WorldWideScience

Sample records for bacteriorhodopsins

  1. Potential applications of bacteriorhodopsin mutants

    OpenAIRE

    Saeedi, P.; Moosaabadi, J. Mohammadian; Sebtahmadi, S. Sina; Mehrabadi, J. Fallah; Behmanesh, M.; Mekhilef, S.

    2012-01-01

    Bacteriorhodopsin (BR), a model system in biotechnology, is a G-protein dependent trans membrane protein which serves as a light driven proton pump in the cell membrane of Halobacterium salinarum. Due to the linkage of retinal to the protein, it seems colored and has numbers of versatile properties. As in vitro culture of the Halobacteria is very difficult, and isolation is time consuming and usually inefficient, production of genetically modified constructs of the protein is essential. There...

  2. The Effect of Bacterioruberin Deletion on Production of Bacteriorhodopsin in Halobacterium salinarum R1

    Directory of Open Access Journals (Sweden)

    Abbas Karimi Fard

    2018-01-01

    Full Text Available Bacteriorhodopsin is a retinal protein located in purple membrane of Halobacterium salinarum which acts as light-dependent proton pump. Bacterioruberin is a by-product in bacteriorhodopsin biosynthesis pathway in Halobacterium salinarum. In order to study the effects of bacterioruberin deletion on quantity of active cellular bacteriorhodopsin production, random mutation by UV radiation on Halobacterium salinarum R1 has been carried out. Afterwards, mutated strains which lacked bacterioruberin were selected and production of cellular active bacteriorhodopsin in both mutated and normal (with bacterioruberin strains were evaluated. The results of this study indicated that the bacterioruberin deletion had insignificant effects on bacteriorhodopsin production. Hence, the biosynthesis pathway of bacteriorhodopsin basically has to be considered independently from the bacterioruberin synthesis.

  3. Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.

    Science.gov (United States)

    Ashwini, Ravi; Vijayanand, S; Hemapriya, J

    2017-08-01

    Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.

  4. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    Science.gov (United States)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  5. Electric signals of light excited bacteriorhodopsin mutant D96N.

    Science.gov (United States)

    Tóth-Boconádi, R; Taneva, S G; Keszthelyi, L

    2001-12-31

    The study of mutant D96N played an important role in understanding proton translocation by light driven bacteriorhodopsin. Our measurement of photoelectric current for single and double flash illumination revealed new details of the photocycle of this mutant. With double flash excitation we found an intermediate absorbing near the wavelength of the ground state of bacteriorhodopsin (bR) but pumping in the opposite direction. This intermediate has the same lifetime as the species described by Zimányi et al. [Proc. Natl. Acad. Sci. USA 96 (1999) 4414-4419] and was assigned to early recovery of a fraction of the ground state after excitation. Because the electric response does not reconcile with that of the ground state, we tentatively assign it to the L intermediate or to an intermediate similar in absorption to bR (bR').

  6. [Mechanisms of proton pumping in bacteriorhodopsin]. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Ebrey, T.G.

    1995-12-31

    This report consists of two parts namely a brief statement of the progress made during the past four years of the project and more extensive discussion of the current state of understanding of molecular mechanisms controlling the proton pump (bacteriorhodopsin). Detailed descriptions are provided of how the protein undergoes conformational changes on absorbing a photon. Studies are described where the protein structure has been manipulated and the biochemical properties are assessed.

  7. On the mechanism of hydrogen-deuterium exchange in bacteriorhodopsin.

    OpenAIRE

    Doukas, A G; Pande, A; Suzuki, T; Callender, R H; Honig, B; Ottolenghi, M

    1981-01-01

    Continuous-flow resonance Raman experiments carried out in bacteriorhodopsin show that the exchange of a deuteron on the Schiff base with a proton takes place in times shorter than 3 ms. Exchange mechanisms based on a base-catalyzed deprotonation followed by reprotonation of the Schiff base are excluded. A mechanism is suggested in which a water molecule interacts directly with the Schiff base deuteron in a concerted exchange mechanism. It appears that in the dark, the binding site is more ac...

  8. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  9. SERS OF BACTERIORHODOPSIN WITH OUT-DIFFUSED SILVER NANOISLANDS

    Directory of Open Access Journals (Sweden)

    H. Fabian

    2014-09-01

    Full Text Available We present the studies on surface-enhanced Raman spectroscopy (SERS of bacteriorhodopsin in purple membranes using self-assembled silver nanoisland films for Raman signal enhancement. These metal island films were fabricated on soda-lime glass slides subjected to silver-sodium ion exchange in molten Ag0.05Na0.95NO3 at the temperature of 325°C for 20 minutes and subsequent treatment in hydrogen atmosphere at the temperature of 250°C for 10 minutes. The films typically consisted of 20–30 nm closely placed nanoislands. Being tested as SERS substrates for rhodamine 6G the nanoisland films gave the possibility to observe respective characteristic Raman lines from a dried drop of rhodamine 6G dissolved in water in the concentration of 10–6 M. Similarly fabricated substrates were used to obtain SERS spectra of bacteriorhodopsin in purple membranes dispersed in water, and Raman peaks at 1000–1020 cm–1, 1150–1220 cm–1 and 1530– 1570cm–1 were resolved. The substrates made it possible to register characteristic Raman peaks only for an order of magnitude lower concentration of bacteriorhodopsin in contrast to the virgin glass substrate, that is the enhancement of Raman signal was considerably less than for rhodomin 6G. This is supposed to be due to bacteriophodopsin molecules packing in patches, and it prevents bacteriophodopsin in purple membranes from penetration between the nanoislands where the local enhancement of the electric field of exciting light wave is maximal.

  10. Counterion collapse and the effect of diamines on bacteriorhodopsin.

    Science.gov (United States)

    Marinetti, T

    1987-05-25

    A recent report of electrical measurements on oriented bacteriorhodopsin in gels [(1986) FEBS Lett. 195, 164 168] concluded that low concentrations of diamines reversed the direction of the proton pump. Calculations are presented which show that in low diamine concentrations, charge displacements of the counterion atmosphere in the direction opposite to proton pumping are expected following H+ ejection. It is also shown that the effect will be sharply reduced by raising the diamine concentration or by adding excess salt, as was observed. Hence it is not necessary to conclude that diamines reverse the direction of the proton pump itself.

  11. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  12. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    OpenAIRE

    Prokhorenko Valentyn I.; Morizumi Takefumi; Halpin Alexei; Johnson Philip J. M.; Ernst Oliver P.; Dwayne Miller R. J.

    2013-01-01

    We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP) mode.

  13. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Prokhorenko Valentyn I.

    2013-03-01

    Full Text Available We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP mode.

  14. Time-resolved resonance Raman spectroscopy of bacteriorhodopsin on the millisecond timescale

    Energy Technology Data Exchange (ETDEWEB)

    Terner, J.; Campion, A.; El-Sayed, M.A.

    1977-12-01

    A simple technique is described that uses a continuous wave laser with electromechanical modulation to obtain time-resolved Raman spectra of transient species on the millisecond timescale. The time behavior of the vibrational bands of the intermediates involved in the proton pumping of bacteriorhodopsin is determined. From these results, along with resonance enhancement and power dependence studies, the bands that appear in the continuous wave Raman spectrum of bacteriorhodopsin can be assigned to three intermediates in the photochemical cycle of bacteriorhodopsin, bR/sub 570/, bL/sub 550/, and bM/sub 412/. The Raman spectra of bR/sub 570/ and bM/sub 412/ are compared with published spectra of model Schiff bases of all-trans and 13-cis retinal.

  15. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  16. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.

    Science.gov (United States)

    Hong, F T

    1995-01-01

    This tutorial lecture focuses on the fundamental mechanistic aspects of light-induced charge movements in pigment-containing membranes. The topic is relevant to molecular electronics because many prototypes optoelectronic devices are configured as pigment-containing thin films. We use reconstituted bacteriorhodopsin membranes as an example to illustrate the underlying principle of measurements and data interpretation. Bacteriorhodopsin, a light-driven proton pump, is the only protein component in the purple membrane of Halobacterium halobium. It resembles the visual pigment rhodopsin chemically but performs the function of photosynthesis. Bacteriorhodopsin thus offers an unprecedented opportunity for us to compare the visual photoreceptor and the photosynthetic apparatus from a mechanistic point of view. Bacteriorhodopsin, well known for its exceptional chemical and mechanical stability, is also a popular advanced biomaterial for molecular device construction. The tutorial approaches the subject from two angles. First, the fundamental photoelectric properties are exploited for device construction. Second, basic design principles for photosensors and photon energy converters can be elucidated via 'reverse engineering'. The concept of molecular intelligence and the principle of biomimetic science are discussed.

  17. Trapping the M sub 1 and M sub 2 substrates of bacteriorhodopsin for electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, G.A.

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M{sub 1}, and M{sub 2}, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M{sub 1}and M{sub 2} substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  18. Light-Induced Two-Dimensional FT-IR Spectroscopy of BacterioRhodopsin

    NARCIS (Netherlands)

    Kosters, P.G.H.; de Vries, A.H.B.; Kooyman, R.P.H.

    2000-01-01

    Two-dimensional Fourier transform infrared (2D FT-IR) spectroscopy was applied to study the slower states of the membrane protein bacterioRhodopsin (bR) photocycle, with bR adsorbed on a ZnSe attenuated total reflectance (ATR) crystal. The M and the N states of the bR photocycle could be

  19. Detergent-resistant oligomeric Leptosphaeria rhodopsin is a promising bio-nanomaterial and an alternative to bacteriorhodopsin.

    Science.gov (United States)

    Ji, Liangliang; Ma, Baofu; Meng, Qian; Li, Longjie; Liu, Ke; Chen, Deliang

    2017-11-04

    Bacteriorhodopsin has attracted remarkable attention as a photoactive bio-nanomaterial in the last decades. However, its instability in the presence of detergents has restricted the extent to which bacteriorhodopsin may be applied. In this study, we investigated the oligomerization of a eukaryotic light-driven H + -pump, Leptosphaeria rhodopsin, using circular dichroism spectroscopy and other biophysical and biochemical methods. Our findings revealed that Leptosphaeria rhodopsin assembled into oligomers in the cell membrane and also in 0.05% DDM detergent micelles. Moreover, unlike bacteriorhodopsin in purple membrane, Leptosphaeria rhodopsin retained its oligomeric structure in 1% Triton X-100 and demonstrated strong resistance to other common detergents. A maximal photocurrent density of ∼85 nA/cm 2 was consistently generated, which was substantially larger than that of solubilized bacteriorhodopsin (∼10 nA/cm 2 ). Therefore, oligomeric Leptosphaeria rhodopsin may be a promising bio-nanomaterial, and an alternative to bacteriorhodopsin, especially with the use of detergents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.

    Science.gov (United States)

    Heenan, Patrick R; Yu, Hao; Siewny, Matthew G W; Perkins, Thomas T

    2018-03-28

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG 0 ) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG 0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  1. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy

    Science.gov (United States)

    Heenan, Patrick R.; Yu, Hao; Siewny, Matthew G. W.; Perkins, Thomas T.

    2018-03-01

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG0) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  2. Direct, label-free, selective, and sensitive microbial detection using a bacteriorhodopsin-based photoelectric immunosensor.

    Science.gov (United States)

    Chen, Hsiu-Mei; Jheng, Kai-Ru; Yu, An-Dih

    2017-05-15

    A photoelectric immunosensor using purple membranes (PM) as the transducer, which contains photoactive bacteriorhodopsin, is here first demonstrated for direct and label-free microbial detection. Biotinylated polyclonal antibodies against Escherichia coli were immobilized on a PM-coated electrode through further surface biotinylation and bridging avidin or NeutrAvidin. The photocurrent generated by the antibody-coated sensor was reduced after incubation with E. coli K-12 cultures, with the reduction level increased with the culture populations. The immunosensor prepared via NeutrAvidin exhibited much better selectivity than the one prepared via avidin, recognizing almost none of the tested Gram-positive bacteria. Cultures with populations ranging from 1 to 10 7 CFU/10mL were detected in a single step without any preprocessing. Both AFM and Raman analysis confirmed the layer-by-layer fabrication of the antibody-coated substrates as well as the binding of microorganisms. By investigating the effect of illumination orientation and simulating the photocurrent responses with an equivalent circuit model containing a chemical capacitance, we suggest that the photocurrent reduction was primarily caused by the light-shielding effect of the captured bacteria. Using the current fabrication technique, versatile bacteriorhodopsin-based photoelectric immunosensors can be readily prepared to detect a wide variety of biological cells. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Surface chemical functionalization of single walled carbon nanotubes with a bacteriorhodopsin mutant.

    Science.gov (United States)

    Ingrosso, Chiara; Bianco, Giuseppe Valerio; Lopalco, Patrizia; Tamborra, Michela; Curri, Maria Lucia; Corcelli, Angela; Bruno, Giovanni; Agostiano, Angela; Siciliano, Pietro; Striccoli, Marinella

    2012-10-21

    In this work, single walled carbon nanotubes (SWNTs) have been chemically functionalized at their walls with a membrane protein, namely the mutated bacteriorhodopsin D96N, integrated in its native archaeal lipid membrane. The modification of the SWNT walls with the mutant has been carried out in different buffer solutions, at pH 5, 7.5 and 9, to investigate the anchoring process, the typical chemical and physical properties of the component materials being dependent on the pH. The SWNTs modified by interactions with bacteriorhodopsin membrane patches have been characterized by UV-vis steady state, Raman and attenuated total reflection Fourier transform infrared spectroscopy and by atomic force and transmission electron microscopy. The investigation shows that the membrane protein patches wrap the carbon walls by tight chemical interactions undergoing a conformational change; such chemical interactions increase the mechanical strength of the SWNTs and promote charge transfers which p-dope the nano-objects. The functionalization, as well as the SWNT doping, is favoured in acid and basic buffer conditions; such buffers make the nanotube walls more reactive, thus catalysing the anchoring of the membrane protein. The direct electron communication among the materials can be exploited for effectively interfacing the transport properties of carbon nanotubes with both molecular recognition capability and photoactivity of the cell membrane for sensing and photoconversion applications upon integration of the achieved hybrid materials in sensors or photovoltaic devices.

  4. Absolute quantum yields and proof of proton and nonproton transient release and uptake in photoexcited bacteriorhodopsin.

    Science.gov (United States)

    Marinetti, T; Mauzerall, D

    1983-01-01

    Using a sensitive differential ac conductance apparatus, we have measured transient ion movements in and the heating of bacteriorhodopsin suspensions after a light flash. The signal from the heating serves as an internal calibration of the absorbed photons and therefore the method gives the absolute quantum yield (phi) from a single measurement. At pH 4, H+ uptake precedes release, with phi = 0.4. By varying the buffer composition, we can prove that this signal is due to protons. At pH 8, however, the transient conductance increase is virtually independent of the buffer composition, showing that ions other than H+ are first released and then taken up by the purple membrane. If these ions are typical monovalent cations such as Na+ (lambda = 50 ohm-1 X cm2 X equiv-1), this process has a quantum yield of 2 or more at high salt concentrations. PMID:6296866

  5. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    International Nuclear Information System (INIS)

    Wang Zhen; Bai Jing; Xu Yuhong

    2008-01-01

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M 412 were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M 412s increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes

  6. On the mechanism of weak-field coherent control of retinal isomerization in bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Prokhorenko, Valentyn I. [Institute for Optical Sciences, Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, M5S3H6 Toronto, Ontario (Canada)], E-mail: prokh@lphys.chem.utoronto.ca; Nagy, Andrea M. [Institute for Optical Sciences, Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, M5S3H6 Toronto, Ontario (Canada); Brown, Leonid S. [Department of Physics, University of Guelph, N1G2W1, Guelph, Ontario (Canada); Dwayne Miller, R.J. [Institute for Optical Sciences, Departments of Chemistry and Physics, University of Toronto, 80 St. George Street, M5S3H6 Toronto, Ontario (Canada)], E-mail: dmiller@lphys.chem.utoronto.ca

    2007-11-15

    Experimental studies of the short time reaction dynamics controlling the chemical branching ratio provide direct evidence for the mechanism of coherent control of the retinal photoisomerization in bacteriorhodopsin in the weak-field limit with respect to the previous report [V. Prokhorenko, A. Nagy, S. Waschuk, L. Brown, R. Birge, R. Miller, Science 313 (2006) 1257]. The phase sensitivity of the reaction dynamics is directly revealed using time- and frequency-resolved pump-probe measurements. The high degree of control of the reaction branching ratio is theoretically explained through a combination of spectral amplitude shaping and phase-dependent coupling to selectively excite vibrations most strongly coupled to the reaction coordinate. Coherent control in this context must involve reaction dynamics that occur on time scales comparable to electronic and vibrational decoherence time scales.

  7. Functional 2D nanomaterials for optoelectronics based on langmuir bacteriorhodopsin films

    Directory of Open Access Journals (Sweden)

    Sergei I. Valyansky

    2016-09-01

    Full Text Available We have tested the possibility of using monomolecular layers of bacteriorhodopsin (BR for the synthesis of highly sensitive and highly selective sensors based on second harmonic generation and surface plasma waves. We have used various methods to study the optical and nonlinear optical properties of Langmuir-Blodgett films of BR in order to clarify the extent to which specific properties of BR molecules are retained during their transfer from the surface of water to a solid substrate. We show that the second harmonic generation method is efficient for analyzing the molecular orientation and quality of Langmuir-Blodgett films. The experimental nonlinear optical susceptibility of second order BR molecules is 3.4·10−11 m/V. The relative change in the resonant wave vector is (3.6±0.1·10−2 at an excitation light wavelength of 630 nm. We have obtained a BR spectrum with the effective excitation by incident radiation of surface plasma waves. On the basis of these studies, we have proposed new schemes of biosensors operating on the basis of second harmonic generation and surface plasma resonance caused by fundamental frequency reflection from BR monomolecular layers. This scheme was tested for a model device and demonstrated the possibility of obtaining sensitivities of the order of 1011 molecules/cm3.

  8. All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin

    Science.gov (United States)

    Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.

    2018-05-01

    All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.

  9. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti configuration to an extracellular facing (13-cis, 15-syn configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.

  10. Photosensory behaviour of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, E.; Schimz, A. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Neurobiologie)

    1983-05-01

    Halobacterium halobium, strain ET-15, which does not contain detectable amounts of bacteriorhodopsin (BR) shows behavioral responses to UV and yellow-green light. Attractant stimuli, i.e. light-increases in the yellow-green range or light-decreases in the UV, suppress the spontaneous reversals of the swimming direction for a certain time. Repellent stimuli, i.e. light-decreases in the yellow-green range or light-increases in the UV, elicit an additional reversal response after a few seconds. Action spectra of both sensory photosystems, PS 370 and PS 565, were measured with attractant as well as with repellent stimuli. As in BR-containing cells, maximal sensitivity was always found at 370 nm for the UV-system and at 565 nm for the long-wavelength system. Fluence-response curves at 370 and 565 nm obtained with strain ET-15 and with a BR-containing strain show that the sensitivity of both photosystems is not reduced in the absence of BR. It is concluded that BR is required neither for PS 565 nor for PS 370. Instead retinal-containing pigments different from BR have to be assumed to mediate photosensory behavior.

