WorldWideScience

Sample records for bacteriorhodopsin coated microcavities

  1. Radiative rate modification in CdSe quantum dot-coated microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Veluthandath, Aneesh V.; Bisht, Prem B., E-mail: bisht@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  2. Radiative rate modification in CdSe quantum dot-coated microcavity

    International Nuclear Information System (INIS)

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system

  3. Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer

    CERN Document Server

    Xiao, Yun-Feng; Xue, Peng; Xiao, Lixin; Li, Yan; Dong, Chun-Hua; Han, Zheng-Fu; Gong, Qihuang

    2010-01-01

    Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.

  4. Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer

    International Nuclear Information System (INIS)

    Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.

  5. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  6. Titanium-enhanced Raman microcavity laser.

    Science.gov (United States)

    Deka, Nishita; Maker, Ashley J; Armani, Andrea M

    2014-03-15

    Whispering gallery mode microcavities are ideally suited to form microlaser devices because the high circulating intensity within the cavity results in ultralow lasing thresholds. However, to achieve low-threshold Raman lasing in silica devices, it is necessary to have quality factors above 100 million. One approach to circumvent this restriction is to intercalate a sensitizer into the silica, which increases the Raman gain. In the present work, we demonstrate a Raman laser based on a titanium sensitized silica solgel coated toroidal microcavity. By tuning the concentration of the Ti, the Raman efficiency improves over 3× while maintaining sub-mW thresholds. PMID:24690786

  7. Biexcitons in semiconductor microcavities

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.;

    2003-01-01

    In this paper, the present status of the experimental study of the optical properties of biexcitons in semiconductor microcavities is reviewed. In particular, a detailed investigation of a polariton-biexciton transition in a high-quality single quantum well GaAs/AlGaAs microcavity is reported. The...

  8. Absorption characteristics of bacteriorhodopsin molecules

    Indian Academy of Sciences (India)

    H K T Kumar; K Appaji Gowda

    2000-03-01

    The bacteriorhodopsin molecule absorbs light and undergoes a series of structural transformation following a well-defined photocycle. The complex photocycle is transformed to an equivalent level diagram by considering the lifetime of the intermediate states. Assuming that only and states are appreciably populated at any instant of time, the level diagram is further simplified to two-level system. Based on the rate equations for two-level system, an analytic expression for the absorption coefficient of bacteriorhodopsin molecule is derived. It is applied to study the behaviour of absorption coefficient of bacteriorhodopsin film in the visible wavelength region of 514 nm. The dependence of absorption coefficient of bacteriorhodopsin film on the thickness of the film, total number density of active molecules and initial number density of molecules in -state is presented in the graphical form.

  9. Whispering gallery modes in a spherical microcavity with a photoluminescent shell

    Energy Technology Data Exchange (ETDEWEB)

    Grudinkin, S. A., E-mail: grudink@gvg.ioffe.ru; Dontsov, A. A.; Feoktistov, N. A. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Baranov, M. A.; Bogdanov, K. V. [ITMO University (Russian Federation); Averkiev, N. S.; Golubev, V. G. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation)

    2015-10-15

    Whispering-gallery mode spectra in optical microcavities based on spherical silica particles coated with a thin photoluminescent shell of hydrogenated amorphous silicon carbide are studied. The spectral positions of the whispering-gallery modes for spherical microcavities with a shell are calculated. The dependence of the spectral distance between the TE and TM modes on the shell thickness is examined.

  10. Nonlinear optical properties of bacteriorhodopsin

    Science.gov (United States)

    Hendrickx, Eric; Verbiest, Thierry; Clays, Koen J.; Persoons, Andre P.

    1993-04-01

    In this paper we show the applicability of Hyper-Rayleigh scattering to obtain hyperpolarizabilities of ionic and biochemical compounds. It was found that dark-adapted bacteriorhodopsin and its isolated chromophore have considerable second order nonlinear optical properties. Information obtained from depolarization studies of the scattered light is discussed.

  11. Transient Microcavity Sensor

    CERN Document Server

    Shu, Fang-Jie; Özdemir, Şahin Kaya; Yang, Lan; Guo, Guang-Can

    2015-01-01

    A transient and high sensitivity sensor based on high-Q microcavity is proposed and studied theoretically. There are two ways to realize the transient sensor: monitor the spectrum by fast scanning of probe laser frequency or monitor the transmitted light with fixed laser frequency. For both methods, the non-equilibrium response not only tells the ultrafast environment variance, but also enable higher sensitivity. As examples of application, the transient sensor for nanoparticles adhering and passing by the microcavity is studied. It's demonstrated that the transient sensor can sense coupling region, external linear variation together with the speed and the size of a nanoparticle. We believe that our researches will open a door to the fast dynamic sensing by microcavity.

  12. Orientation of a bacteriorhodopsin thin film deposited by dip coating technique and its chiral SHG as studied by SHG interference technique

    Science.gov (United States)

    Yamada, Toshiki; Haruyama, Yoshihiro; Kasai, Katsuyuki; Terui, Toshifumi; Tanaka, Shukichi; Kaji, Takahiro; Kikuchi, Hiroshi; Otomo, Akira

    2012-03-01

    We show that by observing SHG interference bR thin films prepared by a simple dip coating technique have a polar orientation with C∞ symmetry. The SHG interference measurements were performed under various input and output polarization combinations at different incident angles or under the rotation of the quarter-wave retardation plate at specific incident angles. The interference patterns provide us with insight into the characteristics of non-vanishing nonlinear optical coefficients including chiral components. Abundant information can be obtained by observing SHG interference by using two chiral SH active films.

  13. Multi-color photon sorting in plasmonic microcavities

    International Nuclear Information System (INIS)

    Multi-color photon sorting is realized on the basis of plasmonic microcavities etched in a gold film coated with a polyvinyl alcohol layer. Both wide-band unidirectional surface plasmon polariton launchers and plasmonic microcavities are integrated on-chip. The physical mechanism of the multi-color photon sorting function is attributed as the plasmonic stop bands prohibiting the surface plasmon polariton propagation in a broad wavelength range, while the plasmonic microcavities selectively permit several surface plasmon polaritons to pass, on the basis of the photon tunneling effect. Incident continuous wave lasers with wavelengths of 800, 840, and 880 nm are separated, and decoupled from different output ports. The operating wavelength can be tuned by adjusting the refractive index of the covering polymer layer. (paper)

  14. Resonant optical rectification in bacteriorhodopsin.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W; Váró, György; Joffre, Manuel; Vos, Marten H; Martin, Jean-Louis

    2004-05-25

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  15. Optofluidic laser array based on stable high-Q Fabry-Pérot microcavities.

    Science.gov (United States)

    Wang, Wenjie; Zhou, Chunhua; Zhang, Tingting; Chen, Jingdong; Liu, Shaoding; Fan, Xudong

    2015-10-01

    We report the development of an optofluidic laser array fabricated on a chip using stable plano-concave Fabry-Pérot (FP) microcavities, which are far less susceptible to optical misalignment during device assembly than the commonly used plano-plano FP microcavities. The concave mirrors in our FP microcavities were created by first generating an array of microwells of a few micrometers in depth and a few tens of micrometers in diameter on a fused silica chip using a CO2 laser, followed by coating of distributed Bragg reflection (DBR) layers. The plano-concave FP microcavity had a Q-factor of 5.6 × 10(5) and finesse of 4 × 10(3), over 100 times higher than those for the FP microcavities in existing optofluidic lasers. 1 mM R6G dye in ethanol was used to test the plano-concave FP microcavities, showing an ultralow lasing threshold of only 90 nJ mm(-2), over 10 times lower than that in the corresponding unstable plano-plano FP microcavities formed by the same DBR coatings on the same chip. Simultaneous laser emission from the optofluidic laser array on the chip and single-mode lasing operation were also demonstrated. Our work will lead to the development of optofluidic laser-based biochemical sensors and novel on-chip photonic devices with extremely low lasing thresholds (nJ mm(-2)) and mode volumes (fL). PMID:26304622

  16. Biexcitons in semiconductor microcavities

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.; Esser, A.; Jensen, J.R.; Hvam, Jørn Märcher

    2003-01-01

    microcavity, even if the vacuum Rabi splitting exceeds the biexciton binding energy. However, the presence of a longitudinal built-in electric field that results in a Stark effect slightly reducing the binding energy compared to the value measured on a reference bare quantum well is experimentally pointed out...... and compared with calculations. Additionally, the polarization decay of the transition from the crystal ground state to the biexciton is measured and is shown to be larger by approximately a factor of two compared to the value measured on the reference quantum well....

  17. Nonlinear Optical Studies of Bacteriorhodopsin

    Science.gov (United States)

    Rao, D. V. G. L. N.; Aranda, F. J.; Chen, Z.; Akkara, J. A.; Kaplan, D. L.; Nakashima, M.

    We report interesting results on nonlinear optics at low powers in bacteriorhodopsin films with applications in all-optical switching and modulation. Chemically stabilized films of bacteriorhodopsin in a polymer matrix for which the lifetime of the excited M state is 3 to 4 orders of magnitude longer than that of water solutions of wild-type bR were used in these experiments. Due to the sensitivity of the films, very small powers of order microwatts are required for optical phase conjugation. The influence of the fast photochemical M to B transition induced by blue light on the saturation intensity, phase conjugate intensity and switching time was established. We also report our measurements of the intensity dependence of the self-focusing and self-defocusing properties of wild-type bR in water solution using the Z-scan technique with low power cw lasers at two wavelengths on either side of the absorption band. Our measurements indicate that the sign of the nonlinearity depends on the wavelength and the magnitude depends on the fluence of the incident laser beam. The observed self-focusing and defocusing is not due to the intrinsic electronic nonlinearity. The observations can be explained in terms of the Kramers-Kronig dispersion relation that relates the real and imaginary parts of the complex index of refraction.

  18. Optical limiting by chemically enhanced bacteriorhodopsin films

    Science.gov (United States)

    Song, Q. Wang; Zhang, Chungping; Gross, Richard; Birge, Robert

    1993-05-01

    Measurements of effective nonlinearity of a chemically enhanced bacteriorhodopsin film are presented, using 2-scan method. Optical limiting properties and the film's nonlinear transmission properties of the film are also studied.

  19. Bacteriorhodopsin protein hybrids for chemical and biological sensing

    Science.gov (United States)

    Winder, Eric Michael

    Bacteriorhodopsin (bR), an optoelectric protein found in Halobacterium salinarum, has the potential for use in protein hybrid sensing systems. Bacteriorhodopsin has no intrinsic sensing properties, however molecular and chemical tools permit production of bR protein hybrids with transducing and sensing properties. As a proof of concept, a maltose binding protein-bacteriorhodopsin ([MBP]-bR) hybrid was developed. It was proposed that the energy associated with target molecule binding, maltose, to the hybrid sensor protein would provide a means to directly modulate the electrical output from the MBP-bR bio-nanosensor platform. The bR protein hybrid is produced by linkage between bR (principal component of purified purple membrane [PM]) and MBP, which was produced by use of a plasmid expression vector system in Escherichia coli and purified utilizing an amylose affinity column. These proteins were chemically linked using 1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS), which facilitates formation of an amide bond between a primary carboxylic acid and a primary amine. The presence of novel protein hybrids after chemical linkage was analyzed by SDS-PAGE. Soluble proteins (MBP-only derivatives and unlinked MBP) were separated from insoluble proteins (PM derivatives and unlinked PM) using size exclusion chromatography. The putatively identified MBP-bR protein hybrid, in addition to unlinked bR, was collected. This sample was normalized for bR concentration to native PM and both were deposited onto indium tin oxide (ITO) coated glass slides by electrophoretic sedimentation. The photoresponse of both samples, activated using 100 Watt tungsten lamp at 10 cm distance, were equal at 175 mV. Testing of deposited PM with 1 mM sucrose or 1 mM maltose showed no change in the photoresponse of the material, however addition of 1 mM maltose to the deposited MBP-bR linked hybrid material elicited a 57% decrease in photoresponse

  20. Biexciton dephasing in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.;

    2001-01-01

    The experimental observation of biexcitons in microcavities has been addressed recently. A well-resolved polariton-biexciton transition was observed in a high-quality GaAs single quantum well (QW) /spl lambda/-microcavity of 25 nm well width using a pump-probe experiment. In this microcavity the ...

  1. Nonlinear Optical Image Processing with Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Deiss, Ron (Technical Monitor)

    1994-01-01

    The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.

  2. Novelty filter that uses a bacteriorhodopsin film

    Science.gov (United States)

    Okamoto, Takayuki; Yamaguchi, Ichirou; Boothroyd, Simon A.; Chrostowski, Jacek

    1997-01-01

    We propose a new novelty optical filter that uses a bacteriorhodopsin film. This filter is based on the time-dependent nonlinear diffraction efficiency of real-time holograms recorded in the film. As soon as the signal beam carrying a pattern is diffracted by the polarization hologram recorded in the bacteriorhodopsin film, it begins to erase the hologram and suppresses the diffraction of the beam at the position of the stationary part of the pattern. This filter enhances only leading edges of moving patterns. In this system undesired scattered light, which is orthogonally polarized to the diffracted beam, is discriminated by a polarizer.

  3. Bacteriorhodopsin-based bipolar photosensor for biomimetic sensing

    Science.gov (United States)

    Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Akiba, Makoto; Tominari, Yukihiro; Kaji, Takahiro; Terui, Toshifumi; Peper, Ferdinand; Tanaka, Shukichi; Katagiri, Yoshitada; Kikuchi, Hiroshi; Okada-Shudo, Yoshiko; Otomo, Akira

    2013-10-01

    Bacteriorhodopsin (bR) is a promising biomaterial for several applications. Optical excitation of bR at an electrode-electrolyte interface generates differential photocurrents while an incident light is turned on and off. This unique functional response is similar to that seen in retinal neurons. The bR-based bipolar photosensor consists of the bR dip-coated thin films patterned on two ITO plates and the electrolyte solution. This bipolar photocell will function as a biomimetic photoreceptor cell. The bipolar structure, due to the photocurrent being generated in alignment with the cathodic direction, makes the excitatory and inhibitory regions possible. This scheme shows our bipolar cell can act as a basic unit of edge detection and forms the artificial visual receptive field.

  4. Nonlinear transmittance of the 4-keto bacteriorhodopsin

    Science.gov (United States)

    Vanhanen, J.; Leppanen, V. P.; Jaaskelainen, T.; Parkkinen, J. P. S.; Parkkinen, S.

    1999-09-01

    The photocycle of the 4-keto bacteriorhodopsin is investigated. We constructed a multilevel theoretical model for the nonlinear transmittance properties of the material. Adjusting the relaxation parameters we are able to fit the theoretical intensity dependent transmittance curves into the experiments and to determine the photocycle from simple optical measurements.

  5. Stokes Soliton in Optical Microcavities

    CERN Document Server

    Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    Solitons are wavepackets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fiber waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical-potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The di...

  6. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  7. Nonlinear transmission properties in bacteriorhodopsin-embedded photonic crystal

    Science.gov (United States)

    Okada-Shudo, Yoshiko; Ishihara, Teruya

    2003-11-01

    Transmission spectra and photoinduced transmission change are observed in periodic waveguide which consist of a quartz grating substrate and a thin protein film of bacteriorhodopsin. We propose a scheme to achieve all optical switching using the photoinduced refractive index change of bacteriorhodopsin.

  8. Solution processing of microcavity for BioMEMS application

    International Nuclear Information System (INIS)

    Compared to the conventional silicon-based technology, the solution process appears to be a revolution in the field of micro/nanofabrication due to its advantages of high efficiency in material and energy consumption and the use of low cost material. In this paper, we introduce a new approach to fabricate BioMEMS devices using this novel technology to make microcavity. Zirconium oxide patterns were formed on the silicon substrate simply by spin coating its precursor and thermal imprinting technique. We used poly-propylene carbonate (PPC) for the sacrificial material due to its unique pyrolysis property. The PPC was coated on the ZrO patterns and excess film was etched by oxygen plasma but retaining PPC structure between the lines of ZrO pattern. Then another ZrO layer was coated to encapsulate the PPC. The final microcavity structures were obtained by just baking the substrate by pyrolyzing the PPC. The obtained results show the approach’s prospect of becoming an ideal alternative for the current BioMEMS micro/nanofabrication technologies (papers)

  9. Retinal isomerization dynamics in dry bacteriorhodopsin films

    Science.gov (United States)

    Colonna, Anne; Groma, Géza I.; Vos, Marten H.

    2005-10-01

    The primary photoprocesses in neutral and acid forms of oriented dried bacteriorhodopsin films were investigated by femtosecond absorption spectroscopy. The excitation energy dependence of the signals was used to distinguish photochemistry from processes involving photophysics of photocycle intermediates. Both the kinetics and the quantum yield of all- trans excited state decay by retinal photoisomerization and subsequent J → K transition were found to be very similar as in hydrated environments. Therefore, unlike slower photocycle phases, communication of the retinal with the environment does not play a role in retinal isomerization. Our results are important for understanding recent nonlinear optical applications of such films.

  10. Ultrafast all-optical switching in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-04-01

    All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.

  11. Enhanced spontaneous emission factor for microcavity lasers

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhang; Wei Pan

    2008-01-01

    The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output prop- erties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the incrcased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.

  12. Multiplexed Holographic Data Storage in Bacteriorhodopsin

    Science.gov (United States)

    Mehrl, David J.; Krile, Thomas F.

    1999-01-01

    Biochrome photosensitive films in particular Bacteriorhodopsin exhibit features which make these materials an attractive recording medium for optical data storage and processing. Bacteriorhodopsin films find numerous applications in a wide range of optical data processing applications; however the short-term memory characteristics of BR limits their applications for holographic data storage. The life-time of the BR can be extended using cryogenic temperatures [1], although this method makes the system overly complicated and unstable. Longer life-times can be provided in one modification of BR - the "blue" membrane BR [2], however currently available films are characterized by both low diffraction efficiency and difficulties in providing photoreversible recording. In addition, as a dynamic recording material, the BR requires different wavelengths for recording and reconstructing of optical data in order to prevent the information erasure during its readout. This fact also put constraints on a BR-based Optical Memory, due to information loss in holographic memory systems employing the two-lambda technique for reading-writing thick multiplexed holograms.

  13. Multiplexed Holographic Optical Data Storage In Thick Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Ozcan, Meric; Smithey, Daniel T.; Crew, Marshall

    1998-01-01

    The optical data storage capacity of photochromic bacteriorhodopsin films is investigated by means of theoretical calculations, numerical simulations, and experimental measurements on sequential recording of angularly multiplexed diffraction gratings inside a thick D85N BR film.

  14. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodopsin at different concentrations of melittin was measured by observing flash-induced transient dichroism in dimyristoylphosphatidylcholine vesicles. In the presence of melittin, bacteriorhodopsin molecules in dimyristoylphosphatidylcholine vesicles were aggregated into large particles or patches, and the ability of rotational diffusion of bacteriorhodop sin in vesicles was decreased. This suggests that melittin produces its effect via direct electrostatic interaction with bacteriorhodopsin. Low temperature-induced aggregation of bacteriorhodopsin was also observed in dimyristoylphosphatidylcholine vesicles. Low temperature may cause phase separation. Bacteriorhodopsin was also successfully reconstituted into egg-phosphatidylcholine vesicles, but Iow temperature-induced aggregation of bacteriorhodopsin in dimyristoylphosphati dylcholine cannot appear in egg-phosphatidylcholine vesicles. This suggests that different lipids have different effects on bacteriorhodopsin in vesicles.

  15. Signature of Wave Chaos in Spectral Characteristics of Microcavity Lasers

    CERN Document Server

    Sunada, Satoshi; Fukushima, Takehiro; Harayama, Takahisa

    2016-01-01

    We report the spectral characteristics of fully chaotic and non-chaotic microcavity lasers under continuous-wave operating conditions. It is found that fully chaotic microcavity lasers operate in single mode, whereas non-chaotic microcavity lasers operate in multimode. The suppression of multimode lasing for fully chaotic microcavity lasers is explained by large spatial overlaps of the resonance wave functions that spread throughout the two-dimensional cavity due to the ergodicity of chaotic ray orbits.

  16. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  17. Synthesis and Operation of Fluorescent-core Microcavities for Refractometric Sensing

    OpenAIRE

    McFarlane, Shalon; Manchee, C.P.K.; Silverstone, Joshua W.; Veinot, Jonathan; Meldrum, Al

    2013-01-01

    This paper discusses fluorescent core microcavity-based sensors that can operate in a microfluidic analysis setup. These structures are based on the formation of a fluorescent quantum-dot (QD) coating on the channel surface of a conventional microcapillary. Silicon QDs are especially attractive for this application, owing in part to their negligible toxicity compared to the II-VI and II-VI compound QDs, which are legislatively controlled substances in many countries. While the ensemble emissi...

  18. Bacteriorhodopsin-based photochromic pigments for optical security applications

    Science.gov (United States)

    Hampp, Norbert A.; Fischer, Thorsten; Neebe, Martin

    2002-04-01

    Bacteriorhodopsin is a two-dimensional crystalline photochromic protein which is astonishingly stable towards chemical and thermal degradation. This is one of the reasons why this is one of the very few proteins which may be used as a biological pigment in printing inks. Variants of the naturally occurring bacteriorhodopsin have been developed which show a distinguished color change even with low light intensities and without the requirement of UV-light. Several pigments with different color changes are available right now. In addition to this visual detectable feature, the photochromism, the proteins amino acid sequence can be genetically altered in order to code and identify specific production lots. For advanced applications the data storage capability of bacteriorhodopsin will be useful. Write-once-read-many (WORM) recording of digital data is accomplished by laser excitation of printed bacteriorhodopsin inks. A density of 1 MBit per square inch is currently achieved. Several application examples for this biological molecule are described where low and high level features are used in combination. Bacteriorhodopsin-based inks are a new class of optical security pigments.

  19. Open-access microcavities for chemical sensing.

    Science.gov (United States)

    Vallance, Claire; Trichet, Aurelien A P; James, Dean; Dolan, Philip R; Smith, Jason M

    2016-07-01

    The recent development of open-access optical microcavities opens up a number of intriguing possibilities in the realm of chemical sensing. We provide an overview of the different possible sensing modalities, with examples of refractive index sensing, optical absorption measurements, and optical tracking and trapping of nanoparticles. The extremely small mode volumes within an optical microcavity allow very small numbers of molecules to be probed: our current best detection limits for refractive index and absorption sensing are around 10(5) and 10(2) molecules, respectively, with scope for further improvements in the future. PMID:27242174

  20. Open-access microcavities for chemical sensing

    Science.gov (United States)

    Vallance, Claire; Trichet, Aurelien A. P.; James, Dean; Dolan, Philip R.; Smith, Jason M.

    2016-07-01

    The recent development of open-access optical microcavities opens up a number of intriguing possibilities in the realm of chemical sensing. We provide an overview of the different possible sensing modalities, with examples of refractive index sensing, optical absorption measurements, and optical tracking and trapping of nanoparticles. The extremely small mode volumes within an optical microcavity allow very small numbers of molecules to be probed: our current best detection limits for refractive index and absorption sensing are around 105 and 102 molecules, respectively, with scope for further improvements in the future.

  1. Numerical simulation of the nonlinear optical response of bacteriorhodopsin

    Science.gov (United States)

    Kowalski, Gregory J.

    1996-10-01

    The numerical simulation of the nonlinear optical behavior of bacteriorhodopsin in a solution of water is described. Relationships for the intensity dependent absorption coefficient and index of refraction are developed and used in the numerical simulation of bacteriorhodopsin as an optical limiter and as defocussing element for laser pulses in the picosecond regime. The algorithm is a transient finite volume method that is coupled with a 'ray model' of the radiation which simultaneously solves the heat transfer and Maxwell's equations. The nonlinear behavior of the material is included in this analysis using a modified Euler predictor-corrector integration technique. Calculated power limiting and z-scan curves are in qualitative agreement with experiments. These results indicate that the code can be used to investigate and optimize optical systems which use the nonlinear behavior of bacteriorhodopsin.

  2. Bacteriorhodopsin overview of fundamentals and applications

    Science.gov (United States)

    Thai, Serey

    1999-07-01

    Bacteriorhodopsin (BR) is a light transducing photochromic protein in the purple membrane of a salt-loving microorganism that inhabits salt marshes. It has strong absorption in a broad region of the visible spectrum. The B- state in the photocycle can be considered to be the ground state, which has absorption maxima at 570 nm. Perhaps, the most intriguing features of this organic photopolymer are its extraordinary stability in the chemical, thermal and photochemical sense, its large optical nonlinearity, dynamic nature, durability, real-time holographic recording capabilities, and information storage potential. Furthermore, BR-doped polymer film can be fabricated for a large-scale application, whereas photorefractive crystals like BSO or KNSBM cannot be grown easily to the same dimension as BR. Hence, BR's potential in optical system includes transient dynamic applications of an M-type hologram and 3D optical memories of a branched photocycle that shows a great promise for data storage and retrieval due to its high capacity. The major advantages of this organic photopolymer include high density, low cost, low weight and portability which are a projected requirement for the Air Force and commercial applications.

  3. Enhancement of photoanisotropy in Bacteriorhodopsin films

    Science.gov (United States)

    Rao, D. V. G. L. N.; Wu, Pengfei

    2003-03-01

    The biological material of Bacteriorhodopsin (bR) and its derivatives are among the most promising candidates for potential applications in photonics in view of their large optical nonlinearity, ease of optimization and tailoring optical properties. We report a novel scheme for significant enhancement of photo-anisotropic effects in bR films using two exciting beams at different wavelengths with orthogonal polarization. We monitor the photoinduced anisotropy with a probe beam passing through the bR film placed between two crossed polarizers. Near twenty times enhancement of probe beam intensity has been observed as compared with the case of only one exciting beam. The mechanism of the enhancement originates from optimization of direction-selected photo-isomerization of the biomaterial controlled by the polarized exciting beams. We also demonstrate an all-optical switch with the additional novel feature of output sign-control by applying this technique. It is possible to achieve fast optical switching since the photo-isomerization of M to B state of the bR molecule may be as fast as nanoseconds.

  4. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Indian Academy of Sciences (India)

    Ravinder Kumar Banyal; B Raghavendra Prasad

    2007-03-01

    We report the pump-probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  5. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2007-03-01

    We report the pump--probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  6. Fast integrated optical switching by the protein bacteriorhodopsin

    Science.gov (United States)

    Fábián, László; Wolff, Elmar K.; Oroszi, László; Ormos, Pál; Dér, András

    2010-07-01

    State-of-the-art photonic integration technology is ready to provide the passive elements of optical integrated circuits, based either on silicon, glass or plastic materials. The bottleneck is to find the proper nonlinear optical (NLO) materials in waveguide-based integrated optical circuits for light-controlled active functions. Recently, we proposed an approach where the active role is performed by the chromoprotein bacteriorhodopsin as an NLO material, that can be combined with appropriate integrated optical devices. Here we present data supporting the possibility of switching based on a fast photoreaction of bacteriorhodopsin. The results are expected to have important implications for photonic switching technology.

  7. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner;

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection of...

  8. Biexcitons or bipolaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Woggon, U;

    2000-01-01

    A well-resolved nonlinear optical transition associated with biexcitons is observed in a high-quality microcavity with a Rabi splitting exceeding the binding energy of biexcitons in the embedded quantum well. This transition is identified as an induced absorption from the lower polariton to the b...

  9. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang;

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces the...

  10. Directional Secondary Emission of a Semiconductor Microcavity

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Jensen, Jacob Riis; Hvam, Jørn Märcher

    2000-01-01

    We investigate the time-resolved secondary emission of a homogeneously broadened microcavity after resonant excitation. The sample consists of a 25nm GaAs single quantum well (QW) in the center of a wedged ¥ë cavity with AlAs/AlGaAs Bragg reflectors, grown by molecular beam epitaxy. At zero detun...

  11. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario;

    2010-01-01

    We report on lasing in rhodamine 6G-doped, conical polymeric microcavities with high quality factors fabricated on a silicon substrate. Threshold pump energies as low as 3 nJ are achieved by free-space excitation in the quasistationary pumping regime with lasing wavelengths around 600 nm. Finite...

  12. Optical CDMA system using bacteriorhodopsin for optical data storage

    Science.gov (United States)

    Bae; Yang; Jin; Lee; Park

    1999-11-01

    An optical CDMA (code division multiple access) system for the optical data storage using bacteriorhodopsin (BR) is reported as an application of the BR materials. The desired signal of multiple input can be recorded and reconstructed by use of orthogonal codes. An experimental setup is proposed and demonstrated. PMID:10585180

  13. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  14. Fabrication of Two-Dimensional Organic Photonic Crystal Microcavity

    Institute of Scientific and Technical Information of China (English)

    JIANG Ping; HU Xiao-Yong; YANG Hong; GONG Qi-Huang

    2006-01-01

    @@ A two-dimensional polystyrene photonic crystal microcavity is fabricated by the method of focused ion beam etching. The scanning electron microscopy and the transmittance spectrum are used to characterize the properties of the photonic crystal microcavity. The quality factor and the transmittance of the photonic crystal microcavity is more than 530 and 90%, respectively. The measured results are in agreement with the theoretical predictions.

  15. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  16. Antenna-coupled microcavities for terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Madéo, J., E-mail: Julien.madeo@univ-paris-diderot.fr; Todorov, Y.; Sirtori, C. [Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, UMR7162, 75013 Paris (France)

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  17. Enhancement of microcavity polariton relaxation under confinement

    OpenAIRE

    Paraïso, Taofiq; Sarchi, Davide; Nardin, Gaël; Cerna, Roland; Leger, Yoan; Pietka, Barbara; Richard, Maxime; El Daïf, Ounsi; Morier-Genoud, Francois; Savona, Vincenzo; Deveaud-Plédran, Benoit

    2009-01-01

    We experimentally investigate the relaxation of spatially confined microcavity polaritons. We measure the time- and energy-resolved photoluminescence under resonant excitation and in the low-density regime. In this way, we have access to the time evolution of the energy distribution of the polariton population. We show that, when one confined level is resonantly excited, after an initial transient, the population of the confined levels is thermally distributed. The reported efficiency of the ...

  18. Fresnel filtering of Gaussian beams in microcavities

    OpenAIRE

    Shinohara, Susumu; Harayama, Takahisa; Fukushima, Takehiro

    2011-01-01

    We study the output from the modes described by the superposition of Gaussian beams confined in the quasi-stadium microcavities. We experimentally observe the deviation from Snell's law in the output when the incident angle of the Gaussian beam at the cavity interface is near the critical angle for total internal reflection, providing direct experimental evidence on the Fresnel filtering. The theory of the Fresnel filtering for a planar interface qualitatively reproduces experimental data, an...

  19. Photonic Binding in Silicon-Colloid Microcavities

    OpenAIRE

    Xifré-Pérez, E.; García de Abajo, Francisco Javier; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2009-01-01

    Photonic binding between two identical silicon-colloid-based microcavities is studied by using a generalized multipolar expansion. In contrast with previous works, we focus on low-order cavity modes that resemble low-energy electronic orbitals. For conservative light intensities, the interaction between cavity modes with moderate Q factors produces extremely large particle acceleration values. Optical forces dominate over vanderWaals, gravity, and Brownian motion, and they show a binding-anti...

  20. Fabrication of a three-dimensional nanoporous polymer film as a diffuser for microcavity OLEDs

    Science.gov (United States)

    Pyo, Beom; Cho, Ye Ram; Suh, Min Chul

    2015-09-01

    We used a nanoporous polymer film prepared by cellulose acetate butyrate with ~40% of optical haze value as a diffuser. It was fabricated by a simple spin-coating process during continuous water mist supply by a humidifier. The pores were created by the elastic bouncing mechanism (rather than the thermocapillary convection mechanism) of the supplied water droplets. The shapes and sizes of the caves formed near the polymer surface are randomly distributed, with a relatively narrow pore size distribution (300-500 nm). Specifically, we focused on controlling the surface morphology to give a three-dimensional (3D) multi-stacked nanocave structure because we had already learnt that two-dimensional nanoporous structures showed serious loss of luminance in the forward direction. Using this approach, we found that the 3D nanoporous polymer film can effectively reduce the viewing angle dependency of strong microcavity OLEDs without any considerable decrease in the total intensity of the out-coupled light. We applied this nanoporous polymer film to microcavity OLEDs to investigate the possibility of using it as a diffuser layer. The resulting nanoporous polymer film effectively reduced the viewing angle dependency of the microcavity OLEDs, although a pixel blurring phenomenon occurred. Despite its negative effects, such as the drop in efficiency in the forward direction and the pixel blurring, the introduction of a nanoporous polymer film as a scattering medium on the back side of the glass substrate eliminated the viewing angle dependency. Thus, this approach is a promising method to overcome the serious drawbacks of microcavity OLEDs.

  1. Photonic crystal microcavity engineering and high-density bio-patterning for chip-integrated microarray applications

    Science.gov (United States)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Chen, Ray T.

    2012-01-01

    While Q ~ 1million has been demonstrated in freely suspended photonic crystal (PC) membranes, the reduced refractive index contrast when PC microcavities are immersed in phosphate buffered saline (PBS), a typical ambient for biomolecules, reduces Q by more than 2 orders of magnitude. We experimentally demonstrate photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small modes volumes but low quality factors for bio-sensing, we show that increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and also increases the resonance wavelength shift while still retaining compact device characteristics. Q~26,760 and sensitivity down to 7.5ng/ml and ~9pg/mm2 in bio-sensing was experimentally demonstrated in SOI devices for goat anti-rabbit IgG antibodies with Kd~10-6M. The increase in cavity length follows from fundamental engineering limitations in ink-jet printing or microfluidic channels when unique receptor biomolecules are coated on separate adjacent sensors in a microarray.

