WorldWideScience

Sample records for bacteriorhodopsin coated microcavities

  1. Photonic Potential of Haloarchaeal Pigment Bacteriorhodopsin for Future Electronics: A Review.

    Science.gov (United States)

    Ashwini, Ravi; Vijayanand, S; Hemapriya, J

    2017-08-01

    Haloarchaea are known for its adaptation in extreme saline environment. Halophilic archaea produces carotenoid pigments and proton pumps to protect them from extremes of salinity. Bacteriorhodopsin (bR) is a light-driven proton pump that resides in the membrane of haloarchaea Halobacterium salinarum. The photocycle of Bacteriorhodopsin passes through several states from K to O, finally liberating ATP for host's survival. Extensive studies on Bacteriorhodopsin photocycle has provided in depth knowledge on their sequential mechanism of converting solar energy into chemical energy inside the cell. This ability of Bacteriorhodopsin to harvest sunlight has now been experimented to exploit the unexplored and extensively available solar energy in various biotechnological applications. Currently, bacteriorhodopsin finds its importance in dye-sensitized solar cell (DSSC), logic gates (integrated circuits, IC's), optical switching, optical memories, storage devices (random access memory, RAM), biosensors, electronic sensors and optical microcavities. This review deals with the optical and electrical applications of the purple pigment Bacteriorhodopsin.

  2. Bacteriorhodopsin-based photochromic pigments for optical security applications

    Science.gov (United States)

    Hampp, Norbert A.; Fischer, Thorsten; Neebe, Martin

    2002-04-01

    Bacteriorhodopsin is a two-dimensional crystalline photochromic protein which is astonishingly stable towards chemical and thermal degradation. This is one of the reasons why this is one of the very few proteins which may be used as a biological pigment in printing inks. Variants of the naturally occurring bacteriorhodopsin have been developed which show a distinguished color change even with low light intensities and without the requirement of UV-light. Several pigments with different color changes are available right now. In addition to this visual detectable feature, the photochromism, the proteins amino acid sequence can be genetically altered in order to code and identify specific production lots. For advanced applications the data storage capability of bacteriorhodopsin will be useful. Write-once-read-many (WORM) recording of digital data is accomplished by laser excitation of printed bacteriorhodopsin inks. A density of 1 MBit per square inch is currently achieved. Several application examples for this biological molecule are described where low and high level features are used in combination. Bacteriorhodopsin-based inks are a new class of optical security pigments.

  3. Reconstitution of Biological Molecular generators of electric current. Bacteriorhodopsin.

    Science.gov (United States)

    Drachev, L A; Frolov, V N; Kaulen, A D; Liberman, E A; Ostroumov, S A; Plakunova, V G; Semenov, A Y; Skulachev, V P

    1976-11-25

    1. Photoinduced generation of electric current by bacteriorhodopsin, incorporated into the planar phospholipid membrane, has been directly measured with conventional electrometer techniques. 2. Two methods for bacteriorhodopsin incorporation have been developed: (a) formation of planar membrane from a mixture of decane solution of phospholipids and of the fraction of violet fragments of the Halobacterium halobium membrane (bacteriorhodopsin sheets), and (b) adhesion of bacteriorhodopsin-containing reconstituted spherical membranes (proteoliposomes) to the planar membrane in the presence of Ca2+ or some other cations. In both cases, illumination was found to induce electric current generation directed across the planar membrane, an effect which was measured by macroelectrodes immersed into electrolyte solutions on both sides of the membrane. 3. The maximal values of the transmembrane electric potential were of about 150 mV at a current of about 10(-11) A. The electromotive force measured by means of counterbalancing the photoeffect by an external battery, was found to reach the value of 300 mV. 4. The action spectrum of the photoeffect coincides with the bacteriorhodopsin absorption spectrum (maximum about 570 nm). 5. Both components of the electrochemical potential of H+ ions (electric potential and delta pH) across the planar membrane affect the bacteriorhodopsin photoelectric response in a fashion which could be expected if bacteriorhodopsin were a light-dependent electrogenic proton pump. 6. La3+ ions were shown to inhibit operation of those bacteriorhodopsin which pump out H+ ions from the La3+-containing compartment. 7. The photoeffect, mediated by proteoliposomes associated with thick planar membrane, is decreased by gramicidin A at concentrations which do not influence the planar membrane resistance in the light. On the contrary, a protonophorous uncoupler, trichlorocarbonylcyanidephenylhydrazone, decreases the photoeffect only if it is added at a

  4. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin.

  5. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  6. All silicon waveguide spherical microcavity coupler device.

    Science.gov (United States)

    Xifré-Pérez, E; Domenech, J D; Fenollosa, R; Muñoz, P; Capmany, J; Meseguer, F

    2011-02-14

    A coupler based on silicon spherical microcavities coupled to silicon waveguides for telecom wavelengths is presented. The light scattered by the microcavity is detected and analyzed as a function of the wavelength. The transmittance signal through the waveguide is strongly attenuated (up to 25 dB) at wavelengths corresponding to the Mie resonances of the microcavity. The coupling between the microcavity and the waveguide is experimentally demonstrated and theoretically modeled with the help of FDTD calculations.

  7. Fractal morphological analysis of Bacteriorhodopsin (bR) layers deposited onto Indium Tin Oxide (ITO) electrodes

    International Nuclear Information System (INIS)

    Vengadesh, P.; Muniandy, S.V.; Majid, W.H. Abd.

    2009-01-01

    Uniform Bacteriorhodopsin layers for the purpose of fabricating Bacteriorhodopsin-based biosensors were prepared by allowing drying of the layers under a constant electric field. To properly observe and understand the 'electric field effect' on the protein Bacteriorhodopsin, the electric and non-electric field influenced Bacteriorhodopsin layers prepared using a manual syringe-deposition method applied onto Indium Tin Oxide electrodes were structurally investigated using Scanning Electron Microscopy and Atomic Force Microscopy. The results yield obvious morphological differences between the electric and non-electric field assisted Bacteriorhodopsin layers and brings to attention the occurrence of the so-called 'coffee-ring' effect in the latter case. We applied stochastic fractal method based on the generalized Cauchy process to describe the morphological features surrounding the void. Fractal dimension is used to characterize the local regularity of the Bacteriorhodopsin clusters and the correlation exponent is used to describe the long-range correlation between the clusters. It is found that the Bacteriorhodopsin protein tends to exhibit with strong spatial correlation in the presence of external electric field compared to in absence of the electric field. Long-range correlation in the morphological feature may be associated to the enhancement of aggregation process of Bacteriorhodopsin protein in the presence of electric field, thereby inhibiting the formation of the so-called 'coffee-ring' effect. As such, the observations discussed in this work suggest some amount of control of surface uniformity when forming layers.

  8. Single Nanoparticle Detection Using Optical Microcavities.

    Science.gov (United States)

    Zhi, Yanyan; Yu, Xiao-Chong; Gong, Qihuang; Yang, Lan; Xiao, Yun-Feng

    2017-03-01

    Detection of nanoscale objects is highly desirable in various fields such as early-stage disease diagnosis, environmental monitoring and homeland security. Optical microcavity sensors are renowned for ultrahigh sensitivities due to strongly enhanced light-matter interaction. This review focuses on single nanoparticle detection using optical whispering gallery microcavities and photonic crystal microcavities, both of which have been developing rapidly over the past few years. The reactive and dissipative sensing methods, characterized by light-analyte interactions, are explained explicitly. The sensitivity and the detection limit are essentially determined by the cavity properties, and are limited by the various noise sources in the measurements. On the one hand, recent advances include significant sensitivity enhancement using techniques to construct novel microcavity structures with reduced mode volumes, to localize the mode field, or to introduce optical gain. On the other hand, researchers attempt to lower the detection limit by improving the spectral resolution, which can be implemented by suppressing the experimental noises. We also review the methods of achieving a better temporal resolution by employing mode locking techniques or cavity ring up spectroscopy. In conclusion, outlooks on the possible ways to implement microcavity-based sensing devices and potential applications are provided. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Conformational change during photocycle of bacteriorhodopsin and its proton-pumping mechanism.

    Science.gov (United States)

    Chou, K C

    1993-06-01

    Based on the recent finding on the structural difference of seven helix bundles in the all-trans and 13-cis bacteriorhodopsins, the distances among the key groups performing the function of proton translocation as well as their microenvironments have been investigated. Consequently, a pore-gated model was proposed for the light-driven proton-pumping mechanism of bacteriorhodopsin. According to this model, the five double-bounded polyene chain in retinal chromophore can be phenomenologically likened to a molecular "lever," whose one end links to a "piston" (the beta-ionone ring) and the other end to a pump "relay station" (the Schiff base). During the photocycle of bacteriorhodopsin, the molecular "lever" is moving up and down as marked by the position change of the "piston," so as to trigger the gate of pore to open and close alternately. When the "piston" is up, the pore-controlled gate is open so that the water channel from Asp-96 to the Schiff base and that from the Schiff base to Asp-85 is established; when the "piston" is down, the pore-controlled gate is closed and the water channels for proton transportation in both the cytoplasmic half and extracellular half are blocked. The current model allows a consistent interpretation of a great deal of experimental data and also provides a useful basis for further investigating the mechanism of proton pumping by bacteriorhodopsin.

  10. Weak Localization of Light in a Disordered Microcavity

    Science.gov (United States)

    Gurioli, M.; Bogani, F.; Cavigli, L.; Gibbs, H.; Khitrova, G.; Wiersma, D. S.

    2005-05-01

    We report the observation of weak localization of light in a semiconductor microcavity. The intrinsic disorder in a microcavity leads to multiple scattering and hence to static speckle. We show that averaging over realizations of the disorder reveals a coherent backscattering cone that has a coherent enhancement factor ≥2, as required by reciprocity. The coherent backscattering cone is observed along a ring-shaped pattern due to confinement by the microcavity.

  11. Studies on light transduction by bacteriorhodopsin and rhodopsin

    International Nuclear Information System (INIS)

    Braiman, M.; Bubis, J.; Doi, T.; Chen, H.B.; Flitsch, S.L.; Franke, R.R.; Gilles-Gonzalez, M.A.; Graham, R.M.; Karnik, S.S.; Khorana, H.G.; Knox, B.E.; Krebs, M.P.; Marti, T.; Mogi, T.; Nakayama, T.; Oprian, D.D.; Puckett, K.L.; Sakmar, T.P.; Stern, L.J.; Subramaniam, S.; Thompson, D.A.

    1988-01-01

    The visual photoreceptor pigments in vertebrates and invertebrates all use retinal (vitamin A aldehyde) as the light-absorbing molecule. Recently, Stoeckenius et al. discovered bacteriorhodopsin (bR) in the purple membrane of the extreme halophile, Halobacterium halobium, which also contains all-trans retinal as the chromophore, bR carries out light-dependent proton translocation from the inside to the outside of the H. halobium cell. Since the discovery of bR, H. halobium has been found to elaborate three more retinal-based light-transducing proteins. These are halorhodopsin, a chloride ion pump, and sensory rhodopsins I and II. The authors are carrying out structure-function studies of bacteriorhodopsin, bovine rhodopsin, and related proteins primarily by the technique of recombinant DNA; they summarize below the results they have obtained recently

  12. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  13. Studying of Phototransformation of Light Signal by Photoreceptor Pigments - Rhodopsin, Iodopsin and Bacteriorhodopsin

    OpenAIRE

    Ignat Ignatov; Oleg Mosin

    2014-01-01

    This review article views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin) and their aspects of nano- and biotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and ...

  14. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher

    1999-01-01

    The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high directiona......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high......-optical switches based on semiconductor microcavities....

  15. Rabi-like splitting from large area plasmonic microcavity

    Directory of Open Access Journals (Sweden)

    Fatemeh Hosseini Alast

    2017-08-01

    Full Text Available Rabi-like splitting was observed from a hybrid plasmonic microcavity. The splitting comes from the coupling of cavity mode with the surface plasmon polariton mode; anti-crossing was observed alongside the modal conversional channel on the reflection light measurement. The hybrid device consists of a 10x10 mm2 ruled metal grating integrated onto the Fabry-Perot microcavity. The 10x10 mm2 ruled metal grating fabricated from laser interference and the area is sufficiently large to be used in the practical optical device. The larger area hybrid plasmonic microcavity can be employed in polariton lasers and biosensors.

  16. A new microcavity design for single molecule detection

    International Nuclear Information System (INIS)

    Steiner, M.; Schleifenbaum, F.; Stupperich, C.; Failla, A.V.; Hartschuh, A.; Meixner, A.J.

    2006-01-01

    We present a new microcavity design which allows for efficient detection of single molecules by measuring the molecular fluorescence emission coupled into a resonant cavity mode. The Fabry-Perot-type microresonator consists of two silver mirrors separated by a thin polymer film doped with dye molecules in ultralow concenctration. By slightly tilting one of the mirrors different cavity lengths can be selected within the same sample. Locally, on a μm scale, the microcavity still acts as a planar Fabry-Perot resonator. Using scanning confocal fluorescence microscopy, single emitters on resonance with a single mode of the microresonator can be spatially addressed. Our microcavity is demonstrated to be well-suited for investigating the coupling mechanism between single quantum emitters and single modes of the electromagnetic field. The microcavity layout could be integrated in a lab-on-a-microchip design for ultrasensitive microfluidic analytics and can be considered as an important improvement for single photon sources based on single molecules operating at room temperature

  17. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  18. All-optical switching based on optical fibre long period gratings modified bacteriorhodopsin

    Science.gov (United States)

    Korposh, S.; James, S.; Partridge, M.; Sichka, M.; Tatam, R.

    2018-05-01

    All-optical switching using an optical fibre long-period gating (LPG) modified with bacteriorhodopsin (bR) is demonstrated. The switching process is based on the photo-induced RI change of bR, which in turn changes the phase matching conditions of the mode coupling by the LPG, leading to modulation of the propagating light. The effect was studied with an LPG immersed into a bR solution and with LPGs coated with the bR films, deposited onto the LPGs using the layer-by-layer electrostatic self-assembly (LbL) method. The dependence of the all-optical switching efficiency upon the concentration of the bR solution and on the grating period of the LPG was also studied. In addition, an in-fibre Mach-Zehnder interferometer (MZI) composed of a cascaded LPG pair separated by 30 mm and modified with bR was used to enhance the wavelength range of all-optical switching. The switching wavelength is determined by the grating period of the LPG. Switching efficiencies of 16% and 35% were observed when an LPG and an MZI were immersed into bR solutions, respectively. The switching time for devices coated with bR-films was within 1 s, 10 times faster than that observed for devices immersed into bR solution.

  19. Transition between bulk and surface refractive index sensitivity of micro-cavity in-line Mach-Zehnder interferometer induced by thin film deposition.

    Science.gov (United States)

    Śmietana, Mateusz; Janik, Monika; Koba, Marcin; Bock, Wojtek J

    2017-10-16

    In this work we discuss the refractive index (RI) sensitivity of a micro-cavity in-line Mach-Zehnder interferometer in the form of a cylindrical hole (40-50 μm in diameter) fabricated in a standard single-mode optical fiber using a femtosecond laser. The surface of the micro-cavity was coated with up to 400 nm aluminum oxide thin film using the atomic layer deposition method. Next, the film was progressively chemically etched and the influence on changes in the RI of liquid in the micro-cavity was determined at different stages of the experiment, i.e., at different thicknesses of the film. An effect of transition between sensitivity to the film thickness (surface) and the RI of liquid in the cavity (bulk) is demonstrated for the first time. We have found that depending on the interferometer working conditions determined by thin film properties, the device can be used for investigation of phenomena taking place at the surface, such as in case of specific label-free biosensing applications, or for small-volume RI analysis as required in analytical chemistry.

  20. Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility.

    Science.gov (United States)

    Etzkorn, Manuel; Raschle, Thomas; Hagn, Franz; Gelev, Vladimir; Rice, Amanda J; Walz, Thomas; Wagner, Gerhard

    2013-03-05

    Selecting a suitable membrane-mimicking environment is of fundamental importance for the investigation of membrane proteins. Nonconventional surfactants, such as amphipathic polymers (amphipols) and lipid bilayer nanodiscs, have been introduced as promising environments that may overcome intrinsic disadvantages of detergent micelle systems. However, structural insights into the effects of different environments on the embedded protein are limited. Here, we present a comparative study of the heptahelical membrane protein bacteriorhodopsin in detergent micelles, amphipols, and nanodiscs. Our results confirm that nonconventional environments can increase stability of functional bacteriorhodopsin, and demonstrate that well-folded heptahelical membrane proteins are, in principle, accessible by solution-NMR methods in amphipols and phospholipid nanodiscs. Our data distinguish regions of bacteriorhodopsin that mediate membrane/solvent contacts in the tested environments, whereas the protein's functional inner core remains almost unperturbed. The presented data allow comparing the investigated membrane mimetics in terms of NMR spectral quality and thermal stability required for structural studies. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. A parametric study on the PD pulses activity within micro-cavities

    Science.gov (United States)

    Ganjovi, Alireza A.

    2016-03-01

    A two-dimensional kinetic model has been used to parametric investigation of the spark-type partial discharge pulses inside the micro-cavities. The model is based on particle-in-cell methods with Monte Carlo Collision techniques for modeling of collisions. Secondary processes like photo-emission and cathode-emission are considered. The micro-cavity may be sandwiched between two metallic conductors or two dielectrics. The discharge within the micro-cavity is studied in conjunction with the external circuit. The model is used to successfully simulate the evolution of the discharge and yield useful information about the build-up of space charge within the micro-cavity and the consequent modification of the applied electric field. The phase-space scatter plots for electrons, positive, and negative ions are obtained in order to understand the manner in which discharge progresses over time. The rise-time and the magnitude of the discharge current pulse are obtained and are seen to be affected by micro-cavity dimensions, gas pressure within the micro-cavity, and the permittivity of surrounding dielectrics. The results have been compared with existing experimental, theoretical, and computational results, wherever possible. An attempt has been made to understand the nature of the variations in terms of the physical processes involved.

  2. Wavelength tuning of porous silicon microcavities

    International Nuclear Information System (INIS)

    Mulders, J.; Reece, P.; Zheng, W.H.; Lerondel, G.; Sun, B.; Gal, M.

    2002-01-01

    Full text: In the last decade much attention has been given to porous silicon (PS) for optoelectronic applications, which include efficient room temperature light emission as well as microcavity formation. Due to the large specific surface area, the use of porous silicon microcavities (PSMs) has been proposed for chemical sensing. Large wavelength shifts have indicated that the optical properties of PSMs are indeed strongly dependent on the environment. In this paper, we report the shifting of the resonance frequency of high quality PSMs, with the aim of tuning a future PS device to a certain required wavelength. The PSM samples were prepared by anodically etching p + -doped (5mΩcm) bulk silicon wafer in a solution (25%) of aqueous HF and ethanol. The device structure consisted of a PS layer sandwiched between 2 stacks of thin PS layers with alternating high and low effective refractive indices (RI), i.e. distributed Bragg mirrors (DBM). The layer thickness depends on the etch time while the porosity and hence refractive index is determined by the current density as the Si is etched. The position and the width of the stop-band can be fully controlled by the design of the DBMs, with the microcavity resonance mode sitting within the stop-band. We achieved tuning of the microcavity resonance by a number of methods, including temperature dependent tuning. The temperature induced wavelength shift was found to be of the order of 10 -15 nm. Computer modeling of these changes in the reflectivity spectra allowed us to quantify the changes of the effective refractive index and the respective layer thicknesses

  3. Development and Characterization of Titanium Dioxide Gel with Encapsulated Bacteriorhodopsin for Hydrogen Production.

    Science.gov (United States)

    Johnson, Kaitlin E; Gakhar, Sukriti; Risbud, Subhash H; Longo, Marjorie L

    2018-06-06

    We study bacteriorhodopsin (BR) in its native purple membrane encapsulated within amorphous titanium dioxide, or titania, gels and in the presence of titania sol-particles to explore this system for hydrogen production. Förster resonance energy transfer between BR and titanium dioxide sol particles was used to conclude that there is nanometer-scale proximity of bacteriorhodopsin to the titanium dioxide. The detection of BR-titania sol aggregates by fluorescence anisotropy and particle sizing indicated the affinity amorphous titania has for BR without the use of additional cross-linkers. UV-Visible spectroscopy of BR-titania gels show that methanol addition did not denature BR at a 25 mM concentration presence as a sacrificial electron donor. Additionally, confinement of BR in the gels significantly limited protein denaturation at higher concentration of added methanol or ethanol. Subsequently, titania gels fabricated through the sol-gel process using a titanium ethoxide precursor, water and the addition of 25 mM methanol were used to encapsulate BR and a platinum reduction catalyst for the production of hydrogen gas under white light irradiation. The inclusion of 5 µM bacteriorhodopsin resulted in a hydrogen production rate of about 3.8 µmole hydrogen mL -1 hr -1 , an increase of 52% compared to gels containing no protein. Electron transfer and proton pumping by BR in close proximity to the titania gel surface are feasible explanations for the enhanced production of hydrogen without the need to crosslink BR to the titania gel. This work sets the stage for further developments of amorphous, rather than crystalline, titania-encapsulated bacteriorhodopsin for solar-driven hydrogen production through water-splitting.

  4. The kinetics of the photochemical reaction cycle of deuterated bacteriorhodopsin and pharaonis halorhodopsin

    International Nuclear Information System (INIS)

    Szakacs, Julianna; Lakatos, Melinda; Varo, Gy.; Ganea, Constanta

    2005-01-01

    Kinetic isotope effects in the photochemical reaction cycle of bacteriorhodopsin and pharaonis halorhodopsin were determined in H 2 O and D 2 O at normal pH, to get insight in the proton dependent steps of the transport process. All the steps of the bacteriorhodopsin photocycle at normal pH exhibited a strong isotope effect. In the case of halorhodopsin in both the chloride and nitrate transporting conditions the photocycle was not strongly affected by the deuterium exchange. In the case of chloride, a slight slow down of the photocycle could be observed. On the opposite, in the nitrate transport conditions a reverse effect is present. (author)

  5. Ultraviolet lasing behavior in ZnO optical microcavities

    Directory of Open Access Journals (Sweden)

    Hongxing Dong

    2017-12-01

    Full Text Available Zinc oxide (ZnO optical microcavity modulated UV lasers have been attracting a wide range of research interests. As one of the most important materials in developing high quality microcavity and efficient UV–visible optoelectronic devices due to its wide band gap (3.37 eV and large exciton binding energy (∼60 meV. In this review, we summarized the latest development of ZnO optical cavity based microlasers, mainly including Fabry-Perot mode lasers and whispering gallery mode lasers. The synthesis and optical studies of ZnO optical microcavities with different morphologies were discussed in detail. Finally, we also consider that the research focus in the near future would include new nanotechnology and physical effects, such as nano/micro fabrication, surface plasmon enhancement, and quantum dot coupling, which may result in new and interesting physical phenomena.

  6. Biexcitons or bipolaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Woggon, U

    2000-01-01

    A well-resolved nonlinear optical transition associated with biexcitons is observed in a high-quality microcavity with a Rabi splitting exceeding the binding energy of biexcitons in the embedded quantum well. This transition is identified as an induced absorption from the lower polariton to the b......A well-resolved nonlinear optical transition associated with biexcitons is observed in a high-quality microcavity with a Rabi splitting exceeding the binding energy of biexcitons in the embedded quantum well. This transition is identified as an induced absorption from the lower polariton...

  7. Acoustic trapping in bubble-bounded micro-cavities

    Science.gov (United States)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  8. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Guddala, Sriram; Narayana Rao, D.; Dwivedi, Vindesh K.; Vijaya Prakash, G.

    2013-01-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm −1 ) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  9. Polariton-acoustic-phonon interaction in a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Bogani, F.; Delalande, C.; Roussignol, Ph.; Piermarocchi, C.

    2000-01-01

    The broadening of polariton lines by acoustic phonons is investigated in a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond resolution. A decrease of the polariton-acoustic phonon coupling is clearly observed for the lower polariton branch as one approaches the resonance between exciton and photon states. This behavior cannot be explained in terms of a semiclassical linear dispersion theory but requires a full quantum description of the microcavity in the strong-coupling regime.

  10. Full color organic light-emitting devices with microcavity structure and color filter.

    Science.gov (United States)

    Zhang, Weiwei; Liu, Hongyu; Sun, Runguang

    2009-05-11

    This letter demonstrated the fabrication of the full color passive matrix organic light-emitting devices based on the combination of the microcavity structure, color filter and a common white polymeric OLED. In the microcavity structure, patterned ITO terraces with different thickness were used as the anode as well as cavity spacer. The primary color emitting peaks were originally generated by the microcavity and then the second resonance peak was absorbed by the color filter.

  11. Biexcitons in semiconductor microcavities

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.

    2003-01-01

    in the microcavity, even if the vacuum Rabi splitting exceeds the biexciton binding energy. However, the presence of a longitudinal built-in electric field that results in a Stark effect slightly reducing the binding energy compared to the value measured on a reference bare quantum well is experimentally pointed out...

  12. Fourier transform infrared difference spectroscopy of bacteriorhodopsin and its photoproducts regenerated with deuterated tyrosine

    International Nuclear Information System (INIS)

    Dollinger, G.; Eisenstein, L.; Lin, S.L.; Nakanishi, K.; Termini, J.

    1986-01-01

    Fourier transform infrared (FTIR) difference spectroscopy has been used to detect the vibrational modes due to tyrosine residues in the protein that change in position or intensity between light-adapted bacteriorhodopsin (LA) and other species, namely, the K and M intermediates and dark-adapted bacteriorhodopsin (DA). To aid in the identification of the bands that change in these various species, the FTIR spectra of the free amino acids Tyr-d0, Tyr-d2 ( 2 H at positions ortho to OH), and Tyr-d4 ( 2 H at positions ortho and meta to OH) were measured in H 2 O and D 2 O at low and high pH. The characteristic frequencies of the Tyr species obtained in this manner were then used to identify the changes in protonation state of the tyrosine residues in the various bacteriorhodopsin species. The two diagnostically most useful bands were the approximately 1480-cm-1 band of Tyr(OH)-d2 and the approximately 1277-cm-1 band of Tyr(O-)-d0. Mainly by observing the appearance or disappearance of these bands in the difference spectra of pigments incorporating the tyrosine isotopes, it was possible to identify the following: in LA, one tyrosine and one tyrosinate; in the K intermediate, two tyrosines; in the M intermediate, one tyrosine and one tyrosinate; and in DA, two tyrosines. Since these residues were observed in the difference spectra K/LA, M/LA, and DA/LA, they represent the tyrosine or tyrosinate groups that most likely undergo changes in protonation state due to the conversions. These changes are most likely linked to the proton translocation process of bacteriorhodopsin

  13. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  14. Self-Cleaning Microcavity Array for Photovoltaic Modules.

    Science.gov (United States)

    Vüllers, Felix; Fritz, Benjamin; Roslizar, Aiman; Striegel, Andreas; Guttmann, Markus; Richards, Bryce S; Hölscher, Hendrik; Gomard, Guillaume; Klampaftis, Efthymios; Kavalenka, Maryna N

    2018-01-24

    Development of self-cleaning coatings is of great interest for the photovoltaic (PV) industry, as soiling of the modules can significantly reduce their electrical output and increase operational costs. We fabricated flexible polymeric films with novel disordered microcavity array (MCA) topography from fluorinated ethylene propylene (FEP) by hot embossing. Because of their superhydrophobicity with water contact angles above 150° and roll-off angles below 5°, the films possess self-cleaning properties over a wide range of tilt angles, starting at 10°, and contaminant sizes (30-900 μm). Droplets that impact the FEP MCA surface with velocities of the same order of magnitude as that of rain bounce off the surface without impairing its wetting properties. Additionally, the disordered MCA topography of the films enhances the performance of PV devices by improving light incoupling. Optical coupling of the FEP MCA films to a glass-encapsulated multicrystalline silicon solar cell results in 4.6% enhancement of the electrical output compared to that of an uncoated device.

  15. Modal analysis of spontaneous emission in a planar microcavity

    International Nuclear Information System (INIS)

    Rigneault, H.; Monneret, S.

    1996-01-01

    A complete set of cavity modes in planar dielectric microcavities is presented which naturally includes guided modes. We show that most of these orthonormal fields can be derived from a coherent superposition of plane waves incoming on the stack from the air and from the substrate. Spontaneous emission of a dipole located inside the microcavity is analyzed, in terms of cavity modes. Derivation of the radiation pattern in the air and in the substrate is presented. The power emitted into the guided modes is also determined. Finally, a numerical analysis of the radiative properties of an erbium atom located in a Fabry-Pacute erot multilayer dielectric microcavity is investigated. We show that a large amount of light is emitted into the guided modes of the structure, in spite of the Fabry-Pacute erot resonance, which increases the spontaneous emission rate in a normal direction. copyright 1996 The American Physical Society

  16. Microcavity single virus detection and sizing with molecular sensitivity

    Science.gov (United States)

    Dantham, V. R.; Holler, S.; Kolchenko, V.; Wan, Z.; Arnold, S.

    2013-02-01

    We report the label-free detection and sizing of the smallest individual RNA virus, MS2 by a spherical microcavity. Mass of this virus is ~6 ag and produces a theoretical resonance shift ~0.25 fm upon adsorbing an individual virus at the equator of the bare microcavity, which is well below the r.m.s background noise of 2 fm. However, detection was accomplished with ease (S/N = 8, Q = 4x105) using a single dipole stimulated plasmonic-nanoshell as a microcavity wavelength shift enhancer. Analytical expressions based on the "reactive sensing principle" are developed to extract the radius of the virus from the measured signals. Estimated limit of detection for these experiments was ~0.4 ag or 240 kDa below the size of all known viruses, largest globular and elongated proteins [Phosphofructokinase (345 kDa) and Fibrinogen (390 kDa), respectively].

  17. Computational Modeling of Photonic Crystal Microcavity Single-Photon Emitters

    Science.gov (United States)

    Saulnier, Nicole A.

    Conventional cryptography is based on algorithms that are mathematically complex and difficult to solve, such as factoring large numbers. The advent of a quantum computer would render these schemes useless. As scientists work to develop a quantum computer, cryptographers are developing new schemes for unconditionally secure cryptography. Quantum key distribution has emerged as one of the potential replacements of classical cryptography. It relics on the fact that measurement of a quantum bit changes the state of the bit and undetected eavesdropping is impossible. Single polarized photons can be used as the quantum bits, such that a quantum system would in some ways mirror the classical communication scheme. The quantum key distribution system would include components that create, transmit and detect single polarized photons. The focus of this work is on the development of an efficient single-photon source. This source is comprised of a single quantum dot inside of a photonic crystal microcavity. To better understand the physics behind the device, a computational model is developed. The model uses Finite-Difference Time-Domain methods to analyze the electromagnetic field distribution in photonic crystal microcavities. It uses an 8-band k · p perturbation theory to compute the energy band structure of the epitaxially grown quantum dots. We discuss a method that combines the results of these two calculations for determining the spontaneous emission lifetime of a quantum dot in bulk material or in a microcavity. The computational models developed in this thesis are used to identify and characterize microcavities for potential use in a single-photon source. The computational tools developed are also used to investigate novel photonic crystal microcavities that incorporate 1D distributed Bragg reflectors for vertical confinement. It is found that the spontaneous emission enhancement in the quasi-3D cavities can be significantly greater than in traditional suspended slab

  18. Optical micro-cavities on silicon

    Science.gov (United States)

    Dai, Daoxin; Liu, Erhu; Tan, Ying

    2018-01-01

    Silicon-based optical microcavities are very popular for many applications because of the ultra-compact footprint, easy scalability, and functional versatility. In this paper we give a discussion about the challenges of the optical microcavities on silicon and also give a review of our recent work, including the following parts. First, a near-"perfect" high-order MRR optical filter with a box-like filtering response is realized by introducing bent directional couplers to have sufficient coupling between the access waveguide and the microrings. Second, an efficient thermally-tunable MRR-based optical filter with graphene transparent nano-heater is realized by introducing transparent graphene nanoheaters. Thirdly, a polarization-selective microring-based optical filter is realized to work with resonances for only one of TE and TM polarizations for the first time. Finally, a on-chip reconfigurable optical add-drop multiplexer for hybrid mode- /wavelength-division-multiplexing systems is realized for the first time by monolithically integrating a mode demultiplexer, four MRR optical switches, and a mode multiplexer.

  19. Detection and light enhancement of glucose oxidase adsorbed on porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Palestino, Gabriela [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, San Luis Potosi (Mexico); Martin, Marta; Legros, Rene; Cloitre, Thierry; Gergely, Csilla [GES-UMR 5650, CNRS-Universite Montpellier II, Montpellier (France); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Cuernavaca (Mexico); Zimanyi, Laszlo [EA4203, Faculte d' Odontologie, Universite Montpellier I, Montpellier (France); Institute of Biophysics, Biological Research Center, Hungarian Academy of Sciences, Szeged (Hungary)

    2009-07-15

    Porous silicon (PSi) structure is used as support material to detect protein infiltration and to induce fluorescence and second harmonic light enhancement from glucose oxidase (GOX). Functionalization and protein infiltration is monitored by specular reflectometry. Optical response enhancement of PSi microcavity structures compared to PSi single layers or Bragg mirrors is observed, when GOX is impregnated. Penetration of organic molecules along the PSi microcavity structure is demonstrated by energy dispersive X-ray profile. Enhanced fluorescence emission of GOX when adsorbed on PSi microcavity is evidenced by multi-photon microscopy (MPM). Second harmonic light generation is observed at some particular pores of PSi and subsequent resonance enhancement of the signal arising from the GOX adsorbed within the pores is detected. Our work evidences an improved device functionality of GOX-PSi microcavities due to strongly confined and localized light emission within these structures. This opens the way towards the application of PSi microcavity structures as amended biosensors based on their locally enhanced optical response. The second main achievement lies in the novelty of the used techniques. In contrast to the specular reflectometry used to monitor the macroscopic optical response of PSi structures, MPM presents a valuable alternative microscopic technique probing individual pores. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    Science.gov (United States)

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  1. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection...

  2. Molecular dynamics of bacteriorhodopsin.

    Science.gov (United States)

    Lupo, J A; Pachter, R

    1997-02-01

    A model of bacteriorhodopsin (bR), with a retinal chromophore attached, has been derived for a molecular dynamics simulation. A method for determining atomic coordinates of several ill-defined strands was developed using a structure prediction algorithm based on a sequential Kalman filter technique. The completed structure was minimized using the GROMOS force field. The structure was then heated to 293 K and run for 500 ps at constant temperature. A comparison with the energy-minimized structure showed a slow increase in the all-atom RMS deviation over the first 200 ps, leveling off to approximately 2.4 A relative to the starting structure. The final structure yielded a backbone-atom RMS deviation from the crystallographic structure of 2.8 A. The residue neighbors of the chromophore atoms were followed as a function of time. The set of persistent near-residue neighbors supports the theory that differences in pKa values control access to the Schiff base proton, rather than formation of a counterion complex.

  3. Exceptional points enhance sensing in an optical microcavity

    Science.gov (United States)

    Chen, Weijian; Kaya Özdemir, Şahin; Zhao, Guangming; Wiersig, Jan; Yang, Lan

    2017-08-01

    Sensors play an important part in many aspects of daily life such as infrared sensors in home security systems, particle sensors for environmental monitoring and motion sensors in mobile phones. High-quality optical microcavities are prime candidates for sensing applications because of their ability to enhance light-matter interactions in a very confined volume. Examples of such devices include mechanical transducers, magnetometers, single-particle absorption spectrometers, and microcavity sensors for sizing single particles and detecting nanometre-scale objects such as single nanoparticles and atomic ions. Traditionally, a very small perturbation near an optical microcavity introduces either a change in the linewidth or a frequency shift or splitting of a resonance that is proportional to the strength of the perturbation. Here we demonstrate an alternative sensing scheme, by which the sensitivity of microcavities can be enhanced when operated at non-Hermitian spectral degeneracies known as exceptional points. In our experiments, we use two nanoscale scatterers to tune a whispering-gallery-mode micro-toroid cavity, in which light propagates along a concave surface by continuous total internal reflection, in a precise and controlled manner to exceptional points. A target nanoscale object that subsequently enters the evanescent field of the cavity perturbs the system from its exceptional point, leading to frequency splitting. Owing to the complex-square-root topology near an exceptional point, this frequency splitting scales as the square root of the perturbation strength and is therefore larger (for sufficiently small perturbations) than the splitting observed in traditional non-exceptional-point sensing schemes. Our demonstration of exceptional-point-enhanced sensitivity paves the way for sensors with unprecedented sensitivity.

  4. Whispering gallery mode emission from a composite system of J-aggregates and photonic microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Melnikau, Dzmitry; Savateeva, Diana [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); Rusakov, Konstantin I. [Department of Physics, Brest State Technical University, Brest 224017 (Belarus); Rakovich, Yury P., E-mail: Yury.Rakovich@ehu.es [Centro de Física de Materiales (MPC, CSIC-UPV/EHU) and Donostia International Physics Center (DIPC), Po Manuel de Lardizabal 5, Donostia, San Sebastian 20018 (Spain); IKERBASQUE, Basque Foundation for Science, Bilbao (Spain)

    2014-01-15

    We report on development and characterization of Whispering Gallery Modes spherical microcavities integrated with organic dye molecules in a J-aggregate state. The microcavities are studied using micro-photoluminescence spectroscopy, and fluorescence lifetime imaging confocal microscopy. Directional emission of light from the microcavity is also experimentally demonstrated and attributed to the photonic jets generated in the microsphere. -- Highlights: • Report on the development and characterization of hybrid system consisting of thin shell of J-aggregates and spherical Whispering Gallery Mode microcavity. • An investigation of spontaneous emission rate in the shell of J-aggregates integrated with a Whispering Gallery Mode cavity. • Demonstration of directional emission from Whispering Gallery Mode cavity with J-aggregates which is highly desirable functionality for both micro- and nano-scale cavities.

  5. High quality factor GaAs microcavity with buried bullseye defects

    Science.gov (United States)

    Winkler, K.; Gregersen, N.; Häyrynen, T.; Bradel, B.; Schade, A.; Emmerling, M.; Kamp, M.; Höfling, S.; Schneider, C.

    2018-05-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid-state vertical microcavity, which allows for confinement of the electromagnetic field in the lateral direction without deep etching. The confinement originates from a local elongation of the cavity layer imprinted in a shallow etch and epitaxial overgrowth technique. We show that it is possible to improve the quality factor of such microcavities by a specific in-plane bullseye geometry consisting of a set of concentric rings with subwavelength dimensions. This design results in a smooth effective lateral photonic potential and therefore in a reduction of lateral scattering losses, which makes it highly appealing for experiments in the framework of exciton-polariton physics demanding tight spatial confinement.

  6. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    International Nuclear Information System (INIS)

    Zhang, Fan; Wu, Chenyun; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang

    2014-01-01

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures

  7. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  8. Optimisation of spontaneous four-wave mixing in a ring microcavity

    Science.gov (United States)

    Chuprina, I. N.; An, P. P.; Zubkova, E. G.; Kovalyuk, V. V.; Kalachev, A. A.; Gol'tsman, G. N.

    2017-11-01

    A theory of spontaneous four-wave mixing in a ring microcavity is developed. The rate of emission of biphotons for pulsed and monochromatic pumping with allowance for the dispersion of group velocities is analytically calculated. In the first case, pulses in the form of an increasing exponential are considered, which are optimal for excitation of an individual resonator mode. The behaviour of the group velocity dispersion as a function of the width and height of the waveguide is studied for a specific case of a ring microcavity made of silicon nitride. The results of the numerical calculation are in good agreement with the experimental data. The ring microcavity is made of two types of waveguides: completely etched and half etched. It is found that the latter allow for better control over the parameters in the manufacturing process, making them more predictable. Presented at the Russian - British Symposium on Quantum Technologies (Moscow, 20 - 23 March 2017)

  9. Black phosphorus-based one-dimensional photonic crystals and microcavities.

    Science.gov (United States)

    Kriegel, Ilka; Toffanin, Stefano; Scotognella, Francesco

    2016-11-10

    The latest achievements in the fabrication of thin layers of black phosphorus (BP), toward the technological breakthrough of a phosphorene atomically thin layer, are paving the way for their use in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e., photonic crystals and microcavities, in which few-layer BP is one of the components. The insertion of the 5-nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity that is interesting for light manipulation and emission enhancement.

  10. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear.

  11. Time-resolved resonance Raman spectroscopy of intermediates of bacteriorhodopsin: The bK(590) intermediate.

    Science.gov (United States)

    Terner, J; Hsieh, C L; Burns, A R; El-Sayed, M A

    1979-07-01

    We have combined microbeam and flow techniques with computer subtraction methods to obtain the resonance Raman spectrum of the short lived batho-intermediate (bK(590)) of bacteriorhodopsin. Comparison of the spectra obtained in (1)H(2)O and (2)H(2)O, as well as the fact that the bK(590) intermediate shows large optical red shifts, suggests that the Schiff base linkage of this intermediate is protonated. The fingerprint region of the spectrum of bK(590), sensitive to the isomeric configuration of the retinal chromophore, does not resemble the corresponding region of the parent bR(570) form. The resonance Raman spectrum of bK(590) as well as the spectra of all of the other main intermediates in the photoreaction cycle of bacteriorhodopsin are discussed and compared with resonance Raman spectra of published model compounds.

  12. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 1. M412 and L550 intermediates

    International Nuclear Information System (INIS)

    Roepe, P.; Ahl, P.L.; Gupta, S.K.D.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    The role of tyrosines in the bacteriorhodopsin (bR) photocycle has been investigated by using Fourier transform infrared (FTIR) and UV difference spectroscopies. Tyrosine contributions to the BR 570 → M 412 FTIR difference spectra recorded at several temperatures and pH's were identified by isotopically labeling tyrosine residues in bacteriorhodopsin. The frequencies and deuterium/hydrogen exchange sensitivities of these peaks and of peaks in spectra of model compounds in several environments suggest that at least two different tyrosine groups participate in the bR photocycle during the formation of M 412 . One group undergoes a tyrosinate → tyrosine conversion during the BR 570 → K 630 transition. A second tyrosine group deprotonates between L 550 and M 412 . Low-temperature UV difference spectra in the 220-350-nm region of both purple membrane suspensions and rehydrated films support these conclusions. The UV spectra also indicate perturbations(s) of one or more tryptophan group(s). Several carboxyl groups appear to undergo a series of protonation changes between BR 570 and M 412 , as indicated by infrared absorption changes in the 1770-1720-cm -1 region. These results are consistent with the existence of a proton wire in bacteriorhodopsin that involves both tyrosine and carboxyl groups

  13. Research on the Band Gap Characteristics of Two-Dimensional Phononic Crystals Microcavity with Local Resonant Structure

    Directory of Open Access Journals (Sweden)

    Mao Liu

    2015-01-01

    Full Text Available A new two-dimensional locally resonant phononic crystal with microcavity structure is proposed. The acoustic wave band gap characteristics of this new structure are studied using finite element method. At the same time, the corresponding displacement eigenmodes of the band edges of the lowest band gap and the transmission spectrum are calculated. The results proved that phononic crystals with microcavity structure exhibited complete band gaps in low-frequency range. The eigenfrequency of the lower edge of the first gap is lower than no microcavity structure. However, for no microcavity structure type of quadrilateral phononic crystal plate, the second band gap disappeared and the frequency range of the first band gap is relatively narrow. The main reason for appearing low-frequency band gaps is that the proposed phononic crystal introduced the local resonant microcavity structure. This study provides a good support for engineering application such as low-frequency vibration attenuation and noise control.