  11. Large scale nonproton ion release and bacteriorhodopsin's state of aggregation in lipid vesicles. I. Monomers.

    Science.gov (United States)

    Marinetti, T

    1987-07-01

    Light-induced conductivity transients have been observed in preparations of bacteriorhodopsin (bR) in phospholipid vesicles at high lipid/protein molar ratios. Under these conditions, bR is known to be dissolved as monomers in the lipid bilayer. The conductivity transients are due mostly to proton movements, including a trans-membrane component. Kinetic resolution of the conductance change due to proton ionophore-induced leakage through the vesicle membrane provides a novel method to quantitate the number of protons pumped, even in heavily buffered solutions. Some of the transient signal seen on the timescale of the bR photocycle is due to nonproton ions but is smaller than that observed in native purple membranes at pH 7 in low salt. Furthermore, when the pH is raised to 8, the very large transient nonproton ion release seen in purple membranes is not seen in the vesicles. This correlates well with previous results (Marinetti, T., and D. Mauzerall, 1986, Biophys. J., 50:405-415), in which the nonproton ion movements observed with native purple membranes were abolished by solubilization in Triton X-100. Thus, the nonproton ion release appears to be a property of bR in the native aggregated state.

  12. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Mark H. Griep

    2012-01-01

    Full Text Available An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs and the optical protein bacteriorhodopsin (bR is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

  13. Bacteriorhodopsin as a high-resolution, high-capacity buffer for digital holographic measurements

    Science.gov (United States)

    Barnhart, D. H.; Koek, W. D.; Juchem, T.; Hampp, N.; Coupland, J. M.; Halliwell, N. A.

    2004-04-01

    Recent trends in optical metrology suggest that, in order for holographic measurement to become a widespread tool, it must be based on methods that do not require physical development of the hologram. While digital holography has been successfully demonstrated in recent years, unfortunately the limited information capacity of present electronic sensors, such as CCD arrays, is still many orders of magnitude away from directly competing with the high-resolution silver halide plates used in traditional holography. As a result, present digital holographic methods with current electronic sensors cannot record object sizes larger than several hundred microns at high resolution. In this paper, the authors report on the use of bacteriorhodopsin (BR) for digital holography to overcome these limitations. In particular, BR is a real-time recording medium with an information capacity (5000 line-pairs/mm) that even exceeds high resolution photographic film. As such, a centimetre-square area of BR film has the same information capacity of several hundred state-of-the-art CCD cameras. For digital holography, BR temporarily holds the hologram record so that its information content can be digitized for numeric reconstruction. In addition, this paper examines the use of BR for optical reconstruction without chemical development. When correctly managed, it is found that BR is highly effective, in terms of both quality and process time, for three-dimensional holographic measurements. Consequently, several key holographic applications, based on BR, are proposed in this paper.

  14. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  15. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  16. Trapping the M1and M2 substrates of bacteriorhodopsin for electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, Guy A. [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M1, and M2, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M1and M2 substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  17. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.

    Science.gov (United States)

    Szundi, I; Stoeckenius, W

    1989-08-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.

  18. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin

    Science.gov (United States)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank's data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.

  19. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  20. Replacement of aspartic residues 85, 96, 115, or 212 affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin.

    Science.gov (United States)

    Marinetti, T; Subramaniam, S; Mogi, T; Marti, T; Khorana, H G

    1989-01-01

    Recently, a number of aspartic acid mutants of bacteriorhodopsin have been shown to be defective in steady-state proton transport. Here we report time-resolved measurements of light-induced proton release and uptake for these mutants. Proton transfers between the protein and the aqueous phase were directly monitored by measuring changes in the bulk conductivity of a micellar solution of bacteriorhodopsin. For the Asp-96----Asn mutant, proton uptake was slowed by greater than 1 order of magnitude with no observable effect on the release step. For Asp-85----Asn, H+ uptake occurred with normal kinetics, but the yield was significantly lower compared with either the Asp-96----Asn mutant or wild type, especially at pH 6. Substitution of glutamate for Asp-85 or Asp-96 had smaller but detectable effects on the kinetics and quantum yield of proton movements. Both asparagine and glutamate substitutions of aspartates at positions 115 and 212 lowered the proton quantum yields. Of these, only the Asp-115----Asn mutant showed an effect on the proton release step, and only the Asp-212----Glu mutation decreased the proton uptake rate. These experiments imply an obligatory role for Asp-96 in H+ uptake in the normal operation of the bacteriorhodopsin proton pump. The results also indicate that the amino acid substitutions affect the kinetics of either H+ release or H+ uptake, but not both. This implies that the two steps occur independently of each other after initiation of the photocycle.

  1. Using Haloarcula marismortui bacteriorhodopsin as a fusion tag for enhancing and visible expression of integral membrane proteins in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Min-Feng Hsu

    Full Text Available Membrane proteins are key targets for pharmacological intervention because of their vital functions. Structural and functional studies of membrane proteins have been severely hampered because of the difficulties in producing sufficient quantities of properly folded and biologically active proteins. Here we generate a high-level expression system of integral membrane proteins in Escherichia coli by using a mutated bacteriorhodopsin (BR from Haloarcula marismortui (HmBRI/D94N as a fusion partner. A purification strategy was designed by incorporating a His-tag on the target membrane protein for affinity purification and an appropriate protease cleavage site to generate the final products. The fusion system can be used to detect the intended target membrane proteins during overexpression and purification either with the naked eye or by directly monitoring their characteristic optical absorption. In this study, we applied this approach to produce two functional integral membrane proteins, undecaprenyl pyrophosphate phosphatase and carnitine/butyrobetaine antiporter with significant yield enhancement. This technology could facilitate the development of a high-throughput strategy to screen for conditions that improve the yield of correctly folded target membrane proteins. Other robust BRs can also be incorporated in this system.

  2. Modifying the photoelectric behavior of bacteriorhodopsin by site-directed mutagenesis: electrochemical and genetic engineering approaches to molecular devices

    Science.gov (United States)

    Hong, F. T.; Hong, F. H.; Needleman, R. B.; Ni, B.; Chang, M.

    1992-07-01

    Bacteriorhodopsins (bR's) modified by substitution of the chromophore with synthetic vitamin A analogues or by spontaneous mutation have been reported as successful examples of using biomaterials to construct molecular optoelectronic devices. The operation of these devices depends on desirable optical properties derived from molecular engineering. This report examines the effect of site-directed mutagenesis on the photoelectric behavior of bR thin films with an emphasis on their application to the construction of molecular devices based on their unique photoelectric behavior. We examine the photoelectric signals induced by a microsecond light pulse in thin films which contain reconstituted oriented purple membrane sheets isolated from several mutant strains of Halobacterium halobium. A recently developed expression system is used to synthesize mutant bR's in their natural host, H. halobium. We then use a unique analytical method (tunable voltage clamp method) to investigate the effect of pH on the relaxation of two components of the photoelectric signals, B1 and B2. We found that for the four mutant bR's examined, the pH dependence of the B2 component varies significantly. Our results suggest that genetic engineering approaches can produce mutant bR's with altered photoelectric characteristics that can be exploited in the construction of devices.

  3. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  4. Protein conformational changes in the bacteriorhodopsin photocycle: comparison of findings from electron and X-ray crystallographic analyses.

    Directory of Open Access Journals (Sweden)

    Teruhisa Hirai

    Full Text Available Light-driven conformational changes in the membrane protein bacteriorhodopsin have been studied extensively using X-ray and electron crystallography, resulting in the deposition of >30 sets of coordinates describing structural changes at various stages of proton transport. Using projection difference Fourier maps, we show that coordinates reported by different groups for the same photocycle intermediates vary considerably in the extent and nature of conformational changes. The different structures reported for the same intermediate cannot be reconciled in terms of differing extents of change on a single conformational trajectory. New measurements of image phases obtained by cryo-electron microscopy of the D96G/F171C/F219L triple mutant provide independent validation for the description of the large protein conformational change derived at 3.2 A resolution by electron crystallography of 2D crystals, but do not support atomic models for light-driven conformational changes derived using X-ray crystallography of 3D crystals. Our findings suggest that independent determination of phase information from 2D crystals can be an important tool for testing the accuracy of atomic models for membrane protein conformational changes.

  5. Optical Properties Of Polymeric Films Of Bacteriorhodopsin And Its Functional Variants: New Materials For Optical Information Processing

    Science.gov (United States)

    Hampp, Norbert; Braeuchle, Christoph R.; Oesterhelt, Dieter

    1990-01-01

    Purple membrane (PM) from Halobacterium halobium consists of a two-dimensional crystal of the photochromic retinal protein bacteriorhodopsin (BR). Purple membrane embedded in inert polymer matrices can be used as reversible recording medium in holography. The thermal and photochemical stability (at least 100.000 recording cycles at room temperature), the high quantum yield (70%), the high resolution (~ 5000 lines/mm) and the wide spectral range (400-680 nm) of these films are promising features for any possible technical application. The variability of this material was restricted to chemical modifications of the chromophoric group for a long time. new class of BR based recording media is introduced by the availability of variants of BR with a modified amino acid sequence. After generation of a mutant strain PM variants can be easily produced by the same cultivation and purification procedures as the PM of the wildtype and therefore are available in virtually unlimited amounts, too. As an example the properties of PM-films containing the variant BR-326, which differs from the wildtype by a single amino acid, are reported here. The improved diffraction efficiency (~ 2-fold) and increased sensitivity (~ 50%) of films containing BR-326 give an impression of the new possibilities for optimizing reversible recording media by biochemical and gentechnological methods as an alternative or an addition to conventional chemical methods.

  6. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network.

    Science.gov (United States)

    Elghobashi-Meinhardt, Nadia; Phatak, Prasad; Bondar, Ana-Nicoleta; Elstner, Marcus; Smith, Jeremy C

    2018-03-08

    For the photocycle of the membrane protein bacteriorhodopsin to proceed efficiently, the thermal 13-cis to all-trans back-isomerization of the retinal chromophore must return the protein to its resting state on a time-scale of milliseconds. Here, we report on quantum mechanical/molecular mechanical energy calculations examining the structural and energetic determinants of the retinal cis-trans isomerization in the protein environment. The results suggest that a hydrogen-bonded network consisting of the retinal Schiff base, active site amino acid residues, and water molecules can stabilize the twisted retinal, thus reducing the intrinsic energy cost of the cis-trans thermal isomerization barrier.

  7. Determination of the number of water molecules in the proton pathway of bacteriorhodopsin using neutron diffraction data.

    Science.gov (United States)

    Papadopoulos, Georgios; Hauss, Thomas

    2003-07-01

    It has been shown that water molecules participate in the proton pathway of bacteriorhodopsin. Large efforts have been made to determine with various biophysical methods the number of water molecules involved. Neutron diffraction H2O/D2O exchange experiments have been often used to reveal the position of water even with low-resolution diffraction data. With this technique, care must be taken with the limitations of the difference Fourier method which are commonly applied to analyze the data. In this paper we compare the results of the difference Fourier method applied to measured diffraction data (not presented here) and models with those from alternative methods introduced here: (1) a computer model calculation procedure to determine a label's scattering length density based on a comparison of intensity differences derived from models and intensity differences from our measurements; (2) a method based on the Parseval formula. Both alternative methods have been evaluated and tested using results of neutron diffraction experiments on purple membranes (Hauss et al. 1994). Our findings indicate that the difference Fourier method applied to low-resolution diffraction data can successfully determine the position of localized water molecules but underestimates their integrated scattering length density in the presence of labels in other positions. Furthermore, we present the results of neutron diffraction experiments on purple membranes performed to determine the number of water molecules in the projected area of the Schiff base at 86%, 75% and 57% relative humidity (r.h.). We found 19 +/- 2 exchangeable protons at 75% r.h., which means at least 8-9 water molecules are indispensable for normal pump function.

  8. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  9. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  10. Absorption characteristics of bacteriorhodopsin molecules

    Indian Academy of Sciences (India)

    alent level diagram by considering the lifetime of the intermediate states. Assuming that only and. Е states are appreciably populated at any instant of time, the level diagram is further simplified to two-level system. ... Among the biological materials proposed for photonic applications [1–6], bacteri- orhodopsin (BR), a pigment ...

  11. Bacteriorhodopsin crystal growth in reduced gravity - Results under the conditions, given in CPCF on board of a space shuttle, versus the conditions, given in DCAM on board of the Space Station Mir

    Science.gov (United States)

    Zörb, Ch.; Weisert, A.; Stapelmann, J.; Smolik, G.; Carter, D. C.; Wright, B. S.; Brunner-Joos, K. D.; Wagner, G.

    2002-09-01

    For the purpose of bio-electronics, bacteriorhodopsin was crystallized into two habits through liquid-liquid-diffusion, namely individual needles of up to 1.9 mm in length and needle bunch-like clusters of up to 4.9 mm in total length. In both the reduced gravity experiments performed, the morphology of the individual needles (crystal form A) had improved in terms of sharp needle edges and compact needle packing, compared to the parallel ground controls. For the long duration wide range low gravity condition in the "Diffusion-controlled Crystallization Apparatus for Microgravity (DCAM)" on Mir (STS-89 up), needle bunches on average were longer there than on the ground, while the compactness of the clusters, i.e. the average ratio of clustered length to clustered width was the reverse. Some exceptionally large individual needles were grown in DCAM. For the "Commercial Protein Crystallization Facility (CPCF)" in short duration high definition microgravity condition during a science mission of the Space Shuttle Discovery (STS-95), size and shape of the individual needles were homogeneous and superior to those of both the parallel ground controls and the results in DCAM. In CPCF, the average volume of the individual needles in suspension was increased by 50 % in microgravity compared to those in the ground control.

  12. Bacteriorhodopsin crystal growth in reduced gravity--results under the conditions, given in CPCF on board of a Space Shuttle, versus the conditions, given in DCAM on board of the Space Station Mir.

    Science.gov (United States)

    Zorb, Ch; Weisert, A; Stapelmann, J; Smolik, G; Carter, D C; Wright, B S; Brunner-Joos, K D; Wagner, G

    2002-01-01

    For the purpose of bio-electronics, bacteriorhodopsin was crystallized into two habits through liquid-liquid-diffusion, namely individual needles of up to 1.9 mm in length and needle bunch-like clusters of up 4.9 mm in total length. In both the reduced gravity experiments performed, the morphology of the individual needles (crystal form A) had improved in terms of sharp needle edges and compact needle packing, compared to the parallel ground controls. For the long duration wide range low gravity condition in the "Diffusion-controlled Crystallization Apparatus for Microgravity (DCAM)" on Mir (STS-89 up), needle bunches on average were longer there than on the ground, while the compactness of the clusters, i.e. the average ratio of clustered length to clustered width was the reverse. Some exceptionally large individuals needles were grown in DCAM. For the "Commercial Protein Crystallization Facility (CPCF)" in short duration high definition microgravity conditions during a science mission of the Space Shuttle Discovery (STS-95), size and shape of the individual needles were homogeneous and superior to those of both the parallel ground controls and the results in DCAM. In CPCF, the average volume of the individual needles in suspension was increased by 50% in microgravity compared to those in the ground control.

  13. High Capacity Free Space Bacteriorhodopsin Base Reconfigurable Crossbar

    National Research Council Canada - National Science Library

    Thai, Serey

    1998-01-01

    ..., which has high write/read photocyclicity that is greater than 10 to the 6th power. The major advantages of the system include large interconnectivity density, transparent data redistribution, and fiber optic bandwidth capacity...

  14. Forster Resonance Energy Transfer Between Core/Shell Quantum Dots and Bacteriorhodopsin

    Science.gov (United States)

    2012-01-01

    a wide range of the spectrum from ultraviolet to the visible and exhibit bright, atom-like narrow emission bands in the visible that can be further...biotin labeling on the purple membrane,” Journal of Photochemistry and Photobiology B, vol. 92, no. 2, pp. 123–127, 2008. [37] W. Z. Lee, G. W. Shu, J. S

  15. Time Resolved Optical Studies on The Plasmonic Field Enhancement of Bacteriorhodopsin Proton Photo-current: Final Technical Report Covering Aug 31, 2015–Aug 31, 2016

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, Mostafa A. [Georgia Inst. of Technology, Atlanta, GA (United States). School of Chemistry and Biochemistry

    2016-09-15

    Our research continues to focus on the effects of plasmonic nanoparticles on organic and inorganic light-harvesting materials. Recent work has focused on the synthesis of stabilized gold nanoparticles to enhance the efficiency of dye-sensitized solar cells (DSSCs). Two major concerns in dye sensitized solar cells (DSSCs) are efficient light absorption and charge collection. Charge collection typically suffers because transport of electrons through the mesoporous TiO2 substrate is slow. Thus, one obvious way to improve charge collection is to reduce the thickness of the TiO2. Alternatively, a form of TiO2 with fewer grain boundaries, such as nanotubes, could be used in place of sintered nanospheres. Unfortunately, both of these solutions end up reducing the amount of surface area available to adsorb dye molecules. This directly reduces the percentage of photons absorbed. This problem could be avoided if dye molecules with larger absorption were designed; although synthetic chemists seem to be pushing the limits of what is achievable. Plasmonic nanoparticles offer an alternative way to boost light absorption. It is well known that plasmonic nanoparticles can enhance the local electric field of resonant frequencies of light. If this were in the same spectral region as the dye’s absorption band it would increase the percentage of absorbed photons. One concern is that if the nanoparticles are too close to the dye molecules they can quench the excited state. To avoid this problem, we prepared gold nanoparticles with a silica shell. This limited the amount of quenching while still permitting some enhancement of absorption. Unfortunately, we ran into some serious issues. The iodide based electrolyte etched the gold nanoparticles, completely dissolving them within a few hours. The silica shell should have provided protection but there were pinholes through which iodide could diffuse. Increasing the thickness of the silica to over 10 nm prevented etching but also limited any photon absorption enhancement.

  16. There is No Overkill in Biochemistry

    Indian Academy of Sciences (India)

    IAS Admin

    Methods for transformation of native Halobacterium halobium system had not been developed, but introduction of the bacteriorhodopsin gene in E. coli cells did not result in measurable protein production. Even when bacteriorhodopsin was expressed as a fusion protein with an E. coli membrane protein, the expression ...

  17. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. K Appaji Gowda. Articles written in Pramana – Journal of Physics. Volume 54 Issue 3 March 2000 pp 447-452 Brief Reports. Absorption characteristics of bacteriorhodopsin molecules · H K T Kumar K Appaji Gowda · More Details Abstract Fulltext PDF. The bacteriorhodopsin ...

  18. Number 1, January

    Indian Academy of Sciences (India)

    Debasish Majumdar and Kamales Kar. 423. Measurements of photoinduced refractive index changes in bacteriorhodopsin films .................. Ravinder Kumar Banyal and B Raghavendra Prasad. 435. Interferometric key readable security holograms with secrete-codes . . . . . . . . . ...................................Raj Kumar, D Mohan and ...

  19. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  20. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Directory of Open Access Journals (Sweden)

    María Gomariz

    Full Text Available We theoretically and experimentally analyze the formation of thick Purple Membrane (PM polyacrylamide (PA films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  1. Functional electric field changes in photoactivated proteins revealed by ultrafast Stark spectroscopy of the Trp residues

    NARCIS (Netherlands)

    Leonard, J.; Portuondo-Campa, E.; Cannizzo, A.; van Mourik, F.; van der Zwan, G.; Tittor, J.; Haacke, S.; Chergui, M.