  2. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  3. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    Science.gov (United States)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  4. Studies on light transduction by bacteriorhodopsin and rhodopsin

    International Nuclear Information System (INIS)

    The visual photoreceptor pigments in vertebrates and invertebrates all use retinal (vitamin A aldehyde) as the light-absorbing molecule. Recently, Stoeckenius et al. discovered bacteriorhodopsin (bR) in the purple membrane of the extreme halophile, Halobacterium halobium, which also contains all-trans retinal as the chromophore, bR carries out light-dependent proton translocation from the inside to the outside of the H. halobium cell. Since the discovery of bR, H. halobium has been found to elaborate three more retinal-based light-transducing proteins. These are halorhodopsin, a chloride ion pump, and sensory rhodopsins I and II. The authors are carrying out structure-function studies of bacteriorhodopsin, bovine rhodopsin, and related proteins primarily by the technique of recombinant DNA; they summarize below the results they have obtained recently

  5. Nonlinear optical properties of bacteriorhodopsin, retinal, and related molecules

    Science.gov (United States)

    Hendrickx, Eric; Clays, Koen J.; Vinckier, A.; Persoons, Andre P.; Dehu, Christophe; Bredas, Jean-Luc

    1995-10-01

    The first hyperpolarizabilities, (beta) , of bacteriorhodopsin, retinal, and related molecules were determined experimentally by using the hyper-Rayleigh scattering technique and compared to the calculated values obtained with the semiempirical intermediate neglect of differential overlap/configuration interaction/sum-over-states method. The experimental and theoretical results are in excellent mutual agreeement. The hyper-Rayleigh scattering technique is shown to be very sensitive to the degree of solubilization of bacteriorhodopsin. Theoretical and experimental data confirm the expected dependence of (beta) on the first transition energy as well as an exponential increase of (beta) with the number of double bonds. It was found that, upon trans to 13-cis or 9-cis isomerization of a retinal double bond, a constant fraction of the (beta) value is lost, regardless of the nature of the electron withdrawing group or the solvent of choice.

  6. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  7. Bacteriorhodopsin as a Possible Element of Membrane Bioreactors

    Science.gov (United States)

    Maksimychev, A. V.; Chamorovskii, S. K.

    1988-06-01

    Certain approaches to the creation of membrane bioreactors, representing an example of integrated membrane systems, are examined. The characteristic features of the use of organised molecular assemblies in such systems as sensor and regulatory elements are discussed. The properties of the retinal-protein complex of bacteriorhodopsin as a promising component of integrated membrane systems, capable of carrying out regulatory functions, are examined. The bibliography includes 139 references.

  8. Nonlinear polarization interaction in bacteriorhodopsin films with anisotropically saturating absorption

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.

    1996-06-01

    The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.

  9. Nonlinear polarization-modulated spectroscopy of bacteriorhodopsin and its analogues

    Science.gov (United States)

    Taranenko, V. B.; Bazhenov, V. Yu; Kulikovskaya, O. A.

    1996-09-01

    We report on a novel nonlinear polarization-modulated spectroscopic method for an accurate measurement of the nonlinear change of both real and imaginary parts of the complex refractive index in isotropic materials having either scalar or tensor photoresponse. It is based on a vector two-wave-mixing interaction and heterodyne detection of dynamic change of optical polarization. New data on steady-state and transient nonlinear characteristics of bacteriorhodopsin-based materials (suspensions and polymer films) are obtained using this method.

  10. All-optical logic-gates based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Zhang Chun-Ping; Guo Zong-Xia; Tian Jian-Guo; Zhang Guang-Yin; Song Qi-Wang

    2005-01-01

    Based on self-diffraction in bacteriorhodopsin (bR) film, we propose all-optical NOT, XOR, half adder and XNOR logic operations. Using the relation between diffraction light and the polarization states of recording beams, we demonstrate NOT and XNOR logic operations. Studying the relation of polarization states among the diffracting, recording and reading beams, we implement XOR logic and half adder operations with three inputs. The methods are simple and practicable.

  11. Three electronic state model of the primary phototransformation of bacteriorhodopsin.

    OpenAIRE

    Humphrey, W; H. Lu; Logunov, I; Werner, H.J.; Schulten, K

    1998-01-01

    The primary all-trans --> 13-cis photoisomerization of retinal in bacteriorhodopsin has been investigated by means of quantum chemical and combined classical/quantum mechanical simulations employing the density matrix evolution method. Ab initio calculations on an analog of a protonated Schiff base of retinal in vacuo reveal two excited states S1 and S2, the potential surfaces of which intersect along the reaction coordinate through an avoided crossing, and then exhibit a second, weakly avoid...

  12. High production of bacteriorhodopsin from wild type Halobacterium salinarum.

    Science.gov (United States)

    Seyedkarimi, Mansooreh-Sadat; Aramvash, Asieh; Ramezani, Rohollah

    2015-09-01

    Bacteriorhodopsin (bR) is a trans-membrane proton pump found in the purple membrane of Halobacterium salinarum. This protein has high photochemical and photoelectric conversion efficiency and thermal stability, allowing it to withstand high temperatures, high salinity, and nutritionally-limited environments. The ability of this protein to convert light energy into chemical energy has applications that are mainly therapeutic/diagnostic and research-oriented. There is increasing demand for bacteriorhodopsin production in different fields. The present study maximized bacteriorhodopsin production using H. salinarum. The physical parameters of illumination, agitation speed, temperature, and nitrogen source were studied using a fractional factorial design to determine the optimal levels of each. The most suitable nitrogen source was determined to be peptone from meat. The optimal temperature was 39 °C, agitation speed was 150 rpm, and light intensity was 6300 lux for bR production. Under these conditions, the maximum bR yield was 196 mg/l, which is about 4.23 fold greater than those obtained with basal medium. The proposed strategies could be used for bR production using this archaeobacterium; the results are the highest reported thus far from a batch culture of H. salinarum. PMID:26254806

  13. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  14. Cascaded integrated waveguide linear microcavity filters

    Science.gov (United States)

    Pruessner, Marcel W.; Stievater, Todd H.; Goetz, Peter G.; Rabinovich, William S.; Urick, Vincent J.

    2013-07-01

    We experimentally demonstrate cascaded Fabry-Perot microcavity filters fabricated on silicon-on-insulator substrates. The cavities are formed by etching three sets of quarter-wavelength trenches along a rib waveguide, each set forming a Bragg reflector. Various configurations are examined with a view towards maximizing the filter extinction and minimizing the linewidth. We investigate the origin of spurious cavity modes and show how these are minimized. The effect of mode-splitting due to inter-cavity coupling is suppressed by increasing the reflectivity of the center mirror. Experimental results compare well with transfer matrix predictions.

  15. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  16. Near-field radiative heat transfer between two parallel SiO2 plates with and without microcavities

    International Nuclear Information System (INIS)

    Near-to-far-field radiative heat transfer between two macroscopic SiO2 plates—with and without microcavities—was observed using a highly precise and accurate optical gap-measurement method. The experiments, conducted near 300 K, measured heat transfer as a function of gap separation from 1.0 μm to 50 μm and also as a function of temperature differences between 4.1 and 19.5 K. The gap-dependent heat flux was in excellent agreement with theoretical predictions. Furthermore, the effects of microcavities on the plate surfaces were clearly observed and significant enhancement of near-field radiative heat transfer was confirmed between gold-coated microcavities with narrow vacuum separation

  17. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher;

    1999-01-01

    The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high directiona......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high......-optical switches based on semiconductor microcavities....

  18. 3D PIC Modeling of Microcavity Discharge

    Science.gov (United States)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  19. Resonating properties of passive spherical optical microcavities

    Institute of Scientific and Technical Information of China (English)

    李文; 王若鹏

    2004-01-01

    As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.

  20. Narrowband thermal radiation from closed-end microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Kohiyama, Asaka; Shimizu, Makoto; Iguchi, Fumitada; Yugami, Hiroo [Graduate School of Engineering, Tohoku University, Aoba 6-6-01, Aoba-ku, Sendai 980-8579 (Japan)

    2015-10-07

    High spectral selectivity of thermal radiation is important for achieving high-efficiency energy systems. In this study, intense, narrowband, and low directional absorption/radiation were observed in closed-end microcavity which is a conventional open-end microcavity covered by a semi-transparent thin metal film. The quality factor (Q factor) of optical absorption band strongly depended on the film electrical conductivity. Asymmetric and narrow absorption band with a Q factor of 25 at 1.28 μm was obtained for a 6-nm-thick Au film. Numerical simulations suggest that the formation of a fixed-end mode at the cavity aperture contributes to the narrowband optical absorption. The closed-end microcavity filled with SiO{sub 2} exhibits intense and isotropic thermal radiation over a wide solid angle according to numerical simulation. The narrow and asymmetric absorption spectrum was experimentally confirmed in a model of closed-end microcavity.

  1. Narrowband thermal radiation from closed-end microcavities

    International Nuclear Information System (INIS)

    High spectral selectivity of thermal radiation is important for achieving high-efficiency energy systems. In this study, intense, narrowband, and low directional absorption/radiation were observed in closed-end microcavity which is a conventional open-end microcavity covered by a semi-transparent thin metal film. The quality factor (Q factor) of optical absorption band strongly depended on the film electrical conductivity. Asymmetric and narrow absorption band with a Q factor of 25 at 1.28 μm was obtained for a 6-nm-thick Au film. Numerical simulations suggest that the formation of a fixed-end mode at the cavity aperture contributes to the narrowband optical absorption. The closed-end microcavity filled with SiO2 exhibits intense and isotropic thermal radiation over a wide solid angle according to numerical simulation. The narrow and asymmetric absorption spectrum was experimentally confirmed in a model of closed-end microcavity

  2. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  3. Very strong coupling in GaAs based optical microcavities

    OpenAIRE

    Zhang, H.; Kim, N.Y.; Yamamoto, Y.; Na, N.

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility ...

  4. Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    OpenAIRE

    Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît

    2011-01-01

    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...

  5. Self-Phasematched Nonlinear Optics in Integrated Semiconductor Microcavities

    OpenAIRE

    Hayat, Alex; Orenstein, Meir

    2007-01-01

    A novel concept of self-phasematched optical frequency conversion in dispersive dielectric microcavities is studied theoretically and experimentally. We develop a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes and translating the phasematching requirement into the optimization of a nonlinear cavity mode overlap. We design and fabricate integrated double-resonance semiconductor microcavities for self-phasematched second harmonic generation. Th...

  6. Separation and acceleration of magnetic monopole analogs in semiconductor microcavities

    OpenAIRE

    Flayac, H.; Solnyshkov, D.; Malpuech, G.

    2012-01-01

    Half-integer topological defects in polariton condensates can be regarded as magnetic charges, with respect to built-in effective magnetic fields present in microcavities. We show how an integer topological defect can be separated into a pair of half-integer ones, paving the way towards flows of magnetic charges: spin currents or magnetricity. We discuss the corresponding experimental implementation within microwires (with half-solitons) and planar microcavities (with half-vortices).

  7. The behaviours of optical novelty filter based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Yuan Yi-Zhe; Liang Xin; Xu Tang; Zhang Chun-Ping; Song Qi-Wang

    2006-01-01

    The quality of the novelty filter image is investigated at different intensities of the incident blue and yellow beams irradiating a bacteriorhodopsin (bR) film. The relationship between the transmitted blue beams and the incident yellow beams is established. The results show that the contrast of the novelty filter image depends on the lifetime of longest lived photochemical state (M state). These results enable one to identify the direction of a moving object and to improve the quality of the novel filter image by prolonging the lifetime of M state.

  8. Light-Induced Charge Separation and Transfer in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Hua; LI Qing-Guo; ZHAO You-Yuan; ZHANG Zhong-Bin; OU-YANG Xiao-Ping; GONG Qin-Gan; CHEN Ling-Bing; LI Fu-Ming; LIU Jian; DING Jian-Dong

    2000-01-01

    The photo-voltage signals in bacteriorhodopsin(bR) excited by 1064nm pulse laser are different from those by 532 or 355 nm. It shows that the positive and negative photoelectric signals are produced by the motion of the positive and negative charges, respectively, and more energy is needed for producing the positive charges than the negative. The mechanism of light-induced charge generation and charge transfer in bR was studied and analyzed by measuring the photoelectric signals with different impedance of measuring circuit and different pulse-width of 532 nm laser as pump light.

  9. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    OpenAIRE

    Renugopalakrishnan, Venkatesan; Barbiellini, Bernardo; King, Chris; Molinari, Michael; Mochalov, Konstantin; Sukhanova, Alyona; Nabiev, Igor; Fojan, Peter; Tuller, Harry L.; Chin, Michael; Somasundaran, Ponisseril; Padrós, Esteve; Ramakrishna, Seeram

    2014-01-01

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) ...

  10. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films

    Science.gov (United States)

    Tallent, Jack; Song, Q. Wang; Li, Zengfa; Stuart, Jeff; Birge, R. R.

    1996-09-01

    We report the effective nonlinearity for photochromic conversion in a blue-membrane bacteriorhodopsin film hosted in a dry polyvinyl alcohol matrix. The shift in absorption maximum on photoconversion in this film is larger than that of the same material in hydrated form, thus offering a larger modulation of the refractive index. The photoexcited index modulation is stable for several months, which provides for holographic data recording and long-term photochromic data storage. The effective index modulation is experimentally measured and is in good agreement with the theoretical predictions based on the Kramers-Kronig transformation.

  11. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity

    Science.gov (United States)

    Glückstad, J.; Saffman, M.

    1995-03-01

    We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.

  12. Unconventional optical microcavities hosting multiple exceptional points

    CERN Document Server

    Laha, Arnab

    2016-01-01

    Recently, presence of hidden singularities known as exceptional points (EPs) in non-Hermitian quantum systems has opened up a tremendous interest in different domains of physics owing to their unique unconventional physical effects. Effectively for such systems an EP appears as a fascinating topological defect where two mutually interacting eigenstates of the system coalesce. In this work, we report occurrence of EP via avoided crossing between coupled resonance states in an optical microcavity with spatially varying gain loss profile, an optical analogue of non-Hermitian system. With suitably tailored system openness and coupling strength, internally coupled resonances can exhibit EP in a medium with simultaneous presence of loss and gain. We explore the characteristics behaviors of energy eigenvalues in complex energy plane and corresponding eigenstates when the control parameters of the system are adiabatically changed, such a way that they encircle the EP. In this letter, we first ever exploit the above s...

  13. Pixel-level plasmonic microcavity infrared photodetector

    Science.gov (United States)

    Jing, You Liang; Li, Zhi Feng; Li, Qian; Chen, Xiao Shuang; Chen, Ping Ping; Wang, Han; Li, Meng Yao; Li, Ning; Lu, Wei

    2016-01-01

    Recently, plasmonics has been central to the manipulation of photons on the subwavelength scale, and superior infrared imagers have opened novel applications in many fields. Here, we demonstrate the first pixel-level plasmonic microcavity infrared photodetector with a single quantum well integrated between metal patches and a reflection layer. Greater than one order of magnitude enhancement of the peak responsivity has been observed. The significant improvement originates from the highly confined optical mode in the cavity, leading to a strong coupling between photons and the quantum well, resulting in the enhanced photo-electric conversion process. Such strong coupling from the localized surface plasmon mode inside the cavity is independent of incident angles, offering a unique solution to high-performance focal plane array devices. This demonstration paves the way for important infrared optoelectronic devices for sensing and imaging. PMID:27181111

  14. Exciton Polaritons in Microcavities New Frontiers

    CERN Document Server

    Sanvitto, Daniele

    2012-01-01

    In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

  15. All-optical nonlinear holographic correlation using bacteriorhodopsin films

    Science.gov (United States)

    Thoma, Ralph; Dratz, Michael; Hampp, Norbert

    1995-05-01

    Films made of the halobacterial photochrome bacteriorhodopsin (BR) can be used in a number of holographic real-time applications. Their application as active material in a dual-axis joint- Fourier-transform (DAJFT) real-time correlator was shown recently. The BR films have a strong nonlinear intensity dependence on the light-induced absorption and refractive-index changes. Therefore the holographic diffraction efficiency also shows a nonlinear dependence on the writing intensity. We investigate the effect of this nonlinearity on the result of the correlation process in a bacteriorhodopsin-based DAJFT correlator. Numerical models supporting the experimental observations are presented. It was found that the BR film combines the holographic function for most objects with that of a spatial bandpass filter, whose center frequency is tuned by the writing intensity. This results in smaller peak widths and a suppression of the sidelobes. BR films allow the application of this nonlinear behavior in real time to the all-optical correlation process.

  16. A nanoporous polymer film as a diffuser as well as a light extraction component for top emitting organic light emitting diodes with a strong microcavity structure

    Science.gov (United States)

    Pyo, Beom; Joo, Chul Woong; Kim, Hyung Suk; Kwon, Byoung-Hwa; Lee, Jeong-Ik; Lee, Jonghee; Suh, Min Chul

    2016-04-01

    To improve the viewing angle characteristic as well as the light extraction effect of strong microcavity devices, we fabricated a nanoporous polymer film (NPF) as a scattering medium as well as a light extraction component. We designed two types of organic light emitting diodes (OLEDs) with a strong microcavity effect by changing the thickness of the hole transport layer (HTL; e.g. 30 nm and 60 nm) to investigate two different scattering effects of the NPF. Very interestingly, we could observe a significant enhancement of the external quantum efficiency (EQE) for each device (30 nm thick HTL: 18.0%, 60 nm thick HTL: 31.6%) when we attached a NPF formed on a 125 μm thick PET film coated with the NPF. Furthermore, the NPF successfully suppressed the viewing angle dependence to realize ideal angular emission even in the two extreme microcavity conditions although they are still different from that of a Lambertian distribution.To improve the viewing angle characteristic as well as the light extraction effect of strong microcavity devices, we fabricated a nanoporous polymer film (NPF) as a scattering medium as well as a light extraction component. We designed two types of organic light emitting diodes (OLEDs) with a strong microcavity effect by changing the thickness of the hole transport layer (HTL; e.g. 30 nm and 60 nm) to investigate two different scattering effects of the NPF. Very interestingly, we could observe a significant enhancement of the external quantum efficiency (EQE) for each device (30 nm thick HTL: 18.0%, 60 nm thick HTL: 31.6%) when we attached a NPF formed on a 125 μm thick PET film coated with the NPF. Furthermore, the NPF successfully suppressed the viewing angle dependence to realize ideal angular emission even in the two extreme microcavity conditions although they are still different from that of a Lambertian distribution. Electronic supplementary information (ESI) available: The theoretical backgrounds associated with designing of microcavity

  17. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    Science.gov (United States)

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  18. Detecting conformational change by current transport in Bacteriorhodopsin

    CERN Document Server

    Alfinito, Eleonora

    2008-01-01

    Charge transport modification exhibiting an increase of conductance activated by an external green light in Bacteriorhodopsin is correlated to its conformational change. A theoretical model based on a map of the protein structure into a resistor network is implemented to account for a sequential tunneling mechanism of charge transfer through neighbouring amino-acids. The model is validated by comparison with current-voltage experiments and provides for the potential barriers involved in the charge transfer an average height of 69 meV over an interacting radius of 6 \\aa. The predictability of the model is also tested on bovine rhodopsin, the prototype of the G protein coupled receptor (GPCR) family also sensitive to the light, with results exhibiting the opposite behaviour of a decrease of conductance in the presence of light.

  19. Thermochromism of bacteriorhodopsin and its pH dependence.

    Science.gov (United States)

    Neebe, Martin; Rhinow, Daniel; Schromczyk, Nina; Hampp, Norbert A

    2008-06-12

    Purple membranes (PMs), which consist of the photochromic membrane protein bacteriorhodopsin (BR) and lipids only, show complex thermochromic properties. Three different types of reversible temperature-dependent spectral transitions were found, involving spectral states absorbing at 460, 519, and 630 nm. These thermochromic absorption changes were analyzed in the range from 10 to 80 degrees C. In dependence on the bulk pH value, hypsochromic or bathochromic shifts in the BR absorption spectra are observed in BR gels as well as in BR films. The thermochromic changes between both purple and blue or purple and red were quantified in the CIE color system. The molecular changes causing these effects are discussed, and a model is presented in terms of intramolecular protonation equilibriums. The thermochromic properties of BR may be of interest in applications like security tags, as this feature may complement the well-known photochromic properties of BR. PMID:18491932

  20. Bacteriorhodopsin films for optical signal processing and data storage

    Science.gov (United States)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  1. Integrated optical switching based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Dér, András; Valkai, Sándor; Fábián, László; Ormos, Pál; Ramsden, Jeremy J; Wolff, Elmar K

    2007-01-01

    According to our earlier pioneering study, a dry film containing native bacteriorhodopsin (bR) shows unique nonlinear optical properties (refractive index change, controllable by light of different colors, greater than 2 x 10(-3)) that are in many respects superior to those of the materials presently applied in integrated optics. Here, we report on the first integrated optical application based on a miniature Mach-Zehnder interferometer (see Figs. 1 and 2) demonstrating a real switching effect by bR (efficiency higher than 90%) due to the M-state. Our results also imply that the refractive index change of the K-state (9 x 10(-4)) is high enough for fast switching. PMID:17132043

  2. Generalized model for all-optical light modulation in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-10-01

    We present a generalized model for the photochemical cycle of bacteriorhodopsin (bR) protein molecule. Rate equations have been solved for the detailed light-induced processes in bR for its nine states: B→K↔L↔MI→MII↔N↔O↔P→Q→B. The complete steady-state intensity-induced population densities in various states of the molecule have been computed to obtain a general, exact, and analytical expression for the nonlinear absorption coefficient for multiple modulation pump laser beams. All-optical light modulation of different probe laser beam transmissions by intensity induced population changes due to one and two modulation laser beams has been analyzed. The proposed model has been shown to accurately model experimental results.

  3. Bacteriorhodopsin-the basis of molecular superfast nanoelectronics

    Science.gov (United States)

    Samoilovich, M. I.; Belyanin, A. F.; Grebennikov, E. P.; Guriyanov, A. V.

    2002-12-01

    We give some perspectives on the possibilities for application of the bacteriorhodopsin (BR) molecule in the development of nanoelectronic devices in conjunction with photonic crystals-materials with inhibited photonic band. This involves the use of a single BR molecule by `changing' the photon gradient formation with externally initiated electric fields, preserving the mechanisms of negative reverse communication, or the use of an intermolecular mechanism of photo transitions and dependence on the electric field. Greatly enhanced optical responses, linear and nonlinear, in metal nanocomposites and nanodiamond containing nanoscale surface features have been intensively studied in recent years. These results foreshadow fascinating possibilities for linear and nonlinear local spectroscopy of single molecules. Use of photonic crystals (at present the only technologically realized three-dimensional photonic crystals are the opal matrices) suggests the possible application of a number of physical phenomena.

  4. High-contrast, all-optical switching in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  5. Nonlinear Optical Interactions in Bacteriorhodopsin Using Z-Scan

    Science.gov (United States)

    Aranda, Francisco J.; Rao, Devulapalli V. G. L. N.; Wong, Chi L.; Zhou, Ping; Chen, Zhong; Akkara, Joseph A.; Kaplan, David L.; Roach, Joseph F.

    1995-06-01

    Nonlinear refractive index coefficient n2 of bacteriorhodopsin suspensions in water is measured by the Z-scan technique with a low power continuous wave laser at 647.1 manometer wavelength. Our results indicate that both the magnitude and the sign of n2 depend strongly on the light intensity. Negative values for n2 are obtained for on axis laser irradiance at the focus above 3 W/cm2. The observed self-defocusing phenomena can be attributed to the index change due to the light induced transition between the photochromic states. The results elucidate the origin of n2 and offer a plausible explanation for the differences in the reported n2 measurements.

  6. GaN hemispherical micro-cavities

    Science.gov (United States)

    Zhang, Yiyun; Feng, Cong; Wang, T.; Choi, H. W.

    2016-01-01

    GaN-based micro-dome optical cavities supported on Si pedestals have been demonstrated by dry etching through gradually shrinking microspheres followed by wet-etch undercutting. Optically pumped whispering-gallery modes (WGMs) have been observed in the near-ultraviolet within the mushroom-like cavities, which do not support Fabry-Pérot resonances. The WGMs blue-shift monotonously as the excitation energies are around the lasing threshold. Concurrently, the mode-hopping effect is observed as the gain spectrum red-shifts under higher excitations. As the excitation energy density exceeds ˜15.1 mJ/cm2, amplified spontaneous emission followed by optical lasing is attained at room temperature, evident from a super-linear increase in emission intensity together with linewidth reduction to ˜0.7 nm for the dominant WGM. Optical behaviors within these WGM microcavities are further investigated using numerical computations and three-dimensional finite-difference time-domain simulations.

  7. Tuning a microcavity-coupled terahertz laser

    Science.gov (United States)

    Castellano, Fabrizio; Bianchi, Vezio; Li, Lianhe; Zhu, Jingxuan; Tredicucci, Alessandro; Linfield, Edmund H.; Giles Davies, A.; Vitiello, Miriam S.

    2015-12-01

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  8. Tuning a microcavity-coupled terahertz laser

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Fabrizio; Bianchi, Vezio; Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it [NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Li, Lianhe; Zhu, Jingxuan; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Tredicucci, Alessandro [Dipartimento di Fisica, Università degli Studi di Pisa, Largo Pontecorvo 6, 56127 Pisa (Italy)

    2015-12-28

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  9. Tuning a microcavity-coupled terahertz laser

    International Nuclear Information System (INIS)

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers

  10. Polariton condensation in III-nitride microcavities

    International Nuclear Information System (INIS)

    Full text: We present a comprehensive study of the optical properties of multiple GaN/Al0.13Ga0.87N quantum wells (QWs) grown on non-polar m-plane bulk GaN substrate designed to act as active region of a planar microcavity operating in the strong coupling regime (SCR). The QW section was deposited on top of a 50 pair AlGaN-based distributed Bragg reflector (DBR), which in turn induces anisotropic and compressive strain. Polarization resolved photoluminescence and reflectivity studies indicate a redistribution of oscillator strength in the vicinity of the ∂-point - an effect caused by the strain state and in perfect agreement with k.p calculations. It is worth mentioning that the excitonic linewidth fulfills the conditions required to reach the SCR and that the emission energy perfectly matches the stop band center of the DBR. Combined with the differences in optical constants this might lead to a unique polarization-dependent coupling regime. (author)

  11. Microcavity-Integrated Carbon Nanotube Photodetectors.

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wu, Gongtao; Wei, Nan; Huang, Le; Huang, Huixin; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-07-26

    Carbon nanotubes (CNTs) are considered to be highly promising nanomaterials for multiwavelength, room-temperature infrared detection applications. Here, we demonstrate a single-tube diode photodetector monolithically integrated with a Fabry-Pérot microcavity. A ∼6-fold enhanced optical absorption can be achieved, because of the confined effect of the designed optical mode. Furthermore, taking advantage of Van-Hove-singularity band structures in CNTs, we open the possibility of developing chirality-specific (n,m) CNT-film-based signal detectors. Utilizing a concept of the "resonance and off-resonance" cavity, we achieved cavity-integrated chirality-sorted CNT-film detectors working at zero bias and resonance-allowed mode, for specific target signal detection. The detectors exhibited a higher suppression ratio until a power density of 0.07 W cm(-2) and photocurrent of 5 pA, and the spectral full width at half-maximum is ∼33 nm at a signal wavelength of 1200 nm. Further, with multiple array detectors aiming at different target signals integrated on a chip, a multiwavelength signal detector system can be expected to have applications in the fields of monitoring, biosensing, color imaging, signal capture, and on-chip or space information transfers. The approach can also bring other nanomaterials into on-chip or information optoelectronics, regardless of the available doping polarity. PMID:27379375

  12. Flip-chip light emitting diode with resonant optical microcavity

    Science.gov (United States)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  13. Spin noise amplification and giant noise in optical microcavity

    International Nuclear Information System (INIS)

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing

  14. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  15. Microcavity single virus detection and sizing with molecular sensitivity

    Science.gov (United States)

    Dantham, V. R.; Holler, S.; Kolchenko, V.; Wan, Z.; Arnold, S.

    2013-02-01

    We report the label-free detection and sizing of the smallest individual RNA virus, MS2 by a spherical microcavity. Mass of this virus is ~6 ag and produces a theoretical resonance shift ~0.25 fm upon adsorbing an individual virus at the equator of the bare microcavity, which is well below the r.m.s background noise of 2 fm. However, detection was accomplished with ease (S/N = 8, Q = 4x105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer. Analytical expressions based on the "reactive sensing principle" are developed to extract the radius of the virus from the measured signals. Estimated limit of detection for these experiments was ~0.4 ag or 240 kDa below the size of all known viruses, largest globular and elongated proteins [Phosphofructokinase (345 kDa) and Fibrinogen (390 kDa), respectively].

  16. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    Science.gov (United States)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  17. Theory of polariton-mediated Raman scattering in microcavities.

    Science.gov (United States)

    León Hilario, L M; Bruchhausen, A; Lobos, A M; Aligia, A A

    2007-04-30

    We calculate the intensity of the polariton-mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons that are resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells. PMID:21690956

  18. Very strong coupling in GaAs based optical microcavities

    CERN Document Server

    Zhang, H; Yamamoto, Y; Na, N

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility of constructing a room temperature, high power exciton-polariton laser without resorting to wide bandgap semiconductors.

  19. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  20. Self-Phasematched Nonlinear Optics in Integrated Semiconductor Microcavities

    CERN Document Server

    Hayat, Alex

    2007-01-01

    A novel concept of self-phasematched optical frequency conversion in dispersive dielectric microcavities is studied theoretically and experimentally. We develop a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes and translating the phasematching requirement into the optimization of a nonlinear cavity mode overlap. We design and fabricate integrated double-resonance semiconductor microcavities for self-phasematched second harmonic generation. The measured efficiency exhibits a significant maximum near the cavity resonance due to the intra-cavity enhancement of the input power and the dispersion-induced wavelength detuning effect on the mode overlap, in good agreement with our theoretical predictions.

  1. Dramatic impact of pumping mechanism on photon entanglement in microcavity

    OpenAIRE

    Poddubny, Alexander

    2011-01-01

    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.

  2. A microcavity based on a porous silicon multilayer

    International Nuclear Information System (INIS)

    We present a new result for the wavelength-selective characteristics of a 1D photonic microcavity based on porous silicon. These properties are studied in both experimentation and simulation. The 1D Fabry–Perot cavity is fabricated by the electrochemical etching of a low-resistivity silicon wafer with modulation of applied current densities. The simulation relies on the transfer matrix method (TMM) to design and predict the optical properties of a 1D photonic microcavity as well as the relation between anodization parameters with reflection spectra. The experimental results show that the elaborated porous silicon photonic microcavities have the wavelength-selective property in a controllable range of 550–775 nm. We have grown cavity structures of 20 stacked layers and the line width at full-width half-maximum (FWHM) of the transmission band of cavity is 20 nm, centered at 643.27 nm. Measured spectral characteristics of photonic microcavity agree with the simulation results

  3. Mode characteristics and directional emission for square microcavity lasers

    Science.gov (United States)

    Yang, Yue-De; Huang, Yong-Zhen

    2016-06-01

    Square microcavities with high quality factor whispering-gallery-like modes have a series of novel optical properties and can be employed as compact-size laser resonators. In this paper, the mode characteristics of square optical microcavities and the lasing properties of directional-emission square semiconductor microlasers are reviewed for the realization of potential light sources in the photonic integrated circuits and optical interconnects. A quasi-analytical model is introduced to describe the confined modes in square microcavities, and high quality factor whispering-gallery-like modes are predicted by the mode-coupling theory and confirmed by the numerical simulation. An output waveguide directly coupled to the position with weak mode field is used to achieve directional emission and control the lasing mode. Electrically-pumped InP-based directional-emission square microlasers are realized at room temperature, and the lasing spectra agree well with the mode analysis. Different kinds of square microcavity lasers, including dual-mode laser with a tunable interval, single-mode laser with a wide tunable wavelength range, and high-speed direct-modulated laser are also demonstrated experimentally.

  4. Spontaneous emission in two-dimensional photonic crystal microcavities

    DEFF Research Database (Denmark)

    Søndergaard, Thomas

    2000-01-01

    The properties of the radiation field in a two-dimensional photonic crystal with and without a microcavity introduced are investigated through the concept of the position-dependent photon density of states. The position-dependent rate of spontaneous radiative decay for a two-level atom with random...

  5. Yb-doped glass microcavity laser operation in water

    OpenAIRE

    Ostby, Eric P.; Vahala, Kerry J.

    2009-01-01

    A ytterbium-doped silica microcavity laser demonstrates stable laser emission while completely submerged in water. To our knowledge, it is the first solid-state laser whose cavity mode interacts with water. The device generates more than 2 μW of output power. The laser performance is presented, and low-concentration biosensing is discussed as a potential application.

  6. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  7. Application of Bacteriorhodopsin Films in an Adaptive-Focusing Schlieren System

    Science.gov (United States)

    Downie, John D.

    1995-01-01

    The photochromic property of bacteriorhodopsin films is exploited in the application of a focusing schlieren optical system for the visualization of optical phase information. By encoding an image on the film with light of one wavelength and reading out with a different wavelength, the readout beam can effectively see the photographic negative of the original image. The potential advantage of this system over previous focusing schlieren systems is that the updatable nature of the bacteriorhodopsin film allows system adaptation. I discuss two image encoding and readout techniques for the bacteriorhodopsin and use film transmission characteristics to choose the more appropriate method. I demonstrate the system principle with experimental results using argon-ion and He-Cd lasers as the two light sources of different wavelengths, and I discuss current limitations to implementation with a white-light source.

  8. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  9. Dynamic Behaviour of Self-Diffraction in Bacteriorhodopsin Film

    Institute of Scientific and Technical Information of China (English)

    GUO Zong-Xia; CHEN Gui-Ying; ZHANG Chun-Ping; TIAN Jian-Guo; Q. Wang Song; SHEN Bin; FU Guang-Hua

    2004-01-01

    @@ We investigate the dependences of the diffraction efficiency of the first order self-diffracted beam in bacteriorhodopsin (bR) films on the illumination time, the intensity and wavelength of the incident light. When the blue light (λ = 488 nm) and low intensity red light (λ = 632.8 nm) are incident on the bR film respectively,the diffraction efficiencies increase from zero to a stable value with the illumination time. When the green light (λ = 533 nm) and high-intensity red light illuminate the bR film respectively, the diffraction efficiencies increase from zero to the maximum and then decrease to a stable value with the illumination time. Rise and decay times are dependent on the intensity and wavelength of the incident light. The maximaldiffraction efficiency of the red light is twice as high as that of the green light. The highest diffraction efficiency of 5.4% is obtained at 633nm.The diffraction efficiency change with the time for the green light is larger than that for the blue and red light.