  14. Cost-effective optical fiber pressure sensor based on intrinsic Fabry-Perot interferometric micro-cavities

    Science.gov (United States)

    Domingues, M. Fátima; Rodriguez, Camilo A.; Martins, Joana; Tavares, Cátia; Marques, Carlos; Alberto, Nélia; André, Paulo; Antunes, Paulo

    2018-05-01

    In this work, a cost-effective procedure to manufacture optical fiber pressure sensors is presented. This has a high relevance for integration in robotic exoskeletons or for gait plantar pressure monitoring within the physical rehabilitation scenarios, among other applications. The sensing elements are based on Fabry-Perot interferometric (FPI) micro-cavities, created from the recycling of optical fibers previously destroyed by the catastrophic fuse effect. To produce the pressure sensors, the fiber containing the FPI micro-cavities was embedded in an epoxy resin cylinder used as pressure transducer and responsible to transfer the pressure applied on its surface to the optical fiber containing the FPI micro-cavity. Before the embedding process, some FPI sensors were also characterized to strain variations. After that, the effect of the encapsulation of the FPI structure into the resin was assessed, from which a slight decrease on the FPI interferogram fringes visibility was verified, indicating a small increase in the micro-cavity length. Up on the sensors characterization, a linear dependence of the wavelength shift with the induced pressure was obtained, which leads to a maximum sensitivity of 59.39 ± 1.7 pm/kPa. Moreover, direct dependence of the pressure sensitivity with the micro-cavity volume and length was found.

  15. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Energy Technology Data Exchange (ETDEWEB)

    Goto, Kaname [Department of Electronics, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yamashita, Kenichi, E-mail: yamasita@kit.ac.jp [Faculty of Electrical Engineering and Electronics, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan); Yanagi, Hisao [Graduate School of Materials Science, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192 (Japan); Yamao, Takeshi; Hotta, Shu [Faculty of Materials Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585 (Japan)

    2016-08-08

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  16. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    Science.gov (United States)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-08-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ˜100 meV even in the "half-vertical cavity surface emitting lasing" microcavity structure.

  17. Strong exciton-photon coupling in organic single crystal microcavity with high molecular orientation

    International Nuclear Information System (INIS)

    Goto, Kaname; Yamashita, Kenichi; Yanagi, Hisao; Yamao, Takeshi; Hotta, Shu

    2016-01-01

    Strong exciton-photon coupling has been observed in a highly oriented organic single crystal microcavity. This microcavity consists of a thiophene/phenylene co-oligomer (TPCO) single crystal laminated on a high-reflection distributed Bragg reflector. In the TPCO crystal, molecular transition dipole was strongly polarized along a certain horizontal directions with respect to the main crystal plane. This dipole polarization causes significantly large anisotropies in the exciton transition and optical constants. Especially the anisotropic exciton transition was found to provide the strong enhancement in the coupling with the cavity mode, which was demonstrated by a Rabi splitting energy as large as ∼100 meV even in the “half-vertical cavity surface emitting lasing” microcavity structure.

  18. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  19. Anomalous normal mode oscillations in semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wang, H. [Univ. of Oregon, Eugene, OR (United States). Dept. of Physics; Hou, H.Q.; Hammons, B.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-04-01

    Semiconductor microcavities as a composite exciton-cavity system can be characterized by two normal modes. Under an impulsive excitation by a short laser pulse, optical polarizations associated with the two normal modes have a {pi} phase difference. The total induced optical polarization is then expected to exhibit a sin{sup 2}({Omega}t)-like oscillation where 2{Omega} is the normal mode splitting, reflecting a coherent energy exchange between the exciton and cavity. In this paper the authors present experimental studies of normal mode oscillations using three-pulse transient four wave mixing (FWM). The result reveals surprisingly that when the cavity is tuned far below the exciton resonance, normal mode oscillation in the polarization is cos{sup 2}({Omega}t)-like, in contrast to what is expected form the simple normal mode model. This anomalous normal mode oscillation reflects the important role of virtual excitation of electronic states in semiconductor microcavities.

  20. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces...

  1. Cavity QED with a single QD inside an optical microcavity

    International Nuclear Information System (INIS)

    Peter, E.; Bloch, J.; Lemaitre, A.; Hours, J.; Patriarche, G.; Cavanna, A.; Laurent, S.; Robert-Philip, I.; Senellart, P.; Martrou, D.; Gerard, J.M.

    2006-01-01

    To demonstrate strong coupling regime for a single quantum dot inside an optical microcavity, large oscillator strength quantum dots are needed. We show that quantum dots formed by the interface fluctuations of a thin GaAs quantum well are ideal systems for this purpose since they can present an oscillator strength larger than 100. By inserting a GaAs QD inside a state of the art microdisk microcavity, we demonstrate the strong coupling regime with a Rabi splitting of 400 μeV. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Rayleigh scattering in coupled microcavities: theory.

    Science.gov (United States)

    Vörös, Zoltán; Weihs, Gregor

    2014-12-03

    In this paper we theoretically study how structural disorder in coupled semiconductor heterostructures influences single-particle scattering events that would otherwise be forbidden by symmetry. We extend the model of Savona (2007 J. Phys.: Condens. Matter 19 295208) to describe Rayleigh scattering in coupled planar microcavity structures, and find that effective filter theories can be ruled out.

  3. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays

    International Nuclear Information System (INIS)

    Zou, Yi; Zhu, Liang; Chen, Ray T.; Chakravarty, Swapnajit

    2014-01-01

    We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time

  4. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...... is gradually enhanced and the resonant frequency converges to that of the corresponding surface mode in the photonic crystals. These structures have potential applications such as sensing.......Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor...

  5. The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Yi, E-mail: yzou@utexas.edu; Zhu, Liang; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States)

    2014-04-07

    We experimentally demonstrate an efficient and robust method for series connection of photonic crystal microcavities that are coupled to photonic crystal waveguides in the slow light transmission regime. We demonstrate that group index taper engineering provides excellent optical impedance matching between the input and output strip waveguides and the photonic crystal waveguide, a nearly flat transmission over the entire guided mode spectrum and clear multi-resonance peaks corresponding to individual microcavities that are connected in series. Series connected photonic crystal microcavities are further multiplexed in parallel using cascaded multimode interference power splitters to generate a high density silicon nanophotonic microarray comprising 64 photonic crystal microcavity sensors, all of which are interrogated simultaneously at the same instant of time.

  6. Protein changes associated with reprotonation of the Schiff base in the photocycle of Asp96-->Asn bacteriorhodopsin. The MN intermediate with unprotonated Schiff base but N-like protein structure

    Science.gov (United States)

    Sasaki, J.; Shichida, Y.; Lanyi, J. K.; Maeda, A.

    1992-01-01

    The difference Fourier transform infrared spectrum for the N intermediate in the photoreaction of the light-adapted form of bacteriorhodopsin can be recorded at pH 10 at 274 K (Pfefferle, J.-M., Maeda, A., Sasaki, J., and Yoshizawa, T. (1991) Biochemistry 30, 6548-6556). Under these conditions, Asp96-->Asn bacteriorhodopsin gives a photoproduct which shows changes in protein structure similar to those observed in N of wild-type bacteriorhodopsin. However, decreased intensity of the chromophore bands and the single absorbance maximum at about 400 nm indicate that the Schiff base is unprotonated, as in the M intermediate. This photoproduct was named MN. At pH 7, where the supply of proton is not as restricted as at pH 10, Asp96-->Asn bacteriorhodopsin yields N with a protonated Schiff base. The Asn96 residue, which cannot deprotonate as Asp96 in wild-type bacteriorhodopsin, is perturbed upon formation of both MN at pH 10 and N at pH 7. We suggest that the reprotonation of the Schiff base is preceded by a large change in the protein structure including perturbation of the residue at position 96.

  7. Manipulating the optical properties of CdSe/ZnSSe quantum dot based monolithic pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Seyfried, Moritz; Kalden, Joachim; Lohmeyer, Henning; Sebald, Kathrin; Gutowski, Juergen [Semiconductor Optics, Institute of Solid state Physics, University of Bremen (Germany); Kruse, Carsten; Hommel, Detlef, E-mail: Seyfried@ifp.uni-bremen.d [Semiconductor Epitaxy, Institute of Solid state Physics, University of Bremen (Germany)

    2010-02-01

    A customization of the optical properties of pillar microcavities on the desired applications is essential for their future use as quantum-optical devices. Therefore, all-epitaxial cavities with CdSe quantum dot embedded in pillar structures with different geometries have been realized by focused-ion-beam etching. The quality factors of circularly shaped pillar microcavities have been measured and their dependence on the excitation power is discussed. As a possibility to achieve polarized light emission, asymmetrically shaped microcavities are presented. Examples of an elliptically shaped pillar as well as of photonic molecules are investigated with respect to their photoluminescence characteristics and polarization.

  8. Improved free-energy landscape reconstruction of bacteriorhodopsin highlights local variations in unfolding energy.

    Science.gov (United States)

    Heenan, Patrick R; Yu, Hao; Siewny, Matthew G W; Perkins, Thomas T

    2018-03-28

    Precisely quantifying the energetics that drive the folding of membrane proteins into a lipid bilayer remains challenging. More than 15 years ago, atomic force microscopy (AFM) emerged as a powerful tool to mechanically extract individual membrane proteins from a lipid bilayer. Concurrently, fluctuation theorems, such as the Jarzynski equality, were applied to deduce equilibrium free energies (ΔG 0 ) from non-equilibrium single-molecule force spectroscopy records. The combination of these two advances in single-molecule studies deduced the free-energy of the model membrane protein bacteriorhodopsin in its native lipid bilayer. To elucidate this free-energy landscape at a higher resolution, we applied two recent developments. First, as an input to the reconstruction, we used force-extension curves acquired with a 100-fold higher time resolution and 10-fold higher force precision than traditional AFM studies of membrane proteins. Next, by using an inverse Weierstrass transform and the Jarzynski equality, we removed the free energy associated with the force probe and determined the molecular free-energy landscape of the molecule under study, bacteriorhodopsin. The resulting landscape yielded an average unfolding free energy per amino acid (aa) of 1.0 ± 0.1 kcal/mol, in agreement with past single-molecule studies. Moreover, on a smaller spatial scale, this high-resolution landscape also agreed with an equilibrium measurement of a particular three-aa transition in bacteriorhodopsin that yielded 2.7 kcal/mol/aa, an unexpectedly high value. Hence, while average unfolding ΔG 0 per aa is a useful metric, the derived high-resolution landscape details significant local variation from the mean. More generally, we demonstrated that, as anticipated, the inverse Weierstrass transform is an efficient means to reconstruct free-energy landscapes from AFM data.

  9. Photoaffinity labeling of bacteriorhodopsin

    International Nuclear Information System (INIS)

    Ding, Weidong; Tsipouras, Athanasios; Ok, Hyun; Yamamoto, Toshihiro; Gawinowicz, M.A.; Nakanishi, Koji

    1990-01-01

    14 C-Labeled optically pure 3S- and 3R-(diazoacetoxy)-all-trans-retinals were incorporated separately into bacterioopsin to reconstitute functional bacteriorhodopsin (bR) analogues, 3S- and 3R-diazo-bRs. UV irradiation at 254 nm generated highly reactive carbenes, which cross-linked the radiolabeled retinals to amino acid residues in the vicinity of the β-ionone ring. The 3S- and 3R-diazo analogues were found to cross-link, respectively, to cyanogen bromide fragments CN 7/CN 9 and CN 8/CN 9. More specifically, Thr121 and Gly122 in fragment CN 7 were found to be cross-linked to the 3S-diazo analogue. The identification of cross-linked residues and fragments favors assignments of the seven helices A-G-F-E-D-C-B or B-C-D-E-F-G-A to helices 1-2-3-4-5-6-7 in the two-dimensional electron density map. The present results show that the chromophore chain is oriented with the ionone ring inclined toward the outside of the membrane (the 9-methyl group also faces the extracellular side of the membrane)

  10. Enhanced photocurrent in engineered bacteriorhodopsin monolayer.

    Science.gov (United States)

    Patil, Amol V; Premaruban, Thenhuan; Berthoumieu, Olivia; Watts, Anthony; Davis, Jason J

    2012-01-12

    The integration of the transmembrane protein bacteriorhodopsin (BR) with man-made electrode surfaces has attracted a great deal of interest for some two decades or more and holds significant promise from the perspective of derived photoresponse or energy capture interfaces. Here we demonstrate that a novel and strategically engineered cysteine site (M163C) can be used to intimately and effectively couple delipidated BR to supporting metallic electrode surfaces. By virtue of the combined effects of the greater surface molecular density afforded by delipidation, and the vicinity of the electrostatic changes associated with proton pumping to the transducing metallic continuum, the resulting films generate a considerably greater photocurrent density on wavelength-selective illumination than previously achievable with monolayers of BR. Given the uniquely photoresponsive, wavelength-selective, and photostable characteristics of this protein, the work has implications for utilization in solar energy capture and photodetector devices.

  11. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  12. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Directional Secondary Emission of a Semiconductor Microcavity

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Jensen, Jacob Riis; Hvam, Jørn Märcher

    2000-01-01

    We investigate the time-resolved secondary emission of a homogeneously broadened microcavity after resonant excitation. The sample consists of a 25nm GaAs single quantum well (QW) in the center of a wedged ¥ë cavity with AlAs/AlGaAs Bragg reflectors, grown by molecular beam epitaxy. At zero detun...

  14. Weak-microcavity organic light-emitting diodes with improved light out-coupling.

    Science.gov (United States)

    Cho, Sang-Hwan; Song, Young-Woo; Lee, Joon-gu; Kim, Yoon-Chang; Lee, Jong Hyuk; Ha, Jaeheung; Oh, Jong-Suk; Lee, So Young; Lee, Sun Young; Hwang, Kyu Hwan; Zang, Dong-Sik; Lee, Yong-Hee

    2008-08-18

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays with improved light-extraction and viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs are enhanced by 56%, 107%, and 26%, respectively, with improved color purity. Moreover, full-color passive-matrix bottom-emitting OLED displays are fabricated by employing low-index layers of two thicknesses. As a display, the EL efficiency of white color was 27% higher than that of a conventional OLED display.

  15. The combination of high Q factor and chirality in twin cavities and microcavity chain

    Science.gov (United States)

    Song, Qinghai; Zhang, Nan; Zhai, Huilin; Liu, Shuai; Gu, Zhiyuan; Wang, Kaiyang; Sun, Shang; Chen, Zhiwei; Li, Meng; Xiao, Shumin

    2014-01-01

    Chirality in microcavities has recently shown its bright future in optical sensing and microsized coherent light sources. The key parameters for such applications are the high quality (Q) factor and large chirality. However, the previous reported chiral resonances are either low Q modes or require very special cavity designs. Here we demonstrate a novel, robust, and general mechanism to obtain the chirality in circular cavity. By placing a circular cavity and a spiral cavity in proximity, we show that ultra-high Q factor, large chirality, and unidirectional output can be obtained simultaneously. The highest Q factors of the non-orthogonal mode pairs are almost the same as the ones in circular cavity. And the co-propagating directions of the non-orthogonal mode pairs can be reversed by tuning the mode coupling. This new mechanism for the combination of high Q factor and large chirality is found to be very robust to cavity size, refractive index, and the shape deformation, showing very nice fabrication tolerance. And it can be further extended to microcavity chain and microcavity plane. We believe that our research will shed light on the practical applications of chirality and microcavities. PMID:25262881

  16. Voltage-controlled colour-tunable microcavity OLEDs with enhanced colour purity

    International Nuclear Information System (INIS)

    Choy, Wallace C H; Niu, J H; Li, W L; Chui, P C

    2008-01-01

    The emission spectrum of single-unit voltage-controlled colour-tunable organic light emitting devices (OLEDs) has been theoretically and experimentally studied. Our results show that by introducing the microcavity structure, the colour purity of not only the destination colour but also the colour-tunable route can be enhanced, while colour purity is still an issue in typical single-unit voltage-controlled colour-tunable OLEDs. With the consideration of the periodical cycling of resonant wavelength and absorption loss of the metal electrodes, the appropriate change in the thickness of the microcavity structure has been utilized to achieve voltage-controlled red-to-green and red-to-blue colour-tunable OLEDs without adding dyes or other organic materials to the OLEDs

  17. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    NARCIS (Netherlands)

    Inaba, T.; Lee, D.-G.; Wakamatsu, R.; Kojima, T.; Mitchell, B.; Capretti, A.; Gregorkiewicz, T.; Koizumi, A.; Fujiwara, Y.

    2016-01-01

    We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a

  18. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  19. Efficient analysis of mode profiles in elliptical microcavity using dynamic-thermal electron-quantum medium FDTD method.

    Science.gov (United States)

    Khoo, E H; Ahmed, I; Goh, R S M; Lee, K H; Hung, T G G; Li, E P

    2013-03-11

    The dynamic-thermal electron-quantum medium finite-difference time-domain (DTEQM-FDTD) method is used for efficient analysis of mode profile in elliptical microcavity. The resonance peak of the elliptical microcavity is studied by varying the length ratio. It is observed that at some length ratios, cavity mode is excited instead of whispering gallery mode. This depicts that mode profiles are length ratio dependent. Through the implementation of the DTEQM-FDTD on graphic processing unit (GPU), the simulation time is reduced by 300 times as compared to the CPU. This leads to an efficient optimization approach to design microcavity lasers for wide range of applications in photonic integrated circuits.

  20. Efficient production and purification of functional bacteriorhodopsin with a wheat-germ cell-free system and a combination of Fos-choline and CHAPS detergents.

    Science.gov (United States)

    Genji, Takahisa; Nozawa, Akira; Tozawa, Yuzuru

    2010-10-01

    Cell-free translation is one potential approach to the production of functional transmembrane proteins. We have now examined various detergents as supplements to a wheat-germ cell-free system in order to optimize the production and subsequent purification of a functional model transmembrane protein, bacteriorhodopsin. We found that Fos-choline and CHAPS detergents counteracted each other's inhibitory effects on cell-free translation activity and thereby allowed the efficient production and subsequent purification of functional bacteriorhodopsin in high yield. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Interference effect in the resonant emission of a semiconductor microcavity

    Science.gov (United States)

    Cassabois, G.; Bogani, F.; Triques, A. L.; Delalande, C.; Roussignol, Ph.

    2001-07-01

    We present a phenomenological description of the coherent emission from a semiconductor microcavity in the strong-coupling regime. We consider two main contributions which are calculated in the framework of the semiclassical approach of the linear dispersion theory: reflectivity corresponds to the response of a uniform microcavity while resonant Rayleigh scattering (RRS) arises from disorder. Our simulations are compared to experimental results obtained at normal incidence in a backscattering geometry by means of cw spectroscopy and interferometric correlation with subpicosecond resolution. In this geometry, a fair agreement is reached assuming interferences between the two aforementioned contributions. This interference effect gives evidence of the drastic modification of the RRS emission pattern of the embedded quantum well induced by the Fabry-Pérot cavity.

  2. Photoluminescence from a Tb-doped photonic crystal microcavity for white light generation

    International Nuclear Information System (INIS)

    Li Yigang; Almeida, Rui M

    2010-01-01

    Terbium-doped one-dimensional triple microcavities have been prepared by sol-gel processing. The photoluminescence (PL) of Tb 3+ ions outside a microcavity structure, when excited by blue laser light at 488 nm, consisted of three distinct peaks at 542, 587 and 619 nm. When embedded in the microcavities, the three Tb 3+ PL peaks were enhanced, balanced and broadened by the photonic crystal structure and combined into a continuous broad band. An analysis in the CIE colour space showed that white light can be obtained by mixing the modified Tb 3+ PL with the blue exciting light, while this is impossible with the original PL profile. This novel technique may improve white light generation by enhancing and modifying the spontaneous emission of current phosphors. It may also lead to the development of new rare-earth phosphor materials based on 4f-4f transitions, able to generate white light more efficiently, via simpler and cheaper alternatives to the current phosphor compositions. A novel configuration to combine this kind of structure with a white light-emitting-diode (LED) is also proposed.

  3. Quantum Logic Using Excitonic Quantum Dots in External Optical Microcavities

    National Research Council Canada - National Science Library

    Raymer, Michael

    2003-01-01

    An experimental project was undertaken to develop means to achieve quantum optical strong coupling between a single GaAs quantum dot and the optical mode of a microcavity for the purpose of quantum...

  4. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    International Nuclear Information System (INIS)

    Yan, Hai; Zou, Yi; Yang, Chun-Ju; Chakravarty, Swapnajit; Wang, Zheng; Tang, Naimei; Chen, Ray T.; Fan, Donglei

    2015-01-01

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed

  5. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  6. Femtosecond coherent emission from GaAs bulk microcavities

    Science.gov (United States)

    Gurioli, Massimo; Bogani, Franco; Ceccherini, Simone; Colocci, Marcello; Beltram, Fabio; Sorba, Lucia

    1999-02-01

    The emission from a λ/2 GaAs bulk microcavity resonantly excited by femtosecond pulses has been characterized by using an interferometric correlation technique. It is found that the emission is dominated by the coherent signal due to light elastically scattered by disorder, and that scattering is predominantly originated from the lower polariton branch.

  7. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chakravarty, Swapnajit; Chen, Ray T.

    2015-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  8. Density matrix of strongly coupled quantum dot - microcavity system

    International Nuclear Information System (INIS)

    Nguyen Van Hop

    2009-01-01

    Any two-level quantum system can be used as a quantum bit (qubit) - the basic element of all devices and systems for quantum information and quantum computation. Recently it was proposed to study the strongly coupled system consisting of a two-level quantum dot and a monoenergetic photon gas in a microcavity-the strongly coupled quantum dot-microcavity (QD-MC) system for short, with the Jaynes-Cumming total Hamiltonian, for the application in the quantum information processing. Different approximations were applied in the theoretical study of this system. In this work, on the basis of the exact solution of the Schrodinger equation for this system without dissipation we derive the exact formulae for its density matrix. The realization of a qubit in this system is discussed. The solution of the system of rate equation for the strongly coupled QD-MC system in the presence of the interaction with the environment was also established in the first order approximation with respect to this interaction.

  9. Effect of interface disorder on quantum well excitons and microcavity polaritons

    International Nuclear Information System (INIS)

    Savona, Vincenzo

    2007-01-01

    The theory of the linear optical response of excitons in quantum wells and polaritons in planar semiconductor microcavities is reviewed, in the light of the existing experiments. For quantum well excitons, it is shown that disorder mainly affects the exciton centre-of-mass motion and is modelled by an effective Schroedinger equation in two dimensions. For polaritons, a unified model accounting for quantum well roughness and fluctuations of the microcavity thickness is developed. Numerical results confirm that polaritons are mostly affected by disorder acting on the photon component, thus confirming existing studies on the influence of exciton disorder. The polariton localization length is estimated to be in the few-micrometres range, depending on the amplitude of disorder, in agreement with recent experimental findings

  10. Extended Macroscopic Study of Dilute Gas Flow within a Microcavity

    Directory of Open Access Journals (Sweden)

    Mohamed Hssikou

    2016-01-01

    Full Text Available The behaviour of monatomic and dilute gas is studied in the slip and early transition regimes using the extended macroscopic theory. The gas is confined within a two-dimensional microcavity where the longitudinal sides are in the opposite motion with constant velocity ±Uw. The microcavity walls are kept at the uniform and reference temperature T0. Thus, the gas flow is transported only by the shear stress induced by the motion of upper and lower walls. From the macroscopic point of view, the regularized 13-moment equations of Grad, R13, are solved numerically. The macroscopic gas proprieties are studied for different values of the so-called Knudsen number (Kn, which gives the gas-rarefaction degree. The results are compared with those obtained using the classical continuum theory of Navier-Stokes and Fourier (NSF.

  11. Low-power bacteriorhodopsin-silicon n-channel metal-oxide field-effect transistor photoreceiver.

    Science.gov (United States)

    Shin, Jonghyun; Bhattacharya, Pallab; Yuan, Hao-Chih; Ma, Zhenqiang; Váró, György

    2007-03-01

    A bacteriorhodopsin (bR)-silicon n-channel metal-oxide field-effect transistor (NMOSFET) monolithically integrated photoreceiver is demonstrated. The bR film is selectively formed on an external gate electrode of the transistor by electrophoretic deposition. A modified biasing circuit is incorporated, which helps to match the resistance of the bR film to the input impedance of the NMOSFET and to shift the operating point of the transistor to coincide with the maximum gain. The photoreceiver exhibits a responsivity of 4.7 mA/W.

  12. Steady-State Characterization of Bacteriorhodopsin-D85N Photocycle

    Science.gov (United States)

    Timucin, Dogan A.; Downie, John D.; Norvig, Peter (Technical Monitor)

    1999-01-01

    An operational characterization of the photocycle of the genetic mutant D85N of bacteriorhodopsin, BR-D85N, is presented. Steady-state bleach spectra and pump-probe absorbance data are obtained with thick hydrated films containing BR-D85N embedded in a gelatin host. Simple two- and three-state models are used to analyze the photocycle dynamics and extract relevant information such as pure-state absorption spectra, photochemical-transition quantum efficiencies, and thermal lifetimes of dominant states appearing in the photocycle, the knowledge of which should aid in the analysis of optical recording and retrieval of data in films incorporating this photochromic material. The remarkable characteristics of this material and their implications from the viewpoint of optical data storage and processing are discussed.

  13. Enhanced photoconductivity and fine response tuning in nanostructured porous silicon microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Urteaga, R; MarIn, O; Acquaroli, L N; Schmidt, J A; Koropecki, R R [INTEC-UNL-CONICET, Guemes 3450 - 3000 Santa Fe (Argentina); Comedi, D, E-mail: rkoro@intec.ceride.gov.a [CONICET y LAFISO, Departamento de Fisica, FACET, Universidad Nacional de Tucuman (Argentina)

    2009-05-01

    We used light confinement in optical microcavities to achieve a strong enhancement and a precise wavelength tunability of the electrical photoconductance of nanostructured porous silicon (PS). The devices consist of a periodic array of alternating PS layers, electrochemically etched to have high and low porosities - and therefore distinct dielectric functions. A central layer having a doubled thickness breaks up the symmetry of the one-dimensional photonic structure, producing a resonance in the photonic band gap that is clearly observed in the reflectance spectrum. The devices were transferred to a glass coated with a transparent SnO{sub 2} electrode, while an Al contact was evaporated on its back side. The electrical conductance was measured as a function of the photon energy. A strong enhancement of the conductance is obtained in a narrow (17nm FWHM) band peaking at the resonance. We present experimental results of the angular dependence of this photoconductance peak energy, and propose an explanation of the conductivity behaviour supported by calculations of the internal electromagnetic field. These devices are promising candidates for finely tuned photoresistors with potential application as chemical sensors and biosensors.

  14. Optical responses in single-crystalline organic microcavities

    International Nuclear Information System (INIS)

    Kondo, H.; Yamamoto, Y.; Takeda, A.; Yamamoto, S.; Kurisu, H.

    2008-01-01

    The anisotropic response of cavity polaritons is investigated in an organic microcavity composed of a single-crystalline anthracene film sandwiched between two distributed Bragg reflectors. Upper and lower cavity polariton modes are observed as sharp spectral peaks in the transmission spectra. Dispersion relation for cavity polaritons is obtained as a function of thickness of the thin film. Using this relation, the vacuum Rabi splitting energy for this system is estimated to be 340 meV

  15. Optical responses in single-crystalline organic microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, H. [Department of Physics, Ehime University, Matsuyama, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan)], E-mail: kondo@phys.sci.ehime-u.ac.jp; Yamamoto, Y.; Takeda, A. [Department of Physics, Ehime University, Matsuyama, 2-5 Bunkyo-cho, Matsuyama 790-8577 (Japan); Yamamoto, S.; Kurisu, H. [Department of Advanced Materials Science and Engineering, Yamaguchi University, Ube, Yamaguchi 755-8611 (Japan)

    2008-05-15

    The anisotropic response of cavity polaritons is investigated in an organic microcavity composed of a single-crystalline anthracene film sandwiched between two distributed Bragg reflectors. Upper and lower cavity polariton modes are observed as sharp spectral peaks in the transmission spectra. Dispersion relation for cavity polaritons is obtained as a function of thickness of the thin film. Using this relation, the vacuum Rabi splitting energy for this system is estimated to be 340 meV.

  16. High figure of merit ultra-compact 3-channel parallel-connected photonic crystal mini-hexagonal-H1 defect microcavity sensor array

    Science.gov (United States)

    Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping

    2017-08-01

    In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.

  17. Enhancing the Robustness of the Microcavity Coupling System

    International Nuclear Information System (INIS)

    Yan Ying-Zhan; Zhang Wen-Dong; Xiong Ji-Jun; Ji Zhe; Yan Shu-Bin; Liu Jun; Xue Chen-Yang

    2011-01-01

    A novel method to enhance the robustness of the microcavity coupling system (MCS) is presented by encapsulating and solidifying the MCS with a low refractive index (RI) curable UV polymer. The encapsulating process is illustrated in detail for a typical microsphere with a radius of R about 240μm. Three differences of the resonant characteristics before and after the package are observed and analyzed. The first two differences refer to the enhancement of the coupling strength and the shift of the resonant spectrum to the longer wavelength, which are both mainly because of the microsphere surrounding RI variation. Another difference is the quality factor (Q-factor) which decreases from 7.8×10 7 to 8.7×10 6 after the package due to the polymer absorption. Moreover, rotation testing experiments have been carried out to verify the robustness of the package MCS. Experimental results demonstrate that the packaged MCR has much better robust performance than the un-package sample. The enhancement of the robustness greatly promotes the microcavity research from fundamental investigations to application fields. (fundamental areas of phenomenology(including applications))

  18. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO

    Science.gov (United States)

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P.; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J.; Lafosse, X.; Bouchoule, S.; Li, F.; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2016-03-01

    The polariton condensation phase diagram is compared in GaN and ZnO microcavities grown on mesa-patterned silicon substrate. Owing to a common platform, these microcavities share similar photonic properties with large quality factors and low photonic disorder, which makes it possible to determine the optimal spot diameter and to realize a thorough phase diagram study. Both systems have been investigated under the same experimental conditions. The experimental results and the subsequent analysis reveal clearly that longitudinal optical phonons have no influence in the thermodynamic region of the condensation phase diagram, while they allow a strong (slight) decrease of the polariton lasing threshold in the trade-off zone (kinetic region). Phase diagrams are compared with numerical simulations using Boltzmann equations, and are in satisfactory agreement. A lower polariton lasing threshold has been measured at low temperature in the ZnO microcavity, as is expected due to a larger Rabi splitting. This study highlights polariton relaxation mechanisms and their importance in polariton lasing.

  19. High quality factor GaAs microcavity with buried bullseye defects

    DEFF Research Database (Denmark)

    Winkler, K.; Gregersen, Niels; Hayrynen, T.

    2018-01-01

    The development of high quality factor solid-state microcavities with low mode volumes has paved the way towards on-chip cavity quantum electrodynamics experiments and the development of high-performance nanophotonic devices. Here, we report on the implementation of a new kind of solid...

  20. Dye Giant Absorption and Light Confinement Effects in Porous Bragg Microcavities

    DEFF Research Database (Denmark)

    Oliva-Ramírez, Manuel; Gil-Rostra, Jorge; Simonsen, Adam C.

    2018-01-01

    This work presents a simple experimental procedure to probe light confinement effects in photonic structures. Two types of porous 1D Bragg microcavities with two resonant peaks in the reflection gap were prepared by physical vapor deposition at oblique angle configurations and then infiltrated...... with dye solutions of increasing concentrations. The unusual position shift and intensity drop of the transmitted resonant peak observed when it was scanned through the dye absorption band have been accounted for by the effect of the light trapped at their optical defect layer. An experimentally observed...... giant absorption of the dye molecules and a strong anomalous dispersion in the refractive index of the solution are claimed as the reasons for the observed variations in the Bragg microcavity resonant feature. Determining the giant absorption of infiltrated dye solutions is proposed as a general...

  1. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan; Heo, Junseok; Bayraktaroglu, Adrian; Guo, Wei; Ng, Tien Khee; Phillips, Jamie; Ooi, Boon S.; Bhattacharya, Pallab

    2012-01-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non

  2. Novel emission phenomena in organic microcavities (Conference Presentation)

    Science.gov (United States)

    Leo, Karl

    2016-09-01

    Organic light emitting diodes (OLED) are today a mature techology and have reached high efficiency both in monochrome and white devices. One of the main research areas for further improvement is still the optical design which enables many new approaches to enhance efficiency and realize special emission properties. In this talk, I will review our recent work on OLED outcoupling, in particular for devices encapsulated in microcavities and patterned structures.

  3. A versatile tunable microcavity for investigation of light-matter interaction

    Science.gov (United States)

    Mochalov, Konstantin E.; Vaskan, Ivan S.; Dovzhenko, Dmitriy S.; Rakovich, Yury P.; Nabiev, Igor

    2018-05-01

    Light-matter interaction between a molecular ensemble and a confined electromagnetic field is a promising area of research, as it allows light-control of the properties of coupled matter. The common way to achieve coupling is to place an ensemble of molecules or quantum emitters into a cavity. In this approach, light-matter coupling is evidenced by modification of the spectral response of the emitter, which depends on the strength of interaction between emitter and cavity modes. However, there is not yet a user-friendly approach that allows the study of a large number of different and replaceable samples in a wide optical range using the same resonator. Here, we present the design of such a device that can speed up and facilitate investigation of light-matter interaction ranging from weak to strong coupling regimes in ultraviolet-visible and infrared (IR) spectral regions. The device is based on a tunable unstable λ/2 Fabry-Pérot microcavity consisting of plane and convex mirrors that satisfy the plane-parallelism condition at least at one point of the curved mirror and minimize the mode volume. Fine tuning of the microcavity length is provided by a Z-piezopositioner in a range up to 10 μm with a step of several nm. This design makes a device a versatile instrument that ensures easy finding of optimal conditions for light-matter interaction for almost any sample in both visible and IR areas, enabling observation of both electronic and vibrational couplings with microcavity modes thus paving the way to investigation of various coupling effects including Raman scattering enhancement, modification of chemical reactivity rate, lasing, and long-distance nonradiative energy transfer.

  4. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...

  5. Strong coupling and polariton lasing in Te based microcavities embedding (Cd,Zn)Te quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Rousset, J.-G., E-mail: j-g.rousset@fuw.edu.pl; Piętka, B.; Król, M.; Mirek, R.; Lekenta, K.; Szczytko, J.; Borysiuk, J.; Suffczyński, J.; Kazimierczuk, T.; Goryca, M.; Smoleński, T.; Kossacki, P.; Nawrocki, M.; Pacuski, W. [Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warszawa (Poland)

    2015-11-16

    We report on properties of an optical microcavity based on (Cd,Zn,Mg)Te layers and embedding (Cd,Zn)Te quantum wells. The key point of the structure design is the lattice matching of the whole structure to MgTe, which eliminates the internal strain and allows one to embed an arbitrary number of unstrained quantum wells in the microcavity. We evidence the strong light-matter coupling regime already for the structure containing a single quantum well. Embedding four unstrained quantum wells results in further enhancement of the exciton-photon coupling and the polariton lasing in the strong coupling regime.

  6. Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure

    Science.gov (United States)

    Lu, Yanan; Yang, Guofeng; Wang, Fuxue; Lu, Naiyan

    2018-05-01

    There is an increasing interest in using monolayer molybdenum disulfide (MoS2) for optoelectronic devices because of its inherent direct band gap characteristics. However, the weak absorption of monolayer MoS2 restricts its applications, novel concepts need to be developed to address the weakness. In this work, monolayer MoS2 monolithically integrates with plane microcavity structure, which is formed by the top and bottom chirped distributed Bragg reflector (DBR), is demonstrated to improve the absorption of MoS2. The optical absorption is 17-fold enhanced, reaching values over 70% at work wavelength. Moreover, the monolayer MoS2-based photodetector device with microcavity presents a significantly increased photoresponse, demonstrating its promising prospects in MoS2-based optoelectronic devices.

  7. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  8. Finite-momentum condensation in a pumped microcavity

    International Nuclear Information System (INIS)

    Brierley, R. T.; Eastham, P. R.

    2010-01-01

    We calculate the absorption spectra of a semiconductor microcavity into which a nonequilibrium exciton population has been pumped. We predict strong peaks in the spectrum corresponding to collective modes analogous to the Cooper modes in superconductors and fermionic atomic gases. These modes can become unstable, leading to the formation of off-equilibrium quantum condensates. We calculate a phase diagram for condensation and show that the dominant instabilities can be at a finite momentum. Thus we predict the formation of inhomogeneous condensates, similar to Fulde-Ferrel-Larkin-Ovchinnikov states.

  9. Room temperature current injection polariton light emitting diode with a hybrid microcavity.

    Science.gov (United States)

    Lu, Tien-Chang; Chen, Jun-Rong; Lin, Shiang-Chi; Huang, Si-Wei; Wang, Shing-Chung; Yamamoto, Yoshihisa

    2011-07-13

    The strong light-matter interaction within a semiconductor high-Q microcavity has been used to produce half-matter/half-light quasiparticles, exciton-polaritons. The exciton-polaritons have very small effective mass and controllable energy-momentum dispersion relation. These unique properties of polaritons provide the possibility to investigate the fundamental physics including solid-state cavity quantum electrodynamics, and dynamical Bose-Einstein condensates (BECs). Thus far the polariton BEC has been demonstrated using optical excitation. However, from a practical viewpoint, the current injection polariton devices operating at room temperature would be most desirable. Here we report the first realization of a current injection microcavity GaN exciton-polariton light emitting diode (LED) operating under room temperature. The exciton-polariton emission from the LED at photon energy 3.02 eV under strong coupling condition is confirmed through temperature-dependent and angle-resolved electroluminescence spectra.

  10. Coupling of a single NV center to a fiber-based microcavity

    International Nuclear Information System (INIS)

    Christoph Becher

    2014-01-01

    The read-out of the spin state of a NV center in diamond or the transfer of quantum information between its spin and a photon would profit enormously from coupling the NV center's optical transitions to a microcavity with a highly directional output. We here report on such a coupling of a single NV center in a nanodiamond to a fiber-based, tunable microcavity at room temperature. Making use of the NV center's strongly broadened emission we operate in the regime of phonon-assisted cavity seeding and realize a widely tunable, narrow-band single photon source. A master equation model well reproduces our experimental results and predicts a transition into a Purcell-enhanced emission regime at low temperatures where up to 65% of the NV emission would be channeled into the cavity mode for our given experimental parameters. Further reducing scattering losses from the nanodiamonds could enable schemes for cavity-enhanced spin measurements or creation of entangled states. (author)

  11. Microcavity polariton linewidths in the weak-disorder regime

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Woggon, U.

    2000-01-01

    Polariton linewidths have been measured in a series of high-quality microcavities with different excitonic inhomogeneous broadening in the weak-disorder regime. We show experimentally that the influence of the disorder on the polariton linewidths is canceled when the polariton energies are far in...... in the tail of the excitonic absorption. The measured linewidths are quantitatively compared with an estimation using the measured excitonic absorption spectrum of the bare quantum wells, and good agreement is found....

  12. Evidence for a tyrosine protonation change during the primary phototransition of bacteriorhodopsin at low temperature.

    OpenAIRE

    Rothschild, K J; Roepe, P; Ahl, P L; Earnest, T N; Bogomolni, R A; Das Gupta, S K; Mulliken, C M; Herzfeld, J

    1986-01-01

    Isotopically labeled tyrosines have been selectively incorporated into bacteriorhodopsin (bR). A comparison of the low-temperature bR570 to K Fourier transform infrared-difference spectra of these samples and normal bR provides information about the role of tyrosine in the primary phototransition. Several tyrosine contributions to the difference spectrum are found. These results and comparison with the spectra of model compounds suggest that a tyrosinate group protonates during the bR570 to K...

  13. Microcavity-coupled fiber Bragg grating with tunable reflection spectra and speed of light.

    Science.gov (United States)

    Chen, Lei; Han, Ya; Liu, Qian; Liu, Yan-Ge; Zhang, Weigang; Chou, Keng C

    2018-04-15

    After a fiber Bragg grating (FBG) is fabricated, the reflection spectrum of the FBG is generally not tunable without mechanical deformation or temperature adjustment. Here we present a microcavity-coupled FBG with both a tunable reflection lineshape and dispersion using electromagnetically induced transparency. The Fano interference of light in the FBG and the microcavity allows for dramatic modification of the reflection spectrum. The phase of the reflected spectrum is continuously tunable between 0 and 2π to produce various Fano lineshapes. The dispersion of the output light is adjustable from normal dispersion to abnormal dispersion, consequently providing an adjustable speed of light. Additionally, it allows the FBG to switch from a notch filter to a bandpass filter at the resonant wavelength, which is not possible in a conventional uniform FBG.

  14. Photolytic interruptions of the bacteriorhodopsin photocycle examined by time-resolved resonance raman spectroscopy.

    Science.gov (United States)

    Grieger, I; Atkinson, G H

    1985-09-24

    An investigation of the photolytic conditions used to initiate and spectroscopically monitor the bacteriorhodopsin (BR) photocycle utilizing time-resolved resonance Raman (TR3) spectroscopy has revealed and characterized two photoinduced reactions that interrupt the thermal pathway. One reaction involves the photolytic interconversion of M-412 and M', and the other involves the direct photolytic conversion of the BR-570/K-590 photostationary mixture either to M-412 and M' or to M-like intermediates within 10 ns. The photolytic threshold conditions describing both reactions have been quantitatively measured and are discussed in terms of experimental parameters.

  15. Multifunctional optical security features based on bacteriorhodopsin

    Science.gov (United States)

    Hampp, Norbert A.; Neebe, Martin; Juchem, Thorsten; Wolperdinger, Markus; Geiger, Markus; Schmuck, Arno

    2004-06-01

    Bacteriorhodopsin (BR), a photochromic retinal protein, has been developed into a new materials platform for applications in anti-counterfeiting. The combination of three different properties of the material on its molecular level, a light-inducible color change, photochemical data storage and traceability of the protein due to molecular marker sequences make this protein a promising material for security applications. The crystalline structure of the biopigment combines these properties with high stability. As BR is a biological material specialized knowledge for modification, cost- effective production and suitable processing of the material is required. Photochromic BR-based inks have been developed for screen printing, pad printing and ink jet printing. These prints show a high photochromic sensitivity towards variation of illumination. For this reason it is not possible to reproduce the dynamic color by photocopying. In addition to such visual inspection the printed symbols offer the possibility for digital write-once-read-many (WORM) data storage. Photochemical recording is accomplished by a two-photon process. Recording densities in a range from 106 bit/cm2 to 108 bit/cm2 have been achieved. Data structures are stored in a polarization sensitive mode which allows an easy and efficient data encryption.

  16. Ultra-fast polariton dynamics in an organic microcavity

    Directory of Open Access Journals (Sweden)

    Polli D.

    2013-03-01

    Full Text Available We study an organic semiconductor microcavity operating in the strong-coupling regime using femtosecond pump-probe spectroscopy. By probing the photo-induced absorption bands, we characterize the time-dependent population densities of states in the two polariton branches. We found evidence of a scattering process from the upper-branch cavity polaritons to the exciton reservoir having a rate of (150 fs-1. A slower process similarly populates lower-branch polaritons with a rate of around (3ps-1

  17. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  18. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    Science.gov (United States)

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  19. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid.

    Science.gov (United States)

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-10-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane alpha-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lipid, phosphatidylcholine from egg yolk, in only the reaction mixture. By examining a variety of detergents, we found that the combination of a steroid detergent (digitonin, cholate, or CHAPS) and egg phosphatidylcholine yielded a large amount (0.3-0.7 mg/mL reaction mixture) of the fully functional bacteriorhodopsin. We also analyzed the process of functional expression in our system. The synthesized polypeptide was well protected from aggregation by the detergent-lipid mixed micelles and/or lipid disks, and was integrated into liposomes upon detergent removal by dialysis. This approach might be useful for the high yield production of functional membrane proteins.

