuestro trabajo se obtuvo un aumento de la respuesta sérica de IgG, subclases IgG1 e IgG2a y de IgA específicos en saliva y heces en los grupos inmunizados con esporas coadministradas con Ova y con TT por ambas vías, significativamente superior a los grupos controles (p<0,05. Estos datos sugieren que las esporas son eficientes adyuvantes pues aumentan la respuesta inmune humoral sistémica y mucosal y resalta su potencial clínico en futuras vacunas mucosales.

  14. Time Series Analysis of theBacillus subtilisSporulation Network Reveals Low Dimensional Chaotic Dynamics.

    Science.gov (United States)

    Lecca, Paola; Mura, Ivan; Re, Angela; Barker, Gary C; Ihekwaba, Adaoha E C

    2016-01-01

    Chaotic behavior refers to a behavior which, albeit irregular, is generated by an underlying deterministic process. Therefore, a chaotic behavior is potentially controllable. This possibility becomes practically amenable especially when chaos is shown to be low-dimensional, i.e., to be attributable to a small fraction of the total systems components. In this case, indeed, including the major drivers of chaos in a system into the modeling approach allows us to improve predictability of the systems dynamics. Here, we analyzed the numerical simulations of an accurate ordinary differential equation model of the gene network regulating sporulation initiation in Bacillus subtilis to explore whether the non-linearity underlying time series data is due to low-dimensional chaos. Low-dimensional chaos is expectedly common in systems with few degrees of freedom, but rare in systems with many degrees of freedom such as the B. subtilis sporulation network. The estimation of a number of indices, which reflect the chaotic nature of a system, indicates that the dynamics of this network is affected by deterministic chaos. The neat separation between the indices obtained from the time series simulated from the model and those obtained from time series generated by Gaussian white and colored noise confirmed that the B. subtilis sporulation network dynamics is affected by low dimensional chaos rather than by noise. Furthermore, our analysis identifies the principal driver of the networks chaotic dynamics to be sporulation initiation phosphotransferase B (Spo0B). We then analyzed the parameters and the phase space of the system to characterize the instability points of the network dynamics, and, in turn, to identify the ranges of values of Spo0B and of the other drivers of the chaotic dynamics, for which the whole system is highly sensitive to minimal perturbation. In summary, we described an unappreciated source of complexity in the B. subtilis sporulation network by gathering

  15. A new-generation of Bacillus subtilis cell factory for further elevated scyllo-inositol production.

    Science.gov (United States)

    Tanaka, Kosei; Natsume, Ayane; Ishikawa, Shu; Takenaka, Shinji; Yoshida, Ken-Ichi

    2017-04-21

    A stereoisomer of inositol, scyllo-inositol (SI), has been regarded as a promising therapeutic agent for Alzheimer's disease. However, this compound is relatively rare, whereas another stereoisomer of inositol, myo-inositol (MI) is abundant in nature. Bacillus subtilis 168 has the ability to metabolize inositol stereoisomers, including MI and SI. Previously, we reported a B. subtilis cell factory with modified inositol metabolism that converts MI into SI in the culture medium. The strain was constructed by deleting all genes related to inositol metabolism and overexpressing key enzymes, IolG and IolW. By using this strain, 10 g/l of MI initially included in the medium was completely converted into SI within 48 h of cultivation in a rich medium containing 2% (w/v) Bacto soytone. When the initial concentration of MI was increased to 50 g/l, conversion was limited to 15.1 g/l of SI. Therefore, overexpression systems of IolT and PntAB, the main transporter of MI in B. subtilis and the membrane-integral nicotinamide nucleotide transhydrogenase in Escherichia coli respectively, were additionally introduced into the B. subtilis cell factory, but the conversion efficiency hardly improved. We systematically determined the amount of Bacto soytone necessary for ultimate conversion, which was 4% (w/v). As a result, the conversion of SI reached to 27.6 g/l within 48 h of cultivation. The B. subtilis cell factory was improved to yield a SI production rate of 27.6 g/l/48 h by simultaneous overexpression of IolT and PntAB, and by addition of 4% (w/v) Bacto soytone in the conversion medium. The concentration of SI was increased even in the stationary phase perhaps due to nutrients in the Bacto soytone that contribute to the conversion process. Thus, MI conversion to SI may be further optimized via identification and control of these unknown nutrients.

  16. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Mun Su [University of Florida, Gainesville; Moritz, Brelan E. [University of Florida, Gainesville; Xie, Gary [Los Alamos National Laboratory (LANL); Glavina Del Rio, Tijana [U.S. Department of Energy, Joint Genome Institute; Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Bruce, David [Los Alamos National Laboratory (LANL); Goodwin, Lynne A. [Los Alamos National Laboratory (LANL); Chertkov, Olga [Los Alamos National Laboratory (LANL); Brettin, Thomas S [ORNL; Han, Cliff [Los Alamos National Laboratory (LANL); Detter, J. Chris [U.S. Department of Energy, Joint Genome Institute; Pitluck, Sam [U.S. Department of Energy, Joint Genome Institute; Land, Miriam L [ORNL; Patel, Milind [University of Florida, Gainesville; Ou, Mark [University of Florida, Gainesville; Harbrucker, Roberta [University of Florida, Gainesville; Ingram, Lonnie O. [University of Florida; Shanmugam, Keelnathan T. [University of Florida

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer- ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this spo- rogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attrac- tive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi- cellulose. This bacterium is also considered as a potential probiotic. Complete genome se- quence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  17. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Gary [Los Alamos National Laboratory (LANL); Dalin, Eileen [U.S. Department of Energy, Joint Genome Institute; Tice, Hope [U.S. Department of Energy, Joint Genome Institute; Chertkov, Olga [Los Alamos National Laboratory (LANL); Land, Miriam L [ORNL

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 C and pH 5.0 and fer-ments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemi-cellulose. This bacterium is also considered as a potential probiotic. Complete genome squence of a representative strain, B. coagulans strain 36D1, is presented and discussed.

  18. Complete Genome Sequence of a thermotolerant sporogenic lactic acid bacterium, Bacillus coagulans strain 36D1

    Science.gov (United States)

    Rhee, Mun Su; Moritz, Brélan E.; Xie, Gary; Glavina del Rio, T.; Dalin, E.; Tice, H.; Bruce, D.; Goodwin, L.; Chertkov, O.; Brettin, T.; Han, C.; Detter, C.; Pitluck, S.; Land, Miriam L.; Patel, Milind; Ou, Mark; Harbrucker, Roberta; Ingram, Lonnie O.; Shanmugam, K. T.

    2011-01-01

    Bacillus coagulans is a ubiquitous soil bacterium that grows at 50-55 °C and pH 5.0 and ferments various sugars that constitute plant biomass to L (+)-lactic acid. The ability of this sporogenic lactic acid bacterium to grow at 50-55 °C and pH 5.0 makes this organism an attractive microbial biocatalyst for production of optically pure lactic acid at industrial scale not only from glucose derived from cellulose but also from xylose, a major constituent of hemicellulose. This bacterium is also considered as a potential probiotic. Complete genome sequence of a representative strain, B. coagulans strain 36D1, is presented and discussed. PMID:22675583

  19. A dual control mechanism synchronizes riboflavin and sulphur metabolism in Bacillus subtilis

    Science.gov (United States)

    Pedrolli, Danielle Biscaro; Kühm, Christian; Sévin, Daniel C.; Vockenhuber, Michael P.; Sauer, Uwe; Suess, Beatrix; Mack, Matthias

    2015-01-01

    Flavin mononucleotide (FMN) riboswitches are genetic elements, which in many bacteria control genes responsible for biosynthesis and/or transport of riboflavin (rib genes). Cytoplasmic riboflavin is rapidly and almost completely converted to FMN by flavokinases. When cytoplasmic levels of FMN are sufficient (“high levels”), FMN binding to FMN riboswitches leads to a reduction of rib gene expression. We report here that the protein RibR counteracts the FMN-induced “turn-off” activities of both FMN riboswitches in Bacillus subtilis, allowing rib gene expression even in the presence of high levels of FMN. The reason for this secondary metabolic control by RibR is to couple sulfur metabolism with riboflavin metabolism. PMID:26494285

  20. Stability and activity profile of alkaline protease produced from bacillus subtilis

    International Nuclear Information System (INIS)

    Anjum, S.; Mukhtar, H.; Nawaz, A.; Haq, I.U.

    2015-01-01

    The present study gives an insight into the effect of different activators and inhibitors on the activity and stability of alkaline proteases produced by Bacillus subtilis IH-72. The alkaline protease was strongly activated both by bivalent and monovalent cations such as Mg/sup 2+/, Mn/sup 2+/, Na/sup +/ and K/sup +/. The enzyme activity was considerably enhanced in the presence of fructose, galactose, glucose and mannitol. The enzyme was stabilized up to 10 days by immobilization on activated charcoal and was efficiently stabilized up to 2 months by lyophilization. The enzyme remained stable up to 19 days both at 4 degree C and 30 degree C in the presence of Mn/sup 2+/. However, it exhibited significant stability up to 22 days at 4 degree C and 30 degree C in the presence of fructose, galactose and polyethylene glycol. (author)

  1. Morphogenesis of bacteriophage phi29 of Bacillus subtilis: cleavage and assembly of the neck appendage protein

    International Nuclear Information System (INIS)

    Tosi, M.E.; Reilly, B.E.; Anderson, D.L.

    1975-01-01

    Each of the 12 neck appendages of the Bacillus subtilis bacteriophage phi 29 consists of a single protein molecular weight of about 75,000, and on the mature virion the appendages are assembled to the lower of two collars. The appendage protein is cleaved from a percursor protein, P(J), with a molecular weight of about 88,000. This cleavage is independent of neck assembly, occurring during infection by mutants that cannot synthesize the proteins of the upper and lower collars of the neck. The cleaved form of the appendage protein is efficiently complemented in vitro to particles lacking appendages. Thus, cleavage of the appendage precursor protein apparently does not occur in situ on the maturing virus

  2. DNA repair in Bacillus subtilis: excision repair capacity of competent cells

    International Nuclear Information System (INIS)

    Yasbin, R.E.; Fernwalt, J.D.; Fields, P.I.