  10. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin.

    Science.gov (United States)

    Renugopalakrishnan, Venkatesan; Barbiellini, Bernardo; King, Chris; Molinari, Michael; Mochalov, Konstantin; Sukhanova, Alyona; Nabiev, Igor; Fojan, Peter; Tuller, Harry L; Chin, Michael; Somasundaran, Ponisseril; Padrós, Esteve; Ramakrishna, Seeram

    2014-07-31

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels. PMID:25383133

  11. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Science.gov (United States)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  12. All-optical biomolecular parallel logic gates with bacteriorhodopsin.

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-06-01

    All-optical two input parallel logic gates with bacteriorhodopsin (BR) protein have been designed based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a continuous wave (CW) probe laser beam transmission at 640 nm corresponding to the peak absorption of O intermediate state through BR, by a modulating CW pump laser beam at 570 nm corresponding to the peak absorption of initial BR state has been analyzed considering all six intermediate states in its photocycle using the rate equation approach. The transmission characteristics have been shown to exhibit a dip, which is sensitive to normalized small-signal absorption coefficient (beta), rate constants of O and N intermediate states and absorption of the O state at 570 nm. There is an optimum value of beta for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of BR does not absorb the probe beam. The results have been used to design low-power all-optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: 1) only changing the output threshold and 2) considering a common threshold with different beta values. PMID:15382746

  13. Alternative translocation of protons and halide ions by bacteriorhodopsin

    International Nuclear Information System (INIS)

    Bacteriorhodopsin (bR568) in purple membrane near pH 2 shifts its absorption maximum from 568 to 605 nm forming the blue protein bRacid605, which no longer transports protons and which shows no transient deprotonation of the Schiff base upon illumination. Continued acid titration with HCl or HBr but not H2SO4 restores the purple chromophore to yield bRHCl564 or bRHBr568. These acid purple forms also regain transmembrane charge transport, but no transient Schiff base deprotonation is observed. In contrast to bR568, no rate decrease of the bRacidpurple transport kinetics is detected in 2H2O; however, the transport rate decreases by a factor of ∼ 2 in bRHBr568 compared with bRHCl564. The data indicate that in the acid purple form bR transports the halide anions instead of protons. The authors present a testable model for the transport mechanism, which should also be applicable to halorhodopsin

  14. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

    Institute of Scientific and Technical Information of China (English)

    HU; Kunsheng

    2001-01-01

    [1]Stoeckenius, W.. Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps, Protein Science, 1999, 8: 447.[2]Ebrey. T. G, Light energy transduction in bacteriorhodopsin, in Thermodynamics of Membranes, Receptors and Channels (ed. Jackson. M.), New York: CRC Press, 1993. 353-387.[3]Lanyi. J. K.. Understanding structure and function in the light-driven proton pump bacteriorhodopsin, J. Struct. Biol., 1998,l24: 164.[4]Quay. S. C., Condie. C. C., Conformational studies of aqueous melittin: Thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry, 1983, 22: 695.[5]Habermann. E.. Bee and wasp venoms. Science, 1972, 177: 314.[6]Tosteson. M. T., Holmes. S. J., Razin. M. et al., Melitton lysis of red cells, J. Membr. Biol., 1985, 87: 35.[7]Hu, K. S., Dufton, M. J., Morrison, I. E. G. et al., Cherry interaction of bee venom melittin with bacteriorhodopsin in lipid vesicles: Protein rotational diffusion measurement. Biochem. Biophys. Acta, 1985, 816(2): 358.[8]Shi, H., Hu, K. S., Huang, Y. et al., Effect of melittin on photocycle and photoresponse of purple membrane: sites of interaction between bacteriorhodopsin and melittin, Photochemistry and Photobiology, 1993, 58(3): 413.[9]Jiang. Q. X., Hu, K. S.. Shi. H., Interaction of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin Photochemistry and Photobiology, 1994, 60(2): 175.[10]Doebler, R., Basaran. N.. Goldston H. et al., Effect of protein aggregation into aqueous phase on the binding of membrane proteins to membranes, Biophys. J., 1999, 76: 928.[11]Rehorek, M., Heyn, M. P, Binding of all-trans-retinal to the purple membrane, Evidence for cooperativity and determination of the extinction coefficient, Biochemistry, 1979, 18: 4977.[12]Chen. P. S. Jr.. Toribara, T. Y., Warner, H., Microdetermination of phosphorous, Anal. Chem., t956, 28

  15. Nonlinear Coherent Optical Image Processing Using Logarithmic Transmittance of Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.

    1995-01-01

    The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.

  16. Nonlinear coherent optical image processing using logarithmic transmittance of bacteriorhodopsin films

    Science.gov (United States)

    Downie, John D.

    1995-08-01

    The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.

  17. Spatial light modulation based on photoinduced change in the complex refractive index of bacteriorhodopsin

    Science.gov (United States)

    Takei, Hiroyuki; Shimizu, Norio

    1996-04-01

    Bacteriorhodopsin exhibits photoinduced changes in both absorption and refractive index at 633 nm. To explore the possibility of exploiting this property in constructing a photoaddressed spatial light modulator, we investigated the transmission property of a Fabry-Perot interferometer containing a bacteriorhodopsin thin film. Film was formed that had a phase shift of pi /4 and sufficient interference fringe contrast for spatial light modulation. This establishes the possibility of constructing a spatial light modulator that features nonlinear input-output characteristics and can operate at moderate light intensities of the order of tens of milliwatts per centimeter square. spatial light modulation, complex refractive index.

  18. Comparison of Free Spectral Range and Quality Factor for Two-Dimensional Square and Circular Microcavities

    Institute of Scientific and Technical Information of China (English)

    国伟华; 黄永箴; 陆巧银; 于丽娟

    2004-01-01

    Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.

  19. ZnO-Based Microcavities Sculpted by Focus Ion Beam Milling.

    Science.gov (United States)

    Chang, Tsu-Chi; Hong, Kuo-Bin; Lai, Ying-Yu; Chou, Yu-Hsun; Wang, Shing-Chung; Lu, Tien-Chang

    2016-12-01

    We reported an easy fabrication method to realize ZnO-based microcavities with various cavity shapes by focused ion beam (FIB) milling. The optical characteristics of different shaped microcavities have been systematically carried out and analyzed. Through comprehensive studies of cathodoluminescence and photoluminescence spectra, the whispering gallery mode (WGM) was observed in different shaped microcavities. Up further increasing excitation, the lasing action was dominated by these WGMs and matched very well to the simulated results. Our experiment shows that ZnO microcavities with different shapes can be made with high quality by FIB milling for specific applications of microlight sources and optical devices. PMID:27364999

  20. Part I. Bacteriorhodopsin-related materials work for molecular electronics. Part II. Volumetric optical memory based on the branched photocycle of bacteriorhodopsin. Part III. The role of calcium in the bacteriorhodopsin binding site

    Science.gov (United States)

    Stuart, Jeffrey Alan

    Part I. A protocol for the routine isolation and purification of purple membrane sheets containing the integral membrane protein, bacteriorhodopsin, was developed based upon modifications of protocols already in the literature. This simplified protocol is geared toward the facile isolation of protein for use in molecular electronic devices. Methods for the incorporation of bacteriorhodopsin into various polymeric supports were also developed, primarily in the form of dried films and hydrated cubes. This work also represents the first reported production of dried films of the deionized protein, or blue membrane. Part II. An architecture for a volumetric optical memory based on the branched-photocycle of bacteriorhodopsin is presented. The branching reaction circumvents problems associated with destructive reading and writing processes and allows access to a stable, long-lived state, separated both temporally and energetically from the main photocycle, thereby making long-term data storage possible. The state, denoted as Q, can only be accessed by exposing the protein to two different wavelengths of light in the proper sequence, with the appropriate temporal separation (roughly 2 ms between the light pulses). The Q-state (assigned as a binary one) is transparent to both writing and reading processes, making them rigorously non-destructive. Bacteriorhodopsin in its resting state is assigned as a binary zero. A differential absorption reading process is used to determine the state of each volumetric binary element. Preliminary results are reported. Part III. The nature of the chromophore binding site of light-adapted bacteriorhodopsin is analyzed by using all-valence electron MNDO and MNDO-PSDCI molecular orbital theory to interpret previously reported linear and nonlinear optical spectroscopic measurements. It is concluded that the unique two-photon properties of the chromophore are due in part to the electrostatic field associated with a Casp{2+} ion near the

  1. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    Science.gov (United States)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  2. Generation of Orbital Angular Momentum Carrying Beams in Semiconductor Microcavities

    International Nuclear Information System (INIS)

    Full text: It is notable that all techniques for the creation of beams with orbital angular momentum, to the best of our knowledge, require an optically inhomogeneous and/or anisotropic material or strong focusing. In this work, we demonstrate that the spin-to-orbital angular momentum (SOAM) conversion can also be achieved in a planar semiconductor microcavity. Despite being an isotropic system, microcavities exhibit a polarization splitting between transverse electric - transverse magnetic (TE-TM) modes, which induces the appearance of an L = +2 orbital angular momentum in one of the circular polarizations, under excitation in the cross-circular polarization [1]. The vertical entities resulting from this conversion process can be regarded as the optical equivalent of a pair of half-quantum vortices. We provide a theoretical model which rigorously derives the principle of the SOAM conversion and quantitatively reproduces the experimental observations. (author)

  3. Dynamic process of free space excitation of asymmetry resonant microcavity

    CERN Document Server

    Shu, Fang-Jie; Sun, Fang-Wen

    2012-01-01

    The underlying physics and detailed dynamical processes of the free space beam excitation to the asymmetry resonant microcavity are studied numerically. Taking the well-studied quadrupole deformed microcavity as an example, we use a Gaussian beam to excite the high-Q mode. The simulation provides a powerful platform to study the underlying physics. The transmission spectrum and intracavity energy can be obtained directly. Irregular transmission spectrum was observed, showing asymmetric Fano-type lineshapes which could be attributed to interference between the different light paths. Then excitation efficiencies about the aim distance of the incident Gaussian beam and the rotation angle of the cavity were studied, showing great consistence with the reversal of emission efficiencies. By projecting the position dependent excitation efficiency to the phase space, the correspondence between the excitation and emission was demonstrated. In addition, we compared the Husimi distributions of the excitation processes an...

  4. Microcavity-array superhydrophobic surfaces: Limits of the model

    Science.gov (United States)

    Salvadori, M. C.; Oliveira, M. R. S.; Spirin, R.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2013-11-01

    Superhydrophobic surfaces formed of microcavities can be designed with specific desired advancing and receding contact angles using a new model described by us in prior work. Here, we discuss the limits of validity of the model, and explore the application of the model to surfaces fabricated with small cavities of radius 250 nm and with large cavities of radius 40 μm. The Wenzel model is discussed and used to calculate the advancing and receding contact angles for samples for which our model cannot be applied. We also consider the case of immersion of a sample containing microcavities in pressurized water. A consideration that then arises is that the air inside the cavities can be dissolved in the water, leading to complete water invasion into the cavities and compromising the superhydrophobic character of the surface. Here, we show that this effect does not destroy the surface hydrophobia when the surface is subsequently removed from the water.

  5. Photothermal effects in ultra-precisely stabilized tunable microcavities

    CERN Document Server

    Brachmann, Johannes F S; Hänsch, Theodor W; Hunger, David

    2016-01-01

    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of $500\\,$kHz and a noise level of $1.1 \\times 10^{-13}\\,$m rms.

  6. Kinetic theory of non-equilibrium condensation of microcavity polaritons

    OpenAIRE

    Sarchi, Davide; Savona, Vincenzo

    2004-01-01

    We develop a kinetic theory of microcavity polaritons in presence of both Coulomb and polariton-phonon interaction, obeying particle number conservation. We study the growth of a macroscopic population of condensed particles in the lowest polariton state, under steady-state incoherent excitation of higher energy states. The collective excitation spectrum, resulting from the Coulomb Hamiltonian treated within the Hartree-Fock-Bogolubov framework, strongly influences the polariton condensation ...

  7. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis;

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode at a te...... temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  8. Coupling polariton quantum boxes in sub-wavelength grating microcavities

    International Nuclear Information System (INIS)

    We report the construction of decoupled, coupled, and quasi-one dimensional polariton systems from zero dimensional polariton quantum boxes using microcavities with sub-wavelength gratings as the top mirror. By designing the tethering patterns around the suspended sub-wavelength gratings, we control the coupling between individual quantum boxes through different optical potentials. Energy levels and real-space or momentum space distributions of the confined modes were measured, which agreed well with simulations

  9. Relaxation of quantum-dot electrons in a microcavity

    International Nuclear Information System (INIS)

    We report on theoretical results concerning the relaxation of electrons in parabolic quantum dots embedded in a planar microcavity. Following an external femtosecond pulse, the electron and cavity radiation systems exchange energy in a non-monotonic way. One of the salient features of this system is a staircase-like time evolution as a consequence of the coherent superposition of quantum-dot excited states caused by the ultra-short pump pulse. (Author)

  10. Relaxation of quantum-dot electrons in a microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Paris, R. [Departamento de Fisica, Universidad Javeriana, Apartado aereo 56710, Bogota (Colombia); Quiroga, L.; Rodriguez, F.J. [Departamento de Fisica, Universidad de Los Andes, Apartado aereo 4976, Bogota (Colombia)

    1998-12-31

    We report on theoretical results concerning the relaxation of electrons in parabolic quantum dots embedded in a planar microcavity. Following an external femtosecond pulse, the electron and cavity radiation systems exchange energy in a non-monotonic way. One of the salient features of this system is a staircase-like time evolution as a consequence of the coherent superposition of quantum-dot excited states caused by the ultra-short pump pulse. (Author)

  11. Excitation mapping of whispering gallery modes in silica microcavities

    CERN Document Server

    Lin, Guoping; Orucevic, Fedja; Candela, Yves; Jager, Jean-Baptiste; Cai, Zhiping; Lefèvre-Seguin, Valérie; Hare, Jean

    2009-01-01

    We report the direct observation of the electromagnetic-field distribution of whispering?gallery modes in silica microcavities (spheres and toroids). It is revealed by their excitation efficiency with a tapered fiber coupler swept along the meridian. The originality of this method lies in the use of the coupler itself for the near field mapping, eliminating the need of additional tools used in previous work. This method is successfully applied to microspheres and microtoroids

  12. Heavy metal ion sensors based on organic microcavity lasers

    OpenAIRE

    Lozenko, Sergii

    2011-01-01

    Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury – Hg2+, cadmium – Cd2+ and lead – Pb2+) is studied. The resonance frequencies of the microcavity are hig...

  13. White Light Schlieren Optics Using Bacteriorhodopsin as an Adaptive Image Grid

    Science.gov (United States)

    Peale, Robert; Ruffin, Boh; Donahue, Jeff; Barrett, Carolyn

    1996-01-01

    A Schlieren apparatus using a bacteriorhodopsin film as an adaptive image grid with white light illumination is demonstrated for the first time. The time dependent spectral properties of the film are characterized. Potential applications include a single-ended Schlieren system for leak detection.

  14. Study of nonlinear optical properties of multilayer Langmuir-Blodgett films containing bacteriorhodopsin.

    Science.gov (United States)

    Barmenkov Yu, O; Kir'yanov, A V; Starodumov, A N; Maslyanitsyn, I A; Shigorin, V D; Lemmetyinen, H

    2000-08-01

    Multilayer oriented Langmuir-Blodgett films of bacteriorhodopsin were prepared and their nonlinear optical properties, including second harmonic generation and photoresponse at a two phase-modulated beams mixing, were investigated. The nonlinear component of refractive index of the films was measured. PMID:10946566

  15. Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film

    Science.gov (United States)

    Iturbe Castillo, David; Sanchez-de-la-Llave, David; Garcia, Ruben R.; Olivos-Perez, L. I.; Gonzalez, Luis A.; Rodriguez-Ortiz, M.

    2001-11-01

    We propose the use of a nonlinear bacteriorhodopsin film to self-induce a Zernike-type filter in robust optical phase-contrast systems. The device requires relatively low light intensity levels (as low as 200 nW/cm2) at wavelengths around 633 nm and can contrast dynamical phase distributions.

  16. Determination of the thermal expansion and thermo-optic coefficients of a bacteriorhodopsin film

    Science.gov (United States)

    Wang Song, Q.; Zhang, Chunping; Ku, Chin-Yu; Huang, Ming-Chieh; Gross, Richard B.; Birge, Robert R.

    1995-02-01

    The linear expansion and thermo-optic coefficients of a bacteriorhodopsin film were measured by using an interferometric method. The experimental results confirm the previous suspicions that the large refractive nonlinearity which occurs at high illumination intensities arises form a thermal effect. The results also suggest a possible way to increase the usable thermal nonlinearity by four times.

  17. Optical switching in bistable active cavity containing nonlinear absorber on bacteriorhodopsin

    Science.gov (United States)

    Bazhenov, Vladimir Y.; Taranenko, Victor B.; Vasnetsov, Mikhail V.

    1993-04-01

    The transverse nonlinear dynamics of switchings in an active system (laser with nonlinear saturable absorber on bacteriorhodopsin in a self-imaging cavity) is studied both experimentally and theoretically. The soliton-like light field structure formation and continuously cycled self-switching process are investigated.

  18. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear. PMID:22714524

  19. Trapping the M sub 1 and M sub 2 substrates of bacteriorhodopsin for electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, G.A.

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M{sub 1}, and M{sub 2}, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M{sub 1}and M{sub 2} substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  20. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  1. Multimode laser emission from free-standing cylindrical microcavities

    International Nuclear Information System (INIS)

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter

  2. Multi-objective optimization of microcavity OLEDs with DBR mirror

    Science.gov (United States)

    Lu, Albert W.; Chan, J.; Ng, Alan Man Ching; Djurišić, A. B.; Rakić, A. D.

    2007-02-01

    In this work, the emission efficiency and spectral shift with respect to viewing angle were optimized by optimizing the design of the multi-layer top mirror of a microcavity OLED device. We first established criteria for the emission side mirror in order to optimize light intensity and spectral shift with viewing angle. Then we designed mirror using metallic and dielectric layers based on the target defined. The electroluminescence emission spectra of a microcavity OLED consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq 3) as emitting and electron transporting layer was then calculated. Silver was used as the anode and back reflection mirror for the microcavity OLED. The simulation was performed for both the conventional LiF/Al cathode/top mirror and the optimized 5-layered top mirror. Our results indicate that by following the design procedure outlined, we simultaneously optimize the device for better light intensity and spectral shift with viewing angle.

  3. Photodetachment of hydrogen negative ion inside a circular microcavity

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Liu Sheng; Li Shao-Sheng; Wang Yi-Hao

    2013-01-01

    The photodetachment of a hydrogen negative ion inside a circular microcavity is studied based on the semiclassical closed orbit theory.The closed orbit of the photo-detached electron in a circular microcavity is investigated and the photodetachment cross section of this system is calculated.The calculation result suggests that oscillating structure appears in the photodetachment cross section,which is caused by the interference effects of the returning electron waves with the outgoing waves traveling along the closed orbits.Besides,our study suggests that the photodetachment cross section of the negative ions depends on the laser polarization sensitively.In order to show the correspondence between the cross section and the closed orbits of the detached electron clearly,we calculate the Fourier transformation of the cross section and find that each peak corresponds to the length of one closed orbit.We hope that our results will be useful for understanding the photodetachment process of negative ions or the electron transport in a microcavity.

  4. Low-threshold indium gallium nitride quantum dot microcavity lasers

    Science.gov (United States)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  5. Micro-cavity lasers with large device size for directional emission

    Science.gov (United States)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  6. Coupled spatial multi-mode solitons in microcavity wires

    CERN Document Server

    Slavcheva, G; Pimenov, A

    2016-01-01

    A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism behind the multistability and formation of coupled multi-mode polariton solitons in microcavity wires. With pump switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our model predicts two distinct coupled soliton branches: stable and ustable. Modulational stability of the homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence domain upon variation of pump amplitude and the onset of multistability.

  7. Spatiotemporal Chaos Induces Extreme Events in an Extended Microcavity Laser

    Science.gov (United States)

    Selmi, F.; Coulibaly, S.; Loghmari, Z.; Sagnes, I.; Beaudoin, G.; Clerc, M. G.; Barbay, S.

    2016-01-01

    Extreme events such as rogue waves in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme event appearance in a spatially extended semiconductor microcavity laser with an intracavity saturable absorber. This system can display deterministic irregular dynamics only, thanks to spatial coupling through diffraction of light. We have identified parameter regions where extreme events are encountered and established the origin of this dynamics in the emergence of deterministic spatiotemporal chaos, through the correspondence between the proportion of extreme events and the dimension of the strange attractor.

  8. Ultra-fast polariton dynamics in an organic microcavity

    Directory of Open Access Journals (Sweden)

    Polli D.

    2013-03-01

    Full Text Available We study an organic semiconductor microcavity operating in the strong-coupling regime using femtosecond pump-probe spectroscopy. By probing the photo-induced absorption bands, we characterize the time-dependent population densities of states in the two polariton branches. We found evidence of a scattering process from the upper-branch cavity polaritons to the exciton reservoir having a rate of (150 fs-1. A slower process similarly populates lower-branch polaritons with a rate of around (3ps-1

  9. First results with a microcavity plasma panel detector

    OpenAIRE

    Ball, R; Ben-Moshe, M.; Benhammou, Y.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Bensimon, R.; J. W. Chapman; M. Davies; E. Etzion; Ferretti, C.; Friedman, P S; Levin, D S; Y. Silver; Varner, R. L.; Weaverdyck, C.; Zhou, B

    2014-01-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6 to 2.5 volt amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency of greater than 95% is calculated, for operati...

  10. Temperature tunability of quantum emitter - cavity coupling in a photonic wire microcavity with shielded sidewall loss

    CERN Document Server

    Bernard, M

    2016-01-01

    Recent technological advancements have allowed to implement in solid-state cavity-based devices phenomena of quantum nature such as vacuum Rabi splitting, controllable single photon emission and quantum entanglement. For a sufficiently strong coupling between a quantum emitter and a cavity, large quality factors ($Q$) along with small modal volume ($V_{eff}$) are essential. Here we show that by applying a 5nm Al coating to the sidewalls of a submicrometer-sized Fabry-P\\'{e}rot microcavity, the cavity $Q$ can be temperature-tuned from few hundreds at room temperatures to 2$\\times$10$^5$ below 30~K. This is achieved by, first, a complete shielding of the sidewall loss with ideally reflecting lateral metallic mirrors and, secondly, a dramatic decrease of the cavity's axial loss for small-sized devices due to the largely off-axis wavevector within the multilayered structure. Our findings offer a novel temperature-tunable platform to study quantum electrodynamical phenomena of emitter-cavity coupling. We demonstra...

  11. Synthesis and operation of fluorescent-core microcavities for refractometric sensing.

    Science.gov (United States)

    McFarlane, Shalon; Manchee, C P K; Silverstone, Joshua W; Veinot, Jonathan; Meldrum, Al

    2013-01-01

    This paper discusses fluorescent core microcavity-based sensors that can operate in a microfluidic analysis setup. These structures are based on the formation of a fluorescent quantum-dot (QD) coating on the channel surface of a conventional microcapillary. Silicon QDs are especially attractive for this application, owing in part to their negligible toxicity compared to the II-VI and II-VI compound QDs, which are legislatively controlled substances in many countries. While the ensemble emission spectrum is broad and featureless, an Si-QD film on the channel wall of a capillary features a set of sharp, narrow peaks in the fluorescence spectrum, corresponding to the electromagnetic resonances for light trapped within the film. The peak wavelength of these resonances is sensitive to the external medium, thus permitting the device to function as a refractometric sensor in which the QDs never come into physical contact with the analyte. The experimental methods associated with the fabrication of the fluorescent-core microcapillaries are discussed in detail, as well as the analysis methods. Finally, a comparison is made between these structures and the more widely investigated liquid-core optical ring resonators, in terms of microfluidic sensing capabilities. PMID:23524452

  12. Time-resolved laser studies on the proton pump mechanism of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, M.A.

    1991-01-01

    The research work carried out in 1991 can be classified as follows: (1) Work on the nature of the binding site of Eu{sup 3+} in which a fluorescence technique was used to determine the binding equilibrium constant from the concentration of the free Eu{sup 3+} in equilibrium with the bound ions. (2) The mechanism of the slow deprotonation process of bacteriorhodopsin during its photocycle from the observed temperature and pH dependence of its kinetics. (3) Using the circular dichroism spectrum of bR and its perturbed forms to examine the nature of the primary process as well as the origin of the non-exponential kinetic behavior of its photocycle. (4) Studies of bacteriorhodopsin mutants to identify the important amino acids that are part of the reaction coordinate of the deprotonation process as well as to assign the species that are important in giving rise to UV transient absorption whose origin was controversial.

  13. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  14. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    Science.gov (United States)

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  15. Optical signal processing on photorefractive crystal substrate and bacteriorhodopsin thin film

    Science.gov (United States)

    Azimipour, Mehdi; Pashaie, Ramin

    2013-03-01

    In this article we present a new approach for implementation of computation algorithms to perform nonlinear signal processing with light on the surface of a photorefractive crystal and Bacteriorhodopsin thin film. Using the developed mathematical models for the photodynamics of these materials, we demonstrate a specific operation mode and a design procedure to obtain nonlinear response which can be used for implementation of high-performance photonic computers.

  16. Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin

    Science.gov (United States)

    Korchemskaya, Ellen Y.; Soskin, Marat S.

    1994-10-01

    The polarization properties of four-wave interaction on polymer films with bacteriorhodopsin that possess anisotropically saturating nonlinearity are studied both theoretically and experimentally. The amplitude and the polarization of the diffracted wave for recording material with anisotropically saturating nonlinearity are calculated. Low saturation intensity allows the operation of the polarization of low-intensity signals to be realized. It is shown that control of the diffractive wave polarization is possible only with the variation of the light recording intensity.

  17. The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 3rd-order nonlinear optical susceptibility X(3) and the response time of the light-transducing biomolecule bacteriorhodopsin were measured with the four-wave mixing technique and a picosecond frequency-doubled Nd:YAG laser(532nm).The X(3) and the response time measured are 10-9 esu and 20 ps,respectively.The possible mechanism for generating the 3rd-order nonlinear optical susceptibility X(3) and response time were discussed.

  18. Optical chirality of bacteriorhodopsin films via second harmonic Maker's fringes measurements

    Science.gov (United States)

    Larciprete, M. C.; Belardini, A.; Sibilia, C.; Saab, M.-b.; Váró, G.; Gergely, C.

    2010-05-01

    We experimentally investigated second harmonic generation from an oriented multilayer film of bacteriorhodopsin protein, deposited onto a charged surface. The generated signal is obtained as a function of incidence angle, at different polarization state of both fundamental and generated beams. We show that the measurements, together with the analytical curves, allow to retrieve the nonvanishing elements of the nonlinear optical tensor, including the ones introduced by optical chirality.

  19. Light-induced changes in the absorption spectrum of bacteriorhodopsin under two-wavelength excitation

    Science.gov (United States)

    Koklyushkin, A. V.; Korolev, A. E.

    2004-09-01

    The results of spectrophotometric measurements of nonlinear light-induced changes in the absorption spectrum of bacteriorhodopsin D96N occurring upon simultaneous excitation at the wavelengths 633 and 441 nm in the excitation intensity range typical for recording of dynamic holograms are presented. The quantitative conditions under which the action of the radiation at one wavelength reduces the change in the optical density caused by the radiation at the other wavelength are determined.

  20. Can the Low-Resolution Structures of Photointermediates of Bacteriorhodopsin Explain Their Crystal Structures?

    OpenAIRE

    Kamikubo, Hironari; Kataoka, Mikio

    2004-01-01

    To understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstra...

  1. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    Science.gov (United States)

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  2. Narrow dark polariton due to coupled coherence in a quantum well microcavity

    Science.gov (United States)

    Wang, Tao; Li, Cui Li; Zhang, Rui; Zhuo, Zhong Chang; Su, Xue Mei

    2015-10-01

    A scheme is proposed to obtain slow light in a coulped quantum wells microcavity with tunneling induced transparency between intersubband electronic transitions. Three prolaritons are created by intracavity Fano interference between fundamental mode photon and two quantum oscillators of coherent subband electronic excitations. A narrow middle dark polariton of the three can be produced, which can be used to suppress the line profiles of the transmission or reflection spectra for the incident light. This leads to slow propagation of the incident light in the microcavity. The semiconductor optical microcavity can be an alternative choice of quantum photoelectronic devices in nanoscale.

  3. Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array

    Science.gov (United States)

    Lim, Jongsun; Oh, Seung Seok; Youp Kim, Doo; Cho, Sang Hee; Kim, In Tae; Han, S. H.; Takezoe, Hideo; Choi, Eun Ha; Cho, Guang Sup; Seo, Yoon Ho; Oun Kang, Seung; Park, Byoungchoo

    2006-07-01

    We studied microcavity organic light-emitting devices with a microlens system. A microcavity for organic light-emitting devices (OLED) was fabricated by stacks of SiO2 and SiNx layers and a metal cathode together with the microlens array. Electroluminescence of the devices showed that color variation under the viewing angle due to the microcavity is suppressed remarkably by microlens arrays, which makes the use of devices acceptable in many applications. It was also demonstrated that the external out-coupling factor of the devise increases by a factor of ~1.8 with wide viewing angles compared to conventional OLEDs.

  4. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm−1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  5. Electrically Injected Polariton Lasing from a GaAs-Based Microcavity under Magnetic Field

    KAUST Repository

    Bhattacharya, Pallab

    2012-01-01

    Suppression of relaxation bottleneck and subsequent polariton lasing is observed in a GaAs-based microcavity under the application of a magnetic field. The threshold injection current density is 0.32 A/cm2 at 7 Tesla.

  6. Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

    CERN Document Server

    Poellmann, C; Galopin, E; Lemaître, A; Amo, A; Bloch, J; Huber, R; Ménard, J -M

    2016-01-01

    We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.

  7. Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, C.; Leierseder, U.; Huber, R. [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Galopin, E.; Lemaître, A.; Amo, A.; Bloch, J. [CNRS-Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Ménard, J.-M., E-mail: jean-michel.menard@mpl.mpg.de [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, 91058 Erlangen (Germany)

    2015-05-28

    We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of λ = 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.

  8. Hybrid Exciton-Polaritons in a Bad Microcavity Containing the Organic and Inorganic Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Xi; SUN Chang-Pu

    2001-01-01

    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and numerical result of the stationary spectrum for the cavity field are finished.``

  9. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  10. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    Science.gov (United States)

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  11. Polariton condensation phase diagram in wide bandgap planar microcavities: GaN versus ZnO

    OpenAIRE

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J; Bouchoule, S.; Lafosse, X.; Li, F; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2015-01-01

    GaN and ZnO microcavities have been grown on patterned silicon substrate. Thanks to a common platform these microcavities share similar photonic properties with large quality factors and low photonic disorder which gives the possibility to determine the optimal spot diameter and to realize a complete comparative phase diagram study. Both systems have been investigated under the same experimental condition. Experimental results are well reproduced by simulation using Boltzmann equations. Lower...

  12. Polariton linewidth and the reservoir temperature dynamics in a semiconductor microcavity

    OpenAIRE

    Belykh, V. V.; Sob'yanin, D. N.

    2014-01-01

    A method of determining the temperature of the nonradiative reservoir in a microcavity exciton-polariton system is developed. A general relation for the homogeneous polariton linewidth is theoretically derived and experimentally used in the method. In experiments with a GaAs microcavity under nonresonant pulsed excitation, the reservoir temperature dynamics is extracted from the polariton linewidth. Within the first nanosecond the reservoir temperature greatly exceeds the lattice temperature ...

  13. Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities

    OpenAIRE

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    We present some deterministic schemes to construct universal quantum gates, that is, controlled- NOT, three-qubit Toffoli, and Fredkin gates, between flying photon qubits and stationary electron-spin qubits assisted by quantum dots inside double-sided optical microcavities. The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are encoded on the confined electron spins in quantum dots inside optical microcavities. Our schemes for these...

  14. Highly indistinguishable photons from a QD-microcavity with a large Purcell-factor

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.;

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled quantum dot-microcavity system operating in the weak coupling regime. Furthermore we model the degree of indistinguishability with our novel microscopic theory.......We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled quantum dot-microcavity system operating in the weak coupling regime. Furthermore we model the degree of indistinguishability with our novel microscopic theory....

  15. A parametric study on the PD pulses activity within micro-cavities

    Science.gov (United States)

    Ganjovi, Alireza A.

    2016-03-01

    A two-dimensional kinetic model has been used to parametric investigation of the spark-type partial discharge pulses inside the micro-cavities. The model is based on particle-in-cell methods with Monte Carlo Collision techniques for modeling of collisions. Secondary processes like photo-emission and cathode-emission are considered. The micro-cavity may be sandwiched between two metallic conductors or two dielectrics. The discharge within the micro-cavity is studied in conjunction with the external circuit. The model is used to successfully simulate the evolution of the discharge and yield useful information about the build-up of space charge within the micro-cavity and the consequent modification of the applied electric field. The phase-space scatter plots for electrons, positive, and negative ions are obtained in order to understand the manner in which discharge progresses over time. The rise-time and the magnitude of the discharge current pulse are obtained and are seen to be affected by micro-cavity dimensions, gas pressure within the micro-cavity, and the permittivity of surrounding dielectrics. The results have been compared with existing experimental, theoretical, and computational results, wherever possible. An attempt has been made to understand the nature of the variations in terms of the physical processes involved.