    2009-01-01

    Ultrafast transient absorption spectroscopy of wild-type bacteriorhodopsin (WT bR) and 2 tryptophan mutants (W86F and W182F) is performed with visible light excitation (pump) and UV probe. The aim is to investigate the photoinduced change in the charge distribution with 50-fs time resolution by

  2. Single-nucleotide variations associated with Mycobacterium ...

    Indian Academy of Sciences (India)

    The occurrence of drug resistance in Mycobacterium tuberculosis, the aetiological agent of tuberculosis (TB), is hampering the management and .... drug response by altering cellular chemistry. The majority of. SNVs belong to the .... affects the quantum yield and kinetics of proton release and uptake by bacteriorhodopsin ...

  3. Measurements of photoinduced refractive index changes in ...

    Indian Academy of Sciences (India)

    Abstract. We report the pump–probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is ...

  4. Design and modeling of a light powered biomimicry micropump

    Science.gov (United States)

    Sze, Tsun-kay Jackie; Liu, Jin; Dutta, Prashanta

    2015-06-01

    The design of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. In this work, a novel micropump concept is introduced utilizing bacteriorhodopsin and sugar transporter proteins. The micropump utilizes light energy to activate the transporter proteins, which create an osmotic pressure gradient and drive the fluid flow. The capability of the bio inspired micropump is demonstrated using a quasi 1D numerical model, where the contributions of bacteriorhodopsin and sugar transporter proteins are taken care of by appropriate flux boundary conditions in the flow channel. Proton flux created by the bacteriorhodopsin proteins is compared with experimental results to obtain the appropriate working conditions of the proteins. To identify the pumping capability, we also investigate the influences of several key parameters, such as the membrane fraction of transporter proteins, membrane proton permeability and the presence of light. Our results show that there is a wide bacteriorhodopsin membrane fraction range (from 0.2 to 10%) at which fluid flow stays nearly at its maximum value. Numerical results also indicate that lipid membranes with low proton permeability can effectively control the light source as a method to turn on/off fluid flow. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. In comparison with existing micropumps, this pump generates higher pressures than mechanical pumps. It can produce peak fluid flow and shutoff head comparable to other non-mechanical pumps.

  5. Measurements of photoinduced refractive index changes in ...

    Indian Academy of Sciences (India)

    ... changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  6. Synthesis of ring-13C-labelled and ring-demethylated retinals

    International Nuclear Information System (INIS)

    Courtin, J.M.L.

    1988-01-01

    Efficient synthetic schemes are described for the preparation of the required mono- and di- 13 C labelled retinals based on simple 13 C labelled starting materials. Results from solid-state 13 C-NMR spectroscopic studies of the various ring- 13 C labelled bacteriorhodopsins and rhodopsins are discussed. 404 refs.; 74 figs.; 16 tabs

  7. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    ... changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  8. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The bacteriorhodopsin molecule absorbs light and undergoes a series of structural transformation following a well-defined photocycle. The complex photocycle is transformed to an equivalent level diagram by considering the lifetime of the intermediate states. Assuming that only and states are appreciably populated at ...

  9. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum.

    Science.gov (United States)

    Zaccai, G

    2000-08-30

    Twenty-five years of neutron experiments on hydration and thermal dynamics in purple membranes of Halobacterium salinarum are reviewed. Neutron diffraction, elastic and quasielastic scattering, allowed to map the distribution of water and lipids and to measure thermal fluctuations and correlation times in the membranes, under various conditions of temperature, hydration and lipid environment. Strong correlations were established between dynamics parameters and the activity of bacteriorhodopsin (the purple membrane protein), as a light driven proton pump supporting the hypothesis that the influence of hydration on activity is in fact due to its effects on membrane thermal dynamics. Hydrogen-deuterium labelling experiments highlighted stiffer and softer parts in the bacteriorhodopsin structure. The soft parts would allow the conformational changes involved in activity, while the stiffer ones may control a valve-like function in vectorial proton transfer.

  10. Interfacial photochemistry of retinal proteins

    Science.gov (United States)

    Hong, Felix T.

    1999-09-01

    Retinal proteins are membrane-bound protein pigments that contain vitamin A aldehyde (retinal) as the chromophore. They include the visual pigment rhodopsin and four additional ones in the plasma membrane of Halobacterium salinarium (formerly Halobacterium halobium). These proteins maintain a fixed and asymmetric orientation in the membranes, and respond to a light stimulus by generating vectorial charge movement, which can be detected as an electric potential across the membrane or an electric current through the membrane. These phenomena are collectively called the photoelectric effects, which defy a rigorous quantitative treatment by means of either conventional (solution phase) photochemistry or conventional electrophysiology. As an alternative to the mainstream approach, we utilize the analytic tools of electrochemical surface science and electrophysiology to analyze two molecular models of light-induced charge separation and recombination. Being tutorial in nature, this article demands no prior knowledge about the subject. A parsimonious equivalent circuit model is developed. Data obtained from reconstituted bacteriorhodopsin membranes are used to validate the theoretical model and the analytical approach. Data generated and used by critics to refute our approach is shown to actually support it. The present analysis is sufficiently general to be applicable to other pigment-containing membranes, such as the visual photoreceptor membrane and the chlorophyll-based photosynthetic membranes. It provides a coherent description of a wide range of light-induced phenomena associated with various pigment-containing membranes. In contrast, the mainstream approach has been plagued with self-contradictions and paradoxes. Last, but not least, the alternative bioelectrochemical approach also exhibits a predictive power that has hitherto been generally lacking. Comparison of the photoelectric effects is made with regard to bacteriorhodopsin, rhodopsin, and the chlorophyll

  11. Infrared spectroscopic study of photoreceptor membrane and purple membrane. Protein secondary structure and hydrogen deuterium exchange

    International Nuclear Information System (INIS)

    Downer, N.W.; Bruchman, T.J.; Hazzard, J.H.

    1986-01-01

    Infrared spectroscopy in the interval from 1800 to 1300 cm-1 has been used to investigate the secondary structure and the hydrogen/deuterium exchange behavior of bacteriorhodopsin and bovine rhodopsin in their respective native membranes. The amide I' and amide II' regions from spectra of membrane suspensions in D2O were decomposed into constituent bands by use of a curve-fitting procedure. The amide I' bands could be fit with a minimum of three theoretical components having peak positions at 1664, 1638, and 1625 cm-1 for bacteriorhodopsin and 1657, 1639, and 1625 cm-1 for rhodopsin. For both of these membrane proteins, the amide I' spectrum suggests that alpha-helix is the predominant form of peptide chain secondary structure, but that a substantial amount of beta-sheet conformation is present as well. The shape of the amide I' band was pH-sensitive for photoreceptor membranes, but not for purple membrane, indicating that membrane-bound rhodopsin undergoes a conformation change at acidic pH. Peptide hydrogen exchange of bacteriorhodopsin and rhodopsin was monitored by observing the change in the ratio of integrated absorbance (Aamide II'/Aamide I') during the interval from 1.5 to 25 h after membranes were introduced into buffered D2O. The fraction of peptide groups in a very slowly exchanging secondary structure was estimated to be 0.71 for bacteriorhodopsin at pD 7. The corresponding fraction in vertebrate rhodopsin was estimated to be less than or equal to 0.60. These findings are discussed in relationship to previous studies of hydrogen exchange behavior and to structural models for both proteins

  12. Zernike Phase Contrast Cryo-Electron Microscopy and Tomography for Structure Determination at Nanometer and Sub-Nanometer Resolutions

    OpenAIRE

    Murata, Kazuyoshi; Liu, Xiangan; Danev, Radostin; Jakana, Joanita; Schmid, Michael F.; King, Jonathan; Nagayama, Kuniaki; Chiu, Wah

    2010-01-01

    Zernike phase contrast cryo-electron microscopy (ZPC-cryoEM) is an emerging technique which is capable of producing higher image contrast than conventional cryoEM. By combining this technique with advanced image processing methods, we achieved subnanometer resolution for two biological specimens: 2-D bacteriorhodopsin crystal and epsilon15 bacteriophage. For an asymmetric reconstruction of epsilon15 bacteriophage, ZPC-cryoEM can reduce the required amount of data by a factor of ~3 compared to...

  13. Proteorhodopsin Photocycle Kinetics Between pH 5 and pH 9.

    Science.gov (United States)

    Köhler, Thomas; Weber, Ingrid; Glaubitz, Clemens; Wachtveitl, Josef

    2017-05-01

    The retinal protein proteorhodopsin is a homolog of the well-characterized light-driven proton pump bacteriorhodopsin. Basic mechanisms of proton transport seem to be conserved, but there are noticeable differences in the pH ranges of proton transport. Proton transport and protonation state of a carboxylic acid side chain, the primary proton acceptor, are correlated. In case of proteorhodopsin, the pK a of the primary proton acceptor Asp-97 (pK a  ≈ 7.5) is unexpectedly close to environmental pH (pH ≈ 8). A significant fraction of proteorhodopsin is possibly inactive at natural pH, in contrast to bacteriorhodopsin. We investigated photoinduced kinetics of proteorhodopsin between pH 5 and pH 9 by time resolved UV/vis absorption spectroscopy. Kinetics is inhomogeneous within that pH region and can be considered as a superposition of two fractions. These fractions are correlated with the Asp-97 titration curve. Beside Asp-97, protonation equilibria of other groups influence kinetics, but the observations do not point toward major differences of primary proton acceptor function in proteorhodopsin and bacteriorhodopsin. The pK a of proteorhodopsin and some of its variants is suspected to be an example of molecular adaptation to the physiology of the original organisms. © 2017 The American Society of Photobiology.

  14. Temporal response of protein-based artificial ganglion cell receptive field (Conference Presentation)

    Science.gov (United States)

    Okada-Shudo, Yoshiko

    2016-10-01

    We propose ganglion cell receptive-field-type filters with the use of the photoreceptor protein bacteriorhodopsin. Visual image processing is possible with the use of only one sensing element. We also demonstrate that our difference of Gaussians (DOG) filter, which mimics on-center off-suround ganglion cell receptive fields, has the function of a Laplacian filter and can act as an edge detecor. The X-type receptive field responses obtained by the filter, for a variety of stimuli, are compared with available electrophysiological recodings.

  15. Protons and how they are transported by proton pumps

    DEFF Research Database (Denmark)

    Buch-Pedersen, Morten Jeppe; Pedersen, Bjørn Panyella; Nissen, Poul

    2008-01-01

    molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological...... proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK (a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires....

  16. EXPRESSION OF BACTERIOOPSIN GENES IN ESCHERICHIA COLI

    OpenAIRE

    TSUJIUCHI, Yutaka; IWASA, Tatsuo; TOKUNAGA, Fumio

    1994-01-01

    An inducible expression vector pUBO was constructed with native codons in order to express the gene of Bacteriorhodopsin (BOP) in Escherichia coli (E. coli). Vector pUBO contains lac-promoter followed by the partial structural gene of lacZ and the structural gene of BOP. The expression of this fusion protein was detected by ELISA with anti-BOP antiserum. The fusion protein obtained from E. coli trnsformed with pUBO formed approximately 0.1% of the total protein of the E. coli membrane fraction.

  17. Modelling small-angle scattering data from complex protein-lipid systems

    DEFF Research Database (Denmark)

    Kynde, Søren Andreas Røssell

    as carriers of membrane proteins. Together they form monodisperse soluble aggregates of about 10 nm in size. Chapter 2 introduces the method of small-angle scattering. Small-angle X-ray and neutron scattering are well suited for studying particles in solution on length scales from 1 to 100 nm. This makes...... describes a protein system that has successfully been measured with small-angle scattering methods and subsequently analysed using the hybrid approach. Paper I governs the transmembrane protein bacteriorhodopsin embedded into a phospholipid nanodisc. The modelling is based on a crystal structure...

  18. Determining the Absorbance Spectra of Photochromic Materials From Measured Spectrophotometer Data

    Science.gov (United States)

    Downie, John D.

    1998-01-01

    If a two-state photochromic material is optically bleached, the absorbance spectrum data measured by a spectrophotometer is in general comprised of components from both the ground state and the upper state. Under general conditions, it may be difficult to extract the actual upper state spectrum from the spectrum of the bleached material. A simple algorithm is presented here for the recovery of the pure absorbance spectra of the upper state of a material such as bacteriorhodopsin, given single wavelength bleaching illumination, steady-state conditions, and accurate knowledge of phototransition rates and thermal decay rates.

  19. International Conference on Langmuir-Blodgett Films (5th) Held in Paris, France on 26-30 August 1991, Abstracts Booklet

    Science.gov (United States)

    1991-08-01

    glyceryl monooleate ( GMO ) and bovine-brain pbhophazidylsflne (PS) bilayer lipid membranes (BLMs) were investigated by simultaneous optical and electrical...interfacial tensions (,y) of GMO and PS BLMs were calculated to be 0.22:0.02 mN/m and 0.29_+0.03 mN/m, respectively. Support of this work by a grant...Halobacterium holobium has been introduced into LB film of soybean phospholipid and the orientation of bacteriorhodopsin in multilayer LB films has been measured

  20. A generalized Born formalism for heterogeneous dielectric environments: application to the implicit modeling of biological membranes.

    Science.gov (United States)

    Tanizaki, Seiichiro; Feig, Michael

    2005-03-22

    Reliable computer simulations of complex biological environments such as integral membrane proteins with explicit water and lipid molecules remain a challenging task. We propose a modification of the standard generalized Born theory of homogeneous solvent for modeling the heterogeneous dielectric environments such as lipid/water interfaces. Our model allows the representation of biological membranes in the form of multiple layered dielectric regions with dielectric constants that are different from the solute cavity. The proposed new formalism is shown to predict the electrostatic component of solvation free energy with a relative error of 0.17% compared to exact finite-difference solutions of the Poisson equation for a transmembrane helix test system. Molecular dynamics simulations of melittin and bacteriorhodopsin are carried out and performed over 10 ns and 7 ns of simulation time, respectively. The center of melittin along the membrane normal in these stable simulations is in excellent agreement with the relevant experimental data. Simulations of bacteriorhodopsin started from the experimental structure remained stable and in close agreement with experiment. We also examined the free energy profiles of water and amino acid side chain analogs upon membrane insertion. The results with our implicit membrane model agree well with the experimental transfer free energy data from cyclohexane to water as well as explicit solvent simulations of water and selected side chain analogs.

  1. Photocurrent generation by adsorption of two main pigments of Halobacterium salinarum on TiO2 nanostructured electrode.

    Science.gov (United States)

    Molaeirad, Ahmad; Janfaza, Sajad; Karimi-Fard, Abbas; Mahyad, Baharak

    2015-01-01

    Dye-sensitized solar cells (DSSCs), which are proposed as a substitute for silicon crystalline solar cells, have received considerable attention in the recent decade. They could be produced from inexpensive materials through low-cost processes. In the current work, a bio-sensitized solar cell is designed using abundant, cheap, and nontoxic materials. Bacteriorhodopsin and bacterioruberin are two natural biomolecules found in the cytoplasmic membrane of Halobacterium salinarum. These two pigments were immobilized on nanoporous titanium dioxide films successfully and employed as molecular sensitizers in DSSC with efficient photocurrent generation. The photovoltaic performance of DSSCs based on bacteriorhodopsin and bacterioruberin sensitizers was investigated. Under AM1.5 irradiation a short-circuit current of 0.45 mA cm(-2) , open circuit voltages of 0.57 V, fill factor of 0.62, and an overall energy conversion efficiency of 0.16% are achieved by employing a mixture of biomolecules as a sensitizer. © 2014 International Union of Biochemistry and Molecular Biology, Inc.

  2. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  3. Protein-Based Three-Dimensional Memories and Associative Processors

    Science.gov (United States)

    Birge, Robert

    2008-03-01

    The field of bioelectronics has benefited from the fact that nature has often solved problems of a similar nature to those which must be solved to create molecular electronic or photonic devices that operate with efficiency and reliability. Retinal proteins show great promise in bioelectronic devices because they operate with high efficiency (˜0.65%), high cyclicity (>10^7), operate over an extended wavelength range (360 -- 630 nm) and can convert light into changes in voltage, pH, absorption or refractive index. This talk will focus on a retinal protein called bacteriorhodopsin, the proton pump of the organism Halobacterium salinarum. Two memories based on this protein will be described. The first is an optical three-dimensional memory. This memory stores information using volume elements (voxels), and provides as much as a thousand-fold improvement in effective capacity over current technology. A unique branching reaction of a variant of bacteriorhodopsin is used to turn each protein into an optically addressed latched AND gate. Although three working prototypes have been developed, a number of cost/performance and architectural issues must be resolved prior to commercialization. The major issue is that the native protein provides a very inefficient branching reaction. Genetic engineering has improved performance by nearly 500-fold, but a further order of magnitude improvement is needed. Protein-based holographic associative memories will also be discussed. The human brain stores and retrieves information via association, and human intelligence is intimately connected to the nature and enormous capacity of this associative search and retrieval process. To a first order approximation, creativity can be viewed as the association of two seemingly disparate concepts to form a totally new construct. Thus, artificial intelligence requires large scale associative memories. Current computer hardware does not provide an optimal environment for creating artificial

  4. Light-Patterned Current Generation in a Droplet Bilayer Array

    Science.gov (United States)

    Restrepo Schild, Vanessa; Booth, Michael J.; Box, Stuart J.; Olof, Sam N.; Mahendran, Kozhinjampara R.; Bayley, Hagan

    2017-04-01

    We have created a 4 × 4 droplet bilayer array comprising light-activatable aqueous droplet bio-pixels. Aqueous droplets containing bacteriorhodopsin (bR), a light-driven proton pump, were arranged on a common hydrogel surface in lipid-containing oil. A separate lipid bilayer formed at the interface between each droplet and the hydrogel; each bilayer then incorporated bR. Electrodes in each droplet simultaneously measured the light-driven proton-pumping activities of each bio-pixel. The 4 × 4 array derived by this bottom-up synthetic biology approach can detect grey-scale images and patterns of light moving across the device, which are transduced as electrical current generated in each bio-pixel. We propose that synthetic biological light-activatable arrays, produced with soft materials, might be interfaced with living tissues to stimulate neuronal pathways.

  5. Molecular dynamics simulations of large integral membrane proteins with an implicit membrane model.

    Science.gov (United States)

    Tanizaki, Seiichiro; Feig, Michael

    2006-01-12

    The heterogeneous dielectric generalized Born (HDGB) methodology is an the extension of the GBMV model for the simulation of integral membrane proteins with an implicit membrane environment. Three large integral membrane proteins, the bacteriorhodopsin monomer and trimer and the BtuCD protein, were simulated with the HDGB model in order to evaluate how well thermodynamic and dynamic properties are reproduced. Effects of the truncation of electrostatic interactions were examined. For all proteins, the HDGB model was able to generate stable trajectories that remained close to the starting experimental structures, in excellent agreement with explicit membrane simulations. Dynamic properties evaluated through a comparison of B-factors are also in good agreement with experiment and explicit membrane simulations. However, overall flexibility was slightly underestimated with the HDGB model unless a very large electrostatic cutoff is employed. Results with the HDGB model are further compared with equivalent simulations in implicit aqueous solvent, demonstrating that the membrane environment leads to more realistic simulations.