    1979-01-01

    Competent Bacillus subtilis were investigated for their ability to support the repair of uv-irradiated bacteriophage and bacteriophage DNA. uv-irradiated bacteriophage DNA cannot be repaired to the same level as uv-irradiated bacteriophage, suggesting a deficiency in the ability of competent cells to repair uv damage. However, competent cells were as repair proficient as noncompetent cells in their ability to repair irradiated bacteriophage in marker rescue experiments. The increased sensitivity of irradiated DNA is shown to be due to the inability of excision repair to function on transfecting DNA in competent bacteria. Furthermore, competent cells show no evidence of possessing an inducible BsuR restriction system to complement their inducible BsuR modification enzyme

  3. Methyl group turnover on methyl-accepting chemotaxis proteins during chemotaxis by Bacillus subtilis

    International Nuclear Information System (INIS)

    Thoelke, M.S.; Casper, J.M.; Ordal, G.W.

    1990-01-01

    The addition of attractant to Bacillus subtilis briefly exposed to radioactive methionine causes an increase of labeling of the methyl-accepting chemotaxis proteins. The addition of attractant to cells radiolabeled for longer times shows no change in the extent of methylation. Therefore, the increase in labeling for the briefly labeled cells is due to an increased turnover of methyl groups caused by attractant. All amino acids gave enhanced turnover. This turnover lasted for a prolonged time, probably spanning the period of smooth swimming caused by the attractant addition. Repellent did not affect the turnover when added alone or simultaneously with attractant. Thus, for amino acid attractants, the turnover is probably the excitatory signal, which is seen to extend long into or throughout the adaptation period, not just at the start of it

  4. Optimizing Carbon/Nitrogen Ratio for Biosurfactant Production by a Bacillus subtilis Strain

    Science.gov (United States)

    Fonseca, R. R.; Silva, A. J. R.; de Franca, F. P.; Cardoso, V. L.; Sérvulo, E. F. C.

    A Bacillus subtilis strain isolated from contaminated soil from a refinery has been screened for biosurfactant production in crystal sugar (sucrose) with different nitrogen sources (NaNO3' (NH4)2SO4' urea, and residual brewery yeast). The highest reduction in surface tension was achieved with a 48-h fermentation of crystal sugar and ammonium nitrate. Optimization of carbon/nitrogen ratio (3,9, and 15) and agitation rate (50, 150, and 250 rpm) for biosurfactant production was carried out using complete factorial design and response surface analysis. The condition of C/N 3 and 250 rpm allowed the maximum increase in surface activity of biosurfactant. A suitable model has been developed, having presented great accordance experimental data. Preliminary characterization of the bioproduct suggested it to be a lipopeptide with some isomers differing from those of a commercial surfactin.

  5. Effect of UV-irradiation on DNA-membrane complex of Bacillus subtilis

    International Nuclear Information System (INIS)

    Chefranova, O.A.; Gaziev, A.I.

    1979-01-01

    The UV radiation effect on DNA membrane complex of Bacillus subtilis has been studied. Increase of DNA content in the DNA membrane complex in two strains of 168 and recA - and its decrease in the polA - strain are shown. The above effect in the first two stamms is suppressed with caffeine and correlates with the change in protein content in the DNA membrane complex, determined by a radioactive label, but not lipids in other words, fixation of DNA and membrane goes through proteins. Capability of DNA content increase in the DNA membrane complex after UV irradiation and subsequent bacteria incubation in a total medium correlates with the relative sensitivity of stamm UV sensitivity. It is suggested, that the reparation synthesis goes in cells on the membrane and that binding of DNA and the membrane is necessary for the normal DNA reparation process

  6. Effects of solar ultraviolet radiations on Bacillus subtilis spores and T-7 bacteriophage

    Science.gov (United States)

    Spizizen, J.; Isherwood, J. E.; Taylor, G. R.

    1975-01-01

    Spores of Bacillus subtilis HA 101 and the DNA polymerase I-defective mutant HA 101 (59)F were exposed to selected wavelengths of solar ultraviolet light and space vacuum during the return of Apollo 16. In addition, coliphage T-7 suspensions were exposed to solar ultraviolet radiation as part of the Microbial Response to Space Environment Experiment. Optical filters were employed to provide different energy levels at wavelengths 254 nm and 280 nm. Dose-response curves for lethal and mutagenic effects were compared with ground-based data. A close parallel was observed between the results of solar radiation and ground tests with spores of the two strains. However, significantly greater inactivation of T-7 bacteriophage was observed after exposure to solar ultraviolet radiation.

  7. Bacillus subtilis 168 RecR protein-DNA complexes visualized as looped structures.

    Science.gov (United States)

    Ayora, S; Stiege, A C; Lurz, R; Alonso, J C

    1997-03-18

    The Bacillus subtilis 168 RecR protein bound to duplex DNA in the presence of ATP and divalent cations (Mg2+ and Zn2+) was visualized by electron microscopy as a nearly spherical particle. A RecR homomultimer is frequently located at the intersection of two duplex DNA strands in an interwound DNA molecule, generating DNA loops of variable length. Two individual DNA molecules bound to the same protein are seen at a very low frequency, if at all. The association of RecR with the intersection of two duplex DNA strands is more often seen in supercoiled than with relaxed or linear DNA. The RecR protein displays a slight but significant preference for negatively supercoiled over linear DNA. The minimum substrate size for RecR protein is about 150 bp in length. A possible mechanism for RecR function in DNA repair is discussed.

  8. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit.

    Directory of Open Access Journals (Sweden)

    Andrew Mugler

    2016-03-01

    Full Text Available Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.

  9. Noise Expands the Response Range of the Bacillus subtilis Competence Circuit.

    Science.gov (United States)

    Mugler, Andrew; Kittisopikul, Mark; Hayden, Luke; Liu, Jintao; Wiggins, Chris H; Süel, Gürol M; Walczak, Aleksandra M

    2016-03-01

    Gene regulatory circuits must contend with intrinsic noise that arises due to finite numbers of proteins. While some circuits act to reduce this noise, others appear to exploit it. A striking example is the competence circuit in Bacillus subtilis, which exhibits much larger noise in the duration of its competence events than a synthetically constructed analog that performs the same function. Here, using stochastic modeling and fluorescence microscopy, we show that this larger noise allows cells to exit terminal phenotypic states, which expands the range of stress levels to which cells are responsive and leads to phenotypic heterogeneity at the population level. This is an important example of how noise confers a functional benefit in a genetic decision-making circuit.

  10. A model of cell-wall dynamics during sporulation in Bacillus subtilis

    Science.gov (United States)

    Yap, Li-Wei; Endres, Robert G.

    To survive starvation, Bacillus subtilis forms durable spores. After asymmetric cell division, the septum grows around the forespore in a process called engulfment, but the mechanism of force generation is unknown. Here, we derived a novel biophysical model for the dynamics of cell-wall remodeling during engulfment based on a balancing of dissipative, active, and mechanical forces. By plotting phase diagrams, we predict that sporulation is promoted by a line tension from the attachment of the septum to the outer cell wall, as well as by an imbalance in turgor pressures in the mother-cell and forespore compartments. We also predict that significant mother-cell growth hinders engulfment. Hence, relatively simple physical principles may guide this complex biological process.

  11. One-step chromatographic purification of Helicobacter pylori neutrophil-activating protein expressed in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Kuo-Shun Shih

    Full Text Available Helicobacter pylori neutrophil-activating protein (HP-NAP, a major virulence factor of Helicobacter pylori (H. pylori, is capable of activating human neutrophils to produce reactive oxygen species (ROS and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis. This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection.

  12. Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB.

    Directory of Open Access Journals (Sweden)

    Luz Méndez-Lorenzo

    Full Text Available Levansucrase catalyzes the synthesis of fructose polymers through the transfer of fructosyl units from sucrose to a growing fructan chain. Levanase activity of Bacillus subtilis levansucrase has been described since the very first publications dealing with the mechanism of levan synthesis. However, there is a lack of qualitative and quantitative evidence regarding the importance of the intrinsic levan hydrolysis of B. subtilis levansucrase and its role in the levan synthesis process. Particularly, little attention has been paid to the long-term hydrolysis products, including its participation in the final levan molecules distribution. Here, we explored the hydrolytic and transferase activity of the B. subtilis levansucrase (SacB when levans produced by the same enzyme are used as substrate. We found that levan is hydrolyzed through a first order exo-type mechanism, which is limited to a conversion extent of around 30% when all polymer molecules reach a structure no longer suitable to SacB hydrolysis. To characterize the reaction, Isothermal Titration Calorimetry (ITC was employed and the evolution of the hydrolysis products profile followed by HPLC, GPC and HPAEC-PAD. The ITC measurements revealed a second step, taking place at the end of the reaction, most probably resulting from disproportionation of accumulated fructo-oligosaccharides. As levanase, levansucrase may use levan as substrate and, through a fructosyl-enzyme complex, behave as a hydrolytic enzyme or as a transferase, as demonstrated when glucose and fructose are added as acceptors. These reactions result in a wide variety of oligosaccharides that are also suitable acceptors for fructo-oligosaccharide synthesis. Moreover, we demonstrate that SacB in the presence of levan and glucose, through blastose and sucrose synthesis, results in the same fructooligosaccharides profile as that observed in sucrose reactions. We conclude that SacB has an intrinsic levanase activity that

  13. One-Step Chromatographic Purification of Helicobacter pylori Neutrophil-Activating Protein Expressed in Bacillus subtilis

    Science.gov (United States)

    Shih, Kuo-Shun; Lin, Chih-Chang; Hung, Hsiao-Fang; Yang, Yu-Chi; Wang, Chung-An; Jeng, Kee-Ching; Fu, Hua-Wen