  16. Three-Colour Single-Mode Electroluminescence from Alq3 Tuned by Microcavities

    Institute of Scientific and Technical Information of China (English)

    赵家民; 马凤英; 刘星元; 刘云; 初国强; 宁永强; 王立军

    2002-01-01

    Organic metal microcavities were fabricated by using full-reflectivity aluminium film and semi-transparent silverfilm as cavity mirrors. Unlike conventional organic microcavities, such as the typical structure of glass/DBR/ITO/-organic layers/metal mirror, a microcavity with a shorter cavity length was obtained by using two metal mirrors,where DBR is the distributed Bragg reflector consisting of alternate quarter-wave layers of high and low refractiveindex materials. It is realized that red, green and blue single-mode electroluminescence (EL) from the micro-cavities with the structure, glass/Ag/TPD/Alqa/A1, are electrically-driven when the thickness of the Alqa layerchanges. Compared to a non-cavity reference sample whose EL spectrum peak is located at 520nm with a fullwidth at half maximum (FWHM) of 93 nm, the microcavity devices show apparent cavity effects. The EL spectraof red, green and blue microcavities are peaked at 604nm, 540nm and 491 nm, with FWHM of 43 nm, 38nm and47nm, respectively.

  17. Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities.

    Science.gov (United States)

    Chana, J K; Sich, M; Fras, F; Gorbach, A V; Skryabin, D V; Cancellieri, E; Cerda-Méndez, E A; Biermann, K; Hey, R; Santos, P V; Skolnick, M S; Krizhanovskii, D N

    2015-12-18

    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts. PMID:26722931

  18. Quality factor control in a lasing microcavity model

    Science.gov (United States)

    Triandaf; Schwartz

    2000-04-01

    We consider a dynamics model of lasing microcavities, a class of optical resonators (1-10 &mgr;m in diameter) used in microlasers and for optical coupling of optical fibers. Inside such a cavity light circulates around the perimeter and is trapped by internal reflection. This is known as "whispering gallery" or high-Q modes. The cavity is a deformable cylindrical (or spherical) dielectric and at certain deformations light can escape by refraction. The quality of the resonator or Q factor, is defined as Q=omegatau, where tau is the escape time and omega is the frequency of light. We show that by appropriately deforming the cavity, the Q factor can be controlled by prolonging or shortening the average length of time spent by light trajectories inside the cavity. PMID:11088138

  19. Seeding of Polariton Stimulation in a Homogeneously Broadened Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, Vygantas; Langbein, Wolfgang Werner; Jensen, Jacob Riis; Mortensen, Niels Asger; Hvam, Jørn Märcher

    2000-01-01

    In time-resolved light emission from a high-quality semiconductor microcavity after pulsed excitation suitable for angle-resonant polariton-polariton scattering on the lower-polariton branch, we find strong evidence for final-state stimulation of this process. The self-stimulated emission......, following single-pulse excitation, appears on a fast time scale of only a few lens of ps with a maximum at 15 ps. This is in striking contrast to the photoluminescence decay time of 110 ps observed in the low-density limit. By injection of polaritons into the final state by a seeding pulse, the dynamics and...... the intensity of this emission can be controlled. The time-resolved data and the density dependences are in agreement with a rate equation model neglecting polarization mixing effects. This model gives a coupling coefficient of b(LP,k)=0 = 2.4 x 10(-9) cm(4) s(-1) for the stimulated angle...

  20. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant(s) and......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye is...

  1. Dual-microcavity narrow-linewidth Brillouin laser

    CERN Document Server

    Loh, William; Baynes, Frederick; Cole, Daniel; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry; Papp, Scott; Diddams, Scott

    2014-01-01

    Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8\\times10^{-14} 1/\\sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our du...

  2. Coherence expansion and polariton condensate formation in a semiconductor microcavity.

    Science.gov (United States)

    Belykh, V V; Sibeldin, N N; Kulakovskii, V D; Glazov, M M; Semina, M A; Schneider, C; Höfling, S; Kamp, M; Forchel, A

    2013-03-29

    The dynamics of the expansion of the first order spatial coherence g(1) for a polariton system in a high-Q GaAs microcavity was investigated on the basis of Young's double slit experiment under 3 ps pulse excitation at the conditions of polariton Bose-Einstein condensation. It was found that in the process of condensate formation the coherence expands with a constant velocity of about 10(8)  cm/s. The measured coherence is smaller than that in a thermal equilibrium system during the growth of condensate density and well exceeds it at the end of condensate decay. The onset of spatial coherence is governed by polariton relaxation while condensate amplitude and phase fluctuations are not suppressed. PMID:23581369

  3. Nonequilibrium and nonlinear defect states in microcavity-polariton condensates

    Science.gov (United States)

    Chen, Ting-Wei; Jheng, Shih-Da; Hsieh, Wen-Feng; Cheng, Szu-Cheng

    2016-05-01

    The nonequilibrium and nonlinear defect modes (NNDMs), localized by a defect in a nonequilibrium microcavity-polariton condensate (MPC), are studied. There are three analytic solutions of NNDMs in a point defect: the bright NNDM, a bound state with two dark solitons for an attractive potential, and a gray soliton bound by a defect for a repulsive potential. We find that the stable NNDMs in a nonequilibrium MPC are the bright NNDM and gray soliton bound by a defect. The bright NNDM, which has the hyperbolic cotangent form, is a bright localized state existing in a uniform MPC. The bright NNDM is a unique state occurring in a nonequilibrium MPC that has pump-dissipation and repulsive-nonlinearity characters. No such state can exist in an equilibrium system with repulsive nonlinearity.

  4. Millisecond Photon Lifetime in a Slow-Light Microcavity

    Science.gov (United States)

    Huet, V.; Rasoloniaina, A.; Guillemé, P.; Rochard, P.; Féron, P.; Mortier, M.; Levenson, A.; Bencheikh, K.; Yacomotti, A.; Dumeige, Y.

    2016-04-01

    Optical microcavities with ultralong photon storage times are of central importance for integrated nanophotonics. To date, record quality (Q ) factors up to 1011 have been measured in millimetric-size single-crystal whispering-gallery-mode (WGM) resonators, and 1010 in silica or glass microresonators. We show that, by introducing slow-light effects in an active WGM microresonator, it is possible to enhance the photon lifetime by several orders of magnitude, thus circumventing both fabrication imperfections and residual absorption. The slow-light effect is obtained from coherent population oscillations in an erbium-doped fluoride glass microsphere, producing strong dispersion of the WGM (group index ng˜106). As a result, a photon lifetime up to 2.5 ms at room temperature has been measured, corresponding to a Q factor of 3 ×1012 at 1530 nm. This system could yield a new type of optical memory microarray with ultralong storage times.

  5. Tunable polaritonic molecules in an open microcavity system

    International Nuclear Information System (INIS)

    We experimentally demonstrate tunable coupled cavities based upon open access zero-dimensional hemispherical microcavities. The modes of the photonic molecules are strongly coupled with quantum well excitons forming a system of tunable polaritonic molecules. The cavity-cavity coupling strength, which is determined by the degree of modal overlap, is controlled through the fabricated centre-to-centre distance and tuned in-situ through manipulation of both the exciton-photon and cavity-cavity detunings by using nanopositioners to vary the mirror separation and angle between them. We demonstrate micron sized confinement combined with high photonic Q-factors of 31 000 and lower polariton linewidths of 150 μeV at resonance along with cavity-cavity coupling strengths between 2.5 meV and 60 μeV for the ground cavity state

  6. Progress in Atom Chips and the Integration of Optical Microcavities

    Science.gov (United States)

    Hinds, E. A.; Trupke, M.; Darquie, B.; Goldwin, J.; Dutier, G.

    2008-04-01

    We review recent progress at the Centre for Cold Matter in developing atom chips. An important advantage of miniaturizing atom traps on a chip is the possibility of obtaining very tight trapping structures with the capability of manipulating atoms on the micron length scale. We recall some of the pros and cons of bringing atoms close to the chip surface, as is required in order to make small static structures, and we discuss the relative merits of metallic, dielectric and superconducting chip surfaces. We point out that the addition of integrated optical devices on the chip can enhance its capability through single atom detection and controlled photon production. Finally, we review the status of integrated microcavities that have recently been demonstrated at our Centre and discuss their prospects for future development.

  7. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    International Nuclear Information System (INIS)

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display

  8. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film

    Institute of Scientific and Technical Information of China (English)

    WEI Lai; TENG Xue-Lei; Lu Ming; ZHAO You-Yuan; MA De-Wang; DING Jian-Dong

    2007-01-01

    Photoinduced birefringence with large optical nonlinearity in a bacteriorhodopsin/polymer composite film is observed.A high refractive index change of 8.5×10-5 photoinduced by 476nm pumping beam is reached at the low intensity of 6.5mW/cm2.Based on it,a broadband all-optical photonic switch is realized with an optical controlling switch system.Because of controlling beam's selectivity in switching,the transporting beams of different wavelengths with different intensities and shapes can be modulated by adjusting the wavelength and intensity of the controlling beam.

  9. Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film

    Science.gov (United States)

    Wei, Lai; Luo, Jia; Zhu, Jiang; Lu, Ming; Zhao, You-yuan; Ma, De-wang; Ding, Jian-dong

    2007-04-01

    The nonlinear photoinduced anisotropy with large birefringence in a bacteriorhodopsin/polymer composite (bR/PC) film was observed. The contrast ratio, a ratio of the maximum to the minimum intensity of transmitted probe light through the bR/PC film within the linear gray scale range could reach ˜350:1. An all-optical image display in different colors was performed. The intensity of the transmitted signal could be modulated by adjusting the multibeam polarization states and intensities. Therefore, the positive image, negative image, and image erasure in display were demonstrated.

  10. A Novel Optical Filter for Removing Bright-Background Using an Enhanced Bacteriorhodopsin Thin Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Ping(张春平); GU Li-Qun(顾立群); CHEN Gm-Ying(陈桂英); GUO Zong-Xia(郭宗霞); FU Guang-Hua(富光华); ZHANG Guang-Yin(张光寅); ZHANG Tian-Hao(张天浩); LI Yu-Dong(李玉栋); Q. Wang SONG

    2003-01-01

    We found that the bacteriorhodopsin (bR) film has a special property of complementary suppression modulated transmission (CSMT). The yellow and the blue beams can be suppressed mutually when both the beams illuminate the bR film simultaneously. When the blue beam carrying an image with a bright-background noise illuminates on the bR film and then a yellow beam with uniform intensity distribution illuminates the same area, the brightbackground can be removed due to the CSMT. In our demonstration, the pattern model is letters "VLSI" with ground noise of small words and the ground noise is removed from the pattern by the new optical filter.

  11. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    OpenAIRE

    Karna, Shashi P.; Craig R. Friedrich; Garrett, Gregory A.; Lueking, Donald R.; Winder, Eric M.; Griep, Mark H.

    2012-01-01

    An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18...

  12. General model for lipid-mediated two-dimensional array formation of membrane proteins: Application to bacteriorhodopsin

    DEFF Research Database (Denmark)

    Sabra, Mads Christian; Uitdehaag, J.C.M.; Watts, A

    1998-01-01

    Based on experimental evidence for 2D array formation of bacteriorhodopsin, we propose a general model for lipid-mediated 2D array formation of membrane proteins in lipid bilayers. The model includes two different lipid Species; "annular" lipids and "neutral" lipids, and one protein species. The ...

  13. Contrast enhancement and phase conjugation low-power optical signal in dynamic recording material based on bacteriorhodopsin

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Dukova, Tatjana V.; Vsevolodov, Nicolai N.

    1994-02-01

    Polymer films with fragments of the purple membranes containing protein bacteriorhodopsin (BR) have been used for the real-time optical information processing of low-power (several milliwatt) cw gas laser signals. The nonlinear recording media with BR have a potential in microscopic techniques for in-vivo diagnosis of the crystalline lens.

  14. Trapping the M{sub 1} and M{sub 2} substrates of bacteriorhodopsin for electron diffraction studies

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, G.A.

    1992-05-01

    Visible and Fourier transform infrared (FTIR) absorption spectroscopies are used to observe protein conformational changes occuring during the bacteriorhodopsin photocycle. Spectroscopic measurements which define the conditions under which bacteriorhodopsin can be isolated and trapped in two distinct substates of the m intermediate of the photocycle, M{sub 1}, and M{sub 2}, are described. A protocol that can be used for high-resolution electron diffraction studies is presented that will trap glucose-embedded purple membrane in the M{sub 1}and M{sub 2} substates at greater than 90% concentration. It was discovered that glucose alone does not provide a fully hydrated environment for bacteriorhodopsin. Equilibration of glucose-embedded samples at high humidity can result in a physical state that is demonstrably closer to the native, fully hydrated state. An extension of the C-T Model of bacteriorhodopsin functionality (Fodor et al., 1988; Mathies et al., 1991) is proposed based on FTIR results and guided by published spectra from resonance Raman and FTIR work. 105 refs.

  15. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  16. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. PMID:26201980

  17. Studying of Phototransformation of Light Signal by Photoreceptor Pigments - Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2014-09-01

    Full Text Available This review article views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of nano- and biotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0.09 M Tris-borate buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual analyzer having the ability to analyze certain ranges of the optical spectrum, as colors was studied along with an analysis of the additive mixing of two colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceive them as separate or average wave length corresponding to mix color.

  18. Dissipative soliton protocols in semiconductor microcavities at finite temperatures

    Science.gov (United States)

    Karpov, D. V.; Savenko, I. G.; Flayac, H.; Rosanov, N. N.

    2015-08-01

    We consider exciton polaritons in a semiconductor microcavity with a saturable absorber in the growth direction of the heterostructure. This feature promotes additional nonlinear losses of the system with the emergence of bistability of the condensate particles number on the nonresonant (electrical or optical) excitation intensity. Furthermore, we demonstrate a new type of bright spatial dissipative exciton-polariton soliton which emerges in the equilibrium between the regions with different particle density. We develop protocols of soliton creation and destruction. The switch to a solitonlike behavior occurs if the cavity is exposed by a short strong laser pulse with certain energy and duration. We estimate the characteristic times of soliton switch on and off and the time of return to the initial cycle. In particular, we demonstrate surprising narrowing of the spatial profile of the soliton and its vanishing at certain temperature due to interaction of the system with the thermal bath of acoustic phonons. We also address the role of polariton-polariton interaction (Kerr-like nonlinearity) on formation of dissipative solitons and show that the soliton may exist both in its presence and its absence.

  19. First results with a microcavity plasma panel detector

    CERN Document Server

    Ball, R; Benhammou, Y; Bensimon, R; Chapman, J W; Davis, M; Etzion, E; Ferretti, C; Friedman, P S; Levin, D S; Silver, Y; Varner, R L; Weaverdyck, C; Zhou, B

    2014-01-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6 to 2.5 volt amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency of greater than 95% is calculated, for operation of the detector over a 100V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3 to 4 orders of magnitude lower than the rate with the cell illuminated by the beta source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 4.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  20. Statistics of chaotic resonances in an optical microcavity

    Science.gov (United States)

    Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2016-04-01

    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.

  1. First results with a microcavity plasma panel detector

    International Nuclear Information System (INIS)

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm

  2. Microtopographical Characterization of Microcavities on X-Rays Sensor Array

    Science.gov (United States)

    Costa, Manuel F. M.

    2008-04-01

    A large number of medical imaging methods, such as computed tomography, ultrasound and magnetic resonance imaging, are for quite some time digital. X-ray imaging was kept analogue until recently. Over last half a dozen years' digital radiography systems are being successfully developed. Among other advantages common to other medical imaging methods, digital X-ray imaging allow an important reduction of the X-ray doses involved in different medical diagnosis. The communication herein reports to the microtopographic inspection of laser ablation opened microcavities during development of an X-rays microdetector based on an array of wells filled with scintillator crystals. The wells were obtained by laser ablation of a 500 microns thick aluminum film. X-ray energy is converted to visible light within the crystals and then detected by a photodetector fabricated in a standard CMOS process. Aluminium thick-films were chosen as present good reflectivity in the visible range improving the amount of photons collected at each photodetector. Square wells 100 microns wide and 490 microns deep were targeted. In this communication we will report on the process of optical microtopographic characterization of the aluminium wells. This metrological process was performed in order to optimize the laser ablation system parameter in order to obtain the desired size square wells with almost vertical smooth sidewalls.

  3. Microtopographical Characterization of Microcavities on X-Rays Sensor Array

    International Nuclear Information System (INIS)

    A large number of medical imaging methods, such as computed tomography, ultrasound and magnetic resonance imaging, are for quite some time digital. X-ray imaging was kept analogue until recently. Over last half a dozen years' digital radiography systems are being successfully developed. Among other advantages common to other medical imaging methods, digital X-ray imaging allow an important reduction of the X-ray doses involved in different medical diagnosis. The communication herein reports to the microtopographic inspection of laser ablation opened microcavities during development of an X-rays microdetector based on an array of wells filled with scintillator crystals. The wells were obtained by laser ablation of a 500 microns thick aluminum film. X-ray energy is converted to visible light within the crystals and then detected by a photodetector fabricated in a standard CMOS process. Aluminium thick-films were chosen as present good reflectivity in the visible range improving the amount of photons collected at each photodetector. Square wells 100 microns wide and 490 microns deep were targeted. In this communication we will report on the process of optical microtopographic characterization of the aluminium wells. This metrological process was performed in order to optimize the laser ablation system parameter in order to obtain the desired size square wells with almost vertical smooth sidewalls

  4. First results with a microcavity plasma panel detector

    Science.gov (United States)

    Ball, R.; Ben-Moshe, M.; Benhammou, Y.; Bensimon, R.; Chapman, J. W.; Davies, M.; Etzion, E.; Ferretti, C.; Friedman, P. S.; Levin, D. S.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; Zhou, B.

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6-2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3-4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  5. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, R. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Davies, M.; Etzion, E. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C., E-mail: claudiof@umich.edu [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States)

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  6. Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity

    CERN Document Server

    Kippenberg, T J; Vahala, K J

    2006-01-01

    The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.

  7. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities.

    Science.gov (United States)

    Yi, Xu; Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-08-01

    Dissipative Kerr cavity solitons experience a so-called self-frequency shift (SFS) as a result of Raman interactions. The frequency shift has been observed in several microcavity systems. The Raman process has also been shown numerically to influence the soliton pumping efficiency. Here, a perturbed Lagrangian approach is used to derive simple analytical expressions for the SFS and the soliton efficiency. The predicted dependences of these quantities on soliton pulse width are compared with measurements in a high-Q silica microcavity. The Raman time constant in silica is also inferred. Analytical expressions for the Raman SFS and soliton efficiency greatly simplify the prediction of soliton behavior over a wide range of microcavity platforms. PMID:27472583

  8. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul;

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...... (SAWs) in a GaAs QW embedded in a (Al,Ga)As/AlAs microcavity. The periodic modulation introduced by the phonons folds the cavity-polariton dispersion within a mini-Brillouin zone (MBZ) defined by the phonon wave vector ($k_\\mathrm{SAW}$). The appearance of well-defined mini-gaps at the edge of the MBZ...... as well as folded modes in the center of the MBZ are observed for different phonon densities and different cavity polariton detuning energies. The experimental results are in good agreement with calculations that take into account the modulation of the optical thickness of the microcavity spacer...

  9. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  10. Fabry-Perot microcavity sensor for H2-breath-test analysis

    Science.gov (United States)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  11. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  12. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve

  13. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.

    Science.gov (United States)

    Sun, Heng; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Han, Jing

    2016-04-20

    A novel scheme is proposed to restore weak pulse signals immersed in noise by stochastic resonance based on photothermal-effect-induced optical bistability in a buckled dome microcavity. The bistable properties of the dome microcavity are analyzed with different initial detuning wavelengths and effective cavity lengths, and bistable transmission can be obtained for input powers in submilliwatt range. A theoretical model is derived to interpret the nonlinear process of pulse signal recovery through double-well potential theory. The cross-correlation coefficient between output signals and pure input pulses is calculated to quantitatively analyze the influence of noise intensity on stochastic resonance. A cross-correlation gain of 7 is obtained, and the noise-hidden signal can be recovered effectively though the buckled dome microcavity with negligible distortion. The simulation results show the potential of using this structure to restore low-level or noise-hidden pulse signals in all-optical integrated systems. PMID:27140110

  14. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    Science.gov (United States)

    Ramiro-Manzano, Fernando; Fenollosa, Roberto; Xifré-Pérez, Elisabet; Garín, Moises; Meseguer, Francisco

    2012-09-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept.

  15. External pumping of hybrid nanostructures in microcavity with Frenkel and Wannier-Mott excitons

    Science.gov (United States)

    Dubovskiy, O. A.; Agranovich, V. M.

    2016-09-01

    The exciton-exciton interaction in hybrid nanostructures with resonating Frenkel and Wannier-Mott excitons was investigated in many publications. In microcavity the hybrid nanostructures can be exposed to different types of optical pumping, the most common one being pumping through one of the microcavity side. However, not investigated and thus never been discussed the hybrid excitons generation by pumping of confined quantum wells from the side of empty microcavity without nanostructures in a wave guided configuration. Here, we consider the hybrid excitations in cavity with organic and inorganic quantum wells and with different types of pumping from external source. The frequency dependence for intensity of excitations in hybrid structure is also investigated. The results may be used for search of most effective fluorescence and relaxation processes. The same approach may be used when both quantum wells are organic or inorganic.

  16. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs.

    Science.gov (United States)

    Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Lee, Jonghee; Huh, Jin Woo; Park, Seung Koo; Han, Jun-Han; Cho, Nam Sung; Hwang, Joohyun; Chu, Hye Yong; Lee, Jeong-Ik

    2014-06-15

    In this study, we investigated the effect of a random nanostructure scattering layer (RSL) on the microcavity and light extraction in organic light emitting diodes (OLEDs). In the case of the conventional OLED, the optical properties change with the thickness of the hole transporting layer (HTL) because of the presence of a microcavity. However, OLEDs equipped with the an RSL showed similar values of external quantum efficiency and luminous efficacy regardless of the HTL thickness. These phenomena can be understood by the scattering effect because of the RSL, which suppresses the microcavity effect and extracts the light confined in the device. Moreover, OLEDs with the RSL led to reduced spectrum and color changes with the viewing angle. PMID:24978528

  17. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yi, E-mail: yzou@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: raychen@uts.cc.utexas.edu; Chen, Ray T., E-mail: yzou@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: raychen@uts.cc.utexas.edu [Microelectronics Research Center, Department of Electrical and Computer Engineering, University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: yzou@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: raychen@uts.cc.utexas.edu [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States)

    2015-08-24

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve.

  18. Dependence of Rabi-splitting on the spatial position of the optically active layer in organic microcavities in the strong coupling regime

    International Nuclear Information System (INIS)

    Optical organic 'semiconductor' microcavities exhibiting strong coupling were prepared. Thin layers of the dye 1,1'-diethyl-2,2'-cyanine (PIC), which is known to form J-aggregates, were used as the optically active material. Spin coating of a specific dye salt made it possible to prepare thin J-aggregate layers within a λ/2-cavity without the need of any polymer-matrix. SiOx buffer layers were used to place the optically active J-aggregate layer at different positions inside the cavity. Transmission measurements revealed different vacuum Rabi-splitting energies between 26 and 52 meV. A dipole approximation was used to explain the dependence of the vacuum Rabi-splitting energy on the spatial position inside the cavity

  19. Generalized Full-Vector Multi-Mode Matching Analysis of Whispering-Gallery Microcavities

    CERN Document Server

    Du, Xuan; Faucher, Mathieu; Picard, Marie-Josee; Lu, Tao

    2014-01-01

    We outline a full-vectorial three-dimensional multi-mode matching technique in a cylindrical coordinate system that addresses the mutual coupling among multiple modes copropagating in a perturbed whispering-gallery-mode microcavity. In addition to its superior accuracy in respect to our previously implemented single-mode matching technique, this current technique is suitable for modelling waveguide-to-cavity coupling where the influence of multi-mode coupling is non-negligible. Using this methodology, a robust scheme for hybrid integration of a microcavity onto a silicon-on-insulator platform is proposed.

  20. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    OpenAIRE

    Zengling Ran; Shan Liu; Qin Liu; Ya Huang; Haihong Bao; Yanjun Wang; Shucheng Luo; Huiqin Yang; Yunjiang Rao

    2014-01-01

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure...

  1. Hydrostatic pressure sensor based on micro-cavities developed by the catastrophic fuse effect

    Science.gov (United States)

    Domingues, M. F.; Paixão, T.; Mesquita, E.; Alberto, N.; Antunes, P.; Varum, H.; André, P. S.

    2015-09-01

    In this work, an optical fiber hydrostatic pressure sensor based in Fabry-Perot micro-cavities is presented. These micro structures were generated by the recycling of optical fiber previously damaged by the fiber fuse effect, resulting in a cost effective solution when compared with the traditional methods used to produce similar micro-cavities. The developed sensor was tested for pressures ranging from 20.0 to 190.0 cmH2O and a sensitivity of 53.7 +/- 2.6 pm/cmH2O for hydrostatic pressures below to 100 cmH2O was achieved.

  2. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    International Nuclear Information System (INIS)

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime

  3. Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement

    International Nuclear Information System (INIS)

    We report on the realization of a solid state Fabry-Pérot-like microcavity that uses a small Gaussian-shaped deformation inside the cavity to achieve strong lateral photon confinement on the order of the wavelength. Cavities with a mode volume V 3 and a quality factor Q > 1000 are fabricated by means of focused ion beam milling, removing the necessity for etched sidewalls as required for micropillar cavities. Perylene-diimide dye doped polystyrene was embedded in the microcavity and probed by time-resolved microphotoluminescence. A Purcell enhancement of the spontaneous emission rate by a factor of 3.5 has been observed at room temperature

  4. Noise spectroscopy of the optical microcavity: nonlinear amplification of the spin noise signal and giant noise

    OpenAIRE

    Poltavtsev, S. V.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G.G.

    2014-01-01

    The spin-fluctuations-related Kerr rotation noise of the optical beam reflected from a microcavity with a quantum well in the intermirror gap is studied. In the regime of anti-crossing of the cavity polariton branches, the several hundred times enhancement of the noise signal, or giant noise, is observed. The effect of the amplification of the noise signal is explained by the nonlinear instability of the microcavity. In the frame of the developed model of built-in amplifier, the non-trivial p...

  5. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    Science.gov (United States)

    Vollmer, Frank

    2015-09-01

    as the detection of less than 1 kDa intercalating small molecules[1]. [1] M. D. Baaske, M. R. Foreman, and F. Vollmer, "Single molecule nucleic acid interactions monitored on a label-free microcavity biosensing platform," Nature Nanotechnology, vol. 9, pp. 933-939, 2014. [2] Y. Wu, D. Y. Zhang, P. Yin, and F. Vollmer, "Ultraspecific and Highly Sensitive Nucleic Acid Detection by Integrating a DNA Catalytic Network with a Label-Free Microcavity," Small, vol. 10, pp. 2067-2076, 2014. [3] M. R. Foreman, W.-L. Jin, and F. Vollmer, "Optimizing Detection Limits in Whispering Gallery Mode Biosensing," Optics Express, vol. 22, pp. 5491-5511, 2014. [4] M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, "Nanoparticle-based protein detection by optical shift of a resonant microcavity," Applied Physics Letters, vol. 99, Aug 2011. [5] M. R. Foreman and F. Vollmer, "Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles," New Journal of Physics, vol. 15, p. 083006, Aug 2013. [6] M. R. Foreman and F. Vollmer "Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection" Phys. Rev. A 88, 023831 (2013).

  6. Calibration of Membrane Viscosity of the Reconstituted Vesicles by Measurement of the Rotational Diffusion of Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    王敖金; 胡坤生

    2002-01-01

    Membrane viscosity of the reconstituted vesicles was calibrated by rotational diffusion of bacteriorhodopsin (BR) in dimyristoylphosphatidylcholine (DMPC) and egg phosphatidylcholine (PC) vesicles. Rotational diffusion of BR in the vesicles was measured by flash-induced absorption anisotropy decay. BR was, for the first time, reconstituted successfully into DMPC and egg PC vesicles. From the measurement of flash-induced absorption anisotropy decay of BR, the value of rotational diffusion coefficient D was obtained from each curve fitting by a global fitting procedure and, in turn, membrane viscosity η was estimated from D. The results have shown that membrane viscosity is temperature-dependent. It was decreased as temperature increased, but a transition occurred in the region of the respective phase transition of DMPC and egg PC, respectively. The decrease of η was fast near the phase transition for DMPC and egg PC. Few effects of lipid/BR ratio and glycerol or sucrose in suspension medium on membrane viscosity were found.

  7. Solid-state NMR studies of bacteriorhodopsin and the purple membrane

    CERN Document Server

    Mason, A J

    2001-01-01

    proteins. This technique may prove particularly useful when studying large proteins that are difficult to orient where the MAS lineshapes will remain relatively unaffected in comparison with current static NMR methods. Finally the MAOSS method was extended to the study of the lipid components of the purple membrane and the feasibility of determining structural constraints from phospholipid headgroups was assessed. The potential of using sup 3 sup 1 P NMR to observe qualitative protein-lipid interactions in both the purple membrane and reconstituted membranes containing bovine rhodopsin was also demonstrated. Following the demonstration of a new MAS NMR method for resolving orientational constraints in uni-axially oriented biological membranes (Glaubitz and Watts, 1998), experiments were performed to realise the potential of the new method on large, oriented membrane proteins. Using bacteriorhodopsin in the purple membrane as a paradigm for large membrane proteins, the protein was specifically labelled with de...

  8. Generation and analysis of bacteriorhodopsin mutants with the potential for biotechnological applications.

    Science.gov (United States)

    Saeedi, P; Moosaabadi, J Mohammadian; Sebtahmadi, S Sina; Mehrabadi, J Fallah; Behmanesh, M; Nejad, H Rouhani; Nazaktabar, A

    2012-01-01

    The properties of bacteriorhodopsin (BR) can be manipulated by genetic engineering. Therefore, by the methods of gene engineering, Asp85 was replaced individually by two other amino acids (D85V, D85S). The resulting recombinant proteins were assembled into soybean vesicles retinylated to form functional BR-like nano-particles. Proton translocation was almost completely abrogated by the mutant D85S, while the D85V mutant was partially active in pumping protons. Compared with wild type, maximum absorption of the mutants, D85V and D85S, were 563 and 609 nm, which illustrated 5 nm reductions (blue shift) and 41 nm increases (red shift), respectively. Since proton transport activity and spectroscopic activities of the mutants are different, a wide variety of membrane bioreactors (MBr) have been developed. Modified proteins can be utilized to produce unique photo/Electro-chromic materials and tools. PMID:22976247

  9. The effect of charged lipids on bacteriorhodopsin membrane reconstitution and its photochemical activities

    International Nuclear Information System (INIS)

    Bacteriorhodopsin (BR) was reconstituted into artificial lipid membrane containing various charged lipid compositions. The proton pumping activity of BR under flash and continuous illumination, proton permeability across membrane, as well as the decay kinetics of the photocycle intermediate M412 were studied. The results showed that lipid charges would significantly affect the orientation of BR inserted into lipid membranes. In liposomes containing anionic lipids, BRs were more likely to take natural orientation as in living cells. In neutral or positively charged liposomes, most BRs were reversely assembled, assuming an inside out orientation. Moreover, the lipids charges also affect BR's M intermediate kinetics, especially the slow component in M intermediate decay. The half-life M412s increased significantly in BRs in liposomes containing cationic lipids, while decreased in those in anionic liposomes

  10. Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    1999-01-01

    An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.

  11. High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress.

    Science.gov (United States)

    Kalenov, Sergei V; Baurina, Marina M; Skladnev, Dmitry A; Kuznetsov, Alexander Ye

    2016-09-10

    Submerged growth of Halobacterium salinarum and therefore synthesis of bacteriorhodopsin (BR) and carotenoids depend greatly on products of both chemical and/or photochemical oxidation of medium components and cellular metabolism which act as inhibitors. Some cultivation variants which allowed eliminating an adverse effect of inhibitors on biomass accumulation and BR synthesis are reviewed. The application of activated charcoal or ion exchange resin as adsorbents at preparing inoculums and the main cultivation stages was shown to allow controlling, namely lowering overstress of the halobacterial cells by metabolites. The halobacterial biomass containing BR up to 1,750mgL(-1) and the minimum amount of carotinoids that would BR greatly facilitate isolation was accumulated up to 45gL(-1) during eight-day cultivation with cell recycling through adsorbent suspension in a fed-batch mode. To control BR biosynthesis the express method of BR quantification based on colour shades of cell suspension was developed. PMID:27449487

  12. High-speed integrated optical logic based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Mathesz, Anna; Fábián, László; Valkai, Sándor; Alexandre, Daniel; Marques, Paulo V S; Ormos, Pál; Wolff, Elmar K; Dér, András

    2013-08-15

    The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research. PMID:23500476

  13. Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film

    Science.gov (United States)

    Huang, Yuhua; Siganakis, Georgios; Moharam, M. G.; Wu, Shin-Tson

    2004-11-01

    Nonlinear photoinduced anisotropy in a bacteriorhodopsin film was theoretically and experimentally investigated and a broadband active optical limiter was demonstrated in the visible spectral range. A diode-pumped second harmonic yttrium aluminum garnet laser was used as a pumping beam and three different wavelengths at λ =442, 532, and 655nm from different lasers were used as probing beams. The pump and probe beams overlap at the sample. When the pumping beam is absent, the probing beam cannot transmit the crossed polarizers. With the presence of the pumping beam, a portion of the probing light is detected owing to the photoinduced anisotropy. Due to the optical nonlinearity, the transmitted probing beam intensity is clamped at a certain value, which depends on the wavelength, when the pumping beam intensity exceeds 5mW/mm2. Good agreement between theory and experiment is found.

  14. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  15. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-03-01

    We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

  16. Photoinduced nonlinear refraction in a polymeric film encapsulating a bacteriorhodopsin mutant

    Science.gov (United States)

    Teng, Xue-lei; Lu, Ming; Zhao, You-yuan; Ma, De-wang; Zhao, Ying-chun; Ding, Jian-dong; Huang, Wei-da

    2010-08-01

    The absorption change versus time after switching off the illumination on a polymeric film that contained a bacteriorhodopsin (BR) mutant has been measured. The M-lifetime of this BR mutant is ˜320 s. A pertinent Z-scan was performed to study the BR optical nonlinearity. A physical model with multi-level transitions in the Z-scan was suggested. The minimum saturated light intensity measured at 633 nm is ˜0.9 mW/cm2. A low intensity of 70 μW/cm2 has been used for recording in this film. The change in refraction index Δn633 is -3.0×10-3 and Δn476 is 8.5×10-3 with the intensity all at ˜100 mW/cm2.