  6. Lipidic cubic phase serial millisecond crystallography using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Przemyslaw Nogly

    2015-03-01

    Full Text Available Lipidic cubic phases (LCPs have emerged as successful matrixes for the crystallization of membrane proteins. Moreover, the viscous LCP also provides a highly effective delivery medium for serial femtosecond crystallography (SFX at X-ray free-electron lasers (XFELs. Here, the adaptation of this technology to perform serial millisecond crystallography (SMX at more widely available synchrotron microfocus beamlines is described. Compared with conventional microcrystallography, LCP-SMX eliminates the need for difficult handling of individual crystals and allows for data collection at room temperature. The technology is demonstrated by solving a structure of the light-driven proton-pump bacteriorhodopsin (bR at a resolution of 2.4 Å. The room-temperature structure of bR is very similar to previous cryogenic structures but shows small yet distinct differences in the retinal ligand and proton-transfer pathway.

  7. Bidirectional mediation of TiO2 nanowires field effect transistor by dipole moment from purple membrane

    Science.gov (United States)

    Li, Rui; Gan, Ye; Song, Qun Liang; Zhu, Zhi Hong; Shi, Jingsheng; Yang, Hongbin; Wang, Wei; Chen, Peng; Li, Chang Ming

    2010-08-01

    Bacteriorhodopsin-embedded purple membrane (bR-PM) is one of the most promising biomaterials for various bioelectronics applications. In this work, we demonstrate that a dipole bio-originated from bR-PM can bidirectionally mediate the performance of a bottom-contact TiO2 nanowire field effect transistor (FET) for performance improvement. When negative gate voltage is applied, both transfer and output characteristics of the TiO2 nanowire FET are enhanced by the bR-PM modification, resulting in a hole mobility increased by a factor of 2. The effect of the number of the deposited bR-PM layers on the normalized ΔID of the FET suggests that the additional electric field generated by the dipole moment natively existing in bR-PM actually boosts the performance of the TiO2 nanowires FET.

  8. Probing how initial retinal configuration controls photochemical dynamics in retinal proteins

    Directory of Open Access Journals (Sweden)

    Sheves M.

    2013-03-01

    Full Text Available The effects of the initial retinal configuration and the active isomerization coordinate on the photochemistry of retinal proteins (RPs are assessed by comparing photochemical dynamics of two stable retinal ground state configurations (all-trans,15-anti vs. 13-cis,15-syn, within two RPs: Bacteriorhodopsin (BR and Anabaena Sensory Rhodopsin (ASR. Hyperspectral pump-probe spectroscopy shows that photochemistry starting from 13-cis retinal in both proteins is 3-10 times faster than when started in the all-trans state, suggesting that the hastening is ubiquitous to microbial RPs, regardless of their different biological functions and origin. This may also relate to the known disparity of photochemical rates between microbial RPs and visual pigments. Importance and possible underlying mechanisms are discussed as well.

  9. Introduction to electron crystallography.

    Science.gov (United States)

    Kühlbrandt, Werner

    2013-01-01

    From the earliest work on regular arrays in negative stain, electron crystallography has contributed greatly to our understanding of the structure and function of biological macromolecules. The development of electron cryo-microscopy (cryo-EM) then lead to the first groundbreaking atomic models of the membrane proteins bacteriorhodopsin and light harvesting complex II within lipid bilayers. Key contributions towards cryo-EM and electron crystallography methods included specimen preparation and vitrification, liquid-helium cooling, data collection, and image processing. These methods are now applied almost routinely to both membrane and soluble proteins. Here we outline the advances and the breakthroughs that paved the way towards high-resolution structures by electron crystallography, both in terms of methods development and biological milestones.

  10. Electron crystallography and aquaporins.

    Science.gov (United States)

    Schenk, Andreas D; Hite, Richard K; Engel, Andreas; Fujiyoshi, Yoshinori; Walz, Thomas

    2010-01-01

    Electron crystallography of two-dimensional (2D) crystals can provide information on the structure of membrane proteins at near-atomic resolution. Originally developed and used to determine the structure of bacteriorhodopsin (bR), electron crystallography has recently been applied to elucidate the structure of aquaporins (AQPs), a family of membrane proteins that form pores mostly for water but also other solutes. While electron crystallography has made major contributions to our understanding of the structure and function of AQPs, structural studies on AQPs, in turn, have fostered a number of technical developments in electron crystallography. In this contribution, we summarize the insights electron crystallography has provided into the biology of AQPs, and describe technical advancements in electron crystallography that were driven by structural studies on AQP 2D crystals. In addition, we discuss some of the lessons that were learned from electron crystallographic work on AQPs. Copyright © 2010 Elsevier Inc. All rights reserved.

  11. Halorhodopsin and photosensory behaviour in Halobacterium halobium mutant strain L-33

    Energy Technology Data Exchange (ETDEWEB)

    Traulich, B.; Wagner, G. (Botanisches Institut l der Justus-Liebig-Universitat, Giessen (Germany, F.R.)); Hildebrand, E.; Schimz, A. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Neurobiologie); Lanyi, J.K. (California Univ., Irvine (USA))

    1983-05-01

    Halobacterium halobium, strain L-33, which is deficient in bacteriorhodopsin (BR) but synthesizes increased amounts of halorhodopsin (HR), responds to changes in fluence rate with visible light or with UV light. The observations support an earlier report that BR is not essential for photosensing in H. halobium. In the UV-range, changes in light intensity elicit the maximal response at lambda = 370 nm. In the visible range, changes in light intensity show the maximal response at lambda = 565 nm and a secondary peak at lambda = 590 nm. The latter corresponds to the absorption maximum of HR (lambdasub(max) = 588 nm). This light-energy converting retinal pigment of H. halobium thus appears to contribute to photosensory behavior.

  12. Liposome Model Systems to Study the Endosomal Escape of Cell-Penetrating Peptides: Transport across Phospholipid Membranes Induced by a Proton Gradient

    Directory of Open Access Journals (Sweden)

    Fatemeh Madani

    2011-01-01

    Full Text Available Detergent-mediated reconstitution of bacteriorhodopsin (BR into large unilamellar vesicles (LUVs was investigated, and the effects were carefully characterized for every step of the procedure. LUVs were prepared by the extrusion method, and their size and stability were examined by dynamic light scattering. BR was incorporated into the LUVs using the detergent-mediated reconstitution method and octyl glucoside (OG as detergent. The result of measuring pH outside the LUVs suggested that in the presence of light, BR pumps protons from the outside to the inside of the LUVs, creating acidic pH inside the vesicles. LUVs with 20% negatively charged headgroups were used to model endosomes with BR incorporated into the membrane. The fluorescein-labeled cell-penetrating peptide penetratin was entrapped inside these BR-containing LUVs. The light-induced proton pumping activity of BR has allowed us to observe the translocation of fluorescein-labeled penetratin across the vesicle membrane.

  13. Electron transport through supported biomembranes at the nanoscale by conductive atomic force microscopy

    International Nuclear Information System (INIS)

    Casuso, I; Fumagalli, L; Samitier, J; Padros, E; Reggiani, L; Akimov, V; Gomila, G

    2007-01-01

    We present a reliable methodology to perform electron transport measurements at the nanoscale on supported biomembranes by conductive atomic force microscopy (C-AFM). It allows measurement of both (a) non-destructive conductive maps and (b) force controlled current-voltage characteristics in wide voltage bias range in a reproducible way. Tests experiments were performed on purple membrane monolayers, a two-dimensional (2D) crystal lattice of the transmembrane protein bacteriorhodopsin. Non-destructive conductive images show uniform conductivity of the membrane with isolated nanometric conduction defects. Current-voltage characteristics under different compression conditions show non-resonant tunneling electron transport properties, with two different conduction regimes as a function of the applied bias, in excellent agreement with theoretical predictions. This methodology opens the possibility for a detailed study of electron transport properties of supported biological membranes, and of soft materials in general

  14. Infrared Spectroscopy Measurements of Protein Dynamics and Mechanism

    Science.gov (United States)

    Meuse, Curtis W.; Hubbard, Joseph B.

    2011-03-01

    Infrared spectroscopy has long been used to deduce the concentration and secondary structures of proteins in a variety of static and time resolved applications. Our focus is on developing new infrared methods to compare the structure, dynamics and function of nearly identical protein samples, in different environments, to apply to the problem of identifying bio-similar protein therapeutics. We have developed an order parameter describing protein conformation variations around the average molecular values. By comparing our order parameter and amide hydrogen/deuterium exchange methods, we explore the relationship between protein stability and the dynamics of the protein conformational distribution. Examples include lysozyme and albumin in solution, cytochrome c interacting with lipid membranes of varying net-negative surface charge density, fibrinogen on different polymer surfaces and bacteriorhodopsin during its photocycle.

  15. In-Situ Observation of Membrane Protein Folding during Cell-Free Expression.

    Directory of Open Access Journals (Sweden)

    Axel Baumann

    Full Text Available Proper insertion, folding and assembly of functional proteins in biological membranes are key processes to warrant activity of a living cell. Here, we present a novel approach to trace folding and insertion of a nascent membrane protein leaving the ribosome and penetrating the bilayer. Surface Enhanced IR Absorption Spectroscopy selectively monitored insertion and folding of membrane proteins during cell-free expression in a label-free and non-invasive manner. Protein synthesis was performed in an optical cell containing a prism covered with a thin gold film with nanodiscs on top, providing an artificial lipid bilayer for folding. In a pilot experiment, the folding pathway of bacteriorhodopsin via various secondary and tertiary structures was visualized. Thus, a methodology is established with which the folding reaction of other more complex membrane proteins can be observed during protein biosynthesis (in situ and in operando at molecular resolution.

  16. Layer-by-layer of liposomes and membrane protein as a recognition element of biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Nakane, Yuko [Department of Bioengineering, Graduate School of Engineering, Soka University, 1-236, Tangi-cho, Hachioji, Tokyo 192-8577 (Japan); Kubo, Izumi, E-mail: kubo@t.soka.ac.j [Department of Bioengineering, Graduate School of Engineering, Soka University, 1-236, Tangi-cho, Hachioji, Tokyo 192-8577 (Japan)

    2009-11-30

    Layer-by-layer (LBL) assembly composed of liposome and membrane protein, bacteriorhodopsin (bR) was fabricated on quartz crystal microbalance (QCM) as a sensor element for bio-recognition. The LBL assembly was prepared by stacking of liposome/bR solutions alternately with a flowing system. By atomic force microscopy (AFM) and the QCM monitoring the bR and the liposome were found to be stacked regularly until the 8th layer of the liposome. The fabricated LBL assembly on the QCM was engaged to detect nonylphenol in solution, which is one of the endocrine disrupting chemicals. It was confirmed that the existence of nonylphenol in solution can be detected by a mass decrease of the LBL assembly on the QCM, which is caused by the disruption of the liposome through nonylphenol, in the low concentration range of 0.1-10 ppm.

  17. Controlled in meso phase crystallization--a method for the structural investigation of membrane proteins.

    Directory of Open Access Journals (Sweden)

    Jan Kubicek

    Full Text Available We investigated in meso crystallization of membrane proteins to develop a fast screening technology which combines features of the well established classical vapor diffusion experiment with the batch meso phase crystallization, but without premixing of protein and monoolein. It inherits the advantages of both methods, namely (i the stabilization of membrane proteins in the meso phase, (ii the control of hydration level and additive concentration by vapor diffusion. The new technology (iii significantly simplifies in meso crystallization experiments and allows the use of standard liquid handling robots suitable for 96 well formats. CIMP crystallization furthermore allows (iv direct monitoring of phase transformation and crystallization events. Bacteriorhodopsin (BR crystals of high quality and diffraction up to 1.3 Å resolution have been obtained in this approach. CIMP and the developed consumables and protocols have been successfully applied to obtain crystals of sensory rhodopsin II (SRII from Halobacterium salinarum for the first time.

  18. Developing Nanodiscs as a Tool for Low Resolution Studies of Membrane Proteins

    DEFF Research Database (Denmark)

    Skar-Gislinge, Nicholas

    Phospholipid nanodiscs are ⇠ 10 nm disc shaped particles consisting of about 150 phospholipids arranged in a central bilayer stabilized by two amphipathic protein ”belts” that wrap around the rim of the bilayer. Because they contain a small bilayer leaflet they can be used as a tool for solution...... on obtaining high quality samples as well as conducting SAXS and SANS measurements on these samples, and finally analyzing the measured data. The data analysis was done using a new hybrid approach combining the traditional geometric and discrete modelling schemes. The hybrid approach is used to study...... the placement and orientation of the membrane protein bacteriorhodopsin incorporated into a nanodisc. Furthermore, the hybrid approach also allows for ab. Initio shape reconstruction of membrane proteins of an unknown shape incorporated into a nanodisc. This was demonstrated for the membrane anchored cytochrome...

  19. Layer-by-layer of liposomes and membrane protein as a recognition element of biosensor

    International Nuclear Information System (INIS)

    Nakane, Yuko; Kubo, Izumi

    2009-01-01

    Layer-by-layer (LBL) assembly composed of liposome and membrane protein, bacteriorhodopsin (bR) was fabricated on quartz crystal microbalance (QCM) as a sensor element for bio-recognition. The LBL assembly was prepared by stacking of liposome/bR solutions alternately with a flowing system. By atomic force microscopy (AFM) and the QCM monitoring the bR and the liposome were found to be stacked regularly until the 8th layer of the liposome. The fabricated LBL assembly on the QCM was engaged to detect nonylphenol in solution, which is one of the endocrine disrupting chemicals. It was confirmed that the existence of nonylphenol in solution can be detected by a mass decrease of the LBL assembly on the QCM, which is caused by the disruption of the liposome through nonylphenol, in the low concentration range of 0.1-10 ppm.

  20. Transmembrane Helix-helix Association: Relative Stabilities at Low pH†

    Science.gov (United States)

    Valluru, Neelima; Silva, Frances; Dhage, Manmath; Rodriguez, Gustavo; Alloor, Srinivas R.; Renthal, Robert

    2008-01-01

    We have previously studied the unfolding equilibrium of bacterio-opsin in a single phase solvent, using Förster mechanism fluorescence resonance energy transfer (FRET) as a probe, from tryptophan donors to a dansyl acceptor. We observed an apparent unfolding transition in bacterio-opsin perturbed by increasing ethanol concentrations [Nannepaga et al.(2004) Biochemistry 43, 50–59]. We have further investigated this transition and find the unfolding is pH-dependent. We have now measured the apparent pK of acid-induced unfolding of bacterio-opsin in 90% ethanol. When the acceptor is on helix B (Lys 41), the apparent pK for unfolding is 4.75; on the EF connecting loop (Cys 163), 5.15; and on helix G (Cys 222), 5.75. Five-helix proteolytic fragments are less stable. The apparent unfolding pKs are, for residues 72-248 (Cys 163), 5.46; and 1-166 (Lys 41), 7.36. When interpreted in terms of a simple equilibrium model for unfolding, the apparent pKs give relative free energies of unfolding, in the range of −0.54 to −3.5 kcal/mol. The results suggest that the C-terminal helix of bacterio-opsin is less stably folded than the N-terminal helices. We analyzed the pair-wise helix-helix interaction surfaces of bacteriorhodopsin and three other 7-transmembrane helix proteins, based on crystal structures. The results show that the interaction surfaces are smoother and the helix axis separations are closer in the amino-terminal two-thirds of the proteins compared with the carboxyl terminal one-third. However, the F helix is important in stabilizing the folded structure, as shown by the instability of the 1-166 fragment. Considering the high resolution crystal structure of bacteriorhodopsin, there are no obvious helix-helix interactions involving protein side chains which would be destabilized by protonation at the estimated pH of the unfolding transitions. However, a number of helix-bridging water molecules could become protonated, thereby weakening the helix

  1. Transmembrane helix-helix association: relative stabilities at low pH.

    Science.gov (United States)

    Valluru, Neelima; Silva, Frances; Dhage, Manmath; Rodriguez, Gustavo; Alloor, Srinivas R; Renthal, Robert

    2006-04-11

    We have previously studied the unfolding equilibrium of bacterioopsin in a single phase solvent, using Förster mechanism fluorescence resonance energy transfer (FRET) as a probe, from tryptophan donors to a dansyl acceptor. We observed an apparent unfolding transition in bacterioopsin perturbed by increasing ethanol concentrations [Nannepaga et al. (2004) Biochemistry 43, 50-59]. We have further investigated this transition and find that the unfolding is pH-dependent. We have now measured the apparent pK of acid-induced unfolding of bacterioopsin in 90% ethanol. When the acceptor is on helix B (Lys 41), the apparent pK for unfolding is 4.75; on the EF connecting loop (Cys 163), 5.15; and on helix G (Cys 222), 5.75. Five-helix proteolytic fragments are less stable. The apparent unfolding pKs are 5.46 for residues 72-248 (Cys 163) and 7.36 for residues 1-166 (Lys 41). When interpreted in terms of a simple equilibrium model for unfolding, the apparent pKs give relative free energies of unfolding in the range of -0.54 to -3.5 kcal/mol. The results suggest that the C-terminal helix of bacterioopsin is less stably folded than the N-terminal helices. We analyzed the pairwise helix-helix interaction surfaces of bacteriorhodopsin and three other seven-transmembrane-helix proteins on the basis of crystal structures. The results show that the interaction surfaces are smoother and the helix axis separations are closer in the amino-terminal two-thirds of the proteins compared with the carboxyl-terminal one-third. However, the F helix is important in stabilizing the folded structure, as shown by the instability of the 1-166 fragment. Considering the high-resolution crystal structure of bacteriorhodopsin, there are no obvious helix-helix interactions involving protein side chains which would be destabilized by protonation at the estimated pH of the unfolding transitions. However, a number of helix-bridging water molecules could become protonated, thereby weakening the helix

  2. A network model to correlate conformational change and the impedance spectrum of single proteins

    Science.gov (United States)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2008-02-01

    Integrated nanodevices based on proteins or biomolecules are attracting increasing interest in today's research. In fact, it has been shown that proteins such as azurin and bacteriorhodopsin manifest some electrical properties that are promising for the development of active components of molecular electronic devices. Here we focus on two relevant kinds of protein: bovine rhodopsin, prototype of G-protein-coupled-receptor (GPCR) proteins, and the enzyme acetylcholinesterase (AChE), whose inhibition is one of the most qualified treatments of Alzheimer's disease. Both these proteins exert their function starting with a conformational change of their native structure. Our guess is that such a change should be accompanied with a detectable variation of their electrical properties. To investigate this conjecture, we present an impedance network model of proteins, able to estimate the different impedance spectra associated with the different configurations. The distinct types of conformational change of rhodopsin and AChE agree with their dissimilar electrical responses. In particular, for rhodopsin the model predicts variations of the impedance spectra up to about 30%, while for AChE the same variations are limited to about 10%, which supports the existence of a dynamical equilibrium between its native and complexed states.