    2013-01-01

    Helicobacter pylori neutrophil-activating protein (HP-NAP), a major virulence factor of Helicobacter pylori (H. pylori), is capable of activating human neutrophils to produce reactive oxygen species (ROS) and secrete inammatory mediators. HP-NAP is a vaccine candidate, a possible drug target, and a potential in vitro diagnostic marker for H. pylori infection. HP-NAP has also been shown to be a novel therapeutic agent for the treatment of allergic asthma and bladder cancer. Hence, an efficient way to obtain pure HP-NAP needs to be developed. In this study, one-step anion-exchange chromatography in negative mode was applied to purify the recombinant HP-NAP expressed in Bacillus subtilis (B. subtilis). This purification technique was based on the binding of host cell proteins and/or impurities other than HP-NAP to DEAE Sephadex resins. At pH 8.0, almost no other proteins except HP-NAP passed through the DEAE Sephadex column. More than 60% of the total HP-NAP with purity higher than 91% was recovered in the flow-through fraction from this single-step DEAE Sephadex chromatography. The purified recombinant HP-NAP was further demonstrated to be a multimeric protein with a secondary structure of α-helix and capable of activating human neutrophils to stimulate ROS production. Thus, this one-step negative chromatography using DEAE Sephadex resin can efficiently yield functional HP-NAP from B. subtilis in its native form with high purity. HP-NAP purified by this method could be further utilized for the development of new drugs, vaccines, and diagnostics for H. pylori infection. PMID:23577158

  14. A Conserved Metal Binding Motif in the Bacillus subtilis Competence Protein ComFA Enhances Transformation.

    Science.gov (United States)

    Chilton, Scott S; Falbel, Tanya G; Hromada, Susan; Burton, Briana M

    2017-08-01

    Genetic competence is a process in which cells are able to take up DNA from their environment, resulting in horizontal gene transfer, a major mechanism for generating diversity in bacteria. Many bacteria carry homologs of the central DNA uptake machinery that has been well characterized in Bacillus subtilis It has been postulated that the B. subtilis competence helicase ComFA belongs to the DEAD box family of helicases/translocases. Here, we made a series of mutants to analyze conserved amino acid motifs in several regions of B. subtilis ComFA. First, we confirmed that ComFA activity requires amino acid residues conserved among the DEAD box helicases, and second, we show that a zinc finger-like motif consisting of four cysteines is required for efficient transformation. Each cysteine in the motif is important, and mutation of at least two of the cysteines dramatically reduces transformation efficiency. Further, combining multiple cysteine mutations with the helicase mutations shows an additive phenotype. Our results suggest that the helicase and metal binding functions are two distinct activities important for ComFA function during transformation. IMPORTANCE ComFA is a highly conserved protein that has a role in DNA uptake during natural competence, a mechanism for horizontal gene transfer observed in many bacteria. Investigation of the details of the DNA uptake mechanism is important for understanding the ways in which bacteria gain new traits from their environment, such as drug resistance. To dissect the role of ComFA in the DNA uptake machinery, we introduced point mutations into several motifs in the protein sequence. We demonstrate that several amino acid motifs conserved among ComFA proteins are important for efficient transformation. This report is the first to demonstrate the functional requirement of an amino-terminal cysteine motif in ComFA. Copyright © 2017 American Society for Microbiology.

  15. Comprehensive analysis of temporal alterations in cellular proteome of Bacillus subtilis under curcumin treatment.

    Directory of Open Access Journals (Sweden)

    Panga Jaipal Reddy

    Full Text Available Curcumin is a natural dietary compound with antimicrobial activity against various gram positive and negative bacteria. This study aims to investigate the proteome level alterations in Bacillus subtilis due to curcumin treatment and identification of its molecular/cellular targets to understand the mechanism of action. We have performed a comprehensive proteomic analysis of B. subtilis AH75 strain at different time intervals of curcumin treatment (20, 60 and 120 min after the drug exposure, three replicates to compare the protein expression profiles using two complementary quantitative proteomic techniques, 2D-DIGE and iTRAQ. To the best of our knowledge, this is the first comprehensive longitudinal investigation describing the effect of curcumin treatment on B. subtilis proteome. The proteomics analysis revealed several interesting targets such UDP-N-acetylglucosamine 1-carboxyvinyltransferase 1, putative septation protein SpoVG and ATP-dependent Clp protease proteolytic subunit. Further, in silico pathway analysis using DAVID and KOBAS has revealed modulation of pathways related to the fatty acid metabolism and cell wall synthesis, which are crucial for cell viability. Our findings revealed that curcumin treatment lead to inhibition of the cell wall and fatty acid synthesis in addition to differential expression of many crucial proteins involved in modulation of bacterial metabolism. Findings obtained from proteomics analysis were further validated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC assay for respiratory activity, resazurin assay for metabolic activity and membrane integrity assay by potassium and inorganic phosphate leakage measurement. The gene expression analysis of selected cell wall biosynthesis enzymes has strengthened the proteomics findings and indicated the major effect of curcumin on cell division.

  16. Biosynthesis of aliphatic polyketides by type III polyketide synthase and methyltransferase in Bacillus subtilis.

    Science.gov (United States)

    Nakano, Chiaki; Ozawa, Hiroki; Akanuma, Genki; Funa, Nobutaka; Horinouchi, Sueharu

    2009-08-01

    Type III polyketide synthases (PKSs) synthesize a variety of aromatic polyketides in plants, fungi, and bacteria. The bacterial genome projects predicted that probable type III PKS genes are distributed in a wide variety of gram-positive and -negative bacteria. The gram-positive model microorganism Bacillus subtilis contained the bcsA-ypbQ operon, which appeared to encode a type III PKS and a methyltransferase, respectively. Here, we report the characterization of bcsA (renamed bpsA, for Bacillus pyrone synthase, on the basis of its function) and ypbQ, which are involved in the biosynthesis of aliphatic polyketides. In vivo analysis demonstrated that BpsA was a type III PKS catalyzing the synthesis of triketide pyrones from long-chain fatty acyl-coenzyme A (CoA) thioesters as starter substrates and malonyl-CoA as an extender substrate, and YpbQ was a methyltransferase acting on the triketide pyrones to yield alkylpyrone methyl ethers. YpbQ thus was named BpsB because of its functional relatedness to BpsA. In vitro analysis with histidine-tagged BpsA revealed that it used broad starter substrates and produced not only triketide pyrones but also tetraketide pyrones and alkylresorcinols. Although the aliphatic polyketides were expected to localize in the membrane and play some role in modulating the rigidity and properties of the membrane, no detectable phenotypic changes were observed for a B. subtilis mutant containing a whole deletion of the bpsA-bpsB operon.

  17. Presenting Influenza A M2e Antigen on Recombinant Spores of Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Tomasz Łęga

    Full Text Available Effective vaccination against influenza virus infection is a serious problem mainly due to antigenic variability of the virus. Among many of investigated antigens, the extracellular domain of the M2 protein (M2e features high homology in all strains of influenza A viruses and antibodies against M2e and is protective in animal models; this makes it a potential candidate for generation of a universal influenza vaccine. However, due to the low immunogenicity of the M2e, formulation of a vaccine based on this antigen requires some modification to induce effective immune responses. In this work we evaluated the possible use of Bacillus subtilis spores as a carrier of the Influenza A M2e antigen in mucosal vaccination. A tandem repeat of 4 consensus sequences coding for human-avian-swine-human M2e (M2eH-A-S-H peptide was fused to spore coat proteins and stably exposed on the spore surface, as demonstrated by the immunostaining of intact, recombinant spores. Oral immunization of mice with recombinant endospores carrying M2eH-A-S-H elicited specific antibody production without the addition of adjuvants. Bacillus subtilis endospores can serve as influenza antigen carriers. Recombinant spores constructed in this work showed low immunogenicity although were able to induce antibody production. The System of influenza antigen administration presented in this work is attractive mainly due to the omitting time-consuming and cost-intensive immunogen production and purification. Therefore modification should be made to increase the immunogenicity of the presented system.

  18. Identification of Functions Affecting Predator-Prey Interactions between Myxococcus xanthus and Bacillus subtilis.

    Science.gov (United States)

    Müller, Susanne; Strack, Sarah N; Ryan, Sarah E; Shawgo, Mary; Walling, Abigail; Harris, Susanna; Chambers, Chris; Boddicker, Jennifer; Kirby, John R

    2016-12-15

    Soil bacteria engage each other in competitive and cooperative ways to determine their microenvironments. In this study, we report the identification of a large number of genes required for Myxococcus xanthus to engage Bacillus subtilis in a predator-prey relationship. We generated and tested over 6,000 individual transposon insertion mutants of M. xanthus and found many new factors required to promote efficient predation, including the specialized metabolite myxoprincomide, an ATP-binding cassette (ABC) transporter permease, and a clustered regularly interspaced short palindromic repeat (CRISPR) locus encoding bacterial immunity. We also identified genes known to be involved in predation, including those required for the production of exopolysaccharides and type IV pilus (T4P)-dependent motility, as well as chemosensory and two-component systems. Furthermore, deletion of these genes confirmed their role during predation. Overall, M. xanthus predation appears to be a multifactorial process, with multiple determinants enhancing predation capacity. Soil bacteria engage each other in complex environments and utilize multiple traits to ensure survival. Here, we report the identification of multiple traits that enable a common soil organism, Myxococcus xanthus, to prey upon and utilize nutrients from another common soil organism, Bacillus subtilis We mutagenized the predator and carried out a screen to identify genes that were required to either enhance or diminish capacity to consume prey. We identified dozens of genes encoding factors that contribute to the overall repertoire for the predator to successfully engage its prey in the natural environment. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  19. Biofilms of a Bacillus subtilis hospital isolate protect Staphylococcus aureus from biocide action.