  17. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin.

    Science.gov (United States)

    Radionov, A N; Kaulen, A D

    1995-12-27

    The M intermediate decay in the photocycle of D96N mutant bacteriorhodopsin does not depend on the light intensity of the exciting flash. Cooperative phenomena in the photocycle are revealed after addition of azide causing acceleration of the M decay and making it kinetically well separated from the N decay. Increase in the light intensity induces slight deceleration of the M decay and significant acceleration of the N decay. The data obtained directly confirm our recent model [Komrakov and Kaulen (1995) Biophys. Chem. 56, 113-119], according to which appearance of the Mslow intermediate in the photocycle of the wild type bR at high light intensity is due to destabilization of the N intermediate leading to the acceleration of the N-->M and N-->bR reactions. PMID:8549749

  18. Systems Issues Pertaining to Holographic Optical Data Storage in Thick Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Timucin, Dogan A.; Gary, Charles K.; Oezcan, Meric; Smithey, Daniel T.; Crew, Marshall; Lau, Sonie (Technical Monitor)

    1998-01-01

    The optical data storage capacity and raw bit-error-rate achievable with thick photochromic bacteriorhodopsin (BR) films are investigated for sequential recording and read- out of angularly- and shift-multiplexed digital holograms inside a thick blue-membrane D85N BR film. We address the determination of an exposure schedule that produces equal diffraction efficiencies among each of the multiplexed holograms. This exposure schedule is determined by numerical simulations of the holographic recording process within the BR material, and maximizes the total grating strength. We also experimentally measure the shift selectivity and compare the results to theoretical predictions. Finally, we evaluate the bit-error-rate of a single hologram, and of multiple holograms stored within the film.

  19. On the mechanism of weak-field coherent control of retinal isomerization in bacteriorhodopsin

    International Nuclear Information System (INIS)

    Experimental studies of the short time reaction dynamics controlling the chemical branching ratio provide direct evidence for the mechanism of coherent control of the retinal photoisomerization in bacteriorhodopsin in the weak-field limit with respect to the previous report [V. Prokhorenko, A. Nagy, S. Waschuk, L. Brown, R. Birge, R. Miller, Science 313 (2006) 1257]. The phase sensitivity of the reaction dynamics is directly revealed using time- and frequency-resolved pump-probe measurements. The high degree of control of the reaction branching ratio is theoretically explained through a combination of spectral amplitude shaping and phase-dependent coupling to selectively excite vibrations most strongly coupled to the reaction coordinate. Coherent control in this context must involve reaction dynamics that occur on time scales comparable to electronic and vibrational decoherence time scales

  20. Nichtlineare optische Eigenschaften von Quantum-Well-Systemen in Micro-Cavities

    OpenAIRE

    Steib, Reiner

    2012-01-01

    In this thesis the nonlinear response of a microcavity containing a thin layer of a nonlinear optical medium, a quantum well was studied. Particularly, the pump-probe configuration where the nonlinear optical medium is excited by a pump field and the interaction between the pump field and the medium is detected with a probe field was considered.

  1. Antibunching effect of the radiation field in a microcavity with a mirror undergoing heavily damping oscillation

    OpenAIRE

    Liu, Yu-xi; Sun, Chang-pu

    2000-01-01

    The interaction between the radiation field in a microcavity with a mirror undergoing damping oscillation is investigated. Under the heavily damping cases, the mirror variables are adiabatically eliminated. The the stationary conditions of the system are discussed. The small fluctuation approximation around steady values is applied to analysis the antibunching effect of the cavity field. The antibunching condition is given under two limit cases.

  2. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities

    Institute of Scientific and Technical Information of China (English)

    CHEN San; QIAN Bo; WEI Jun-Wei; CHEN Kun-Ji; XU Jun; LI Wei; HUANG Xin-Fan

    2005-01-01

    @@ Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx :H/aSiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz :H) thin film.By comparison, the wide emission band width 208nm is strongly narrowed to 11 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of △λ = 11 nm and a quality factor of Q = 69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.

  3. In-fiber silicon microsphere as a hybrid Fabry-Pérot microcavity for temperature sensing

    OpenAIRE

    Xiao, L.M.; Healy, N; Hawkins, T.; Jones, M; Ballato, J.; Gibson, U.; Peacock, A. C.

    2015-01-01

    A silicon microsphere was fabricated inside a fiber forming a hybrid Fabry-Pérot microcavity. The large difference in indices and thermal-optic coefficients of the sphere and its silica cladding are exploited for high-sensitivity temperature sensing.

  4. Femtosecond laser 3D fabrication of whispering-gallery-mode microcavities

    Science.gov (United States)

    Xu, HuaiLiang; Sun, HongBo

    2015-11-01

    Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM micro- cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse duration, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femtosecond laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs microcavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-microcavity device. Lastly, a summary of this dynamic field with a future perspective is given.

  5. Multiple kinds of emission modes in semiconductor microcavity coupled with plasmon

    Czech Academy of Sciences Publication Activity Database

    Du, L.; Mao, H.; Luo, X.; Wang, J.; Remeš, Zdeněk

    2014-01-01

    Roč. 434, č. 1 (2014), s. 74-77. ISSN 0921-4526 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : plasmon * exciton * polariton * microcavity * ZnO * effective refractive index Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.319, year: 2014

  6. Photoluminescence eigenmodes in the ZnO semiconductor microcavity on the Ag/Si substrate

    Czech Academy of Sciences Publication Activity Database

    Luo, X.; Wang, J.; Mao, H.; Remeš, Zdeněk; Král, Karel

    2013-01-01

    Roč. 112, č. 4 (2013), s. 821-825. ISSN 0947-8396 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : ZnO * photoluminescence * microcavity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.694, year: 2013

  7. Abnormal high-$Q$ modes of coupled stadium-shaped microcavities

    CERN Document Server

    Ryu, Jung-Wan; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-01-01

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a 'rounded bow tie' mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to whispering gallery mode.

  8. Abnormal high-Q modes of coupled stadium-shaped microcavities.

    Science.gov (United States)

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-07-15

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a "rounded bow tie" mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to the whispering gallery mode. PMID:25121685

  9. Integrated self-aligned tips for dispersion tuning in a photonic crystal micro-cavity

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Kauppinen, L.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2011-01-01

    A micro-bimorph cantilever is monolithically integrated with a photonic crystal micro-cavity based device, using surface micro-machining techniques. The integrated cantilever is equipped with self-aligned dielectric tips with respect to the holes of the photonic crystal and on electrostatic actuatio

  10. Hybridization of photon-plasmon modes in metal-coated microtubular cavities

    CERN Document Server

    Yin, Yin; Engemaier, Vivienne; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    The coupling of resonant light and surface plasmons in metal layer coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on opto-plasmonic microtubular cavities. By changing the cavity structure and the metal layer thickness, weakly, moderately and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. An effective potential approach is applied to illustrate the hybridization of photon-plasmon modes relying on the competition between light confinement by the cavity wall and the potential barrier introduced by the metal layer. Our work reveals the basic physical mechanisms for the generation of hybrid modes in metal-coated whispering-gallery-mode microcavities, and is of importance for the study of enhanced light-matter interactions and potential sensing applications.

  11. Hybridization of photon-plasmon modes in metal-coated microtubular cavities

    Science.gov (United States)

    Yin, Yin; Li, Shilong; Engemaier, Vivienne; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G.

    2016-07-01

    The coupling of resonant light and surface plasmons in metal layer-coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on optoplasmonic microtubular cavities. By changing the thicknesses of both the cavity wall and the metal layer, weakly, moderately, and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. An effective potential approach is applied to illustrate the hybridization of photon-plasmon modes relying on the competition between light confinement by the cavity wall and the potential barrier introduced by the metal layer. Our work reveals the basic physical mechanisms for the generation of hybrid modes in metal-coated whispering-gallery-mode microcavities, and is of importance for the study of enhanced light-matter interactions and potential sensing applications.

  12. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  13. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  14. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra. PMID:21675759

  15. A SINGLE PHOTON SOURCE MODEL BASED ON QUANTUM DOT AND MICROCAVITY

    Directory of Open Access Journals (Sweden)

    Moez ATTIA

    2011-12-01

    Full Text Available We report a single photon source model which consists on InAs/GaAs pyramidal quantum dot (QDmodel based on effective mass theory to calculate the emitted photons energies. We study the choice ofgeometrics parameters of QD to obtain emission at 1550 nm. This quantum dot must be embedded on amicrocavity to improve the live time of photon at 1550 nm and inhibit the others photons to increase theprobability to obtain only one emitted photon. We present two kinds of microcavities; the first based ontwo dimensional photonic crystal over GaAs, we study the geometric parameters choice to obtain a heightdensity of mode (DOM at 1550 nm; the second microcavity is based on microdisk structure over GaAswe evaluate the impact of radius variation to obtain whispering-gallery mode at 1550 nm. This study canserve for the conception of new quantum communications protocols.

  16. Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement

    Energy Technology Data Exchange (ETDEWEB)

    Mai, Lijian, E-mail: lim@zurich.ibm.com; Ding, Fei, E-mail: f.ding@ifw-dresden.de; Stöferle, Thilo, E-mail: tof@zurich.ibm.com; Knoll, Armin, E-mail: ark@zurich.ibm.com; Jan Offrein, Bert, E-mail: ofb@zurich.ibm.com; Mahrt, Rainer F., E-mail: rfm@zurich.ibm.com [IBM Research—Zurich, Säumerstrasse 4, CH-8803 Rüschlikon (Switzerland)

    2013-12-09

    We report on the realization of a solid state Fabry-Pérot-like microcavity that uses a small Gaussian-shaped deformation inside the cavity to achieve strong lateral photon confinement on the order of the wavelength. Cavities with a mode volume V < 0.4 μm{sup 3} and a quality factor Q > 1000 are fabricated by means of focused ion beam milling, removing the necessity for etched sidewalls as required for micropillar cavities. Perylene-diimide dye doped polystyrene was embedded in the microcavity and probed by time-resolved microphotoluminescence. A Purcell enhancement of the spontaneous emission rate by a factor of 3.5 has been observed at room temperature.

  17. Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity

    CERN Document Server

    Shen, Bo-Qiang; Zhi, Yanyan; Wang, Li; Kim, Donghyun; Gong, Qihuang; Xiao, Yun-Feng

    2016-01-01

    Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode microcavities, which can enhance significantly the light-matter interaction, have emerged as promising platforms for label-free detection of nanoscale objects. Different from the conventional whispering-gallery-mode sensing relying on the reactive (i.e., dispersive) interaction, here we propose and demonstrate to detect single lossy nanoparticles using the dissipative interaction in a high-$Q$ toroidal microcavity. In the experiment, detection of single gold nanorods in an aqueous environment is realized by monitoring simultaneously the linewidth change and shift of the cavity mode. The experimental result falls within the theoretical prediction. Remarkably, the reactive and dissipative s...

  18. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  19. Raman Theory for a Molecule in a Vibrating Microcavity Oscillating in Fundamental Resonance

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoXue; WU Ying

    2001-01-01

    We propose a model to describe the energy structure and dynamics of a system of a molecule interacting with infinite photon modes in a vibrating microcavity whose boundary oscillates in the fundamental resonance. By constructing an so(2,1) Lie algebra for the infinite photon modes, we obtain analytical expressions of the energy eigenstates, energy eigenvalues and the system's evolution operator for this Raman model under certain conditions.``

  20. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    OpenAIRE

    Hai-Rui Wei; Gui Lu Long

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they ha...

  1. Microcavity with saturable nonlinearity under simultaneous resonant and nonresonant pumping: multistability, Hopf bifurcations and chaotic behaviour

    CERN Document Server

    Iorsh, Ivan; Shelykh, Ivan

    2016-01-01

    We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the satutration of the excitonic absorbtion. Stable periodic Rabi- type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.

  2. Spectrum and thermal fluctuations of a microcavity polariton Bose-Einstein condensate

    OpenAIRE

    Sarchi, D.; Savona, V.

    2007-01-01

    The Hartree-Fock-Popov theory of interacting Bose particles is developed, for modeling exciton-polaritons in semiconductor microcavities undergoing Bose-Einstein condensation. A self-consistent treatment of the linear exciton-photon coupling and of the exciton non-linearity provides a thermal equilibrium description of the collective excitation spectrum, of the polariton energy shifts and of the phase diagram. Quantitative predictions support recent experimental findings.

  3. Nonclassical light from an incoherently pumped quantum dot in a microcavity

    OpenAIRE

    Teuber, L.; Grünwald, P.; Vogel, W.

    2015-01-01

    Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of semiconductor quantum optics. In many cases however, technical and physical issues limit the study of optical fields to incoherently excited systems. We analyze the model of a two-level system in a single-mode cavity, where the former is incoherently driven. The specific structure of the applied master equation yields a recurrence relation for the steady-state values of correlations of the i...

  4. Single Semiconductor Quantum Dots in Microcavities: Bright sources of indistinguishable Photons

    OpenAIRE

    Schneider, C.; Gold, P.; Lu, C. -Y.; Höfling, S.; Pan, J. -W.; Kamp, M.

    2015-01-01

    In this chapter we will discuss the technology and experimental techniques to realize quantum dot (QD) single photon sources combining high outcoupling efficiencies and highest degrees of non-postselected photon indistinguishability. The system, which is based on ultra low density InAs QDs embedded in a quasi planar single sided microcavity with natural photonic traps is an ideal testbed to study quantum light emission from single QDs. We will discuss the influence of the excitation condition...

  5. Semiconductor nanocrystals inside spherical microcavities: A case of quantum dots in photonic dots

    OpenAIRE

    Artemyev, M. V.

    2003-01-01

    Quantum dots in photonic dots, a new type of microstructures involving highly luminescent II-VI semiconductor nanocrystals has been proposed and realized by incorporating nanocrystals (quantum dots) into glass and polymeric microspheres. The high quality micron-size microspheres represent simplest fully three-dimensional microcavities (photonic dots). Coupling of discrete electron states of quantum dots and photon states inside photonic dots strongly affects onto both stationary and dynamic p...

  6. Efficient optical path folding by using multiple total internal reflections in a microcavity

    CERN Document Server

    Shinohara, Susumu; Fukushima, Takehiro; Harayama, Takahisa; Arai, Kenichi; Yoshimura, Kazuyuki

    2014-01-01

    We propose using an asymmetric resonant microcavity for the efficient generation of an optical path that is much longer than the diameter of the cavity. The path is formed along a star polygonal periodic orbit within the cavity, which is stable and confined by total internal reflection. We fabricated a semiconductor device based on this idea with an average diameter of 0.3 mm, and achieved a path length of 2.79 mm experimentally.

  7. Laser emission with excitonic gain in a ZnO planar microcavity

    CERN Document Server

    Guillet, Thierry; Valvin, Pierre; Gil, Bernard; Bretagnon, Thierry; Medard, F; Mihailovic, Martine; Zúñiga-Pérez, Jesús; Leroux, Mathieu; Semond, F; Bouchoule, Sophie; 10.1063/1.3593032

    2011-01-01

    The lasing operation of a ZnO planar microcavity under optical pumping is demonstrated from T=80 K to 300 K. At the laser threshold, the cavity switches from the strong coupling to the weak coupling regime. A gain-related transition, which appears while still observing polariton branches and, thus, with stable excitons, is observed below 240K. This shows that exciton scattering processes, typical of II-VI semiconductors, are involved in the gain process.

  8. Coherent Control of Transmission Probability of a Cold Atom Through Microcavity Potentials

    Institute of Scientific and Technical Information of China (English)

    何小灵; 杜四德; 陈灏; 陆靖

    2003-01-01

    We investigate the transmission probability of a two-level cold atom through a quantum microcavity when the atom is initially prepared in a coherent superposition of its excited state and ground state. We can control the transmissibility of the atom by this initial coherence. Remarkable step and switch effect are discovered in the atomic transmission for the case of weak and intense quantized fields, respectively.

  9. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    Science.gov (United States)

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte. PMID:27380296

  10. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti configuration to an extracellular facing (13-cis, 15-syn configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.

  11. Surface modification by using of immobilized electrostatic self-assembly of bacteriorhodopsin as protein memory

    Directory of Open Access Journals (Sweden)

    Ashkan Zare Karizak

    2014-11-01

    Full Text Available Bacteriorhodopsin (BR is the light harvesting and photoactive proton pump found in the membrane of a salt marsh bacteria. This protein has significant potential to use in optical computing and memory devices due to unique intrinsic physical properties of photo and bioelectric. All these features make BR one of the most promising protein candidates in protein memories. Protein memory is a kind of optical memory with a large storage capacity and high speed processing features. BR protein was used with the polymer film in order to create better stability. In order to investigate immobilization of electrostatic self-assembly of BR on glass and polycarbonate as protein memories was used. Polycarbonate is a layer of compact disc (CD structure which considered dye immobilized on its surface and have reading and writing abilities of information via 0,1 bites. In this study, surfaces of polycarbonate modified by the mixture of 5% sulfuric acid and 20% acetic acid; furthermore, by using of PEI as cationic resin the surface of polycarbonate was charged and BR immobilized on it electrostatically. The modified surfaces were characterized by AFM technique. Also, light activity for reading data is retained. This is an appropriate method for optimal stability and activity assay of the protein and also is suitable for preparation of protein memories.

  12. Bacteriorhodopsin-based Langmuir-Schaefer films for solar energy capture.

    Science.gov (United States)

    Bertoncello, Paolo; Nicolini, Davide; Paternolli, Cristina; Bavastrello, Valter; Nicolini, Claudio

    2003-06-01

    The photovoltaic (PV) solar cell, converting incident solar radiation directly into electrical energy, today represents the most common power source for the earth-orbiting spacecraft, and the utilization of organic materials in this context is here explored in comparison with the present state of the art placing emphasis in organic nanotechnology. Poly[3-3'(vinylcarbazole)] (PVK) was synthesized by oxidative polymerization with ferric chloride of N-vinylcarbazole. The resulting polymer was then deposited on solid support by using the Langmuir-Schaefer (LS) technique. The pressure-area isotherm of PVK revealed the possibility of compact monolayer formation at the air-water interface. Different layers of PVK were doped with iodine vapors. The cyclic voltammetry investigation of PVK-doped I2 showed a distinctive electrochemical behavior. The photoinduced charge transfer across a donor/acceptor (D/A) hybrid interface provided an effective method to study the PV properties of the composite LS films. The results are compared with other approaches within the biological framework, such as bacteriorhodopsin (BR), and organic nanostructured materials. PMID:15382669

  13. Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin.

    Science.gov (United States)

    Yao, Baoli; Xu, Dalun; Hou, Xun; Hu, Kunsheng; Wang, Aojin

    2003-01-01

    Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast falling edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BR photodetector has at least 100-ps response time and can also serve as a fast photoelectric switch. PMID:12542379

  14. B-M-type anisotropy in bacteriorhodopsin films for nonlinear spatial light modulation

    Science.gov (United States)

    Korchemskaya, Elena Y.; Stepanchikov, Dmitriy A.; Dyukova, Tatyana V.; Shakhbazian, Valery Y.

    2003-02-01

    Bacteriorhodopsin (BR), a photoreceptor protein possesses a photochemical cycle of several distinct intermediates; all of them are photoactive. The BR molecules both in the initial form of the photocycle, BR570 (absorption maximum around 570 nm) and longest-lived (in films) intermediate M412 (absorption maximum at 412 nm) possess anisotropic absorption. Under the action of linearly polarized light, the reversible anisotropic photoselection of BR molecules takes place. So far only the method of photoinduced anisotropy based on anisotropic properties of BR570 was applied to realtime optical processing. In the present work, the potentialities for the use of photoinduced anisotropy in the BR-films based on both BR570 and M412 for the spatial light modulation are demonstrated. The overall blocking of highintensity features from an image is shown. Mixed B-M-type anisotropy in the chemically modified BR films, as applied to the edge enhancement, can provide a contrast ratio as high as 250:1. Low saturation intensity of the BR-films allows for the blocking of any intensity feature from an image that is carried out by choosing an appropriate intensity level of a controlling He-Ne laser beam without analyzer rotation. The photoanisotropic incoherent-to-coherent optical conversion with concurrent spatial-intensity modulation is also performed on the BR-films.

  15. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films

    Science.gov (United States)

    Yao, Baoli; Lei, Ming; Ren, Liyong; Menke, Neimule; Wang, Yingli; Fischer, Thorsten; Hampp, Norbert

    2005-11-01

    In polymeric films of bacteriorhodopsin (BR) a photoconversion product, which was named the F620 state, was observed on excitation of the film with 532 nm nanosecond laser pulses. This photoproduct shows a strong nonlinear absorption. Such BR films can be used for write-once-read-many (WORM) optical data storage. We demonstrate that a photoproduct similar or even identical to that obtained with nanosecond pulses is generated on excitation with 532 nm femtosecond pulses. This photoproduct also shows strong anisotropic absorption, which facilitates polarization storage of data. The product is thermally stable and is irretrievable to the initial B state either by photochemical reaction or through a thermal pathway. The experimental results indicate that the product is formed by a two-photon absorption process. Optical WORM storage is demonstrated by use of two polarization states, but more polarization states may be used. The combination of polarization data multiplexing and extremely short recording time in the femtosecond range enables very high data volumes to be stored within a very short time.

  16. All-optical switching and all-optical logic gates based on bacteriorhodopsin

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-06-01

    We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.

  17. Photosensory behaviour of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium

    International Nuclear Information System (INIS)

    Halobacterium halobium, strain ET-15, which does not contain detectable amounts of bacteriorhodopsin (BR) shows behavioral responses to UV and yellow-green light. Attractant stimuli, i.e. light-increases in the yellow-green range or light-decreases in the UV, suppress the spontaneous reversals of the swimming direction for a certain time. Repellent stimuli, i.e. light-decreases in the yellow-green range or light-increases in the UV, elicit an additional reversal response after a few seconds. Action spectra of both sensory photosystems, PS 370 and PS 565, were measured with attractant as well as with repellent stimuli. As in BR-containing cells, maximal sensitivity was always found at 370 nm for the UV-system and at 565 nm for the long-wavelength system. Fluence-response curves at 370 and 565 nm obtained with strain ET-15 and with a BR-containing strain show that the sensitivity of both photosystems is not reduced in the absence of BR. It is concluded that BR is required neither for PS 565 nor for PS 370. Instead retinal-containing pigments different from BR have to be assumed to mediate photosensory behavior. (author)

  18. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Mark H. Griep

    2012-01-01

    Full Text Available An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs and the optical protein bacteriorhodopsin (bR is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

  19. Deposition of Bacteriorhodopsin Protein in a Purple Membrane Form on Nitrocellulose Membranes for Enhanced Photoelectric Response

    Science.gov (United States)

    Kim, Young Jun; Neuzil, Pavel; Nam, Chang-Hoon; Engelhard, Martin

    2013-01-01

    Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO) electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM) can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices. PMID:23271605

  20. Enhanced Photocurrent Generation from Bacteriorhodopsin Photocells Using Grating-Structured Transparent Conductive Oxide Electrodes.

    Science.gov (United States)

    Kaji, Takahiro; Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Inoue, Shin-Ichiro; Tominari, Yukihiro; Ueda, Rieko; Terui, Toshifumi; Tanaka, Shukichi; Otomo, Akira

    2016-04-01

    We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices. PMID:27451605

  1. Pool boiling on surfaces with mini-fins and micro-cavities

    International Nuclear Information System (INIS)

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 – 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids – smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  2. Coupled polariton solitons in semiconductor microcavities with a double-well potential

    International Nuclear Information System (INIS)

    Highlights: ► Polariton soliton in microcavity is a very newly generated topic. ► This manuscript reported the entangled polariton soliton in a microcavity with double-well potential for the first time. ► The generation/evolution of polariton solitons and their interactions between the two potential wells were studied numerically. ► We found the tunneling effect of polaritons gives birth to variety of combinations of polariton solitons. ► The whole branches of dark and bright solitons are also changed considerably by the tunneling effect. - Abstract: In a double-well microcavity, coupling of spatial polariton solitons between the two wells is studied theoretically. Polaritons trapped inside the double-well structure can demonstrate bistability where both bright and dark polariton solitons are supported. Due to the tunneling effect, the combination of polariton solitons in the two wells can be bright-bright, dark-bright or dark-dark dependent on the initial states (i.e., on-state, off-state, or mixed-state) of the polaritons.

  3. Phase sensitive properties and coherent manipulation of a photonic crystal microcavity.

    Science.gov (United States)

    Quiring, Wadim; Jonas, Björn; Förstner, Jens; Rai, Ashish K; Reuter, Dirk; Wieck, Andreas D; Zrenner, Artur

    2016-09-01

    We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications. PMID:27607671

  4. Angular Dependence of the Sharply Directed Emission in Organic Light Emitting Diodes with a Microcavity Structure

    Science.gov (United States)

    Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen

    2002-04-01

    An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.

  5. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  6. Application of chemical modification and spin-labeling techniques to the study of energy conversion by bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Packer, L.; Quintanilha, A.T.; Mehlhorn, R.J.

    1983-03-01

    Light generates a pH gradient and an electrical potential across the purple membrane of Halobacterium halobium. We are investigating the time-resolved changes in protonation of the side chains of specific amino-acid residues and the correlation of these changes with photon absorption and the ensuing photo-reaction cycle. We seek to determine the precise molecular description of the photocycle and of the time dependent steps in the uptake, translocation, and release of protons by the retinal proton catalyst in this membrane, bacteriorhodopsin (BR). 14 references, 3 figures, 1 table.

  7. Nonlinear optical method for the investigation of spectral properties of biomolecular complexes: second harmonic generation in ordered structures of bacteriorhodopsin

    Science.gov (United States)

    Aktsipetrov, Oleg A.; Fedyanin, Andrew A.; Murzina, Tatyana V.; Borisevich, G. P.; Kononenko, A. A.

    1995-02-01

    For the first time the method of the second harmonic generation was used to study the photo- and electrically induced nonlinear optical transformations in thin oriented films of purple membranes (PM). Variations of the film nonlinear susceptibility were investigated as the bacteriorhodopsin (bR) molecule underwent the cycle of photoinduced transformations for both dry electrically oriented films and bR molecules embedded into poly(vinyl alcohol) matrix. The electrically induced changes of the nonlinear optical properties were studied for the electrostatic field strength up to the values 4 (DOT) 104 V/cm. Nonlinear susceptibilities of oriented and nonoriented dried PM films are compared.

  8. Application of nonlinear absorption properties and light adaptation process in the polymer films based on bacteriorhodopsin for the low-power optical signal processing

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.

    1994-01-01

    Experimental and theoretical investigations were made of the characteristics of nonlinear transmission and light adaptation processes of polymer films based on bacteriorhodopsin (BR). It was found that media containing BR can be used to enhance the contrast of low-power signals for realization of the connection structure of the neural network.

  9. High resolution electron diffraction analysis of structural changes associated with the photocycle of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Han, B. -G. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Biophysics

    1994-04-01

    Changes in protein structure that occur during the formation of the M photointermediate of bacteriorhodopsin can be directly visualized by electron diffraction techniques. Samples containing a high percentage of the M intermediate were trapped by rapidly cooling the crystals with liquid nitrogen following illumination with filtered green light at 240K and 260K respectively. Difference Fourier projection maps for M minus bR at two temperatures and for M{sub 260K} minus M{sub 240K} are presented. While it is likely that a unique M-substate is trapped when illuminated at 260K produces a mixture of the M{sub 240K} substate and a second M-substate which may have a protein structure similar to the N-intermediate. The diffraction data clearly show that statistically significant structural changes occur upon formation of the M{sub 240K} specimen and then further upon formation of the second substate which is present in the mixture that is produced at 260K. A preliminary 3-D difference map, based on data collected with samples tilted up to 30{degree}, has been constructed at a resolution of 3.5{angstrom} parallel to the membrane plane and a resolution of 8.5{angstrom} perpendicular to the membrane. The data have been analyzed by a number of different criteria to ensure that the differences seen reflect real conformation changes at a level which is significantly above the noise in the map. Furthermore, a comparison of the positions of specific backbone and side-chain groups relative to significant difference peaks suggests that it will be necessary to further refine the atomic resolution model before it will be possible to interpret the changes in chemical structure that occur in the protein at this stage of the photocycle.

  10. Coherent control of the isomerization of retinal in bacteriorhodopsin in the high intensity regime

    International Nuclear Information System (INIS)

    Coherent control protocols provide a direct experimental determination of the relative importance of quantum interference or phase relationships of coupled states along a selected pathway. These effects are most readily observed in the high intensity regime where the field amplitude is sufficient to overcome decoherence effects. The coherent response of retinal photoisomerization in bacteriorhodopsin to the phase of the photoexcitation pulses was examined at fluences of 1015- 2.5 x 1016 photons per square centimeter, comparable to or higher than the saturation excitation level of the S0-S1 retinal electronic transition. At moderate excitation levels of ∼6 x 1015 photons/cm2 (2), chirping the excitation pulses increases the all-trans to 13-cis isomerization yield by up to 16% relative to transform limited pulses. The reported results extend previous weak-field studies [Prokhorenko et al., Science 313, 1257 (2006)] and further illustrate that quantum coherence effects persist along the reaction coordinate in strong fields even for systems as complex as biological molecules. However, for higher excitation levels of ∼200 GW/cm2, there is a dramatic change in photophysics that leads to multiphoton generated photoproducts unrelated to the target isomerization reaction channel and drastically changes the observed isomerization kinetics that appears, in particular, as a red shift of the transient spectra. These results explain the apparent contradictions of the work by Florean et al.[Proc. Natl. Acad. Sci. U.S.A. 106, 10896 (2009)] in the high intensity regime. We are able to show that the difference in observations and interpretation is due to artifacts associated with additional multiphoton-induced photoproducts. At the proper monitoring wavelengths, coherent control in the high intensity regime is clearly observable. The present work highlights the importance of conducting coherent control experiments in the low intensity regime to access information on quantum

  11. Optical Fourier and Holographic Techniques for Medical Image Processing with Bacteriorhodopsin

    Science.gov (United States)

    Yelleswarapu, Chandra

    2008-03-01

    The biological photochrome bacteriorhodopsin (bR) shows many intrinsic optical and physical properties. The active chromophore in bR is a retinal group which absorbs light and goes through a photocycle. The unique feature of the system is its flexibility -- the photocycle can be optically controllable since the process of photoisomerization can go in both directions depending on wavelength, intensity and polarization of the incident light, opening a variety of possibilities for manipulating amplitude, phase, polarization and index of refraction of the incident light. Over the years we studied the basic nonlinear optics and successfully exploited the unique properties for several optical spatial filtering techniques with applications in medical image processing. For nonlinear Fourier filtering, the photo-controlled light modulating characteristics of bR films are exploited. At the Fourier plane, the spatial frequency information carried by a blue probe beam at 442 nm is selectively manipulated in the bR film by changing the position and intensity of a yellow control beam at 568 nm. In transient Fourier holography, photoisomerizative gratings are recorded and reconstructed in bR films. Desired spatial frequencies are obtained by matching the reference beam intensity to that of the particular frequency band in object beam. A novel feature of the technique is the ability to transient display of selected spatial frequencies in the reconstructing process which enables radiologists to study the features of interest in time scale. The results offer useful information to radiologists for early detection of breast cancer. Some of the highlights will be presented.

  12. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Science.gov (United States)

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  13. Studying the Mechanism of Phototransformation of Light Signal by Various Mammal and Bacterial Photoreceptor Pigments  Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2015-06-01

    Full Text Available This review article outlines the structure and function of mammal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of bio-nanotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0,09 M Tris-buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual retina analyzer having the ability to analyze certain ranges of the optical spectrum as colors, was studied along with an analysis of the additive mixing of two or more colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceives them as the separate or average wave length corresponding to the mixing color.

  14. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin

    Science.gov (United States)

    Varo, G.; Zimanyi, L.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The switch in the bacteriorhodopsin photocycle, which reorients access of the retinal Schiff base from the extracellular to the cytoplasmic side, was suggested to be an M1----M2 reaction (Varo and Lanyi. 1991. Biochemistry. 30:5008-5015, 5016-5022). Thus, in this light-driven proton pump it is the interconversion of proposed M substates that gives direction to the transport. We find that in monomeric, although not purple membrane-lattice immobilized, D115N bacteriorhodopsin, the absorption maximum of M changes during the photocycle: in the time domain between its rise and decay it shifts 15 nm to the blue relative to the spectrum at earlier times. This large shift strongly supports the existence of two M substates. Since D115 is located near the beta-ionone ring of the retinal, the result raises questions about the possible involvement of the retinal chain or protein residues as far away as 10 A from the Schiff base in the mechanism of the switching reaction.

  15. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin

    Science.gov (United States)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank's data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.

  16. Ultra-high Q one-dimensional hybrid PhC-SPP waveguide microcavity with large structure tolerance

    Science.gov (United States)

    Liu, Feng; Zhang, Lingxuan; Lu, Xiaoyuan; Wang, Weiqiang; Wang, Leiran; Wang, Guoxi; Zhang, Wenfu; Zhao, Wei

    2016-07-01

    A photonic crystal - surface plasmon-polaritons hybrid transverse magnetic mode waveguide based on a one-dimensional optical microcavity is designed to work in the communication band. A Gaussian field distribution in a stepping heterojunction taper is designed by band engineering, and a silica layer compresses the mode field to the subwavelength scale. The designed microcavity possesses a resonant mode with a quality factor of 1609 and a modal volume of 0.01 cubic wavelength. The constant period and the large structure tolerance make it realizable by current processing techniques.