  20. Realization and optical characterisation of micro-cavities in strong coupling regime using self-assembled multi-quantum wells structure of 2D perovskites

    International Nuclear Information System (INIS)

    Lanty, Gaetan

    2011-01-01

    The research work which is reported in this manuscript focuses on 2D perovskites and their use to obtain micro-cavities working in the strong coupling regime. Perovskite structure forms a multi-quantum wells in which the excitonic states have a high oscillator strength and a large binding energy (a few 100 MeV) due to quantum and dielectric confinement effects. A first axis of this work was to collect information on the excitonic properties of these materials. On a particular perovskite (PEPI), we performed photoluminescence and pump-probe measurements, which seem to suggest the existence, under high excitation density, a process of Auger recombination of excitons. A second research axis was to put in cavity thin layers of some perovskites. With PEPI and PEPC perovskites, we have shown that the realization of micro-cavities with a quality factor of the order of ten is sufficient to obtain at room temperature, the strong coupling regime in absorption and emission with Rabi splitting up to 220 MeV. A bottleneck effect has been clearly demonstrated for the PEPI microcavity. We have also shown that perovskites could be associated with inorganic semiconductors in 'hybrid' micro-cavities. According Agranovich et al., these micro-cavities could present polariton lasing with lower quality factors. To this end, the ZnO/MFMPB association seems particularly promising. (author)

  1. Electrically Injected Polariton Lasing from a GaAs-Based Microcavity under Magnetic Field

    KAUST Repository

    Bhattacharya, Pallab; Das, Ayan; Jankowski, Marc; Bhowmick, Sishir; Lee, Chi-Sen; Jahangir, Shafat

    2012-01-01

    Suppression of relaxation bottleneck and subsequent polariton lasing is observed in a GaAs-based microcavity under the application of a magnetic field. The threshold injection current density is 0.32 A/cm2 at 7 Tesla.

  2. Higher-order photon bunching in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Assmann, M.; Veit, F.; Bayer, M.

    2009-01-01

    Quantum mechanically indistinguishable particles such as photons may show collective behavior. Therefore, an appropriate description of a light field must consider the properties of an assembly of photons instead of independent particles. We have studied multiphoton correlations up to fourth order...... in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...

  3. Magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity

    International Nuclear Information System (INIS)

    Zhang, Chuanyi; Zhang, Weifeng

    2015-01-01

    We theoretically study the magnetic-field induced bistability in a quasi-one-dimensional semiconductor microcavity. A critical magnetic field is obtained, and the bistability appears if a magnetic field is greater than the critical value. For a positive energy detuning of the pump from the bare exciton polaritons, one bistability loop first emerges, then it divides into two loops, and finally one of them vanishes with the increasing magnetic field. This phenomenon originates from the magnetic-field modulated interactions for opposite spins. In the variational process, there are two important effects: one is a logic gate with a small variation of the excitation laser, and the other is a spin texture like skyrmion and this texture is periodic if the energy detuning varies periodically in real space, which is useful for designing the spin-dependent optoelectronic devices. - Highlights: • We study the bistability induced by a magnetic field in a microcavity. • One bistability loop can divide into two, and then the two loops return to one. • A spin texture like skyrmion and logic gate arise in the variation of bistability loop

  4. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  5. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode...... at a temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  6. Dynamics in terahertz semiconductor microcavity: quantum noise spectra

    Science.gov (United States)

    Jabri, H.; Eleuch, H.

    2018-05-01

    We investigate the physics of an optical semiconductor microcavity containing a coupled double quantum well interacting with cavity photons. The photon statistics of the transmitted light by the cavity is explored. We show that the nonlinear interactions in the direct and indirect excitonic modes generate an important squeezing despite the weak nonlinearities. When the strong coupling regime is achieved, the noise spectra of the system is dominated by the indirect exciton distribution. At the opposite, in the weak regime, direct excitons contribute much larger in the noise spectra.

  7. Broad-spectrum enhanced absorption of graphene-molybdenum disulfide photovoltaic cells in metal-mirror microcavity

    Science.gov (United States)

    Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu

    2018-04-01

    The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.

  8. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  9. Photoluminescence eigenmodes in the ZnO semiconductor microcavity on the Ag/Si substrate

    Czech Academy of Sciences Publication Activity Database

    Luo, X.; Wang, J.; Mao, H.; Remeš, Zdeněk; Král, Karel

    2013-01-01

    Roč. 112, č. 4 (2013), s. 821-825 ISSN 0947-8396 R&D Projects: GA MŠk LH12186 Institutional support: RVO:68378271 Keywords : ZnO * photoluminescence * microcavity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.694, year: 2013

  10. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    Directory of Open Access Journals (Sweden)

    Tomohiro Inaba

    2016-04-01

    Full Text Available We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a 21-fold increase at room temperature. We systematically investigate the origin of this enhancement, and we conclude that it is due to the combination of several effects including, the lifetime shortening of the Eu emission, the strain-induced piezoelectric effect, and the increased extraction and excitation field efficiencies. This study paves the way for an alternative method to enhance the photoluminescence intensity in rare-earth doped semiconductor structures.

  11. Optimization of three-dimensional micropost microcavities for cavity quantum electrodynamics

    International Nuclear Information System (INIS)

    Vuckovic, Jelena; Pelton, Matthew; Scherer, Axel; Yamamoto, Yoshihisa

    2002-01-01

    This paper presents a detailed analysis, based on the first-principles finite-difference time-domain method, of the resonant frequency, quality factor (Q), mode volume (V), and radiation pattern of the fundamental (HE 11 ) mode in a three-dimensional distributed-Bragg-reflector (DBR) micropost microcavity. By treating this structure as a one-dimensional cylindrical photonic crystal containing a single defect, we are able to push the limits of Q/V beyond those achievable by standard micropost designs, based on the simple rules established for planar DBR microcavities. We show that some of the rules that work well for designing large-diameter microposts (e.g., high-refractive-index contrast) fail to provide high-quality cavities with small diameters. By tuning the thicknesses of mirror layers and the spacer, the number of mirror pairs, the refractive indices of high- and low-refractive index regions, and the cavity diameter, we are able to achieve Q as high as 10 4 , together with a mode volume of 1.6 cubic wavelengths of light in the high-refractive-index material. The combination of high Q and small V makes these structures promising candidates for the observation of such cavity-quantum-electrodynamics phenomena as strong coupling between a quantum dot and the cavity field, and single-quantum-dot lasing

  12. Monitoring of benzene-induced hematotoxicity in mice by serial leukocyte counting using a microcavity array.

    Science.gov (United States)

    Hosokawa, Masahito; Asami, Marie; Yoshino, Tomoko; Tsujimura, Noriyuki; Takahashi, Masayuki; Nakasono, Satoshi; Tanaka, Tsuyoshi; Matsunaga, Tadashi

    2013-02-15

    Monitoring of hematotoxicity, which requires serial blood collection, is difficult to carry out in small animals due to a lack of non-invasive, individual animal-appropriate techniques that enable enumeration of leukocyte subsets from limited amounts of whole blood. In this study, a microfluidic device equipped with a microcavity array that enables highly efficient separation of leukocytes from submicroliters of whole blood was applied for hematotoxicity monitoring in mice. The microcavity array can specifically separate leukocytes from whole blood based on differences in the size and deformability between leukocytes and other blood cells. Mouse leukocytes recovered on aligned microcavities were continuously processed for image-based immunophenotypic analysis. Our device successfully recovered almost 100% of mouse leukocytes in 0.1 μL of whole blood without the effect of serial blood collection such as changes in body weight and total leukocyte count. We assessed benzene-associated hematotoxicity in mice using this system. Mice were administered with benzene once daily and the depression of leukocyte numbers induced in individual mice was successfully monitored from tail vein blood collected every other day for 2 weeks. Serial monitoring of the leukocyte number in individual mice will contribute to the understanding of hematotoxicity and reduction of the number of animal experiment trials. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Quantum condensation from a tailored exciton population in a microcavity

    International Nuclear Information System (INIS)

    Eastham, P. R.; Phillips, R. T.

    2009-01-01

    An experiment is proposed on the coherent quantum dynamics of a semiconductor microcavity containing quantum dots. Modeling the experiment using a generalized Dicke model, we show that a tailored excitation pulse can create an energy-dependent population of excitons, which subsequently evolves to a quantum condensate of excitons and photons. The population is created by a generalization of adiabatic rapid passage and then condenses due to a dynamical analog of the BCS instability.

  14. All-optical temporal fractional order differentiator using an in-fiber ellipsoidal air-microcavity

    Science.gov (United States)

    Zhang, Lihong; Sun, Shuqian; Li, Ming; Zhu, Ninghua

    2017-12-01

    An all-optical temporal fractional order differentiator with ultrabroad bandwidth (~1.6 THz) and extremely simple fabrication is proposed and experimentally demonstrated based on an in-fiber ellipsoidal air-microcavity. The ellipsoidal air-microcavity is fabricated by splicing a single mode fiber (SMF) and a photonic crystal fiber (PCF) together using a simple arc-discharging technology. By changing the arc-discharging times, the propagation loss can be adjusted and then the differentiation order is tuned. A nearly Gaussian-like optical pulse with 3 dB bandwidth of 8 nm is launched into the differentiator and a 0.65 order differentiation of the input pulse is achieved with a processing error of 2.55%. Project supported by the the National Natural Science Foundation of China (Nos. 61522509, 61377002, 61535012), the National High-Tech Research & Development Program of China (No. SS2015AA011002), and the Beijing Natural Science Foundation (No. 4152052). Ming Li was supported in part by the Thousand Young Talent Program.

  15. Multi-Valued Spin Switch in a Semiconductor Microcavity

    Science.gov (United States)

    Paraïso, T. K.; Wouters, M.; Léger, Y.; Morier-Genoud, F.; Deveaudhyphen; Plédran, B.

    2011-12-01

    In this work, we report on the first realization of multi-valued spin switching in the solid-state. We investigate the physics of spinor bistability with microcavity polaritons in a trap. Spinor interactions lead to special bistability regimes with decoupled thresholds for spin-up and spin-down polaritons. This allows us to establish state-of-the-art spin switching operations. We evidence polarization hysteresis and determine appropriate conditions to achieve spin multistability. For a given excitation condition, three stable spin states coexist for the system. These results open new pathways for the development of innovative spin-based logic gates and memory devices.

  16. Observation of helix associations for insertion of a retinal molecule and distortions of helix structures in bacteriorhodopsin

    Science.gov (United States)

    Urano, Ryo; Okamoto, Yuko

    2015-12-01

    We applied a newly proposed prediction method for membrane protein structures to bacteriorhodopsin that has distorted transmembrane helices in the native structure. This method uses an implicit membrane model, which restricts sampling space during folding in a membrane region, and includes helix bending. Replica-exchange simulations were performed with seven transmembrane helices only without a retinal molecule. Obtained structures were classified into clusters of similar structures, which correspond to local-minimum free energy states. The two lowest free energy states corresponded to a native-like structure with the correct empty space for retinal and a structure with this empty space filled with a helix. Previous experiments of bacteriorhodopsin suggested that association of transmembrane helices enables them to make a room for insertion of a retinal. Our results are consistent with these results. Moreover, distortions of helices in the native-like structures were successfully reproduced. In the distortions, whereas the locations of kinks for all helices were similar to those of Protein Data Bank's data, the amount of bends was more similar for helices away from the retinal than for those close to the retinal in the native structure. This suggests a hypothesis that the amino-acid sequence specifies the location of kinks in transmembrane helices and that the amount of distortions depends on the interactions with the surrounding molecules such as neighboring helices, lipids, and retinal.

  17. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface

    OpenAIRE

    Szundi, I.; Stoeckenius, W.

    1989-01-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lowe...

  18. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  19. Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    International Nuclear Information System (INIS)

    Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T; Eastham, P R; Hugues, M; Hopkinson, M

    2010-01-01

    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In 0.23 Ga 0.77 As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.

  20. Stable integrated hyper-parametric oscillator based on coupled optical microcavities.

    Science.gov (United States)

    Armaroli, Andrea; Feron, Patrice; Dumeige, Yannick

    2015-12-01

    We propose a flexible scheme based on three coupled optical microcavities that permits us to achieve stable oscillations in the microwave range, the frequency of which depends only on the cavity coupling rates. We find that the different dynamical regimes (soft and hard excitation) affect the oscillation intensity, but not their periods. This configuration may permit us to implement compact hyper-parametric sources on an integrated optical circuit with interesting applications in communications, sensing, and metrology.

  1. Branching pathways in the photocycle of bacteriorhodopsin

    International Nuclear Information System (INIS)

    Kalisky, O.; Ottolenghi, M.

    1982-01-01

    The pulsed laser photolysis of light-adapted bacteriorhodopsin (BR 570 ) is carried out between 25 C and -92 C in neutral and alkaline water-glycerol solutions. At relatively low temperatures the primary photoproduct K 610 equilibrates with a blue-shifted species, Ksub(p). Both K 610 and the new intermediate subsequently decay into another species, K'sub(p), in a process which competes with the formation of L 550 . Finally, K'sub(p) converts very slowly to L 550 . This branched pathway delays the formation of L 550 and thus of M 412 , without affecting the final yield of either species. A thermal back-reaction regenerating BR 570 takes place at the stage of L 550 , inhibiting the formation of M 412 . The reaction which also predominates at low temperatures, is relatively inefficient at high pH when the forward L 550 → M 412 step is highly catalyzed. It is the superposition of both these branching mechanisms which accounts for the complex effects of temperature and pH on the photocycle of BR 570 . The latter mechanism is accounted for by a molecular scheme in which deprotonation of a tyrosine moiety at the stage of L 550 constitutes a prerequisite for deprotonation of the retinal-lysine schiff-base as required for forming M 412 . This scheme appears to be directly related to the proton pump. (author)

  2. Bistability and self-oscillations effects in a polariton-laser semiconductor microcavity

    International Nuclear Information System (INIS)

    Cotta, E A; Matinaga, F M

    2007-01-01

    We report an experimental observation of polaritonic optical bistability of the laser emission in a planar semiconductor microcavity with a 100 0 A GaAs single quantum well in the strong-coupling regime. The bistability curves show crossings that indicate a competition between a Kerr-like effect induced by the polariton population and thermal effects. Associated with the bistability, laser-like emission occurs at the bare cavity mode

  3. Reciprocal-Space Engineering of Quasi-Bound States in the Continuum in Photonic Crystal Slabs for High-Q Microcavities

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Taghizadeh, Alireza

    2017-01-01

    The bound states in the continuum (BICs) in photonic crystal (PhC) slabs presume infinite periodicity in the inplane direction. Thus, a large number of unit cells are typically required to implement the BICs with a high quality (Q) factor. Here, we report on a method to engineer the reciprocal......-space properties of BICs, which enables to keep the effect of the BIC phenomenon strong even for a microcavity of a few unit cells. For example, based on this method, a 3D microcavity of 4 unit cells can attain a Q factor of 18k. This allows for various BIC studies in a very compact platform, as well as novel...

  4. Ultrastrong exciton-photon coupling in single and coupled organic microcavities

    Science.gov (United States)

    Liu, Bin; Bramante, Rosemary; Valle, Brent; Singer, Kenneth; Khattab, Tawfik; Williams, Jarrod; Twieg, Robert

    2015-03-01

    We have demonstrated ultrastrong light-matter coupling in organic planar microcavities composed of a neat glassy organic dye film between two metallic (aluminum) mirrors in a half-cavity configuration. Such cavities are characterized by Q factors around 10. Tuning the thickness of the organic layer enables the observation of the ultrastrong coupling regime. Via reflectivity measurements, we observe a very large Rabi splitting around 1.227 eV between upper and lower polariton branches at room temperature, and we detect polariton emission from the lower polariton branch via photoluminescence measurements. The large splitting is due to the large oscillator strength of the neat dye glass, and to the match of the low-Q cavity spectral width to the broad absorption width of the dye film material. We also study the interaction between excitonic states of neat glassy organic dye and cavity modes within coupled microcavity structures. The high-reflectivity mirrors are formed from distributed Bragg reflectors (DBR), which are multilayer films fabricated using the coextrusion process, containing alternating layers of high (SAN25, n =1.57) and low (Dyneon THV 220G, n =1.37) refractive index dielectric polymers. Nonlinear optical measurements will be discussed. This research was supported by the National Science Foundation Center for Layered Polymer Systems (CLiPS) under Grant Number DMR-0423914.

  5. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor.

    Science.gov (United States)

    Caroselli, Raffaele; Martín Sánchez, David; Ponce Alcántara, Salvador; Prats Quilez, Francisco; Torrijos Morán, Luis; García-Rupérez, Jaime

    2017-12-05

    Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU), which allowed us to directly detect refractive index variations in the 10 -7 RIU range.

  6. High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities

    Science.gov (United States)

    Li, Tao; Gao, Jian-Cun; Deng, Fu-Guo; Long, Gui-Lu

    2018-04-01

    We propose some high-fidelity quantum circuits for quantum computing on electron spins of quantum dots (QD) embedded in low-Q optical microcavities, including the two-qubit controlled-NOT gate and the multiple-target-qubit controlled-NOT gate. The fidelities of both quantum gates can, in principle, be robust to imperfections involved in a practical input-output process of a single photon by converting the infidelity into a heralded error. Furthermore, the influence of two different decay channels is detailed. By decreasing the quality factor of the present microcavity, we can largely increase the efficiencies of these quantum gates while their high fidelities remain unaffected. This proposal also has another advantage regarding its experimental feasibility, in that both quantum gates can work faithfully even when the QD-cavity systems are non-identical, which is of particular importance in current semiconductor QD technology.

  7. Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-01-13

    We present some compact quantum circuits for a deterministic quantum computing on electron-spin qubits assisted by quantum dots inside single-side optical microcavities, including the CNOT, Toffoli, and Fredkin gates. They are constructed by exploiting the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a single-side optical microcavity as a result of cavity quantum electrodynamics. Our universal quantum gates have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional electron-spin qubits and they are achieved by some input-output processes of a single photon. Third, our circuits for these gates are simple and economic. Moreover, our devices for these gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment.

  8. Microcavity quantum-dot systems for non-equilibrium Bose-Einstein condensation

    Energy Technology Data Exchange (ETDEWEB)

    Piper, I M; Ediger, M; Wilson, A M; Wu, Y; Phillips, R T [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Eastham, P R [School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Hugues, M; Hopkinson, M, E-mail: imp24@cam.ac.u [Department of Electronic and Electrical Engineering, University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2010-09-01

    We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In{sub 0.23}Ga{sub 0.77}As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.

  9. Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface.

    Science.gov (United States)

    Szundi, I; Stoeckenius, W

    1989-08-01

    We have developed a surface model of purple membrane and applied it in an analysis of the purple-to-blue color change of bacteriorhodopsin which is induced by acidification or deionization. The model is based on dissociation and double layer theory and the known membrane structure. We calculated surface pH, ion concentrations, charge density, and potential as a function of bulk pH and concentration of mono- and divalent cations. At low salt concentrations, the surface pH is significantly lower than the bulk pH and it becomes independent of bulk pH in the deionized membrane suspension. Using an experimental acid titration curve for neutral, lipid-depleted membrane, we converted surface pH into absorption values. The calculated bacteriohodopsin color changes for acidification of purple, and titrations of deionized blue membrane with cations or base agree well with experimental results. No chemical binding is required to reproduce the experimental curves. Surface charge and potential changes in acid, base and cation titrations are calculated and their relation to the color change is discussed. Consistent with structural data, 10 primary phosphate and two basic surface groups per bacteriorhodopsin are sufficient to obtain good agreement between all calculated and experimental curves. The results provide a theoretical basis for our earlier conclusion that the purple-to-blue transition must be attributed to surface phenomena and not to cation binding at specific sites in the protein.

  10. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Martin; Hampp, Norbert, E-mail: hampp@staff.uni-marburg.de [Department of Chemistry, Material Sciences Center, University of Marburg, Hans-Meerwein-Str., D-35032 Marburg (Germany); Rhinow, Daniel [Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt (Germany)

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  11. Real-Time and In-Flow Sensing Using a High Sensitivity Porous Silicon Microcavity-Based Sensor

    Directory of Open Access Journals (Sweden)

    Raffaele Caroselli

    2017-12-01

    Full Text Available Porous silicon seems to be an appropriate material platform for the development of high-sensitivity and low-cost optical sensors, as their porous nature increases the interaction with the target substances, and their fabrication process is very simple and inexpensive. In this paper, we present the experimental development of a porous silicon microcavity sensor and its use for real-time in-flow sensing application. A high-sensitivity configuration was designed and then fabricated, by electrochemically etching a silicon wafer. Refractive index sensing experiments were realized by flowing several dilutions with decreasing refractive indices, and measuring the spectral shift in real-time. The porous silicon microcavity sensor showed a very linear response over a wide refractive index range, with a sensitivity around 1000 nm/refractive index unit (RIU, which allowed us to directly detect refractive index variations in the 10−7 RIU range.

  12. Exciton-polariton dynamics in a GaAs bulk microcavity

    Science.gov (United States)

    Ceccherini, S.; Gurioli, M.; Bogani, F.; Colocci, M.; Tredicucci, A.; Bassani, F.; Beltram, F.; Sorba, L.

    1998-01-01

    We present a full analysis of exciton dynamics in a GaAs λ/2 bulk microcavity following excitation by ultrafast laser pulses. Coherent dynamics was probed by means of an interferometric technique; beating and dephasing times were studied for various excitation intensities. At high incident power, population effects begin to show up reducing exciton oscillator strength and suppressing Rabi splitting. This feature produces marked non-linearities in the input-output characteristic of the optical functions, which were studied in view of reaching bistable operation. Theoretical calculations performed within the transfer-matrix framework show good agreement with experimental results.

  13. Production of functional bacteriorhodopsin by an Escherichia coli cell-free protein synthesis system supplemented with steroid detergent and lipid

    OpenAIRE

    Shimono, Kazumi; Goto, Mie; Kikukawa, Takashi; Miyauchi, Seiji; Shirouzu, Mikako; Kamo, Naoki; Yokoyama, Shigeyuki

    2009-01-01

    Cell-free expression has become a highly promising tool for the efficient production of membrane proteins. In this study, we used a dialysis-based Escherichia coli cell-free system for the production of a membrane protein actively integrated into liposomes. The membrane protein was the light-driven proton pump bacteriorhodopsin, consisting of seven transmembrane α-helices. The cell-free expression system in the dialysis mode was supplemented with a combination of a detergent and a natural lip...

  14. High Sensitivity Detection of CdSe/ZnS Quantum Dot-Labeled DNA Based on N-type Porous Silicon Microcavities.

    Science.gov (United States)

    Lv, Changwu; Jia, Zhenhong; Lv, Jie; Zhang, Hongyan; Li, Yanyu

    2017-01-01

    N-type macroporous silicon microcavity structures were prepared using electrochemical etching in an HF solution in the absence of light and oxidants. The CdSe/ZnS water-soluble quantum dot-labeled DNA target molecules were detected by monitoring the microcavity reflectance spectrum, which was characterized by the reflectance spectrum defect state position shift resulting from changes to the structures' refractive index. Quantum dots with a high refractive index and DNA coupling can improve the detection sensitivity by amplifying the optical response signals of the target DNA. The experimental results show that DNA combined with a quantum dot can improve the sensitivity of DNA detection by more than five times.

  15. Branching pathways in the photocycle of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Kalisky, O.; Ottolenghi, M. (Hebrew Univ., Jerusalem (Israel). Dept. of Physical Chemistry)

    1982-01-01

    The pulsed laser photolysis of light-adapted bacteriorhodopsin (BR/sub 570/) is carried out between 25 C and -92 C in neutral and alkaline water-glycerol solutions. At relatively low temperatures the primary photoproduct K/sub 610/ equilibrates with a blue-shifted species, Ksub(p). Both K/sub 610/ and the new intermediate subsequently decay into another species, K'sub(p), in a process which competes with the formation of L/sub 550/. Finally, K'sub(p) converts very slowly to L/sub 550/. This branched pathway delays the formation of L/sub 550/ and thus of M/sub 412/, without affecting the final yield of either species. A thermal back-reaction regenerating BR/sub 570/ takes place at the stage of L/sub 550/, inhibiting the formation of M/sub 412/. The reaction which also predominates at low temperatures, is relatively inefficient at high pH when the forward L/sub 550/ ..-->.. M/sub 412/ step is highly catalyzed. It is the superposition of both these branching mechanisms which accounts for the complex effects of temperature and pH on the photocycle of BR/sub 570/. The latter mechanism is accounted for by a molecular scheme in which deprotonation of a tyrosine moiety at the stage of L/sub 550/ constitutes a prerequisite for deprotonation of the retinal-lysine schiff-base as required for forming M/sub 412/. This scheme appears to be directly related to the proton pump.

  16. Numerical study on discharge process of microcavity plasma

    International Nuclear Information System (INIS)

    Xia Guangqing; Xue Weihua; Wang Dongxue; Zhu Guoqiang; Zhu Yu

    2012-01-01

    The evolution of plasma parameters during high pressure discharge in the microcavity with a hollow anode was numerically studied, with a two-dimensional self-consistent fluid model. The simulations were performed with argon at 13.3 kPa. The numerical results show that during the discharge the electric field around the cathode transforms from an axial field to a radial field, the plasma density gets the maximum value on the central line of the cavity and the location of the maximum density moves from the region near anode at the initial stage to the cathode vicinity at the stable stage, and the maximum electron temperature occurs in the ring sheath of cathode. (authors)

  17. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...

  18. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.

    We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...

  19. Fourier Transform Infrared and Resonance Raman Spectroscopic Studies of Bacteriorhodopsin.

    Science.gov (United States)

    Earnest, Thomas Nixon

    Fourier transform infrared and resonance Raman spectroscopy were used to investigate the structure and function of the light-activated, transmembrane proton pump, bacteriorhodopsin, from the purple membrane of Halobacterium halobium. Bacteriorhodopsin (bR) is a 27,000 dalton integral membrane protein consisting of 248 amino acids with a retinylidene chromophore. Absorption of a photon leads to the translocation of one or two protons from the inside of the cell to the outside. Resonance Raman spectroscopy allows for the study of the configuration of retinal in bR and its photointermediates by the selective enhancement of vibrational modes of the chromophore. This technique was used to determine that the chromophore is attached to lysine-216 in both the bR _{570} and the M _{412} intermediates. In bR with tyrosine-64 selectively nitrated or aminated, the chromophore appears to have the same configuration in that bR _{570} (all- trans) and M _{412} (13- cis) states as it does in unmodified bR. Polarized Fourier transform infrared spectroscopy (FTIR) permits the study of the direction of transition dipole moments arising from molecular vibrations of the protein and the retinal chromophore. The orientation of alpha helical and beta sheet components was determined for bR with the average helical tilt found to lie mostly parallel to the membrane normal. The beta sheet structures also exhibit an IR linear dichroism for the amide I and amide II bands which suggest that the peptide backbone is mostly perpendicular to the membrane plane although it is difficult to determine whether the bands originate from sheet or turn components. The orientation of secondary structure components of the C-1 (residues 72-248) and C-2 (residues 1-71) fragments were also investigated to determine the structure of these putative membrane protein folding intermediates. Polarized, low temperature FTIR -difference spectroscopy was then used to investigate the structure of bR as it undergoes

  20. The Detection of Helicobacter hepaticus Using Whispering-Gallery Mode Microcavity Optical Sensors

    Directory of Open Access Journals (Sweden)

    Mark E. Anderson

    2015-08-01

    Full Text Available Current bacterial detection techniques are relatively slow, require bulky instrumentation, and usually require some form of specialized training. The gold standard for bacterial detection is culture testing, which can take several days to receive a viable result. Therefore, simpler detection techniques that are both fast and sensitive could greatly improve bacterial detection and identification. Here, we present a new method for the detection of the bacteria Helicobacter hepaticus using whispering-gallery mode (WGM optical microcavity-based sensors. Due to minimal reflection losses and low material adsorption, WGM-based sensors have ultra-high quality factors, resulting in high-sensitivity sensor devices. In this study, we have shown that bacteria can be non-specifically detected using WGM optical microcavity-based sensors. The minimum detection for the device was 1 × 104 cells/mL, and the minimum time of detection was found to be 750 s. Given that a cell density as low as 1 × 103 cells/mL for Helicobacter hepaticus can cause infection, the limit of detection shown here would be useful for most levels where Helicobacter hepaticus is biologically relevant. This study suggests a new approach for H. hepaticus detection using label-free optical sensors that is faster than, and potentially as sensitive as, standard techniques.

  1. Modelling Laser Milling of Microcavities for the Manufacturing of DES with Ensembles

    Directory of Open Access Journals (Sweden)

    Pedro Santos

    2014-01-01

    Full Text Available A set of designed experiments, involving the use of a pulsed Nd:YAG laser system milling 316L Stainless Steel, serve to study the laser-milling process of microcavities in the manufacture of drug-eluting stents (DES. Diameter, depth, and volume error are considered to be optimized as functions of the process parameters, which include laser intensity, pulse frequency, and scanning speed. Two different DES shapes are studied that combine semispheres and cylinders. Process inputs and outputs are defined by considering the process parameters that can be changed under industrial conditions and the industrial requirements of this manufacturing process. In total, 162 different conditions are tested in a process that is modeled with the following state-of-the-art data-mining regression techniques: Support Vector Regression, Ensembles, Artificial Neural Networks, Linear Regression, and Nearest Neighbor Regression. Ensemble regression emerged as the most suitable technique for studying this industrial problem. Specifically, Iterated Bagging ensembles with unpruned model trees outperformed the other methods in the tests. This method can predict the geometrical dimensions of the machined microcavities with relative errors related to the main average value in the range of 3 to 23%, which are considered very accurate predictions, in view of the characteristics of this innovative industrial task.

  2. The Improved Method for Isolation of Photochrome Trans-membrane Protein Bacteriorhodopsin from Purple Membranes of Halobacterium Halobacterium Halobium ET 1001

    OpenAIRE

    Oleg Mosin; Ignat Ignatov

    2015-01-01

    It was developed the improved method for isolation of photochrome trans-membraine protein bacteriorhodopsin (output – 5 mg from 100 g of wet biomass) capable to transform light energy to electrochemical energy of generated protons H+ and АТP. The protein was isolated from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weigh...

  3. Advances of Optofluidic Microcavities for Microlasers and Biosensors

    Directory of Open Access Journals (Sweden)

    Zhiqing Feng

    2018-03-01

    Full Text Available Optofluidic microcavities with high Q factor have made rapid progress in recent years by using various micro-structures. On one hand, they are applied to microfluidic lasers with low excitation thresholds. On the other hand, they inspire the innovation of new biosensing devices with excellent performance. In this article, the recent advances in the microlaser research and the biochemical sensing field will be reviewed. The former will be categorized based on the structures of optical resonant cavities such as the Fabry–Pérot cavity and whispering gallery mode, and the latter will be classified based on the working principles into active sensors and passive sensors. Moreover, the difficulty of single-chip integration and recent endeavors will be briefly discussed.

  4. Scarred resonances and steady probability distribution in a chaotic microcavity

    International Nuclear Information System (INIS)

    Lee, Soo-Young; Rim, Sunghwan; Kim, Chil-Min; Ryu, Jung-Wan; Kwon, Tae-Yoon

    2005-01-01

    We investigate scarred resonances of a stadium-shaped chaotic microcavity. It is shown that two components with different chirality of the scarring pattern are slightly rotated in opposite ways from the underlying unstable periodic orbit, when the incident angles of the scarring pattern are close to the critical angle for total internal reflection. In addition, the correspondence of emission pattern with the scarring pattern disappears when the incident angles are much larger than the critical angle. The steady probability distribution gives a consistent explanation about these interesting phenomena and makes it possible to expect the emission pattern in the latter case

  5. Polariton solitons and nonlinear localized states in a one-dimensional semiconductor microcavity

    Science.gov (United States)

    Chen, Ting-Wei; Cheng, Szu-Cheng

    2018-01-01

    This paper presents numerical studies of cavity polariton solitons (CPSs) in a resonantly pumped semiconductor microcavity with an imbedded spatial defect. In the bistable regime of the well-known homogeneous polariton condensate, with proper incident wave vector and pump strength, bright and/or dark cavity solitons can be found in the presence of a spatially confined potential. The minimum pump strength required to observe the CPSs or nonlinear localized states in this parametric pump scheme is therefore reported.

  6. Detection of protein kinases P38 based on reflectance spectroscopy with n-type porous silicon microcavities for diagnosing hydatidosis hydatid disease

    Science.gov (United States)

    Lv, Xiaoyi; Lv, Guodong; Jia, Zhenhong; Wang, Jiajia; Mo, Jiaqing

    2014-11-01

    Detection of protein kinases P38 of Echinococcus granulosus and its homologous antibody have great value for early diagnosis and treatment of hydatidosis hydatid disease. In this experiment, n-type mesoporous silicon microcavities have been successfully fabricated without KOH etching or oxidants treatment that reported in other literature. We observed the changes of the reflectivity spectrum before and after the antigen-antibody reaction by n-type mesoporous silicon microcavities. The binding of protein kinases P38 and its homologous antibody causes red shifts in the reflection spectrum of the sensor, and the red shift was proportional to the protein kinases P38 concentration with linear relationship.

  7. Polarization-dependent solitons in the strong coupling regime of semiconductor microcavities

    International Nuclear Information System (INIS)

    Fu, Y.; Zhang, W.L.; Wu, X.M.

    2015-01-01

    This paper studies the influence of polarization on formation of vectorial polariton soliton in semiconductor microcavities through numerical simulations. It is found that the polariton solution greatly depends on the polarization of both the pump and exciting fields. By properly choosing the pump and exciting field polarization, bright–bright or bright–dark vectorial polariton solitons can be formed. Especially, when the input conditions of pump or exciting field of the two opposite polarizations are slightly asymmetric, an interesting phenomenon that the dark solitons transform into bright solitons occurs in the branch of soliton solutions.

  8. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System.

    Science.gov (United States)

    Yoshino, S; Oohata, G; Mizoguchi, K

    2015-10-09

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  9. Nanosecond retinal structure changes in K-590 during the room-temperature bacteriorhodopsin photocycle: picosecond time-resolved coherent anti-stokes Raman spectroscopy

    OpenAIRE

    Weidlich, O.; Ujj, L.; Jäger, F.; Atkinson, G.H.

    1997-01-01

    Time-resolved vibrational spectra are used to elucidate the structural changes in the retinal chromophore within the K-590 intermediate that precedes the formation of the L-550 intermediate in the room-temperature (RT) bacteriorhodopsin (BR) photocycle. Measured by picosecond time-resolved coherent anti-Stokes Raman scattering (PTR/CARS), these vibrational data are recorded within the 750 cm-1 to 1720 cm-1 spectral region and with time delays of 50-260 ns after the RT/BR photocycle is optical...

  10. The Integration of Bacteriorhodopsin Proteins with Semiconductor Heterostructure Devices

    Science.gov (United States)

    Xu, Jian

    2008-03-01

    Bioelectronics has emerged as one of the most rapidly developing fields among the active frontiers of interdisciplinary research. A major thrust in this field is aimed at the coupling of the technologically-unmatched performance of biological systems, such as neural and sensing functions, with the well developed technology of microelectronics and optoelectronics. To this end we have studied the integration of a suitably engineered protein, bacteriorhodopsin (BR), with semiconductor optoelectronic devices and circuits. Successful integration will potentially lead to ultrasensitive sensors with polarization selectivity and built-in preprocessing capabilities that will be useful for high speed tracking, motion and edge detection, biological detection, and artificial vision systems. In this presentation we will summarize our progresses in this area, which include fundamental studies on the transient dynamics of photo-induced charge shift in BR and the coupling mechanism at protein-semiconductor interface for effective immobilizing and selectively integrating light sensitive proteins with microelectronic devices and circuits, and the device engineering of BR-transistor-integrated optical sensors as well as their applications in phototransceiver circuits. Work done in collaboration with Pallab Bhattacharya, Jonghyun Shin, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI; Robert R. Birge, Department of Chemistry, University of Connecticut, Storrs, CT 06269; and György V'ar'o, Institute of Biophysics, Biological Research Center of the Hungarian Academy of Science, H-6701 Szeged, Hungary.

  11. Analyzing a steady-state phenomenon using an ensemble of sequential transient events: A proof of concept on photocurrent of bacteriorhodopsin upon continuous photoexcitation

    Energy Technology Data Exchange (ETDEWEB)

    Hung, Chang-Wei; Chu, Li-Kang, E-mail: lkchu@mx.nthu.edu.tw [Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China); Ho, Ching-Hwa [Interdisplinary Program of Science, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd., Hsinchu 30013, Taiwan (China)

    2014-10-14

    The proton pump activity of bacteriorhodopsin in aqueous solution upon excitation with modulated continuous light was monitored electrochemically and analyzed by superimposing a series of transient proton translocation events Hᵢ⁺(t). An evolution function f(t)=(he{sup –lt}+k)/(h+k) , including a decay and a stationary offset, was introduced to weight the contribution of the individual transient events evolving with time in the envelope of the steady-state event. The evolution of the total proton concentration can be treated as an ensemble of weighted sequential transient events, H{sub total}⁺(t)=Σ{{sub i=0}sup n}Hᵢ⁺(t)∙f(t), and the temporal profile of the photocurrent is derived by differentiating the proton concentration with respect to time, (table) . The temporal profiles of the bacteriorhodopsin photocurrent in pH range of 6.3–8.1 were analyzed using a well-defined kinetics model and restricted mathematical formulization, and fitted temporal behaviors agreed with the observations. This successful proof-of-concept study on analyzing a steady-state phenomenon using an ensemble of sequential transient events can be generalized to quantify other phenomena upon continuous stimulation, such as estimation of the light-driven ion pump activities of the photosynthetic proteins upon illumination.

  12. Coherent response of a semiconductor microcavity in the strong coupling regime

    Science.gov (United States)

    Cassabois, G.; Triques, A. L. C.; Ferreira, R.; Delalande, C.; Roussignol, Ph; Bogani, F.

    2000-05-01

    We have studied the coherent dynamics of a semiconductor microcavity by means of interferometric correlation measurements with subpicosecond time resolution in a backscattering geometry. Evidence is brought of the resolution of a homogeneous polariton line in an inhomogeneously broadened exciton system. Surprisingly, photon-like polaritons exhibit an inhomogeneous dephasing. Moreover, we observe an unexpected stationary coherence up to 8 ps for the lower polariton branch close to resonance. All these experimental results are well reproduced within the framework of a linear dispersion theory assuming a coherent superposition of the reflectivity and resonant Rayleigh scattering signals with a well-defined relative phase.

  13. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    Pardoen, J.A.

    1986-01-01

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13 C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1 H NMR and 75 MHz 13 C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  14. Influence of multi-exciton correlations on nonlinear polariton dynamics in semiconductor microcavities

    International Nuclear Information System (INIS)

    Wen, P; Nelson, Keith A; Christmann, G; Baumberg, J J

    2013-01-01

    Using two-dimensional spectroscopy, we resolve multi-polariton coherences in quantum wells embedded inside a semiconductor microcavity and elucidate how multi-exciton correlations mediate polariton nonlinear dynamics. We find that polariton correlation strengths depend on spectral overlap with the biexciton resonance and that up to at least four polaritons can be correlated, a higher-order correlation than observed to date among excitons in bare quantum wells. The high-order correlations can be attributed to coupling through the cavity mode, although the role of high-order Coulomb correlations cannot be excluded. (paper)

  15. A porous silicon optical microcavity for sensitive bacteria detection

    International Nuclear Information System (INIS)

    Li Sha; Huang Jianfeng; Cai Lintao

    2011-01-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (∼10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml -1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml -1 . The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  16. A porous silicon optical microcavity for sensitive bacteria detection

    Science.gov (United States)

    Li, Sha; Huang, Jianfeng; Cai, Lintao

    2011-10-01

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak (~10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml - 1 at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml - 1. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  17. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  18. BCS-BEC crossover in a system of microcavity polaritons

    International Nuclear Information System (INIS)

    Keeling, Jonathan; Eastham, P.R.; Szymanska, M.H.; Littlewood, P.B.

    2005-01-01

    We investigate the thermodynamics and signatures of a polariton condensate over a range of densities, using a model of microcavity polaritons with internal structure. We determine a phase diagram for this system including fluctuation corrections to the mean-field theory. At low densities the condensation temperature T c behaves like that for point bosons. At higher densities, when T c approaches the Rabi splitting, T c deviates from the form for point bosons, and instead approaches the result of a BCS-like mean-field theory. This crossover occurs at densities much less than the Mott density. We show that current experiments are in a density range where the phase boundary is described by the BCS-like mean-field boundary. We investigate the influence of inhomogeneous broadening and detuning of excitons on the phase diagram

  19. Dynamics of polaritons in semiconductor microcavities near instability thresholds

    International Nuclear Information System (INIS)

    He, Peng-Bin

    2012-01-01

    A theoretical study is presented on the dynamics of polaritons in semiconductor microcavities near parametric instability thresholds. With upward or downward ramp of optical pump, different instability modes emerge in parameter space defined by damping and detuning. According to these modes, stationary short-wave, stationary periodic, oscillatory periodic, and oscillatory uniform parametric instabilities are distinguished. By multiple scale expansion, the dynamics near threshold can be described by a critical mode with a slowly varying amplitude for the last three instabilities. Furthermore, it is found that the evolutions of their amplitudes are governed by real or complex Ginzburg–Landau equations. -- Highlights: ► Phase diagrams for different instability in extended parameter space. ► Different instability modes near thresholds. ► Different envelop equations near thresholds obtained by multi-scale expansion.

  20. Pump-Power-Driven Mode Switching in a Microcavity Device and Its Relation to Bose-Einstein Condensation

    Directory of Open Access Journals (Sweden)

    H. A. M. Leymann

    2017-06-01

    Full Text Available We investigate the switching of the coherent emission mode of a bimodal microcavity device, occurring when the pump power is varied. We compare experimental data to theoretical results and identify the underlying mechanism based on the competition between the effective gain, on the one hand, and the intermode kinetics, on the other. When the pumping is ramped up, above a threshold, the mode with the largest effective gain starts to emit coherent light, corresponding to lasing. In contrast, in the limit of strong pumping, it is the intermode kinetics that determines which mode acquires a large occupation and shows coherent emission. We point out that this latter mechanism is akin to the equilibrium Bose-Einstein condensation of massive bosons. Thus, the mode switching in our microcavity device can be viewed as a minimal instance of Bose-Einstein condensation of photons. Moreover, we show that the switching from one cavity mode to the other always occurs via an intermediate phase where both modes are emitting coherent light and that it is associated with both superthermal intensity fluctuations and strong anticorrelations between both modes.

  1. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2014-12-08

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  2. Microcavity Plasma Devices and Arrays Fabricated in Semiconductor, Ceramic, or Metal/polymer Structures: A New Realm of Plasma Physics and Photonics Applications

    International Nuclear Information System (INIS)

    Eden, J. G.

    2005-01-01

    Micro discharge, or microcavity plasma, is the broad term that has come to be associated with an emerging class of glow discharge devices in which the characteristic spatial dimension of the plasma is nominally ) dia. Si wafers and operated in the rare gases and Ar/N2 gas mixtures. Also, photodetection in the ultraviolet, visible and near-infrared with microplasma devices has been observed by interfacing a low temperature plasma with a semiconductor. Carbon nanotubes grown directly within the microcavity of microplasma devices improve all key performance parameters of the device, and nanoporous Al2O3 grown onto Al by wet chemical processing yields microplasma devices of exceptional stability and lifetime. The opportunities such structures offer for accessing new avenues in plasma physics and photonics will be discussed. (Author)

  3. Photochemical cycle of bacteriorhodopsin studied by resonance Raman spectroscopy.

    Science.gov (United States)

    Stockburger, M; Klusmann, W; Gattermann, H; Massig, G; Peters, R

    1979-10-30

    Individual species of the photochemical cycle of bacteriorhodopsin, a retinal-protein complex of Halobacteria, were studied in aqueous suspensions of the "purple membrane" at room temperature by resonance Raman (RR) spectroscopy with flow systems. Two pronounced deuterium shifts were found in the RR spectra of the all-trans complex BR-570 in H2O-D2O suspensions. The first is ascribed to C=NH+ (C=ND+) stretching vibrations of the protonated Schiff base which links retinal to opsin. The second is assigned tentatively to an "X-H" ("X-D") bending mode, where "X" is an atom which carries an exchangeable proton. A RR spectrum of the 13-cis-retinal complex "BR-548" could be deduced from spectra of the dark-adapted purple membrane. The RR spectrum of the M-412 intermediate was monitored in a double-beam pump-probe experiment. The main vibrational features of the intermediate M' in the reaction M-412 in equilibrium hv M' leads to delta BR-570 could be deduced from a photostationary mixture of M-412 and M'. Difference procedures were applied to obtain RR spectra of the L-550 intermediate and of two new long-lived species, R1'-590 and R2-550. From kinetic data it is suggested that T1'-590 links the proton-translocating cycle to the "13-cis" cycle of BR-548. The protonation and isomeric states of the different species are discussed in light of the new spectroscopic and kinetic data. It is found that conformational changes during the photochemical cycle play an important role.