    Directory of Open Access Journals (Sweden)

    Arnaud Bridier

    Full Text Available The development of a biofilm constitutes a survival strategy by providing bacteria a protective environment safe from stresses such as microbicide action and can thus lead to important health-care problems. In this study, biofilm resistance of a Bacillus subtilis strain (called hereafter ND(medical recently isolated from endoscope washer-disinfectors to peracetic acid was investigated and its ability to protect the pathogen Staphylococcus aureus in mixed biofilms was evaluated. Biocide action within Bacillus subtilis biofilms was visualised in real time using a non-invasive 4D confocal imaging method. The resistance of single species and mixed biofilms to peracetic acid was quantified using standard plate counting methods and their architecture was explored using confocal imaging and electronic microscopy. The results showed that the ND(medical strain demonstrates the ability to make very large amount of biofilm together with hyper-resistance to the concentration of PAA used in many formulations (3500 ppm. Evidences strongly suggest that the enhanced resistance of the ND(medical strain was related to the specific three-dimensional structure of the biofilm and the large amount of the extracellular matrix produced which can hinder the penetration of peracetic acid. When grown in mixed biofilm with Staphylococcus aureus, the ND(medical strain demonstrated the ability to protect the pathogen from PAA action, thus enabling its persistence in the environment. This work points out the ability of bacteria to adapt to an extremely hostile environment, and the necessity of considering multi-organism ecosystems instead of single species model to decipher the mechanisms of biofilm resistance to antimicrobials agents.

  20. Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain.

    Science.gov (United States)

    Beveridge, T J; Davies, J A

    1983-11-01

    Exponentially growing cells of Bacillus subtilis and Escherichia coli were Gram stained with potassium trichloro(eta 2-ethylene)platinum(II) (TPt) in place of the usual KI-I2 mordant. This electron-dense probe allowed the staining mechanism to be followed and compared with cellular perturbations throughout the staining process. A crystal violet (CV)-TPt chemical complex was formed within the cell substance and at the cell surface of B. subtilis when the dye and Pt mordant were added. The ethanol decolorization step dissolved the precipitate from the cell surface, but the internal complex was retained by the cell wall and remained within the cell. This was not the case for E. coli; the ethanol decolorization step removed both surface-bound and cellular CV-TPt. During its removal, the outer membrane was sloughed off the cells until only the murein sacculus and plasma membrane remained. We suspect that the plasma membrane was also perturbed, but that it was retained within the cell by the murein sacculus. Occasionally, small holes within the murein and plasma membrane could be distinguished through which leaked CV-TPt and some cellular debris. Biochemical identification of distinct envelope markers confirmed the accuracy of these images.

  1. Tracking the movement and colonization of biocontrol agent Bacillus subtilis using radiolabelling and tracer techniques

    International Nuclear Information System (INIS)

    Kavitha, P.G.; Jonathan, E.I.; Nakkeeran, S.

    2017-01-01

    Bacillus subtilis, an endophytic bacteria that lives inside the plant system is viewed as a potential source of novel genes with antimicrobial activity. B. subtilis strain Bs5 isolated from noni was found to be antagonistic to root knot nematode, Meloidogyne incognitainvitro. The endophytic nature of the bacteria was ascertained by labeling the bacteria with radioactive 32 P and introduced in to the plant system. Autoradiograph of young noni seedlings was developed 28 days after exposure period in the X-ray film. The work was carried out in the Radioisotope Laboratory, Department of Soil Science and Agricultural Chemistry, Tamil Nadu Agricultural University, Coimbatore. Autoradiography indicated a difference in intensity of darkening of photographic emulsion. A closer scrutiny of the autoradiograph showed intensity of the film darkening to be accentuated in the top leaves. It revealed that the radio labelled bacteria effectively translocated from root to shoot and colonized the stem, mid ribs and actively growing regions. From the study it becomes evident that the radio labelling and tracer analysis is an effective tool for tracking the movement and colonization of endophytic bacteria which are potential candidates for combating plant pathogens including plant parasitic nematodes. (author)

  2. Biological activities of a mixture of biosurfactant from Bacillus subtilis and alkaline lipase from Fusarium oxysporum

    Directory of Open Access Journals (Sweden)

    Cedenir Pereira de Quadros

    2011-03-01

    Full Text Available In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m-1, indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL-1. In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm-2. However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05.

  3. Production of surfactin and fengycin by Bacillus subtilis in a bubbleless membrane bioreactor.

    Science.gov (United States)

    Coutte, François; Lecouturier, Didier; Yahia, Saliha Ait; Leclère, Valérie; Béchet, Max; Jacques, Philippe; Dhulster, Pascal

    2010-06-01

    Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air-liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l(-1) for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l(-1) for BB1, 207 mg l(-1) for BB2, and 393 mg l(-1) for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.

  4. Enhancement of a high efficient autoinducible expression system in Bacillus subtilis by promoter engineering.

    Science.gov (United States)

    Cheng, Jintao; Guan, Chengran; Cui, Wenjing; Zhou, Li; Liu, Zhongmei; Li, Weijiang; Zhou, Zhemin

    2016-11-01

    Quorum-sensing related promoter srfA (PsrfA) was used to construct autoinducible expression system for production of recombinant proteins in Bacillus subtilis. PsrfA was prominent in the unique property of inducer-free activity that is closely correlated with cell density. Here, using green fluorescent protein (GFP) as the reporter protein, PsrfA was optimized by shortening its sequences and changing the nucleotides at the conserved regions of -35 -15 and -10 regions, obtaining a library of PsrfA derivatives varied in the strength of GFP production. Among all the promoter mutants, the strongest promoter P10 was selected and the strength in GFP expression was 150% higher than that of PsrfA. Heterologous protein of aminopeptidase and nattokinase could be overexpressed by P10, the activities of which were 360% and 50% higher than that of PsrfA, respectively. These results suggested that the enhanced promoter P10 could be used to develop autoinducible expression system for overexpression of heterologous proteins in B. subtilis. Copyright © 2016. Published by Elsevier Inc.

  5. Clostridium thermocellum Nitrilase Expression and Surface Display on Bacillus subtilis Spores.

    Science.gov (United States)

    Chen, Huayou; Zhang, Tianxi; Sun, Tengyun; Ni, Zhong; Le, Yilin; Tian, Rui; Chen, Zhi; Zhang, Chunxia

    2015-01-01

    Nitrilases are an important class of industrial enzymes. They require mild reaction conditions and are highly efficient and environmentally friendly, so they are used to catalyze the synthesis of carboxylic acid from nitrile, a process considered superior to conventional chemical syntheses. Nitrilases should be immobilized to overcome difficulties in recovery after the reaction and to stabilize the free enzyme. The nitrilase from Clostridium thermocellum was expressed, identified and displayed on the surface of Bacillus subtilis spores by using the spore coat protein G of B. subtilis as an anchoring motif. In a free state, the recombinant nitrilase catalyzed the conversion of 3-cyanopyridine to niacin and displayed maximum catalytic activity (8.22 units/mg protein) at 40 °C and pH 7.4. SDS-PAGE and Western blot were used to confirm nitrilase display. Compared with the free enzyme, the spore-immobilized nitrilase showed a higher tolerance for adverse environmental conditions. After the reaction, recombinant spores were recovered via centrifugation and reused 3 times to catalyze the conversion of 3-cyanopyridine with 75.3% nitrilase activity. This study demonstrates an effective means of nitrilase immobilization via spore surface display, which can be applied in biological processes or conversion. © 2015 S. Karger AG, Basel.

  6. Biocontrol of the wheat pathogen Zymoseptoria tritici using cyclic lipopeptides from Bacillus subtilis.

    Science.gov (United States)

    Mejri, Samara; Siah, Ali; Coutte, François; Magnin-Robert, Maryline; Randoux, Béatrice; Tisserant, Benoit; Krier, François; Jacques, Philippe; Reignault, Philippe; Halama, Patrice

    2017-06-21

    Innovation toward ecofriendly plant protection products compatible with sustainable agriculture and healthy food is today strongly encouraged. Here, we assessed the biocontrol activity of three cyclic lipopeptides from Bacillus subtilis (mycosubtilin, M; surfactin, S; fengycin, F) and two mixtures (M + S and M + S + F) on wheat against Zymoseptoria tritici, the main pathogen on this crop. Foliar application of these biomolecules at a 100-mg L -1 concentration on the wheat cultivars Dinosor and Alixan, 2 days before fungal inoculation, provided significant reductions of disease severity. The best protection levels were recorded with the M-containing formulations (up to 82% disease reduction with M + S on Dinosor), while S and F treatments resulted in lower but significant disease reductions. In vitro and in planta investigations revealed that M-based formulations inhibit fungal growth, with half-maximal inhibitory concentrations of 1.4 mg L -1 for both M and M + S and 4.5 mg L -1 for M + S + F, thus revealing that the observed efficacy of these products may rely mainly on antifungal property. By contrast, S and F had no direct activity on the pathogen, hence suggesting that these lipopeptides act on wheat against Z. tritici as resistance inducers rather than as biofungicides. This study highlighted the efficacy of several lipopeptides from B. subtilis to biocontrol Z. tritici through likely distinct and biomolecule-dependent modes of action.

  7. The MsmX ATPase plays a crucial role in pectin mobilization by Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Mário J Ferreira

    Full Text Available Carbohydrates from plant cell walls are often found as heteropolysaccharides intertwined with each other. For competitive advantage against other microorganisms, and ability to fully exploit available carbon and energy sources, Bacillus subtilis possesses a high number of proteins dedicated to the uptake of mono- and oligosaccharides. Here, we characterize transporter complexes, belonging to the ATP-binding cassette (ABC superfamily, involved in the uptake of oligosaccharides commonly found in pectin. The uptake of these carbohydrates is shown to be MsmX-dependent, assigning a key role in pectin mobilization for MsmX, a multipurpose ATPase serving several distinct ABC-type I sugar importers. Mutagenesis analysis of the transmembrane domains of the AraNPQ MsmX-dependent importer revealed putative residues for MsmX interaction. Interestingly however, although MsmX is shown to be essential for energizing various ABC transporters we found that a second B. subtilis ATPase, YurJ, is able to complement its function when placed in trans at a different locus of the chromosome.