  3. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Ritter, Eglof; Stehfest, Katja; Berndt, Andre; Hegemann, Peter; Bartl, Franz J

    2008-12-12

    Channelrhodopsin-2 (ChR2) is a microbial type rhodopsin and a light-gated cation channel that controls phototaxis in Chlamydomonas. We expressed ChR2 in COS-cells, purified it, and subsequently investigated this unusual photoreceptor by flash photolysis and UV-visible and Fourier transform infrared difference spectroscopy. Several transient photoproducts of the wild type ChR2 were identified, and their kinetics and molecular properties were compared with those of the ChR2 mutant E90Q. Based on the spectroscopic data we developed a model of the photocycle comprising six distinguishable intermediates. This photocycle shows similarities to the photocycle of the ChR2-related Channelrhodopsin of Volvox but also displays significant differences. We show that molecular changes include retinal isomerization, changes in hydrogen bonding of carboxylic acids, and large alterations of the protein backbone structure. These alterations are stronger than those observed in the photocycle of other microbial rhodopsins like bacteriorhodopsin and are related to those occurring in animal rhodopsins. UV-visible and Fourier transform infrared difference spectroscopy revealed two late intermediates with different time constants of tau = 6 and 40 s that exist during the recovery of the dark state. The carboxylic side chain of Glu(90) is involved in the slow transition. The molecular changes during the ChR2 photocycle are discussed with respect to other members of the rhodopsin family.

  4. Toward hybrid proteo-polymeric vesicles generating a photoinduced proton gradient for biofuel cells

    Science.gov (United States)

    Choi, Hyo-Jick; Lee, Hyeseung; Montemagno, Carlo D.

    2005-09-01

    We describe our efforts towards constructing a hybrid protein-polymer vesicle device based on the photoactive protein, bacteriorhodopsin (BR), for applications in the area of biosensors and biofuel cells. Successful protein incorporation into biomimetic polymer vesicles is a prerequisite for developing hybrid 'nano-bio' integrated devices. We suggest a systematic procedure for creating energy transducing, protein-incorporating, functional vesicles, based on the morphological ternary diagram. First, we constructed the morphological ternary diagram of the water/ethanol/polymer system with a size distribution of vesicles. The polymer used was an ABA triblock copolymer, PEtOz-PDMS-PEtOz [poly(2-ethyl-2-oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-ethyl-2-oxazoline)]. Second, we incorporated BR in the form of purple membrane (PM) into polymer vesicle membranes under several different conditions, based on the morphological ternary diagram. Generation of electrochemical energy by BR proton pumping was checked by monitoring the pH change in parallel with transmission electron microscope analysis. The morphology of the polymer vesicles changed very little with the addition of PM. This work shows that the morphological ternary diagram provides a systematic method for constructing successful hybrid BR-incorporating biomimetic polymer vesicles.

  5. Interfacial electronic effects in functional biolayers integrated into organic field-effect transistors

    Science.gov (United States)

    Angione, Maria Daniela; Cotrone, Serafina; Magliulo, Maria; Mallardi, Antonia; Altamura, Davide; Giannini, Cinzia; Cioffi, Nicola; Sabbatini, Luigia; Fratini, Emiliano; Baglioni, Piero; Scamarcio, Gaetano; Palazzo, Gerardo; Torsi, Luisa

    2012-01-01

    Biosystems integration into an organic field-effect transistor (OFET) structure is achieved by spin coating phospholipid or protein layers between the gate dielectric and the organic semiconductor. An architecture directly interfacing supported biological layers to the OFET channel is proposed and, strikingly, both the electronic properties and the biointerlayer functionality are fully retained. The platform bench tests involved OFETs integrating phospholipids and bacteriorhodopsin exposed to 1–5% anesthetic doses that reveal drug-induced changes in the lipid membrane. This result challenges the current anesthetic action model relying on the so far provided evidence that doses much higher than clinically relevant ones (2.4%) do not alter lipid bilayers’ structure significantly. Furthermore, a streptavidin embedding OFET shows label-free biotin electronic detection at 10 parts-per-trillion concentration level, reaching state-of-the-art fluorescent assay performances. These examples show how the proposed bioelectronic platform, besides resulting in extremely performing biosensors, can open insights into biologically relevant phenomena involving membrane weak interfacial modifications. PMID:22493224

  6. Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates

    International Nuclear Information System (INIS)

    Nagao, Yuki; Kubo, Takahiro

    2014-01-01

    Graphical abstract: - Highlights: • Proton transport of fully protonated poly(aspartic acid) thin film was investigated. • The thin film structure differed greatly from the partially protonated one. • Proton transport occurs on the surface, not inside of the thin film. • This result contributes to biological transport systems such as bacteriorhodopsin. - Abstract: Thin film structure and the proton transport property of fully protonated poly(aspartic acid) (P-Asp100) have been investigated. An earlier study assessed partially protonated poly(aspartic acid), highly oriented thin film structure and enhancement of the internal proton transport. In this study of P-Asp100, IR p-polarized multiple-angle incidence resolution (P-MAIR) spectra were measured to investigate the thin film structure. The obtained thin films, with thicknesses of 120–670 nm, had no oriented structure. Relative humidity dependence of the resistance, proton conductivity, and normalized resistance were examined to ascertain the proton transport property of P-Asp100 thin films. The obtained data showed that the proton transport of P-Asp100 thin films might occur on the surface, not inside of the thin film. This phenomenon might be related with the proton transport of the biological system

  7. A 250 GHz gyrotron with a 3 GHz tuning bandwidth for dynamic nuclear polarization.

    Science.gov (United States)

    Barnes, Alexander B; Nanni, Emilio A; Herzfeld, Judith; Griffin, Robert G; Temkin, Richard J

    2012-08-01

    We describe the design and implementation of a novel tunable 250 GHz gyrotron oscillator with >10 W output power over most of a 3 GHz band and >35 W peak power. The tuning bandwidth and power are sufficient to generate a >1 MHz nutation frequency across the entire nitroxide EPR lineshape for cross effect DNP, as well as to excite solid effect transitions utilizing other radicals, without the need for sweeping the NMR magnetic field. Substantially improved tunability is achieved by implementing a long (23 mm) interaction cavity that can excite higher order axial modes by changing either the magnetic field of the gyrotron or the cathode potential. This interaction cavity excites the rotating TE(₅,₂,q) mode, and an internal mode converter outputs a high-quality microwave beam with >94% Gaussian content. The gyrotron was integrated into a DNP spectrometer, resulting in a measured DNP enhancement of 54 on the membrane protein bacteriorhodopsin. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Photoreactions and Structural Changes of Anabaena Sensory Rhodopsin

    Directory of Open Access Journals (Sweden)

    Akira Kawanabe

    2009-12-01

    Full Text Available Anabaena sensory rhodopsin (ASR is an archaeal-type rhodopsin found in eubacteria. The gene encoding ASR forms a single operon with ASRT (ASR transducer which is a 14 kDa soluble protein, suggesting that ASR functions as a photochromic sensor by activating the soluble transducer. This article reviews the detailed photoreaction processes of ASR, which were studied by low-temperature Fourier-transform infrared (FTIR and UV-visible spectroscopy. The former research reveals that the retinal isomerization is similar to bacteriorhodopsin (BR, but the hydrogen-bonding network around the Schiff base and cytoplasmic region is different. The latter study shows the stable photoproduct of the all-trans form is 100% 13-cis, and that of the 13-cis form is 100% all-trans. These results suggest that the structural changes of ASR in the cytoplasmic domain play important roles in the activation of the transducer protein, and photochromic reaction is optimized for its sensor function.

  9. Study on the advanced orientation control technology of biopolymers; Seitai kobunshi zairyo no kodo haiko hairetsu seigyo gijutsu no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Creation of new functional organic materials for the medical application has been investigated under the microgravity. Facilities of the Japan Microgravity Center were used for this study. For the high-speed synthesis of uniform polymer particles under the microgravity condition for ten seconds, appropriately good results were obtained in the oxidation polymerization of pyrroles. For the synthesis of organic conductive thin films by the electrolytic polymerization, the resistance of electrolyte became larger in the microgravity field. It was required to set conditions so as to enhance the effects of microgravity environment. For the orientation control and thin film formation of proteins, the bacteriorhodopsin was examined. It was found that the microgravity improved the quality of electrocoatings. When the surface tension and viscosity of coating liquid were appropriately controlled under the microgravity, thin films were able to be prepared by utilizing a change from 1g to {mu}g. When the high viscosity fluid is placed in the artificial two-dimensional space composing of two parallel plates, and the low viscosity fluid, such as air, is injected into the above, the interface grows in the finger shaped pattern, namely, viscous fingering. The influence of gravity on this phenomenon was also investigated. 11 refs., 45 figs., 5 tabs.

  10. Schlieren optics for leak detection

    Science.gov (United States)

    Peale, Robert E.; Ruffin, Alranzo B.

    1995-01-01

    The purpose of this research was to develop an optical method of leak detection. Various modifications of schlieren optics were explored with initial emphasis on leak detection of the plumbing within the orbital maneuvering system of the space shuttle (OMS pod). The schlieren scheme envisioned for OMS pod leak detection was that of a high contrast pattern on flexible reflecting material imaged onto a negative of the same pattern. We find that the OMS pod geometry constrains the characteristic length scale of the pattern to the order of 0.001 inch. Our experiments suggest that optical modulation transfer efficiency will be very low for such patterns, which will limit the sensitivity of the technique. Optical elements which allow a negative of the scene to be reversibly recorded using light from the scene itself were explored for their potential in adaptive single-ended schlieren systems. Elements studied include photochromic glass, bacteriorhodopsin, and a transmissive liquid crystal display. The dynamics of writing and reading patterns were studied using intensity profiles from recorded images. Schlieren detection of index gradients in air was demonstrated.

  11. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    International Nuclear Information System (INIS)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120 0 C, and was found to be approximately five times greater at -120 0 C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane

  12. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Broecker, Jana; Klingel, Viviane; Ou, Wei-Lin; Balo, Aidin R.; Kissick, David J.; Ogata, Craig M.; Kuo, Anling; Ernst, Oliver P.

    2016-10-12

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometerbased X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine.

  13. Ultrashort Phenomena in Biochemistry and Biological Signaling

    Science.gov (United States)

    Splinter, Robert

    2014-11-01

    In biological phenomena there are indications that within the long pulse-length of the action potential on millisecond scale, there is additional ultrashort perturbation encoding that provides the brain with detailed information about the origin (location) and physiological characteristics. The objective is to identify the mechanism-of-action providing the potential for encoding in biological signal propagation. The actual molecular processes involved in the initiation of the action potential have been identified to be in the femtosecond and pico-second scale. The depolarization process of the cellular membrane itself, leading to the onset of the actionpotential that is transmitted to the brain, however is in the millisecond timeframe. One example of the femtosecond chemical interaction is the photoresponse of bacteriorhodopsin. No clear indication for the spatial encoding has so far been verified. Further research will be required on a cellular signal analysis level to confirm or deny the spatial and physiological encoding in the signal wave-trains of intercellular communications and sensory stimuli. The pathological encoding process for cardiac depolarization is however very pronounced and validated, however this electro-chemical process is in the millisecond amplitude and frequency modulation spectrum.

  14. Pulsed hydrogen/deuterium exchange mass spectrometry for time-resolved membrane protein folding studies.

    Science.gov (United States)

    Khanal, Anil; Pan, Yan; Brown, Leonid S; Konermann, Lars

    2012-12-01

    Kinetic folding experiments by pulsed hydrogen/deuterium exchange (HDX) mass spectrometry (MS) are a well-established tool for water-soluble proteins. To the best of our knowledge, the current study is the first that applies this approach to an integral membrane protein. The native state of bacteriorhodopsin (BR) comprises seven transmembrane helices and a covalently bound retinal cofactor. BR exposure to sodium dodecyl sulfate (SDS) induces partial unfolding and retinal loss. We employ a custom-built three-stage mixing device for pulsed-HDX/MS investigations of BR refolding. The reaction is triggered by mixing SDS-denatured protein with bicelles. After a variable folding time (10 ms to 24 h), the protein is exposed to excess D(2) O buffer under rapid exchange conditions. The HDX pulse is terminated by acid quenching after 24 ms. Subsequent off-line analysis is performed by size exclusion chromatography and electrospray MS. These measurements yield the number of protected backbone N-H sites as a function of folding time, reflecting the recovery of secondary structure. Our results indicate that much of the BR secondary structure is formed quite late during the reaction, on a time scale of 10 s and beyond. It is hoped that in the future it will be possible to extend the pulsed-HDX/MS approach employed here to membrane proteins other than BR. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Comparison of prokaryotic community structure from Mediterranean and Atlantic saltern concentrator ponds by a metagenomic approach

    Directory of Open Access Journals (Sweden)

    Ana Beatriz eFernández

    2014-05-01

    Full Text Available We analyzed the prokaryotic community structure of a saltern pond with 21 % total salts located in Isla Cristina, Huelva, Southwest Spain, close to the Atlantic ocean coast. For this purpose, we constructed a metagenome (designated as IC21 obtained by pyrosequencing consisting of 486 Mb with an average read length of 397 bp and compared it with other metagenomic datasets obtained from ponds with 19, 33 and 37 % total salts acquired from Santa Pola marine saltern, located in Alicante, East Spain, on the Mediterranean coast. Although the salinity in IC21 is closer to the pond with 19 % total salts from Santa Pola saltern (designated as SS19, IC21 is more similar at higher taxonomic levels to the pond with 33 % total salts from Santa Pola saltern (designated as SS33, since both are predominated by the phylum Euryarchaeota. However, there are significant differences at lower taxonomic levels where most sequences were related to the genus Halorubrum in IC21 and to Haloquadratum in SS33. Within the Bacteroidetes, the genus Psychroflexus is the most abundant in IC21 while Salinibacter dominates in SS33. Sequences related to bacteriorhodopsins and halorhodopsins correlate with the abundance of Haloquadratum in Santa Pola SS19 to SS33 and of Halorubrum in Isla Cristina IC21 dataset, respectively. Differences in composition might be attributed to local ecological conditions since IC21 showed a decrease in the number of sequences related to the synthesis of compatible solutes and in the utilization of phosphonate.

  16. Ionic Polymer Microactuator Activated by Photoresponsive Organic Proton Pumps

    Directory of Open Access Journals (Sweden)

    Khaled M. Al-Aribe

    2015-10-01

    Full Text Available An ionic polymer microactuator driven by an organic photoelectric proton pump transducer is described in this paper. The light responsive transducer is fabricated by using molecular self-assembly to immobilize oriented bacteriorhodopsin purple membrane (PM patches on a bio-functionalized porous anodic alumina (PAA substrate. When exposed to visible light, the PM proton pumps produce a unidirectional flow of ions through the structure’s nano-pores and alter the pH of the working solution in a microfluidic device. The change in pH is sufficient to generate an osmotic pressure difference across a hydroxyethyl methacrylate-acrylic acid (HEMA-AA actuator shell and induce volume expansion or contraction. Experiments show that the transducer can generate an ionic gradient of 2.5 μM and ionic potential of 25 mV, producing a pH increase of 0.42 in the working solution. The ΔpH is sufficient to increase the volume of the HEMA-AA microactuator by 80%. The volumetric transformation of the hydrogel can be used as a valve to close a fluid transport micro-channel or apply minute force to a mechanically flexible microcantilever beam.

  17. Modeling and design of light powered biomimicry micropump utilizing transporter proteins

    Science.gov (United States)

    Liu, Jin; Sze, Tsun-Kay Jackie; Dutta, Prashanta

    2014-11-01

    The creation of compact micropumps to provide steady flow has been an on-going challenge in the field of microfluidics. We present a mathematical model for a micropump utilizing Bacteriorhodopsin and sugar transporter proteins. This micropump utilizes transporter proteins as method to drive fluid flow by converting light energy into chemical potential. The fluid flow through a microchannel is simulated using the Nernst-Planck, Navier-Stokes, and continuity equations. Numerical results show that the micropump is capable of generating usable pressure. Designing parameters influencing the performance of the micropump are investigated including membrane fraction, lipid proton permeability, illumination, and channel height. The results show that there is a substantial membrane fraction region at which fluid flow is maximized. The use of lipids with low membrane proton permeability allows illumination to be used as a method to turn the pump on and off. This capability allows the micropump to be activated and shut off remotely without bulky support equipment. This modeling work provides new insights on mechanisms potentially useful for fluidic pumping in self-sustained bio-mimic microfluidic pumps. This work is supported in part by the National Science Fundation Grant CBET-1250107.

  18. Low-Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography

    Energy Technology Data Exchange (ETDEWEB)

    Feld, Geoffrey K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); National Institute of Environmental Health Science, Research Triangle Park, NC (United States); Heymann, Michael [Brandeis Univ., Waltham, MA (United States); Univ. of Hamburg and DESY, Hamburg (Germany); Benner, W. Henry [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pardini, Tommaso [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Tsai, Ching -Ju [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Boutet, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Coleman, Matthew A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hunter, Mark S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States); Li, Xiaodan [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Messerschmidt, Marc [SLAC National Accelerator Lab., Menlo Park, CA (United States); BioXFEL Science and Technology Center, Buffalo, NY (United States); Opathalage, Achini [Brandeis Univ., Waltham, MA (United States); Pedrini, Bill [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Williams, Garth J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Krantz, Bryan A. [Univ. of California, Berkeley, CA (United States); Fraden, Seth [Brandeis Univ., Waltham, MA (United States); Hau-Riege, Stefan [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Evans, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Segelke, Brent W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Frank, Matthias [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-06-27

    X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructed of low-Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low-Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.

  19. Industrial and environmental applications of halophilic microorganisms.

    Science.gov (United States)

    Oren, Aharon

    2010-01-01

    In comparison with the thermophilic and the alkaliphilic extremophiles, halophilic microorganisms have as yet found relatively few biotechnological applications. Halophiles are involved in centuries-old processes such as the manufacturing of solar salt from seawater and the production of traditional fermented foods. Two biotechnological processes involving halophiles are highly successful: the production of beta-carotene by the green alga Dunaliella and the production of ectoine (1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid), used as a stabilizer for enzymes and now also applied in cosmetic products, from moderately halophilic bacteria. The potential use of bacteriorhodopsin, the retinal protein proton pump of Halobacterium, in optoelectronic devices and photochemical processes is being explored, and may well lead to commercial applications in the near future. Demand for salt-tolerant enzymes in current manufacturing or related processes is limited. Other possible uses of halophilic microorganisms such as treatment of saline and hypersaline wastewaters, and the production of exopolysaccharides, poly-beta-hydroxyalkanoate bioplastics and biofuel are being investigated, but no large-scale applications have yet been reported.

  20. Chemically Stable Lipids for Membrane Protein Crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Ishchenko, Andrii; Peng, Lingling; Zinovev, Egor; Vlasov, Alexey; Lee, Sung Chang; Kuklin, Alexander; Mishin, Alexey; Borshchevskiy, Valentin; Zhang, Qinghai; Cherezov, Vadim (MIPT); (USC); (Scripps)

    2017-05-01

    The lipidic cubic phase (LCP) has been widely recognized as a promising membrane-mimicking matrix for biophysical studies of membrane proteins and their crystallization in a lipidic environment. Application of this material to a wide variety of membrane proteins, however, is hindered due to a limited number of available host lipids, mostly monoacylglycerols (MAGs). Here, we designed, synthesized, and characterized a series of chemically stable lipids resistant to hydrolysis, with properties complementary to the widely used MAGs. In order to assess their potential to serve as host lipids for crystallization, we characterized the phase properties and lattice parameters of mesophases made of two most promising lipids at a variety of different conditions by polarized light microscopy and small-angle X-ray scattering. Both lipids showed remarkable chemical stability and an extended LCP region in the phase diagram covering a wide range of temperatures down to 4 °C. One of these lipids has been used for crystallization and structure determination of a prototypical membrane protein bacteriorhodopsin at 4 and 20 °C.