  17. Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities

    International Nuclear Information System (INIS)

    Wet oxidation of GaAs/AlGaAs structures is an important technique in the processing of advanced devices such as vertical cavity surface emitting lasers (VCSELs). In one VCSEL application, the low-index and electrically-insulating AlxOy layers have been used to obtain high-reflectivity and broad bandwidth distributed Bragg reflector mirrors (DBRs). A further recent development has shown that combined lateral-vertical oxidation of intracavity AlGaAs layers can be used to tune the resonant wavelength of a semiconductor microcavity. The slow oxidation rate limits the lateral scale of practical wet oxidation to mesas structures of 50-100 μm in width. Therefore post-processing assessment of spectral changes requires microreflectivity measurement capability with high spatial resolution. In the following, we describe the fabrication and assessment of microcavity structures in the 1.3 μm range. The micro-reflectivity set-up consists of microscope-objective focussing of broadband light, combined with optics to relay the data to a spectrograph, and a CCD camera for alignment. This simple set-up allows the measurement of calibrated reflectivity for features down to a few 10's of μm in size over a large spectral range (600-1800 nm). We present microreflectivity measurements of wide-bandwidth oxidised DBRs, and most significantly, for the first time to our knowledge, of oxidation control of the resonant wavelength of a microcavity in the 1.3 μm range

  18. Crossover from polariton lasing to exciton lasing in a strongly coupled ZnO microcavity

    Science.gov (United States)

    Lai, Ying-Yu; Chou, Yu-Hsun; Lan, Yu-Pin; Lu, Tien-Chang; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2016-02-01

    Unlike conventional photon lasing, in which the threshold is limited by the population inversion of the electron-hole plasma, the exciton lasing generated by exciton-exciton scattering and the polariton lasing generated by dynamical condensates have received considerable attention in recent years because of the sub-Mott density and low-threshold operation. This paper presents a novel approach to generate both exciton and polariton lasing in a strongly coupled microcavity (MC) and determine the critical driving requirements for simultaneously triggering these two lasing operation in temperature mechanisms in strongly coupled MCs and verify a new method with which to trigger dual laser emission based on exciton and polariton.

  19. Temperature dependence of pulsed polariton lasing in a GaAs microcavity

    International Nuclear Information System (INIS)

    The second-order correlation function g(2)(τ = 0), input–output curves and pulse duration of the emission from a microcavity exciton–polariton system subsequent to picosecond-pulsed excitation are measured for different temperatures. At low temperatures a two-threshold behaviour emerges, which has been attributed to the onset of polariton lasing and conventional lasing at the first and the second threshold, respectively. We observe that polariton lasing is stable up to temperatures comparable with the exciton binding energy. At higher temperatures a single threshold displays the direct transition from thermal emission to photon lasing. (paper)

  20. Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity

    DEFF Research Database (Denmark)

    Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does...... not depend significantly on the emission direction due to the small exciton dispersion within the optically accessible in-plane wave vectors. Compared to bare excitons the dispersion of microcavity (MC) polaritons is steep at small in-plane wavevectors, so that MC polaritons show a directional RRS...

  1. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    CERN Document Server

    Demenev, A A; Schneider, C; Brodbeck, S; Kamp, M; Höfling, S; Lobanov, S V; Weiss, T; Gippius, N A; Tikhodeev, S G

    2016-01-01

    We report the elliptically, close to circularly polarized lasing at $\\hbar\\omega = 1.473$ and 1.522 eV from an AlAs/AlGaAs Bragg microcavity with 12 GaAs quantum wells in the active region and chiral-etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, allowing to fabricate a very thin half-wave plate, with a thickness of the order of the emitted light wavelength, and to realize the monolithic control of circular polarization.

  2. Inducing Photonic Transitions between Discrete Modes in a Silicon Optical Microcavity

    Science.gov (United States)

    Dong, Po; Preble, Stefan F.; Robinson, Jacob T.; Manipatruni, Sasikanth; Lipson, Michal

    2008-01-01

    We show the existence of direct photonic transitions between modes of a silicon optical microcavity spaced apart in wavelength by over 8 nm. This is achieved by using ultrafast tuning of the refractive index of the cavity over a time interval that is comparable to the inverse of the frequency separation of modes. The demonstrated frequency mixing effect, i.e., the transitions between the modes, would enable on-chip silicon comb sources which can find wide applications in optical sensing, precise spectroscopy, and wavelength-division multiplexing for optical communications and interconnects.

  3. Vertical cavity surface emitting laser action of an all monolithic ZnO-based microcavity

    OpenAIRE

    Kalusniak, S.; Sadofev, S.; Halm, S.; Henneberger, F.

    2010-01-01

    We report on room temperature laser action of an all monolithic ZnO-based vertical cavity surface emitting laser (VCSEL) under optical pumping. The VCSEL structure consists of a 2{\\lambda} microcavity containing 8 ZnO/Zn(0.92)Mg(0.08)O quantum wells embedded in epitaxially grown Zn(0.92)Mg(0.08)O/Zn(0.65)Mg(0.35)O distributed Bragg reflectors (DBRs). As a prerequisite, design and growth of high reflectivity DBRs based on ZnO and (Zn,Mg)O for optical devices operating in the ultraviolet and bl...

  4. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    International Nuclear Information System (INIS)

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  5. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Science.gov (United States)

    Dietrich, Christof P.; Höfling, Sven; Gather, Malte C.

    2014-12-01

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm).

  6. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2014-12-08

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  7. Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Jun; YUAN Jian-Hui; ZHANG Jun-Pei; CHENG Ze

    2012-01-01

    We analyze the ground-state properties and the excitation spectrum of Bose Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground- state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.

  8. Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities

    OpenAIRE

    Di, Ziyun; Jones, Helene V; Dolan, Philip R.; Fairclough, Simon M.; Wincott, Matthew B; Fill, Johnny; Hughes, Gareth M.; Smith, Jason M.

    2012-01-01

    We report the control of spontaneous emission from CdSe/ZnS core-shell quantum dots coupled to novel open-access optical microcavities. The cavities are fabricated by focused ion beam milling, and provide mode volumes less than a cubic micrometre. The quantum dot emission spectrum, spatial modes, and lifetime are all modified substantially by the presence of the cavity, and can be tuned by actively varying the cavity length. An increase in emission rate of 75% is achieved at room temperature,...

  9. Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    International Nuclear Information System (INIS)

    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In0.23Ga0.77As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.

  10. Analogies between optical propagation and heat diffusion: Applications to micro-cavities, gratings and cloaks

    CERN Document Server

    Amra, Claude; Zerrad, Myriam; Guenneau, Sébastien; Soriano, Gabriel; Gralak, Boris; Bellieud, Michel; Veynante, Denis; Rolland, Nathalie

    2015-01-01

    A new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has been proposed recently [S. Guenneau, C. Amra, and D. Veynante, Optics Express Vol. 20, 8207-8218 (2012)]. A detailed derivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermal parameters are related to optical ones in artificial metallic media, thus making possible to use numerical codes developed for optics. Then the optical admittance formalism is extended to heat conduction in multilayered structures. The concepts of planar micro-cavities, diffraction gratings, and planar transformation optics for heat conduction are addressed. Results and limitations of the analogy are emphasized.

  11. Tuning of exciton-photon coupling in a planar semiconductor microcavity by applying hydrostatic pressure

    International Nuclear Information System (INIS)

    By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure. (author)

  12. Tuning of exciton-photon coupling in a planar semiconductor microcavity by applying hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jidong; Zhang Hao; Chen Jinghao; Deng Yuanming; Hu Chengyong; An Long; Yang Fuhua; Li Guohua; Zheng Houzhi [National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)

    2002-06-03

    By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure. (author)

  13. Properties of monolithic InGaN quantum dot pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Seyfried, M.; Kalden, J.; Gutowski, J. [Semiconductor Optics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany); Dartsch, H.; Tessarek, C.; Aschenbrenner, T.; Figge, S.; Kruse, C.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany); Florian, M.; Jahnke, F. [Institue of Theoretical Physics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany)

    2011-07-15

    InGaN quantum dots were successfully implemented into fully epitaxially grown nitride-based monolithic microcavities (MCs). The discrete modes of airpost pillar MCs prepared out of the planar sample are shown in microreflectivity as well as in microphotoluminescence. These measurements are compared to theoretical simulations based on a vectorial-transfer matrix method. Quality factors of up to 280 have been achieved and the emission of a single quantum dot was traced up to a temperature of 125 K. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Strong exciton-photon coupling with colloidal nanoplatelets in an open microcavity

    OpenAIRE

    Flatten, Lucas C.; Christodoulou, Sotirios; Patel, Robin K.; Buccheri, Alexander; Coles, David M.; Benjamin P. L. Reid; Taylor, Robert A.; Moreels, Iwan; Smith, Jason M.

    2016-01-01

    Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of $66 \\pm 1$ meV and $58 \\pm 1$ meV are observed for the heavy and light hole ...

  15. Ultrasensitive Detection of a Protein by Optical Trapping in a Photonic-Plasmonic Microcavity

    CERN Document Server

    Santiago-Cordoba, Miguel A; Boriskina, Svetlana V; Vollmer, Frank; Demirel, Melik C

    2012-01-01

    Microcavity and whispering gallery mode (WGM) biosensors derive their sensitivity from monitoring frequency shifts induced by protein binding at sites of highly confined field intensities, where field strengths can be further amplified by excitation of plasmon resonances in nanoparticle layers. Here, we propose a mechanism based on optical trapping of a protein at the site of plasmonic field enhancements for achieving ultra sensitive detection in only microliter-scale sample volumes, and in real-time. We demonstrate femto-Molar sensitivity corresponding to a few 1000s of macromolecules. Simulations based on Mie theory agree well with the optical trapping concept at plasmonic 'hotspots' locations.

  16. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Proton uptake mechanism of bacteriorhodopsin as determined by time-resolved stroboscopic-FTIR-spectroscopy.

    Science.gov (United States)

    Souvignier, G; Gerwert, K

    1992-11-01

    Bacteriorhodopsin's proton uptake reaction mechanism in the M to BR reaction pathway was investigated by time-resolved FTIR spectroscopy under physiological conditions (293 K, pH 6.5, 1 M KCl). The time resolution of a conventional fast-scan FTIR spectrometer was improved from 10 ms to 100 mus, using the stroboscopic FTIR technique. Simultaneously, absorbance changes at 11 wavelengths in the visible between 410 and 680 nm were recorded. Global fit analysis with sums of exponentials of both the infrared and visible absorbance changes yields four apparent rate constants, k(7) = 0.3 ms, k(4) = 2.3 ms, k(3) = 6.9 ms, k(6) = 30 ms, for the M to BR reaction pathway. Although the rise of the N and O intermediates is dominated by the same apparent rate constant (k(4)), protein reactions can be attributed to either the N or the O intermediate by comparison of data sets taken at 273 and 293 K. Conceptionally, the Schiff base has to be oriented in its deprotonated state from the proton donor (asp 85) to the proton acceptor (asp 96) in the M(1) to M(2) transition. However, experimentally two different M intermediates are not resolved, and M(2) and N are merged. From the results the following conclusions are drawn: (a) the main structural change of the protein backbone, indicated by amide I, amide II difference bands, takes place in the M to N (conceptionally M(2)) transition. This reaction is proposed to be involved in the "reset switch" of the pump, (b) In the M to N (conceptionally M(2)) transition, most likely, asp-85's carbonyl frequency shifts from 1,762 to 1,753 cm(-1) and persists in O. Protonation of asp-85 explains the red-shift of the absorbance maximum in O. (c) The catalytic proton uptake binding site asp-96 is deprotonated in the M to N transition and is reprotonated in O. PMID:19431858

  18. Spectral shift and Q-change of circular and square-shaped optical microcavity modes due to periodic sidewall surface roughness

    CERN Document Server

    Boriskina, S V; Sewell, P; Nosich, A I; Boriskina, Svetlana V.; Benson, Trevor M.; Sewell, Phillip; Nosich, Alexander I.

    2004-01-01

    Radiation loss and resonant frequency shift due to sidewall surface roughness of circular and square high-contrast microcavities are estimated and compared by using a boundary integral equations method. An effect of various harmonic components of the contour perturbation on the Whispering-Gallery (WG) modes in the circular microdisk and WG-like modes in the square microcavity is demonstrated. In both cases, contour deformations that are matched to the mode field pattern cause the most significant frequency detuning and Q-factor change. Favorably mode-matched deformations have been found, enabling one to manipulate the Q-factors of the microcavity modes.

  19. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingyu, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Chen, Ray T., E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Omega Optics, Inc., Austin, Texas 78757 (United States)

    2015-11-30

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  20. Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores

    NARCIS (Netherlands)

    Krioukov, Evgueni; Klunder, Dion; Driessen, Alfred; Greve, Jan; Otto, Cees

    2005-01-01

    Application of an integrated optics (IO) microcavity (MC) for evanescent excitation of two-photon excited fluorescence (TPF) is demonstrated. The MC provides a high local intensity, which is required for the TPF, because of resonant enhancement of the intracavity power and a strong two-dimensional c

  1. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  2. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.

    Science.gov (United States)

    Wuchter, Patrick; Saffrich, Rainer; Giselbrecht, Stefan; Nies, Cordula; Lorig, Hanna; Kolb, Stephanie; Ho, Anthony D; Gottwald, Eric

    2016-06-01

    In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems. PMID:26829941

  3. Advancing the performance of one-dimensional photonic crystal/photonic wire micro-cavities in silicon-on-insulator

    OpenAIRE

    Md Zain, A.R.; Sorel, M.; De La Rue, R.M.

    2008-01-01

    We present new results that demonstrate advances in the performance achievable in photonic crystal/photonic wire micro-cavities. In one example, a quality-factor value as high as 147,000 has been achieved experimentally at a useful transmission level.

  4. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael;

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...

  5. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.;

    We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...

  6. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.

    Science.gov (United States)

    Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas

    2013-11-13

    Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range. PMID:24117024

  7. Magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity

    International Nuclear Information System (INIS)

    We theoretically study the magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity. A critical magnetic field is obtained, and the bistability appears if a magnetic field is greater than the critical value. For a positive energy detuning of the pump from the bare exciton polaritons, one bistability loop first emerges, then it divides into two loops, and finally one of them vanishes with the increasing magnetic field. This phenomenon originates from the magnetic-field modulated interactions for opposite spins. In the variational process, there are two important effects: one is a logic gate with a small variation of the excitation laser, and the other is a spin texture like skyrmion and this texture is periodic if the energy detuning varies periodically in real space, which is useful for designing the spin-dependent optoelectronic devices. - Highlights: • We study the bistability induced by a magnetic field in a microcavity. • One bistability loop can divide into two, and then the two loops return to one. • A spin texture like skyrmion and logic gate arise in the variation of bistability loop

  8. Magnetic field interaction of exciton-polaritons in GaInAs quantum well-microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi-Iman, Arash; Schneider, Christian; Fischer, Julian; Amthor, Matthias; Hoefling, Sven; Reitzenstein, Stephan; Kamp, Martin; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2011-07-01

    Polaritons formed by excitons and photons in strongly coupled quantum well (QW) semiconductor microcavities have initiated intensive studies of multiple particle physics in solids during the last decade. Bose-Einstein condensation of these quasi particles and the so-called polariton-lasing represent very interesting physical phenomena investigated in different material systems (Deng et al. 2002, Kasprzak et al. 2006). Since condensation is not feasible in ideal 2D systems, it only occurs in planar cavities if natural or artificial traps are provided. We have studied polariton emission from artificial traps in planar cavities in the presence of external magnetic fields up to 5 T, The work focuses on the interaction of the spin-resolved excitonic component of trapped polaritons due to the Zeeman effect. We report on trap-size dependent Zeeman splittings up to 100 {mu}eV and diamagnetic coefficients up to 0.025 meV/T{sup 2} of exciton-polaritons spatially confined by photonic quantum boxes in a planar single GaInAs QW-microcavity at 5 T. Providing a size variation of the traps ranging from 0.5 to 10 {mu}m on a wide detuning range, quantized polariton modes were observed under non-resonant optical pumping.

  9. Multi-quantum-well microcavity structures for electrical excitation of exciton-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lermer, Matthias; Rahimi-Iman, Arash; Schneider, Christian; Hoefling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg (Germany); Kim, Na Young; Yamamoto, Yoshihisa [E.L. Ginzton Laboratory, Stanford University, Stanford, CA (United States)

    2010-07-01

    In semiconductor microcavities strong coupling between quantum-well (QW) excitons and cavity-photons can be realized. In low excitation regime, bosonic quasiparticles, the so called exciton-polaritons, are formed, consisting of half-light/half-matter and exhibit unique properties like stimulated scattering, Bose-Einstein-Condensation and lasing, which have been intensively investigated so far by optical excitation. We have studied planar AlGaAs/AlAs microcavities featuring 1, 4 and 12 GaAs/AlAs QWs and investigated the strong coupling in photoluminescence and reflection for varying temperatures. To amplify the process of stimulated scattering, it is important to enhance the density of polaritons, thus in the presented work we carefully increased the number of QWs in the device. At the same time homogenous pumping of the QWs has to be ensured as it is critical for the purpose of realization of an electrically driven polariton structure. In that way we could achieve a light emitting diode operation in the strong coupling regime, namely a polariton diode. Our results show that the number of GaAs/AlAs QWs in combination with a sophisticated cavity design is of key importance for studies in the field of polaritronics.

  10. Theoretical and experimental study of nanoporous silicon photonic microcavity optical sensor devices

    International Nuclear Information System (INIS)

    This paper reports the theoretical and experimental study of one-dimensional (1D) multilayer nanoporous silicon (NPS) photonic band gap (PBG) microcavity (MC) structures for optical sensor device applications. A theoretical framework to model the reflectance spectra relying on the Bruggeman's effective medium approximation (BEMA) and the transfer matrix method (TMM) was established for the 1D nanoporous silicon microcavity (1D-NPSMC) optical sensor device structures. Based on the theoretical background, 1D-NPSMC sensor device structures were fabricated using electrochemical dissolution of silicon wafer in hydrofluoric (HF) acid. The refractive index of the 1D-NPSMC structures was tuned by changing current density and the thickness was tuned by changing the etching time. Wavelength shifts (Δλ) in the measured reflectance spectra were analyzed for the detection of the analyte in the porous structure. The sensing device performance was tested by different organic solvents, which showed good linear relation between the refractive index of analyte inside the pores and the wavelength shift. The application of proposed structures can be extended for the optical sensing of chemicals, gas, environmental pollutants, pathogens etc. (paper)

  11. Femtosecond laser 3D fabrication of whispering-gallery- mode microcavities

    Institute of Scientific and Technical Information of China (English)

    XU HuaiLiang; SUN HongBo

    2015-01-01

    Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM mi- cro-cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse dura- tion, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femto- second laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs mi- crocavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-micro- cavity device. Lastly, a summary of this dynamic field with a future perspective is given.

  12. Exciton-photon interaction in a quantum dot embedded in a photonic microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Sodagar, Majid; Khoshnegar, Milad; Eftekharian, Amin; Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-9363, Tehran (Iran, Islamic Republic of)

    2009-04-28

    We present a detailed analysis of exciton-photon interaction in a microcavity made out of a photonic crystal slab. Here we have analysed a disc-like quantum dot where an exciton is formed. Excitonic eigen functions in addition to their eigen energies are found through direct matrix diagonalization, while wavefunctions corresponding to unbound electron and hole are chosen as the basis set for this procedure. In order to evaluate these wavefunctions precisely, we have used the 6 x 6 Luttinger Hamiltonian in the case of hole while ignoring bands adjacent to the conduction band for electron states. After analysing excitonic states, a photonic crystal-based microcavity with a relatively high quality factor mode has been proposed and its lattice constant has been adjusted to obtain the prescribed resonant frequency. We use a finite-difference time-domain method in order to simulate our cavity with sufficient precision. Finally, we formulate the coupling constants for the exciton-photon interaction both where intra-band and inter-band transitions occur. By evaluating a sample coupling constant, it has been shown that the system can be in a strong-coupling regime and Rabi oscillations can occur.

  13. Exciton-photon interaction in a quantum dot embedded in a photonic microcavity

    International Nuclear Information System (INIS)

    We present a detailed analysis of exciton-photon interaction in a microcavity made out of a photonic crystal slab. Here we have analysed a disc-like quantum dot where an exciton is formed. Excitonic eigen functions in addition to their eigen energies are found through direct matrix diagonalization, while wavefunctions corresponding to unbound electron and hole are chosen as the basis set for this procedure. In order to evaluate these wavefunctions precisely, we have used the 6 x 6 Luttinger Hamiltonian in the case of hole while ignoring bands adjacent to the conduction band for electron states. After analysing excitonic states, a photonic crystal-based microcavity with a relatively high quality factor mode has been proposed and its lattice constant has been adjusted to obtain the prescribed resonant frequency. We use a finite-difference time-domain method in order to simulate our cavity with sufficient precision. Finally, we formulate the coupling constants for the exciton-photon interaction both where intra-band and inter-band transitions occur. By evaluating a sample coupling constant, it has been shown that the system can be in a strong-coupling regime and Rabi oscillations can occur.

  14. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System

    Science.gov (United States)

    Yoshino, S.; Oohata, G.; Mizoguchi, K.

    2015-10-01

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  15. Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity

    Science.gov (United States)

    Shen, Bo-Qiang; Yu, Xiao-Chong; Zhi, Yanyan; Wang, Li; Kim, Donghyun; Gong, Qihuang; Xiao, Yun-Feng

    2016-02-01

    Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode microcavities, which can enhance significantly the light-matter interaction, have emerged as promising platforms for label-free detection of nanoscale objects. Different from the conventional whispering-gallery-mode sensing relying on the reactive (i.e., dispersive) interaction, here we propose and demonstrate to detect single lossy nanoparticles using the dissipative interaction in a high-Q toroidal microcavity. In the experiment, detection of single gold nanorods in an aqueous environment is realized by monitoring simultaneously the linewidth change and shift of the cavity mode. The experimental result falls within the theoretical prediction. Remarkably, the reactive and dissipative sensing methods are evaluated by setting the probe wavelength on and off the surface plasmon resonance to tune the absorption of nanorods, which demonstrates clearly the great potential of the dissipative sensing method to detect lossy nanoparticles. Future applications could also combine the dissipative and reactive sensing methods, which may provide better characterizations of nanoparticles.

  16. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  17. Exciton-polariton in graphene nano-ribbon embedded In semiconductor microcavity

    Science.gov (United States)

    Shojaei, S.; Imannezhad, S.

    2016-03-01

    In this paper, we investigated coupling of confined photons in the semiconductor microcavity consists of Distributed Bragg Reflectors (DBR) (Si3N4/SiO2 and AlAs/Al0.1Ga0.9As) with excitons of gapped Armchair Graphene NanoRibbon (A-GNR) that placed at the maximum of electric field amplitude inside the semiconductor microcavity. Our calculations show that the coupling between GNR's exciton and confined photon modes and appearance of vacuum Rabi splitting (VRS), is possible. By the means of Transfer Matrix Method (TMM) we obtain angle dependent reflectance spectrum and Upper, Lower Polariton Branches (UPB&LPB) for the structure. Clear anticrossing between the neutral exciton and the cavity modes with a splitting of about 3 meV obtained that can be enhanced in double-GNR. While, our calculations certify the formation of graphene based exciton-polariton, propose the enhancement of VRS by optimization of relevant parameters to implement the graphene based cavity polaritons in optoelectronic devices.

  18. Organic white-light-emitting devices based on a multimode resonant microcavity

    Science.gov (United States)

    Zhang, Hongmei; You, Han; Wang, Wei; Shi, Jiawei; Guo, Shuxu; Liu, Mingda; Ma, Dongge

    2006-08-01

    Organic white-light-emitting devices (OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage (CIE) chromaticity coordinates changed from (0.29, 0.37) at 0° to (0.31, 0.33) at 40°. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m-2 at a current density of 200 mA cm-2, and the maximum current efficiency and power efficiency are 1.6 cd A-1 at a current density of 12 mA cm-2 and 0.41 lm W-1 at a current density of 1.6 mA cm-2, which are over 1.6 times higher than that of a noncavity OLED.

  19. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1H NMR and 75 MHz 13C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  20. Towards structural investigations on isotope labelled native bacteriorhodopsin in detergent micelles by solution-state NMR spectroscopy

    International Nuclear Information System (INIS)

    1H NMR signals of the retinal moiety in detergent-solubilized bacteriorhodopsin are assigned, enabling the interpretation of NOEs within the chromophore. To achieve this, a number of differently labelled samples were prepared to test the applicability of the various assignment and distance measurement strategies. In measurements with and without light,1H and 13C chemical shifts of the retinal in the native protein were partially assigned for both the dark- and the light-adapted states. Additionally, samples with residue-specific1H amino acids and/or retinal in an otherwise deuterated protein were prepared to measure the distances between either two kinds of amino acids or between individual amino acids and the retinal moiety. With the observation of NOE within the bound retinal and between retinal and its neighbouring aminoacids, an important step towards the elucidation of distance constraints in the binding pocket of the proton pump is made

  1. Studies on the microstructure, optical and electrical properties of organic microcavity devices based on a porous silicon reflector

    Institute of Scientific and Technical Information of China (English)

    XIONG; Zuhong; FAN; Yongliang; ZHAN; Yiqiang; ZHANG; Song

    2005-01-01

    A novel type of microcavity organic light-emitting diode based on a porous silicon distributed Bragg reflector (PS-DBR) has first been achieved and its microstructure, optical, and electrical properties have also been investigated in detail. The microcavity is made up of the central active organic multilayer sandwiched between a top silver film and a bottom PS-DBR, formed by electrochemical etching of p++-Si substrate. The field- emission scanning electron microscopy cross-section images show the nanometer-scale layered structure and flat interfaces inside the microcavity. The reflectivity (relative to an Al mirror) of the PS-DBR is up to 99%, and the stopband is about 160 nm wide. Resonant cavity mode appears as a tip in the reflectivity spectrum of the Si-based organic multilayer films, which is a symbol that the Si-based organic multilayer structure is indeed a microcavity. The peak widths of the electroluminescence (EL) spectra from the cavities emitting green and red light are greatly reduced from 85 nm and 70 nm to 8 nm and 12 nm, respectively, as compared with those measured from non-cavity structures. Note that the EL emission from the cavity devices is single-mode, and the off-resonant optical modes are highly suppressed. Moreover, increases of a factor of about 6 and 4 of the resonant peak intensity from the cavities emitting green and red light are also observed, respectively. In addition, the current-brightness-voltage characteristics and effect parameters on the lifetime of the cavity devices are also discussed. The present technique for obtaining enhanced EL emission from Si-based organic microcavity may also be another novel effective method for realizing Si-based optoelectronics device integration.

  2. Time-resolved laser studies on the proton pump mechanism of bacteriorhodopsin. Progress report, January 31,1991--February 1, 1992

    Energy Technology Data Exchange (ETDEWEB)

    El-Sayed, M.A.

    1991-12-31

    The research work carried out in 1991 can be classified as follows: (1) Work on the nature of the binding site of Eu{sup 3+} in which a fluorescence technique was used to determine the binding equilibrium constant from the concentration of the free Eu{sup 3+} in equilibrium with the bound ions. (2) The mechanism of the slow deprotonation process of bacteriorhodopsin during its photocycle from the observed temperature and pH dependence of its kinetics. (3) Using the circular dichroism spectrum of bR and its perturbed forms to examine the nature of the primary process as well as the origin of the non-exponential kinetic behavior of its photocycle. (4) Studies of bacteriorhodopsin mutants to identify the important amino acids that are part of the reaction coordinate of the deprotonation process as well as to assign the species that are important in giving rise to UV transient absorption whose origin was controversial.

  3. Energy-selective optical excitation and detection in InAs/InP quantum dot ensembles using a one-dimensional optical microcavity

    International Nuclear Information System (INIS)

    We demonstrate the selective optical excitation and detection of subsets of quantum dots (QDs) within an InAs/InP ensemble using a SiO2/Ta2O5-based optical microcavity. The low variance of the exciton transition energy and dipole moment tied to the narrow linewidth of the microcavity mode is expected to facilitate effective qubit encoding and manipulation in a quantum dot ensemble with ease of quantum state readout relative to qubits encoded in single quantum dots

  4. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Cao, Runan; Xu, Fei [Department of Physics, Shanghai University, Shanghai 200444 (China); Da, Peimei; Zheng, Gengfeng [Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Lu, Jian, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  5. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity

    CERN Document Server

    Ozdemir, Sahin Kaya; He, Lina; Yang, Lan

    2011-01-01

    We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength scatterers by introducing "splitting quality" Qsp, a dimensionless parameter defined as the ratio of the scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is introduced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au particles. These values are the highest Qsp and Purcell factors reported up to date.

  6. Looking through the mirror: optical microcavity-mirror image photonic interaction.

    Science.gov (United States)

    Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F

    2012-05-01

    Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale. PMID:22565747

  7. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    Energy Technology Data Exchange (ETDEWEB)

    Banihashemi, Mehdi; Ahmadi, Vahid, E-mail: v-ahmadi@modares.ac.ir [Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, P.O. Box 14115-194 (Iran, Islamic Republic of); Nakamura, Tatsuya; Kojima, Takanori; Kojima, Kazunobu; Noda, Susumu [Department of Electronic Science and Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 (Japan)

    2013-12-16

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling.

  8. Far off-resonant coupling between photonic crystal microcavity and single quantum dot with resonant excitation

    International Nuclear Information System (INIS)

    In this paper, we experimentally demonstrate that with sub-nanowatt coherent s-shell excitation of a single InAs quantum dot, off-resonant coupling of 4.1 nm is possible between L3 photonic crystal microcavity and the quantum dot at 50 K. This resonant excitation reduces strongly the effect of surrounding charges to quantum dot, multiexciton complexes and pure dephasing. It seems that this far off-resonant coupling is the result of increased number of acoustical phonons due to high operating temperature of 50 K. The 4.1 nm detuning is the largest amount for this kind of coupling

  9. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  10. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  11. Entropic Lattice Boltzmann study of hydrodynamics in a microcavity - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Karlin, I. V.; Ansumali, S.; Frouzakis, Ch. E.; Boulouchos, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme ETHZ, ETH-Zentrum, Zuerich (Switzerland)

    2005-07-01

    This yearly report for 2004 presents a review of work being done on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, on the development of a new approximation method for use in micrometer-scale flow calculations. The method, based on recently-developed so-called minimal entropy-kinetic models of the Boltzmann-kinetic equation, is discussed. Two detailed studies of micro-flows in specific geometries are discussed. The potential of the new method as a replacement for costly microscopic simulation methods is examined. The development and testing of a new thermal model - the so-called Thermal D2Q9 model - is discussed. A second study examined flows in a micro-cavity. A detailed parametric study of the quantitative and qualitative properties of the flows for a comprehensive range of dilution is mentioned.

  12. Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities

    CERN Document Server

    Di, Ziyun; Dolan, Philip R; Fairclough, Simon M; Wincott, Matthew B; Fill, Johnny; Hughes, Gareth M; Smith, Jason M

    2012-01-01

    We report the control of spontaneous emission from CdSe/ZnS core-shell quantum dots coupled to novel open-access optical microcavities. The cavities are fabricated by focused ion beam milling, and provide mode volumes less than a cubic micrometre. The quantum dot emission spectrum, spatial modes, and lifetime are all modified substantially by the presence of the cavity, and can be tuned by actively varying the cavity length. An increase in emission rate of 75% is achieved at room temperature, attributed to the Purcell effect in the 'bad emitter' regime. We demonstrate a high degree of control over the emission from the dots, including near single-mode operation and the ability to detect strong emission from individual nanocrystals.

  13. Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared.

    Science.gov (United States)

    Troia, Benedetto; Penades, Jordi Soler; Khokhar, Ali Z; Nedeljkovic, Milos; Alonso-Ramos, Carlos; Passaro, Vittorio M N; Mashanovich, Goran Z

    2016-02-01

    We present Vernier-effect photonic microcavities based on a germanium-on-silicon technology platform, operating around the mid-infrared wavelength of 3.8 μm. Cascaded racetrack resonators have been designed to operate in the second regime of the Vernier effect, and typical Vernier comb-like spectra have been successfully demonstrated with insertion losses of ∼5  dB, maximum extinction ratios of ∼23  dB, and loaded quality factors higher than 5000. Furthermore, an add-drop racetrack resonator designed for a Vernier device has been characterized, exhibiting average insertion losses of 1 dB, extinction ratios of up to 18 dB, and a quality factor of ∼1700. PMID:26907436

  14. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  15. The quantum features of the photon statistics in a semiconductor microcavity

    Institute of Scientific and Technical Information of China (English)

    Wei Wei

    2006-01-01

    The quantum features of the temporal photon statistics of an exciton-cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton-exciton coupling and the phase-space filling, are much weaker than the exciton-photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses-revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton-polariton being ignored.

  16. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    Science.gov (United States)

    Luo, Ming-Xing; Wang, Xiaojun

    2014-07-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.

  17. Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity

    Science.gov (United States)

    Solenov, Dmitry; Economou, Sophia E.; Reinecke, T. L.

    2013-01-01

    Implementations for quantum computing require fast single- and multiqubit quantum gate operations. In the case of optically controlled quantum dot qubits, theoretical designs for long-range two- or multiqubit operations satisfying all the requirements in quantum computing are not yet available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum-dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with available optically induced single-qubit operations, and it advances opportunities for scalable architectures. We show that the gate fidelity can exceed 90% in experimentally accessible systems.

  18. Monolithic single GaN nanowire laser with photonic crystal microcavity on silicon

    International Nuclear Information System (INIS)

    Optically pumped lasing at room temperature in a silicon based monolithic single GaN nanowire with a two-dimensional photonic crystal microcavity is demonstrated. Catalyst-free nanowires with low density (∼108 cm-2) are grown on Si by plasma-assisted molecular beam epitaxy. High resolution transmission electron microscopy images reveal that the nanowires are of wurtzite structure and they have no observable defects. A single nanowire laser fabricated on Si is characterized by a lasing transition at λ=371.3 nm with a linewidth of 0.55 nm. The threshold is observed at a pump power density of ∼120 kW/cm2 and the spontaneous emission factor β is estimated to be 0.08.