  8. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate.

    Science.gov (United States)

    Kim, Kyunghoon; Kim, Jung Kyung

    2015-08-26

    Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  9. Visualization of Biosurfactant Film Flow in a Bacillus subtilis Swarm Colony on an Agar Plate

    Directory of Open Access Journals (Sweden)

    Kyunghoon Kim

    2015-08-01

    Full Text Available Collective bacterial dynamics plays a crucial role in colony development. Although many research groups have studied the behavior of fluidic swarm colonies, the detailed mechanics of its motion remains elusive. Here, we developed a visualization method using submicron fluorescent beads for investigating the flow field in a thin layer of fluid that covers a Bacillus subtilis swarm colony growing on an agar plate. The beads were initially embedded in the agar plate and subsequently distributed spontaneously at the upper surface of the expanding colony. We conducted long-term live cell imaging of the B. subtilis colony using the fluorescent tracers, and obtained high-resolution velocity maps of microscale vortices in the swarm colony using particle image velocimetry. A distinct periodic fluctuation in the average speed and vorticity of flow in swarm colony was observed at the inner region of the colony, and correlated with the switch between bacterial swarming and growth phases. At the advancing edge of the colony, both the magnitudes of velocity and vorticity of flow in swarm colony were inversely correlated with the spreading speed of the swarm edge. The advanced imaging tool developed in this study would facilitate further understanding of the effect of micro vortices in swarm colony on the collective dynamics of bacteria.

  10. Mucosal vaccine delivery by non-recombinant spores of Bacillus subtilis.

    Science.gov (United States)

    Ricca, Ezio; Baccigalupi, Loredana; Cangiano, Giuseppina; De Felice, Maurilio; Isticato, Rachele

    2014-08-12

    Development of mucosal vaccines strongly relies on an efficient delivery system and, over the years, a variety of approaches based on phages, bacteria or synthetic nanoparticles have been proposed to display and deliver antigens. The spore of Bacillus subtilis displaying heterologous antigens has also been considered as a mucosal vaccine vehicle, and shown able to conjugate some advantages of live microrganisms with some of synthetic nanoparticles. Here we review the use of non-recombinant spores of B. subtilis as a delivery system for mucosal immunizations. The non-recombinant display is based on the adsorption of heterologous molecules on the spore surface without the need of genetic manipulations, thus avoiding all concerns about the use and environmental release of genetically modified microorganisms. In addition, adsorbed molecules are stabilized and protected by the interaction with the spore, suggesting that this system could reduce the rapid degradation of the antigen, often observed with other delivery systems and identified as a major drawback of mucosal vaccines.

  11. Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens

    Science.gov (United States)

    Cawoy, Hélène; Debois, Delphine; Franzil, Laurent; De Pauw, Edwin; Thonart, Philippe; Ongena, Marc

    2015-01-01

    Some isolates of the Bacillus subtilis/amyloliquefaciens species are known for their plant protective activity against fungal phytopathogens. It is notably due to their genetic potential to form an impressive array of antibiotics including non-ribosomal lipopeptides (LPs). In the work presented here, we wanted to gain further insights into the relative role of these LPs in the global antifungal activity of B. subtilis/amyloliquefaciens. To that end, a comparative study was conducted involving multiple strains that were tested against four different phytopathogens. We combined various approaches to further exemplify that secretion of those LPs is a crucial trait in direct pathogen ward off and this can actually be generalized to all members of these species. Our data illustrate that for each LP family, the fungitoxic activity varies in function of the target species and that the production of iturins and fengycins is modulated by the presence of pathogens. Our data on the relative involvement of these LPs in the biocontrol activity and modulation of their production are discussed in the context of natural conditions in the rhizosphere. PMID:25529983

  12. Biological Activities of a Mixture of Biosurfactant from Bacillus subtilis and Alkaline Lipase from Fusarium oxysporum.

    Science.gov (United States)

    Pereira de Quadros, Cedenir; Cristina Teixeira Duarte, Marta; Maria Pastore, Gláucia

    2011-01-01

    In this study, we investigate the antimicrobial effects of a mixture of a biosurfactant from Bacillus subtilis and an alkaline lipase from Fusarium oxysporum (AL/BS mix) on several types of microorganisms, as well as their abilities to remove Listeria innocua ATCC 33093 biofilm from stainless steel coupons. The AL/BS mix had a surface tension of around 30 mN.m(-1), indicating that the presence of alkaline lipase did not interfere in the surface activity properties of the tensoactive component. The antimicrobial activity of the AL/BS mix was determined by minimum inhibitory concentration (MIC) micro-assays. Among all the tested organisms, the presence of the mixture only affected the growth of B. subtilis CCT 2576, B. cereus ATCC 10876 and L. innocua. The most sensitive microorganism was B. cereus (MIC 0.013 mg.mL(-1)). In addition, the effect of the sanitizer against L. innocua attached to stainless steel coupons was determined by plate count after vortexing. The results showed that the presence of the AL/BS mix improved the removal of adhered cells relative to treatment done without the sanitizer, reducing the count of viable cells by 1.72 log CFU.cm(-2). However, there was no significant difference between the sanitizers tested and an SDS detergent standard (p<0.05).

  13. Properties of a Bacteriocin Produced by Bacillus subtilis EMD4 Isolated from Ganjang (Soy Sauce).

    Science.gov (United States)

    Liu, Xiaoming; Lee, Jae Yong; Jeong, Seon-Ju; Cho, Kye Man; Kim, Gyoung Min; Shin, Jung-Hye; Kim, Jong-Sang; Kim, Jeong Hwan

    2015-09-01

    A Bacillus species, EMD4, with strong antibacterial activity was isolated from ganjang (soy sauce) and identified as B. subtilis. B. subtilis EMD4 strongly inhibited the growth of B. cereus ATCC14579 and B. thuringiensis ATCC33679. The antibacterial activity was stable at pH 3-9 but inactive at pH 10 and above. The activity was fully retained after 15 min at 80°C but reduced by 50% after 15 min at 90°C. The activity was completely destroyed by proteinase K and protease treatment, indicating its proteinaceous nature. The bacteriocin (BacEMD4) was partially purified from culture supernatant by ammonium sulfate precipitation, and QSepharose and Sephadex G-50 column chromatographies. The specific activity was increased from 769.2 AU/mg protein to 8,347.8 AU/mg protein and the final yield was 12.6%. The size of BacEMD4 was determined to be 3.5 kDa by Tricine SDS-PAGE. The N-terminal amino acid sequence was similar with that of Subtilosin A. Nucleotide sequencing of the cloned gene confirmed that BacEMD4 was Subtilosin A. BacEMD4 showed bactericidal activity against B. cereus ATCC14579.

  14. Study of the tensile properties of individual multicellular fibres generated by Bacillus subtilis

    Science.gov (United States)

    Ye, Xuan; Zhao, Liang; Liang, Jiecun; Li, Xide; Chen, Guo-Qiang

    2017-04-01

    Multicellular fibres formed by Bacillus subtilis (B. subtilis) are attracting interest because of their potential application as degradable biomaterials. However, mechanical properties of individual fibres remain unknown because of their small dimensions. Herein, a new approach is developed to investigate the tensile properties of individual fibres with an average diameter of 0.7 μm and a length range of 25.7-254.3 μm. Variations in the tensile strengths of fibres are found to be the result of variable interactions among pairs of microbial cells known as septa. Using Weibull weakest-link model to study this mechanical variability, we predict the length effect of the sample. Moreover, the mechanical properties of fibres are found to depend highly on relative humidity (RH), with a brittle-ductile transition occurring around RH = 45%. The elastic modulus is 5.8 GPa in the brittle state, while decreases to 62.2 MPa in the ductile state. The properties of fibres are investigated by using a spring model (RH  45%) for the time-dependent response. Loading-unloading experiments and numerical calculations demonstrate that necking instability comes from structural changes (septa) and viscoelasticity dominates the deformation of fibres at high RH.

  15. Delivery of Chicken Egg Ovalbumin to Dendritic Cells by Listeriolysin O-Secreting Vegetative Bacillus subtilis.

    Science.gov (United States)

    Roeske, Katarzyna; Stachowiak, Radoslaw; Jagielski, Tomasz; Kamiński, Michal; Bielecki, Jacek

    2018-01-28

    Listeriolysin O (LLO), one of the most immunogenic proteins of Listeria monocytogenes and its main virulence factor, mediates bacterial escape from the phagosome of the infected cell. Thus, its expression in a nonpathogenic bacterial host may enable effective delivery of heterologous antigens to the host cell cytosol and lead to their processing predominantly through the cytosolic MHC class I presentation pathway. The aim of this project was to characterize the delivery of a model antigen, chicken egg ovalbumin (OVA), to the cytosol of dendritic cells by recombinant Bacillus subtilis vegetative cells expressing LLO. Our work indicated that LLO produced by non-sporulating vegetative bacteria was able to support OVA epitope presentation by MHC I molecules on the surface of antigen presenting cells and consequently influence OVA-specific cytotoxic T cell activation. Additionally, it was proven that the genetic context of the epitope sequence is of great importance, as only the native full-sequence OVA fused to the N-terminal fragment of LLO was sufficient for effective epitope delivery and activation of CD8⁺ lymphocytes. These results demonstrate the necessity for further verification of the fusion antigen potency of enhancing the MHC I presentation, and they prove that LLO-producing B. subtilis may represent a novel and attractive candidate for a vaccine vector.

  16. [Optimization of nutrient medium for cultivation of Bacillus subtilis IMV V-7023].