  1. Nanoporous microbead supported bilayers: stability, physical characterization, and incorporation of functional transmembrane proteins.

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Ryan W. (University of New Mexico, Albuquerque, NM); Brozik, James A. (University of New Mexico, Albuquerque, NM); Brozik, Susan Marie; Cox, Jason M. (University of New Mexico, Albuquerque, NM); Lopez, Gabriel P. (University of New Mexico, Albuquerque, NM); Barrick, Todd A. (University of New Mexico, Albuquerque, NM); Flores, Adrean (University of New Mexico, Albuquerque, NM)

    2007-03-01

    The introduction of functional transmembrane proteins into supported bilayer-based biomimetic systems presents a significant challenge for biophysics. Among the various methods for producing supported bilayers, liposomal fusion offers a versatile method for the introduction of membrane proteins into supported bilayers on a variety of substrates. In this study, the properties of protein containing unilamellar phosphocholine lipid bilayers on nanoporous silica microspheres are investigated. The effects of the silica substrate, pore structure, and the substrate curvature on the stability of the membrane and the functionality of the membrane protein are determined. Supported bilayers on porous silica microspheres show a significant increase in surface area on surfaces with structures in excess of 10 nm as well as an overall decrease in stability resulting from increasing pore size and curvature. Comparison of the liposomal and detergent-mediated introduction of purified bacteriorhodopsin (bR) and the human type 3 serotonin receptor (5HT3R) are investigated focusing on the resulting protein function, diffusion, orientation, and incorporation efficiency. In both cases, functional proteins are observed; however, the reconstitution efficiency and orientation selectivity are significantly enhanced through detergent-mediated protein reconstitution. The results of these experiments provide a basis for bulk ionic and fluorescent dye-based compartmentalization assays as well as single-molecule optical and single-channel electrochemical interrogation of transmembrane proteins in a biomimetic platform.

  2. Nonproton ion release by purple membranes exhibits cooperativity as shown by determination of the optical cross-section.

    Science.gov (United States)

    Marinetti, T

    1988-08-01

    The amplitudes of the conductivity transients in photoexcited purple membranes were studied as a function of the energy of the actinic flash to determine the optical cross section of the process giving rise to the conductivity transient. Heating of the solution by the absorbed light causes an additional conductivity change and serves as an internal actinometer; the experiment directly yields the ratio of the cross section of ion release/uptake to that for light absorption. In effect, this counts the number of bacteriorhodopsin (bR) molecules involved in the conductivity transient per photon absorbed. At pH 7 in 0.4-0.5 M NaCl, where the conductivity signals are dominated by nonproton ions, the ratio is between 3 and 4, i.e., excitation of any one of several chromophores generates the same ion release signal. The simplest interpretation is that at pH 7 cooperative conformational changes cause a transient change in the surface charge distribution near all the affected bR molecules, resulting in the transient release of numerous counterions. As a comparison, at pH 4 where the signals are due to protons alone, the cross section data indicate that only a single bR molecule is involved in the proton movements. In this case, the results also show that the sum of the primary forward and reverse quantum yields (for the reactions: bR----K) is 0.88 +/- 0.09.

  3. Low temperature electron microscopy and electron diffraction of the purple membrane of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hayward, S.B.

    1978-09-01

    The structure of the purple membrane of Halobacterium halobium was studied by high resolution electron microscopy and electron diffraction, primarily at low temperature. The handedness of the purple membrane diffraction pattern with respect to the cell membrane was determined by electron diffraction of purple membranes adsorbed to polylysine. A new method of preparing frozen specimens was used to preserve the high resolution order of the membranes in the electron microscope. High resolution imaging of glucose-embedded purple membranes at room temperature was used to relate the orientation of the diffraction pattern to the absolute orientation of the structure of the bacteriorhodopsin molecule. The purple membrane's critical dose for electron beam-induced damage was measured at room temperature and at -120/sup 0/C, and was found to be approximately five times greater at -120/sup 0/C. Because of this decrease in radiation sensitivity, imaging of the membrane at low temperature should result in an increased signal-to-noise ratio, and thus better statistical definition of the phases of weak reflections. Higher resolution phases may thus be extracted from images than can be determined by imaging at room temperature. To achieve this end, a high resolution, liquid nitrogen-cooled stage was built for the JEOL-100B. Once the appropriate technology for taking low dose images at very high resolution has been developed, this stage will hopefully be used to determine the high resolution structure of the purple membrane.

  4. Opposite Displacement of Helix F in Attractant and Repellent Signaling by Sensory Rhodopsin-Htr Complexes*

    Science.gov (United States)

    Sasaki, Jun; Tsai, Ah-lim; Spudich, John L.

    2011-01-01

    Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pKa of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family. PMID:21454480

  5. His166 is the Schiff base proton acceptor in attractant phototaxis receptor sensory rhodopsin I.

    Science.gov (United States)

    Sasaki, Jun; Takahashi, Hazuki; Furutani, Yuji; Sineshchekov, Oleg A; Spudich, John L; Kandori, Hideki

    2014-09-23

    Photoactivation of attractant phototaxis receptor sensory rhodopsin I (SRI) in Halobacterium salinarum entails transfer of a proton from the retinylidene chromophore's Schiff base (SB) to an unidentified acceptor residue on the cytoplasmic half-channel, in sharp contrast to other microbial rhodopsins, including the closely related repellent phototaxis receptor SRII and the outward proton pump bacteriorhodopsin, in which the SB proton acceptor is an aspartate residue salt-bridged to the SB in the extracellular (EC) half-channel. His166 on the cytoplasmic side of the SB in SRI has been implicated in the SB proton transfer reaction by mutation studies, and mutants of His166 result in an inverted SB proton release to the EC as well as inversion of the protein's normally attractant phototaxis signal to repellent. Here we found by difference Fourier transform infrared spectroscopy the appearance of Fermi-resonant X-H stretch modes in light-minus-dark difference spectra; their assignment with (15)N labeling and site-directed mutagenesis demonstrates that His166 is the SB proton acceptor during the photochemical reaction cycle of the wild-type SRI-HtrI complex.

  6. Opposite displacement of helix F in attractant and repellent signaling by sensory rhodopsin-Htr complexes.

    Science.gov (United States)

    Sasaki, Jun; Tsai, Ah-lim; Spudich, John L

    2011-05-27

    Two forms of the phototaxis receptor sensory rhodopsin I distinguished by differences in its photoactive site have been shown to be directly correlated with attractant and repellent signaling by the dual-signaling protein. In prior studies, differences in the photoactive site defined the two forms, namely the direction of light-induced proton transfer from the chromophore and the pK(a) of an Asp counterion to the protonated chromophore. Here, we show by both in vivo and in vitro measurements that the two forms are distinct protein conformers with structural similarities to two conformers seen in the light-driven proton transport cycle of the related protein bacteriorhodopsin. Measurements of spontaneous cell motility reversal frequencies, an in vivo measure of histidine kinase activity in the phototaxis system, indicate that the two forms are a photointerconvertible pair, with one conformer activating and the other inhibiting the kinase. Protein conformational changes in these photoconversions monitored by site-directed spin labeling show that opposite structural changes in helix F, distant from the photoactive site, correspond to the opposite phototaxis signals. The results provide the first direct evidence that displacements of helix F are directly correlated with signaling and impact our understanding of the sensory rhodopsin I signaling mechanism and the evolution of diverse functionality in this protein family.

  7. Prospects for octopus rhodopsin utilization in optical and quantum computation

    International Nuclear Information System (INIS)

    Sivozhelezov, V.; Nicolini, A.

    2007-01-01

    Visual membranes of octopus, whose main component is the light-sensitive signal transducer octopus rhodopsin (octR), are extremely highly ordered, easily capture single photons, and are sensitive to light polarization, which shows their high potential for use as a QC detector. However, artificial membranes made of octR are neither highly enough ordered nor stable, while the bacterial homolog of octR, bacteriorhodopsin (bR), having the same topology as octR, forms both stable and ordered artificial membranes but lacks the optical properties important for optical QC. In this study, we investigate the structural basis for ordering of the two proteins in membranes in terms of crystallization behavior. We compare atomic resolution 3D structures of octR and bR and show the possibility for structural bR/octR interconversion by mutagenesis. We also show that the use of (nano)biotechnology can allow (1) high-precision manipulation of the light acceptor, retinal, including converting its surrounding into that of bacterial rhodopsin, the protein already used in optical-computation devices and (2) development of multicomponent and highly regular 2D structures with a high potential for being efficient optical QC detectors

  8. High-throughput single-molecule force spectroscopy for membrane proteins

    Energy Technology Data Exchange (ETDEWEB)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios [M E Mueller Institute for Structural Biology, Biozentrum of the University of Basel, CH-4056 Basel (Switzerland); Ratera, Merce; Palacin, Manuel [Institute for Research in Biomedicine, Barcelona Science Park, Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Centro de Investigacion Biomedica en Red de Enfermedades Raras, E-08028 Barcelona (Spain); Bippes, Christian A; Mueller, Daniel J [BioTechnology Center, Technical University, Tatzberg 47, D-01307 Dresden (Germany)], E-mail: andreas.engel@unibas.ch, E-mail: dimitrios.fotiadis@mci.unibe.ch

    2008-09-24

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether {approx}400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with {approx}200 (AdiC) and {approx}400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications.

  9. Lack of evidence for phase-only control of retinal photoisomerization in the strict one-photon limit

    Science.gov (United States)

    Liebel, M.; Kukura, P.

    2017-01-01

    The concept of shaping electric fields to steer light-induced processes coherently has fascinated scientists for decades. Despite early theoretical considerations that ruled out one-photon coherent control (CC), several experimental studies reported that molecular responses are sensitive to the shape of the excitation field in the weak-field limit. These observations were largely attributed to the presence of rapid-decay channels, but experimental verification is lacking. Here, we test this hypothesis by investigating the degree of achievable control over the photoisomerization of the retinal protonated Schiff-base in bacteriorhodopsin, isorhodopsin and rhodopsin, all of which exhibit similar chromophores but different isomerization yields and excited-state lifetimes. Irrespective of the system studied, we find no evidence for dissipation-dependent behaviour, nor for any CC in the strict one-photon limit. Our results question the extent to which a photochemical process at ambient conditions can be controlled at the amplitude level, and how the underlying molecular potential-energy surfaces and dynamics may influence this controllability.

  10. The Directed Cooperative Assembly of Proteorhodopsin Into 2d And 3d Polarized Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Liang, H.; Whited, G.; Nguyen, C.; Stucky, G.D.; /UC, Santa Barbara

    2007-07-12

    Proteorhodopsin is the membrane protein used by marine bacterioplankton as a light-driven proton pump. Here, we describe a rapid cooperative assembly process directed by universal electrostatic interactions that spontaneously organizes proteorhodopsin molecules into ordered arrays with well defined orientation and packing density. We demonstrate the charge density-matching mechanism that selectively controls the assembly process. The interactions among different components in the system are tuned by varying their charge densities to yield different organized transmembrane protein arrays: (i) a bacteriorhodopsin purple membrane-like structure where proteorhodopsin molecules are cooperatively arranged with charged lipids into a 2D hexagonal lattice; (ii) selected liquid-crystalline states in which crystalline lamellae made up of the coassembled proteorhodopsin and charged lipid molecules are coupled three-dimensionally with polarized proteorhodopsin orientation persisting through the macroscopic scale. Understanding this rapid electrostatically driven assembly process sheds light on organizing membrane proteins in general, which is a prerequisite for membrane protein structural and mechanistic studies as well as in vitro applications.

  11. Resolution extension by image summing in serial femtosecond crystallography of two-dimensional membrane-protein crystals

    Directory of Open Access Journals (Sweden)

    Cecilia M. Casadei

    2018-01-01

    Full Text Available Previous proof-of-concept measurements on single-layer two-dimensional membrane-protein crystals performed at X-ray free-electron lasers (FELs have demonstrated that the collection of meaningful diffraction patterns, which is not possible at synchrotrons because of radiation-damage issues, is feasible. Here, the results obtained from the analysis of a thousand single-shot, room-temperature X-ray FEL diffraction images from two-dimensional crystals of a bacteriorhodopsin mutant are reported in detail. The high redundancy in the measurements boosts the intensity signal-to-noise ratio, so that the values of the diffracted intensities can be reliably determined down to the detector-edge resolution of 4 Å. The results show that two-dimensional serial crystallography at X-ray FELs is a suitable method to study membrane proteins to near-atomic length scales at ambient temperature. The method presented here can be extended to pump–probe studies of optically triggered structural changes on submillisecond timescales in two-dimensional crystals, which allow functionally relevant large-scale motions that may be quenched in three-dimensional crystals.

  12. Protons and how they are transported by proton pumps.

    Science.gov (United States)

    Buch-Pedersen, M J; Pedersen, B P; Veierskov, B; Nissen, P; Palmgren, M G

    2009-01-01

    The very high mobility of protons in aqueous solutions demands special features of membrane proton transporters to sustain efficient yet regulated proton transport across biological membranes. By the use of the chemical energy of ATP, plasma-membrane-embedded ATPases extrude protons from cells of plants and fungi to generate electrochemical proton gradients. The recently published crystal structure of a plasma membrane H(+)-ATPase contributes to our knowledge about the mechanism of these essential enzymes. Taking the biochemical and structural data together, we are now able to describe the basic molecular components that allow the plasma membrane proton H(+)-ATPase to carry out proton transport against large membrane potentials. When divergent proton pumps such as the plasma membrane H(+)-ATPase, bacteriorhodopsin, and F(O)F(1) ATP synthase are compared, unifying mechanistic premises for biological proton pumps emerge. Most notably, the minimal pumping apparatus of all pumps consists of a central proton acceptor/donor, a positively charged residue to control pK(a) changes of the proton acceptor/donor, and bound water molecules to facilitate rapid proton transport along proton wires.

  13. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    International Nuclear Information System (INIS)

    Bippes, Christian A; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA

  14. Predominant information quality scheme for the essential amino acids: an information-theoretical analysis.

    Science.gov (United States)

    Esquivel, Rodolfo O; Molina-Espíritu, Moyocoyani; López-Rosa, Sheila; Soriano-Correa, Catalina; Barrientos-Salcedo, Carolina; Kohout, Miroslav; Dehesa, Jesús S

    2015-08-24

    In this work we undertake a pioneer information-theoretical analysis of 18 selected amino acids extracted from a natural protein, bacteriorhodopsin (1C3W). The conformational structures of each amino acid are analyzed by use of various quantum chemistry methodologies at high levels of theory: HF, M062X and CISD(Full). The Shannon entropy, Fisher information and disequilibrium are determined to grasp the spatial spreading features of delocalizability, order and uniformity of the optimized structures. These three entropic measures uniquely characterize all amino acids through a predominant information-theoretic quality scheme (PIQS), which gathers all chemical families by means of three major spreading features: delocalization, narrowness and uniformity. This scheme recognizes four major chemical families: aliphatic (delocalized), aromatic (delocalized), electro-attractive (narrowed) and tiny (uniform). All chemical families recognized by the existing energy-based classifications are embraced by this entropic scheme. Finally, novel chemical patterns are shown in the information planes associated with the PIQS entropic measures. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. High-throughput single-molecule force spectroscopy for membrane proteins

    International Nuclear Information System (INIS)

    Bosshart, Patrick D; Casagrande, Fabio; Frederix, Patrick L T M; Engel, Andreas; Fotiadis, Dimitrios; Ratera, Merce; Palacin, Manuel; Bippes, Christian A; Mueller, Daniel J

    2008-01-01

    Atomic force microscopy-based single-molecule force spectroscopy (SMFS) is a powerful tool for studying the mechanical properties, intermolecular and intramolecular interactions, unfolding pathways, and energy landscapes of membrane proteins. One limiting factor for the large-scale applicability of SMFS on membrane proteins is its low efficiency in data acquisition. We have developed a semi-automated high-throughput SMFS (HT-SMFS) procedure for efficient data acquisition. In addition, we present a coarse filter to efficiently extract protein unfolding events from large data sets. The HT-SMFS procedure and the coarse filter were validated using the proton pump bacteriorhodopsin (BR) from Halobacterium salinarum and the L-arginine/agmatine antiporter AdiC from the bacterium Escherichia coli. To screen for molecular interactions between AdiC and its substrates, we recorded data sets in the absence and in the presence of L-arginine, D-arginine, and agmatine. Altogether ∼400 000 force-distance curves were recorded. Application of coarse filtering to this wealth of data yielded six data sets with ∼200 (AdiC) and ∼400 (BR) force-distance spectra in each. Importantly, the raw data for most of these data sets were acquired in one to two days, opening new perspectives for HT-SMFS applications

  16. Super-Sensitive and Robust Biosensors from Supported Polymer Bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Paxton, Walter F. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-09-01

    Biological organisms are potentially the most sensitive and selective biological detection systems known, yet we are currently severely limited in our ability to exploit biological interactions in sensory devices, due in part to the limited stability of biological systems and derived materials. This proposal addresses an important aspect of integrating biological sensory materials in a solid state device. If successful, such technology could enable entirely new classes of robust biosensors that could be miniaturized and deployed in the field. The critical aims of the proposed work were 1) the calibration of a more versatile approach to measuring pH, 2) the use of this method to monitor pH changes caused by the light-induced pumping of protons across vesicles with bacteriorhodopsin integrated into the membranes (either polymer or lipid); 3) the preparation of bilayer assemblies on platinum surfaces; 4) the enhanced detection of lightinduced pH changes driven by bR-loaded supported bilayers. I have developed a methodology that may enable that at interfaces and developed a methodology to characterize the functionality of bilayer membranes with reconstituted membrane proteins. The integrity of the supported bilayer films however must be optimized prior to the full realization of the work originally envisioned in the original proposal. Nevertheless, the work performed on this project and the encouraging results it has produced has demonstrated that these goals are challenging yet within reach.

  17. POAC (programmable optical array computer) applied for target recognition and tracking

    Science.gov (United States)

    Tokes, Szabolcs; Orzo, Laszlo; Ayoub, Ahmed E.; Roska, Tamas

    2004-12-01

    A portable programmable opto-electronic analogic CNN computer (Laptop-POAC) has been built and used to recognize and track targets. Its kernel processor is a novel type of high performance optical correlator based on the use of bacteriorhodopsin (BR) as a dynamic holographic material. This optical CNN implementation combines the optical computer's high speed, high parallelism (~106 channel) and large applicable template sizes with flexible programmability of the CNN devices. Unique feature of this optical array computer is that programming templates can be applied either by a 2D acousto-optical deflector (up to 64x64 pixel size templates) incoherently or by an LCD-SLM (up to 128x128 size templates) coherently. So it can work both in totally coherent and partially incoherent way, utilizing the actual advantages of the used mode of operation. Input images are fed-in by a second LCD-SLM of 600x800 pixel resolution. Evaluation of trade-off between speed and resolution is given. Novel and effective target recognition and multiple-target-tracking algorithms have been developed for the POAC. Tracking experiments are demonstrated. Collision avoidance experiments are being conducted. In the present model a CCD camera is recording the correlograms, however, later a CNN-UM chip and a high-speed CMOS camera will be applied for post-processing.