  4. Absorptive lasing mode suppression in ZnO nano- and microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Wille, M.; Michalsky, T.; Krüger, E.; Grundmann, M.; Schmidt-Grund, R. [Universität Leipzig, Institut für Experimentelle Physik II, Linnéstraße 5, 04103 Leipzig (Germany)

    2016-08-08

    We conclusively explain the different lasing mode energies in ZnO nano- and microcavities observed by us and reported in literature. The limited penetration depth of usually used excitation lasers results in an inhomogeneous spatial gain region depending on the structure size and geometry. Hence, weakly or even nonexcited areas remain present after excitation, where modes are instantaneously suppressed by excitonic absorption. We compare the effects for ZnO microwires, nanowires, and tetrapod-like structures at room temperature and demonstrate that the corresponding mode selective effect is most pronounced for whispering-gallery modes in microwires with a hexagonal cross section. Furthermore, the absorptive lasing mode suppression will be demonstrated by correlating the spot size of the excitation laser and the lasing mode characteristic of a single ZnO nanowire.

  5. Matrix metalloproteinase sensing via porous silicon microcavity devices functionalized with human antibodies

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Marta; Gergely, Csilla [GES-UMR 5650, CNRS, Universite Montpellier 2, Pl. Eugene Bataillon 34095, Montpellier Cedex 5 (France); Taleb Bendiab, Chakib; Massif, Laurent; Cuisinier, Frederic [EA4203, Faculte d' Odontologie, Universite Montpellier 1, Montpellier Cedex 5 (France); Palestino, Gabriela [Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosi, Av. Salvador Nava 6, 78000 San Luis Potosi (Mexico); Agarwal, Vivechana [CIICAP, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca, Mor. (Mexico)

    2011-06-15

    Porous silicon microcavity (PSiMc) structures were used as support material for specific sensing of matrix metalloproteinases (MMPs). For lower concentrations of MMP-8, the structures were tested with two types of functionalization methods. Silanization of the oxidized porous silicon structures, followed by glutaraldehyde chemistry was found to give very inconsistent results. The use of biotinilated bovine serum albumin linked to the naked PSiMc was found to be an alternative method to attach the anti MMP-8 human antibody, previously modified with streptavidin, which was further used to sense MMP-8 (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Analysis of high-quality modes in open chaotic microcavities

    International Nuclear Information System (INIS)

    Fang, W.; Yamilov, A.; Cao, H.

    2005-01-01

    We present a numerical study of the high-quality modes in two-dimensional dielectric stadium microcavities. Although the classical ray mechanics is fully chaotic in a stadium billiard, all of the high-quality modes show a 'strong scar' around unstable periodic orbits. When the deformation (ratio of the length of the straight segments over the diameter of the half circles) is small, the high-quality modes correspond to whispering-gallery-type trajectories and their quality factors decrease monotonically with increasing deformation. At large deformation, each high-quality mode is associated with multiple unstable periodic orbits. Its quality factor changes nonmonotonically with the deformation, and there exists an optimal deformation for each mode at which its quality factor reaches a local maximum. This unusual behavior is attributed to the interference of waves propagating along different constituent orbits that could minimize light leakage out of the cavity

  7. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    propagating TE–TM modes. The laser cavity has the lateral shape of a trapezoid, supporting lasing modes by reflection on the vertical cavity walls. The solid polymer dye lasers emit laterally through one of the vertical cavity walls, when pumped optically through the top surface by means of a frequency...... doubled, pulsed Nd:YAG laser. Lasing in the wavelength region from 560 to 570 nm is observed from a laser with a side-length of 50 µm. In this proof of concept, the lasers are multimode with a mode wavelength separation of approximately 1.6 nm, as determined by the waveguide propagation constant......We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...

  8. Tapered optical fiber tip probes based on focused ion beam-milled Fabry-Perot microcavities

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-09-01

    Focused ion beam technology is combined with dynamic chemical etching to create microcavities in tapered optical fiber tips, resulting in fiber probes for temperature and refractive index sensing. Dynamic chemical etching uses hydrofluoric acid and a syringe pump to etch standard optical fibers into cone structures called tapered fiber tips where the length, shape, and cone angle can be precisely controlled. On these tips, focused ion beam is used to mill several different types of Fabry-Perot microcavities. Two main cavity types are initially compared and then combined to form a third, complex cavity structure. In the first case, a gap is milled on the tapered fiber tip which allows the external medium to penetrate the light guiding region and thus presents sensitivity to external refractive index changes. In the second, two slots that function as mirrors are milled on the tip creating a silica cavity that is only sensitive to temperature changes. Finally, both cavities are combined on a single tapered fiber tip, resulting in a multi-cavity structure capable of discriminating between temperature and refractive index variations. This dual characterization is performed with the aid of a fast Fourier transform method to separate the contributions of each cavity and thus of temperature and refractive index. Ultimately, a tapered optical fiber tip probe with sub-standard dimensions containing a multi-cavity structure is projected, fabricated, characterized and applied as a sensing element for simultaneous temperature and refractive index discrimination.

  9. Transient Fourier holography with bacteriorhodopsin films for breast cancer diagnostics

    Science.gov (United States)

    Rao, Devulapalli; Kothapalli, Sri-Rajasekar; Wu, Pengfei; Yelleswarapu, Chandra

    X-ray mammography is the current gold standard for breast cancer screening. Microcalcifications and other features which are helpful to the radiologist for early diagnostics are often buried in the noise generated by the surrounding dense tissue. So image processing techniques are required to enhance these important features to improve the sensitivity of detection. An innovative technique is demonstrated for recording a hologram of the mammogram. It is recorded on a thin polymer film of Bacteriorhodopsin (bR) as photo induced isomerization grating containing the interference pattern between the object beam containing the Fourier spatial frequency components of the mammogram and a reference beam. The hologram contains all the enhanced features of the mammogram. A significant innovation of the technique is that the enhanced components in the processed image can be viewed by the radiologist in time scale. A technician can record the movie and when the radiologist looks at the movie at his convenience, freezing the frame as and when desired, he would see the microcalcifications as the brightest and last long in time. He would also observe lesions with intensity decreasing as their size increases. The same bR film can be used repeatedly for recording holograms with different mammograms. The technique is versatile and a different frequency band can be chosen to be optimized by changing the reference beam intensity. The experimental arrangement can be used for mammograms in screen film or digital format.

  10. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  11. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai; Cao, Runan; Xu, Fei; Da, Peimei; Zheng, Gengfeng; Lu, Jian

    2016-01-01

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  12. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, R. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Davies, M.; Etzion, E. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C., E-mail: claudiof@umich.edu [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States)

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  13. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti configuration to an extracellular facing (13-cis, 15-syn configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.

  14. Seeding of Polariton Stimulation in a Homogeneously Broadened Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis

    2000-01-01

    In time-resolved light emission from a high-quality semiconductor microcavity after pulsed excitation suitable for angle-resonant polariton-polariton scattering on the lower-polariton branch, we find strong evidence for final-state stimulation of this process. The self-stimulated emission...... and the intensity of this emission can be controlled. The time-resolved data and the density dependences are in agreement with a rate equation model neglecting polarization mixing effects. This model gives a coupling coefficient of b(LP,k)=0 = 2.4 x 10(-9) cm(4) s(-1) for the stimulated angle-resonant polariton......, following single-pulse excitation, appears on a fast time scale of only a few lens of ps with a maximum at 15 ps. This is in striking contrast to the photoluminescence decay time of 110 ps observed in the low-density limit. By injection of polaritons into the final state by a seeding pulse, the dynamics...

  15. Scheme for implementing N-qubit controlled phase gate of photons assisted by quantum-dot-microcavity coupled system: optimal probability of success

    International Nuclear Information System (INIS)

    Cui, Wen-Xue; Hu, Shi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    The direct implementation of multiqubit controlled phase gate of photons is appealing and important for reducing the complexity of the physical realization of linear-optics-based practical quantum computer and quantum algorithms. In this letter we propose a nondestructive scheme for implementing an N-qubit controlled phase gate of photons with a high success probability. The gate can be directly implemented with the self-designed quantum encoder circuits, which are probabilistic optical quantum entangler devices and can be achieved using linear optical elements, single-photon superposition state, and quantum dot coupled to optical microcavity. The calculated results indicate that both the success probabilities of the quantum encoder circuit and the N-qubit controlled phase gate in our scheme are higher than those in the previous schemes. We also consider the effects of the side leakage and cavity loss on the success probability and the fidelity of the quantum encoder circuit for a realistic quantum-dot-microcavity coupled system. (letter)

  16. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  17. Molecular mechanisms controlling proton pumping by bacteriorhodopsin. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Crouch, Rosalie K.; Ebrey, Thomas G.

    2000-02-10

    Bacteriorhodopsin (bR) is the simplest biological system for the transduction of light energy. Light energy is directly converted to transmembrane proton gradient by a single, small membrane protein. The extraordinary stability of bR makes it an outstanding subject for bioenergetic studies. This project has focused on the role of interactions between key residues of the pigment involved in light-induced proton transfer. Methods to estimate the strength of these interactions and their correlation with the rate and efficiency of proton transfer have been developed. The concept of the coupling of the protonation states of key groups has been applied to individual steps of the proton transfer with the ultimate goal of understanding on the molecular level the driving forces for proton transport and the pathway of the transported proton in bT. The mechanism of light-induced proton release, uptake and the mechanism of recovery of initial state of bT has been examined. The experiments were performed with genetically engineered, site-specific mutants of bR. This has enabled us to characterize the role of individual amino acid residues in bR. Time resolved and low temperature absorption spectroscopy and light-induced photocurrent measurements were used in order to study the photochemical cycle and proton transfer in mutant pigments. Chemical modification and crosslinking of both the specific amino acids to the chromophore or to other amino acids were used to elucidate the role of light-induced conformational changes in the photocycle and the structure of the protein in the ground state. The results of this project provided new knowledge on the architecture of the proton transfer pathways inside the protein, on the mechanism of proton release in bR, and on the role of specific amino acid residues in the structure and function of bR.

  18. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  19. Experimental study of disorder in a semiconductor microcavity

    Science.gov (United States)

    Gurioli, M.; Bogani, F.; Wiersma, D. S.; Roussignol, Ph.; Cassabois, G.; Khitrova, G.; Gibbs, H.

    2001-10-01

    A detailed study of the structural disorder in wedge semiconductor microcavities (MC's) is presented. We demonstrate that images of the coherent emission from the MC surface can be used for a careful characterization of both intrinsic and extrinsic optical properties of semiconductor MC's. The polariton broadening can be measured directly, avoiding the well-known problem of inhomogeneous broadening due to the MC wedge. A statistical analysis of the spatial line shape of the images of the MC surface shows the presence of static disorder associated with dielectric fluctuations in the Bragg reflector. Moreover, the presence of local fluctuations of the effective cavity length can be detected with subnanometer resolution. The analysis of the resonant Rayleigh scattering (RRS) gives additional information on the origin of the disorder. We find that the RRS is dominated by the scattering of the photonic component of the MC polariton by disorder in the Bragg reflector. Also the RRS is strongly enhanced along the [110] and [11¯0] directions. This peculiar scattering pattern is attributed to misfit dislocations induced by the large thickness of the mismatched AlGaAs alloy in the Bragg mirrors.

  20. Spoked-ring microcavities: enabling seamless integration of nanophotonics in unmodified advanced CMOS microelectronics chips

    Science.gov (United States)

    Wade, Mark T.; Shainline, Jeffrey M.; Orcutt, Jason S.; Ram, Rajeev J.; Stojanovic, Vladimir; Popovic, Milos A.

    2014-03-01

    We present the spoked-ring microcavity, a nanophotonic building block enabling energy-efficient, active photonics in unmodified, advanced CMOS microelectronics processes. The cavity is realized in the IBM 45nm SOI CMOS process - the same process used to make many commercially available microprocessors including the IBM Power7 and Sony Playstation 3 processors. In advanced SOI CMOS processes, no partial etch steps and no vertical junctions are available, which limits the types of optical cavities that can be used for active nanophotonics. To enable efficient active devices with no process modifications, we designed a novel spoked-ring microcavity which is fully compatible with the constraints of the process. As a modulator, the device leverages the sub-100nm lithography resolution of the process to create radially extending p-n junctions, providing high optical fill factor depletion-mode modulation and thereby eliminating the need for a vertical junction. The device is made entirely in the transistor active layer, low-loss crystalline silicon, which eliminates the need for a partial etch commonly used to create ridge cavities. In this work, we present the full optical and electrical design of the cavity including rigorous mode solver and FDTD simulations to design the Qlimiting electrical contacts and the coupling/excitation. We address the layout of active photonics within the mask set of a standard advanced CMOS process and show that high-performance photonic devices can be seamlessly monolithically integrated alongside electronics on the same chip. The present designs enable monolithically integrated optoelectronic transceivers on a single advanced CMOS chip, without requiring any process changes, enabling the penetration of photonics into the microprocessor.

  1. Effective slip over partially filled microcavities and its possible failure

    Science.gov (United States)

    Ge, Zhouyang; Holmgren, Hanna; Kronbichler, Martin; Brandt, Luca; Kreiss, Gunilla

    2018-05-01

    Motivated by the emerging applications of liquid-infused surfaces (LIS), we study the drag reduction and robustness of transverse flows over two-dimensional microcavities partially filled with an oily lubricant. Using separate simulations at different scales, characteristic contact line velocities at the fluid-solid intersection are first extracted from nanoscale phase field simulations and then applied to micronscale two-phase flows, thus introducing a multiscale numerical framework to model the interface displacement and deformation within the cavities. As we explore the various effects of the lubricant-to-outer-fluid viscosity ratio μ˜2/μ˜1 , the capillary number Ca, the static contact angle θs, and the filling fraction of the cavity δ , we find that the effective slip is most sensitive to the parameter δ . The effects of μ˜2/μ˜1 and θs are generally intertwined but weakened if δ 1 ), however, are immune to such failure due to their generally larger contact line velocity.

  2. Optical characterization of porous silicon microcavities for glucose oxidase biosensing

    Science.gov (United States)

    Palestino, G.; Agarwal, V.; Garcia, D. B.; Legros, R.; Pérez, E.; Gergely, C.

    2008-04-01

    PSi microcavity (PSiMc) is characterized by a narrow resonance peak in the optical spectrum that is very sensitive to small changes in the refractive index. We report that the resonant optical cavities of PSi structures can be used to enhance the detection of labeled fluorescent biomolecules. Various PSi configurations were tested in order to compare the optical response of the PSi devices to the capture of organic molecules. Morphological and topographical analyses were performed on PSiMc using Atomic Force (AFM) and Scanning Electron (SEM) microscopies. The heterogeneity in pores lengths resulting from etching process assures a better penetration of larger molecules into the pores and sensor sensitivity depends on the pore size. Molecular detection is monitored by the successive red shifts in the reflectance spectra after the stabilization of PSiMc with 3-aminopropyltriethoxysilane (APTES). The glucose oxidase was cross linked into the PSiMc structures following a silane-glutaraldehyde (GTA) chemistry.

  3. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    International Nuclear Information System (INIS)

    Chakravarty, Swapnajit; Hosseini, Amir; Xu, Xiaochuan; Zhu, Liang; Zou, Yi; Chen, Ray T.

    2014-01-01

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10 −7 RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date

  4. Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities

    International Nuclear Information System (INIS)

    Wang Chuan; Zhang Yong; Jin Guangsheng

    2011-01-01

    We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.

  5. Redshift of the purple membrane absorption band and the deprotonation of tyrosine residues at high pH: Origin of the parallel photocycles of trans-bacteriorhodopsin

    OpenAIRE

    Balashov, S. P.; Govindjee, R.; Ebrey, T. G.

    1991-01-01

    At high pH (> 8) the 570 nm absorption band of all-trans bacteriorhodopsin (bR) in purple membrane undergoes a small (1.5 nm) shift to longer wavelengths, which causes a maximal increase in absorption at 615 nm. The pK of the shift is 9.0 in the presence of 167 mM KCl, and its intrinsic pK is ∼8.3. The red shift of the trans-bR absorption spectrum correlates with the appearance of the fast component in the light-induced L to M transition, and absorption increases at 238 and 297 nm which are a...

  6. Anisotropic exchange interaction induced by a single photon in semiconductor microcavities

    Science.gov (United States)

    Chiappe, G.; Fernández-Rossier, J.; Louis, E.; Anda, E. V.

    2005-12-01

    We investigate coupling of localized spins in a semiconductor quantum dot embedded in a microcavity. The lowest cavity mode and the quantum dot exciton are coupled and close in energy, forming a polariton. The fermions forming the exciton interact with localized spins via exchange. Exact diagonalization of a Hamiltonian in which photons, spins, and excitons are treated quantum mechanically shows that a single polariton induces a sizable indirect anisotropic exchange interaction between spins. At sufficiently low temperatures strong ferromagnetic correlations show up without an appreciable increase in exciton population. In the case of a (Cd,Mn)Te quantum dot, Mn-Mn ferromagnetic coupling is still significant at 1 K : spin-spin correlation around 3 for exciton occupation smaller than 0.3. We find that the interaction mediated by photon-polaritons is 10 times stronger than the one induced by a classical field for equal Rabi splitting.

  7. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com; Hosseini, Amir; Xu, Xiaochuan [Omega Optics, Inc., Austin, Texas 78757 (United States); Zhu, Liang; Zou, Yi [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-05-12

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10{sup −7} RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date.

  8. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  9. Entropic Lattice Boltzmann study of hydrodynamics in a microcavity - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Karlin, I. V.; Ansumali, S.; Frouzakis, Ch. E.; Boulouchos, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme ETHZ, ETH-Zentrum, Zuerich (Switzerland)

    2005-07-01

    This yearly report for 2004 presents a review of work being done on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, on the development of a new approximation method for use in micrometer-scale flow calculations. The method, based on recently-developed so-called minimal entropy-kinetic models of the Boltzmann-kinetic equation, is discussed. Two detailed studies of micro-flows in specific geometries are discussed. The potential of the new method as a replacement for costly microscopic simulation methods is examined. The development and testing of a new thermal model - the so-called Thermal D2Q9 model - is discussed. A second study examined flows in a micro-cavity. A detailed parametric study of the quantitative and qualitative properties of the flows for a comprehensive range of dilution is mentioned.

  10. Simulations of emission from microcavity tandem organic light-emitting diodes

    International Nuclear Information System (INIS)

    Biswas, Rana; Xu, Chun; Zhao, Weijun; Liu, Rui; Shinar, Ruth; Shinar, Joseph

    2011-01-01

    Microcavity tandem organic light-emitting diodes (OLEDs) are simulated and compared to experimental results. The simulations are based on two complementary techniques: rigorous finite element solutions of Maxwell's equations and Fourier space scattering matrix solutions. A narrowing and blue shift of the emission spectrum relative to the noncavity single unit OLED is obtained both theoretically and experimentally. In the simulations, a distribution of emitting sources is placed near the interface of the electron transport layer tris(8-hydroxyquinoline) Al (Alq 3 ) and the hole transport layer (N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl)benzidine) (α-NPB). Far-field electric field intensities are simulated. The simulated widths of the emission peaks also agree with the experimental results. The simulations of the 2-unit tandem OLEDs shifted the emission to shorter wavelength, in agreement with experimental measurements. The emission spectra's dependence on individual layer thicknesses also agreed well with measurements. Approaches to simulate and improve the light emission intensity from these OLEDs, in particular for white OLEDs, are discussed.

  11. An Observation of Diamond-Shaped Particle Structure in a Soya Phosphatidylcohline and Bacteriorhodopsin Composite Langmuir Blodgett Film Fabricated by Multilayer Molecular Thin Film Method

    Science.gov (United States)

    Tsujiuchi, Y.; Makino, Y.

    A composite film of soya phosphatidylcohline (soya PC) and bacteriorhodopsin (BR) was fabricated by the multilayer molecular thin film method using fatty acid and lipid on a quartz substrate. Direct Force Microscopy (DFM), UV absorption spectra and IR absorption spectra of the film were characterized on the detail of surface structure of the film. The DFM data revealed that many rhombus (diamond-shaped) particles were observed in the film. The spectroscopic data exhibited the yield of M-intermediate of BR in the film. On our modelling of molecular configuration indicate that the coexistence of the strong inter-molecular interaction and the strong inter-molecular interaction between BR trimmers attributed to form the particles.

  12. High-Q submicron-diameter quantum-dot microcavity pillars for cavity QED experiments

    DEFF Research Database (Denmark)

    Gregersen, Niels; Lermer, Matthias; Dunzer, Florian

    As/AlAs micropillar design where Bloch-wave engineering is employed to significally enhance the cavity mode confinement in the submicron diameter regime. We demonstrate a record-high vacuum Rabi splitting of 85 µeV of the strong coupling for pillars incorporating quantum dots with modest oscillator strength f ≈ 10....... It is well-known that light-matter interaction depends on the photonic environment, and thus proper engineering of the optical mode in microcavity systems is central to obtaining the desired functionality. In the strong coupling regime, the visibility of the Rabi splitting is described by the light...... coupling in micropillars relied on quantum dots with high oscillator strengths f > 50, our advanced design allows for the observation of strong coupling for submicron diameter quantum dot-pillars with standard f ≈ 10 oscillator strength. A quality factor of 13600 and a vacuum Rabi splitting of 85 µe...

  13. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information

    Directory of Open Access Journals (Sweden)

    Mohammad H. Bitarafan

    2017-07-01

    Full Text Available For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities—with an air or vacuum gap between a pair of high reflectance mirrors—offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  14. On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information.

    Science.gov (United States)

    Bitarafan, Mohammad H; DeCorby, Ray G

    2017-07-31

    For applications in sensing and cavity-based quantum computing and metrology, open-access Fabry-Perot cavities-with an air or vacuum gap between a pair of high reflectance mirrors-offer important advantages compared to other types of microcavities. For example, they are inherently tunable using MEMS-based actuation strategies, and they enable atomic emitters or target analytes to be located at high field regions of the optical mode. Integration of curved-mirror Fabry-Perot cavities on chips containing electronic, optoelectronic, and optomechanical elements is a topic of emerging importance. Micro-fabrication techniques can be used to create mirrors with small radius-of-curvature, which is a prerequisite for cavities to support stable, small-volume modes. We review recent progress towards chip-based implementation of such cavities, and highlight their potential to address applications in sensing and cavity quantum electrodynamics.

  15. A DLC-Punch Array to Fabricate the Micro-Textured Aluminum Sheet for Boiling Heat Transfer Control

    Directory of Open Access Journals (Sweden)

    Tatsuhio Aizawa

    2018-03-01

    Full Text Available A diamond-like carbon (DLC film, coated on an SKD11 (alloy tool steel substrate, was shaped by plasma oxidation to form an assembly of DLC macro-pillars and to be used as a DLC-punch array that is micro-embossed into aluminum sheets. First, the SKD11 steel die substrate was prepared and DLC-coated to have a film thickness of 10 μm. This DLC coating worked as a punch material. The two-dimensional micro-patterns were printed onto this DLC film by maskless lithography. The unprinted DLC films were selectively removed by plasma oxidation to leave the three-dimensional DLC-punch array on the SKD11 substrate. Each DLC punch had a head of 3.5 μm × 3.5 μm and a height of 8 μm. This DLC-punch array was fixed into the cassette die set for a micro-embossing process using a table-top servo-stamper. Furthermore, through numerically controlled micro-embossing, an alignment of rectangular punches was transcribed into a micro-cavity array in the aluminum sheet. The single micro-cavity had a bottom surface of 3.2 μm × 3.2 μm and an average depth of 7.5 μm. A heat-transfer experiment in boiling water was also performed to investigate the effect of micro-cavity texture on bubbling behavior and the boiling curve.

  16. Development of the automated circulating tumor cell recovery system with microcavity array.

    Science.gov (United States)

    Negishi, Ryo; Hosokawa, Masahito; Nakamura, Seita; Kanbara, Hisashige; Kanetomo, Masafumi; Kikuhara, Yoshihito; Tanaka, Tsuyoshi; Matsunaga, Tadashi; Yoshino, Tomoko

    2015-05-15

    Circulating tumor cells (CTCs) are well recognized as useful biomarker for cancer diagnosis and potential target of drug discovery for metastatic cancer. Efficient and precise recovery of extremely low concentrations of CTCs from blood has been required to increase the detection sensitivity. Here, an automated system equipped with a microcavity array (MCA) was demonstrated for highly efficient and reproducible CTC recovery. The use of MCA allows selective recovery of cancer cells from whole blood on the basis of differences in size between tumor and blood cells. Intra- and inter-assays revealed that the automated system achieved high efficiency and reproducibility equal to the assay manually performed by well-trained operator. Under optimized assay workflow, the automated system allows efficient and precise cell recovery for non-small cell lung cancer cells spiked in whole blood. The automated CTC recovery system will contribute to high-throughput analysis in the further clinical studies on large cohort of cancer patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  18. Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: Towards reduced photonic disorder

    International Nuclear Information System (INIS)

    Zuniga-Perez, J.; Kappei, L.; Deparis, C.; Chenot, S.; Leroux, M.; Reveret, F.; Jamadi, O.; Leymarie, J.; Grundmann, M.; Prado, E. de

    2016-01-01

    Nonpolar ZnO/ZnMgO-based optical microcavities have been grown on (10-10) m-plane ZnO substrates by plasma-assisted molecular beam epitaxy. Reflectivity measurements indicate an exponential increase of the cavity quality factor with the number of layers in the distributed Bragg reflectors. Most importantly, microreflectivity spectra recorded with a spot size in the order of 2 μm show a negligible photonic disorder (well below 1 meV), leading to local quality factors equivalent to those obtained by macroreflectivity. The anisotropic character of the nonpolar heterostructures manifests itself both in the surface features, elongated parallel to the in-plane c direction, and in the optical spectra, with two cavity modes being observed at different energies for orthogonal polarizations.

  19. Homoepitaxial nonpolar (10-10) ZnO/ZnMgO monolithic microcavities: Towards reduced photonic disorder

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J., E-mail: jzp@crhea.cnrs.fr; Kappei, L.; Deparis, C.; Chenot, S.; Leroux, M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Reveret, F.; Jamadi, O.; Leymarie, J. [Clermont Université, Institut Pascal (IP), BP 10448, F-63000 Clermont-Ferrand (France); CNRS, UMR 6602, IP, F-63171 Aubière (France); Grundmann, M. [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Institut für Experimentelle Physik II, Fakultät für Physik und Geowissenschaften, Universität Leipzig, Linnestr. 5, 04103 Leipzig (Germany); Prado, E. de [CRHEA-CNRS, Rue Bernard Gregory, 06560 Valbonne (France); Departamento de Física Aplicada y Electromagnetismo, Universitat de Valencia, c/Dr Moliner 50, Burjassot, Valencia 46100 (Spain)

    2016-06-20

    Nonpolar ZnO/ZnMgO-based optical microcavities have been grown on (10-10) m-plane ZnO substrates by plasma-assisted molecular beam epitaxy. Reflectivity measurements indicate an exponential increase of the cavity quality factor with the number of layers in the distributed Bragg reflectors. Most importantly, microreflectivity spectra recorded with a spot size in the order of 2 μm show a negligible photonic disorder (well below 1 meV), leading to local quality factors equivalent to those obtained by macroreflectivity. The anisotropic character of the nonpolar heterostructures manifests itself both in the surface features, elongated parallel to the in-plane c direction, and in the optical spectra, with two cavity modes being observed at different energies for orthogonal polarizations.

  20. Cancelation of thermally induced frequency shifts in bimaterial cantilevers by nonlinear optomechanical interactions

    Energy Technology Data Exchange (ETDEWEB)

    Vy, Nguyen Duy, E-mail: nguyenduyvy@tdt.edu.vn [Theoretical Physics Research Group, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City 756636 (Viet Nam); Tri Dat, Le [Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City 748355 (Viet Nam); Iida, Takuya [Department of Physical Science, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531 (Japan)

    2016-08-01

    Bimaterial cantilevers have recently been used in, for example, the calorimetric analysis with picowatt resolution in microscopic space based on state-of-the-art atomic force microscopes. However, thermally induced effects usually change physical properties of the cantilevers, such as the resonance frequency, which reduce the accuracy of the measurements. Here, we propose an approach to circumvent this problem that uses an optical microcavity formed between a metallic layer coated on the back of the cantilever and one coated at the end of an optical fiber irradiating the cantilever. In addition to increasing the sensitivity, the optical rigidity of this system diminishes the thermally induced frequency shift. For a coating thickness of several tens of nanometers, the input power is 5–10 μW. These values can be evaluated from parameters derived by directly irradiating the cantilever in the absence of the microcavity. The system has the potential of using the cantilever both as a thermometer without frequency shifting and as a sensor with nanometer-controlled accuracy.

  1. Highly efficient phosphor-converted white organic light-emitting diodes with moderate microcavity and light-recycling filters.

    Science.gov (United States)

    Cho, Sang-Hwan; Oh, Jeong Rok; Park, Hoo Keun; Kim, Hyoung Kun; Lee, Yong-Hee; Lee, Jae-Gab; Do, Young Rag

    2010-01-18

    We demonstrate the combined effects of a microcavity structure and light-recycling filters (LRFs) on the forward electrical efficiency of phosphor-converted white organic light-emitting diodes (pc-WOLEDs). The introduction of a single pair of low- and high-index layers (SiO(2)/TiO(2)) improves the blue emission from blue OLED and the insertion of blue-passing and yellow-reflecting LRFs enhances the forward yellow emission from the YAG:Ce(3+) phosphors layers. The enhancement of the luminous efficacy of the forward white emission is 1.92 times that of a conventional pc-WOLED with color coordinates of (0.34, 0.34) and a correlated color temperature of about 4800 K.

  2. High-power microcavity lasers based on highly erbium-doped sol-gel aluminosilicate glasses

    International Nuclear Information System (INIS)

    Le Ngoc Chung; Chu Thi Thu Ha; Nguyen Thu Trang; Pham Thu Nga; Pham Van Hoi; Bui Van Thien

    2006-01-01

    High-power whispering-gallery-mode (WGM) lasing from highly erbium-doped sol-gel aluminosilicate microsphere cavity coupled to a half-tapered optical fiber is presented. The lasing output power as high as 0.45 mW (-3.5 dBm) was obtained from sol-gel glass microsphere cavity with diameters in the range of 40-150 μm. The sol-gel method for making highly concentration Er-doped aluminosilicate glasses with Er-ion concentrations from 0.125 to 0.65 mol% of Er 3+ is described. Controlling collected lasing wavelength at each WGM is possible by adjusting the distance between the half-taper fiber and the microcavity and by diameter of the waist of half-taper fiber. Using the analytic formulas we calculated the TE and TM lasing modes and it is shown that the experimental results are in good agreement with the calculation prediction

  3. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  4. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    Science.gov (United States)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined

  5. Peculiar properties of photoinduced hydroxylaminolysis in different bacteriorhodopsin-based media using O-substituted hydroxylamines.

    Science.gov (United States)

    Dyukova, Tatyana V; Druzhko, Anna B

    2010-01-01

    The process of photoinduced hydroxylaminolysis has been re-examined in different bacteriorhodopsin (BR)-based media using O-substituted hydroxylamines, in particular, O-(4-nitrobenzyl) hydroxylamine hydrochloride (NBHA), O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride (FBHA) and O-(t-butyl) hydroxylamine hydrochloride (BHA). Both wild type (WT) and D96N BR-based gelatine films and gels were studied. The expected increase in the bleaching rate of BR in gelatin films by using O-substituted hydroxylamines in place of HA was not achieved. On the other hand, it was shown that in gels HA derivatives NBHA and FBHA (as against HA itself) do provide about three- to four-fold higher bleaching rate. By contrast to that in films, D96N BR in gels demonstrates more effective bleaching as compared to WT BR. The plausible interpretation for the results is discussed in frames of reduced mobilities of large-sized molecules of O-substituted hydroxylamines in dehydrated media. FBHA- or NBHA-modified gels possess higher photosensitivity both with D96N and WT BR (as compared with that for HA-modified gels) and offer a potentiality for application as an irreversible-recording medium. As anticipated, it is specifically D96N BR gel modified with FBHA that may present a promising medium suitable for write-once recording thus extending the range of recording materials in the optical processing field. © 2010 The Authors. Journal Compilation. The American Society of Photobiology.

  6. Vibrational motions associated with primary processes in bacteriorhodopsin studied by coherent infrared emission spectroscopy.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Martin, Jean-Louis; Vos, Marten H

    2011-03-16

    The primary energetic processes driving the functional proton pump of bacteriorhodopsin take place in the form of complex molecular dynamic events after excitation of the retinal chromophore into the Franck-Condon state. These early events include a strong electronic polarization, skeletal stretching, and all-trans-to-13-cis isomerization upon formation of the J intermediate. The effectiveness of the photoreaction is ensured by a conical intersection between the electronic excited and ground states, providing highly nonadiabatic coupling to nuclear motions. Here, we study real-time vibrational coherences associated with these motions by analyzing light-induced infrared emission from oriented purple membranes in the 750-1400 cm(-)(1) region. The experimental technique applied is based on second-order femtosecond difference frequency generation on macroscopically ordered samples that also yield information on phase and direction of the underlying motions. Concerted use of several analysis methods resulted in the isolation and characterization of seven different vibrational modes, assigned as C-C stretches, out-of-plane methyl rocks, and hydrogen out-of-plane wags, whereas no in-plane H rock was found. Based on their lifetimes and several other criteria, we deduce that the majority of the observed modes take place on the potential energy surface of the excited electronic state. In particular, the direction sensitivity provides experimental evidence for large intermediate distortions of the retinal plane during the excited-state isomerization process. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  7. Tyrosine and carboxyl protonation changes in the bacteriorhodopsin photocycle. 2. Tyrosine-26 and -64

    International Nuclear Information System (INIS)

    Roepe, P.; Scherrer, P.; Ahl, P.L.; Gupta, S.K.D.; Bogomolni, R.A.; Herzfeld, J.; Rothschild, K.J.

    1987-01-01

    Low-temperature Fourier transform infrared (FTIR) and UV difference spectroscopies combined with selective tyrosine nitration and tyrosine isotopic labeling have been used to investigate the participation of tyrosines-26 and -64 in the bacteriorhodopsin (bR) photocycle. Nitration of Tyr-26 has no detectable effect on the FTIR or UV difference spectra of the BR 570 → K 630 or BR 570 → M 412 transitions. In contrast, nitration of Tyr-64 causes changes in both the FTIR and UV spectra of these transitions. However, this nitration does not alter tyrosine peaks in the FTIR difference spectra which have previously been associated with the protonation of a tyrosinate by K 630 and the deprotonation of a tyrosine by M 412 . Instead, Tyr-64 nitration appears to affect other tyrosine peaks. These results and changes in UV difference spectra upon Tyr-64 nitration are consistent with the deprotonation of Tyr-64 by M 412 as concluded previously. Effects on chromophore vibrations caused by Tyr-64 nitration are unaltered upon reducing the nitrotyrosine to aminotyrosine with sodium dithionite. Finally, nitro-Tyr-64 causes a shift in the frequency of a positive peak at 1739 cm -1 in the BR 570 → M 412 FTIR difference spectrum which reflects the protonation of a carboxyl-containing residue. The shift does not occur for samples containing amino-Tyr-64. These data suggest that Tyr-64 may interact with this carboxyl group

  8. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA

    Directory of Open Access Journals (Sweden)

    Jiajia Wang

    2018-02-01

    Full Text Available A porous silicon microcavity (PSiMC with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA. Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  9. Metal Nanoparticles/Porous Silicon Microcavity Enhanced Surface Plasmon Resonance Fluorescence for the Detection of DNA.

    Science.gov (United States)

    Wang, Jiajia; Jia, Zhenhong

    2018-02-23

    A porous silicon microcavity (PSiMC) with resonant peak wavelength of 635 nm was fabricated by electrochemical etching. Metal nanoparticles (NPs)/PSiMC enhanced fluorescence substrates were prepared by the electrostatic adherence of Au NPs that were distributed in PSiMC. The Au NPs/PSiMC device was used to characterize the target DNA immobilization and hybridization with its complementary DNA sequences marked with Rhodamine red (RRA). Fluorescence enhancement was observed on the Au NPs/PSiMC device substrate; and the minimum detection concentration of DNA ran up to 10 pM. The surface plasmon resonance (SPR) of the MC substrate; which is so well-positioned to improve fluorescence enhancement rather the fluorescence enhancement of the high reflection band of the Bragg reflector; would welcome such a highly sensitive in biosensor.

  10. Spectrum study of top-emitting organic light-emitting devices with micro-cavity structure

    International Nuclear Information System (INIS)

    Liu Xiang; Wei Fuxiang; Liu Hui

    2009-01-01

    Blue and white top-emitting organic light-emitting devices OLEDs with cavity effect have been fabricated. TBADN:3%DSAPh and Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 were used as emitting materials of microcavity OLEDs. On a patterned glass substrate, silver was deposited as reflective anode, and copper phthalocyanine (CuPc) layer as HIL and 4'-bis[N-(1-Naphthyl)- N-phenyl-amino]biphenyl (NPB) layer as HTL were made. Al/Ag thin films were made as semi-transparent cathode with a transmittance of about 30%. By changing the thickness of indium tin oxide ITO, deep blue with Commission Internationale de L'Eclairage chromaticity coordinates (CIEx, y) of (0.141, 0.049) was obtained on TBADN:3%DSAPh devices, and different color (red, blue and green) was obtained on Alq 3 :DCJTB/TBADN:TBPe/Alq 3 :C545 devices, full width at half maxima (FWHM) was only 17 nm. The spectral intensity and FWHM of emission in cavity devices have also been studied.

  11. Simultaneous near field imaging of electric and magnetic field in photonic crystal nanocavities

    NARCIS (Netherlands)

    Vignolini, S.; Intonti, F.; Riboli, F.; Wiersma, D.S.; Balet, L.P.; Li, L.H.; Francardi, M.; Gerardino, A.; Fiore, A.; Gurioli, M.

    2012-01-01

    The insertion of a metal-coated tip on the surface of a photonic crystal microcavity is used for simultaneous near field imaging of electric and magnetic fields in photonic crystal nanocavities, via the radiative emission of embedded semiconductor quantum dots (QD). The photoluminescence intensity

  12. Bragg polaritons in a ZnSe-based unfolded microcavity at elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Rahman, SK. S.; Cornelius, M.; Kaya, T.; Gutowski, J. [Semiconductor Optics, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klein, T.; Gust, A.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, 28334 Bremen (Germany); Klembt, S. [Institut Néel, Université Grenoble Alpes and CNRS, B.P. 166, 38042 Grenoble (France)

    2016-03-21

    In this contribution, we present strong coupling of ZnSe quantum well excitons to Bragg modes resulting in the formation of Bragg polariton eigenstates, characterized by a small effective mass in comparison to a conventional microcavity. We observe an anticrossing of the excitonic and the photonic component in our sample being a clear signature for the strong-coupling regime. The anticrossing is investigated by changing the detuning between the excitonic components and the Bragg mode. We find anticrossings between the first Bragg mode and the heavy- as well as light-hole exciton, respectively, resulting in three polariton branches. The observed Bragg-polariton branches are in good agreement with theoretical calculations. The strong indication for the existence of strong coupling is traceable up to a temperature of 200 K, with a Rabi-splitting energy of 24 meV and 13 meV for the Bragg mode with the heavy- and light-hole exciton, respectively. These findings demonstrate the advantages of this sample configuration for ZnSe-based devices for the strong coupling regime.

  13. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  14. Probing specific molecular processes and intermediates by time-resolved Fourier transform infrared spectroscopy: application to the bacteriorhodopsin photocycle.

    Science.gov (United States)

    Lórenz-Fonfría, Víctor A; Kandori, Hideki; Padrós, Esteve

    2011-06-23

    We present a general approach for probing the kinetics of specific molecular processes in proteins by time-resolved Fourier transform infrared (IR) spectroscopy. Using bacteriorhodopsin (bR) as a model we demonstrate that by appropriately monitoring some selected IR bands it is possible obtaining the kinetics of the most important events occurring in the photocycle, namely changes in the chromophore and the protein backbone conformation, and changes in the protonation state of the key residues implicated in the proton transfers. Besides confirming widely accepted views of the bR photocycle, our analysis also sheds light into some disputed issues: the degree of retinal torsion in the L intermediate to respect the ground state; the possibility of a proton transfer from Asp85 to Asp212; the relationship between the protonation/deprotonation of Asp85 and the proton release complex; and the timing of the protein backbone dynamics. By providing a direct way to estimate the kinetics of photocycle intermediates the present approach opens new prospects for a robust quantitative kinetic analysis of the bR photocycle, which could also benefit the study of other proteins involved in photosynthesis, in phototaxis, or in respiratory chains.

  15. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  16. Progress Toward Single-Photon-Level Nonlinear Optics in Crystalline Microcavities

    Science.gov (United States)

    Kowligy, Abijith S.

    Over the last two decades, the emergence of quantum information science has uncovered many practical applications in areas such as communications, imaging, and sensing where harnessing quantum features of Nature provides tremendous benefits over existing methods exploiting classical physical phenomena. In this effort, one of the frontiers of research has been to identify and utilize quantum phenomena that are not susceptible to environmental and parasitic noise processes. Quantum photonics has been at the forefront of these studies because it allows room-temperature access to its inherently quantum-mechanical features, and allows leveraging the mature telecommunication industry. Accompanying the weak environmental influence, however, are also weak optical nonlinearities. Efficient nonlinear optical interactions are indispensible for many of the existing protocols for quantum optical computation and communication, e.g. high-fidelity entangling quantum logic gates rely on large nonlinear responses at the one- or few-photon-level. While this has been addressed to a great extent by interfacing photons with single quantum emitters and cold atomic gases, scalability has remained elusive. In this work, we identify the macroscopic second-order nonlinear polarization as a robust platform to address this challenge, and utilize the recent advances in the burgeoning field of optical microcavities to enhance this nonlinear response. In particular, we show theoretically that by using the quantum Zeno effect, low-noise, single-photon-level optical nonlinearities can be realized in lithium niobate whispering-gallery-mode microcavities, and present experimental progress toward this goal. Using the measured strength of the second-order nonlinear response in lithium niobate, we modeled the nonlinear system in the strong coupling regime using the Schrodinger picture framework and theoretically demonstrated that the single-photon-level operation can be observed for cavity lifetimes in

  17. Fabrication and characterization of microcavity lasers in rhodamine B doped SU8 using high energy proton beam

    Science.gov (United States)

    Venugopal Rao, S.; Bettiol, A. A.; Vishnubhatla, K. C.; Bhaktha, S. N. B.; Narayana Rao, D.; Watt, F.

    2007-03-01

    The authors present their results on the characterization of individual dye-doped microcavity polymer lasers fabricated using a high energy proton beam. The lasers were fabricated in rhodamine B doped SU8 resist with a single exposure step followed by chemical processing. The resulting trapezoidal shaped cavities had dimensions of ˜250×250μm2. Physical characterization of these structures was performed using a scanning electron microscope while the optical characterization was carried out by recording the emission subsequent to pumping the lasers with 532nm, 6 nanosecond pulses. The authors observed intense, narrow emission near 624nm with the best emission linewidth full width at half maximum of ˜9nm and a threshold ˜150μJ/mm2.