    Science.gov (United States)

    Tsarenko, I Iu; Roĭ, A A; Kudrish, I K

    2011-01-01

    Nutrient medium for cultivation of Bacillus subtilis IMV V-7023 was optimized by the method of the orthogonal Latin rectangles. Optimum concentrations were investigated in the medium of carbon source (15.0 g/l of molasses), nitrogen (2.0 g/l of corn extract) and content of phosphorus-containing inorganic salts (0.4 g/l). When growing this strain in periodic conditions at 28 degrees C, the value of oxygen mass transport in the liquid (0.4-0.6 g O2/l per 1 h) and the initial number of cells of each bacterial species was 1 x 10(6) cells/ml. The numbers of bacteria reached the maximum after 24 hours of cultivation and corresponded to 1.3 x 10(10) cells/ml. Nutrient medium that was optimized can be recommended for cultivation of B.subtilis IMV V-7023 in production conditions. The paper is presented in Russian.

  17. Comparative characterization of silver nanoparticles synthesized by spore extract of Bacillus subtilis and Geobacillus stearothermophilus

    Directory of Open Access Journals (Sweden)

    Seyed Mahdi Ghasemi

    2018-01-01

    Full Text Available Objective(s: Silver nanostructures have gathered remarkable attention due to their applications in diversefields. Researchers have recently demonstrated that bacterial spores are capable of reducing silver ions toelemental silver leading to formation of nanoparticles.Materials and Methods: In this study, spores of Bacillus subtilis and Geobacillus stearothermophilus wereemployed to produce silver nanoparticles (SNPs from silver nitrate (AgNO3 through a green synthesismethod. The production of SNPs by spores, heat inactivated spores (microcapsule and spore extracts wasmonitored and compared at wavelengths between 300 to 700 nm. The biosynthesized SNPs by spore extractswere characterized and confirmed by XRD and TEM analyses.Results: UV-Visible spectroscopy showed that the spore extracts were able to synthesize more SNPs thanthe other forms. The XRD pattern also revealed that the silver nanometals have crystalline structure withvarious topologies. The TEM micrographs showed polydispersed nanocrystal with dimensions ranging from30 to 90 nm and 15 to 50 nm produced by spore extracts of B. subtilis and G. stearothermophilus, respectively.Moreover, these biologically synthesized nanoparticles exhibited antimicrobial activity against differentopportunistic pathogens.Conclusion: This study suggests the bacterial spore extract as a safe, efficient, cost effective and eco-friendlymaterial for biosynthesis of SNPs.

  18. Complete nucleotide sequence of Bacillus subtilis (natto) bacteriophage PM1, a phage associated with disruption of food production.

    Science.gov (United States)

    Umene, Kenichi; Shiraishi, Atsushi

    2013-06-01

    "Natto", considered a traditional food, is made by fermenting boiled soybeans with Bacillus subtilis (natto), which is a natto-producing strain related to B. subtilis. The production of natto is disrupted by phage infections of B. subtilis (natto); hence, it is necessary to control phage infections. PM1, a phage of B. subtilis (natto), was isolated during interrupted natto production in a factory. In a previous study, PM1 was classified morphologically into the family Siphoviridae, and its genome, comprising approximately 50 kbp of linear double-stranded DNA, was assumed to be circularly permuted. In the present study, the complete nucleotide sequence of the PM1 genomic DNA of 50,861 bp (41.3 %G+C) was determined, and 86 open reading frames (ORFs) were deduced. Forty-one ORFs of PM1 shared similarities with proteins deduced from the genome of phages reported so far. Twenty-three ORFs of PM1 were associated with functions related to the phage multiplication process of gene control, DNA replication/modification, DNA packaging, morphogenesis, and cell lysis. Bacillus subtilis (natto) produces a capsular polypeptide of glutamate with a γ-linkage (called poly-γ-glutamate), which appears to serve as a physical barrier to phage adsorption. One ORF of PM1 had similarity with a poly-γ-glutamate hydrolase, which is assumed to degrade the capsular barrier to allow phage progenies to infect encapsulated host cells. The genome analysis of PM1 revealed the characteristics of the phage that are consistent as Bacillus subtilis (natto)-infecting phage.

  19. The Min system and nucleoid occlusion are not required for identifying the division site in Bacillus subtilis but ensure its efficient utilization.

    Directory of Open Access Journals (Sweden)

    Christopher D A Rodrigues

    Full Text Available Precise temporal and spatial control of cell division is essential for progeny survival. The current general view is that precise positioning of the division site at midcell in rod-shaped bacteria is a result of the combined action of the Min system and nucleoid (chromosome occlusion. Both systems prevent assembly of the cytokinetic Z ring at inappropriate places in the cell, restricting Z rings to the correct site at midcell. Here we show that in the bacterium Bacillus subtilis Z rings are positioned precisely at midcell in the complete absence of both these systems, revealing the existence of a mechanism independent of Min and nucleoid occlusion that identifies midcell in this organism. We further show that Z ring assembly at midcell is delayed in the absence of Min and Noc proteins, while at the same time FtsZ accumulates at other potential division sites. This suggests that a major role for Min and Noc is to ensure efficient utilization of the midcell division site by preventing Z ring assembly at potential division sites, including the cell poles. Our data lead us to propose a model in which spatial regulation of division in B. subtilis involves identification of the division site at midcell that requires Min and nucleoid occlusion to ensure efficient Z ring assembly there and only there, at the right time in the cell cycle.

  20. Mixed culture models for predicting intestinal microbial interactions between Escherichia coli and Lactobacillus in the presence of probiotic Bacillus subtilis.

    Science.gov (United States)

    Yang, J J; Niu, C C; Guo, X H

    2015-01-01

    Bacillus has been proposed as a probiotic due to its in vivo effectiveness in the gastrointestinal tract through antimicrobial activities. The present study investigates the effects of Lactobacillus alone or in the presence of Bacillus subtilis MA139 on the inhibition of pathogenic Escherichia coli K88. Mixed cultures were used to predict the possible interactions among these bacteria within the intestinal tract of animals. B. subtilis MA139 was first assayed for its inhibition against E. coli K88 both under shaking and static culture conditions. A co-culture assay was employed under static conditions to test the inhibitory effects of Lactobacillus reuteri on E. coli K88, with or without addition of B. subtilis MA139. The results showed that B. subtilis MA139 had marked inhibition against E. coli K88 under shaking conditions and weak inhibition under static conditions. Lactobacillus alone as well as in combination with B. subtilis MA139 spores exerted strong inhibition against E. coli K88 under static conditions. However, the inhibition by Lactobacillus in combination with B. subilis spores was much higher than that by Lactobacillus alone (Psubtilis MA139 significantly decreased the pH and oxidation-reduction potential values of the co-culture broth compared to that of Lactobacillus alone (Psubtilis MA139 because of significantly higher Lactobacillus counts and lower pH values in the broth (PBacillus in the mixed culture models suggests that Bacillus may produce beneficial effects by increasing the viability of lactobacilli and subsequently inhibiting the growth of pathogenic E. coli. Therefore, the combination of Bacillus and Lactobacillus species as a probiotic is recommended.

  1. Phosphoribosylpyrophosphate synthetase of Bacillus subtilis. Cloning, characterization and chromosomal mapping of the prs gene

    DEFF Research Database (Denmark)

    Nilsson, Dan; Hove-Jensen, Bjarne

    1987-01-01

    The gene (prs) encoding phosphoribosylpyrophosphate (PRPP) synthetase has been cloned from a library of Bacillus subtilis DNA by complementation of an Escherichia coli prs mutation. Flanking DNA sequences were pruned away by restriction endonuclease and exonuclease BAL 31 digestions, resulting...

  2. COMPARISON OF UV INACTIVATION OF SPORES OF THREE ENCEPHALITOZOON SPECIES WITH THAT OF SPORES OF TWO DNA REPAIR-DEFICIENT BACILLUS SUBTILIS BIODOSIMETRY STRAINS

    Science.gov (United States)

    The sensitivity of three Encephalitozoon spp. to ultraviolet (UV) inactivation was determined. Encephalitozoon intestinalis is a contaminant listed on the USEPA's 1998 Contaminant Candidate List (CCL). Also, use of DNA repair deficient strains of Bacillus subtilis were evaluat...

  3. Impaired competence in flagellar mutants of Bacillus subtilis is connected to the regulatory network governed by DegU

    DEFF Research Database (Denmark)

    Hölscher, Theresa; Schiklang, Tina; Dragos, Anna

    2017-01-01

    The competent state is a developmentally distinct phase, in which bacteria are able to take up and integrate exogenous DNA into their genome. Bacillus subtilis is one of the naturally competent bacterial species and the domesticated laboratory strain 168 is easily transformable. In this study, we...... report a reduced transformation frequency of B. subtilis mutants lacking functional and structural flagellar components. This includes hag, the gene encoding the flagellin protein forming the filament of the flagellum. We confirm that the observed decrease of the transformation frequency is due...

  4. Draft Genome Sequences ofBacillus subtilisStrain DKU_NT_01 Isolated from Traditional Korean Food Containing Soybean (Chung-gook-jang).

    Science.gov (United States)

    Bang, Man-Seok; Jeong, Hee-Won; Lee, Yea-Jin; Oh, Ha-Yeong; Lee, Su Ji; Shim, Moon-Soo; Shin, Jang-In; Oh, Chung-Hun

    2017-08-03

    Here, we report the whole-genome sequence of Bacillus subtilis strain DKU_NT_01 isolated from traditional Korean food containing soybean (chung-gook-jang). The de novo genome of Bacillus subtilis strain DKU_NT_01 has one contig and G+C content of 55.4%, is 4,954,264 bp in length, and contains 5,011 coding sequences (CDSs). Copyright © 2017 Bang et al.