  18. A Versatile System for High-Throughput In Situ X-ray Screening and Data Collection of Soluble and Membrane-Protein Crystals

    Science.gov (United States)

    2016-01-01

    In recent years, in situ data collection has been a major focus of progress in protein crystallography. Here, we introduce the Mylar in situ method using Mylar-based sandwich plates that are inexpensive, easy to make and handle, and show significantly less background scattering than other setups. A variety of cognate holders for patches of Mylar in situ sandwich films corresponding to one or more wells makes the method robust and versatile, allows for storage and shipping of entire wells, and enables automated crystal imaging, screening, and goniometer-based X-ray diffraction data-collection at room temperature and under cryogenic conditions for soluble and membrane-protein crystals grown in or transferred to these plates. We validated the Mylar in situ method using crystals of the water-soluble proteins hen egg-white lysozyme and sperm whale myoglobin as well as the 7-transmembrane protein bacteriorhodopsin from Haloquadratum walsbyi. In conjunction with current developments at synchrotrons, this approach promises high-resolution structural studies of membrane proteins to become faster and more routine. PMID:28261000

  19. Light- and pH-dependent conformational changes in protein structure induce strong bending of purple membranes--active membranes studied by cryo-SEM.

    Science.gov (United States)

    Rhinow, Daniel; Hampp, Norbert A

    2008-10-16

    Bacteriorhodopsin (BR) undergoes a conformational change during the photocycle and the proton transport through the membrane. For the first time, we could demonstrate by direct imaging of freely suspended native purple membranes (PMs) that the flat disk-like shape of PMs changes dramatically as soon as most of the BRs are in a state characterized by a deprotonated Schiff base. Light-induced shape changes are easily observed with mutated BRs of the BR-D96N type, i.e., all variants which show an increased M 2 lifetime. On the other hand, large-scale shape changes are induced by pH changes with PM containing mutated BRs of the BR-D85T type, where Asp85 is replaced for a neutral amino acid. In such PMs, all BRs are titrated simultaneously and the resulting shape of the membranes depends on the initial shape only. As the majority of PMs in the "flat" state are more or less round disks, the bent membranes often comprise bowl-like and tube-like bent structures. The method presented here enables one to derive size changes of membrane-embedded BRs on the single molecule level from "macroscopic", easily accessible data like the curvature radii observed in cryo-SEM. The potential of BR as a pH-controlled and/or light-controlled microscaled biological actuator needs further consideration.

  20. The role of metallic ions in nano-bio hybrid catalysts from ab initio first principles

    Science.gov (United States)

    Behera, Sushant; Deb, Pritam

    We employ high-accuracy linear-scaling density functional theory calculations with a near-complete basis set and a minimal parameter implicit solvent model, within the self-consistent calculation, on silver ion assimilated on bacteriorhodopsin (bR) at specific binding sites. The geometry optimization indicates the formation of stable active sites at the interface of nano-bio hybrid and density of states reflects the metallic behavior of the active sites. Detailed kinetics of the catalytic reaction is revealed using ab initio electronic structure calculations. We observed that the metal ion incorporated active sites are more efficient in electrolytic splitting of water than pristine sites due to their less value of Gibbs free energy for hydrogen evolution reaction and strong synergistic effect. The volcano plot analysis and free energy diagram are considered to understan hydrogen evolution efficiency. Moreover, the essential role of metallic ion on catalytic efficiency is elucidated. DBT, Government of India, vide Grant No BT/357/NE/TBP/ 2012. DST, GoI for financial support under INSPIRE Fellowship(IF150325).

  1. Controlled ionic condensation at the surface of a native extremophile membrane

    Science.gov (United States)

    Contera, Sonia Antoranz; Voïtchovsky, Kislon; Ryan, John F.

    2010-02-01

    At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we investigate ionic effects at the surface of a highly charged extremophile membrane composed of a proton pump (bacteriorhodopsin) and archaeal lipids naturally assembled into a 2D crystal. Using amplitude-modulation atomic force microscopy (AM-AFM) in solution, we obtained sub-molecular resolution images of ion-induced surface restructuring of the membrane. We demonstrate the presence of a stiff cationic layer condensed at its extracellular surface. This layer cannot be explained by traditional continuum theories. Dynamic force spectroscopy experiments suggest that it is produced by electrostatic correlation mediated by a Manning-type condensation of ions. In contrast, the cytoplasmic surface is dominated by short-range repulsive hydration forces. These findings are relevant to archaeal bioenergetics and halophilic adaptation. Importantly, they present experimental evidence of a natural system that locally controls its interactions with the surrounding medium and challenges our current understanding of biological interfaces.At the nanoscale level biological membranes present a complex interface with the solvent. The functional dynamics and relative flexibility of membrane components together with the presence of specific ionic effects can combine to create exciting new phenomena that challenge traditional theories such as the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory or models interpreting the role of ions in terms of their ability to structure water (structure making/breaking). Here we

  2. Efficient unfolding pattern recognition in single molecule force spectroscopy data

    Directory of Open Access Journals (Sweden)

    Labudde Dirk

    2011-06-01

    Full Text Available Abstract Background Single-molecule force spectroscopy (SMFS is a technique that measures the force necessary to unfold a protein. SMFS experiments generate Force-Distance (F-D curves. A statistical analysis of a set of F-D curves reveals different unfolding pathways. Information on protein structure, conformation, functional states, and inter- and intra-molecular interactions can be derived. Results In the present work, we propose a pattern recognition algorithm and apply our algorithm to datasets from SMFS experiments on the membrane protein bacterioRhodopsin (bR. We discuss the unfolding pathways found in bR, which are characterised by main peaks and side peaks. A main peak is the result of the pairwise unfolding of the transmembrane helices. In contrast, a side peak is an unfolding event in the alpha-helix or other secondary structural element. The algorithm is capable of detecting side peaks along with main peaks. Therefore, we can detect the individual unfolding pathway as the sequence of events labeled with their occurrences and co-occurrences special to bR's unfolding pathway. We find that side peaks do not co-occur with one another in curves as frequently as main peaks do, which may imply a synergistic effect occurring between helices. While main peaks co-occur as pairs in at least 50% of curves, the side peaks co-occur with one another in less than 10% of curves. Moreover, the algorithm runtime scales well as the dataset size increases. Conclusions Our algorithm satisfies the requirements of an automated methodology that combines high accuracy with efficiency in analyzing SMFS datasets. The algorithm tackles the force spectroscopy analysis bottleneck leading to more consistent and reproducible results.

  3. Exploring the binding properties and structural stability of an opsin in the chytrid Spizellomyces punctatus using comparative and molecular modeling

    Directory of Open Access Journals (Sweden)

    Steven R. Ahrendt

    2017-04-01

    Full Text Available Background Opsin proteins are seven transmembrane receptor proteins which detect light. Opsins can be classified into two types and share little sequence identity: type 1, typically found in bacteria, and type 2, primarily characterized in metazoa. The type 2 opsins (Rhodopsins are a subfamily of G-protein coupled receptors (GPCRs, a large and diverse class of seven transmembrane proteins and are generally restricted to metazoan lineages. Fungi use light receptors including opsins to sense the environment and transduce signals for developmental or metabolic changes. Opsins characterized in the Dikarya (Ascomycetes and Basidiomycetes are of the type 1 bacteriorhodopsin family but the early diverging fungal lineages have not been as well surveyed. We identified by sequence similarity a rhodopsin-like GPCR in genomes of early diverging chytrids and examined the structural characteristics of this protein to assess its likelihood to be homologous to animal rhodopsins and bind similar chromophores. Methods We used template-based structure modeling, automated ligand docking, and molecular modeling to assess the structural and binding properties of an identified opsin-like protein found in Spizellomyces punctatus, a unicellular, flagellated species belonging to Chytridiomycota, one of the earliest diverging fungal lineages. We tested if the sequence and inferred structure were consistent with a solved crystal structure of a type 2 rhodopsin from the squid Todarodes pacificus. Results Our results indicate that the Spizellomyces opsin has structural characteristics consistent with functional animal type 2 rhodopsins and is capable of maintaining a stable structure when associated with the retinaldehyde chromophore, specifically the 9-cis-retinal isomer. Together, these results support further the homology of Spizellomyces opsins to animal type 2 rhodopsins. Discussion This represents the first test of structure/function relationship of a type 2 rhodopsin

  4. Exploring the active site structure of photoreceptor proteins by Raman optical activity

    Science.gov (United States)

    Unno, Masashi

    2015-03-01

    Understanding protein function at the atomic level is a major challenge in a field of biophysics and requires the combined efforts of structural and functional methods. We use photoreceptor proteins as a model system to understand in atomic detail how a chromophore and a protein interact to sense light and send a biological signal. A potential technique for investigating molecular structures is Raman optical activity (ROA), which is a spectroscopic method with a high sensitivity to the structural details of chiral molecules. However, its application to photoreceptor proteins has not been reported. Thus we have constructed ROA spectrometer using near-infrared (NIR) laser excitation at 785 nm. The NIR excitation enables us to measure ROA spectra for a variety of biological samples, including photoreceptor proteins, without fluorescence from the samples. In the present study, we have applied the NIR-ROA to bacteriorhodopsin (BR) and photoactive yellow protein (PYP). BR is a light-driven proton pump and contains a protonated Schiff base of retinal as a chromophore. PYP is a blue light receptor, and this protein has the 4-hydroxycinnamyl chromophore, which is covalently linked to Cys69 through a thiolester bond. We have successfully obtained the ROA spectra of the chromophore within a protein environment. Furthermore, calculations of the ROA spectra utilizing density functional theory provide detailed structural information, such as data on out-of-plane distortions of the chromophore. The structural information obtained from the ROA spectra includes the positions of hydrogen atoms, which are usually not detected in the crystal structures of biological samples.

  5. Genome sequencing of four Aureobasidium pullulans varieties: biotechnological potential, stress tolerance, and description of new species.

    Science.gov (United States)

    Gostinčar, Cene; Ohm, Robin A; Kogej, Tina; Sonjak, Silva; Turk, Martina; Zajc, Janja; Zalar, Polona; Grube, Martin; Sun, Hui; Han, James; Sharma, Aditi; Chiniquy, Jennifer; Ngan, Chew Yee; Lipzen, Anna; Barry, Kerrie; Grigoriev, Igor V; Gunde-Cimerman, Nina

    2014-07-01

    Aureobasidium pullulans is a black-yeast-like fungus used for production of the polysaccharide pullulan and the antimycotic aureobasidin A, and as a biocontrol agent in agriculture. It can cause opportunistic human infections, and it inhabits various extreme environments. To promote the understanding of these traits, we performed de-novo genome sequencing of the four varieties of A. pullulans. The 25.43-29.62 Mb genomes of these four varieties of A. pullulans encode between 10266 and 11866 predicted proteins. Their genomes encode most of the enzyme families involved in degradation of plant material and many sugar transporters, and they have genes possibly associated with degradation of plastic and aromatic compounds. Proteins believed to be involved in the synthesis of pullulan and siderophores, but not of aureobasidin A, are predicted. Putative stress-tolerance genes include several aquaporins and aquaglyceroporins, large numbers of alkali-metal cation transporters, genes for the synthesis of compatible solutes and melanin, all of the components of the high-osmolarity glycerol pathway, and bacteriorhodopsin-like proteins. All of these genomes contain a homothallic mating-type locus. The differences between these four varieties of A. pullulans are large enough to justify their redefinition as separate species: A. pullulans, A. melanogenum, A. subglaciale and A. namibiae. The redundancy observed in several gene families can be linked to the nutritional versatility of these species and their particular stress tolerance. The availability of the genome sequences of the four Aureobasidium species should improve their biotechnological exploitation and promote our understanding of their stress-tolerance mechanisms, diverse lifestyles, and pathogenic potential.

  6. Transport in Halobacterium Halobium: Light-Induced Cation-Gradients, Amino Acid Transport Kinetics, and Properties of Transport Carriers

    Science.gov (United States)

    Lanyi, Janos K.

    1977-01-01

    Cell envelope vesicles prepared from H. halobium contain bacteriorhodopsin and upon illumination protons are ejected. Coupled to the proton motive force is the efflux of Na(+). Measurements of Na-22 flux, exterior pH change, and membrane potential, Delta(psi) (with the dye 3,3'-dipentyloxadicarbocyanine) indicate that the means of Na(+) transport is sodium/proton exchange. The kinetics of the pH changes and other evidence suggests that the antiport is electrogenic (H(+)/Na(++ greater than 1). The resulting large chemical gradient for Na(+) (outside much greater than inside), as well as the membrane potential, will drive the transport of 18 amino acids. The I9th, glutamate, is unique in that its accumulation is indifferent to Delta(psi): this amino acid is transported only when a chemical gradient for Na(+) is present. Thus, when more and more NaCl is included in the vesicles glutamate transport proceeds with longer and longer lags. After illumination the gradient of H+() collapses within 1 min, while the large Na(+) gradient and glutamate transporting activity persists for 10- 15 min, indicating that proton motive force is not necessary for transport. A chemical gradient of Na(+), arranged by suspending vesicles loaded with KCl in NaCl, drives glutamate transport in the dark without other sources of energy, with V(sub max) and K(sub m) comparable to light-induced transport. These and other lines of evidence suggest that the transport of glutamate is facilitated by symport with Na(+), in an electrically neutral fashion, so that only the chemical component of the Na(+) gradient is a driving force.

  7. Detection of fast light-activated H+ release and M intermediate formation from proteorhodopsin.

    Directory of Open Access Journals (Sweden)

    DeVita Anne

    2002-04-01

    Full Text Available Abstract Background Proteorhodopsin (pR is a light-activated proton pump homologous to bacteriorhodopsin and recently discovered in oceanic γ-proteobacteria. One perplexing difference between these two proteins is the absence in pR of homologues of bR residues Glu-194 and Glu-204. These two residues, along with Arg-82, have been implicated in light-activated fast H+ release to the extracellular medium in bR. It is therefore uncertain that pR carries out its physiological activity using a mechanism that is completely homologous to that of bR. Results A pR purification procedure is described that utilizes Phenylsepharose™ and hydroxylapatite columns and yields 85% (w/w purity. Through SDS-PAGE of the pure protein, the molecular weight of E.-coli-produced pR was determined to be 36,000, approximately 9,000 more than the 27,000 predicted by the DNA sequence. Post-translational modification of one or more of the cysteine residues accounts for 5 kDa of the weight difference as measured on a cys-less pR mutant. At pH 9.5 and in the presence of octylglucoside and diheptanoylphosphotidylcholine, flash photolysis results in fast H+ release and a 400-nm absorbing (M-like photoproduct. Both of these occur with a similar rise time (4–10 μs as reported for monomeric bR in detergent. Conclusions The presence of fast H+ release in pR indicates that either different groups are responsible for fast H+ release in pR and bR (i.e. that the H+ release group is not highly conserved; or, that the H+ release group is conserved and is therefore likely Arg-94 itself in pR (and Arg-82 in bR, correspondingly.

  8. Asymmetric Functional Conversion of Eubacterial Light-driven Ion Pumps*

    Science.gov (United States)

    Inoue, Keiichi; Nomura, Yurika; Kandori, Hideki

    2016-01-01

    In addition to the well-known light-driven outward proton pumps, novel ion-pumping rhodopsins functioning as outward Na+ and inward Cl− pumps have been recently found in eubacteria. They convert light energy into transmembrane electrochemical potential difference, similar to the prototypical archaeal H+ pump bacteriorhodopsin (BR) and Cl− pump halorhodopsin (HR). The H+, Na+, and Cl− pumps possess the conserved respective DTE, NDQ, and NTQ motifs in the helix C, which likely serve as their functional determinants. To verify this hypothesis, we attempted functional interconversion between selected pumps from each category by mutagenesis. Introduction of the proton-pumping motif resulted in successful Na+ → H+ functional conversion. Introduction of the respective characteristic motifs with several additional mutations leads to successful Na+ → Cl− and Cl− → H+ functional conversions, whereas remaining conversions (H+ → Na+, H+ → Cl−, Cl− → Na+) were unsuccessful when mutagenesis of 4–6 residues was used. Phylogenetic analysis suggests that a H+ pump is the common ancestor of all of these rhodopsins, from which Cl− pumps emerged followed by Na+ pumps. We propose that successful functional conversions of these ion pumps are achieved exclusively when mutagenesis reverses the evolutionary amino acid sequence changes. Dependence of the observed functional conversions on the direction of evolution strongly suggests that the essential structural mechanism of an ancestral function is retained even after the gain of a new function during natural evolution, which can be evoked by a few mutations. By contrast, the gain of a new function needs accumulation of multiple mutations, which may not be easily reproduced by limited mutagenesis in vitro. PMID:26929409

  9. Systematic analysis of protein-detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials.

    Science.gov (United States)

    Meyer, Arne; Dierks, Karsten; Hussein, Rana; Brillet, Karl; Brognaro, Hevila; Betzel, Christian

    2015-01-01

    Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-trans n-alkyl-β-D-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH2 group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein-detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic cleavage to separate the fusion partners. This study demonstrates the potential of in situ DLS to optimize solutions of protein-detergent complexes for crystallization applications.

  10. Microbial Metabolism in Permafrost and Ice

    Science.gov (United States)

    Price, P. B.; Bramall, N.; Bay, R. C.

    2003-12-01

    Metabolic rates of microbial communities at low temperature have not been systematically studied, despite discoveries of microbes that survive with very little nutrient in ice, permafrost, and deep open-ocean sites, and despite interest in possible life on Mars and Europa. We investigated the temperature-dependence of growth rates kg, maintenance rates km, and survival rates ks, using existing data on kg(T) for permafrost bacteria, on km(T) using radiotracers, and on ks(T) using geochemical methods. Data were collected for temperatures from 28° C to -40° C. The rates for the three modes are consistent with a single activation energy U ≈ 100-110 kJ/mol, and they scale as kg(T):km(T):ks(T) ≈ 107:104:1. The rate ks(T) for survival of a dormant microbial community is found to be roughly that required solely for repairing molecular damage due to amino acid racemization + DNA depurination. We conclude that for living microbes the rate of molecular repair equals the rate of molecular damage. There is no indication of a threshold temperature for metabolism, at least down to -40° C. To assay microbial life in the coldest terrestrial environments (down to -55° C) and in future to search for present or past life on Mars, we have designed a miniaturized biospectral logger that will fit into a 4-cm borehole in ice, permafrost and rock. The logger will use side-directed laser beams at wavelengths 224 and 370 nm to detect autofluorescence of biomolecules and discriminate against mineral autofluorescence. Six channels will map fluorescence spectra and a seventh channel will measure light scattered from dust (in ice) or rock (in permafrost). Fluorescent biomolecules of interest include tryptophan, tyrosine, NADH, FAD, F420, chlorophyll, bacteriorhodopsin, porphyrins, pyoverdin, PAHs, humic acid, and fulvic acid. The logger will be able to detect microbial concentrations as low as 1 cell cm-3 in clean ice.