  19. Manipulation of exciton and photon lasing in a membrane-type ZnO microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Ying-Yu; Chen, Jee-Wei; Chang, Tsu-Chi; Lu, Tien-Chang, E-mail: timtclu@mail.nctu.edu.tw [Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Chou, Yu-Hsun [Department of Photonics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan (China); Institute of Lighting and Energy Photonics, National Chiao Tung University, 301 Gaofa 3rd Road, Guiren District, Tainan 71150, Taiwan (China)

    2015-03-30

    We report on the fabrication and characterization of a membrane-type ZnO microcavity (MC). The ZnO membrane was cut from a single crystalline ZnO substrate by using focused ion beam milling, and was then placed onto a SiO{sub 2} substrate by using glass microtweezers. Through changing the pumping regime, manipulation of P-band exciton lasing and whispering-gallery mode (WGM) photon lasing could be easily achieved. P-band exciton lasing was observed only when the pumping laser was focused at the center of the ZnO MC with a small pumping size because of the innate ring-shaped WGM distribution. Furthermore, the lasing threshold of the ZnO MC could be reduced to an order lower by using a larger pumping spot because of the more favorable spatial overlap between the optical gain and WGM.

  20. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian;

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µeV are...

  1. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    International Nuclear Information System (INIS)

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  2. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  3. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities

    CERN Document Server

    Rodriguez, S R K; Sagnes, I; Gratiet, L Le; Galopin, E; Lemaitre, A; Bloch, J

    2016-01-01

    Bosons hopping across sites and interacting on-site are the essence of the Bose-Hubbard model (BHM). Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear cavities have emerged. Two coupled semiconductor microcavities constitute a model system where the hopping, interaction, and decay of exciton polaritons --- mixed light-matter quasiparticles --- can be engineered in combination with site-selective coherent driving to implement the driven-dissipative two-site optical BHM. Here we explore the interplay of interference and nonlinearity in this system, in a regime where three distinct density profiles can be observed under identical driving conditions. We demonstrate how the phase acquired by polaritons hopping between cavities can be controlled through effective polariton-polariton interactions. Our results open new perspectives for synthesizing density-dependent gauge fields for polaritons in two-dimensional multicavity s...

  4. Strong photoluminescence of the porous silicon with HfO2-filled microcavities

    International Nuclear Information System (INIS)

    Greatly enhanced blue emission was observed at room temperature in the single-crystal silicon with HfO2 filled into its microcavities. The broad blue band light was emitted from both the HfO2 dielectric and the porous Si. The ferroelectricity of HfO2 enhances the blue emission from Si by its filling into the microcaivities. At the same time, HfO2 contributes to the light emission for the transitions of the defect levels for oxygen vacancy. The observation of greatly enhanced blue light emission of the porous Si filled with HfO2 dielectric is remarkable as both HfO2 and Si are highly compatible with Si-based electronic industry

  5. Experimental Test of Fractal Weyl Law in a High-Q Asymmetric Optical Microcavity

    CERN Document Server

    Wang, Li; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2015-01-01

    We experimentally test the fractal Weyl law by counting whispering-gallery modes (WGMs) in the transmission spectrum of a deformed microcavity, as a function of the openness of the system. These high-Q WGMs are excited indirectly but efficiently by a laser beam via dynamical tunneling, and provide information on the number of chaotic states that live inside the cavity, while the openness is controlled by varying the size of a high-index silicon pillar underneath the low-index silica microtoroid. A fractal Weyl law describing the number of quasibound chaotic states well captures our data, whereas we find significant deviations from a Random-Matrix-Theory-based prediction, which is ascribed to the ballistic decay of the rays occurring within Ehrenfest time.

  6. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  7. Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography.

    Science.gov (United States)

    Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Goto, Taichi; Lim, Pang Boey; Inoue, Mitsuteru

    2016-01-11

    Holographic memory is expected to become a high-capacity data storage. Magnetic volumetric holograms are rewritable holograms that are recorded as magnetization directions through thermomagnetic recording. However, the effective depth of magnetic holograms is limited by thermal diffusion that causes merging of magnetic fringes. In this study, we propose the insertion of heat-sink layers (HSLs) for retaining well-defined magnetic fringes during volumetric writing. Magnetophotonic microcavity media were used for demonstrating the HSL effect, and the structural design principle was established in numerical calculations. The results indicate that deep and clear magnetic fringes and an improvement in the diffraction efficiency can be achieved by the insertion of HSLs. PMID:26832282

  8. Chaos-induced transparency in an ultrahigh-Q optical microcavity

    CERN Document Server

    Xiao, Yun-Feng; Yang, Qi-Fan; Wang, Li; Shi, Kebin; Li, Yan; Gong, Qihuang

    2012-01-01

    We demonstrate experimentally a new form of induced transparency, i.e., chaos-induced transparency, in a slightly deformed microcavity which support both continuous chaotic modes and discrete regular modes with Q factors exceeding 3X?10^7. When excited by a focused laser beam, the induced transparency in the transmission spectrum originates from the destructive interference of two parallel optical pathways: (i) directly refractive excitation of the chaotic modes, and (ii) excitation of the ultra-high-Q regular mode via chaos-assisted dynamical tunneling mechanism coupling back to the chaotic modes. By controlling the focal position of the laser beam, the induced transparency experiences a highly tunable Fano-like asymmetric lineshape. The experimental results are modeled by a quantum scattering theory and show excellent agreement. This chaos-induced transparency is accompanied by extremely steep normal dispersion, and may open up new possibilities a dramatic slow light behavior and a significant enhancement o...

  9. What is- and what is not- Electromagnetically-Induced-Transparency in Whispering-Gallery-Microcavities

    CERN Document Server

    Peng, Bo; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-01-01

    Electromagnetically-induced-transparency (EIT) and Autler-Townes splitting (ATS) are two prominent examples of coherent interactions between optical fields and multilevel atoms. They have been observed in various physical systems involving atoms, molecules, meta-structures and plasmons. In recent years, there has been an increasing interest in the implementations of all-optical analogues of EIT and ATS via the interacting resonant modes of one or more optical microcavities. Despite the differences in their underlying physics, both EIT and ATS are quantified by the appearance of a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While in EIT the transparency window is a result of Fano interference among different transition pathways, in ATS it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether a transparency window observed in the spectrum is due to EIT or ATS is cr...

  10. Nonreciprocity light propagation in coupled microcavities system beyond weak-excitation approximation

    CERN Document Server

    Zheng, A S; Chen, H; Mei, T; Liu, J

    2016-01-01

    We propose an alternative scheme for nonreciprocal light propagation in two coupled cavities system, in which a two-level quantum emitter is coupled to one of the optical microcavities. For the case of parity-time (\\textrm{PT}) system (i.e., active-passive coupled cavities system), the cavity gain can significantly enhance the optical nonlinearity induced by the interaction between a quantum emitter and cavity field beyond weak-excitation approximation. The giant optical nonlinearity results in the non-lossy nonreciprocal light propagation with high isolation ratio in proper parameters range. In addition, our calculations show that nonreciprocal light propagation will not be affected by the unstable output field intensity caused by optical bistability and we can even switch directions of nonreciprocal light propagation by appropriately adjusting the system parameters.

  11. Observation of Rabi splitting in a bulk GaN microcavity grown on silicon

    International Nuclear Information System (INIS)

    We report the experimental observation of the strong-coupling regime in a nitride-based microcavity. The active layer in the optical cavity consists of a λ/2 GaN layer sandwiched between a dielectric mirror and the silicon substrate, which acts as the bottom mirror. Reflectivity measurements have been performed under various angles of incidence at T=5 K, producing evidence of strong-coupling behavior between the exciton and the cavity mode. A Rabi splitting of 31 meV is obtained experimentally. Transfer-matrix simulations have allowed us to account for the exciton-photon interaction. From these calculations, the oscillator strengths of the A and B excitons are evaluated and these values are in good agreement with those previously determined in bulk GaN

  12. Microcavity effect on the pump-probe intersubband response of multiple-quantum-well structures

    International Nuclear Information System (INIS)

    We study theoretically the coherent pump-probe intersubband response of a multiple quantum well (MQW) embedded in a semiconductor microcavity. An n-type doped MQW structure with two subbands in the conduction band is considered. Self-consistent numerical calculations are performed for realistic systems employing a semiclassical approach based on the transfer matrix formalism and the so-called sheet model. They show that in the strong coupling limit the pumping of the system leads to evolution of the intersubband cavity polariton doublet into a Mollow-type spectrum. By using appropriate angles, both the pump and the probe light can be tuned into resonance with the cavity mode. In this double-resonance case, simultaneously with a dramatic enhancement of the Rabi flopping frequency, a strong selective enhancement of distinct parts of the Rabi sidebands is possible. (paper)

  13. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  14. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    CERN Document Server

    Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan

    2015-01-01

    The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  15. GaAs micro-pyramids serving as optical micro-cavities

    International Nuclear Information System (INIS)

    An efficient light-matter coupling requires high-quality (Q) micro-cavities with small mode volume. We suggest GaAs micro-pyramids placed on top of AlAs/GaAs distributed Bragg reflectors to be promising candidates. The pyramids were fabricated by molecular-beam epitaxy, electron-beam lithography and a subsequent wet-chemical etching process using a sacrificial AlAs layer. Measured Q-factors of optical modes in single pyramids reach values up to 650. A finite-difference time-domain simulation assuming a simplified cone-shaped geometry suggests possible Q-factors up to 3600. To enhance the light confinement in the micro-pyramids we intend to overgrow the pyramidal facets with a Bragg mirror--results of preliminary tests are given.

  16. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    CERN Document Server

    Cheema, M Imran; Hayat, Ahmad A; Peter, Yves-Alain; Armani, Andrea M; Kirk, Andrew G

    2012-01-01

    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biological events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the applicatio...

  17. Highly Sensitive On-Chip Magnetometer with Saturable Absorbers in Two-Color Microcavities

    CERN Document Server

    Gazzano, O

    2016-01-01

    Interacting resonators can lead to strong non-linearities but the details can be complicated to predict. In this work, we study the non-linearities introduced by two nested microcavities that interact with nitrogen vacancy centers in a diamond waveguide. Each cavity has differently designed resonance; one in the green and one in the infrared. The magnetic-field dependence of the nitrogen vacancy center absorption rates on the green and the recently observed infrared transitions allows us to propose a scalable on-chip magnetometer that combines high magnetic-field sensitivity and micrometer spatial resolution. By investigating the system behaviors over several intrinsic and extrinsic parameters, we explain the main non-linearities induced by the NV centers and enhanced by the cavities. We finally show that the cavities can improve the magnetic-field sensitivity by up to two orders of magnitudes.

  18. Dissipative optomechanics of a single-layer graphene in a microcavity

    CERN Document Server

    Xiao, Lin-Da; Liu, Yong-Chun; Yan, Meng-Yuan; Xiao, Yun-Feng

    2014-01-01

    We study the optomechanical coupling of a single-layer graphene with a high-Q Fabry-P?erot microcavity in the membrane-in-the-middle configuration. In ordinary dissipative coupling systems, mechanical oscillators modulate the loss associated with the input coupling of the cavity mode; while in our system, the graphene oscillator couples dissipatively with the cavity mode through modulating its absorption loss. By analyzing the effects of the interband transition of a graphene suspended near the node of the cavity field, we obtain strong and tunable dissipative coupling without excessively reducing the optical quality factor. Finally, it is found that the exural mode of the graphene could be cooled down to its ground state in the present coupling system. This study provides new insights for graphene optomechanics in the visible range.

  19. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    Energy Technology Data Exchange (ETDEWEB)

    Tzimis, A.; Savvidis, P. G. [Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Trifonov, A. V.; Ignatiev, I. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); Christmann, G.; Tsintzos, S. I. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Hatzopoulos, Z. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Kavokin, A. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  20. Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities.

    Science.gov (United States)

    Zheng, Jian-Yao; Xu, Hongjun; Wang, Jing Jing; Winters, Sinéad; Motta, Carlo; Karademir, Ertuğrul; Zhu, Weigang; Varrla, Eswaraiah; Duesberg, Georg S; Sanvito, Stefano; Hu, Wenping; Donegan, John F

    2016-08-10

    Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources. PMID:27438189

  1. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    Science.gov (United States)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  2. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure

    Science.gov (United States)

    Sasaki, J.; Shichida, Y.; Lanyi, J. K.; Maeda, A.

    1992-01-01

    The difference Fourier transform infrared spectrum for the N intermediate in the photoreaction of the light-adapted form of bacteriorhodopsin can be recorded at pH 10 at 274 K (Pfefferle, J.-M., Maeda, A., Sasaki, J., and Yoshizawa, T. (1991) Biochemistry 30, 6548-6556). Under these conditions, Asp96-->Asn bacteriorhodopsin gives a photoproduct which shows changes in protein structure similar to those observed in N of wild-type bacteriorhodopsin. However, decreased intensity of the chromophore bands and the single absorbance maximum at about 400 nm indicate that the Schiff base is unprotonated, as in the M intermediate. This photoproduct was named MN. At pH 7, where the supply of proton is not as restricted as at pH 10, Asp96-->Asn bacteriorhodopsin yields N with a protonated Schiff base. The Asn96 residue, which cannot deprotonate as Asp96 in wild-type bacteriorhodopsin, is perturbed upon formation of both MN at pH 10 and N at pH 7. We suggest that the reprotonation of the Schiff base is preceded by a large change in the protein structure including perturbation of the residue at position 96.

  3. Controling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Perot microcavity

    International Nuclear Information System (INIS)

    We present here both theoretical and experimental results on the fluorescence of single defect centers in diamond nanocrystals embedded in a planar dielectric microcavity. From a theoretical point of view, we show that the overall fluorescence collection efficiency using a moderate numerical aperture microscope objective can be enhanced by using a low-quality-factor microcavity. This could be used in particular for low-temperature applications, where the numerical aperture of collection microscope objectives is limited due to the experimental constraints. We experimentally investigate the control of the fluorescence spectrum of the emitted light from a single center. We show the simultaneous narrowing of the room temperature broadband emission spectrum and the increase in the fluorescence spectral density.

  4. Controling the single-diamond nitrogen-vacancy color center photoluminescence spectrum with a Fabry-Perot microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Dumeige, Yannick [Universite Europeenne de Bretagne, Laboratoire Foton, CNRS UMR 6082 Foton, Enssat, 6 rue de Kerampont, 22305 Lannion Cedex (France); Alleaume, Romain [Institut Telecom/Telecom ParisTech, Laboratoire Traitement et Communication de l' Information, CNRS UMR 5141, 46 rue Barrault, 75634 Paris Cedex (France); Grangier, Philippe [Laboratoire Charles Fabry de l' Institut d' Optique, CNRS UMR 8501, Institut d' Optique Graduate School, Campus Polytechnique-RD 128, 2 avenue Augustin Fresnel 91127 Palaiseau Cedex (France); Treussart, Francois; Roch, Jean-Francois, E-mail: yannick.dumeige@univ-rennes1.fr [Laboratoire de Photonique Quantique et Moleculaire, CNRS UMR 8537, Ecole Normale Superieure de Cachan, 61 avenue du President Wilson, 94235 Cachan Cedex (France)

    2011-02-15

    We present here both theoretical and experimental results on the fluorescence of single defect centers in diamond nanocrystals embedded in a planar dielectric microcavity. From a theoretical point of view, we show that the overall fluorescence collection efficiency using a moderate numerical aperture microscope objective can be enhanced by using a low-quality-factor microcavity. This could be used in particular for low-temperature applications, where the numerical aperture of collection microscope objectives is limited due to the experimental constraints. We experimentally investigate the control of the fluorescence spectrum of the emitted light from a single center. We show the simultaneous narrowing of the room temperature broadband emission spectrum and the increase in the fluorescence spectral density.

  5. Enhancement of the blue photoluminescence intensity for the porous silicon with HfO2 filling into microcavities.

    Science.gov (United States)

    Jiang, Ran; Du, Xianghao; Sun, Weideng; Han, Zuyin; Wu, Zhengran

    2015-01-01

    With HfO2 filled into the microcavities of the porous single-crystal silicon, the blue photoluminescence was greatly enhanced at room temperature. On one hand, HfO2 contributes to the light emission with the transitions of the defect levels for oxygen vacancy. On the other hand, the special filling-into-microcavities structure of HfO2 leads to the presence of ferroelectricity, which greatly enhances the blue emission from porous silicon. Since both HfO2 and Si are highly compatible with Si-based electronic industry, combined the low-cost and convenient process, the HfO2-filled porous Si shows a promising application prospect. PMID:26503804

  6. On Extension of Optimal Entanglement Concentration of GHZ States in Quantum-Dot and Micro-Cavity Coupled System

    International Nuclear Information System (INIS)

    We extend an optimal entanglement distillation of the triplet Greenberger—Horne—Zeilinger (GHZ) state via entanglement concentrating in the three-partite partially electron-spin-entangled systems. Two entanglement concentration protocols are similarly designed in detail with the post-selection in quantum-dot (QD) and micro-cavity coupled systems. The proposed protocol can be repeated several rounds to achieve an optimal success probability with an assistance of the ancillary QD, where only the single photon needs to pass through the micro-cavity for each round. It increases the total success probability of the distillation even if the implemented cavity is imperfect in practice during the whole process. (general)

  7. Weak-microcavity organic light-emitting diodes with improved light-extraction and wide viewing-angle

    Science.gov (United States)

    Cho, Sang-Hwan; Lee, Yong-Hee; Song, Young-Woo; Kim, Yoon-Chang; Lee, Joon-Gu; Lee, Jong Hyuk; Hwang, Kyu Hwan; Zang, Dong-Sik

    2009-02-01

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays that deliver both a high light-extraction efficiency and wide viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs (WMOLEDs) are enhanced by 56%, 107%, and 26%, respectively with minimal changes viewing angle and EL spectra characteristics. The color purity is also improved for all three colors. Moreover, we fabricated full-color 128×160 passive-matrix bottom-emitting WMOLED displays to prove their manufacturability. This design is realized by simple one-step 20-nm etching of the low-index layer of red/green subpixels. The EL efficiency of white color in the WMOLED display is 27% higher than that of a conventional OLED display.

  8. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators

    OpenAIRE

    Carmon, Tal; Kippenberg, Tobias J.; Yang, Lan; Rokhsari, Hosein; Spillane, Sean; Vahala, Kerry J.

    2005-01-01

    We demonstrate locking of an on-chip, high-Q toroidal-cavity to a pump laser using two, distinct methods: coupled power stabilization and wavelength locking of pump laser to the microcavity. In addition to improvements in operation of previously demonstrated micro-Raman and micro-OPO lasers, these techniques have enabled observation of a continuous, cascaded nonlinear process in which photons generated by optical parametric oscillations (OPO) function as a pump for Raman lasing. Dynamical beh...

  9. Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities

    OpenAIRE

    Corfdir, P.; Levrat, J.; Rossbach, G; Butte, R.; Feltin, E.; Carlin, J.-F.; Christmann, G.; Lefebvre, P.; Ganiere, J. -D.; Grandjean, N.; Deveaud-Pledran, B.

    2012-01-01

    We report on the direct observation of biexcitons in a III-nitride based multiple quantum well microcavity operating in the strong light-matter coupling regime by means of nonresonant continuous wave and time-resolved photoluminescence at low temperature. First, the biexciton dynamics is investigated for the bare active medium (multiple quantum wells alone) evidencing localization on potential fluctuations due to alloy disorder and thermalization between both localized and free excitonic and ...

  10. Effect of patterned coupled optical micro-cavities in twodimensional Si-ZnO hybrid photonic structure

    International Nuclear Information System (INIS)

    The optical characterization of the Si-ZnO hybrid photonic device fabricated and studied in this work revealed its ability to selectively enhance the reflectance on specific wavelengths in the border of VIS-NIR range. This ability was attributed to the coupling of the embedded micro-cavities in the photonic crystal. The results found suggest the presence of a photonic band gap around the border of VIS-NIR range in the hybrid photonic structure studied

  11. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO

    Science.gov (United States)

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P.; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J.; Lafosse, X.; Bouchoule, S.; Li, F.; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2016-03-01

    The polariton condensation phase diagram is compared in GaN and ZnO microcavities grown on mesa-patterned silicon substrate. Owing to a common platform, these microcavities share similar photonic properties with large quality factors and low photonic disorder, which makes it possible to determine the optimal spot diameter and to realize a thorough phase diagram study. Both systems have been investigated under the same experimental conditions. The experimental results and the subsequent analysis reveal clearly that longitudinal optical phonons have no influence in the thermodynamic region of the condensation phase diagram, while they allow a strong (slight) decrease of the polariton lasing threshold in the trade-off zone (kinetic region). Phase diagrams are compared with numerical simulations using Boltzmann equations, and are in satisfactory agreement. A lower polariton lasing threshold has been measured at low temperature in the ZnO microcavity, as is expected due to a larger Rabi splitting. This study highlights polariton relaxation mechanisms and their importance in polariton lasing.

  12. Near field enhancement and absorption properties of the double cylindrical microcavities based on triple-band metamaterial absorber

    International Nuclear Information System (INIS)

    We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings each with a gold disk in the center, and a metallic ground plane separated by a dielectric layer. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities are 16.65 THz, 20.65 THz, and 25.65THz, respectively. We also calculate the values of contrast C (C = 1 − Rmin), which can reach 95%, 97%, and 95% at the corresponding frequencies by optimizing the geometry parameters of structure. Moreover, we demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 104 ∼105-fold enhancement of the electromagnetic energy density inside the double cavities, which contains the most energy of the incoming electromagnetic radiation. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as an absorbing element in scientific and technical applications because of its extreme confinement, multiband absorptions, and polarization insensitivity

  13. Electrically-driven AlGaAs/AlAs quantum well-microcavities for exciton-polariton studies

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi-Iman, Arash; Lermer, Matthias; Schneider, Christian; Hoefling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg (Germany); Kim, Na Young; Yamamoto, Yoshihisa [Ginzton Laboratory, Stanford University, CA (United States)

    2010-07-01

    In a semiconductor microcavity with embedded quantum wells (QWs) new eigenmodes are formed called the polaritons when the confined cavity photon modes strongly couple to the QW excitons. Cavity polaritons and their ability to undergo Bose-Einstein condensation have been intensively studied in the last decade, mainly in the optical pumping regime. Very recently, also electrically driven polariton systems for further studies and future applications have been brought into focus. Doped microcavity structures with p-i-n-diode type design have proven as appropriate systems for current injection into the active region of the cavity. We have realized and studied electrically contacted AlGaAs/AlAs microcavities containing 4 GaAs QWs in a {lambda}/2 AlAs cavity sandwiched between an n-doped lower and an p-doped upper distributed Bragg reflector. For the planar sample structure, we observed strong coupling associated with a Rabi-splitting of {approx}10 meV in photo- as well as electroluminescence. We report on angularly resolved studies on polariton emission under both optical and electrical excitation. The respective data will be compared with results obtained from polariton LEDs based on InGaAs QWs.

  14. High-polarization-discriminating infrared detection using a single quantum well sandwiched in plasmonic micro-cavity.

    Science.gov (United States)

    Li, Qian; Li, ZhiFeng; Li, Ning; Chen, XiaoShuang; Chen, PingPing; Shen, XueChu; Lu, Wei

    2014-01-01

    Polarimetric imaging has proved its value in medical diagnostics, bionics, remote sensing, astronomy, and in many other wide fields. Pixel-level solid monolithically integrated polarimetric imaging photo-detectors are the trend for infrared polarimetric imaging devices. For better polarimetric imaging performance the high polarization discriminating detectors are very much critical. Here we demonstrate the high infrared light polarization resolving capabilities of a quantum well (QW) detector in hybrid structure of single QW and plasmonic micro-cavity that uses QW as an active structure in the near field regime of plasmonic effect enhanced cavity, in which the photoelectric conversion in such a plasmonic micro-cavity has been realized. The detector's extinction ratio reaches 65 at the wavelength of 14.7 μm, about 6 times enhanced in such a type of pixel-level polarization long wave infrared photodetectors. The enhancement mechanism is attributed to artificial plasmonic modulation on optical propagation and distribution in the plasmonic micro-cavities. PMID:25208580

  15. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  16. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  17. Application of polymer films based on bacteriorhodopsin and its analogs for low-light-level imaging systems

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Djukova, T. V.; Druzhko, Anna B.; Vsevolodov, Nicolai N.

    1995-03-01

    In recent years polymer films based on bacteriorhodopsin (BR) have attracted a lot of attention in the area of optical imaging systems. The high photosensitivity of these films allows the processing of low-power optical signals (several mW/cm2 CW gas laser irradiation). Spatial resolution does not fall below 5000 lines/mm, photoresponse time is 50 microsecond(s) and images can be recorded and erased over million cycles. Polymer film with BR combine a dynamic recording with optical image processing. The characteristics of anisotropically-saturating nonlinearity of polymer films with BR allow a suppression of the background with greater intensity than usable signal intensity of be performed. Low saturation intensity of the polymer films with BR allows the operation of the polarization of low-intensity signals to be realized. Nonlinear photoresponse of the high photosensitivity BR genetic variant Asp96-Glu is studied in this work too. We hope that the polymer films based on BR and its analogs will find potential use precisely in the medical low- light-level imaging systems.

  18. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates

    Science.gov (United States)

    Singh, Chandra Pal; Roy, Sukhdev

    2003-03-01

    All-optical switching has been theoretically analyzed in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption of the M state. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial B state absorption. The switching characteristics have been numerically simulated using the rate equation approach considering all the six intermediate states (B, K, L, M, N and O) in the bR photocycle. The switching characteristics are shown to be sensitive to various parameters such as the pump pulse width, pump intensity, life time of the M state, thickness of the film and absorption cross-section of the B-state at probe wavelength ( σBp). It has been shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at relatively low pump powers, for σBp=0. The switching characteristics have also been used to theoretically design all-optical NOT, OR, AND and the universal NOR and NAND logic gates with two pulsed pump laser beams using the six state model.

  19. Structural Transition of Bacteriorhodopsin Is Preceded by Deprotonation of Schiff Base: Microsecond Time-Resolved X-Ray Diffraction Study of Purple Membrane

    OpenAIRE

    Oka, Toshihiko; Inoue, Katsuaki; Kataoka, Mikio; Yagi, Naoto

    2004-01-01

    The structural changes in the photoreaction cycle of bacteriorhodopsin, a light-driven proton pump, was investigated at a resolution of 7 Å by a time-resolved x-ray diffraction experiment utilizing synchrotron x rays from an undulator of SPring-8. The x-ray diffraction measurement system, used in coupling with a pulsed YAG laser, enabled us to record a diffraction pattern from purple membrane film at a time-resolution of 6 μs over the time domain of 5 μs to 500 ms. In the time domain, the fun...

  20. Sprayed coatings

    Science.gov (United States)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  1. Tailoring the optical properties of wide-bandgap based microcavities via metal films

    International Nuclear Information System (INIS)

    We report on the tuning of the optical properties of II-VI-material-based microcavity samples, which is achieved by depositing Ag films on top of the structures. The micro-reflectivity spectra show a spectral shift of the sample resonance dependent on the metal layer thickness. By comparison of the experimental findings with the theoretical calculations applying the transfer matrix method on a metal-dielectric mirror structure, the influence of the metal layer particularly with regard to its partial oxidation was explored. Tamm plasmon modes are created at the interface between an open cavity with three ZnSe quantum wells and a metal layer on top. When tuning the excitonic emission relative to the mode by changing the sample temperature, an anticrossing of the resonances was observed. This is a clear indication that the strong coupling regime has been achieved in that sample configuration yielding a Rabi splitting of 18.5 meV. These results are promising for the realization of polariton-based optical devices with a rather simple sample configuration

  2. Temperature dependence of the polariton relaxation bottleneck in a GaN microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Stokker-Cheregi, F. [LENS and Department of Physics, University of Florence (Italy); NILPRP, Lasers Department, Magurele, Bucharest (Romania); Vinattieri, A.; Colocci, M.; Gurioli, M. [LENS and Department of Physics, University of Florence (Italy); Semond, F.; Leroux, M.; Massies, J. [CRHEA-CNRS, Valbonne (France); Sellers, I.R. [CRHEA-CNRS, Valbonne (France); Department of Physics, University of Buffalo, NY (United States)

    2008-07-01

    We present an experimental study aimed to investigate discuss the possible presence of a phonon bottleneck in a GaN bulk microcavity. Clear anticrossing between the lower (LP) and upper polariton (UP) branches has been observed up to room temperature in photoluminescence (PL) by angular measurements with a Rabi splitting of the order of 30 meV. In order to determine the presence of a relaxation bottleneck, angular PL measurements have been performed at different temperatures for negative detuning. At low T the PL shows a clear maximum, at the angle corresponding to the resonance between the exciton and the photon modes, which is an experimental demonstration of the presence of a relaxation bottleneck. The PL enhancement in resonance condition is suppressed with increasing T and it almost disappears at room temperature. We therefore demonstrate that the exciton-phonon interaction washes out the polariton bottleneck in GaN MCs at room temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.

    Science.gov (United States)

    Chen, Jun-Rong; Lu, Tien-Chang; Wu, Yung-Chi; Lin, Shiang-Chi; Hsieh, Wen-Feng; Wang, Shing-Chung; Deng, Hui

    2011-02-28

    Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated. Only the lower polariton branches (LPBs) can be clearly observed in ZnO MCs since the large vacuum Rabi splitting pushes the upper polariton branches (UPBs) into the scattering absorption states in the ZnO bulk active region. In addition, we systematically investigate the polariton relaxation bottleneck in bulk ZnO-based MCs. Angle-resolved photoluminescence measurements are performed from 100 to 300 K for different cavity-exciton detunings. A clear polariton relaxation bottleneck is observed at low temperature and large negative cavity detuning conditions. The bottleneck is suppressed with increasing temperature and decreasing detuning, due to more efficient phonon-assisted relaxation and a longer radiative lifetime of the polaritons. PMID:21369239

  4. Physical analysis of the response properties of porous silicon microcavity biosensor

    Science.gov (United States)

    Wu, Chao; Rong, Guoguang; Xu, Junteng; Pan, Shengfei; Zhu, Yongxin

    2012-04-01

    Porous silicon possesses great potential in developing label-free biosensors of high sensitivity. In this work, a well-tuned resonant structure or microcavity is fabricated, and based on it, an intensity-interrogated sensing technique is thoroughly investigated. Using glucose as a target, this method is demonstrated to be advantageous in lowering detection limit while achieving high reliability. In this experiment the limit is extended from approximately 7×10-4RIU to 7×10-5RIU, compared with the redshift method. We also elaborate the physical mechanisms in the sensing process, which give rise to the aberration of reflectivity variation when different procedures (i.e. dynamic vs. static) are executed. It is postulated to be caused by concentration profile change in diffusion boundary layer in response to flow rate difference. We also find that the response time keeps a steady low value before ramping up in extremely low concentration sensing schemes. We arbitrarily cut the response time vs. concentration curve into two regimes, which are dominated by relatively high adsorption rate and slow mass diffusion. In the last part, tailing effect is investigated and eliminated by increasing flow rate. The theory will be instructive in achieving optimum results in operations where physisorption in the porous material plays an important role.

  5. Simulations of emission from microcavity tandem organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq{sub 3}) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) ({alpha}-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  6. Microcavity Silicon Photodetectors at 1.55 μm

    Directory of Open Access Journals (Sweden)

    M. Casalino

    2011-01-01

    Full Text Available The design, the realization, and the characterization of silicon resonant cavity enhanced (RCE photodetectors, working at 1.55 μm, are reported. The photodetectors are constituted by a Fabry-Perot microcavity incorporating a Schottky diode. The working principle is based on the internal photoemission effect. We investigated two types of structures: top and back-illuminated. Concerning the top-illuminated photodetectors, a theoretical and numerical analysis has been provided and the device quantum efficiency has been calculated. Moreover, a comparison among three different photodetectors, having as Schottky metal: gold, silver, or copper, was proposed. Concerning the back-illuminated devices, two kinds of Cu/p-Si RCE photodetectors, having various bottom-mirror reflectivities, were realized and characterized. Device performances in terms of responsivity, free spectral range, and finesse were theoretically and experimentally calculated in order to prove an enhancement in efficiency due to the cavity effect. The back-illuminated device fabrication process is completely compatible with the standard silicon technology.

  7. Nonclassical light from an incoherently pumped quantum dot in a microcavity

    Science.gov (United States)

    Teuber, L.; Grünwald, P.; Vogel, W.

    2015-11-01

    Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of semiconductor quantum optics. In many cases, however, technical and physical issues limit the study of optical fields to incoherently excited systems. We analyze the model of an incoherently driven two-level system in a single-mode cavity. The specific structure of the applied master equation yields a recurrence relation for the steady-state values of correlations of the intracavity field and the emitter. We provide boundary conditions that permit a systematic solution which is numerically less demanding than standard methods. The method allows us to directly infer reasonable cutoff conditions from the system parameters. Different cavity systems from previous experiments are analyzed in terms of field correlation functions which can be measured via homodyne correlation measurements. We find that nonclassical correlations occur in systems of moderate quantum-dot-cavity coupling rather than strong coupling. Our boundary conditions also allow us to derive analytical results for the overall quantum state and its higher-order moments. We obtain very good approximations for the full quantum state of the field in terms of the characteristic functions. It turns out that for every physically reasonable set of system parameters, the state of the intracavity field is nonclassical.

  8. Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities

    Science.gov (United States)

    Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo

    2016-01-01

    We propose a heralded quantum repeater protocol based on the general interface between the circularly polarized photon and the quantum dot embedded in a double-sided optical microcavity. Our effective time-bin encoding on photons results in the deterministic faithful entanglement distribution with one optical fiber for the transmission of each photon in our protocol, not two or more. Our efficient parity-check detector implemented with only one input-output process of a single photon as a result of cavity quantum electrodynamics makes the entanglement channel extension and entanglement purification in quantum repeater far more efficient than others, and it has the potential application in fault-tolerant quantum computation as well. Meanwhile, the deviation from a collective-noise channel leads to some phase-flip errors on the nonlocal electron spins shared by the parties and these errors can be depressed by our simplified entanglement purification process. Finally, we discuss the performance of our proposal, concluding that it is feasible with current technology.