  18. Limulus amoebocyte lysate test via an open-microcavity optical biosensor

    Science.gov (United States)

    Scudder, Jonathan; Ye, Jing Yong

    2018-02-01

    Almost since its discovery, Limulus amoebocyte lysate (LAL) testing has been an important part of the pharmaceutical quality control toolkit. It allows for in vitro endotoxin testing, which has replaced tests using animals, such as using rabbits' thermal response to judge pyrogenicity of test samples, thus leading to a less expensive and faster test of parenteral pharmaceuticals and medical devices that contact blood or cerebrospinal fluid. However, limited by the detection mechanisms of the LAL assays currently used in industry, further improvement in their performance is challenging. To address the growing demand on optimizing LAL assays for increased test sensitivity and reduced assay time, we have developed an LAL assay approach based on a detection mechanism that is different from those being used in industry, namely, gel-clot, turbidimetric, and chromogenic detection. Using a unique open-microcavity photonic-crystal biosensor to monitor the change in the refractive index due to the reaction between LAL regents and endotoxins, we have demonstrated that this approach has improved the LAL assay sensitivity by 200 times compared with the commercial standard methods, reduced the time needed for the assay by more than half, and eliminated the necessity to incubate the test samples. This study opens up the possibility of using the significantly improved LAL assays for a wide range of applications.

  19. InGaN multiple-quantum-well epifilms on GaN-sillicon substrates for microcavities and surface-emitting lasers

    International Nuclear Information System (INIS)

    Lee, June Key; Cho, Hoon; Kim, Bok Hee; Park, Si Hyun; Gu, Erdan; Watson, Ian; Dawson, Martin

    2006-01-01

    We report the processing of InGaN/GaN epifilms on GaN-silicon substrates. High-quality InGaN/GaN multi-quantum wells (MQWs) were grown on GaN-silicon substrates, and their membranes were successfully fabricated using a selective wet etching of silicon followed by a dry etching of the AlGaN buffer layer. With atomic force microscope (AFM) measurements and photoluminescence (PL) measurements, we investigated the physical and the optical properties of the InGaN/GaN MQWs membranes. On the InGaN/GaN MQW membranes, dielectric distributed Bragg reflector (DBRs) were successfully deposited, which give, new possibilities for use in GaN microcavity and surface-emitting laser fabrication.

  20. Cooperative spontaneous emission of nano-emitters with inter-emitter coupling in a leaky microcavity

    International Nuclear Information System (INIS)

    Hong, Suc-Kyoung; Nam, Seog Woo; Yang, Hyung Jin

    2015-01-01

    We study the spontaneous emission from a few two-level nano-emitters placed in a leaky microcavity with Lorentzian spectral density near a critically damped regime. Collective features of the spontaneous emission are investigated by numerical analysis of the excitation dynamics when initially one nano-emitter is totally excited but we do not know which one. The results show that there are three decay rates in the excitation dynamics, two for simple exponential decays and one for damped oscillatory decay. The excitation dynamics is found to critically depend on the regime of the system. It is shown that the spontaneous emission is enhanced or suppressed depending on whether the system is in the underdamped or overdamped regime, respectively. On the other hand, the cooperative spontaneous emission is suppressed in the underdamped while it is enhanced in the overdamped regime. Furthermore, the effect of the direct inter-emitter coupling on the breaking of the cooperativeness of the spontaneous emission is shown as well. (paper)

  1. Liquid sensing capability of rolled-up tubular optical microcavities: a theoretical study.

    Science.gov (United States)

    Zhao, Fangyuan; Zhan, Tianrong; Huang, Gaoshan; Mei, Yongfeng; Hu, Xinhua

    2012-10-07

    Rolled-up tubular optical microcavities are a novel type of optical sensor for identifying different liquids and monitoring single cells. Based on a Mie scattering method, we systematically study the optical resonances and liquid sensing capability of microtubes. Analytical formulas are presented to calculate the resonant wavelengths λ(r), Q factors, sensitivities S and figures of merit QS. Both ideal and rolled-up microtubes are considered for different optical materials in tube walls (refractive indices ranging from 1.5 to 2.5) and for three setups: tube-in-liquid, hollow-tube-in-liquid and liquid-in-tube. It is found that for rolled-up microtubes, the highest QS can be achieved by using the liquid-in-tube setup and very thin wall thicknesses. A maximal sensitivity is found in the case of the liquid cylinder. Our theory well explains a recent experiment under the setup of tube-in-liquid. It is also found that, although it describes the case of tube-in-liquid well, the waveguide approximation approach is not suitable for the case of liquid-in-tube. The results could be useful to design better optofluidic devices based on rolled-up microtubes.

  2. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    Science.gov (United States)

    Wei, Hai-Rui; Lu Long, Gui

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they have long coherence time for storing information, and the control qubit is encoded on the polarizations of the flying photon and can be easily manipulated. Our quantum circuits are compact, economic, and simple. Moreover, they do not require additional qubits. The complexity of our schemes for universal three-qubit gates is much reduced, compared to the synthesis with two-qubit entangling gates. These schemes have high fidelities and efficiencies, and they are feasible in experiment. PMID:26271899

  3. The reaction of hydroxylamine with bacteriorhodopsin studied with mutants that have altered photocycles: selective reactivity of different photointermediates.

    Science.gov (United States)

    Subramaniam, S; Marti, T; Rösselet, S J; Rothschild, K J; Khorana, H G

    1991-01-01

    The reaction of the retinylidene Schiff base in bacteriorhodopsin (bR) to the water-soluble reagent hydroxylamine is enhanced by greater than 2 orders of magnitude under illumination. We have used this reaction as a probe for changes in Schiff base reactivity during the photocycle of wild-type bR and mutants defective in proton transport. We report here that under illumination at pH 6, the D85N mutant has a 20-fold lower rate and the D212N mutant has a greater than 4-fold higher rate for the light-dependent reaction with hydroxylamine compared with wild-type bR. In contrast, the reactivities of wild-type bR and the D96N and T46V mutants are similar. It has been previously shown that the D96N and T46V replacements have no significant effect on the kinetics of "M" formation but have dramatic effects on rate of the decay of M. We therefore conclude that the hydroxylamine reaction occurs before formation of the M intermediate. Most likely it occurs at the "L" stage of the cycle and reflects increased water accessibility to the Schiff base due to a light-driven change in protein conformation. PMID:2006195

  4. Optical properties of semiconductors quantum microcavity structures

    International Nuclear Information System (INIS)

    Afshar, A.M.

    1996-12-01

    The principal phenomenon investigated in this thesis is vacuum Rabi coupling in semiconductor microcavity structures. In these structures quantum well excitons are embedded in a Fabry - Perot like cavity, defined by two semiconductor dielectric mirrors. In such a system the coupled exciton and cavity photon mode form a mixed - mode polariton, where on - resonance there are two branches, each having 50% exciton and 50% photon character. The separation between the upper and lower branches is a measure of the coupling strength where the strength is dependent on the exciton oscillator strength. This interaction is known as vacuum Rabi coupling, and clear anticrossing is seen when the exciton is tuned through the cavity. In our reflectivity experiments we demonstrate control of the coupling between the cavity mode and the exciton by varying temperature, applied electric or magnetic field. Modelling of the reflectivity spectra and the tuning was done using a Transfer Matrix Reflectivity (TMR) model or a linear dispersion model, where in both cases the excitons are treated as Lorentz oscillators. Temperature tuning is achieved because exciton energy decreases with temperature at a much faster rate than the cavity mode. We have demonstrated vacuum Rabi coupling of the cavity mode with both the heavy - hole and light - hole excitons. Electric field tuning is achieved via the quantum confined Stark effect which decreases the exciton energy with increasing field, whilst at the same time the cavity mode energy remains constant. A study of how the electric field reduction of exciton oscillator strength reduces the vacuum Rabi coupling strength is performed. We report the first observation in a semiconductor structure of motional narrowing, seen in both electric field and in temperature tuning experiments at high magnetic field. In magnetic field studies we show how magnetic field induced increase in exciton oscillator strength affects the vacuum Rabi coupling. We also show by

  5. Optical Properties Of Polymeric Films Of Bacteriorhodopsin And Its Functional Variants: New Materials For Optical Information Processing

    Science.gov (United States)

    Hampp, Norbert; Braeuchle, Christoph R.; Oesterhelt, Dieter

    1990-01-01

    Purple membrane (PM) from Halobacterium halobium consists of a two-dimensional crystal of the photochromic retinal protein bacteriorhodopsin (BR). Purple membrane embedded in inert polymer matrices can be used as reversible recording medium in holography. The thermal and photochemical stability (at least 100.000 recording cycles at room temperature), the high quantum yield (70%), the high resolution (~ 5000 lines/mm) and the wide spectral range (400-680 nm) of these films are promising features for any possible technical application. The variability of this material was restricted to chemical modifications of the chromophoric group for a long time. new class of BR based recording media is introduced by the availability of variants of BR with a modified amino acid sequence. After generation of a mutant strain PM variants can be easily produced by the same cultivation and purification procedures as the PM of the wildtype and therefore are available in virtually unlimited amounts, too. As an example the properties of PM-films containing the variant BR-326, which differs from the wildtype by a single amino acid, are reported here. The improved diffraction efficiency (~ 2-fold) and increased sensitivity (~ 50%) of films containing BR-326 give an impression of the new possibilities for optimizing reversible recording media by biochemical and gentechnological methods as an alternative or an addition to conventional chemical methods.

  6. Photonic emitters and circuits based on colloidal quantum dot composites

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Valappil, Nikesh; Luberto, Matthew

    2009-02-01

    We discuss our work on light emitters and photonic circuits realized using colloidal quantum dot composites. Specifically we will report our recent work on flexible microcavity laser, microdisk emitters and integrated active - passive waveguides. The entire microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. The microdisk emitters and the integrated waveguide structures were realized using soft lithography and photo-lithography, respectively and were fabricated using a composite consisting of quantum dots embedded in SU8 matrix. Finally, we will discuss the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements. In addition to their specific functionalities, these novel device demonstrations and their development present a low cost alternative to the traditional photonic device fabrication techniques.

  7. Microcavity-Free Broadband Light Outcoupling Enhancement in Flexible Organic Light-Emitting Diodes with Nanostructured Transparent Metal-Dielectric Composite Electrodes.

    Science.gov (United States)

    Xu, Lu-Hai; Ou, Qing-Dong; Li, Yan-Qing; Zhang, Yi-Bo; Zhao, Xin-Dong; Xiang, Heng-Yang; Chen, Jing-De; Zhou, Lei; Lee, Shuit-Tong; Tang, Jian-Xin

    2016-01-26

    Flexible organic light-emitting diodes (OLEDs) hold great promise for future bendable display and curved lighting applications. One key challenge of high-performance flexible OLEDs is to develop new flexible transparent conductive electrodes with superior mechanical, electrical, and optical properties. Herein, an effective nanostructured metal/dielectric composite electrode on a plastic substrate is reported by combining a quasi-random outcoupling structure for broadband and angle-independent light outcoupling of white emission with an ultrathin metal alloy film for optimum optical transparency, electrical conduction, and mechanical flexibility. The microcavity effect and surface plasmonic loss can be remarkably reduced in white flexible OLEDs, resulting in a substantial increase in the external quantum efficiency and power efficiency to 47.2% and 112.4 lm W(-1).

  8. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  9. Determination of retinal chromophore structure in bacteriorhodopsin with resonance Raman spectroscopy.

    Science.gov (United States)

    Smith, S O; Lugtenburg, J; Mathies, R A

    1985-01-01

    The analysis of the vibrational spectrum of the retinal chromophore in bacteriorhodopsin with isotopic derivatives provides a powerful "structural dictionary" for the translation of vibrational frequencies and intensities into structural information. Of importance for the proton-pumping mechanism is the unambiguous determination of the configuration about the C13=C14 and C=N bonds, and the protonation state of the Schiff base nitrogen. Vibrational studies have shown that in light-adapted BR568 the Schiff base nitrogen is protonated and both the C13=C14 and C=N bonds are in a trans geometry. The formation of K625 involves the photochemical isomerization about only the C13=C14 bond which displaces the Schiff base proton into a different protein environment. Subsequent Schiff base deprotonation produces the M412 intermediate. Thermal reisomerization of the C13=C14 bond and reprotonation of the Schiff base occur in the M412------O640 transition, resetting the proton-pumping mechanism. The vibrational spectra can also be used to examine the conformation about the C--C single bonds. The frequency of the C14--C15 stretching vibration in BR568, K625, L550 and O640 argues that the C14--C15 conformation in these intermediates is s-trans. Conformational distortions of the chromophore have been identified in K625 and O640 through the observation of intense hydrogen out-of-plane wagging vibrations in the Raman spectra (see Fig. 2). These two intermediates are the direct products of chromophore isomerization. Thus it appears that following isomerization in a tight protein binding pocket, the chromophore cannot easily relax to a planar geometry. The analogous observation of intense hydrogen out-of-plane modes in the primary photoproduct in vision (Eyring et al., 1982) suggests that this may be a general phenomenon in protein-bound isomerizations. Future resonance Raman studies should provide even more details on how bacterio-opsin and retinal act in concert to produce an

  10. Thermally joining and/or coating or thermally separating the workpieces having heat-sensitive coating, comprises restoring coating by thermally coating the coating material after thermally joining and/or coating or thermally separating

    OpenAIRE

    Riedel, Frank; Winkelmann, Ralf; Puschmann, Markus

    2011-01-01

    The method for thermally joining and/or coating or thermally separating the workpieces (1), which have a heat-sensitive coating (2), comprises restoring the coating by thermally coating a coating material (3) after thermally joining and/or coating or thermally separating the workpieces. A part of the thermal energy introduced in the workpiece for joining and/or coating or separating or in the workpieces is used for thermally coating the coating material. Two workpieces are welded or soldered ...

  11. Integrated photonics using colloidal quantum dots

    Science.gov (United States)

    Menon, Vinod M.; Husaini, Saima; Okoye, Nicky; Valappil, Nikesh V.

    2009-11-01

    Integrated photonic devices were realized using colloidal quantum dot composites such as flexible microcavity laser, microdisk emitters and integrated active-passive waveguides. The microcavity laser structure was realized using spin coating and consisted of an all-polymer distributed Bragg reflector with a poly-vinyl carbazole cavity layer embedded with InGaP/ZnS colloidal quantum dots. These microcavities can be peeled off the substrate yielding a flexible structure that can conform to any shape and whose emission spectra can be mechanically tuned. Planar photonic devices consisting of vertically coupled microring resonators, microdisk emitters, active-passive integrated waveguide structures and coupled active microdisk resonators were realized using soft lithography, photo-lithography, and electron beam lithography, respectively. The gain medium in all these devices was a composite consisting of quantum dots embedded in SU8 matrix. Finally, the effect of the host matrix on the optical properties of the quantum dots using results of steady-state and time-resolved luminescence measurements was determined. In addition to their specific functionalities, these novel device demonstrations and their development present a low-cost alternative to the traditional photonic device fabrication techniques.

  12. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  13. Methods for polarized light emission from CdSe quantum dot based monolithic pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Seyfried, Moritz; Kalden, Joachim; Sebald, Kathrin; Gutowski, Juergen; Kruse, Carsten; Hommel, Detlef [Institute of Solid State Physics, University of Bremen (Germany)

    2010-07-01

    A lifting of the polarization degeneracy of the fundamental cavity mode in pillar microcavities (MCs) would allow for controlling the polarization state of the emitted photons. Therefore, monolithic VCSEL structures were grown by molecular beam epitaxy containing either one CdSe/ZnSSe quantum dot layer or three quantum well layers as active material. By using focused-ion-beam etching, MC pillars with different geometries were prepared out of the planar samples. Among these are circularly shaped pillar MCs with diameters in the range from 500 nm up to 4 {mu}m and quality factors of up to 7860, elliptically shaped MCs, and so-called photonic molecules consisting of circular pillar MCs which are connected by small bars. Polarization dependent photoluminescence investigations of the fundamental cavity mode reveal a lifting of the polarization degeneracy for all three types of MCs. The energy splitting of up to 0.42 meV in the circularly shaped pillar MCs is probably caused by anisotropic strain conditions within the sample and directly dependent on the pillar diameter, whereas the larger energy splitting of up to 0.72 meV for the photonic molecules or even 4.5 meV for the elliptically shaped MC is based on their asymmetric cross sections.

  14. Nanoparticle/Polymer Nanocomposite Bond Coat or Coating

    Science.gov (United States)

    Miller, Sandi G.

    2011-01-01

    This innovation addresses the problem of coatings (meant to reduce gas permeation) applied to polymer matrix composites spalling off in service due to incompatibility with the polymer matrix. A bond coat/coating has been created that uses chemically functionalized nanoparticles (either clay or graphene) to create a barrier film that bonds well to the matrix resin, and provides an outstanding barrier to gas permeation. There is interest in applying clay nanoparticles as a coating/bond coat to a polymer matrix composite. Often, nanoclays are chemically functionalized with an organic compound intended to facilitate dispersion of the clay in a matrix. That organic modifier generally degrades at the processing temperature of many high-temperature polymers, rendering the clay useless as a nano-additive to high-temperature polymers. However, this innovation includes the use of organic compounds compatible with hightemperature polymer matrix, and is suitable for nanoclay functionalization, the preparation of that clay into a coating/bondcoat for high-temperature polymers, the use of the clay as a coating for composites that do not have a hightemperature requirement, and a comparable approach to the preparation of graphene coatings/bond coats for polymer matrix composites.

  15. Spontaneous stacking of purple membranes during immobilization with physical cross-linked poly(vinyl alcohol) hydrogel with retaining native-like functionality of bacteriorhodopsin

    Science.gov (United States)

    Yokoyama, Yasunori; Tanaka, Hikaru; Yano, Shunsuke; Takahashi, Hiroshi; Kikukawa, Takashi; Sonoyama, Masashi; Takenaka, Koshi

    2017-05-01

    We previously discovered the correlation between light-induced chromophore color change of a photo-receptor membrane protein bacteriorhodopsin (bR) and its two-dimensional crystalline state in the membrane. To apply this phenomenon to a novel optical memory device, it is necessary that bR molecules are immobilized as maintaining their structure and functional properties. In this work, a poly(vinyl alcohol) (PVA) hydrogel with physical cross-linkages (hydrogen bonds between PVA chains) that resulted from repeated freezing-and-thawing (FT) cycles was used as an immobilization medium. To investigate the effects of physically cross-linked PVA gelation on the structure and function of bR in purple membranes (PMs), spectroscopic techniques were employed against PM/PVA immobilized samples prepared with different FT cycle numbers. Visible circular dichroism spectroscopy strongly suggested PM stacking during gelation. X-ray diffraction data also indicated the PM stacking as well as its native-like crystalline lattice even after gelation. Time-resolved absorption spectroscopy showed that bR photocycle behaviors in PM/PVA immobilized samples were almost identical to that in suspension. These results suggested that a physically cross-linked PVA hydrogel is appropriate for immobilizing membrane proteins in terms of maintaining their structure and functionality.

  16. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used...... for these designs and present test results from coatings....

  17. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  18. Active coatings technologies for tailorable military coating systems

    Science.gov (United States)

    Zunino, J. L., III

    2007-04-01

    The main objective of the U.S. Army's Active Coatings Technologies Program is to develop technologies that can be used in combination to tailor coatings for utilization on Army Materiel. The Active Coatings Technologies Program, ACT, is divided into several thrusts, including the Smart Coatings Materiel Program, Munitions Coatings Technologies, Active Sensor packages, Systems Health Monitoring, Novel Technology Development, as well as other advanced technologies. The goal of the ACT Program is to conduct research leading to the development of multiple coatings systems for use on various military platforms, incorporating unique properties such as self repair, selective removal, corrosion resistance, sensing, ability to modify coatings' physical properties, colorizing, and alerting logistics staff when tanks or weaponry require more extensive repair. A partnership between the U.S. Army Corrosion Office at Picatinny Arsenal, NJ along with researchers at the New Jersey Institute of Technology, NJ, Clemson University, SC, University of New Hampshire, NH, and University of Massachusetts (Lowell), MA, are developing the next generation of Smart Coatings Materiel via novel technologies such as nanotechnology, Micro-electromechanical Systems (MEMS), meta-materials, flexible electronics, electrochromics, electroluminescence, etc. This paper will provide the reader with an overview of the Active Coatings Technologies Program, including an update of the on-going Smart Coatings Materiel Program, its progress thus far, description of the prototype Smart Coatings Systems and research tasks as well as future nanotechnology concepts, and applications for the Department of Defense.

  19. Utilizing an open-microcavity optoacoustic sensor for spectroscopic determination of methemoglobin concentration

    Science.gov (United States)

    Peterson, Ralph W.; Kadugodinandareddy, Kavya; Karunakaran, Vinitha; Whitney, Casey; Ling, Jian; Ye, Jing Yong

    2015-03-01

    We present a simple, non-destructive photoacoustic spectroscopy method utilizing a unique open-microcavity optoacoustic sensor to measure the concentration ratio of Methemoglobin (MetHb) in an optically scattering medium. Elevated levels of MetHb, present for example in the blood disorder Methemeglobinemia, cannot be detected by conventional pulse oximetry, and may result in inaccurate arterial oxygen saturation measurements. Samples with different ratios of Oxygenated Hemoglobin (HbO2), Deoxygenated Hemoglobin (HHb), and MetHb were obtained and mixed with nanoscale latex beads to present an optical scattering effect. Polymer encapsulated hemoglobin (PEH) samples were also studied. A sample chamber containing 20 μL of each sample was positioned directly underneath our patented optoacoustic sensor. Unlike a piezoelectric transducer, our optoacoustic sensor allows an excitation laser beam from an OPO laser to pass through and be absorbed by the sample to produce a photoacoustic signal. The cavity layer of the optoacoustic sensor is exposed directly to the resulting ultrasound signal, which causes an intensity modulation of a HeNe laser that is used to monitor the resonance condition of the sensor. A probe laser beam is total internally reflected off of the sensor and detected with a fiber-coupled APD detector. Three wavelengths are chosen for our excitation laser based on the absorption peaks and isobestic points of HHb, HbO2, and MetHb. Using established values of the molar extinction coefficients of HbO2, HHb, and MetHb a set of three simultaneous equations can be solved to accurately determine the concentration ratio of MetHb.

  20. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  1. Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity

    International Nuclear Information System (INIS)

    Ren, Bao-Cang; Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    To date, all work concerning the construction of quantum logic gates, an essential part of quantum computing, has focused on operating in one degree of freedom (DOF) for quantum systems. Here, we investigate the possibility of achieving scalable photonic quantum computing based on two DOFs for quantum systems. We construct a deterministic hyper-controlled-not (hyper-CNOT) gate operating in both the spatial mode and polarization DOFs for a photon pair simultaneously, using the giant optical Faraday rotation induced by a single-electron spin in a quantum dot inside a one-side optical microcavity as a result of cavity quantum electrodynamics. With this hyper-CNOT gate and linear optical elements, two-photon four-qubit cluster entangled states can be prepared and analyzed, which give an application to manipulate more information with less resources. We analyze the experimental feasibility of this hyper-CNOT gate and show that it can be implemented with current technology. (letter)

  2. Structures of aspartic acid-96 in the L and N intermediates of bacteriorhodopsin: analysis by Fourier transform infrared spectroscopy

    Science.gov (United States)

    Maeda, A.; Sasaki, J.; Shichida, Y.; Yoshizawa, T.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The light-induced difference Fourier transform infrared spectrum between the L or N intermediate minus light-adapted bacteriorhodopsin (BR) was measured in order to examine the protonated states and the changes in the interactions of carboxylic acids of Asp-96 and Asp-115 in these intermediates. Vibrational bands due to the protonated and unprotonated carboxylic acid were identified by isotope shift and band depletion upon substitution of Asp-96 or -115 by asparagine. While the signal due to the deprotonation of Asp-96 was clearly observed in the N intermediate, this residue remained protonated in L. Asp-115 was partially deprotonated in L. The C = O stretching vibration of protonated Asp-96 of L showed almost no shift upon 2H2O substitution, in contrast to the corresponding band of Asp-96 or Asp-115 of BR, which shifted by 9-12 cm-1 under the same conditions. In the model system of acetic acid in organic solvents, such an absence of the shift of the C = O stretching vibration of the protonated carboxylic acid upon 2H2O substitution was seen only when the O-H of acetic acid is hydrogen-bonded. The non-hydrogen-bonded monomer showed the 2H2O-dependent shift. Thus, the O-H bond of Asp-96 enters into hydrogen bonding upon conversion of BR to L. Its increased hydrogen bonding in L is consistent with the observed downshift of the O-H stretching vibration of the carboxylic acid of Asp-96.

  3. Lotus Dust Mitigation Coating and Molecular Adsorber Coating

    Science.gov (United States)

    O'Connor, Kenneth M.; Abraham, Nithin S.

    2015-01-01

    NASA Goddard Space Flight Center has developed two unique coating formulations that will keep surfaces clean and sanitary and contain contaminants.The Lotus Dust Mitigation Coating, modeled after the self-cleaning, water-repellant lotus leaf, disallows buildup of dust, dirt, water, and more on surfaces. This coating, has been successfully tested on painted, aluminum, glass, silica, and some composite surfaces, could aid in keeping medical assets clean.The Molecular Adsorber Coating is a zeolite-based, sprayable molecular adsorber coating, designed to prevent outgassing in materials in vacuums. The coating works well to adsorb volatiles and contaminates in manufacturing and processing, such as in pharmaceutical production. The addition of a biocide would also aid in controlling bacteria levels.

  4. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  5. Electrical investigations of hybrid OLED microcavity structures with novel encapsulation methods

    Science.gov (United States)

    Meister, Stefan; Brückner, Robert; Fröb, Hartmut; Leo, Karl

    2016-04-01

    An electrical driven organic solid state laser is a very challenging goal which is so far well beyond reach. As a step towards realization, we monolithically implemented an Organic Light Emitting Diode (OLED) into a dielectric, high quality microcavity (MC) consisting of two Distributed Bragg Reectors (DBR). In order to account for an optimal optical operation, the OLED structure has to be adapted. Furthermore, we aim to excite the device not only electrically but optically as well. Different OLED structures with an emission layer consisting of Alq3:DCM (2 wt%) were investigated. The External Quantum Efficiencies (EQE) of this hybrid structures are in the range of 1-2 %, as expected for this material combination. Including metal layers into a MC is complicated and has a huge impact on the device performance. Using Transfer-Matrix-Algorithm (TMA) simulations, the best positions for the metal electrodes are determined. First, the electroluminescence (EL) of the adjusted OLED structure on top of a DBR is measured under nitrogen atmosphere. The modes showed quality factors of Q = 60. After the deposition of the top DBR, the EL is measured again and the quality factors increased up to Q = 600. Considering the two 25-nm-thick-silver contacts a Q-factor of 600 is very high. The realization of a suitable encapsulation method is important. Two approaches were successfully tested. The first method is based on the substitution of a DBR layer with a layer produced via Atomic Layer Deposition (ALD). The second method uses a 0.15-mm-thick cover glass glued on top of the DBR with a 0.23-μm-thick single-component glue layer. Due to the working encapsulation, it is possible to investigate the sample under ambient conditions.

  6. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Optical microcavities and enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, T. W. [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

    2013-12-21

    Electroluminescence (EL) and electron emission into vacuum (EM) occur when a non-destructive dielectric breakdown of Al-Al{sub 2}O{sub 3}-Ag diodes, electroforming, results in the development of a filamentary region in which current-voltage (I-V) characteristics exhibit voltage-controlled negative resistance. The temperature dependence of I-V curves, EM, and, particularly, EL of Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 30 nm, has been studied. Two filters, a long-pass (LP) filter with transmission of photons with energies less than 3.0 eV and a short-pass (SP) filter with photon transmission between 3.0 and 4.0 eV, have been used to characterize EL. The voltage threshold for EL with the LP filter, V{sub LP}, is ∼1.5 V. V{sub LP} is nearly independent of Al{sub 2}O{sub 3} thickness and of temperature and is 0.3–0.6 V less than the threshold voltage for EL for the SP filter, V{sub SP}. EL intensity is primarily between 1.8 and 3.0 eV when the bias voltage, V{sub S} ≲ 7 V. EL in the thinnest diodes is enhanced compared to EL in thicker diodes. For increasing V{sub S}, for diodes with the smallest Al{sub 2}O{sub 3} thicknesses, there is a maximum EL intensity, L{sub MX}, at a voltage, V{sub LMX}, followed by a decrease to a plateau. L{sub MX} and EL intensity at 4.0 V in the plateau region depend exponentially on Al{sub 2}O{sub 3} thickness. The ratio of L{sub MX} at 295 K for a diode with 12 nm of Al{sub 2}O{sub 3} to L{sub MX} for a diode with 25 nm of Al{sub 2}O{sub 3} is ∼140. The ratio of EL intensity with the LP filter to EL intensity with the SP filter, LP/SP, varies between ∼3 and ∼35; it depends on Al{sub 2}O{sub 3} thickness and V{sub S}. Enhanced EL is attributed to the increase of the spontaneous emission rate of a dipole in a non-resonant optical microcavity. EL photons interact with the Ag and Al films to create surface plasmon polaritons (SPPs) at the metal-Al{sub 2}O

  8. The quantum dynamics of two qubits inside two distant microcavities connected via a single-mode optical fiber

    International Nuclear Information System (INIS)

    Nguyen, Van Hieu; Nguyen, Bich Ha; Duong, Hai Trieu

    2010-01-01

    For application to studying the transmission of quantum information, also called quantum communication, between two identical qubits placed inside two identical single-mode microcavities connected via a single-mode optical fiber, the time evolution of this system is investigated. In the Markovian approximation, the von Neumann equation for its reduced density matrix contains a completely positive linear operator called the Liouvillian operator describing the decoherence of this system due to its interaction with the environment. By using the Linblad formula for the Liouvillian operator, a system of rate equations can be derived. In the special case of resonance between the energy difference of two states in each qubit and the energy of the fiber mode, the rate equations for the system excited up to the first level are solved in first order approximation with respect to the decoherence constants. It is shown that when there is no decoherence, the perfect quantum state transmission between two qubits can take place if the physical parameters of the system satisfy definite conditions. A possible extension to studying the system excited to high energy states is also discussed

  9. Pixelated coatings and advanced IR coatings

    Science.gov (United States)

    Pradal, Fabien; Portier, Benjamin; Oussalah, Meihdi; Leplan, Hervé

    2017-09-01

    Reosc developed pixelated infrared coatings on detector. Reosc manufactured thick pixelated multilayer stacks on IR-focal plane arrays for bi-spectral imaging systems, demonstrating high filter performance, low crosstalk, and no deterioration of the device sensitivities. More recently, a 5-pixel filter matrix was designed and fabricated. Recent developments in pixelated coatings, shows that high performance infrared filters can be coated directly on detector for multispectral imaging. Next generation space instrument can benefit from this technology to reduce their weight and consumptions.

  10. A SIMULTANEOUS MULTI-PROBE DETECTION LABEL-FREE OPTICAL-RESOLUTION PHOTOACOUSTIC MICROSCOPY TECHNIQUE BASED ON MICROCAVITY TRANSDUCER

    Directory of Open Access Journals (Sweden)

    YONGBO WU

    2013-07-01

    Full Text Available We demonstrate the feasibility of simultaneous multi-probe detection for an optical-resolution photoacoustic microscopy (OR-PAM system. OR-PAM has elicited the attention of biomedical imaging researchers because of its optical absorption contrast and high spatial resolution with great imaging depth. OR-PAM allows label-free and noninvasive imaging by maximizing the optical absorption of endogenous biomolecules. However, given the inadequate absorption of some biomolecules, detection sensitivity at the same incident intensity requires improvement. In this study, a modulated continuous wave with power density less than 3 mW/cm2 (1/4 of the ANSI safety limit excited the weak photoacoustic (PA signals of biological cells. A microcavity transducer is developed based on the bulk modulus of gas five orders of magnitude lower than that of solid; air pressure variation is inversely proportional to cavity volume at the same temperature increase. Considering that a PA wave expands in various directions, detecting PA signals from different positions and adding them together can increase detection sensitivity and signal-to-noise ratio. Therefore, we employ four detectors to acquire tiny PA signals simultaneously. Experimental results show that the developed OR-PAM system allows the label-free imaging of cells with weak optical absorption.

  11. Real-time UV-visible spectroscopy analysis of purple membrane-polyacrylamide film formation taking into account Fano line shapes and scattering.

    Science.gov (United States)

    Gomariz, María; Blaya, Salvador; Acebal, Pablo; Carretero, Luis

    2014-01-01

    We theoretically and experimentally analyze the formation of thick Purple Membrane (PM) polyacrylamide (PA) films by means of optical spectroscopy by considering the absorption of bacteriorhodopsin and scattering. We have applied semiclassical quantum mechanical techniques for the calculation of absorption spectra by taking into account the Fano effects on the ground state of bacteriorhodopsin. A model of the formation of PM-polyacrylamide films has been proposed based on the growth of polymeric chains around purple membrane. Experimentally, the temporal evolution of the polymerization process of acrylamide has been studied as function of the pH solution, obtaining a good correspondence to the proposed model. Thus, due to the formation of intermediate bacteriorhodopsin-doped nanogel, by controlling the polymerization process, an alternative methodology for the synthesis of bacteriorhodopsin-doped nanogels can be provided.

  12. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  13. Effect of coating parameters on the microstructure of cerium oxide conversion coatings

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Benedict Y.; Edington, Joe; O' Keefe, Matthew J

    2003-11-25

    The microstructure and morphology of cerium oxide conversion coatings prepared under different deposition conditions were characterized by transmission electron microscopy (TEM). The coatings were formed by a spontaneous reaction between a water-based solution containing CeCl{sub 3} and aluminum alloy 7075-T6 substrates. Microstructural characterization was performed to determine the crystallinity of the coatings and to obtain a better understanding of the deposition parameters on coating microstructure. The results of TEM imaging and electron diffraction analysis indicated that the as-deposited coating was composed of nanocrystalline particles of a previously unreported cerium compound. The particles of the coatings produced using glycerol as an additive were found to be much finer than those of the coatings prepared in the absence of glycerol. This indicates that glycerol may act as a grain refiner and/or growth inhibitor during coating deposition. After deposition, the coated panels were treated for 5 min in a phosphate sealing solution. The sealing treatment converted the as-deposited coating into hydrated cerium phosphate. Panels coated from solutions containing no glycerol followed by phosphate sealing performed poorly in salt fog tests. With glycerol addition, the corrosion resistance of the coatings that were phosphate sealed improved considerably, achieving an average passing rate of 85%.

  14. Analysis of Capillary Coating Die Flow in an Optical Fiber Coating Applicator

    OpenAIRE

    Kyoungjin Kim

    2011-01-01

    Viscous heating becomes significant in the high speed resin coating process of glass fibers for optical fiber manufacturing. This study focuses on the coating resin flows inside the capillary coating die of optical fiber coating applicator and they are numerically simulated to examine the effects of viscous heating and subsequent temperature increase in coating resin. Resin flows are driven by fast moving glass fiber and the pressurization at the coating die inlet, while ...

  15. Methods and means for coating paper by film coating

    NARCIS (Netherlands)

    van der Maarel, Marc; Ter Veer, Arend Berend Cornelis; Vrieling-Smit, Annet; Delnoye, Pierre

    2015-01-01

    This invention relates to the field of paper coating, more in particular to means and methods for providing paper with at least one layer of pigment using film coating to obtain a well printable surface. Provided is a method for preparing coated paper comprising the steps of: a) providing a

  16. A study of the cavity polariton under strong excitation:dynamics and nonlinearities in II-VI micro-cavities

    International Nuclear Information System (INIS)

    Muller, Markus

    2000-01-01

    This work contains an experimental study of the photoluminescence dynamics of cavity polaritons in strong coupling micro-cavities based on II-VI semiconductor compounds. The small exciton size and the strong exciton binding energy in these materials allowed us to study the strong coupling regime between photon and exciton up to high excitation densities, exploring the linear and non-linear emission regimes. Our main experimental techniques are picosecond time-resolved and angular photoluminescence spectroscopy. In the linear regime and for a negative photon-exciton detuning, we observe a suppression of the polariton relaxation by the emission of acoustic phonons leading to a non-equilibrium polariton distribution on the lower branch. This 'bottleneck' effect, which has already been described for polaritons in bulk semiconductors, results from the pronounced photon like character of the polaritons near k(parallel) = 0 in this configuration. At high excitation densities, non-linear relaxation processes, namely final state stimulation of the relaxation and polariton-polariton scattering, bypass this bottleneck giving rise to a very rapid relaxation down to the bottom of the band. We show that this dramatic change in the relaxation dynamics is finally responsible of the super-linear increase of the polariton emission from these states. (author) [fr

  17. Stent Coating Integrity of Durable and Biodegradable Coated Drug Eluting Stents.

    Science.gov (United States)

    Yazdani, Saami K; Sheehy, Alexander; Pacetti, Stephen; Rittlemeyer, Brandon; Kolodgie, Frank D; Virmani, Renu

    2016-10-01

    Coatings consisting of a polymer and drug are widely used in drug-eluting stents (DES) and are essential in providing programmable drug release kinetics. Among other factors, stent coating technologies can influence blood compatibility, affect acute and sub-acute healing, and potentially trigger a chronic inflammatory response. The aim of this study was to investigate the short-term (7 and 28 days) and long-term (90 and 180 days) coating integrity of the Xience Prime Everolimus-Eluting Stent (EES), Resolute Zotarolimus-Eluting Stent (ZES), Taxus Paclitaxel-Eluting Stent (PES), and Nobori Biolimus A9-Eluting Stent (BES) in a rabbit ilio-femoral stent model. Stented arteries (n = 48) were harvested and the tissue surrounding the implanted stents digested away with an enzymatic solution. Results demonstrated that the majority of struts of EES were without any coating defects with a few struts showing minor defects. Similarly, for the ZES, most of the struts were without coating defects at all time points except at 180 days. The majority of PES demonstrated mostly webbing and uneven coating. In the BES group, the majority of strut coating showed polymer cracking. Overall, the EES and ZES had fewer coating defects than the PES and BES. Coating defects, however increase over time for the ZES, whereas the percent of coating irregularities remained constant for the EES. These results provide, for the first time, a comparison of the long-term durability of these drug-eluting stent coatings in vivo. © 2016, Wiley Periodicals, Inc.

  18. Development and electrochemical characterization of Ni‐P coated tungsten incorporated electroless nickel coatings

    Energy Technology Data Exchange (ETDEWEB)

    Shibli, S.M.A., E-mail: smashibli@yahoo.com; Chinchu, K.S.

    2016-08-01

    Ni‐P-W alloy and composite coatings were prepared by incorporation of sodium tungstate/tungsten and Ni‐P coated tungsten into electroless nickel bath respectively. Good inter-particle interactions among the depositing elements i.e. Ni and P with the incorporating tungsten particles were achieved by means of pre-coated tungsten particle by electroless nickel covering prior to its addition into the electroless bath. The pre-coated tungsten particles got incorporated uniformly into the Ni-P matrix of the coating. The particles and the coatings were characterized at different stages by different techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). The electroless Ni-P coating incorporated with pre-coated tungsten exhibited considerably high hardness, thickness and deposition rate. The performance and corrosion resistance characteristics of the composite coating incorporated with the nickel coated tungsten were found to be superior over other conventional Ni-P-W ternary alloy coatings currently reported. - Highlights: • An amorphous Ni-P coating was effectively formed on tungsten particles. • Electroless ternary Ni-P-W composite coatings were successfully prepared. • Enhancement in the inter-particle interaction in the Ni-P composite matrix was achieved. • Efficient and uniform incorporation of the composite in the internal layer was evident. • The tungsten incorporated coating possessed effective barrier protection.

  19. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    International Nuclear Information System (INIS)

    Pardun, Karoline; Treccani, Laura; Volkmann, Eike; Streckbein, Philipp; Heiss, Christian; Destri, Giovanni Li; Marletta, Giovanni; Rezwan, Kurosch

    2015-01-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic

  20. Mixed zirconia calcium phosphate coatings for dental implants: Tailoring coating stability and bioactivity potential

    Energy Technology Data Exchange (ETDEWEB)

    Pardun, Karoline [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Treccani, Laura, E-mail: treccani@uni-bremen.de [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Volkmann, Eike [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany); Streckbein, Philipp [University Hospital, Justus-Liebig-University Giessen, Department of Cranio-Maxillo-Facial Surgery, Klinikstrasse 33, 35385 Giessen (Germany); Heiss, Christian [University Hospital of Giessen-Marburg, Department of Trauma Surgery, Rudolf-Buchheim-Strasse 7, 35385 Giessen, Germany, (Germany); Laboratory of Experimental Surgery, Kerkraderstrasse 9, 35392 Giessen (Germany); Destri, Giovanni Li; Marletta, Giovanni [Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN), Department of Chemistry, University of Catania and CSGI, Viale A. Doria 6, 95125 Catania (Italy); Rezwan, Kurosch [University of Bremen, Advanced Ceramics, Am Biologischen Garten 2, 28359 Bremen (Germany)

    2015-03-01

    Enhanced coating stability and adhesion are essential for long-term success of orthopedic and dental implants. In this study, the effect of coating composition on mechanical, physico-chemical and biological properties of coated zirconia specimens is investigated. Zirconia discs and dental screw implants are coated using the wet powder spraying (WPS) technique. The coatings are obtained by mixing yttria-stabilized zirconia (TZ) and hydroxyapatite (HA) in various ratios while a pure HA coating served as reference material. Scanning electron microscopy (SEM) and optical profilometer analysis confirm a similar coating morphology and roughness for all studied coatings, whereas the coating stability can be tailored with composition and is probed by insertion and dissections experiments in bovine bone with coated zirconia screw implants. An increasing content of calcium phosphate (CP) resulted in a decrease of mechanical and chemical stability, while the bioactivity increased in simulated body fluid (SBF). In vitro experiments with human osteoblast cells (HOB) revealed that the cells grew well on all samples but are affected by dissolution behavior of the studied coatings. This work demonstrates the overall good mechanical strength, the excellent interfacial bonding and the bioactivity potential of coatings with higher TZ contents, which provide a highly interesting coating for dental implants. - Highlights: • Different ratios of zirconia (TZ) and calcium phosphate (CP) were deposited on zirconia substrates. • Enhancement of TZ content in mixed coatings increased coating stability. • Enhancement of CP content in mixed coatings increased bioactivity. • All tested coating compositions were non-toxic.

  1. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  2. Comparison of TiC coating and TD coating in actual application

    International Nuclear Information System (INIS)

    Kim, S.K.; Yoo, J.K.

    1995-01-01

    Large blocks of SKD-11 were treated by CVD-TiC coating process, TD coating process, TD coating process after vacuum heat treating, and vacuum heat treating. Amount of deformation was measured and compared to find the process which gives the least deformation. Wear tests were carried out for specimens treated by each process. Application of CVD-TiC and TD coating to the automotive press mold was studied

  3. Effects of Bond Coating on NiCrBSi-Mo Composite Functional Coating Properties in Plasma Spraying NiCrBSi-Mo/Ni Coating

    OpenAIRE

    DU Ji-yu; LI Fang-yi; LU Hai-yang; SHANG Jian-tong; LI Zhen

    2017-01-01

    Nickel-based bond coating and composite functional coating were sprayed on leaf blade steel material FV520B successively by using air plasma spraying system. NiCrBSi-Mo powder deposition rate, coating porosity, bonding strength and surface hardness were tested. The results indicate that, for the NiCrBSi-Mo/Ni coating, bond coating with 180-220μm thickness can improve NiCrBSi-Mo powder deposition rate while the surface coating with lower porosity, higher bonding strength and high hardness is p...