  11. Development and applications of infrared structural biology

    Science.gov (United States)

    Kang, Zhouyang

    Aspartic acid (Asp), Glutamic acid (Glu) and Tyrosine (Tyr) often play critical roles at the active sites of proteins. Probing the structural dynamics of functionally important Asp/Glu and Tyr provides crucial information for protein functionality. Time-resolved infrared structural biology offers strong advantages for its high structural sensitivity and broad dynamic range (picosecond to kilosecond). In order to connect the vibrational frequencies to specific structures of COO- groups and phenolic --OH groups, such as the number, type, and geometry of hydrogen bond interactions, we develop two sets of vibrational structural markers (VSM), built on the symmetric and asymmetric stretching frequencies for COO- and C-O stretching and C-O-H bending frequencies for phenolic --OH. Extensive quantum physics (density functional theory) based computational studies, combined with site-specific isotope labeling as well as site-directed mutagenesis, and experimental FTIR data on Asp/Glu in proteins, are used to establish a unique correlation between the vibrations and multiple types of hydrogen bonding interactions. Development of those vibrational structural markers significantly enhances the power of time-resolved infrared structural biology for the study of functionally important structural dynamics of COO- from Asp/Glu and phenolic --OH from Tyr residues in proteins, including rhodopsin for biological signaling, bacteriorhodopsin and PYP for proton transfer, photosystem II for energy transformation, and HIV protease for enzymatic catalysis. Furthermore, this approach can be adopted in the future development of vibrational structural markers for other functionally important amino acid residues in proteins, such as arginine (Arg), histidine (His), and serine (Ser).

  12. The affinity purification and characterization of ATP synthase complexes from mitochondria.

    Science.gov (United States)

    Runswick, Michael J; Bason, John V; Montgomery, Martin G; Robinson, Graham C; Fearnley, Ian M; Walker, John E

    2013-02-13

    The mitochondrial F₁-ATPase inhibitor protein, IF₁, inhibits the hydrolytic, but not the synthetic activity of the F-ATP synthase, and requires the hydrolysis of ATP to form the inhibited complex. In this complex, the α-helical inhibitory region of the bound IF₁ occupies a deep cleft in one of the three catalytic interfaces of the enzyme. Its N-terminal region penetrates into the central aqueous cavity of the enzyme and interacts with the γ-subunit in the enzyme's rotor. The intricacy of forming this complex and the binding mode of the inhibitor endow IF₁ with high specificity. This property has been exploited in the development of a highly selective affinity procedure for purifying the intact F-ATP synthase complex from mitochondria in a single chromatographic step by using inhibitor proteins with a C-terminal affinity tag. The inhibited complex was recovered with residues 1-60 of bovine IF₁ with a C-terminal green fluorescent protein followed by a His-tag, and the active enzyme with the same inhibitor with a C-terminal glutathione-S-transferase domain. The wide applicability of the procedure has been demonstrated by purifying the enzyme complex from bovine, ovine, porcine and yeast mitochondria. The subunit compositions of these complexes have been characterized. The catalytic properties of the bovine enzyme have been studied in detail. Its hydrolytic activity is sensitive to inhibition by oligomycin, and the enzyme is capable of synthesizing ATP in vesicles in which the proton-motive force is generated from light by bacteriorhodopsin. The coupled enzyme has been compared by limited trypsinolysis with uncoupled enzyme prepared by affinity chromatography. In the uncoupled enzyme, subunits of the enzyme's stator are degraded more rapidly than in the coupled enzyme, indicating that uncoupling involves significant structural changes in the stator region.

  13. Molecular mechanisms for generating transmembrane proton gradients

    Science.gov (United States)

    Gunner, M.R.; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side. PMID:23507617

  14. Photocycle of Sensory Rhodopsin II from Halobacterium salinarum (HsSRII): Mutation of D103 Accelerates M Decay and Changes the Decay Pathway of a 13-cis O-like Species.

    Science.gov (United States)

    Dai, Gang; Geng, Xiong; Chao, Luomeng; Tamogami, Jun; Kikukawa, Takashi; Demura, Makoto; Kamo, Naoki; Iwasa, Tatsuo

    2018-03-07

    Aspartic acid 103 (D103) of sensory rhodopsin II from Halobacterium salinarum (HsSRII, or also called phoborhodopsin) corresponds to D115 of bacteriorhodopsin (BR). This amino acid residue is functionally important in BR. The present work reveals that a substitution of D103 with asparagine (D103N) or glutamic acid (D103E) can cause large changes in HsSRII photocycle. These changes include (1) shortened lifetime of the M intermediate in the following order: the wild-type > D103N > D103E; (2) altered decay pathway of a 13-cis O-like species. The 13-cis O-like species, tentatively named Px, was detected in HsSRII photocycle. Px appeared to undergo branched reactions at 0°C, leading to a recovery of the unphotolyzed state and formation of a metastable intermediate, named P370, that slowly decayed to the unphotolyzed state at room temperature. In wild-type HsSRII at 0°C, Px mainly decayed to the unphotolyzed state, and the decay reaction toward P370 was negligible. In mutant D103E at 0°C, Px decayed to P370, while the recovery of the unphotolyzed state became unobservable. In mutant D103N, the two reactions proceeded at comparable rates. Thus, D103 of HsSRII may play an important role in regulation of the photocycle of HsSRII. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Systematic analysis of protein–detergent complexes applying dynamic light scattering to optimize solutions for crystallization trials

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Arne [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Dierks, Karsten [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); XtalConcepts, Marlowring 19, 22525 Hamburg (Germany); Hussein, Rana [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany); Brillet, Karl [ESBS, Pôle API, 300 Boulevard Sébastien Brant, CS10413, 67412 Illkirch CEDEX (France); Brognaro, Hevila [São Paulo State University, UNESP/IBILCE, Caixa Postal 136, São José do Rio Preto-SP, 15054 (Brazil); Betzel, Christian, E-mail: christian.betzel@uni-hamburg.de [University of Hamburg, c/o DESY, Building 22a, Notkestrasse 85, 22603 Hamburg (Germany)

    2015-01-01

    Application of in situ dynamic light scattering to solutions of protein–detergent complexes permits characterization of these complexes in samples as small as 2 µl in volume. Detergents are widely used for the isolation and solubilization of membrane proteins to support crystallization and structure determination. Detergents are amphiphilic molecules that form micelles once the characteristic critical micelle concentration (CMC) is achieved and can solubilize membrane proteins by the formation of micelles around them. The results are presented of a study of micelle formation observed by in situ dynamic light-scattering (DLS) analyses performed on selected detergent solutions using a newly designed advanced hardware device. DLS was initially applied in situ to detergent samples with a total volume of approximately 2 µl. When measured with DLS, pure detergents show a monodisperse radial distribution in water at concentrations exceeding the CMC. A series of all-transn-alkyl-β-d-maltopyranosides, from n-hexyl to n-tetradecyl, were used in the investigations. The results obtained verify that the application of DLS in situ is capable of distinguishing differences in the hydrodynamic radii of micelles formed by detergents differing in length by only a single CH{sub 2} group in their aliphatic tails. Subsequently, DLS was applied to investigate the distribution of hydrodynamic radii of membrane proteins and selected water-insoluble proteins in presence of detergent micelles. The results confirm that stable protein–detergent complexes were prepared for (i) bacteriorhodopsin and (ii) FetA in complex with a ligand as examples of transmembrane proteins. A fusion of maltose-binding protein and the Duck hepatitis B virus X protein was added to this investigation as an example of a non-membrane-associated protein with low water solubility. The increased solubility of this protein in the presence of detergent could be monitored, as well as the progress of proteolytic

  16. Biosolar energy generation and harvesting from biomolecule-copolymer hybrid systems

    Science.gov (United States)

    Chu, Bong-Chieh Benjamin

    Alternative energy sources have become an increasingly important topic as energy needs outpace supply. Furthermore, as the world moves into the digital age of portable electronics, highly efficient and lightweight energy sources will need to be developed. Current technology, such as lithium ion batteries, provide enough power to run portable electronics for hours or days, but can still allow for improvement in their power density (W/kg). Utilizing energy-transducing membrane proteins, which are by nature highly efficient, it is possible to engineer biological-based energy sources with energy densities far greater than any solid-state systems. Furthermore, solar powered membrane proteins have the added benefit of a virtually unlimited supply of energy. This work has developed protein-polymer hybrid films and nanoscale vesicles for a variety of applications from fuel-cell technology to biological-based photovoltaics. Bacteriorhodopsin (BR), a light-activated proton pump, and Cytochrome C Oxidase (COX), a protein involved in the electron transport chain in mitochondria, were reconstituted into biomimetic triblock copolymer membranes. Block copolymer membranes mimic the amphiphilic nature of a natural lipid bilayer but exhibit greater mechanical stability due to UV-polymerizable endgroups. In BR/COX functionalized nanovesicles, proton gradients generated by the light-activated proton pumping of BR are used to drive COX in reverse to generate electrons, providing a hybrid biologically-active polymer to convert solar energy to chemical energy, and finally to electrical energy. This work has found protein activity in planar membranes through the photoelectric current generation by BR and the proton pumping activity of BR-functionalized polymer membranes deposited onto proton exchange membranes, as well as the coupled functionality of BR and COX through current generation in cyclic voltammetry and direct current measurements. Current switching between light and dark

  17. A novel cell-scale bio-nanogenerator based on electron-ion interaction for fast light power conversion.

    Science.gov (United States)

    Li, Yu-Tao; Tian, He; Zhao, Hai-Ming; Jian, Mu-Qiang; Lv, Yu-Jia; Tian, Ye; Wang, Qian; Yang, Yi; Xiang, Yan; Zhang, Yingying; Ren, Tian-Ling

    2018-01-03

    Natural energy haversting devices serve as an alternative candidate for power supply in many micro-/nano-systems. However, traditional nanogenerators based on piezoelectricity or triboelectric power generation face challenges in terms of biocompatibility and stability in various biological systems. The bacteriorhodopsin (bR) protein in Halobacterium halobium is an ideal biocompatible material for photoelectric conversion. Conventional bR systems based on ion transport or enhanced light absorption layers have a limited light power conversion speed. On the other hand, bR-based biohybrid devices have a great potential for sensitive light power conversion as compared to conventional nanogenerators. Herein, we present a biohybrid nanogenerator made of bR and horizontally aligned-long carbon nanotubes (CNTs) with electron-ion interaction for the first time for sensitive light power conversion. The bR layer serves as the proton pump, whereas CNTs are utilized to enhance the photocurrent; thus, the photocurrent frequency response improves significantly because of the effect of the electron-ion interaction. The photocurrent shows a linear relationship with the intensity of light and can still obtain a stable signal at a light intensity of 0.03 mW cm -2 . With regard to the influence of the light on-off period, the photocurrent initially increases and then decreases with an increase in flickering frequency up to 360 Hz; this can be ascribed to the combinational influence of light switch speed and photocycle decay time. The photocurrent shows highest value (99 nA cm -2 ) at a frequency of about 50 Hz at a light intensity of 0.43 mW cm -2 , which matches well with the frequency standard of the electrical power supply system. Moreover, we found that a higher density of CNTs contributed to improve performance of the nanogenerators. Furthermore, a H + ion releasing model was proposed to interpret the operating mechanism of the biohybrid nanogenerator. The biohybrid nanogenerator

  18. A study of the proteorhodopsin primary photoreaction by low-temperature FTIR difference and ultrafast transient infrared spectroscopy

    Science.gov (United States)

    Amsden, Jason J.

    Proteorhodopsin (PR), a newly discovered microbial rhodopsin found in marine proteobacteria, functions as a light-driven proton pump similar to bacteriorhodopsin (BR). PR-containing bacteria account for ˜13% of the microorganisms in the oceans' photic zone and are responsible for a significant fraction of the biosphere's solar energy conversion. We study the initial response of proteorhodopsin to photon absorption using a combination of low-temperature (80 K) Fourier transform infrared (FTIR) difference spectroscopy and ultrafast transient infrared (TIR) spectroscopy. Low-temperature FTIR difference spectroscopy combined with site-directed mutagenesis and isotope labeling is used to detect and characterize changes occurring in the conformation of the retinal chromophore, protein, and internal water molecules of green-absorbing PR (GPR) and blue-absorbing PR (BPR) during the initial phototransition. Measurements on cryogenically trapped intermediates do not accurately reflect all native structural changes occurring in PR and other microbial rhodopsins on ultrafast time scales at room temperature. Recent studies demonstrate that photoactive proteins such as photoactive yellow protein, myoglobin, and green-fluorescent protein, can react within several picoseconds to photon absorption by their chromophores. Faster subpicosecond protein responses have been suggested to occur in rhodopsin-like proteins where retinal chromophore photoisomerization may impulsively drive structural changes in nearby protein groups. Here, I test this possibility by investigating the earliest protein and chromophore structural changes occurring in GPR using ultrafast TIR spectroscopy with ˜200 fs time resolution combined with non-perturbing isotope labeling. On the basis of total-15N and retinal C15D (retinal with a deuterium on carbon 15) isotope labeling, the all-trans to 13-cis retinal chromophore isomerization occurs with a 500-700 fs time constant and the amide II mode of one or more

  19. Structure and interactions in biomaterials based on membrane-biopolymer self-assembly

    Science.gov (United States)

    Koltover, Ilya

    Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures

  20. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    Science.gov (United States)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  1. FTIR difference and resonance Raman spectroscopy of rhodopsins with applications to optogenetics

    Science.gov (United States)

    Saint Clair, Erica C.

    The major aim of this thesis is to investigate the molecular basis for the function of several types of rhodopsins with special emphasis on their application to the new field of optogenetics. Rhodopsins are transmembrane biophotonic proteins with 7 alpha-helices and a retinal chromophore. Studies included Archaerhodopsin 3 (AR3), a light driven proton pump similar to the extensively studied bacteriorhodopsin (BR); channelrhodopsins 1 and 2, light-activated ion channels; sensory rhodopsin II (SRII), a light-sensing protein that modulates phototaxis used in archaebacteria; and squid rhodopsins (sRho), the major photopigment in squid vision and a model for human melanopsin, which controls circadian rhythms. The primary techniques used in these studies were FTIR difference spectroscopy and resonance Raman spectroscopy. These techniques, in combination with site directed mutagenesis and other biochemical methodologies produced new knowledge regarding the structural changes of the retinal chromophore, the location and function of internal water molecules as well as specific amino acids and peptide backbone. Specialized techniques were developed that allowed rhodopsins to be studied in intact membrane environments and in some cases in vivo measurements were made on rhodopsin heterologously expressed in E. coli thus allowing the effects of interacting proteins and membrane potential to be investigated. Evidence was found that the local environment of one or more internal water molecules in SRII is altered by interaction with its cognate transducer, HtrII, and is also affected by the local lipid environment. In the case of AR3, many of the broad IR continuum absorption changes below 3000 cm -1, assigned to networks of water molecules involved in proton transport through cytoplasmic and extracellular portions in BR, were found to be very similar to BR. Bands assigned to water molecules near the Schiff base postulated to be involved in proton transport were, however, shifted

  2. Electron-enhanced nano scaled atomic processes in classic semiconductors and polymers

    International Nuclear Information System (INIS)

    Turaeva, N.N.

    2007-06-01

    into account σ-and π-electrons in frames of Coulomb explosion model in molecular systems. It was proposed the theoretical model of shock wave generation by Auger-cascade in atomic structure of special geometry-atomic bulbous structure. It was shown that special hierarchy of atoms in three layers leaded to the transformation of central atom core ionization energy into the electron-ion subsystems energy in form of shock wave. It was analyzed the self-compensation mechanism of C-C bond destruction(dispersion) of polymer molecule at photo-radiation. It was received the temperature dependence of the effect and shown that with intensity destruction probability increased. It was proposed the quantum theory of Lewdin hydrogen key for point mutation formation in DNA at SHF irradiation. It was proposed the theoretical model of C-H bond photo-destruction accounting potential terms distribution and quantum properties(the large value of De Boer parameter) of hydrogen atom which influenced on C-H bond energetic characteristics. Practical value: Accounting the quantum annealing effect of hydrogen contained materials allows really evaluating the radiation firmness of these materials that were hydrogenated silicon, germanium, polymers and bacteriorhodopsin. The effect of dislocation tunneling amplifying by electrons localization on it results in probable application laser irradiation for the the removal of dislocations placed near the surface of films and hetero-structures. On the base of criteria of atoms selection in the layers of bulbous structures in Auger-cascade effect the construction of such nano structures (for instance, on the base of polymer metal complexes) becomes probable which could be used in radiobiology. Relieving of radiation defect production in porous structures at considering pores as additional sinks for defects supposes the real evaluation of radiation firmness of this class of materials. The fluctuon theory of disordering and annealing adequately describes

  3. Enhanced Oil Recovery by Horizontal Waterflooding

    Energy Technology Data Exchange (ETDEWEB)

    Scott Robinowitz; Dwight Dauben; June Schmeling

    2005-09-05

    -term possibilities for utilizing solar energy. One project involves the development of a new type of solar thermal receiver that would be placed at the focus of a central receiver system or a parabolic dish. The conversion of the concentrated sunlight to thermal energy would be accomplished by the absorption of the light by a dispersion of very small particles suspended in a gas. Another project is exploring biological systems. In particular, we are investigating the possibility of developing a photovoltaic cell, based on a catalyst (bacteriorhodopsin) which converts light to electrical ion flow across the cell membrane of a particular bacteria.

  4. The extreme environments and their microbes as models for extraterrestrial life

    Science.gov (United States)

    Seckbach, J.; Oren, A.; Chela-Flores, J.

    2008-09-01

    Bacteria such as the aerobic Salinibacter ruber and the anaerobic members of the Halanaerobiales) use KCl to provide the necessary osmotic balance. Some of these extreme halophiles possess light-driven proton pumps (bacteriorhodopsin, xanthorhodopsin) and chloride pumps (halorhodopsin) that enable them to use photons to drive energetically expensive reactions (Oren, 2002; Oren, 2008). Extremophiles can serve as models for extraterrestrial microbes that may live in celestial bodies. The most promising among these to contain habitable areas are Mars (where the Phoenix Lander recently discovered water) and the Jovian satellite Europa; also Titan (the moon of Saturn) has some features that resemble those that may have existed on Earth during its earliest stages. From the characteristics of extremophilic microorganisms found on the present-day Earth, we can derive some insights on the question of habitability of other planets, and learn about possible bioindicators that may be suitable when searching for extraterrestrial life (Seckbach and Chela-Flores, 2007). Compounds such as methane on Mars or traces of sulfur on Jupiter's moon Europa may have been of biogenic origin and may possibly have been endogenic (Chela-Flores, 2006; Chela-Flores and Kumar, 2008). Biogeochemical tests have been proposed for missions that are in the planning stages, such as LAPLACE (Blanc et al., 2008), a mission to Europa and the Jupiter system by ESA's Cosmic Vision Programme. The finding of elemental sulfur on Europa may be of special interest. One possibility is that such traces of sulfur might have originated from the metabolism of extremophilic sulfurreducing microorganisms. Radiation may damage traces of biogenic sulfur deposited on the surface. The stopping depth for ionic radiation in the Jovian magnetosphere is expected not to exceed 1 cm (Greenberg, 2005; Dudeja et al., 2008). Thus, organic molecules would not be destroyed below such a thin layer. Based on to the preliminary results of the