  5. Identification and characterization of a novel type of replication terminator with bidirectional activity on the Bacillus subtilis theta plasmid pLS20

    NARCIS (Netherlands)

    Meijer, WJJ; Smith, M; Wake, RG; deBoer, AL; Venema, G; Bron, S

    We have sequenced and analysed a 3.1 kb fragment of the 55 kb endogenous Bacillus subtilis plasmid pLS20 containing its replication functions, Just outside the region required for autonomous replication, a segment of 18 bp was identified as being almost identical to part of the major B. subtilis

  6. In Bacillus subtilis LutR is part of the global complex regulatory network governing the adaptation to the transition from exponential growth to stationary phase

    NARCIS (Netherlands)

    İrigül-Sönmez, Öykü; Köroğlu, Türkan E.; Öztürk, Büşra; Kovács, Ákos T.; Kuipers, Oscar P.; Yazgan-Karataş, Ayten; Zuber, P.

    2014-01-01

    The lutR gene, encoding a product resembling a GntR-family transcriptional regulator, has previously been identified as a gene required for the production of the dipeptide antibiotic bacilysin in Bacillus subtilis. To understand the broader regulatory roles of LutR in B. subtilis, we studied the

  7. Whole-Genome Sequencing and Comparative Genome Analysis of Bacillus subtilis Strains Isolated from Non-Salted Fermented Soybean Foods.

    Directory of Open Access Journals (Sweden)

    Mayumi Kamada

    Full Text Available Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA, we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.

  8. Effects of dietary inulin and heat-inactivated Bacillus subtilis on gilthead seabream (Sparus aurata L.) innate immune parameters.

    Science.gov (United States)

    Cerezuela, R; Cuesta, A; Meseguer, J; Esteban, M A

    2012-03-01

    In the present study, a feeding trial was conducted to evaluate the effect of inulin and heat-inactivated Bacillus subtilis, single or combined, on several innate immune activities of gilthead seabream (Sparus aurata). Forty-eight specimens were randomly assigned to four dietary treatments: 0 (control), inulin (10 g/kg, prebiotic group), B. subtilis (10(7) cfu/g, probiotic group), or B. subtilis + inulin (10(7) cfu/g + 10 g/kg, synbiotic group). After two and four weeks, six fish of each group were sampled, with the main innate immune parameters (natural haemolytic complement activity, serum and leucocyte peroxidase, phagocytosis, respiratory burst, and cytotoxic activities) being determined. Inulin or heat-inactivated B. subtilis failed to significantly stimulate the innate immune parameters assayed, although some activities showed no significant increase through these treatments. A combination of inulin and B. subtilis resulted in an increase of such parameters, with the haemolytic complement activity being the only one significantly stimulated. To conclude, inulin and B. subtilis, when administered as a synbiotic, have a synergistic effect and enhance some innate immune parameters of gilthead seabream.

  9. Synthetic operon for (R,R)-2,3-butanediol production in Bacillus subtilis and Escherichia coli.

    Science.gov (United States)

    de Oliveira, Rafael R; Nicholson, Wayne L

    2016-01-01

    To reduce dependence on petroleum, an alternative route to production of the chemical feedstock 2,3-butanediol (2,3-BD) from renewable lignocellulosic sources is desirable. In this communication, the genes encoding the pathway from pyruvate to 2,3-BD (alsS, alsD, and bdhA encoding acetolactate synthase, acetolactate decarboxylase, and butanediol dehydrogenase, respectively) from Bacillus subtilis were engineered into a single tricistronic operon under control of the isopropyl β-D-1-thiogalactopyranoside (IPTG)-inducible Pspac promoter in a shuttle plasmid capable of replication and expression in either B. subtilis or Escherichia coli. We describe the construction and performance of a shuttle plasmid carrying the IPTG-inducible synthetic operon alsSDbdhA coding for 2,3-BD pathway capable of (i) expression in two important representative model microorganisms, the gram-positive B. subtilis and the gram-negative E. coli; (ii) increasing 2,3-BD production in B. subtilis; and (iii) successfully introducing the B. subtilis 2,3-BD pathway into E. coli. The synthetic alsSDbdhA operon constructed using B. subtilis native genes not only increased the 2,3-BD production in its native host but also efficiently expressed the pathway in the heterologous organism E. coli. Construction of an efficient shuttle plasmid will allow investigation of 2,3-BD production performance in related organisms with industrial potential for production of bio-based chemicals.

  10. Biocontrol of Bacterial Fruit Blotch byBacillus subtilis9407 via Surfactin-Mediated Antibacterial Activity and Colonization.

    Science.gov (United States)

    Fan, Haiyan; Zhang, Zhanwei; Li, Yan; Zhang, Xun; Duan, Yongming; Wang, Qi

    2017-01-01

    In this study, Bacillus subtilis 9407 showed a strong antibacterial activity against Acidovorax citrulli in vitro and 61.7% biocontrol efficacy on melon seedlings 4 days post inoculation under greenhouse conditions. To understand the biocontrol mechanism of B. subtilis 9407, identify the primary antibacterial compound and determine its role in controlling bacterial fruit blotch (BFB), a srfAB deletion mutant (Δ srfAB ) was constructed. The Δ srfAB which was deficient in production of surfactin, not only showed almost no ability to inhibit growth of A. citrulli but also decreased biofilm formation and reduced swarming motility. Colonization assay demonstrated that B. subtilis 9407 could conlonize on melon roots and leaves in a large population, while Δ srfAB showed a four- to ten-fold reduction in colonization of melon roots and leaves. Furthermore, a biocontrol assay showed that Δ srfAB lost the biocontrol efficacy. In summary, our results indicated that surfactin, which consists of C13- to C16-surfactin A was the primary antibacterial compound of B. subtilis 9407, and it played a major role in biofilm formation, swarming motility, colonization and suppressing BFB. We propose that the biocontrol activity of B. subtilis 9407 is the results of the coordinated action of surfactin-mediated antibacterial activity and colonization. This study reveals for the first time that the use of a B. subtilis strain as a potential biological control agent could efficiently control BFB by producing surfactin.

  11. Poly-γ-Glutamic Acids Contribute to Biofilm Formation and Plant Root Colonization in Selected Environmental Isolates of Bacillus subtilis

    Science.gov (United States)

    Yu, Yiyang; Yan, Fang; Chen, Yun; Jin, Christopher; Guo, Jian-Hua; Chai, Yunrong

    2016-01-01

    Bacillus subtilis is long known to produce poly-γ-glutamic acids (γ-PGA) as one of the major secreted polymeric substances. In B. subtilis, the regulation of γ-PGA production and its physiological role are still unclear. B. subtilis is also capable of forming structurally complex multicellular communities, or biofilms, in which an extracellular matrix consisting of secreted proteins and polysaccharides holds individual cells together. Biofilms were shown to facilitate B. subtilis–plant interactions. In this study, we show that different environmental isolates of B. subtilis, all capable of forming biofilms, vary significantly in γ-PGA production. This is possibly due to differential regulation of γ-PGA biosynthesis genes. In many of those environmental isolates, γ-PGA seems to contribute to robustness and complex morphology of the colony biofilms, suggesting a role of γ-PGA in biofilm formation. Our evidence further shows that in selected B. subtilis strains, γ-PGA also plays a role in root colonization by the bacteria, pinpointing a possible function of γ-PGA in B. subtilis–plant interactions. Finally, we found that several pathways co-regulate both γ-PGA biosynthesis genes and genes for the biofilm matrix in B. subtilis, but in an opposing fashion. We discussed potential biological significance of that. PMID:27891125

  12. Deregulation of purine pathway in Bacillus subtilis and its use in riboflavin biosynthesis

    Science.gov (United States)

    2014-01-01

    Background Purine nucleotides are essential metabolites for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and biosynthesis of several amino acids and riboflavin. Owing to the pivotal roles of purines in cell physiology, the pool of intracellular purine nucleotides must be maintained under strict control, and hence the de novo purine biosynthetic pathway is tightly regulated by transcription repression and inhibition mechanism. Deregulation of purine pathway is essential for this pathway engineering in Bacillus subtilis. Results Deregulation of purine pathway was attempted to improve purine nucleotides supply, based on a riboflavin producer B. subtilis strain with modification of its rib operon. To eliminate transcription repression, the pur operon repressor PurR and the 5’-UTR of pur operon containing a guanine-sensing riboswitch were disrupted. Quantitative RT-PCR analysis revealed that the relative transcription levels of purine genes were up-regulated about 380 times. Furthermore, site-directed mutagenesis was successfully introduced into PRPP amidotransferase (encoded by purF) to remove feedback inhibition by homologous alignment and analysis. Overexpression of the novel mutant PurF (D293V, K316Q and S400W) significantly increased PRPP amidotransferase activity and triggered a strong refractory effect on purine nucleotides mediated inhibition. Intracellular metabolite target analysis indicated that the purine nucleotides supply in engineered strains was facilitated by a stepwise gene-targeted deregulation. With these genetic manipulations, we managed to enhance the metabolic flow through purine pathway and consequently increased riboflavin production 3-fold (826.52 mg/L) in the purF-VQW mutant strain. Conclusions A sequential optimization strategy was applied to deregulate the rib operon and purine pathway of B. subtilis to create genetic diversities and to improve riboflavin production

  13. Cucumber Rhizosphere Microbial Community Response to Biocontrol Agent Bacillus subtilis B068150

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2015-12-01

    Full Text Available Gram-positive bacteria Bacillus subtilis B068150 has been used as a biocontrol agent against the pathogen Fusarium oxysporum cucumerinum. Cucumber was grown in three soils with strain B068150 inoculated in a greenhouse for 90 days, and the colonization ability of strain B068150 in cucumber rhizosphere and non-rhizosphere soils was determined. Changes in total bacteria and fungi community composition and structures using denaturing gradient gel electrophoresis (DGGE and sequencing were determined. Colony counts showed that B068150 colonization in the rhizosphere was significantly higher (p < 0.001 than in non-rhizosphere soils. Based on our data, the introduction of B. bacillus B068150 did not change the diversity of microbial communities significantly in the rhizosphere of three soils. Our data showed that population density of B068150 in clay soil had a significant negative correlation on bacterial diversity in cucumber rhizosphere in comparison to loam and sandy soils, suggesting that the impact of B068150 might be soil specific.