  4. In-situ phosphatizing coatings for aerospace, OEM and coil coating applications

    Science.gov (United States)

    Neuder, Heather Aurelia

    The current metal coating process is a multi-step process. The surface is cleaned, primered, dried and then painted. The process is labor intensive and time consuming. The wash primer is a conversion coating, which prepares metal surface for better paint adhesion. The wash primers currently used often contain hexavalent chromium (Cr6+), which seals the pores in the conversion coating. The presence of hexavalent chromium, a known carcinogen, and volatile organic compounds (VOCs) make waste disposal expensive and pose dangers to workers. The novel technique of in-situ phosphatizing coating (ISPC) is a single-step, chrome-free alternative to the present coating practice. Formulation of an ISPC involves predispersal of an in-situ phosphatizing reagent (ISPR) into the paint system to form a stable formulation. The ISPR reacts with the metal surface and bonds with the paint film simultaneously, which eliminates the need for a conversion coating. In acid catalyzed paint systems, such as polyester-melamine paints, the ISPR also catalyzes cross-linking reactions between the melamine and the polyester polyols. ISPCs are formulated using commercially available coating systems including: polyester-melamine, two-component epoxy, polyurethane and high-hydroxy content polyester-melamine coil coating. The ISPCs are applied to metal substrates and their performances are evaluated using electrochemical, thermal and standard American Society for Testing and Materials (ASTM) testing methods. In addition, ISPCs were designed and formulated based on: (1) phosphate chemistry, (2) polymer chemistry, (3) sol-gel chemistry, and (4) the ion-exchange principle. Organo-functionalized silanes, which serve as excellent coupling and dispersion agents, are incorporated into the optimized ISPC formula and evaluated using standard ASTM testing methods and electrochemical spectroscopy. Also, an ion-exchange pigment, which leads to better adhesion by forming a mixed metal silicate surface, is

  5. Thin coatings for heavy industry: Advanced coatings for pipes and valves

    Science.gov (United States)

    Vernhes, Luc

    Pipes and valves are pressure vessels that regulate the flow of materials (liquids, gases, and slurries) by controlling the passageways. To optimize processes, reduce costs, and comply with government regulations, original equipment manufacturers (OEMs) must maintain their products in state-of-the-art condition. The first valves were invented over 3,000 years ago to supply water to farms and cities. They were made with bronze alloys, providing good corrosion resistance and acceptable tribological performance. The industrial revolution drove manufacturers to develop new and improved tribological materials. In the 20th century, innovative alloys such as Monel copper-nickel and Stellite cobalt-chrome as well as hard chrome plating were introduced to better control tribological properties and maximize in-service life. Since then, new materials have been regularly introduced to extend the range of applications for valves. For example, Teflon fluoropolymers are used in corrosive chemical and petrochemical processes, the nickel-based superalloys Hastelloy and Inconel for petrochemical applications, and creep-resistant chromium-rich F91 steel for supercritical power plants. Recently, the valve industry has embraced the use of hard thermal sprayed coatings for the most demanding applications, and is investing heavily in research to develop the most suitable coatings for specific uses. There is increasing evidence that the optimal solution to erosive, corrosive, and fretting wear problems lies in the design and manufacture of multi-layer, graded, and/or nanostructured coatings and coating systems that combine controlled hardness with high elastic modulus, high toughness, and good adhesion. The overall objectives of this thesis were 1) to report on advances in the development of structurally controlled hard protective coatings with tailored mechanical, elastoplastic, and thermal properties; and 2) to describe enhanced wear-, erosion-, and corrosion-resistance and other

  6. Cold-Sprayed AZ91D Coating and SiC/AZ91D Composite Coatings

    Directory of Open Access Journals (Sweden)

    Yingying Wang

    2018-03-01

    Full Text Available As an emerging coating building technique, cold spraying has many advantages to elaborate Mg alloy workpieces. In this study, AZ91D coatings and AZ91D-based composite coatings were deposited using cold spraying. Coatings were prepared using different gas temperatures to obtain the available main gas temperature. Compressed air was used as the accelerating gas, and although magnesium alloy is oxidation-sensitive, AZ91D coatings with good performance were obtained. The results show that dense coatings can be fabricated until the gas temperature is higher than 500 °C. The deposition efficiency increases greatly with the gas temperature, but it is lower than 10% for all coating specimens. To analyze the effects of compressed air on AZ91D powder particles and the effects of gas temperature on coatings, the phase composition, porosity, cross-sectional microstructure, and microhardness of coatings were characterized. X-ray diffraction and oxygen content analysis clarified that no phase transformation or oxidation occurred on AZ91D powder particles during cold spraying processes with compressed air. The porosity of AZ91D coatings remained between 3.6% and 3.9%. Impact melting was found on deformed AZ91D particles when the gas temperature increased to 550 °C. As-sprayed coatings exhibit much higher microhardness than as-casted bulk magnesium, demonstrating the dense structure of cold-sprayed coatings. To study the effects of ceramic particles on cold-sprayed AZ91D coatings, 15 vol % SiC powder particles were added into the feedstock powder. Lower SiC content in the coating than in the feedstock powder means that the deposition efficiency of the SiC powder particles is lower than the deposition efficiency of AZ91D particles. The addition of SiC particles reduces the porosity and increases the microhardness of cold-sprayed AZ91D coatings. The corrosion behavior of AZ91D coating and SiC reinforced AZ91D composite coating were examined. The Si

  7. Hard coatings

    International Nuclear Information System (INIS)

    Dan, J.P.; Boving, H.J.; Hintermann, H.E.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  8. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers...... of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes......, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation...

  9. Charged-particle coating

    International Nuclear Information System (INIS)

    Johnson, W.L.; Crane, J.K.; Hendricks, C.D.

    1980-01-01

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  10. Comparison of additive amount used in spin-coated and roll-coated organic solar cells

    DEFF Research Database (Denmark)

    Cheng, Pei; Lin, Yuze; Zawacka, Natalia Klaudia

    2014-01-01

    All-polymer and polymer/fullerene inverted solar cells were fabricated by spin-coating and roll-coating processes. The spin-coated small-area (0.04 cm(2)) devices were fabricated on indium tin oxide (ITO) coated glass substrates in nitrogen. The roll-coated large-area (1.0 cm(2)) devices were...

  11. Coated particle waste form development

    International Nuclear Information System (INIS)

    Oma, K.H.; Buckwalter, C.Q.; Chick, L.A.

    1981-12-01

    Coated particle waste forms have been developed as part of the multibarrier concept at Pacific Northwest Laboratory under the Alternative Waste Forms Program for the Department of Energy. Primary efforts were to coat simulated nuclear waste glass marbles and ceramic pellets with low-temperature pyrolytic carbon (LT-PyC) coatings via the process of chemical vapor deposition (CVD). Fluidized bed (FB) coaters, screw agitated coaters (SAC), and rotating tube coaters were used. Coating temperatures were reduced by using catalysts and plasma activation. In general, the LT-PyC coatings did not provide the expected high leach resistance as previously measured for carbon alone. The coatings were friable and often spalled off the substrate. A totally different concept, thermal spray coating, was investigated at PNL as an alternative to CVD coating. Flame spray, wire gun, and plasma gun systems were evaluated using glass, ceramic, and metallic coating materials. Metal plasma spray coatings (Al, Sn, Zn, Pb) provided a two to three orders-of-magnitude increase in chemical durability. Because the aluminum coatings were porous, the superior leach resistance must be due to either a chemical interaction or to a pH buffer effect. Because they are complex, coated waste form processes rank low in process feasibility. Of all the possible coated particle processes, plasma sprayed marbles have the best rating. Carbon coating of pellets by CVD ranked ninth when compared with ten other processes. The plasma-spray-coated marble process ranked sixth out of eleven processes

  12. Friction surfaced Stellite6 coatings

    International Nuclear Information System (INIS)

    Rao, K. Prasad; Damodaram, R.; Rafi, H. Khalid; Ram, G.D. Janaki; Reddy, G. Madhusudhan; Nagalakshmi, R.

    2012-01-01

    Solid state Stellite6 coatings were deposited on steel substrate by friction surfacing and compared with Stellite6 cast rod and coatings deposited by gas tungsten arc and plasma transferred arc welding processes. Friction surfaced coatings exhibited finer and uniformly distributed carbides and were characterized by the absence of solidification structure and compositional homogeneity compared to cast rod, gas tungsten arc and plasma transferred coatings. Friction surfaced coating showed relatively higher hardness. X-ray diffraction of samples showed only face centered cubic Co peaks while cold worked coating showed hexagonally close packed Co also. - Highlights: ► Stellite6 used as coating material for friction surfacing. ► Friction surfaced (FS) coatings compared with casting, GTA and PTA processes. ► Finer and uniformly distributed carbides in friction surfaced coatings. ► Absence of melting results compositional homogeneity in FS Stellite6 coatings.

  13. The Influence of Nano-Fibrillated Cellulose as a Coating Component in Paper Coating

    Directory of Open Access Journals (Sweden)

    Yaxi Xu

    2016-03-01

    Full Text Available This work investigates nano-fibrillated cellulose (NFC as a component in mineral pigment paper coating. In this work, bleached Eucalyptus pulp was pretreated by TEMPO (2,2,6,6-tetramethyl-1-piperdinyloxy-mediated oxidation. The oxidized pulp was then isolated to obtain NFC by sonication. Aqueous coating colors consisting of calcium carbonate, clay, carboxylated butadiene-styrene latex, additives, and NFC were prepared. The rheology of the coating colors and the surface properties of paper coated with NFC containing coating colors were determined. The rheological properties allowed NFC to be used in small amounts under laboratory conditions. Nano-fibrillated cellulose was found to improve the surface strength and smoothness of the coated paper. The water resistance of coated paper, on the other hand, decreased because of the hydrophilicity of NFC.

  14. Thermal stability of double-ceramic-layer thermal barrier coatings with various coating thickness

    International Nuclear Information System (INIS)

    Dai Hui; Zhong Xinghua; Li Jiayan; Zhang Yanfei; Meng Jian; Cao Xueqiang

    2006-01-01

    Double-ceramic-layer (DCL) coatings with various thickness ratios composed of YSZ (6-8 wt.% Y 2 O 3 + ZrO 2 ) and lanthanum zirconate (LZ, La 2 Zr 2 O 7 ) were produced by the atmospheric plasma spraying. Chemical stability of LZ in contact with YSZ in DCL coatings was investigated by calcining powder blends at different temperatures. No obvious reaction was observed when the calcination temperature was lower than 1250 deg. C, implying that LZ and YSZ had good chemical applicability for producing DCL coating. The thermal cycling test indicate that the cycling lives of the DCL coatings are strongly dependent on the thickness ratio of LZ and YSZ, and the coatings with YSZ thickness between 150 and 200 μm have even longer lives than the single-layer YSZ coating. When the YSZ layer is thinner than 100 μm, the DCL coatings failed in the LZ layer close to the interface of YSZ layer and LZ layer. For the coatings with the YSZ thickness above 150 μm, the failure mainly occurs at the interface of the YSZ layer and the bond coat

  15. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. K Appaji Gowda. Articles written in Pramana – Journal of Physics. Volume 54 Issue 3 March 2000 pp 447-452 Brief Reports. Absorption characteristics of bacteriorhodopsin molecules · H K T Kumar K Appaji Gowda · More Details Abstract Fulltext PDF. The bacteriorhodopsin ...

  16. Quality of Coated Particles : Physical - Mechanical Characterization of Polymeric Film Coatings

    NARCIS (Netherlands)

    Perfetti, G.

    2012-01-01

    All coated particle producers, when applying the coating layer(s) would like to know precisely what is the best coating system to use in order to answer customer’s requests. It is, therefore, of very high relevance for many industries, to have a clear understanding of what are the parameters I need

  17. Flow accelerated organic coating degradation

    Science.gov (United States)

    Zhou, Qixin

    Applying organic coatings is a common and the most cost effective way to protect metallic objects and structures from corrosion. Water entry into coating-metal interface is usually the main cause for the deterioration of organic coatings, which leads to coating delamination and underfilm corrosion. Recently, flowing fluids over sample surface have received attention due to their capability to accelerate material degradation. A plethora of works has focused on the flow induced metal corrosion, while few studies have investigated the flow accelerated organic coating degradation. Flowing fluids above coating surface affect corrosion by enhancing the water transport and abrading the surface due to fluid shear. Hence, it is of great importance to understand the influence of flowing fluids on the degradation of corrosion protective organic coatings. In this study, a pigmented marine coating and several clear coatings were exposed to the laminar flow and stationary immersion. The laminar flow was pressure driven and confined in a flow channel. A 3.5 wt% sodium chloride solution and pure water was employed as the working fluid with a variety of flow rates. The corrosion protective properties of organic coatings were monitored inline by Electrochemical Impedance Spectroscopy (EIS) measurement. Equivalent circuit models were employed to interpret the EIS spectra. The time evolution of coating resistance and capacitance obtained from the model was studied to demonstrate the coating degradation. Thickness, gloss, and other topography characterizations were conducted to facilitate the assessment of the corrosion. The working fluids were characterized by Fourier Transform Infrared Spectrometer (FTIR) and conductivity measurement. The influence of flow rate, fluid shear, fluid composition, and other effects in the coating degradation were investigated. We conclude that flowing fluid on the coating surface accelerates the transport of water, oxygen, and ions into the coating, as

  18. Experimental evaluation of coating delamination in vinyl coated metal forming

    International Nuclear Information System (INIS)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min; Lee, Jung Min; Byoen, Sang Doek; Lee, Soen Bong

    2012-01-01

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications

  19. Experimental evaluation of coating delamination in vinyl coated metal forming

    Energy Technology Data Exchange (ETDEWEB)

    Son, Young Ki; Lee, Chan Joo; Kim, Byung Min [Pusan National Univ., Busan (Korea, Republic of); Lee, Jung Min [Korea Institute of Industrial Technology, Busan (Korea, Republic of); Byoen, Sang Doek [HA Digital Engineering Gr., Seongsan Gu (Korea, Republic of); Lee, Soen Bong [Keimyung Univ., Daegu (Korea, Republic of)

    2012-10-15

    In this paper, a new evaluation and prediction method for coating delamination during sheet metal forming is presented. On the basis of the forming limit diagram (FLD), the current study evaluates the delamination of PET coating by using a cross cut specimen, dome test, and rectangular cup drawing test. Dome test specimens were subjected to biaxial, plane strain, and uniaxial deformation modes. Rectangular cup drawing test specimens were subjected to the deep drawing deformation mode, and compression deformation mode. A vinyl coated metal (VCM) sheet consists of three layers of polymer on the sheet metals: a protective film, a PET layer and a PVC layer. The areas with coating delamination were identified, and the results of the evaluation were plotted according to major and minor strain values, depicting coating delamination. The constructed delamination limit diagram (DLD) can be used to determine the forming limit of VCM during the complex press forming process. ARGUS (GOM) was employed to identify the strain value and deformation mode of the delaminated surface after the press forming. After identifying the areas of delamination, the DLD of the PET coating can be constructed in a format similar to that of the FLD. The forming limit of the VCM sheet can be evaluated using the superimposition of the delamination limit strain of the coating onto the FLD of VCM sheet. The experimental results showed that the proposed test method will support the sheet metal forming process design for VCM sheets. The assessment method presented in this study can be used to determine the delamination limit strain under plastic deformation of other polymer coated metals. The experimental results suggested that the proposed testing method is effective in evaluating delamination for specific applications.

  20. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  1. Preparation of sustained release capsules by electrostatic dry powder coating, using traditional dip coating as reference.

    Science.gov (United States)

    Yang, Yan; Shen, Lian; Yuan, Feng; Fu, Hui; Shan, Weiguang

    2018-05-30

    Lately, a great deal of attention is being paid to capsule coating, since the coat protects active pharmaceutical ingredients (APIs) from damage, as is in the case of tablet and pellet. However, moisture and heat sensitivity of gelatin shells make it challenging to coat capsules using the conventional aqueous coating techniques. In an effort to overcome this challenge, the present study aims to coat capsules using two different coating techniques: electrostatic dry powder coating (EDPC) and dip coating (DC). Both capsule coatings and free films were prepared by these two coating techniques, and the effects of coating formulations and processing conditions on the film quality were investigated. The corresponding drug in vitro release and mechanisms were characterized and compared. The results of dissolution tests demonstrated that the drug release behavior of both EDPC and DC coated capsules could be optimized to a sustained release of 24 h, following the Fick's diffusion law. The results of this study suggest that EDPC method is better than DC method for coating capsules, with respect to the higher production efficiency and better stability, indicating that this dry coating technology has promised in gelatin capsule coating applications. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Low Temperature Powder Coating

    Science.gov (United States)

    2011-02-09

    of volatile organic compounds (VOCs) and hazardous air pollutants (HAPs) • Legacy primers contain hexavalent chrome • Conventional powder coatings...coatings both in laboratory and field service evaluations • LTCPC allows environmental cost reductions through VOC/HAP elimination and hexavalent ... chrome reduction. • The LTCPC process greatly shortens the coating operation (LTCPC cures much more rapidly then conventional wet coatings) resulting in

  3. Vibrational spectrum of the K-590 intermediate in the bacteriorhodopsin photocycle at room temperature: picosecond time-resolved resonance coherent anti-Raman spectroscopy

    Science.gov (United States)

    Ujj, L.; Jäger, F.; Popp, A.; Atkinson, G. H.

    1996-12-01

    The vibrational spectrum of the K-590 intermediate, thought to contribute significantly to the energy storage and transduction mechanism in the bacteriorhodopsin (BR) photocycle, is measured at room temperature using picosecond time-resolved resonance coherent anti-Stokes Raman scattering (PTR/CARS). The room-temperature BR photocycle is initiated by the 3 ps, 570 nm excitation of the ground-state species, BR-570, prepared in both H 2O and D 2O suspensions of BR. PTR/CARS data, recorded 50 ps after BR-570 excitation, at which time only BR-570 and K-590 are present, have an excellent S/N which provides a significantly more detailed view of the K-590 vibrational degrees of freedom than previously available. Two picosecond (6 ps FWHM) laser pulses, ω1 (633.4 nm) and ωS (675-700 nm), are used to record PTR/CARS data via electronic resonance enhancement in both BR-570 and K-590, each of which contains a distinct retinal structure (assigned as 13- rans, 15- anti, 13- cis, respectively). To obtain the vibrational spectrum of K-590 separately, the PTR/CARS spectra from the mixture of isomeric retinals is quantitatively analyzed in terms of third-order susceptibility ( η(3)) relationships. PTR/CARS spectra of K-590 recorded from both H 2O and D 2O suspensions of BR are compared with the analogous vibrational data obtained via spontaneous resonance Raman (RR) scattering at both low (77 K) and room temperature. Analyses of these vibrational spectra identify temperature-dependent effects and changes assignable to the substitution of deuterium at the Schiff-base nitrogen not previously reported.

  4. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Meyer, S.F.

    1980-01-01

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  5. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    International Nuclear Information System (INIS)

    Huang, Yongle; Bai, Shuxin; Zhang, Hong; Ye, Yicong

    2015-01-01

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm 2 min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm 2 min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating

  6. Oxidation of iridium coating on rhenium coated graphite at elevated temperature in stagnated air

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongle; Bai, Shuxin, E-mail: NUDT_MSE_501@163.com; Zhang, Hong; Ye, Yicong

    2015-02-15

    Highlights: • Continuous and dense Ir coatings were prepared on graphite by electrodepostion. • The purification of the as-prepared Ir coating was higher than about 99.98%. • The Ir/Re/C specimen kept integrity without significant failures after oxidation. • The average oxidation rate of the Ir coating was about 0.219 mg/(cm{sup 2} min). • Penetrating holes at gains boundaries resulted in the failure of the Ir coating. - Abstract: Continuous and dense iridium coatings were prepared on the rhenium coated graphite specimens by electrodeposition. The iridium/rhenium coated graphite (Ir/Re/C) specimens were oxidized at elevated temperatures in stagnated air for 3600 s. The purification of the as-prepared Ir coating was higher than about 99.98% with the main impurity elements Si, Al, Fe and Ru. After oxidation, the Ir/Re/C specimens kept integrity without significant failures and the average oxidation rate was about 0.219 mg/(cm{sup 2} min). Pores were found at the grain boundaries and concentrated to penetrating holes with the growth of Ir grains, which resulted in disastrous failures of the Ir coating.

  7. Coatings and Tints of Spectacle Lenses

    Directory of Open Access Journals (Sweden)

    H. Zeki Büyükyıldız

    2012-10-01

    Full Text Available Spectacle lenses are made of mineral or organic (plastic materials. Various coatings and tints are applied to the spectacle lenses according to the characteristic of the lens material, and for the personal needs and cosmetic purpose. The coatings may be classified in seven groups: 1 Anti-reflection coatings, 2 Hard coatings, 3 Clean coat, 4 Mirror coatings, 5 Color tint coating (one of coloring processes, 6 Photochromic coating (one of photochromic processes, and 7 Anti-fog coatings. Anti-reflection coatings reduce unwanted reflections from the lens surfaces and increase light transmission. Hard coatings are applied for preventing the plastic lens surface from scratches and abrasion. Hard coatings are not required for the mineral lenses due to their hardness. Clean coat makes the lens surface smooth and hydrophobic. Thus, it prevents the adherence of dust, tarnish, and dirt particles on the lens surface. Mirror coatings are applied onto the sunglasses for cosmetic purpose. Color tinted and photochromic lenses are used for sun protection and absorption of the harmful UV radiations. Anti-fog coatings make the lens surface hydrophilic and prevent the coalescence of tiny water droplets on the lens surface that reduces light transmission. (Turk J Ophthalmol 2012; 42: 359-69

  8. Design and Characterization of High-strength Bond Coats for Improved Thermal Barrier Coating Durability

    Science.gov (United States)

    Jorgensen, David John

    High pressure turbine blades in gas turbine engines rely on thermal barrier coating (TBC) systems for protection from the harsh combustion environment. These coating systems consist of a ceramic topcoat for thermal protection, a thermally grown oxide (TGO) for oxidation passivation, and an intermetallic bond coat to provide compatibility between the substrate and ceramic over-layers while supplying aluminum to sustain Al2O 3 scale growth. As turbine engines are pushed to higher operating temperatures in pursuit of better thermal efficiency, the strength of industry-standard bond coats limits the lifetime of these coating systems. Bond coat creep deformation during thermal cycling leads to a failure mechanism termed rumpling. The interlayer thermal expansion differences, combined with TGO-imposed growth stresses, lead to the development of periodic undulations in the bond coat. The ceramic topcoat has low out-of-plane compliance and thus detaches and spalls from the substrate, resulting in a loss of thermal protection and subsequent degradation of mechanical properties. New creep resistant Ni3Al bond coats were designed with improved high-temperature strength to inhibit this type of premature failure at elevated temperatures. These coatings resist rumpling deformation while maintaining compatibility with the other layers in the system. Characterization methods are developed to quantify rumpling and assess the TGO-bond coat interface toughness of experimental systems. Cyclic oxidation experiments at 1163 °C show that the Ni3Al bond coats do not experience rumpling but have faster oxide growth rates and are quicker to spall TGO than the (Pt,Ni)Al benchmark. However, the Ni 3Al coatings outperformed the benchmark by over threefold in TBC system life due to a higher resistance to rumpling (mechanical degradation) while maintaining adequate oxidation passivation. The Ni3Al coatings eventually grow spinel NiAl2O4 on top of the protective Al2O3 layer, which leads to the

  9. Hydroxyapatite/poly(epsilon-caprolactone) double coating on magnesium for enhanced corrosion resistance and coating flexibility.

    Science.gov (United States)

    Jo, Ji-Hoon; Li, Yuanlong; Kim, Sae-Mi; Kim, Hyoun-Ee; Koh, Young-Hag

    2013-11-01

    Hydroxyapatite was deposited on pure magnesium (Mg) with a flexible poly(ε-caprolactone) interlayer to reduce the corrosion rate of Mg and enhance coating flexibility. The poly(ε-caprolactone) interlayer was uniformly coated on Mg by a spraying method, followed by hydroxyapatite deposition on the poly(ε-caprolactone) using an aerosol deposition method. In scanning electron microscopy observations, inorganic/organic composite-like structure was observed between the hydroxyapatite and poly(ε-caprolactone) layers, resulting from the collisions of hydroxyapatite particles into the poly(ε-caprolactone) matrix at the initial stage of the aerosol deposition. The corrosion resistance of the coated Mg was examined using potentiodynamic polarization tests. The hydroxyapatite/poly(ε-caprolactone) double coating remarkably improved the corrosion resistance of Mg in Hank's solution. In the in vitro cell tests, the coated Mg showed better cell adhesion compared with the bare Mg due to the reduced corrosion rate and enhanced biocompatibility. The stability and flexibility of hydroxyapatite/poly(ε-caprolactone) double coating was investigated by scanning electron microscopy inspections after the coated Mg was deformed. The hydroxyapatite coating on the poly(ε-caprolactone) interlayer revealed enhanced coating stability and flexibility without cracking or delamination during bending and stretching compared with the hydroxyapatite single coating. These results demonstrated that the hydroxyapatite/poly(ε-caprolactone) double coating significantly improved the surface corrosion resistance of Mg and enhanced coating flexibility for use of Mg as a biodegradable implant.

  10. Coating and curing apparatus and methods

    Science.gov (United States)

    Brophy, Brenor L; Maghsoodi, Sina; Neyman, Patrick J; Gonsalves, Peter R; Hirsch, Jeffrey G; Yang, Yu S

    2015-02-24

    Disclosed are coating apparatus including flow coating and roll-coating that may be used for uniform sol-gel coating of substrates such as glass, solar panels, windows or part of an electronic display. Also disclosed are methods for substrate preparation, flow coating and roll coating. Lastly systems and methods for skin curing sol-gel coatings deposited onto the surface of glass substrates using a high temperature air-knife are disclosed.

  11. Study of ion plating parameters, coating structure, and corrosion protection for aluminum coatings on uranium

    International Nuclear Information System (INIS)

    Egert, C.M.; Scott, D.G.

    1987-01-01

    A study of ion-plating parameters (primarily deposition rate and substrate bias voltage), coating structure, and the corrosion protection provided by aluminum coatings on uranium is presented. Ion plating at low temperatures yields a variety of aluminum coating structures on uranium. For example, aluminum coatings produced at high deposition rates and low substrate bias voltages are columnar with voids between columns, as expected for high-rate vapor deposition at low temperatures. On the other hand, low deposition rate and high bias voltage produce a modified coating with a dense, noncolumnar structure. These results are not in agreement with other studies that have found no relationship between deposition rate and coating structure in ion plating. This discrepancy is probably due to the high deposition rates used in these studies. An accelerated, water vapor corrosion test indicates that the columnar aluminum coatings provide some corrosion protection despite their porous nature; however, the dense noncolumnar coatings provide significantly greater protection. These results indicate that ion-plated aluminum coatings produced at low deposition rates and high substrate bias voltages creates dense coating structures that are most effective in protecting uranium from corrosion

  12. Application of Industrial XRF Coating Thickness Analyzer for Phosphate Coating Thickness on Steel

    Directory of Open Access Journals (Sweden)

    Aleksandr Sokolov

    2018-03-01

    Full Text Available The results of industrial application of an online X-ray fluorescence coating thickness analyzer for measuring the thickness of phosphate coatings on moving steel strips are considered in the article. The target range of coating thickness to be measured is from tens to hundreds of mg/m2 in a measurement time of 10 s. The measurement accuracy observed during long-duration factory acceptance test was 10–15%. The coating thickness analyzer consists of two XRF gauges, mounted above and below the steel strip and capable of moving across the moving strip system for their suspension and relocation and electronic control unit. Fully automated software was developed to automatically and continuously (24/7 control both gauges, scanning both sides of the steel strip, and develop and test methods for measuring new coatings. It allows performing offline storage and retrieval of the measurement results, remotely controlling the analyzer components and measurement modes from a control room. The developed XRF coating thickness analyzer can also be used for real-time measurement of other types of coatings, both metallic and non-metallic.

  13. AntiReflection Coating D

    International Nuclear Information System (INIS)

    AIKEN, DANIEL J.

    1999-01-01

    Analytical expressions used to optimize AR coatings for single junction solar cells are extended for use in monolithic, series interconnected multi-junction solar cell AR coating design. The result is an analytical expression which relates the solar cell performance (through J(sub sc)) directly to the AR coating design through the device reflectance. It is also illustrated how AR coating design be used to provide an additional degree of freedom for current matching multi-junction devices

  14. Effect of Coating Parameters of the Buffer Layer on the Shape Ratio of TRISO-Coated Particles

    International Nuclear Information System (INIS)

    KIm, Weon Ju; Park, Jong Hoon; Park, Ji Yeon; Lee, Young Woo; Chang, Jong Hwa

    2005-01-01

    Fuel for high temperature gas-cooled reactors (HTGR's) consists of TRISO-coated particles. Fluidized bed chemical vapor deposition (FBCVD) has been applied to fabricate the TRISO-coated fuel particles. The TRISO particles consist of UO 2 microspheres coated with layers of porous pyrolytic carbon (PyC), inner dense PyC (IPyC), SiC, and outer dense PyC (OPyC). The porous PyC coating layer, called the buffer layer, attenuates fission recoils and provides void volume for gaseous fission products and carbon monoxide. The buffer layer, which has the highest coating rate among the coating layers, shows the largest variation of the coating thickness within a particle and a batch. This could be the most plausible source of an asphericity in the TRISO particles. The aspherical particles are expected to have an inferior fuel performance. Miller et al. have predicted that a larger stress is developed within the coating layers and thus the failure probability increases in the particles with high aspect ratios. Therefore, the shape of the TRISO-coated particles should be controlled properly and has been one of the important inspection items for the quality control of the fabrication process. In this paper, we investigated the effect of coating parameters of the buffer layer on the shape of the TRISO particles. The flow rate of coating gas and the coating temperature were varied to control the buffer layer. The asphericity of the TRISO-coated particles was evaluated for the various coating conditions of the buffer layer, but at constant coating parameters for the IPyC/SiC/OPyC layers

  15. Superhydrophobic silica coating by dip coating method

    International Nuclear Information System (INIS)

    Mahadik, Satish A.; Parale, Vinayak; Vhatkara, Rajiv S.; Mahadik, Dinesh B.; Kavale, Mahendra S.; Wagh, Pratap B.; Gupta, Satish; Gurav, Jyoti

    2013-01-01

    Herein, we report a simple and low cost method for the fabrication of superhydrophobic coating surface on quartz substrates via sol-gel dip coating method at room temperature. Desired surface chemistry and texture growth for superhydrophobicity developed under double step sol–gel process at room temperature. The resultant superhydrophobic surfaces were characterized by Field-emission scanning electron microscopy (FE-SEM), Atomic force microscopy (AFM), water contact angle (WCA) measurement, differential thermal gravimetric analysis-differential thermal analysis (TGA-DTA) calorimetry and optical spectrometer. Coating shows the ultra high water contact angle about 168 ± 2° and water sliding angle 3 ± 1° and superoleophilic with petroleum oils. This approach allows a simple strategy for the fabrication process of superhydrophilic–superhydrophobic on same surfaces with high thermal stability of superhydrophobicity up to 560 °C. Thus, durability, special wettability and thermal stability of superhydrophobicity expand their application fields.

  16. Hydrogen exchange mass spectrometry of bacteriorhodopsin reveals light-induced changes in the structural dynamics of a biomolecular machine.

    Science.gov (United States)

    Pan, Yan; Brown, Leonid; Konermann, Lars

    2011-12-21

    Many proteins act as molecular machines that are fuelled by a nonthermal energy source. Examples include transmembrane pumps and stator-rotor complexes. These systems undergo cyclic motions (CMs) that are being driven along a well-defined conformational trajectory. Superimposed on these CMs are thermal fluctuations (TFs) that are coupled to stochastic motions of the solvent. Here we explore whether the TFs of a molecular machine are affected by the occurrence of CMs. Bacteriorhodopsin (BR) is a light-driven proton pump that serves as a model system in this study. The function of BR is based on a photocycle that involves trans/cis isomerization of a retinal chromophore, as well as motions of transmembrane helices. Hydrogen/deuterium exchange (HDX) mass spectrometry was used to monitor the TFs of BR, focusing on the monomeric form of the protein. Comparative HDX studies were conducted under illumination and in the dark. The HDX kinetics of BR are dramatically accelerated in the presence of light. The isotope exchange rates and the number of backbone amides involved in EX2 opening transitions increase roughly 2-fold upon illumination. In contrast, light/dark control experiments on retinal-free protein produced no discernible differences. It can be concluded that the extent of TFs in BR strongly depends on photon-driven CMs. The light-induced differences in HDX behavior are ascribed to protein destabilization. Specifically, the thermodynamic stability of the dark-adapted protein is estimated to be 5.5 kJ mol(-1) under the conditions of our work. This value represents the free energy difference between the folded state F and a significantly unfolded conformer U. Illumination reduces the stability of F by 2.2 kJ mol(-1). Mechanical agitation caused by isomerization of the chromophore is transferred to the surrounding protein scaffold, and subsequently, the energy dissipates into the solvent. Light-induced retinal motions therefore act analogously to an internal heat

  17. New temperable solar coatings: Tempsol

    Science.gov (United States)

    Demiryont, Hulya

    2001-11-01

    This paper deals with the large area deposition and coating properties of the thermo-stable (temperable/bendable) solar coating material, CuO, and some new optical coating systems comprising CuO films for architectural and automotive/transportation applications. The CuO solar coating is combined with other coating layers, for example, an anti-reflection film, a reflection film, a coloration coating layer, etc., which are also thermo-stable. The film systems are developed at the research laboratory by D.C. Magnetron reactive sputtering process. The new developed technologies then transferred to the production line. Product performances are compared before and after heat treatment of the coating systems. Performance tables and other physical properties, including optical parameters, mechanical and environmental stability, storage properties, etc., are also presented for this new product series.

  18. Analytical Modeling of Hard-Coating Cantilever Composite Plate considering the Material Nonlinearity of Hard Coating

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2015-01-01

    Full Text Available Due to the material nonlinearity of hard coating, the coated structure produces the nonlinear dynamical behaviors of variable stiffness and damping, which make the modeling of hard-coating composite structure become a challenging task. In this study, the polynomial was adopted to characterize this material nonlinearity and an analytical modeling method was developed for the hard-coating composite plate. Firstly, to relate the hard-coating material parameters obtained by test and the analytical model, the expression of equivalent strain of composite plate was derived. Then, the analytical model of hard-coating composite plate was created by energy method considering the material nonlinearity of hard coating. Next, using the Newton-Raphson method to solve the vibration response and resonant frequencies of composite plate and a specific calculation procedure was also proposed. Finally, a cantilever plate coated with MgO + Al2O3 hard coating was chosen as study case; the vibration response and resonant frequencies of composite plate were calculated using the proposed method. The calculation results were compared with the experiment and general linear calculation, and the correctness of the created model was verified. The study shows the proposed method can still maintain an acceptable precision when the material nonlinearity of hard coating is stronger.

  19. Fabrication and characterization of SiC and ZrC composite coating on TRISO coated particle

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. G.; Lee, S. H.; Kim, D. J.; Park, J. Y.; Kim, W. J. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    SiC coating is widely suggested as structural materials for nuclear application due to its excellent high irradiation resistance properties and high temperature mechanical properties. SiC coating on TRistructural-ISOtropic (TRISO) coated fuel particles plays an important role as a protective layer from radioactive fission gas and a mechanical structural layer. TRISO coating layer was deposited on a spherical particle by a FBCVD method. The ZrO{sub 2} spherical particles were used as a simulant kernel. TRISO coating layers consisting of a porous buffer layer, an inner PyC layer were sequentially deposited before depositing SiC or ZrC coating layer. In order investigate the phase of each composite coating layer, Raman analysis was conducted. SiC, ZrC coating and SiC/ZrC composite coating on spherical particle were successfully deposited via FBCVD method by adjusting source gas flow rate. In the SiC and ZrC composite coating, SiC phase and ZrC phase were observed by XRD and SEM analysis. In the condition of 100 sccm of ZrCl{sub 4}, 25 sccm of CH{sub 4}, and 30 sccm of MTS, only two phases of SiC and ZrC were observed and two phases are located with clean grain boundary.

  20. METHOD OF PROTECTIVELY COATING URANIUM

    Science.gov (United States)

    Eubank, L.D.; Boller, E.R.

    1959-02-01

    A method is described for protectively coating uranium with zine comprising cleaning the U for coating by pickling in concentrated HNO/sub 3/, dipping the cleaned U into a bath of molten zinc between 430 to 600 C and containing less than 0 01% each of Fe and Pb, and withdrawing and cooling to solidify the coating. The zinccoated uranium may be given a; econd coating with another metal niore resistant to the corrosive influences particularly concerned. A coating of Pb containing small proportions of Ag or Sn, or Al containing small proportions of Si may be applied over the zinc coatings by dipping in molten baths of these metals.

  1. Development of Zn-Al-Cu coatings by hot dip coated technology: preparation and characterization

    International Nuclear Information System (INIS)

    Cervantes, J.; Barba, A.; Hernandez, M. A.; Salas, J.; Espinoza, J. L.; Denova, C.; Torres-Villasenor, G.; Conde, A.; Covelo, A.; Valdez, R.

    2013-01-01

    In the present study, research concerning Zn-Al-Cu coatings on low carbon steels has been conducted in order to characterize different properties obtained by a hot-dip coated process. The results include preparation procedure as well as the processing parameters of the coatings. The obtained coatings were subjected to a cold rolling process followed by an anneal heat treatment at different temperatures and under different time conditions. The structural characteristics of coatings have been investigated by optical and electron microscopy. The mechanical properties were obtained by using micro-hardness testing, deep drawing and wear tests whereas chemical analyses were carried out using the SEM/EDAX microprobe. The corrosion properties were achieved by using a salt spray fog chamber and potentiodynamic tests in a saline solution. The coatings are resistant to corrosion and wear in the presence of sodium chloride, therefore, the coatings could be an attractive alternative for application in coastal areas, and adequate wear adhesive resistance. (Author)

  2. Silica coatings on clarithromycin.

    Science.gov (United States)

    Bele, Marjan; Dmitrasinovic, Dorde; Planinsek, Odon; Salobir, Mateja; Srcic, Stane; Gaberscek, Miran; Jamnik, Janko

    2005-03-03

    Pre-crystallized clarithromycin (6-O-methylerythromycin A) particles were coated with silica from the tetraethyl orthosilicate (TEOS)-ethanol-aqueous ammonia system. The coatings had a typical thickness of 100-150 nm and presented about 15 wt.% of the silica-drug composite material. The properties of the coatings depended on reactant concentration, temperature and mixing rate and, in particular, on the presence of a cationic surfactant (cetylpyridinium chloride). In the presence of cetylpyridinium chloride the silica coatings slightly decreased the rate of pure clarithromycin dissolution.

  3. Zinc phosphate conversion coatings

    Science.gov (United States)

    Sugama, Toshifumi

    1997-01-01

    Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

  4. Error Analysis of Ceramographic Sample Preparation for Coating Thickness Measurement of Coated Fuel Particles

    International Nuclear Information System (INIS)

    Liu Xiaoxue; Li Ziqiang; Zhao Hongsheng; Zhang Kaihong; Tang Chunhe

    2014-01-01

    The thicknesses of four coatings of HTR coated fuel particle are very important parameters. It is indispensable to control the thickness of four coatings of coated fuel particles for the safety of HTR. A measurement method, ceramographic sample-microanalysis method, to analyze the thickness of coatings was developed. During the process of ceramographic sample-microanalysis, there are two main errors, including ceramographic sample preparation error and thickness measurement error. With the development of microscopic techniques, thickness measurement error can be easily controlled to meet the design requirements. While, due to the coated particles are spherical particles of different diameters ranged from 850 to 1000μm, the sample preparation process will introduce an error. And this error is different from one sample to another. It’s also different from one particle to another in the same sample. In this article, the error of the ceramographic sample preparation was calculated and analyzed. Results show that the error introduced by sample preparation is minor. The minor error of sample preparation guarantees the high accuracy of the mentioned method, which indicates this method is a proper method to measure the thickness of four coatings of coated particles. (author)

  5. A dual response surface optimization methodology for achieving uniform coating thickness in powder coating process

    Directory of Open Access Journals (Sweden)

    Boby John

    2015-09-01

    Full Text Available The powder coating is an economic, technologically superior and environment friendly painting technique compared with other conventional painting methods. However large variation in coating thickness can reduce the attractiveness of powder coated products. The coating thickness variation can also adversely affect the surface appearance and corrosion resistivity of the product. This can eventually lead to customer dissatisfaction and loss of market share. In this paper, the author discusses a dual response surface optimization methodology to minimize the thickness variation around the target value of powder coated industrial enclosures. The industrial enclosures are cabinets used for mounting the electrical and electronic equipment. The proposed methodology consists of establishing the relationship between the coating thickness & the powder coating process parameters and developing models for the mean and variance of coating thickness. Then the powder coating process is optimized by minimizing the standard deviation of coating thickness subject to the constraint that the thickness mean would be very close to the target. The study resulted in achieving a coating thickness mean of 80.0199 microns for industrial enclosures, which is very close to the target value of 80 microns. A comparison of the results of the proposed approach with that of existing methodologies showed that the suggested method is equally good or even better than the existing methodologies. The result of the study is also validated with a new batch of industrial enclosures.

  6. Development of antimicrobial coating by later-by-layer dip coating of chlorhexidine-loaded micelles.

    Science.gov (United States)

    Tambunlertchai, Supreeda; Srisang, Siriwan; Nasongkla, Norased

    2017-06-01

    Layer-by-layer (LbL) dip coating, accompanying with the use of micelle structure, allows hydrophobic molecules to be coated on medical devices' surface via hydrogen bonding interaction. In addition, micelle structure also allows control release of encapsulated compound. In this research, we investigated methods to coat and maximize the amount of chlorhexidine (CHX) on silicone surface through LbL dip coating method utilizing hydrogen bonding interaction between PEG on micelle corona and PAA. The number of coated cycles was varied in the process and 90 coating cycles provided the maximum amount of CHX loaded onto the surface. In addition, pre-coating the surface with PAA enhanced the amount of coated CHX by 20%. Scanning electron microscope (SEM) and Fourier Transform Infrared Spectroscopy (FTIR) were used to validate and characterize the coating. For control release aspect, the coated film tended to disrupt at physiological condition; hence chemical crosslinking was performed to minimize the disruption and maximize the release time. Chemical crosslinking at pH 2.5 and 4.5 were performed in the process. It was found that chemical crosslinking could help extend the release period up to 18 days. This was significantly longer when compared to the non-crosslinking silicone tube that could only prolong the release for 5 days. In addition, chemical crosslinking at pH 2.5 gave higher and better initial burst release, release period and antimicrobial properties than that of pH 4.5 or the normal used pH for chemical crosslinking process.

  7. Hydroxyapatite coatings for biomedical applications

    CERN Document Server

    Zhang, Sam

    2013-01-01

    Hydroxyapatite coatings are of great importance in the biological and biomedical coatings fields, especially in the current era of nanotechnology and bioapplications. With a bonelike structure that promotes osseointegration, hydroxyapatite coating can be applied to otherwise bioinactive implants to make their surface bioactive, thus achieving faster healing and recovery. In addition to applications in orthopedic and dental implants, this coating can also be used in drug delivery. Hydroxyapatite Coatings for Biomedical Applications explores developments in the processing and property characteri

  8. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    MINTEER, D.J.

    2000-01-01

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  9. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  10. The effect of microstructure at interface between coating and substrate on damping capacity of coating systems

    International Nuclear Information System (INIS)

    Wang, Xueqin; Pei, Yanling; Ma, Yue

    2013-01-01

    Samples with various interface microstructures between the coating and the substrate were designed and fabricated in this paper. Dynamic mechanical thermal analyzer (DMTA) was utilized to investigate the dynamic mechanical properties of the samples and scanning electron microscopy (SEM) was used to observe the interface microstructure between the substrate and coating. The effect of the interface microstructure on damping was studied, and results indicated that the larger the coating/substrate interface thickness was and the more interface defects were, the higher interface system damping was. When the micro-hardness ratio of substrate to coating was increased, the damping of coating system was enhanced. The effect of the APS and EB-PVD coating on damping capacity was investigated. There was a dramatic increase in the damping value of the APS coating when the strain was higher than 20 ppm, while the damping amplitude effect of the EB-PVD coating was not so obvious, which could mainly be caused by the different energy dissipation mechanisms of the two coatings.