  9. Photonic Crystal Microcavities in Advanced Silicon-On-Insulator Complementary-Metal-Oxide-Semiconductor Technology

    CERN Document Server

    Poulton, Christopher V; Orcutt, Jason S; Shainline, Jeffrey M; Wade, Mark T; Popovic, Milos A

    2014-01-01

    We demonstrate the first (to the best of our knowledge) monolithically integrated linear photonic crystal microcavities in an advanced SOI CMOS microelectronics process (IBM 45nm 12SOI) with no in-foundry process modifications. The cavities were integrated into a standard microelectronics design flow meeting process design rules, and included in a chip set alongside standard microelectronic circuits and microprocessors in the same device layer as transistors. We demonstrate both 1520nm wavelength telecom band and 1180nm cavity designs, using different structures owing to design rule limitations. Loaded Q's of 2,000 and 4,000, and extracted intrinsic loss Q's of the order of 100,000 and 50,000 are demonstrated. We also demonstrate an evanescent coupling geometry which entirely decouples the cavity and waveguide-coupling design, and investigate some of the mode features inherent in this coupling approach. The cavities support extended modes due to the thin device layer that limits optical confinement, and as a ...

  10. Coupling of exciton-polaritons in low-Q coupled microcavities beyond the rotating wave approximation

    Science.gov (United States)

    Liu, Bin; Rai, Prabin; Grezmak, John; Twieg, Robert J.; Singer, Kenneth D.

    2015-10-01

    We have demonstrated coupling between a pair of ultrastrong light-matter coupled microcavities composed of neat glassy organic dye films between metallic (silver) mirrors at room temperature. Based upon our modified coupled oscillator model, we have observed that the degeneracy between the Rabi splittings associated with the symmetric and antisymmetric cavity modes is broken by the higher-order antiresonant terms in the Hamiltonian associated with the breakdown of the rotating wave approximation in the ultrastrong coupling regime. These results are in quantitative agreement with both experiment and transfer matrix modeling. The component cavities are characterized by Q factors around 12 and display a large vacuum Rabi splitting around 1.12 eV between the upper and lower polariton branches, which is about 52 % of the excited state energy, thus indicating ultrastrong coupling in each individual cavity. This large splitting is due to the large oscillator strength of the neat dye glass. We have also observed large polariton-induced incidence-side asymmetry in reflection spectra in a coupled cavity pair with one cavity having no exciton.

  11. Numerical investigation of high-contrast ultrafast all-optical switching in low-refractive-index polymeric photonic crystal nanobeam microcavities

    Science.gov (United States)

    Meng, Zi-Ming; Zhong, Xiao-Lan; Wang, Chen; Li, Zhi-Yuan

    2012-06-01

    With the development of micro- or nano-fabrication technologies, great interest has been aroused in exploiting photonic crystal nanobeam structures. In this article the design of high-quality-factor (Q) polymeric photonic crystal nanobeam microcavities suitable for realizing ultrafast all-optical switching is presented based on the three-dimensional finite-difference time-domain method. Adopting the pump-probe technique, the ultrafast dynamic response of the all-optical switching in a nanobeam microcavity with a quality factor of 1000 and modal volume of 1.22 (λ/n)3 is numerically studied and a switching time as fast as 3.6 picoseconds is obtained. Our results indicate the great promise of applying photonic crystal nanobeam microcavities to construct integrated ultrafast tunable photonic devices or circuits incorporating polymer materials with large Kerr nonlinearity and ultrafast response speed.

  12. Hard coatings

    OpenAIRE

    Dan, J.; Boving, H.; Hintermann, H.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many process...

  13. Photochromic Bacteriorhodopsin Mutant with High Holographic Efficiency and Enhanced Stability via a Putative Self-Repair Mechanism

    Science.gov (United States)

    2015-01-01

    The Q photoproduct of bacteriorhodopsin (BR) is the basis of several biophotonic technologies that employ BR as the photoactive element. Several blue BR (bBR) mutants, generated by using directed evolution, were investigated with respect to the photochemical formation of the Q state. We report here a new bBR mutant, D85E/D96Q, which is capable of efficiently converting the entire sample to and from the Q photoproduct. At pH 8.5, where Q formation is optimal, the Q photoproduct requires 65 kJ mol-1 of amber light irradiation (590 nm) for formation and 5 kJ mol-1 of blue light (450 nm) for reversion, respectively. The melting temperature of the resting state and Q photoproduct, measured via differential scanning calorimetry, is observed at 100 °C and 89 °C at pH 8.5 or 91 °C and 82 °C at pH 9.5, respectively. We hypothesize that the protein stability of D85E/D96Q compared to other blue mutants is associated with a rapid equilibrium between the blue form E85(H) and the purple form E85(−) of the protein, the latter providing enhanced structural stability. Additionally, the protein is shown to be stable and functional when suspended in an acrylamide matrix at alkaline pH. Real-time photoconversion to and from the Q state is also demonstrated with the immobilized protein. Finally, the holographic efficiency of an ideal thin film using the Q state of D85E/D96Q is calculated to be 16.7%, which is significantly better than that provided by native BR (6–8%) and presents the highest efficiency of any BR mutant to date. PMID:24498928

  14. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    International Nuclear Information System (INIS)

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position

  15. Mode switching in a multi-wavelength distributed feedback quantum cascade laser using an external micro-cavity

    Energy Technology Data Exchange (ETDEWEB)

    Sidler, Meinrad [School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, Massachusetts 02138 (United States); Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland); Rauter, Patrick; Blanchard, Romain; Métivier, Pauline; Capasso, Federico, E-mail: capasso@seas.harvard.edu [School of Engineering and Applied Sciences, Harvard University, 29 Oxford St., Cambridge, Massachusetts 02138 (United States); Mansuripur, Tobias S. [Department of Physics, Harvard University, 17 Oxford St., Cambridge, Massachusetts 02138 (United States); Wang, Christine [MIT Lincoln Laboratory, 244 Wood St., Lexington, Massachusetts 02420 (United States); Huang, Yong; Ryou, Jae-Hyun; Dupuis, Russell D. [Center for Compound Semiconductors and School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0250 (United States); Faist, Jérôme [Institute for Quantum Electronics, ETH Zurich, Wolfgang-Pauli-Strasse 16, 8093 Zurich (Switzerland)

    2014-02-03

    We demonstrate a multi-wavelength distributed feedback (DFB) quantum cascade laser (QCL) operating in a lensless external micro-cavity and achieve switchable single-mode emission at three distinct wavelengths selected by the DFB grating, each with a side-mode suppression ratio larger than 30 dB. Discrete wavelength tuning is achieved by modulating the feedback experienced by each mode of the multi-wavelength DFB QCL, resulting from a variation of the external cavity length. This method also provides a post-fabrication control of the lasing modes to correct for fabrication inhomogeneities, in particular, related to the cleaved facets position.

  16. Hard coatings

    International Nuclear Information System (INIS)

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  17. Coherent inter-polariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs single quantum well

    DEFF Research Database (Denmark)

    Birkedal, Dan; Lyssenko, V. G.; Hvam, Jørn Märcher

    2003-01-01

    We report on a new coherent phenomenon in semiconductor microcavities at polariton selective resonance excitation by two femtosecond pulses, propagating along k/sub 2/ and k/sub 1/, associated with exciton gratings, travelling in lateral direction +or- (k/sub 2/ - k/sub 1/). Diffracted polaritons...

  18. Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity

    CERN Document Server

    Kaupp, Hanno; Mader, Matthias; Schlederer, Benedikt; Benedikter, Julia; Haeusser, Philip; Chang, Huan-Cheng; Fedder, Helmut; Hänsch, Theodor W; Hunger, David

    2016-01-01

    Optical microcavities are a powerful tool to enhance spontaneous emission of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, and call for ultra-small mode volume. We demonstrate Purcell-enhanced single photon emission from nitrogen-vacancy (NV) centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to $1.0\\,\\lambda^{3}$. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection, as well as tunable fluorescence lifetime modification, and we infer an effective Purcell factor of up to 2.0. With numerical simulations, we furthermore show that a novel regime for light confinement can be achieved, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. In this regime, effective Purcell factors of up to 11 for NV centers and 63 for si...

  19. Nonlinear Optical Properties of Bacteriorhodopsin and Retinal Chromophores and Their Applications for Optical Information Storage and Processing.

    Science.gov (United States)

    Chen, Zhongping

    Retinal, a conjugated polyene, plays a crucial role in biology. Both the visual pigments and the energy transducing protein, bacteriorhodopsin (BR) have a form of retinal as their chromophores. Because visual excitation and energy transduction in these systems is initiated by the promotion of retinal to an excited electronic state, information about the excited-state structure of retinal and the effect of chromophore/protein interactions on this structure are essential to understanding the functions of these systems. In this thesis, surface second harmonic (SH) generation is used to measure the light-induced dipole moment changes of a series of retinal derivatives that were designed and synthesized to model specific components of chromophore/protein interactions. In addition, we report an in situ probe of the dipole moment change of the retinal chromophore bound in BR by SH generation from oriented purple membranes. The dipole moment changes of various forms of BR, including light-adapted, dark-adapted, blue, and acid purple membrane, were measured and compared. These results, combined with the results from model compounds, elucidate the effects of the chromophore/protein interactions on light-induced charge redistribution and give insight on the fundamental nature of light excitation and energy storage in SR and rhodopsin. Furthermore, the dependence of the molecular hyperpolarizability of the conjugated molecules on donor/acceptor strength, protonation, conjugate length, planarity, and nonconjugate charges is investigated. Our study shows for the first time that nonconjugated charges have a very large effect on the nonlinear optical properties of conjugated molecules. BR has interesting photochromic characteristics, very large optical nonlinearities, and a unique optoelectrical property where the polarity of the photovoltage depends on both its photochromic state and the excitation wavelength. These unique characteristics coupled with its high stability make BR

  20. Recording of dynamic gratings in the nonlinear optical coating of a planar waveguide

    Science.gov (United States)

    Kozhevnikov, N. M.; Korolev, A. E.; Koklyushkin, A. V.; Lipovskaya, M. Yu.; Nazarov, V. N.

    2003-04-01

    The possibility of controlled energy exchange between interfering waveguide modes in a singlemode planar waveguide with a nonlinear optical coating is analyzed. As the coating, a suspension of bacteriorhodopsin D96N was used, which makes it possible to realize two spectrally separated mechanisms of recording and controlling dynamic gratings, i.e., the spatial modulation of the trans-cis excitation rate and the spatial modulation of the cis-trans relaxation rate. The method of phase-modulated beams was used to implement the energy exchange. The dynamic gratings in the coating were recorded by using both radiation with a wavelength within the absorption band of the trans state (630 nm) and radiation with a wavelength within the absorption band of the cis state (440 nm). Efficient control of the energy exchange between the waveguide modes by means of uniform exposure of their interference region to radiation with another wavelength was observed. A completely integral geometrical layout for optically controlled energy exchange was realized. The results obtained are compared with known data on energy exchange between beams in the bulk of a similar nonlinear medium.

  1. Probing bacteriorhodopsin photochemistry with nonlinear optics. Comparing the second harmonic generation of bR and the photochemically induced intermediate K

    Energy Technology Data Exchange (ETDEWEB)

    Bouevitch, O.; Lewis, A. [Hebrew Univ., Jerusalem (Israel); Sheves, M. [Weizmann Inst. of Science, Rehevot (Israel)

    1995-06-29

    The nonlinear optical properties of the bacteriorhodopsin chromophore in the bR568 and K states are investigated by second harmonic generation. The comparison of amplitudes and phases of the second-order nonlinear optical polarizabilities of the retinal chromophore in the two states has revealed a noticeable increase of the induced dipole of the retinal as a result of the bR568 $YLD K transition. The results have been explained in terms of recent theoretical understandings of the nonlinear optical properties of polyenes. Within the context of these understandings we have discussed the molecular origins of the light-induced color changes and the possible mechanism of photon energy storage observed in this protein. 54 refs., 8 figs., 3 tabs.

  2. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.

    Science.gov (United States)

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781

  3. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    CERN Document Server

    Yüce, Emre; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2015-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities operating in the "original" telecom band by exploiting the instantaneous electronic Kerr effect. We demonstrate that resonance frequency reversibly shifts within a picosecond and the magnitude of the shift is affected by the backbone of the $\\lambda-$layer. We investigate experimentally and theoretically the role of the quality factor in terms of its effect on resonance frequency shift. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the cavity cavity storage time is matched. Our experiments and our calculations indicate that the resonance frequency shift induced via the electronic Kerr effect can be maximized by judicious tuning of the pump frequency, pump power and pump pulse duration relative to the storage time of the cavity.

  4. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities

    Science.gov (United States)

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781

  5. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    International Nuclear Information System (INIS)

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10−7 RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date

  6. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities

    Science.gov (United States)

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-07-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits.

  7. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com; Hosseini, Amir; Xu, Xiaochuan [Omega Optics, Inc., Austin, Texas 78757 (United States); Zhu, Liang; Zou, Yi [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-05-12

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10{sup −7} RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date.

  8. Accurate simulation of two-dimensional optical microcavities with uniquely solvable boundary integral equations and trigonometric Galerkin discretization.

    Science.gov (United States)

    Boriskina, Svetlana V; Sewell, Phillip; Benson, Trevor M; Nosich, Alexander I

    2004-03-01

    A fast and accurate method is developed to compute the natural frequencies and scattering characteristics of arbitrary-shape two-dimensional dielectric resonators. The problem is formulated in terms of a uniquely solvable set of second-kind boundary integral equations and discretized by the Galerkin method with angular exponents as global test and trial functions. The log-singular term is extracted from one of the kernels, and closed-form expressions are derived for the main parts of all the integral operators. The resulting discrete scheme has a very high convergence rate. The method is used in the simulation of several optical microcavities for modern dense wavelength-division-multiplexed systems. PMID:15005404

  9. Coupling of a Single Diamond Nanocrystal to a Whispering-Gallery Microcavity: Photon Transportation Benefitting from Rayleigh Scattering

    CERN Document Server

    Liu, Yong-Chun; Li, Bei-Bei; Jiang, Xue-Feng; Li, Yan; Gong, Qihuang

    2011-01-01

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity--waveguide coupling system, and find that it plays a significant role in the photon transportation. On one hand, this study provides a new insight into future solid-state cavity quantum electrodynamics toward strong coupling physics. On the other hand, benefitting from this Rayleigh scattering, novel photon transportation such as dipole induced transparency and strong photon antibunching can occur simultaneously. As potential applications, this system can function as high-efficiency photon turnstiles. In contrast to [B. Dayan \\textit{et al.}, \\textrm{Science} \\textbf{319},1062 (2008)], the photon turnstiles proposed here are highly immune to nanocrystal's azimuthal position.

  10. A pKa calculation of residues in a proton pump, bacteriorhodopsin, from structures determined by electron crystallography.

    Science.gov (United States)

    Mitsuoka, Kaoru

    2014-11-01

    Bacteriorhodopsin (bR) is a light-driven proton pump, which is a membrane protein found in halophilic archeae like Halobacterium salinarum and in eubacteria [1]. When the covalently bound retinal chromophore absorbs the light energy, it changes the conformation from all-trans to 13-cis. This configuration change initiates ion translocation across the cell membrane and a proton moves from inside to outside of the cell. The bR molecules are forming two-dimensional crystals on the membranes of halophilic archeae, and therefore the atomic model of bR was first determined by electron crystallography. The determined structure can be used to determine the pKa values, through which the charge states of ionizable residues in bR determine their pH-dependent properties. The pH-dependent properties are crucial for proton translocation from ionizable residues or to ionizable residues. Detection of the intermediate states of the reaction cycle (photocycle) produced spectroscopic information, which can predict the ionization state of the ionozable residues. In the transition from the L intermediate to the M intermediate, it is known that a proton moves from the Shiff base on the retinal chromophore to Asp85, while a proton is released to the extracellar side from proton-releasing groups including Glu194 and Glu204. Experimentally the pKa value of the proton release is determined to be about 9.7, while the pKa value of Asp85 was measured to change from 2.6 to 7.5 by the proton release from the proton-releasing groups [2]. Here we used the PROPKA program [3] to calculate the pKa values of Asp85 and the proton-releasing groups from the structures at pH 5.5 and at pH 10.0 determined by electron crystallography. The calculation showed that the pKa value of Asp85 changes from 5.3 to 6.1, which qualitatively show the similar changes with the measured difference. The largest change between the structures is the shift of Arg82 by the proton release from the proton-releasing groups

  11. Phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two micro-cavities side coupled to a waveguide system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian; Li, Xiaoming; Dong, Chuanbo [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-01-14

    We propose phase shift multiplication effect of all-optical analog to electromagnetically induced transparency in two photonic crystal micro-cavities side coupled to a waveguide system through external optical pump beams. With dynamically tuning the propagation phase of the line waveguide, the phase shift of the transmission spectrum in two micro-cavities side coupled to a waveguide system is doubled along with the phase shift of the line waveguide. π-phase shift and 2π-phase shift of the transmission spectrum are obtained when the propagation phase of the line waveguide is tuned to 0.5π-phase shift and π-phase shift, respectively. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and the coupled-mode formalism. These results show a new direction to the miniaturization and the low power consumption of microstructure integration photonic devices in optical communication and quantum information processing.

  12. Controlled waveguide coupling for photon emission from colloidal PbS quantum dot using tunable microcavity made of optical polymer and silicon

    Science.gov (United States)

    Nozaka, Takahiro; Mukai, Kohki

    2016-04-01

    A tunable microcavity device composed of optical polymer and Si with a colloidal quantum dot (QD) is proposed as a single-photon source for planar optical circuit. Cavity size is controlled by electrostatic micromachine behavior with the air bridge structure to tune timing of photon injection into optical waveguide from QD. Three-dimensional positioning of a QD in the cavity structure is available using a nanohole on Si processed by scanning probe microscope lithography. We fabricated the prototype microcavity with PbS-QD-mixed polymenthyl methacrylate on a SOI (semiconductor-on-insulator) substrate to show the tunability of cavity size as the shift of emission peak wavelength of QD ensemble.

  13. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Jia, Chen; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in red shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.

  14. Research on Biosensor Based on Porous Silicon Optical Microcavity%一种硅基光学微腔生物传感器的研究

    Institute of Scientific and Technical Information of China (English)

    张勇; 吕小毅; 张红燕; 贾振红

    2012-01-01

    In this paper,a kind of microcavity structure of porous silicon is prepared through the method of electrochemical etching and then it was treated by thermal oxidation; the experiment measures the reflectance spectrometry of biological molecules before and after they enter the microcavity structure of one-dimensional porous silicon; meanwhile,the calculated reflectivity spectra of the biosensor were studied contrastively before and after attachment of small molecules.The research result shows that the porous silicon microcavity biosensor has the characteristics of high sensitivity and specificity,short monitoring period,high accuracy and label-free.The results of this study will help guide practical design of silicon-based photonic microcavity biosensor.%本文我们通过电化学腐蚀方法实验制备出一种多孔硅微腔结构,采用热氧化功能处理,采用APTES小分子进行了生物传感实验,实验测量了生物分子进入到一维多孔硅微腔前后的反射光谱;同时,我们采用转移矩阵理论,利用Matlab进行理论仿真小分子进入到一维多孔硅微腔前后的反射光谱.研究结果表明:一维多孔硅光子晶体微腔结构的生物传感器,具有很高的特异性和灵敏度,且有检测周期短、精度高、免标签等优点.此项研究也有助于指导设计实用化多孔硅微腔结构光子晶体生物传感器.

  15. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  16. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  17. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  18. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  19. Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities

    CERN Document Server

    Zajac, Joanna M

    2012-01-01

    We present a correlative study of structural and optical properties of natural defects in planar semiconductor microcavities grown by molecular beam epitaxy, which are showing a localized polariton spectrum as reported in Zajac et al., Phys. Rev. B 85, 165309 (2012). The three-dimensional spatial structure of the defects was studied using combined focussed ion beam (FIB) and scanning electron microscopy (SEM). We find that the defects originate from a local increase of a GaAs layer thickness. Modulation heights of up to 140nm for oval defects and 90nm for round defects are found, while the lateral extension is about 2um for oval and 4um for round defects. The GaAs thickness increase is attributed to Ga droplets deposited during growth due to Ga cell spitting. Following the droplet deposition, the thickness modulation expands laterally while reducing its height, yielding oval to round mounds of the interfaces and the surface. With increasing growth temperature, the ellipticity of the mounds is decreasing and t...

  20. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Science.gov (United States)

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L.

    2016-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central $\\lambda-$layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth.

  1. Effective W-state fusion strategies for electronic and photonic qubits via the quantum-dot-microcavity coupled system.

    Science.gov (United States)

    Han, Xue; Hu, Shi; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    We propose effective fusion schemes for stationary electronic W state and flying photonic W state, respectively, by using the quantum-dot-microcavity coupled system. The present schemes can fuse a n-qubit W state and a m-qubit W state to a (m + n - 1)-qubit W state, that is, these schemes can be used to not only create large W state with small ones, but also to prepare 3-qubit W states with Bell states. The schemes are based on the optical selection rules and the transmission and reflection rules of the cavity and can be achieved with high probability. We evaluate the effect of experimental imperfections and the feasibility of the schemes, which shows that the present schemes can be realized with high fidelity in both the weak coupling and the strong coupling regimes. These schemes may be meaningful for the large-scale solid-state-based quantum computation and the photon-qubit-based quantum communication. PMID:26242356

  2. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author)

  3. Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Kuan-Yu; Hsiao, Chia-Chiang; Chen, Hung-Chi; Chang, Chih-Hsiang; Kiang, Yean-Woei; Yang, C. C.

    2006-06-01

    We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

  4. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    CERN Document Server

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T

    2016-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 um-long coupled L0-type photonic crystalmicrocavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystalmicrocavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystalmicrocavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 us, and a fall time of 18.5 us. The measured on-chip loss on the transmission band is as l...

  5. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  6. Corrosion inhibiting organic coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sasson, E.

    1984-10-16

    A corrosion inhibiting coating comprises a mixture of waxes, petroleum jelly, a hardener and a solvent. In particular, a corrosion inhibiting coating comprises candelilla wax, carnauba wax, microcrystalline waxes, white petrolatum, an oleoresin, lanolin and a solvent.

  7. Coatings: Pt. 4

    International Nuclear Information System (INIS)

    The demands imposed on the coating industry to reduce environmental pollution and energy consumption and to produce high quality coatings in an era where the cost of raw materials increases continuously, have stimulated interest and research in radiation curing methods for coatings. Radiation such as ionising radiation, visible light, infra red and micro waves can be applied. In this article attention is given to electron beam curing and special reference is made to modern wood coating equipment

  8. Deterministic CNOT gate and entanglement swapping for photonic qubits using a quantum-dot spin in a double-sided optical microcavity

    International Nuclear Information System (INIS)

    Abstract We propose a deterministic and scalable scheme to construct a two-qubit controlled-NOT (CNOT) gate and realize entanglement swapping between photonic qubits using a quantum-dot (QD) spin in a double-sided optical microcavity. The scheme is based on spin selective photon reflection from the cavity and can be achieved in a nondestructive and heralded way. We assess the feasibility of the scheme and show that the scheme can work in both the weak coupling and the strong coupling regimes. The scheme opens promising perspectives for long-distance photonic quantum communication and distributed quantum information processing.

  9. Distinguishing photon and polariton lasing from GaAs microcavities by spectral and temporal analysis of the two-threshold behavior

    OpenAIRE

    Tempel, Jean-Sebastian; Veit, Franziska; Aßmann, Marc; Kreilkamp, Lars Erik; Rahimi-Iman, Arash; Löffler, Andreas; Höfling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred; Bayer, Manfred

    2011-01-01

    We compare polariton lasing with photon lasing of a planar GaAs/GaAlAs microcavity with zero detuning between the bare cavity mode and the bare exciton mode. For the emission from the lower energy-momentum dispersion branch we find a two-threshold behavior of the ground state in the input-output curve where each transition is accompanied by characteristic changes of the in-plane mode dispersion. In particular, we show that the thresholds are unambiguously evidenced in the photon statistics of...

  10. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  11. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  12. Fuel particle coating data

    International Nuclear Information System (INIS)

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies

  13. Ceramic with zircon coating

    Science.gov (United States)

    Wang, Hongyu (Inventor)

    2003-01-01

    An article comprises a silicon-containing substrate and a zircon coating. The article can comprise a silicon carbide/silicon (SiC/Si) substrate, a zircon (ZrSiO.sub.4) intermediate coating and an external environmental/thermal barrier coating.

  14. Optical Properties of Window Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Window coating used for the building in recent years is described. Important design principles, practical coating materials, and attainable optical properties for research-type coatings are introduced. Discussion is carried out on the spectrally selective coatings, the electrochromic coatings, and the thermochromic coatings.

  15. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  16. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  17. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen;

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed in...... order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  18. FTIR Studies of Internal Water Molecules of Bacteriorhodopsin: Structural Analysis of Halide-bound D85S and D212N Mutants in the Schiff Base Region

    Science.gov (United States)

    Shibata, Mikihiro; Kandori, Hideki

    2007-12-01

    Bacteriorhodopsin (BR), a membrane protein found in Halobacterium salinarum, functions as a light-driven proton pump. The Schiff base region has a quadropolar structure with positive charges located at the protonated Schiff base and Arg82, and counterbalancing negative charges located at Asp85 and Asp212 (Figure 1A). It is known that BR lacks a proton-pumping activity if Asp85 or Asp212 is neutralized by mutation. On the other hand, binding of C1- brings different effects for pumping functions in mutants at D85 and D212 position. While C1--bound D85T and D85S pump C1-, photovoltage measurements suggested that C1--bound D212N pumps protons at low pH. In this study, we measured low-temperature FTIR spectra of D85S and D212N containing various halides to compare the halide binding site of both proteins. In the case of D85S, the N-D stretching vibrations of the Schiff base were halide-dependent. This result suggests that the halide is a hydrogen-bond acceptor of the Schiff base, being consistent with the X-ray crystal structure. On the other hand, no halide dependence was observed for vibrational bands of the retinal skeleton and the Schiff base in the D212N mutant. This result suggests that the halide does not form a hydrogen bond with the Schiff base directly, unlike the mutation at D85 position. Halide-dependent water bands in the Schiff base region also differ between D85S and D212N. From these results, halide binding site of both proteins and role of two negative charges in BR will be discussed.

  19. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

    Science.gov (United States)

    Lewis, Aaron; Khatchatouriants, Artium; Treinin, Millet; Chen, Zhongping; Peleg, Gadi; Friedman, Noga; Bouevitch, Oleg; Rothman, Zvi; Loew, Leslie; Sheres, Mordechai

    1999-07-01

    Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.

  20. Isolation of a new Pseudomonas halophila strain possess bacteriorhodopsin-like protein by a novel method for screening of photoactive protein producing bacteria.

    Science.gov (United States)

    Fanaei, Maryam; Emtiazi, Giti

    2014-02-01

    Bacteriorhodopsin (bR) is a transmembrane protein deposited in the purple membrane of Halobacterium salinarum which absorbs energy from photons to create a photo-induced proton gradient across the membrane. A bR molecule can be considered as a natural solar device transforming light into other types of energy and therefore is of interest for a wide range of applications including two and three-dimensional memory storage, optical data processing, artificial cells, holographic media, the artificial retina and photo sensor devices. H. salinarum is a slow-growing, halophilic Archaea present in red salt waters. The present study introduces a novel bR-like pigment from a new strain of Pseudomonas halophila (with registered accession number KC959570 in the NCBI databank) which has a very significant degree of light-dependent activity. This is the first report on the presence of functional bR-like protein in the Pseudomonas family. The isolate is a fast-growing, halophilic bacterium and is comparable with other photoactive protein producer microorganisms. Also, in the present study a novel isolation method for screen light-stimulating protein producing microorganisms is introduced. For this purpose 2,3,5-triphenyltetrazolium chloride (TTC) was employed for the first time as an artificial hydrogen acceptor in the proton-transfer processes. The TTC test is an easy and susceptible method for estimating hydrogen production during the proton transport process. This is the first report of the use of TTC for photo activity measurement and selection of bacteria containing light dependent proteins. PMID:24002576

  1. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim;

    2009-01-01

    The main objective of this review is to describe some of the important topics related to the use of marine and protective coatings for anticorrosive purposes. In this context, "protective" refers to coatings for containers, offshore constructions, wind turbines, storage tanks, bridges, rail cars......, and petrochemical plants while "marine" refers to coatings for ballast tanks, cargo holds and cargo tanks, decks, and engine rooms on ships. The review aims at providing a thorough picture of state-of-the-art in anticorrosive coatings systems. International and national legislation aiming at reducing...... the emission of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to...

  2. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  3. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  4. Nonlinear Optical Characteristic Measurement of Chemically Enhanced Bacteriorhodopsin Film Using Z-scan Technology%利用Z扫描技术测量菌紫质膜的非线性光学参数

    Institute of Scientific and Technical Information of China (English)

    徐军; 何俊发; 侯素霞; 胡坤生; 张亦南

    2000-01-01

    本文讨论一种有发展前景的光敏生物材料-细菌视紫红质(菌紫质),采用化学增强法制备菌紫质膜,利用Z扫描技术测量了菌紫质膜的非线性光学参数,结果表明菌紫质具有大的非线性光学系数,在光信息处理领域有十分广泛的应用.%We present a unique biological material that exhibits interesting photochromic characteristics and important optoelectric properties. This distinctive material is related to the visual pigment rhodopsin and is called bacteriorhodopsin (bR). In this paper the films of the chemically enhanced bacteriorhodopsin are prepared and the effective nonlinearity n2 of the film is measured with the Z-scan Technology. Anomalous absorption at three wavelengths is observed. Large optical nonlinearities of bR should be useful for both information storage and compulation.

  5. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  6. Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array

    Science.gov (United States)

    Yang, Daquan; Wang, Chunhong; Yuan, Wei; Wang, Bo; Yang, Yujie; Ji, Yuefeng

    2016-09-01

    A novel two-dimensional (2D) silicon (Si) photonic crystal (PC) α-H0-slot micro-cavity with high Q-factor and high sensitivity (S) is presented. Based on the proposed α-H0-Slot micro-cavities, an optimal design of photonic crystal integrated sensors array (PC-ISA) on monolithic silicon on insulator (SOI) is displayed. By using finite-difference time-domain (FDTD) method, the simulation results demonstrate that both large S of 200 nm/RIU (RIU=refractive index unit) and high Q-factor >104 at telecom wavelength range can be achieved simultaneously. And the sensor figure of merit (FOM)>7000 is featured, an order of magnitude improvement over previous 2D PC sensors array. In addition, for the proposed 2D PC-ISA device, each sensor unit is shown to independently shift its resonance wavelength in response to the changes in refractive index (RI) and does not perturb the others. Thus, it is potentially an ideal platform for realizing ultra-compact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing, and also can be used as an opto-fluidic architecture for performing highly parallel detection of biochemical interactions in aqueous environments.

  7. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-06-01

    Full Text Available A high efficiency all-optical diode based on photonic crystal (PC waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in red shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.

  8. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Science.gov (United States)

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-01

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  9. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    International Nuclear Information System (INIS)

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  10. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland;

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used for these...... designs and present test results from coatings....

  11. Biocompatibility of Niobium Coatings

    OpenAIRE

    René Olivares-Navarrete; Jhon Jairo Olaya; Claudia Ramírez; Sandra Elizabeth Rodil

    2011-01-01

    Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS) substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainles...

  12. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  13. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  14. Innovations in coating technology.

    Science.gov (United States)

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review. PMID:19075909

  15. Quadratic electro-optic effects in bacteriorhodopsin: Measurement of γ(-ω;0,0,ω) in dried gelatin thin films

    Science.gov (United States)

    Yamazaki, Mikio; Goodisman, Jerry; Birge, Robert R.

    1998-04-01

    Quadratic electro-optic effects (dc or low frequency Kerr effect) of bacteriorhodopsin dispersed in dried gelatin thin films are examined in the near resonance region at three wavelengths: 633, 647, and 676 nm. The films show relatively large quadratic electro-optic effects compared to other molecular dispersed systems. The purple membrane is fixed within the polymerized gelatin matrix, and we show that the electronic contribution to γ dominates over possible orientational contributions. At 676 nm, the quadratic electro-optic coefficient s1133(-ω;0,0,ω) is 6.7×10-20m2/V2 and the third order nonlinear susceptibility χ1133(3)(-ω;0,0,ω) is 7.0×10-13cm4 statCoulomb-2, with both values obtained for a protein concentration of 6.9×1018cm-3. The orientationally averaged second molecular hyperpolarizability determined from the quadratic electro-optic coefficients at 676 nm assuming an Onsager ellipsoidal local field factor is (10.8±5.1)×10-32 cm7 statCoulomb-2 [(1.34±0.63)×10-56 F3 m4 C-2]. The value increases roughly tenfold when the probe wavelength is decreased to 633 nm. The behavior of γ(-ω;0,0,ω), when fit to a two-state model, predicts that γ(-ω;0,0,ω) is strongly enhanced via type III processes. Thus, the magnitude of γ(-ω;0,0,ω) is dominated by a term (Δμ102×μ102)/(ω10-ω)3, where Δμ10 is the change in dipole moment, μ10 is the transition moment, and ω10 is the transition energy of the lowest-lying allowed 1Bu*+-like π,π* state. We calculate that Δμ10 is 12.8±1.2 D, in good agreement with previous Stark and two-photon experimental values. Time-dependent Hartree-Fock methods based on the MNDO Hamiltonian yield reasonable agreement with experiment, underestimating γ(-ω;0,0,ω) by factors of only 2-4, with the error increasing as the frequency approaches resonance.

  16. Superhydrophobic silica coating by dip coating method

    International Nuclear Information System (INIS)

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  17. Mechanically Invisible Polymer Coatings

    DEFF Research Database (Denmark)

    2014-01-01

    phase comprises particles, said particles comprising a filler material and an encapsulating coating of a second polymeric material, wherein the backbones of the first and second polymeric materials are the same. The composition may be used in electroactive polymers (EAPs) in order to obtain mechanically...... invisible polymer coatings....

  18. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  19. HA-Coated Implant

    DEFF Research Database (Denmark)

    Daugaard, Henrik; Søballe, Kjeld; Bechtold, Joan E

    2014-01-01

    The goal of osseointegration of orthopedic and dental implants is the rapid achievement of a mechanically stable and long lasting fixation between living bone and the implant surface. In total joint replacements of cementless designs, coatings of calcium phosphates were introduced as a means of...... evaluating bone-implant fixation with HA coatings....

  20. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as