  14. Bacillus subtilis EdmS (formerly PgsE) participates in the maintenance of episomes.

    Science.gov (United States)

    Ashiuchi, Makoto; Yamashiro, Daisuke; Yamamoto, Kento

    2013-09-01

    Extrachromosomal DNA maintenance (EDM) is an important process in molecular breeding and for various applications in the construction of genetically engineered microbes. Here we describe a novel Bacillus subtilis gene involved in EDM function called edmS (formerly pgsE). Functional gene regions were identified using molecular genetics techniques. We found that EdmS is a membrane-associated protein that is crucial for EDM. We also determined that EdmS can change a plasmid vector with an unstable replicon and worse-than-random segregation into one with better-than-random segregation, suggesting that the protein functions in the declustering and/or partitioning of episomes. EdmS has two distinct domains: an N-terminal membrane-anchoring domain and a C-terminal assembly accelerator-like structure, and mutational analysis of edmS revealed that both domains are essential for EDM. Further studies using cells of Bacillus megaterium and itsedmS (formerly capE) gene implied that EdmS has potential as a molecular probe for exploring novel EDM systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Progress in Bacillus subtilis Spore Surface Display Technology towards Environment, Vaccine Development, and Biocatalysis.

    Science.gov (United States)

    Chen, Huayou; Ullah, Jawad; Jia, Jinru

    2017-01-01

    Spore surface display is the most desirable with enhanced effects, low cost, less time consuming and the most promising technology for environmental, medical, and industrial development. Spores have various applications in industry due to their ability to survive in harsh industrial processes including heat resistance, alkaline tolerance, chemical tolerance, easy recovery, and reusability. Yeast and bacteria, including gram-positive and -negative, are the most frequently used organisms for the display of various proteins (eukaryotic and prokaryotic), but unlike spores, they can rupture easily due to nutritive properties, susceptibility to heat, pH, and chemicals. Hence, spores are the best choice to avoid these problems, and they have various applications over nonspore formers due to amenability for laboratory purposes. Various strains of Clostridium and Bacillus are spore formers, but the most suitable choice for display is Bacillus subtilis because, according to the WHO, it is safe to humans and considered as "GRAS" (generally recognized as safe). This review focuses on the application of spore surface display towards industries, vaccine development, the environment, and peptide library construction, with cell surface display for enhanced protein expression and high enzymatic activity. Different vectors, coat proteins, and statistical analyses can be used for linker selection to obtain greater expression and high activity of the displayed protein. © 2017 S. Karger AG, Basel.

  16. Critical Minireview: The Fate of tRNACys during Oxidative Stress in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Juan Campos Guillen

    2017-01-01

    Full Text Available Oxidative stress occurs when cells are exposed to elevated levels of reactive oxygen species that can damage biological molecules. One bacterial response to oxidative stress involves disulfide bond formation either between protein thiols or between protein thiols and low-molecular-weight (LMW thiols. Bacillithiol was recently identified as a major low-molecular-weight thiol in Bacillus subtilis and related Firmicutes. Four genes (bshA, bshB1, bshB2, and bshC are involved in bacillithiol biosynthesis. The bshA and bshB1 genes are part of a seven-gene operon (ypjD, which includes the essential gene cca, encoding CCA-tRNA nucleotidyltransferase. The inclusion of cca in the operon containing bacillithiol biosynthetic genes suggests that the integrity of the 3′ terminus of tRNAs may also be important in oxidative stress. The addition of the 3′ terminal CCA sequence by CCA-tRNA nucleotidyltransferase to give rise to a mature tRNA and functional molecules ready for aminoacylation plays an essential role during translation and expression of the genetic code. Any defects in these processes, such as the accumulation of shorter and defective tRNAs under oxidative stress, might exert a deleterious effect on cells. This review summarizes the physiological link between tRNACys regulation and oxidative stress in Bacillus.

  17. Evaluation of efficacy of preservatives associated with Achillea millefolium L. extract against Bacillus subtilis Avaliação da eficácia de conservantes associados a extrato de Achillea millefolium L. contra Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Luiz E. Salvagnini

    2006-03-01

    Full Text Available The antimicrobial efficacy of three preservatives used in cosmetic formulations was evaluated. Phenova® and imidazolidinyl urea inhibited the growth of Bacillus subtilis when added to leaf extract of Achillea millefolium L., whereas 0.2% Nipagin®/ Nipasol® in propylene glycol did not.A eficácia antimicrobiana de conservantes empregados em formulações cosméticas foi avaliada usando Phenova® e Imidazolinidil uréia que inibiram o crescimento de Bacillus subtilis no extrato de Achillea millefolium L. e Nipagin®/ Nipasol® 0,2% em propilenoglicol não apresentaram efeito microbicida.

  18. Use of next generation sequencing data to develop a qPCR method for specific detection of EU-unauthorized genetically modified Bacillus subtilis overproducing riboflavin.

    Science.gov (United States)

    Barbau-Piednoir, Elodie; De Keersmaecker, Sigrid C J; Delvoye, Maud; Gau, Céline; Philipp, Patrick; Roosens, Nancy H

    2015-11-11

    Recently, the presence of an unauthorized genetically modified (GM) Bacillus subtilis bacterium overproducing vitamin B2 in a feed additive was notified by the Rapid Alert System for Food and Feed (RASFF). This has demonstrated that a contamination by a GM micro-organism (GMM) may occur in feed additives and has confronted for the first time,the enforcement laboratories with this type of RASFF. As no sequence information of this GMM nor any specific detection or identification method was available, Next GenerationSequencing (NGS) was used to generate sequence information. However, NGS data analysis often requires appropriate tools, involving bioinformatics expertise which is not alwayspresent in the average enforcement laboratory. This hampers the use of this technology to rapidly obtain critical sequence information in order to be able to develop a specific qPCRdetection method. Data generated by NGS were exploited using a simple BLAST approach. A TaqMan® qPCR method was developed and tested on isolated bacterial strains and on the feed additive directly. In this study, a very simple strategy based on the common BLAST tools that can be used by any enforcement lab without profound bioinformatics expertise, was successfully used toanalyse the B. subtilis data generated by NGS. The results were used to design and assess a new TaqMan® qPCR method, specifically detecting this GM vitamin B2 overproducing bacterium. The method complies with EU critical performance parameters for specificity, sensitivity, PCR efficiency and repeatability. The VitB2-UGM method also could detect the B. subtilis strain in genomic DNA extracted from the feed additive, without prior culturing step. The proposed method, provides a crucial tool for specifically and rapidly identifying this unauthorized GM bacterium in food and feed additives by enforcement laboratories. Moreover, this work can be seen as a case study to substantiate how the use of NGS data can offer an added value to easily

  19. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Cerezuela, Rebeca; Meseguer, José; Esteban, M Ángeles

    2013-03-01

    The present work describes effects of dietary inulin, two microalgae (Tetraselmis chuii and Phaeodactylum tricornutum) and Bacillus subtilis (solely or combined with inulin or microalgae) on the expression of different genes in the intestine of the gilthead seabream (Sparus aurata L.) following four weeks of a feeding trial. Selected genes were grouped into five categories: genes involved in inflammation (genes encoding proinflammatory proteins), genes related to the cytoskeleton, genes encoding proteins of junction complexes, genes implicated in digestion processes and genes related to transport proteins. Regarding proinflammatory genes, interleukin-8 (IL-8) expression showed a significant increase in the fish fed all the assayed diets, except the B. subtilis + inulin diet, whereas the expression of caspase-1 (CASP-1) was also increased by the B. subtilis and B. subtilis + T. chuii diets. Cyclooxygenase-2 (COX-2) gene expression only increased in fish fed the B. subtilis diet. Among cytoskeletal and junctional genes, only β-actin and occludin were significantly affected by the assayed diets. β-actin expression was up-regulated by the inulin-containing diets (inulin and B. subtilis + inulin diets), whereas occludin expression increased in the fish fed all the assayed diets, except the P. tricornutum diet. Finally, the expression of transport protein genes demonstrated that the inulin diet and all the experimental diets containing B. subtilis significantly increased transferrin expression, whereas digestive enzymes were not affected by the experimental diets. In conclusion, our results demonstrated that inulin, B. subtilis and microalgae can modulate intestinal gene expression in the gilthead seabream. To our knowledge, this is the first study of the effects of some food additives on the intestinal expression of different genes in this species. More studies are needed to understand the role of these genes in maintaining the integrity and

  20. Reduction of Bacillus subtilis, Bacillus stearothermophilus and Streptococcus faecalis in meat batters by temperature-high hydrostatic pressure pasteurization.

    Science.gov (United States)

    Moerman, F; Mertens, B; Demey, L; Huyghebaert, A

    2001-10-01

    People have a growing preference for fresh, healthy, palatable and nutritious meals and drinks. However, as food deterioration is a constant threat along the entire food chain, food preservation remains as necessary now as in the past. High pressure processing is one of the emerging technologies being studied as an alternative to the classical pasteurization and sterilization treatments of food. Samples of fried minced pork meat were inoculated with strains of Streptococcus faecalis and with sporulating microorganisms like Bacillus subtilis and stearothermophilus. The samples were subjected to several combined temperature-high pressure treatments predicted by the mathematical model applied in Response Surface Methodology. Using the "Box-Behnken" concept, the number of tests for a whole area of pressure-temperature-time-combinations (pressure variation: 50-400 MPa, temperature variation 20-80°C, time variation 1-60 min) could be limited to 15. In the center point of the model, the experimental combination was performed in triple to estimate the experimental variance. All the tests were executed in a randomized order to exclude the disturbing effect of environmental factors. Microbial analysis revealed for each microorganism an important reduction in total plate count, demonstrating a superior pressure resistance of the sporulating microorganisms in comparison with the most pressure resistant vegetative species Streptococcus faecalis. The effect of the medium composition could be neglected, showing little protective effect of, e.g. the fat fraction as seen in heat preservation techniques.