  11. Multilayer oxidation resistant coating for SiC coated carbon/carbon composites at high temperature

    International Nuclear Information System (INIS)

    Li Hejun; Jiao Gengsheng; Li Kezhi; Wang Chuang

    2008-01-01

    To prevent carbon/carbon (C/C) composites from oxidation, a multilayer coating based on molybdenum disilicide and titanium disilicide was formed using a two-step pack cementation technique in argon atmosphere. XRD and SEM analysis showed that the internal coating was a bond SiC layer that acts as a buffer layer, and that the external multilayer coating formed in the two-step pack cementation was composed of two MoSi 2 -TiSi 2 -SiC layers. This coating, which is characterized by excellent thermal shock resistance, could effectively protect the composites from exposure to an oxidizing atmosphere at 1773 K for 79 h. The oxidation of the coated C/C composites was primarily due to the reaction of C/C matrix and oxygen diffusing through the penetrable cracks in the coating

  12. Coating of substrates

    International Nuclear Information System (INIS)

    Cairns, J.A.; Nelson, R.L.; Woodhead, J.L.

    1979-01-01

    The process is concerned with providing substrates with coatings obtainable from sols, for example to protect the substrate (such as in nuclear reactors or hydrocarbon cracking plant) or to provide a carrier for catalytically active material. Hitherto, coatings obtained from sols have had a high porosity and high surface area so that they have not been entirely satisfactory for the above applications. In the process described, dense, low-porosity coatings are provided by contacting the substrate with a sol of refractory material (e.g. CeO 2 or SiO 2 ) convertible to a gel of density at least 40% of the theoretical density of the refractory material, and converting the sol to the gel. Optionally, the gel may be converted to a ceramic coating by firing. (author)

  13. Fuel particle coating data

    International Nuclear Information System (INIS)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies

  14. Functional Plasma-Deposited Coatings

    Directory of Open Access Journals (Sweden)

    Mykhaylo Pashechko

    2017-12-01

    Full Text Available The paper focuses on the problem of low adhesion of plasma sprayed coatings to the substrate. The subsequent laser treatment modes and their influence on the coating-substrate interface were studied. This allows to decrease the level of metstability of the coating, thus decreasing its hardness down to 11-12 GPa on the surface and to about 9 GPa on depth of 400 µm. The redistribution of alloying elements through solid and liquid diffusion improves mechanical properties and rises the adhesion up to 450 MPa after remelting and up to 90-110 MPa after laser-aided thermal cycling. At he same time, remelting of coating helps to decrease its porosity down to 1%. Obtained complex of properties also allows to improve wear resistance of coatings and to decrease friction factor.

  15. Self-Healing anticorrosive coatings

    DEFF Research Database (Denmark)

    Nesterova, Tatyana

    %. The number is lower than anticipated and needs to be confirmed. Finally, a 3-D model, based on Monte-Carlo simulations, has been developed for prediction of healing efficiency of a microcapsule-based anticorrosive coating. Two kinds of cracks were considered: cracks accommodated within the bulk coating...... associated with development and testing of this type of coating. A laboratory investigation, to identify the most suitable method for production of mechanically stable (filled with industrially relevant core materials) and forming a free-flowing powder upon drying microcapsules, has been performed. Four...... reduces the intensity of crack formation (both in number and length) compared to filler-containing coatings and prevents the coating from flaking upon damage. Based on specular gloss measurements, a preliminary critical pigment (microcapsule) concentration (CPVC) value was estimated to about 30 vol...

  16. The interfacial chemistry of metallized, oxide coated, and nanocomposite coated polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Barker, C.P. [Durham Univ. (United Kingdom). Dept. of Chemistry; Kochem, K.H. [HOECHST Aktiengesellschaft, Werk Kalle/Albert, Geschaftsbereich H, Rheingaustrasse 190-196, D-65174 Wiesbaden (Germany); Revell, K.M. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Kelly, R.S.A. [CAMVAC (Europe) Ltd., Burrell Way, Thetford, Norfolk IP24 3QY (United Kingdom); Badyal, J.P.S. [Durham Univ. (United Kingdom). Dept. of Chemistry

    1995-02-15

    Aluminium, aluminium oxide, and aluminium/aluminium oxide nanocomposite coated polymer substrates have been characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, argon ion sputter depth profiling, and gas permeation measurements. A comparison of the similarities and differences between these coatings has provided a detailed insight into the physicochemical origins of gas barrier associated with metallized plastics. Keywords: Aluminium; Aluminium oxide; Coatings; X-ray photoelectron spectroscopy ((orig.))

  17. Oxidation Behavior of FeCrAl -coated Zirconium Cladding prepared by Laser Coating

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Il-Hyun; Kim, Hyun-Gil; Choi, Byung-Kwan; Park, Jeong-Yong; Koo, Yang-Hyun; Kim, Jin-Seon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    From the recent research trends, the ATF cladding concepts for enhanced accident tolerance are divided as follows: Mo-Zr cladding to increase the high temperature strength, cladding coating to increase the high temperature oxidation resistance, FeCrAl alloy and SiC/SiCf material to increase the oxidation resistance and strength at high temperature. To commercialize the ATF cladding concepts, various factors are considered, such as safety under normal and accident conditions, economy for the fuel cycle, and developing development challenges, and schedule. From the proposed concepts, it is known that the cladding coating, FeCrAl alloy, and Zr-Mo claddings are considered as a near/mid-term application, whereas the SiC material is considered as a long-term application. Among them, the benefit of cladding coating on Zr-based alloys is the fuel cycle economy regarding the manufacturing, neutron cross section, and high tritium permeation characteristics. However, the challenge of cladding coating on Zr-based alloys is the lower oxidation resistance and mechanical strength at high-temperature than other concepts. Another important point is the adhesion property between the Zr-based alloy and coating materials. A laser coating method supplied with FeCrAl powders was developed to decrease the high-temperature oxidation rate in a steam environment through a systematic study for various coating parameters, and a FeCrAl-coated Zircaloy-4 cladding tube of 100 mm in length to the axial direction can be successfully manufactured.

  18. Coatings for laser fusion

    International Nuclear Information System (INIS)

    Lowdermilk, W.H.

    1981-01-01

    Optical coatings are used in lasers systems for fusion research to control beam propagation and reduce surface reflection losses. The performance of coatings is important in the design, reliability, energy output, and cost of the laser systems. Significant developments in coating technology are required for future lasers for fusion research and eventual power reactors

  19. Protective Coatings

    Science.gov (United States)

    1980-01-01

    General Magnaplate Corporation's pharmaceutical machine is used in the industry for high speed pressing of pills and capsules. Machine is automatic system for molding glycerine suppositories. These machines are typical of many types of drug production and packaging equipment whose metal parts are treated with space spinoff coatings that promote general machine efficiency and contribute to compliance with stringent federal sanitation codes for pharmaceutical manufacture. Collectively known as "synergistic" coatings, these dry lubricants are bonded to a variety of metals to form an extremely hard slippery surface with long lasting self lubrication. The coatings offer multiple advantages; they cannot chip, peel or be rubbed off. They protect machine parts from corrosion and wear longer, lowering maintenance cost and reduce undesired heat caused by power-robbing friction.

  20. Adhesive strength of hydroxyl apatite(HA coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    Directory of Open Access Journals (Sweden)

    Tian-yang ZHANG

    2011-05-01

    Full Text Available Objective To explore the influence of adhesive strength of hydroxyapatite(HA coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01.Histopathological examination and bone morphometry showed that,at the early stage of prosthesis implantation,the bony growth around HA-coated prosthesis was significantly higher than that around Ti-coated prosthesis(P < 0.01,but the ultimate shear strength of HA-coated prosthesis was much lower than that of Ti-coated prosthesis(P < 0.01.After the push-out test with prosthesis,histopathological observation showed that there were accumulations of clump-and strip-like granular residues on the surface of bones that newly grew around the HA-coated prosthesis,and surface energy-dispersive X-ray spectroscopy(EDX analysis also confirmed that the shear stress induced HA decohesion from the substrate of prosthesis.Conclusions Although HA coating showed a satisfactory effect on early bone formation and prosthetic stability,due to the deficiencies of adhesive strength,the early stability of prosthesis may be gradually destroyed by the shear loads of human body and coating degradation.

  1. Studies on soft centered coated snacks.

    Science.gov (United States)

    Pavithra, A S; Chetana, Ramakrishna; Babylatha, R; Archana, S N; Bhat, K K

    2013-04-01

    Roasted groundnut seeds, amaranth and dates pulp formed the center filling which was coated with sugar, breadings, desiccated coconut and roasted Bengalgram flour (BGF) to get 4 coated snacks. Physicochemical characteristics, microbiological profile, sorption behaviour and sensory quality of 4 coated snacks were determined. Centre filling to coating ratio of the products were in the range of 3:2-7:1, the product having BGF coating had the thinnest coating. Center filling had soft texture and the moisture content was 10.2-16.2% coating had lower moisture content (4.4-8.6%) except for Bengal gram coating, which had 11.1% moisture. Sugar coated snack has lowest fat (11.6%) and protein (7.2%) contents. Desiccated coconut coated snack has highest fat (25.4%) and Bengal gram flour coated snack had highest protein content (15.4%). Sorption studies showed that the coated snack had critical moisture content of 11.2-13.5%. The products were moisture sensitive and hence require packaging in films having higher moisture barrier property. In freshly prepared snacks coliforms, yeast and mold were absent. Mesophillic aerobes count did not show significant change during 90 days of storage at 27 °C and 37 °C. Sensory analysis showed that products had a unique texture due to combined effect of fairly hard coating and soft center. Flavour and overall quality of all the products were rated as very good.

  2. Rapidly curable electrically conductive clear coatings

    Energy Technology Data Exchange (ETDEWEB)

    Bowman, Mark P.; Anderson, Lawrence G.; Post, Gordon L.

    2018-01-16

    Rapidly curable electrically conductive clear coatings are applied to substrates. The electrically conductive clear coating includes to clear layer having a resinous binder with ultrafine non-stoichiometric tungsten oxide particles dispersed therein. The clear coating may be rapidly cured by subjecting the coating to infrared radiation that heats the tungsten oxide particles and surrounding resinous binder. Localized heating increases the temperature of the coating to thereby thermally cure the coating, while avoiding unwanted heating of the underlying substrate.

  3. Spin coated versus dip coated electrochromic tungsten oxide films: Structure, morphology, optical and electrochemical properties

    International Nuclear Information System (INIS)

    Deepa, M.; Saxena, T.K.; Singh, D.P.; Sood, K.N.; Agnihotry, S.A.

    2006-01-01

    A sol-gel derived acetylated peroxotungstic acid sol encompassing 4 wt.% of oxalic acid dihydrate (OAD) has been employed for the deposition of tungsten oxide (WO 3 ) films by spin coating and dip coating techniques, in view of smart window applications. The morphological and structural evolution of the as-deposited spin and dip coated films as a function of annealing temperature (250 and 500 o C) has been examined and compared by Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD). A conspicuous feature of the dip coated film (annealed at 250 o C) is that its electrochromic and electrochemical properties ameliorate with cycling without degradation in contrast to the spin coated film for which these properties deteriorate under repetitive cycling. A comparative study of spin and dip coated nanostructured thin films (annealed at 250 o C) revealed a superior performance for the cycled dip coated film in terms of higher transmission modulation and coloration efficiency in solar and photopic regions, faster switching speed, higher electrochemical activity as well as charge storage capacity. While the dip coated film could endure 2500 color-bleach cycles, the spin coated film could sustain only a 1000 cycles. The better cycling stability of the dip coated film which is a repercussion of a balance between optimal water content, porosity and grain size hints at its potential for electrochromic window applications

  4. Adhesive strength of hydroxyl apatite(HA) coating and biomechanics behavior of HA-coated prosthesis:an experimental study

    OpenAIRE

    Tian-yang ZHANG; Yong-hong DUAN; Shu ZHU; Jin-yu ZHU; Qing-sheng ZHU

    2011-01-01

    Objective To explore the influence of adhesive strength of hydroxyapatite(HA) coating on the post-implantation stability of HA-coated prosthesis.Methods The adhesive strength and biomechanics behavior of HA coating were studied by histopathological observation,material parameters and biomechanical testing,the titanium(Ti)-coated prosthesis was employed as control.Results Scratch test showed that the adhesive strength of HA coating was significantly lower than that of Ti coating(P < 0.01).Hist...

  5. Effect of Layer-Graded Bond Coats on Edge Stress Concentration and Oxidation Behavior of Thermal Barrier Coatings

    Science.gov (United States)

    Zhu, Dongming; Ghosn, Louis J.; Miller, Robert A.

    1998-01-01

    Thermal barrier coating (TBC) durability is closely related to design, processing and microstructure of the coating Z, tn systems. Two important issues that must be considered during the design of a thermal barrier coating are thermal expansion and modulus mismatch between the substrate and the ceramic layer, and substrate oxidation. In many cases, both of these issues may be best addressed through the selection of an appropriate bond coat system. In this study, a low thermal expansion and layer-graded bond coat system, that consists of plasma-sprayed FeCoNiCrAl and FeCrAlY coatings, and a high velocity oxyfuel (HVOF) sprayed FeCrAlY coating, is developed to minimize the thermal stresses and provide oxidation resistance. The thermal expansion and oxidation behavior of the coating system are also characterized, and the strain isolation effect of the bond coat system is analyzed using the finite element method (FEM). Experiments and finite element results show that the layer-graded bond coat system possesses lower interfacial stresses. better strain isolation and excellent oxidation resistance. thus significantly improving the coating performance and durability.

  6. A novel coating strategy towards improving interfacial adhesion strength of Cu–Sn alloy coated steel with vulcanized rubber

    International Nuclear Information System (INIS)

    Banerjee, Atanu; Dutta, Monojit; Bysakh, Sandip; Bhowmick, Anil K.; Laha, Tapas

    2014-01-01

    Highlights: • We propose a double layer Cu–Sn alloy coating strategy on steel to improve adhesion. • Uniform coating with adequate penetration inside micro-roughness was observed. • XPS and GDOES study revealed improved substrate surface coverage by coating. • TEM investigation confirmed compact, uniform and micro-porosity free interface. • Peel test with vulcanized rubber confirmed improved adhesion with cohesive fracture. - Abstract: A comparative assessment in terms of uniformity, coating coverage and coating deposition mechanism has been carried out for two different types of Cu–Sn coatings on steel substrate with varying Sn composition (2–6.5 wt%) deposited via immersion technique, viz. (i) single layer Cu–Sn coating and (ii) double layer coating consisting of a thin Cu strike layer followed by a Cu–Sn layer. Coating morphology, surface coverage, coating-substrate interface, and coating composition at surface and along the depth were studied using laser confocal microscope (OLS), scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (TEM). Quantitative depth profiling using GDOES and surface compositional analysis via XPS suggested improvement in surface coverage in the case of double layer coatings. SEM-EDS and TEM analysis confirmed that the coating deposition was more uniform with sufficient coating penetration inside the deep roughness troughs resulting in compact and micro-porosity free interface for this type of coatings. Better adhesion strength with less variation in peel force and cohesive mode of fracture within the rubber was observed for the double layer coated samples during the peel test carried out on coated steel samples vulcanized with rubber. On the other hand, the single layer coated samples showed large variation in peel force with adhesive

  7. A novel coating strategy towards improving interfacial adhesion strength of Cu–Sn alloy coated steel with vulcanized rubber

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Atanu [Tata Steel, Jamshedpur 831001 (India); Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India); Dutta, Monojit [Tata Steel, Jamshedpur 831001 (India); Bysakh, Sandip [Central Glass and Ceramic Research Institute, Kolkata 700032 (India); Bhowmick, Anil K. [Rubber Technology Center, Indian Institute of Technology, Kharagpur 721302 (India); Laha, Tapas, E-mail: laha@metal.iitkgp.ernet.in [Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Kharagpur 721302 (India)

    2014-09-15

    Highlights: • We propose a double layer Cu–Sn alloy coating strategy on steel to improve adhesion. • Uniform coating with adequate penetration inside micro-roughness was observed. • XPS and GDOES study revealed improved substrate surface coverage by coating. • TEM investigation confirmed compact, uniform and micro-porosity free interface. • Peel test with vulcanized rubber confirmed improved adhesion with cohesive fracture. - Abstract: A comparative assessment in terms of uniformity, coating coverage and coating deposition mechanism has been carried out for two different types of Cu–Sn coatings on steel substrate with varying Sn composition (2–6.5 wt%) deposited via immersion technique, viz. (i) single layer Cu–Sn coating and (ii) double layer coating consisting of a thin Cu strike layer followed by a Cu–Sn layer. Coating morphology, surface coverage, coating-substrate interface, and coating composition at surface and along the depth were studied using laser confocal microscope (OLS), scanning electron microscope (SEM) coupled with energy dispersive spectroscope (EDS), glow discharge optical emission spectroscopy (GDOES), X-ray photoelectron spectroscopy (XPS) and cross-sectional transmission electron microscopy (TEM). Quantitative depth profiling using GDOES and surface compositional analysis via XPS suggested improvement in surface coverage in the case of double layer coatings. SEM-EDS and TEM analysis confirmed that the coating deposition was more uniform with sufficient coating penetration inside the deep roughness troughs resulting in compact and micro-porosity free interface for this type of coatings. Better adhesion strength with less variation in peel force and cohesive mode of fracture within the rubber was observed for the double layer coated samples during the peel test carried out on coated steel samples vulcanized with rubber. On the other hand, the single layer coated samples showed large variation in peel force with adhesive

  8. Radiation curable coating compositions

    International Nuclear Information System (INIS)

    Jenkinson, R.D.; Carder, C.H.

    1979-01-01

    The present invention provides a low-toxicity diluent component for radiation curable coating compositions that contain an acrylyl or methacryly oligomer or resin component such as an acrylyl urethane oligomer. The low-toxicity diluent component of this invention is chosen from the group consisting of tetraethlorthosilicate and tetraethoxyethylorthosilicate. When the diluent component is used as described, benefits in addition to viscosity reduction, may be realized. Application characteristics of the uncured coatings composition, such as flowability, leveling, and smoothness are notably improved. Upon curing by exposure to actinic radiation, the coating composition forms a solid, non-tacky surface free of pits, fissures or other irregularities. While there is no readily apparent reactive mechanism by which the orthosilicate becomes chemically bonded to the cured coating, the presence of silicon in the cured coating has been confirmed by scanning electron microscopy. 12 drawing

  9. Article Including Environmental Barrier Coating System

    Science.gov (United States)

    Lee, Kang N. (Inventor)

    2015-01-01

    An enhanced environmental barrier coating for a silicon containing substrate. The enhanced barrier coating may include a bond coat doped with at least one of an alkali metal oxide and an alkali earth metal oxide. The enhanced barrier coating may include a composite mullite bond coat including BSAS and another distinct second phase oxide applied over said surface.

  10. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  11. Effect of salivary pH on diametral tensile strength of glass ionomer cement coated with coating agent

    Science.gov (United States)

    Farahdillah; Triaminingsih, S.; Eriwati, Y. K.

    2017-08-01

    The aim of this study was to analyze the effect of salivary pH to diametral tensile strength of glass ionomer cement (GIC) coated with a coating agent. GIC specimens coated with varnish and nano-filled coating agent were stored in artificial saliva at pH values of 4.5, 5.5, and 7 for 24 h at 37°C, then the diametral tensile strength was tested by universal testing machine. Results showed that there was no significant difference in the diametral tensile strength of the GIC coated with varnish and nano-filled coating agent with decreasing of salivary pH (p salivary pH does not affect the diametral tensile strength of GIC coated by varnish or nano-filled coating agent

  12. Overlay metallic-cermet alloy coating systems

    International Nuclear Information System (INIS)

    Gedwill, M.A.; Glasgow, T.K.; Levine, S.R.

    1982-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures

  13. Overlay metallic-cermet alloy coating systems

    Science.gov (United States)

    Gedwill, M. A.; Levine, S. R.; Glasgow, T. K. (Inventor)

    1984-01-01

    A substrate, such as a turbine blade, vane, or the like, which is subjected to high temperature use is coated with a base coating of an oxide dispersed, metallic alloy (cermet). A top coating of an oxidation, hot corrosion, erosion resistant alloy of nickel, cobalt, or iron is then deposited on the base coating. A heat treatment is used to improve the bonding. The base coating serves as an inhibitor to interdiffusion between the protective top coating and the substrate. Otherwise, the protective top coating would rapidly interact detrimentally with the substrate and degrade by spalling of the protective oxides formed on the outer surface at elevated temperatures.

  14. Transparent conducting sol-gel ATO coatings for display applications by an improved dip coating technique

    International Nuclear Information System (INIS)

    Guzman, G.; Dahmani, B.; Puetz, J.; Aegerter, M.A.

    2006-01-01

    Transparent conducting coatings of sol-gel ATO (antimony-doped tin oxide) were used to improve surface smoothness of commercial sputter-deposited ITO (indium tin oxide) coatings for application as display electrodes. In order to overcome the deteriorating evaporation-cooling during dip coating, the coating solution was heated moderately to 25 deg. C thus providing the substrate with the required heat. This way, the surface roughness of the ITO could be reduced with an only 45 nm thick ATO coating to R pv = 3.8 nm (R a = 0.4 nm) compared to 31 nm (3.8 nm) for the ITO substrate. Another benefit of such additional coating is the possibility to tailor surface properties of the electrodes in wide ranges. This was used to increase the work function of the ITO substrate from initially 4.3-4.6 eV to about 4.8-5.2 eV by the ATO coating

  15. Non-infected penile prosthesis cultures during revision surgery; comparison between antibiotic coated and non - coated devices

    Directory of Open Access Journals (Sweden)

    Seyfettin Ciftci

    Full Text Available ABSTRACT Introduction: Aim of this study is to investigate bacterial growth on non-infected devices and compare antibiotic-coated and non-coated implants. Materials and methods: The charts of 71 patients who underwent revision surgeries for penile prosthesis between 1995 and 2013 were reviewed. Of those, 31 devices were antibiotic-coated prostheses, while 40 of the implants were non-coated. Swab cultures were routinely obtained from corporal, pump or reservoir site during the operation. If a bacterial biofilm was determined on the prosthesis, it was also cultured. Results: A total of 5 different organisms were cultured from 18 patients. Of them, 4 devices were antibiotic-coated and the other 14 were non-coated devices. Staphylococcus epidermidis was the most common organism, while Staphylococcus hominis, beta hemolitic streptococcus, Escherichia coli and Proteus mirabilis were also cultured. All patients who had positive cultures were treated with appropriate antibiotics for four weeks postoperatively. Median follow-up time was 41 months, ranging between 8 and 82 months. One prosthesis (non-coated became clinically infected in the follow-up period with a totally different organism. Culture positivity rates of antibiotic-coated and non-coated devices were 13% and 35% respectively and the result was significant (p=0.00254. Conclusions: Positive bacterial cultures are present on non-infected penile prostheses at revision surgeries in some of the patients. Antibiotic coated prostheses have much less positive cultures than non-coated devices.

  16. On the interfacial degradation mechanisms of thermal barrier coating systems: Effects of bond coat composition

    Energy Technology Data Exchange (ETDEWEB)

    Wu, R.T., E-mail: WU.Rudder@nims.go.jp [International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba City, Ibaraki (Japan); Wang, X.; Atkinson, A. [Department of Materials, Imperial College London, Prince Consort Road, London SW7 2BP (United Kingdom)

    2010-10-15

    Thermal barrier coating (TBC) systems based on an electron beam physical vapour deposited, yttria-stabilized zirconia (YSZ) top coat and a substrate material of CMSX-4 superalloy were identically prepared to systematically study the behaviour of different bond coats. The three bond coat systems investigated included two {beta}-structured Pt-Al types and a {gamma}-{gamma}' type produced by Pt diffusion without aluminizing. Progressive evolution of stress in the thermally grown aluminium oxide (TGO) upon thermal cycling, and its relief by plastic deformation and fracture, were studied using luminescence spectroscopy. The TBCs with the LT Pt-Al bond coat failed by a rumpling mechanism that generated isolated cracks at the interface between the TGO and the YSZ. This reduced adhesion at this interface and the TBC delaminated when it could no longer resist the release of the stored elastic energy of the YSZ, which stiffened with time due to sintering. In contrast, the TBCs with Pt diffusion bond coats did not rumple, and the adhesion of interfaces in the coating did not obviously degrade. It is shown that the different failure mechanisms are strongly associated with differences in the high-temperature mechanical properties of the bond coats.

  17. How PE tape performs under concrete coating

    International Nuclear Information System (INIS)

    Dritt, H.J.

    1984-01-01

    The program objectives were to evaluate the performance of polyethylene tape plant coating and fusion bonded epoxy powder systems with particular respect to the following: 1. Concrete coating application procedures; 2. The shear resistance during laying and retrieving operations of the coating at the various interfaces (a) Pipe and anti-corrosion coating; (b) Anti-corrosion coating and outerwrap; (c) Overlap areas of the anti-corrosion and outerwrap layers; (d) Between concrete and the various corrosion coatings during laying and retrieving operations. 3. Resistance to damage of the coating as a consequence of cracking or slippage of the concrete weight coating. 4. Ability of various coatings to withstand the damage during concrete application by both impact and compression methods; 5. Evaluation of tape and shrink sleeve joint coatings at the cut-back area as well as performance of tape under hot asphalt coating

  18. Thermal shock behavior of platinum aluminide bond coat/electron beam-physical vapor deposited thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zhenhua, E-mail: zhxuciac@163.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Dai, Jianwei [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Niu, Jing [Shenyang Liming Aero-engine (Group) Corporation Ltd., Institute of Metallurgical Technology, Technical Center, Shengyang 110043 (China); Li, Na; Huang, Guanghong; He, Limin [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China)

    2014-12-25

    Highlights: • TBCs of (Ni, Pt)Al bond coat with grit blasting process and YSZ ceramic coating. • Grain boundary ridges are the sites for spallation damage initiation in TBCs. • Ridges removed, cavities formation appeared and the damage initiation deteriorated. • Damage initiation and progression at interface lead to a buckling failure. - Abstract: Thermal barrier coating systems (TBCs) including of chemical vapor deposited (Ni, Pt)Al bond coat with grit blasting process and electron beam physical vapor deposited Y{sub 2}O{sub 3}-stabilized-ZrO{sub 2} (YSZ) ceramic coating were investigated. The phase structures, surface and cross-sectional morphologies, thermal shock behaviors and residual stresses of the coatings were studied in detail. Grain boundary ridges still remain on the surface of bond coat prior to the deposition of the ceramic coating, which are shown to be the major sites for spallation damage initiation in TBCs. When these ridges are mostly removed, they appear some of cavities formation and then the damage initiation mode is deteriorated. Damage initiation and progression occurs at the bond coat to thermally grown oxide (TGO) interface leading to a buckling failure behavior. A buckle failure once started may be arrested when it runs into a region of high bond coat to TGO interface toughness. Thus, complete failure requires further loss in toughness of the bond coat to TGO interface during cooling. The suppressed cavities formation, the removed ridges at the grain boundaries, the relative high TGO to bond coat interface toughness, the uniform growth behavior of TGO thickening and the lower of the residual stress are the primary factors for prolonging the lifetime of TBCs.

  19. Development of Bioactive Ceramic Coating on Titanium Alloy substrate for Biomedical Application Using Dip Coating Method

    Science.gov (United States)

    Asmawi, R.; Ibrahim, M. H. I.; Amin, A. M.; Mustafa, N.; Noranai, Z.

    2017-08-01

    Bioactive apatite, such as hydroxyapatite ceramic (HA), [Ca10(PO4)6(OH)2] has been extensively investigated for biomedical applications due to its excellent biocompatibility and tissue bioactivity properties. Its bioactivity provides direct bonding to the bone tissue. Because of its similarity in chemical composition to the inorganic matrix of bone, HA is widely used as implant materials for bone. Unfortunately, because of its poor mechanical properties,. this bioactive material is not suitable for load bearing applications. In this study, by the assistance of dip-coating technique, HA coatings were deposited on titanium alloy substrates by employing hydrothermal derived HA powder. The produced coatings then were oven-dried at 130°C for 1 hour and calcined at various temperature over the range of 200-800°C for 1 hour. XRD measurement showed that HA was the only phase present in the coatings. However coatings calcined at 800°C comprised a mixture of HA and tri-calcium phosphate (TCP). FTIR measurement showed the existence of hydroxyl, phosphate, and carbonate bands. PO4 - band became sharper and narrower with the increased of calcination temperature. FESEM observation showed that the coating is polycrystalline with individual particles of nano to submicron size and has an average particle size of 35 nm. The thickness of the coating are direcly propotional with the viscosity of coating slurry. It was shown that the more viscous coating slurry would produce a thicker ceramic coating. Mechanical properties of the coating were measured in term of adhesion strength using a Micro Materials Nano Test microscratch testing machine. The result revealed that the coating had a good adhesion to the titanium alloy substrate.

  20. Graphene: corrosion-inhibiting coating.

    Science.gov (United States)

    Prasai, Dhiraj; Tuberquia, Juan Carlos; Harl, Robert R; Jennings, G Kane; Rogers, Bridget R; Bolotin, Kirill I

    2012-02-28

    We report the use of atomically thin layers of graphene as a protective coating that inhibits corrosion of underlying metals. Here, we employ electrochemical methods to study the corrosion inhibition of copper and nickel by either growing graphene on these metals, or by mechanically transferring multilayer graphene onto them. Cyclic voltammetry measurements reveal that the graphene coating effectively suppresses metal oxidation and oxygen reduction. Electrochemical impedance spectroscopy measurements suggest that while graphene itself is not damaged, the metal under it is corroded at cracks in the graphene film. Finally, we use Tafel analysis to quantify the corrosion rates of samples with and without graphene coatings. These results indicate that copper films coated with graphene grown via chemical vapor deposition are corroded 7 times slower in an aerated Na(2)SO(4) solution as compared to the corrosion rate of bare copper. Tafel analysis reveals that nickel with a multilayer graphene film grown on it corrodes 20 times slower while nickel surfaces coated with four layers of mechanically transferred graphene corrode 4 times slower than bare nickel. These findings establish graphene as the thinnest known corrosion-protecting coating.

  1. Biocompatibility of Niobium Coatings

    Directory of Open Access Journals (Sweden)

    René Olivares-Navarrete

    2011-09-01

    Full Text Available Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainless steel substrates and tissue culture plastic were also studied, in order to give comparative information. No toxic response was observed for any of the surfaces, indicating that the Nb coatings act as a biocompatible, bioinert material. Cell morphology was also studied by immune-fluorescence and the results confirmed the healthy state of the cells on the Nb surface. X-ray diffraction analysis of the coating shows that the film is polycrystalline with a body centered cubic structure. The surface composition and corrosion resistance of both the substrate and the Nb coating were also studied by X-ray photoelectron spectroscopy and potentiodynamic tests. Water contact angle measurements showed that the Nb surface is more hydrophobic than the SS substrate.

  2. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  3. Electrostatic coating technologies for food processing.

    Science.gov (United States)

    Barringer, Sheryl A; Sumonsiri, Nutsuda

    2015-01-01

    The application of electrostatics in both powder and liquid coating can improve the quality of food, such as its appearance, aroma, taste, and shelf life. Coatings can be found most commonly in the snack food industry, as well as in confectionery, bakery, meat and cheese processing. In electrostatic powder coating, the most important factors influencing coating quality are powder particle size, density, flowability, charge, and resistivity, as well as the surface properties and characteristics of the target. The most important factors during electrostatic liquid coating, also known as electrohydrodynamic coating, include applied voltage and electrical resistivity and viscosity of the liquid. A good understanding of these factors is needed for the design of optimal coating systems for food processing.

  4. Study on coated layer material performance of coated particle fuel FBR (2). High temperature property and capability of coating to thick layer of TiN

    International Nuclear Information System (INIS)

    Naganuma, Masayuki; Mizuno, Tomoyasu

    2002-08-01

    'Helium Gas Cooled Coated Particle Fuel FBR' is one of attractive core concepts in the Feasibility Study on Commercialized Fast Reactor Cycle System in Japan, and the design study is presently proceeded. As one of key technologies of this concept, the coated layer material is important, and ceramics is considered to be a candidate material because of the superior refractory. Based on existing knowledge, TiN is regarded to be a possible candidate material, to which some property tests and evaluations have been conducted. In this study, preliminary tests about the high temperature property and the capability of thick layer coating of TiN have been conducted. Results of these tests come to the following conclusions. Heating tests of two kinds of TiN layer specimens coated by PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) were conducted. As a result, as for CVD coating specimens, remarkable charge was not observed on the layer up to 2,000degC, therefore we concluded that the layer by CVD had applicability up to high temperature of actual operation level. On the other hand, as for PVD coating specimens, an unstable behavior that the layer changed to a mesh like texture was observed on a 2,000degC heated specimen, therefore the applied PVD method is not considered to be promising as the coating technique. The surface conditions of some parts inside CVD device were investigated in order to evaluate possibility of TiN thick coating (∼100 μm). As a result, around 500 μm of TiN coating layer was observed on the condition of multilayer. Therefore, we conclude that CVD has capability of coating up to thick layer in actual coated particle fuel fabrication. (author)

  5. Oxidation study of Ta–Zr coatings

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yung-I, E-mail: yichen@mail.ntou.edu.tw; Chen, Sin-Min

    2013-02-01

    Refractory metal alloy coatings, such as Mo–Ru and Ta–Ru coatings, have been developed to protect glass molding dies. Forming intermetallic compounds in the coatings inhibits grain growth in high temperature environments when mass producing optical components. After annealing in oxygen containing atmospheres, a surface roughening of the Mo–Ru coatings and a soft oxide layer on the Ta–Ru coatings have been observed in our previous works. Oxidation resistance becomes critical in high-temperature applications. In this study, Ta–Zr coatings were deposited with a Ti interlayer on silicon wafers using direct current magnetron sputtering at 400 °C. The as-deposited Ta–Zr coatings possessed nanocrystallite or amorphous states, depending on the chemical compositions. The annealing treatments were conducted at 600 °C under atmospheres of 50 ppm O{sub 2}–N{sub 2} or 1% O{sub 2}–Ar, respectively. After the annealing treatment, this study investigated variations in crystalline structure, hardness, surface roughness, and chemical composition profiles. Preferential oxidation of Zr in the Ta–Zr coatings was verified using X-ray photoelectron spectroscopy, and the microstructure was observed using transmission electron microscopy. - Highlights: ►The as-deposited Ta-rich Ta–Zr coatings revealed an amorphous structure. ►The Zr-rich coatings presented a crystalline β-Zr phase and an amorphous matrix. ►Zr oxidized preferentially as Ta–Zr coatings annealed at 600 °C. ►The hardness of coatings revealed a parabolic relationship with the oxygen content. ►A protective oxide scale formed on the surface of the crystallized Zr-rich coatings.

  6. Application of a tablet film coating model to define a process-imposed transition boundary for robust film coating.

    Science.gov (United States)

    van den Ban, Sander; Pitt, Kendal G; Whiteman, Marshall

    2018-02-01

    A scientific understanding of interaction of product, film coat, film coating process, and equipment is important to enable design and operation of industrial scale pharmaceutical film coating processes that are robust and provide the level of control required to consistently deliver quality film coated product. Thermodynamic film coating conditions provided in the tablet film coating process impact film coat formation and subsequent product quality. A thermodynamic film coating model was used to evaluate film coating process performance over a wide range of film coating equipment from pilot to industrial scale (2.5-400 kg). An approximate process-imposed transition boundary, from operating in a dry to a wet environment, was derived, for relative humidity and exhaust temperature, and used to understand the impact of the film coating process on product formulation and process control requirements. This approximate transition boundary may aid in an enhanced understanding of risk to product quality, application of modern Quality by Design (QbD) based product development, technology transfer and scale-up, and support the science-based justification of critical process parameters (CPPs).

  7. Vacuum-plasma-sprayed silicon coatings

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Herman, H.; Bancke, G.A.; Burchell, T.D.; Romanoski, G.R.

    1991-01-01

    Vacuum plasma spraying produces well-bonded dense stress-free coatings for a variety of materials on a wide range of substrates. The process is used in many industries for the excellent wear, corrosion resistance and high temperature behavior of the fabricated coatings. In this study, silicon metal was deposited on graphite to study the feasibility of preventing corrosion and oxidation of graphite components for nuclear reactors. Operating parameters were varied in a Taguchi design of experiments to display the range of the plasma processing conditions and their effect on the measured coating characteristics. The coating attributes evaluated were thickness, porosity, microhardness and phase content. This paper discusses the influence of the processing parameters on as-sprayed coating qualities. The paper also discusses the effect of thermal cycling on silicon samples in an inert helium atmosphere. The diffraction spectrum for a sample that experienced a 1600degC temperature cycle indicated that more than 99% of the coating transformed to β-SiC. The silicon coatings protected the graphite substrates from oxidation in one experiment. (orig.)

  8. Optimal Design of an Hourglass in-Fiber Air Fabry-Perot Microcavity—Towards Spectral Characteristics and Strain Sensing Technology

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2017-06-01

    Full Text Available An hourglass in-fiber air microcavity Fabry-Perot interferometer is proposed in this paper, and its second reflecting surface of in-fiber microcavity is designed to be a concave reflector with the best curvature radius in order to improve the spectral characteristics. Experimental results proved that the extinction ratio of Fabry-Perot interferometer with cavity length of 60 μm and concave reflector radius of 60 μm is higher than for a rectangular Fabry-Perot interferometer with cavity length of 60 μm (14 dB: 11 dB. Theory and numerical simulation results show that the strain sensitivity of sensor can be improved by reducing the microcavity wall thickness and microcavity diameter, and when the in-fiber microcavity length is 40 μm, the microcavity wall thickness is 10 μm, the microcavity diameter is 20 μm, and the curvature radius of reflective surface II is 50 μm, the interference fringe contrast of is greater than 0.97, an Axial-pull sensitivity of 20.46 nm/N and resolution of 1 mN can be achieved in the range of 0–1 N axial tension. The results show that the performance of hourglass in-fiber microcavity interferometer is far superior to that of the traditional Fabry-Perot interferometer.

  9. Unobtrusive graphene coatings

    NARCIS (Netherlands)

    Mugele, Friedrich Gunther

    2012-01-01

    The contact angle of water drops on substrates for which the wettability is dominated by van der Waals forces remains unchanged when the substrates are coated with a monolayer of graphene. Such 'wetting transparency' could lead to superior conducting and hydrophobic graphene-coated surfaces with

  10. Mechanical Properties and Structures of Pyrolytic Carbon Coating Layer in HTR Coated Particle Fuel

    International Nuclear Information System (INIS)

    Lee, Young Woo; Kim, Young Min; Kim, Woong Ki; Cho, Moon Sung

    2009-01-01

    The TRISO(tri-isotropic)-coated fuel particle for a HTR(High Temperature gas-cooled Reactor) has a diameter of about 1 mm, composed of a nuclear fuel kernel and four different outer coating layers, consisting of a buffer PyC (pyrolytic carbon) layer, inner PyC layer, SiC layer, and outer PyC layer with different coating thicknesses following a specific fuel design. While the fuel kernel is a source for a heat generation by a nuclear fission of fissile uranium, each of the four coating layers acts as a different role in view of retaining the generated fission products and the other interactions during an in-reactor service. Among these coating layers, PyC properties are scarcely in agreement among various investigators and the dependency of their changes upon the deposition condition is comparatively large due to their additional anisotropic properties. Although a recent review work has contributed to an establishment of relationship between the material properties and QC measurements, the data on the mechanical properties and structural parameters of PyC coating layers remain still unclearly evaluated. A review work on dimensional changes of PyC by neutron irradiation was one of re-evaluative works recently attempted by the authors. In this work, an attempt was made to analyze and re-evaluate the existing data of the experimental results of the mechanical properties, i.e., Young's modulus and fracture stress, in relation with the coating conditions, density and the BAF (Bacon Anisotropy Factor), an important structural parameter, of PyC coating layers obtained from various experiments performed in the early periods of the HTR coated particle development

  11. Aesthetic coatings for concrete bridge components

    Science.gov (United States)

    Kriha, Brent R.

    This thesis evaluated the durability and aesthetic performance of coating systems for utilization in concrete bridge applications. The principle objectives of this thesis were: 1) Identify aesthetic coating systems appropriate for concrete bridge applications; 2) Evaluate the performance of the selected systems through a laboratory testing regimen; 3) Develop guidelines for coating selection, surface preparation, and application. A series of site visits to various bridges throughout the State of Wisconsin provided insight into the performance of common coating systems and allowed problematic structural details to be identified. To aid in the selection of appropriate coating systems, questionnaires were distributed to coating manufacturers, bridge contractors, and various DOT offices to identify high performing coating systems and best practices for surface preparation and application. These efforts supplemented a literature review investigating recent publications related to formulation, selection, surface preparation, application, and performance evaluation of coating materials.

  12. SiPMs coated with TPB: coating protocol and characterization for NEXT

    International Nuclear Information System (INIS)

    Álvarez, V; Agramunt, J; Ball, M; Bayarri, J; Cárcel, S; Cervera, A; Díaz, J; Batallé, M; Borges, F I G; Conde, C A N; Dias, T H V T; Bolink, H; Brine, H; Carmona, J M; Castel, J; Cebrián, S; Dafni, T; Catalá, J M; Esteve, R; Chan, D

    2012-01-01

    Silicon photomultipliers (SiPM) are the photon detectors chosen for the tracking readout in NEXT, a neutrinoless ββ decay experiment which uses a high pressure gaseous xenon time projection chamber (TPC). The reconstruction of event track and topology in this gaseous detector is a key handle for background rejection. Among the commercially available sensors that can be used for tracking, SiPMs offer important advantages, mainly high gain, ruggedness, cost-effectiveness and radio-purity. Their main drawback, however, is their non sensitivity in the emission spectrum of the xenon scintillation (peak at 175 nm). This is overcome by coating these sensors with the organic wavelength shifter tetraphenyl butadiene (TPB). In this paper we describe the protocol developed for coating the SiPMs with TPB and the measurements performed for characterizing the coatings as well as the performance of the coated sensors in the UV-VUV range.

  13. Sonochemical coating of magnetite nanoparticles with silica.

    Science.gov (United States)

    Dang, Feng; Enomoto, Naoya; Hojo, Junichi; Enpuku, Keiji

    2010-01-01

    Magnetite nanoparticles were coated with silica through the hydrolysis and condensation of tetraethyl orthosilicate (TEOS) under ultrasonic irradiation. The ultrasonic irradiation was used to prevent the agglomeration of the magnetite particles and accelerate the hydrolysis and condensation of TEOS. TEM, DLS, XRF, VSM, TG and sedimentation test were used to characterize the silica-coated magnetite particles. The dispersibility of silica-coated magnetite particles in aqueous solution was improved significantly and the agglomerate particle size was decreased to 110 nm. It was found that the agglomerate particle size of silica-coated magnetite particles was mainly decided by the coating temperature and the pH value in the silica-coating process. The weight ratio of silica in silica-coated magnetite particles was mainly decided by the pH value in the silica-coating process. The dispersibility of silica-coated magnetite particles was mainly decided by the agglomerate particle size of the suspension. The oxidation of magnetite particles in air was limited through the coated silica. The magnetism of silica-coated magnetite particles decreased slightly after silica-coating.

  14. Armor systems including coated core materials

    Science.gov (United States)

    Chu, Henry S [Idaho Falls, ID; Lillo, Thomas M [Idaho Falls, ID; McHugh, Kevin M [Idaho Falls, ID

    2012-07-31

    An armor system and method involves providing a core material and a stream of atomized coating material that comprises a liquid fraction and a solid fraction. An initial layer is deposited on the core material by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is less than the liquid fraction of the stream of atomized coating material on a weight basis. An outer layer is then deposited on the initial layer by positioning the core material in the stream of atomized coating material wherein the solid fraction of the stream of atomized coating material is greater than the liquid fraction of the stream of atomized coating material on a weight basis.

  15. Seed coat development in Velloziaceae: primary homology assessment and insights on seed coat evolution.

    Science.gov (United States)

    Sousa-Baena, Mariane S; de Menezes, Nanuza L

    2014-09-01

    • Seed coat characteristics have historically been used to infer taxonomic relationships and are a potential source of characters for phylogenetic reconstruction. In particular, seed coat morphoanatomy has never been studied in detail in Velloziaceae. One character based on seed surface microsculpture has been used in phylogenies, but was excluded from recent studies owing to problems in primary homology. This work aimed to clarify the origin and general composition of seed coat cell layers in Velloziaceae and to propose hypotheses of primary homology among seed characters.• Seed coat development of 24 Velloziaceae species, comprising nine genera, and one species of Pandanaceae (outgroup) was studied using standard anatomical methods. Developmental data were interpreted in the light of a recently published phylogeny.• Eight types of seed coat were identified. Whereas the most common type has four distinct cell layers (two-layered tegmen and testa), we encountered much more variation in seed coat composition than previously reported, the analysis of which revealed some potential synapomorphies. For instance, an exotesta with spiral thickenings may be a synapomorphy of Barbacenia.• Our results showed that the character states previously used in phylogenies are not based on homologous layers and that the same state was misattributed to species exhibiting quite different seed coats. This study is a first step toward a better understanding of seed coat structure evolution in Velloziaceae. © 2014 Botanical Society of America, Inc.

  16. Corrosion electrochemical behaviors of silane coating coated magnesium alloy in NaCl solution containing cerium nitrate

    Energy Technology Data Exchange (ETDEWEB)

    Luo, F.; Li, Q.; Zhong, X.K.; Gao, H.; Dai, Y.; Chen, F.N. [School of Chemistry and Chemical Engineering, Southwest University Chongqing (China)

    2012-02-15

    Sol-gel coatings cannot provide adequate corrosion protection for metal/alloys in the corrosive environments due to their high crack-forming potential. This paper demonstrates the possibility to employ cerium nitrate as inhibitor to decrease the corrosion development of sol-gel-based silane coating on the magnesium alloy in NaCl solution. Cerium nitrate was added into the NaCl solution where the silane coating coated magnesium alloy was immersed. Scanning electron microscopy (SEM) was used to examine surface morphology of the silane coating coated magnesium alloy immersed in NaCl solutions doped and undoped with cerium nitrate. The corrosion electrochemical behaviors were investigated using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) tests. The results showed that the introduction of cerium nitrate into NaCl solution could effectively inhibit the corrosion of the silane coating coated magnesium alloy. Moreover, the influence of concentration of cerium nitrate on the corrosion inhibition and the possible inhibiting mechanism were also discussed in detail. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  17. Compatibility of dip-coated Er2O3 coating by MOD method with liquid Li

    International Nuclear Information System (INIS)

    Zhang Dongxun; Kondo, Masatoshi; Tanaka, Teruya; Muroga, Takeo; Valentyn, Tsisar

    2011-01-01

    An electrical insulating ceramic coating on the self-cooled lithium blanket is a promising technology for suppressing MHD pressure drop in the blanket system. Er 2 O 3 is thought to be one of the potential candidate materials for ceramic coatings because of their high electrical resistivity and high compatibility with liquid lithium. In this study, Er 2 O 3 coating was fabricated on the ferritic steels by dip-coating method with MOD (metal organic decomposition) liquid precursor followed by baking in different atmosphere. The coated specimens were immersed at 500 o C in the static liquid lithium to test the compatibility. It was shown that the compatibility of the coating was degraded when Fe 2 O 3 or Fe 3 O 4 was formed as the main composition of the substrate oxidation layer during the baking. On the other hand, thin Cr 2 O 3 layer in the substrate oxidation layer did not influence the stability of Er 2 O 3 coating. Atmosphere controlling for suppressing the substrate oxidation, especially Fe 2 O 3 or Fe 3 O 4 , during the baking is shown to be essential for the compatibility of MOD Er 2 O 3 coating on ferritic steels.

  18. Anticorrosive organic/inorganic hybrid coatings

    Science.gov (United States)

    Gao, Tongzhai

    Organic/inorganic hybrid coating system was developed for anticorrosion applications using polyurea, polyurethane or epoxide as the organic phase and polysiloxane, formed by sol-gel process, as the inorganic phase. Polyurea/polysiloxane hybrid coatings were formulated and moisture cured using HDI isocyanurate, alkoxysilane-functionalized HDI isocyanurate, and tetraethyl orthosilicate (TEOS) oligomers. Two urethanes were prepared using the same components as abovementioned in addition to the oligoesters derived from either cyclohexane diacids (CHDA) and 2-butyl-2-ethyl-1,3-propanediol (BEPD) or adipic acid (AA), isophthalic acid (IPA), 1,6-hexanediol (HD), and trimethylol propane (TMP). Accelerated weathering and outdoor exposure were performed to study the weatherability of the polyurethane/polysiloxane hybrid coating system. FTIR and solid-state 13C NMR revealed that the degradation of the hybrid coatings occurred at the urethane and ester functionalities of the organic phase. DMA and DSC analyses showed the glass transition temperature increased and broadened after weathering. SEM was employed to observe the change of morphology of the hybrid coatings and correlated with the gloss variation after weathering. Rutile TiO2 was formulated into polyurethane/polysiloxane hybrid coatings in order to investigate the effect of pigmentation on the coating properties and the sol-gel precursor. Chemical interaction between the TiO2 and the sol-gel precursor was investigated using solid-state 29Si NMR and XPS. The morphology, mechanical, viscoelastic, thermal properties of the pigmented coatings were evaluated as a function of pigmentation volume concentration (PVC). Using AFM and SEM, the pigment were observed to be well dispersed in the polymer matrix. The thermal stability, the tensile modulus and strength of the coatings were enhanced with increasing PVC, whereas the pull-off adhesion and flexibility were reduced with increasing PVC. Finally, the pigmented coatings were

  19. Effect of bond coat and preheat on the microstructure, hardness, and porosity of flame sprayed tungsten carbide coatings

    Science.gov (United States)

    Winarto, Winarto; Sofyan, Nofrijon; Rooscote, Didi

    2017-06-01

    Thermally sprayed coatings are used to improve the surface properties of tool steel materials. Bond coatings are commonly used as intermediate layers deposited on steel substrates (i.e. H13 tool steel) before the top coat is applied in order to enhance a number of critical performance criteria including adhesion of a barrier coating, limiting atomic migration of the base metal, and corrosion resistance. This paper presents the experimental results regarding the effect of nickel bond coat and preheats temperatures (i.e. 200°C, 300°C and 400°C) on microstructure, hardness, and porosity of tungsten carbide coatings sprayed by flame thermal coating. Micro-hardness, porosity and microstructure of tungsten carbide coatings are evaluated by using micro-hardness testing, optical microscopy, scanning electron microscopy, and X-ray diffraction. The results show that nickel bond coatings reduce the susceptibility of micro crack formation at the bonding area interfaces. The percentage of porosity level on the tungsten carbide coatings with nickel bond coat decreases from 5.36 % to 2.78% with the increase of preheat temperature of the steel substrate of H13 from 200°C to 400°C. The optimum hardness of tungsten carbide coatings is 1717 HVN in average resulted from the preheat temperature of 300°C.

  20. Saving energy with paint. Coating with ceramic globules; Energie besparen met verf. Coating met keramische bolletjes

    Energy Technology Data Exchange (ETDEWEB)

    Willemse, R. [Coateq Coatings, Haarlem (Netherlands)

    2011-07-01

    The special paint coating of ThermoShield saves energy. The coating consists for 50% of hollow, vacuum ceramic globules. The waterborne damp-open coating with capillary function resists rain water and removes redundant water in case of draught and it reflects sunlight. [Dutch] Met de speciale verfcoating ThermoShield kan energie worden bespaard. De coating bestaat voor 50% uit holle, vacuum getrokken keramische bolletjes. De watergedragen damp-open coating met capillaire werking stoot bij regen water af en voert bij droogte overtollig vocht af en reflecteert zonlicht.

  1. Intumescent Coatings as Fire Retardants

    Science.gov (United States)

    Parker, J. A.; Fohlen, G. M.; Sawko, P. M.; Fish, R. H.

    1970-01-01

    The development of fire-retardant coatings to protect surfaces which may be exposed to fire or extreme heat is a subject of intense interest to many industries. A fire-retardant paint has been developed which represents a new chemical approach for preparing intumescent coatings, and potentially, is very important to fire-prevention authorities. The requirements for a superior coating include ease of application, suitability to a wide variety of surfaces and finishes, and stability over an extended period of time within a broad range of ambient temperature and humidity conditions. These innovative coatings, when activated by the heat of a fire, react to form a thick, low-density, polymeric coating or char layer. Water vapor and sulphur dioxide are released during the intumescent reaction. Two fire-protection mechanisms thus become available: (1) the char layer retards the flow of heat, due to the extremely low thermal conductivity; and (2) water vapor and sulfur dioxide are released, providing fire quenching properties. Still another mechanism functions in cases where the char, by virtue of its high oxidation resistance and low thermal conductivity, reaches a sufficiently high temperature to re-radiate much of the incident heat load. The coatings consist of dispersions of selective salts of a nitro-amino-arornatic compound. Specifically, para-nitroaniline bisulfate and the ammonium salt of para-nitroaniline-ortho sulphuric acid (2-amino-5-nitrobenzenesulphuric acid) are used. Suitable vehicles are cellulose nitrate of lacquer grade, a nitrite-phenolic modified rubber, or epoxy-polysulfide copolymer. Three separate formulations have been developed. A solvent is usually employed, such as methylethyl ketone, butyl acetate, or toluene, which renders the coatings suitably thin and which evaporates after the coatings are applied. Generally, the intumescent material is treated as insoluble in the vehicle, and is ground and dispersed in the vehicle and solvent like an

  2. Friction- and wear-reducing coating

    Science.gov (United States)

    Zhu, Dong [Farmington Hills, MI; Milner, Robert [Warren, MI; Elmoursi, Alaa AbdelAzim [Troy, MI

    2011-10-18

    A coating includes a first layer of a ceramic alloy and a second layer disposed on the first layer and including carbon. The coating has a hardness of from 10 to 20 GPa and a coefficient of friction of less than or equal to 0.12. A method of coating a substrate includes cleaning the substrate, forming the first layer on the substrate, and depositing the second layer onto the first layer to thereby coat the substrate.

  3. Modeling of Thermal Barrier Coatings

    Science.gov (United States)

    Ferguson, B. L.; Petrus, G. J.; Krauss, T. M.

    1992-01-01

    The project examined the effectiveness of studying the creep behavior of thermal barrier coating system through the use of a general purpose, large strain finite element program, NIKE2D. Constitutive models implemented in this code were applied to simulate thermal-elastic and creep behavior. Four separate ceramic-bond coat interface geometries were examined in combination with a variety of constitutive models and material properties. The reason for focusing attention on the ceramic-bond coat interface is that prior studies have shown that cracking occurs in the ceramic near interface features which act as stress concentration points. The model conditions examined include: (1) two bond coat coefficient of thermal expansion curves; (2) the creep coefficient and creep exponent of the bond coat for steady state creep; (3) the interface geometry; and (4) the material model employed to represent the bond coat, ceramic, and superalloy base.

  4. Switchable antifouling coatings and uses thereof

    Science.gov (United States)

    Denton, Michele L. Baca; Dirk, Shawn M.; Johnson, Ross Stefan

    2017-02-28

    The present invention relates to antifouling coatings capable of being switched by using heat or ultraviolet light. Prior to switching, the coating includes an onium cation component having antimicrobial and antibacterial properties. Upon switching, the coating is converted to a conjugated polymer state, and the cationic component is released with any adsorbed biofilm layer. Thus, the coatings herein have switchable and releasable properties. Methods of making and using such coatings are also described.

  5. Understanding particulate coating microstructure development

    Science.gov (United States)

    Roberts, Christine Cardinal

    How a dispersion of particulates suspended in a solvent dries into a solid coating often is more important to the final coating quality than even its composition. Essential properties like porosity, strength, gloss, particulate order, and concentration gradients are all determined by the way the particles come together as the coating dries. Cryogenic scanning electron microscopy (cryoSEM) is one of the most effective methods to directly visualize a drying coating during film formation. Using this method, the coating is frozen, arresting particulate motion and solidifying the sample so that it be imaged in an SEM. In this thesis, the microstructure development of particulate coatings was explored with several case studies. First, the effect of drying conditions was determined on the collapse of hollow latex particles, which are inexpensive whiteners for paint. Using cryoSEM, it was found that collapse occurs during the last stages of drying and is most likely to occur at high drying temperatures, humidity, and with low binder concentration. From these results, a theoretical model was proposed for the collapse of a hollow latex particle. CryoSEM was also used to verify a theoretical model for the particulate concentration gradients that may develop in a coating during drying for various evaporation, sedimentation and particulate diffusion rates. This work created a simple drying map that will allow others to predict the character of a drying coating based on easily calculable parameters. Finally, the effect of temperature on the coalescence and cracking of latex coatings was explored. A new drying regime for latex coatings was identified, where partial coalescence of particles does not prevent cracking. Silica was shown to be an environmentally friendly additive for preventing crack formation in this regime.

  6. Water permeability of pigmented waterborne coatings

    NARCIS (Netherlands)

    Donkers, P.A.J.; Huinink, H.P.; Erich, S.J.F.; Reuvers, N.J.W.; Adan, O.C.G.

    2013-01-01

    Coatings are used in a variety of applications. Last decades more and more coating systems are transforming from solvent to waterborne coating systems. In this study the influence of pigments on the water permeability of a waterborne coating system is studied, with special interest in the possible

  7. Coated foams, preparation, uses and articles

    Science.gov (United States)

    Duchane, D.V.; Barthell, B.L.

    1982-10-21

    Hydrophobic cellular material is coated with a thin hydrophilic polymer skin which stretches tightly over the foam but which does not fill the cells of the foam, thus resulting in a polymer-coated foam structure having a smoothness which was not possible in the prior art. In particular, when the hydrophobic cellular material is a specially chosen hydrophobic polymer foam and is formed into arbitrarily chosen shapes prior to the coating with hydrophilic polymer, inertial confinement fusion (ICF) targets of arbitrary shapes can be produced by subsequently coating the shapes with metal or with any other suitable material. New articles of manufacture are produced, including improved ICF targets, improved integrated circuits, and improved solar reflectors and solar collectors. In the coating method, the cell size of the hydrophobic cellular material, the viscosity of the polymer solution used to coat, and the surface tension of the polymer solution used to coat are all very important to the coating.

  8. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has

  9. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  10. Solar Absorptance of Cermet Coatings Evaluated

    Science.gov (United States)

    Jaworske, Donald A.

    2004-01-01

    Cermet coatings, molecular mixtures of metal and ceramic, are being considered for the heat inlet surface of solar Stirling convertors. In this application, the key role of the cermet coating is to absorb as much of the incident solar energy as possible. To achieve this objective, the cermet coating has a high solar absorptance value. Cermet coatings are manufactured utilizing sputter deposition, and many different metal and ceramic combinations can be created. The ability to mix metal and ceramic at the atomic level offers the opportunity to tailor the composition, and hence, the optical properties of these coatings. The NASA Glenn Research Center has prepared and characterized a wide variety of cermet coatings utilizing different metals deposited in an aluminum oxide ceramic matrix. In addition, the atomic oxygen durability of these coatings has been evaluated.

  11. Radiation cured coatings for fiber optics

    International Nuclear Information System (INIS)

    Ketley, A.D.; Morgan, C.R.

    1978-01-01

    A continuous protective coating is formed on a fiber optic by coating the fiber optic in a bath of a liquid radiation curable composition at a temperature up to 90 0 C and exposing the coated conductor to ultraviolet or high energy ionizing radiation to cure the coating

  12. Transfer of fissile material through shielding coatings in emergency heating of HTGR coated particles

    International Nuclear Information System (INIS)

    Gudkov, A.N.; Zhuravkov, S.G.; Koptev, M.A.; Kurepin, A.D.

    1990-01-01

    The measurement results of leakage dynamics of fissile material from the coated particles within a temperature range of 1200 + 2000 deg. C are given. The methods of carrying out the experiments are briefly described. The relation of the leakage rate of uranium-235 from CP (coated particles) with the pyrocarbonic coatings has been obtained. (author)

  13. Coatings and Corrosion Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose: The mission of the Coatings and Corrosion Laboratory is to develop and analyze the effectiveness of innovative coatings test procedures while evaluating the...

  14. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  15. Plasma sprayed thermoregulating coatings

    International Nuclear Information System (INIS)

    Kudinov, V.V.; Puzanov, A.A.; Zambrzhitskij, A.P.; Soboleva, V.V.

    1979-01-01

    Shown is the possibility of plasma spraying application for thermoregulating coating formation. Given are test results of service properties of BeO, Al 2 O 2 plasma coatings on the substrates of the MA2-1 magnesium alloy. Described is a device for studying durability of coating optical parameters under ultraviolet irradiation in deep vacuum. Dynamics of absorption coefficient, growth caused by an increase in absorption centers amount under such irradiation is investigated

  16. Mathematical modeling of photoinitiated coating degradation: Effects of coating glass transition temperature and light stabilizers

    DEFF Research Database (Denmark)

    Kiil, Søren; G.de With, R.A.T.M.Van Benthem

    2013-01-01

    A mathematical model, describing coating degradation mechanisms of thermoset coatings exposed to ultraviolet radiation and humidity at constant temperature, was extended to simulate the behavior of a coating with a low glass transition temperature. The effects of adding light stabilizers (a UV...

  17. A hybrid plasmonic microresonator with high quality factor and small mode volume

    International Nuclear Information System (INIS)

    Lu, Qijing; Chen, Daru; Wu, Genzhu; Peng, Baojin; Xu, Jiancheng

    2012-01-01

    We propose a novel hybrid plasmonic microcavity which is composed of a silver nanoring and a silica toroidal microcavity. The hybrid mode of the proposed hybrid plasmonic microcavity due to the coupling between the surface plasmon polaritons (SPPs) and the dielectric mode is demonstrated with a high quality factor (>1000) and an ultrasmall mode volume (∼0.8 μm 3 ). This microcavity shows great potential in fundamental studies of nonlinear optics and cavity quantum electrodynamics (cQED) and applications in low-threshold plasmonic microlasers. (paper)

  18. Polymeric Coatings for Combating Biocorrosion

    Science.gov (United States)

    Guo, Jing; Yuan, Shaojun; Jiang, Wei; Lv, Li; Liang, Bin; Pehkonen, Simo O.

    2018-03-01

    Biocorrosion has been considered as big trouble in many industries and marine environments due to causing great economic loss. The main disadvantages of present approaches to prevent corrosion include being limited by environmental factors, being expensive, inapplicable to field, and sometimes inefficient. Studies show that polymer coatings with anti-corrosion and anti-microbial properties have been widely accepted as a novel and effective approach to preventbiocorrosion. The main purpose of this review is to summarize up the progressive status of polymer coatings used for combating microbially-induced corrosion. Polymers used to synthesize protective coatings are generally divided into three categories: i) traditional polymers incorporated with biocides, ii) antibacterial polymers containing quaternary ammonium compounds, and iii) conductive polymers. The strategies to synthesize polymer coatings resort mainly to grafting anti-bacterial polymers from the metal substrate surface using novel surface-functionalization approaches, such as free radical polymerization, chemically oxidative polymerization and surface-initiated atom transfer radical polymerization, as opposed to the traditional approaches of dip coating or spin coating.

  19. Crystallization of DNA-coated colloids

    Science.gov (United States)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  20. Fuel particle coating data. [Detailed information on coating runs at Los Alamos Scientific Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Hollabaugh, C.M.; Wagner, P.; Wahman, L.A.; White, R.W.

    1977-01-01

    Development of coating on nuclear fuel particles for the High-Temperature Fuels Technology program at the Los Alamos Scientific Laboratory included process studies for low-density porous and high-density isotropic carbon coats, and for ZrC and ''alloy'' C/ZrC coats. This report documents the data generated by these studies.

  1. Advanced Marine Coatings for Naval Vessels - Phase 1. Antifouling and Fouling Release Coatings

    National Research Council Canada - National Science Library

    McCarthy, Gregory

    2003-01-01

    ... in combinatorial materials chemistry high-throughput discovery and evaluation methodology. The protective coatings application being addressed is environmentally compliant antifouling and fouling release coating for Navy ships...

  2. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  3. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  4. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Thermal barrier coatings: Coating methods, performance, and heat engine applications. (Latest citations from the EI Compendex*plus database). Published Search

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-11-01

    The bibliography contains citations concerning conference proceedings on coating methods, performance evaluations, and applications of thermal barrier coatings as protective coatings for heat engine components against high temperature corrosions and chemical erosions. The developments of thermal barrier coating techniques for high performance and reliable gas turbines, diesel engines, jet engines, and internal combustion engines are presented. Topics include plasma sprayed coating methods, yttria stabilized zirconia coatings, coating life models, coating failure and durability, thermal shock and cycling, and acoustic emission analysis of coatings. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Evaluation of irradiated coating material specimens

    International Nuclear Information System (INIS)

    Lee, Yong Jin; Nam, Seok Woo; Cho, Lee Moon

    2007-12-01

    Evaluation result of irradiated coating material specimens - Coating material specimens radiated Gamma Energy(Co 60) in air condition. - Evaluation conditions was above 1 X 10 4 Gy/hr, and radiated TID 2.0 X 10 6 Gy. - The radiated coating material specimens, No Checking, Cracking, Flaking, Delamination, Peeling and Blistering. - Coating system at the Kori no. 1 and APR 1400 Nuclear power plant, evaluation of irradiated coating materials is in accordance with owner's requirement(2.0 X 10 6 Gy)

  7. Cellulose nanofibers use in coated paper

    Science.gov (United States)

    Richmond, Finley

    Cellulose Nanofibers (CNF) are materials that can be obtained by the mechanical breakdown of natural fibers. CNF have the potential to be produced at low cost in a paper mill and may provide novel properties to paper, paper coatings, paints, or other products. However, suspensions have a complex rheology even at low solid contents. To be able to coat, pump, or mix CNF at moderate solids, it is critical to understand the rheology of these suspensions and how they flow in process equipment; current papers only report the rheology up to 6% solids. Few publications are available that describe the coating of CNF onto paper or the use of CNF as an additive into a paper coating. The rheology of CNF suspensions and coatings that contain CNF were characterized with parallel-disk geometry in a controlled stress rheometer. The steady shear viscosity, the complex viscosity, the storage modulus, and the yield stress were determined for the range of solids or concentrations (2.5-10.5%). CNF were coated onto paper with a laboratory rod coater, a size press and a high speed cylindrical laboratory coater (CLC). For each case, the coat weights were measures and the properties of the papers were characterized. CNF water base suspension was found to be a shear thinning with a power law index of around 0.1. Oscillatory tests showed a linear viscoelastic region at low strains and significant storage and loss moduli even at low solids. The Cox Merz rule does not hold for CNF suspensions or coating formulations that contain CNF with complex viscosities that are about 100 times larger than the steady shear viscosities. Paper coating formulations that contain CNF were found to have viscosities and storage and loss moduli that are over ten times larger than coatings that contain starch at similar solids. CNF suspensions were coated on papers with low amount transferred on paper either at high solids or high nip loadings. The amount transferred appears to be controlled by an interaction of

  8. Ultrasonic tests on materials with protective coatings

    International Nuclear Information System (INIS)

    Whaley, H.L.

    1977-01-01

    Protective coatings are applied to some nuclear components such as reactor vessels to inhibit surface corrosion. Since in-service ultrasonic inspection is required for such components, a study was performed to determine whether the use of protective coatings can affect ultrasonic tests. Two 2 in. thick steel plates were uniformly machined, sandblasted, and used as bases for two types of protective coatings. The type and thickness of the coating and the presence of contamination, such as fingerprints or mild oxidation under the paint, were the independent variables associated with the coating. Tests were run to determine the effects of the protective coatings on ultrasonic tests conducted on the steel plates. Significant variations in ultrasonic test sensitivity occurred as a function of the type and thickness of protective coating, couplant (material that conducts the ultrasound from the transducer into the test part, normally water or some type of oil), transducer wear plate, and ultrasonic test frequency. Ultrasonic tests can be strongly affected by a protective coating on the component to be inspected. As compared to the test sensitivity for an uncoated reference sample, the sensitivity may be dramatically shifted up or down on the coated surface. In certain coating thickness ranges, the sensitivity can fluctuate widely with small changes in coating thickness. If a coating is chosen properly, however, components with protective coatings can be tested ultrasonically with valid results. These results are for the case of ultrasonic input on the coated surface. It is not expected that an ultrasonic test conducted from the front surface would be appreciably affected by a coating on the rear surface

  9. Coatings for directional eutectics

    Science.gov (United States)

    Rairden, J. R.; Jackson, M. R.

    1976-01-01

    Coatings developed to provide oxidation protection for the directionally-solidified eutectic alloy NiTaC-B (4.4 weight percent Cr) were evaluated. Of seven Co-, Fe- and Ni-base coatings that were initially investigated, best resistance to cyclic oxidation was demonstrated by duplex coatings fabricated by depositing a layer of NiCrAl(Y) by vacuum evaporation from an electron beam source followed by deposition of an Al overlayer using the pack cementation process. It was found that addition of carbon to the coating alloy substantially eliminated the problem of fiber denudation in TaC-type eutectic alloys. Burner rig cycled NiTaC-B samples coated with Ni-20Cr-5Al-0.1C-0.1Y+Al and rupture-tested at 1100 deg C performed as well as or better than uncoated, vacuum cycled and air-tested NiTaC-13; however, a slight degradation with respect to uncoated material was noted in air-stress rupture tests at 870 deg C for both cycled and uncycled samples.

  10. White coat hypertension in pediatrics.

    Science.gov (United States)

    Jurko, Alexander; Minarik, Milan; Jurko, Tomas; Tonhajzerova, Ingrid

    2016-01-15

    The article summarizes current information on blood pressure changes in children during clinic visit. White coat as a general dressing of physicians and health care personnel has been widely accepted at the end of the 19th century. Two problems can be associated with the use of white coat: white coat phenomenon and white coat hypertension. Children often attribute pain and other unpleasant experience to the white coat and refuse afterwards cooperation with examinations. Definition of white coat hypertension in the literature is not uniform. It has been defined as elevated blood pressure in the hospital or clinic with normal blood pressure at home measured during the day by ambulatory blood pressure monitoring system. White coat effect is defined as temporary increase in blood pressure before and during visit in the clinic, regardless what the average daily ambulatory blood pressure values are. Clinical importance of white coat hypertension is mainly because of higher risk for cardiovascular accidents that are dependent on end organ damage (heart, vessels, kidney). Current data do not allow any clear recommendations for the treatment. Pharmacological therapy is usually started in the presence of hypertrophic left ventricle, changes in intimal/medial wall thickness of carotic arteries, microalbuminuria and other cardiovascular risk factors. Nonpharmacological therapy is less controversial and certainly more appropriate. Patients have to change their life style, need to eliminate as much cardiovascular risk factors as possible and sustain a regular blood pressure monitoring.

  11. Statistical experimental design for refractory coatings

    International Nuclear Information System (INIS)

    McKinnon, J.A.; Standard, O.C.

    2000-01-01

    The production of refractory coatings on metal casting moulds is critically dependent on the development of suitable rheological characteristics, such as viscosity and thixotropy, in the initial coating slurry. In this paper, the basic concepts of mixture design and analysis are applied to the formulation of a refractory coating, with illustration by a worked example. Experimental data of coating viscosity versus composition are fitted to a statistical model to obtain a reliable method of predicting the optimal formulation of the coating. Copyright (2000) The Australian Ceramic Society

  12. Thermal barrier coatings with a double-layer bond coat on Ni{sub 3}Al based single-crystal superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xin [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Xu, Zhenhua; Mu, Rende [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); He, Limin, E-mail: he_limin@yahoo.com [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Huang, Guanghong [Beijing Institute of Aeronautical Materials, Department 5, P.O. Box 81-5, Beijing 100095 (China); Cao, Xueqiang, E-mail: xcao@ciac.ac.cn [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2014-04-05

    Highlights: • Thermal barrier coatings with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi. • Good adherence at all interfaces within TBC system. • The underlying (Ni,Pt)Al layer can supply abundant Al content for the upper NiCrAlYSi layer. • Crack nucleation, propagation and coalescence lead to the failure of coating. -- Abstract: Electron-beam physical vapor deposited thermal barrier coatings (TBCs) with a double-layer bond coat of (Ni,Pt)Al and NiCrAlYSi were prepared on a Ni{sub 3}Al based single-crystal superalloy. Phase and cross-sectional microstructure of the developed coatings were studied by using X-ray diffraction (XRD) and scanning electron microscope (SEM), respectively. The experimental results show good adherence at all interfaces within this system. Furthermore, oxidation resistance and elements interdiffusion behavior of the double-layer bond coat were also investigated. The double-layer bond coat system exhibits a better scale adherence than the single layer bond coat systems since the underlying (Ni,Pt)Al layer can supply abundant Al for the upper NiCrAlYSi layer. Finally, thermal cycling behavior of the double-layer bond coat TBC was evaluated and the failure mechanism was discussed. Crack nucleation, propagation and coalescence caused by TGO growth stress and the thermal expansion mismatch stress between TGO and bond coat can be mainly responsible for the spallation of this coating.

  13. Adhesion of Zinc Hot-dip Coatings

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2014-01-01

    Full Text Available The work is focused on verification of quality adhesion of zinc coating. It describes elements which affect quality and adhesive solidity within the coating. For assessment itself it will be neccessary to get know the basic elements which can affect adhesion of hot-dip coating which will be essential for choosing suitable samples for verification itself. These elements characterise acoustic responses during delamination coating. They affect elements influencing progress of signal. In research there is also a summary of existing methods for testing adhesion of coatings. As a result a new proposal of a new method comes out for purpose of quality testing of adhesion zinc hot-dip coating. The results of verification of this method are put to scientific analysis and findings lead to assessment of proposed method and its application in technical practise.The goal of this contribution is also include to proposed methodology testing adhesion zinc coating by nondestructive diagnostic method of acoustic emission (AE, which would monitor characterise progress of coating delamination of hot-dip zinc from basic material in way to adhesion tests would be practicable in situ. It can be enabled by analysis and assessment of results acquired by method AE and its application within verification of new method of adhesion anti-corrosive zinc coating.

  14. Oxidation and thermal shock behavior of thermal barrier coated 18/10CrNi alloy with coating modifications

    Energy Technology Data Exchange (ETDEWEB)

    Guergen, Selim [Vocational School of Transportation, Anadolu University, Eskisehir (Turkmenistan); Diltemiz, Seyid Fehmi [Turkish Air Force1st Air Supply and Maintenance Center Command, Eskisehir (Turkmenistan); Kushan, Melih Cemal [Dept. of Mechanical Engineering, Eskisehir Osmangazi University, Eskisehir (Turkmenistan)

    2017-01-15

    In this study, substrates of 18/10CrNi alloy plates were initially sprayed with a Ni-21Cr-10Al-1Y bond coat and then with an yttria stabilized zirconia top coat by plasma spraying. Subsequently, plasma-sprayed Thermal barrier coatings (TBCs) were treated with two different modification methods, namely, vacuum heat treatment and laser glazing. The effects of modifications on the oxidation and thermal shock behavior of the coatings were evaluated. The effect of coat thickness on the bond strength of the coats was also investigated. Results showed enhancement of the oxidation resistance and thermal shock resistance of TBCs following modifications. Although vacuum heat treatment and laser glazing exhibited comparable results as per oxidation resistance, the former generated the best improvement in the thermal shock resistance of the TBCs. Bond strength also decreased as coat thickness increased.

  15. Method and apparatus for coating thin foil with a boron coating

    Science.gov (United States)

    Lacy, Jeffrey L.

    2018-01-16

    An apparatus and a process is disclosed for applying a boron coating to a thin foil. Preferably, the process is a continuous, in-line process for applying a coating to a thin foil comprising wrapping the foil around a rotating and translating mandrel, cleaning the foil with glow discharge in an etching chamber as the mandrel with the foil moves through the chamber, sputtering the foil with boron carbide in a sputtering chamber as the mandrel moves through the sputtering chamber, and unwinding the foil off the mandrel after it has been coated. The apparatus for applying a coating to a thin foil comprises an elongated mandrel. Foil preferably passes from a reel to the mandrel by passing through a seal near the initial portion of an etching chamber. The mandrel has a translation drive system for moving the mandrel forward and a rotational drive system for rotating mandrel as it moves forward. The etching chamber utilizes glow discharge on a surface of the foil as the mandrel moves through said etching chamber. A sputtering chamber, downstream of the etching chamber, applies a thin layer comprising boron onto the surface of the foil as said mandrel moves through said sputtering chamber. Preferably, the coated foil passes from the mandrel to a second reel by passing through a seal near the terminal portion of the sputtering chamber.

  16. Duplex aluminized coatings

    Science.gov (United States)

    Gedwill, M. A.; Grisaffe, S. J. (Inventor)

    1975-01-01

    The surface of a metallic base system is initially coated with a metallic alloy layer that is ductile and oxidation resistant. An aluminide coating is then applied to the metallic alloy layer. The chemistry of the metallic alloy layer is such that the oxidation resistance of the subsequently aluminized outermost layer is not seriously degraded.

  17. Properties of radiation cured coatings

    International Nuclear Information System (INIS)

    Larson, E.G.; Spencer, D.S.; Boettcher, T.E.; Melbauer, M.A.; Skarjune, R.P.

    1987-01-01

    Coatings were prepared from acrylate or methacrylate functionalized resins to study the effect of end group functionality on the physical properties of u.v. and electron beam cured coatings. Cure response was measured by solid state NMR and gel extraction, as expected, methacrylate resins cured much slower. Thermal Gravimetric Analysis (TGA) revealed acrylate coatings have greater thermal stability. Properties such as tensile strength and hardness showed little effect of end group functionality or curing method. The O 2 and H 2 O permeabilities of the coating were correlated with the processing conditions. (author)

  18. Review on the Photocatalyst Coatings of TiO2: Fabrication by Mechanical Coating Technique and Its Application

    Directory of Open Access Journals (Sweden)

    Yun Lu

    2015-07-01

    Full Text Available This review presents the latest results of studies directed at photocatalyst coatings of titanium dioxide (TiO2 prepared by mechanical coating technique (MCT and its application. Compared with traditional coating techniques, MCT is a simple, low cost and useful coating formation process, which is proposed and developed based on mechanical frictional wear and impacts between substrate materials and metal powder particles in the bowl of planetary ball mill. The formation process of the metal coatings in MCT includes four stages: The nucleation by adhesion, the formation and coalescence of discrete islands, formation and thickening of continuous coatings, exfoliation of continuous coatings. Further, two-step MCT was developed based on the MCT concept for preparing composite coatings on alumina (Al2O3 balls. This review also discusses the influence on the fabrication of photocatalyst coatings after MCT and improvement of its photocatalytic activity: oxidation conditions, coating materials, melt salt treatment. In this review, the oxidation conditions had been studied on the oxidation temperature of 573 K, 673 K, 773 K, 873 K, 973 K, 1173 K and 1273 K, the oxidation time of 0.5 h, 1 h, 3 h, 10 h, 15 h, 20 h, 30 h, 40 h, and 50 h. The photocatalyst coatings showed the highest photocatalytic activity with the oxidation condition of 1073 K for 15 h. The metal powder of Ti, Ni and Cr had been used as the coating materials. The composite metal powder could affect the surface structure and photocatalytic activity. On the other hand, the melt salt treatment with KNO3 is an effective method to form the nano-size structure and enhance photocatalytic activity, especially under visible light.

  19. Research Progress on Fe-based Amorphous Coatings

    Directory of Open Access Journals (Sweden)

    LIANG Xiu-bing

    2017-09-01

    Full Text Available The latest research progresses on Fe-based amorphous coatings were reviewed. The typical alloy system and the classification of Fe-based amorphous coatings were clarified. The status, progress and development of the Fe-based amorphous coatings prepared by thermal spray processing and laser cladding process were discussed. The main mechanical properties and potential applications of the Fe-based amorphous coatings were also described. Furthermore, based on the main problems mentioned above, the future development of the Fe-based amorphous coatings was discussed, including the exploitation preparation technologies of high amorphous content of the Fe-based coatings, the development of the low cost and high performance Fe-based coating alloys system, the broadening application of Fe-based amorphous coatings, and so on.

  20. Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon.

    Science.gov (United States)

    Senturk Parreidt, Tugce; Schmid, Markus; Müller, Kajetan

    2018-04-01

    Edible coating based on sodium alginate solution was applied to fresh-cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P coating technique and the parameters used significantly affect the physical quality characteristics of coated food products. The work presented produced more technical information concerning dipping and vacuum impregnation coating techniques, along with evaluating the effects of various coating parameters with several levels. The results revealed that vacuum impregnation technique is a successful coating method; however the effects should be carefully assessed for each product. © 2018 Institute of Food Technologists®.

  1. Optimizing the coating process for double-coated, wood-containing papers. Double toko chushitsushi no toko process no saitekika

    Energy Technology Data Exchange (ETDEWEB)

    Mori, T [Sumitomo Jukikai Valmet Ltd., Tokyo (Japan)

    1991-09-01

    Medium weight coat (MWC) paper is judged to be optimum for the heating setting offsetting rotary press and appropriate also for the offset printing. Representative printed matters to use MWC paper comprise, among others, sales promotion and high grade propagation purpose documents, and specialized magazines. Judging from the viewpoint of comparison between the one-layer coating and two-layer coating, effect of different coating methods, optimization in drying, etc., the two-layer coating is more advantageous than the one-layer coating in quality to keep the homogeneity also even after the printing. There are cases that the two-layer coating lowers the total cost for necessary constituent elements for the coating. The drying method of precoating, if made by an applicator roll, hardly influences the brightness and smoothness. For the precoating, the use of roll applicator gives a better brightness than that of short dwell. It was also known that the use of roll applicator solves problems raised by the increase in coated quantity due to the use of short dwell. 8 figs., 3 tabs.

  2. Method for fluidizing and coating ultrafine particles, device for fluidizing and coating ultrafine particles

    Science.gov (United States)

    Li, Jie; Liu, Yung Y

    2015-01-20

    The invention provides a method for dispersing particles within a reaction field, the method comprising confining the particles to the reaction field using a standing wave. The invention also provides a system for coating particles, the system comprising a reaction zone; a means for producing fluidized particles within the reaction zone; a fluid to produce a standing wave within the reaction zone; and a means for introducing coating moieties to the reaction zone. The invention also provides a method for coating particles, the method comprising fluidizing the particles, subjecting the particles to a standing wave; and contacting the subjected particles with a coating moiety.

  3. Metallurgical coating system

    International Nuclear Information System (INIS)

    Daniels, L.C.; Whittaker, G.S.

    1984-01-01

    The present invention relates to a novel metallurgical coating system which provides corrosion resistance and non-stick properties to metallic components which are subjected to unusually severe operating conditions. The coating system comprises a first layer comprising tantalum which is deposited upon a substrate and a second layer comprising molybdenum disilicide which is deposited upon the first layer

  4. ETV Program Report: Coatings for Wastewater Collection ...

    Science.gov (United States)

    The Standard Cement Materials, Inc. Standard Epoxy Coating 4553™ (SEC 4553) epoxy coating used for wastewater collection system rehabilitation was evaluated by EPA’s Environmental Technology Verification Program under laboratory conditions at the Center for Innovative Grouting Material and Technology (CIGMAT) Laboratory at the University of Houston. Testing was conducted over a period of six months to evaluate the coating’s (1) chemical resistance and (2) bonding strength for infrastructure applications. For chemical resistance, coated concrete and clay bricks with holidays (holes created in the coating) were used to evaluate the chemical resistance of the coating/substrate bond under a corrosive environment. Twenty coated concrete (dry and wet) and 20 coated clay brick (dry and wet) specimens were exposed to DI water and sulfuric acid solution (pH=1), and the specimens were visually inspected and weight changes measured. Evaluation of the coating-to-substrate bonding strength was determined using two modified ASTM test methods – one to determine bond strength of the coating with two specimens sandwiched together using the coating, and the second to determine the bond strength by applying a tensile load to the coating applied to specimens of each substrate. Forty-eight bonding tests were performed over the six month evaluation. The tests resulted in the following conclusions about Standard Cement’s SEC 4553 coating: • After the six-month chemi

  5. Preparation of aluminide coatings on the inner surface of tubes by heat treatment of Al coatings electrodeposited from an ionic liquid

    International Nuclear Information System (INIS)

    Xue, Dongpeng; Chen, Yimin; Ling, Guoping; Liu, Kezhao; Chen, Chang’an; Zhang, Guikai

    2015-01-01

    Highlights: • Al coating is prepared on the inner surface of one-meter tube. • Al coating shows good adherence to the substrate. • The thickness of Al coating is uniform along the tube. • Aluminide coating is obtained by heat treating Al coating. • Structure of aluminide coating is regulated by different thickness of Al coating. - Abstract: Aluminide coatings were prepared on the inner surface of 316L stainless steel tubes with size of Ø 12 mm × 1000 mm by heat-treating Al coatings electrodeposited from AlCl 3 -1-ethyl-3-methyl-imidazolium chloride (AlCl 3 –EMIC) ionic liquid at room temperature. Studies on the electrolytic etching pretreatment of stainless tubes before Al coating electrodeposition were carried out. The Al coating showed good adherence to the substrate after electrolytic etching at 10 mA/cm 2 for 10 min. The thickness of Al coatings was uniform along the tube. The structure of prepared aluminide coatings can be regulated by different thickness of Al coating. The outer layer of aluminide coatings was FeAl, Fe 2 Al 5 and FeAl 3 for the samples of 1-μm, 5-μm and 10-μm thick Al coatings, respectively.

  6. Development and evaluation of a hot-melt coating technique for enteric coating

    Directory of Open Access Journals (Sweden)

    Arun Trambak Patil

    2012-03-01

    Full Text Available Conventional enteric coating requires the use of organic based polymers which are equally hazardous to the environment and operating personnel. Hot-melt coating avoids the use of solvents and is a safer and time-saving process. The present study was designed to assess the efficacy of hot-melt coating (HMC as an enteric coating technique. Pellets prepared by extrusion spheronization were selected as the core formulation for a model of the gastric irritant drug diclofenac sodium (DFS because of their innate advantages over single-unit formulations. Stearic acid (SA and palmitic acid (PA were evaluated as enteric hot-melt coating materials. HMC was carried out in a specially modified coating pan by applying SA and PA in molten state onto preheated pellets to achieve a coating level of 5-15 %w/w. Hot-melt coated pellets were evaluated for disintegration pH and in vitro dissolution in the pH range 1.2 to 6.8, along with basic micromeritics. SEM of coated pellets showed a uniform and smooth coating. These results indicated that HMC of both SA and PA exhibited very good enteric coating ability. The coated pellets showed negligible drug release in acidic pH. As the pellets were subsequently transferred to a higher pH level, a gradual increase in release of the drug from the pellets was observed with increasing pH of the dissolution media. The release was dependent upon coating extent, providing sustained enteric release as opposed to abrupt release with mixed release kinetics.O revestimento entérico convencional requer o uso de polímeros orgânicos os quais são igualmente danosos ao meio ambiente e ao pessoal que o executa. O revestimento por fusão a quente evita o uso de solventes e é processo mais seguro e que consome menos tempo. O presente estudo foi planejado para avaliar a eficácia do revestimento por fusão a quente (RFQ como técnica de revestimento entérico. Os péletes preparados por esferonização por extrusão foram selecionados como

  7. Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

    Directory of Open Access Journals (Sweden)

    Bill G. X. Zhang

    2014-07-01

    Full Text Available Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

  8. Carbide coated fibers in graphite-aluminum composites

    Science.gov (United States)

    Imprescia, R. J.; Levinson, L. S.; Reiswig, R. D.; Wallace, T. C.; Williams, J. M.

    1975-01-01

    The NASA-supported program at the Los Alamos Scientific Laboratory (LASL) to develop carbon fiber-aluminum matrix composites is described. Chemical vapor deposition (CVD) was used to uniformly deposit thin, smooth, continuous coats of TiC on the fibers of graphite tows. Wet chemical coating of fibers, followed by high-temperature treatment, was also used, but showed little promise as an alternative coating method. Strength measurements on CVD coated fiber tows showed that thin carbide coats can add to fiber strength. The ability of aluminum alloys to wet TiC was successfully demonstrated using TiC-coated graphite surfaces. Pressure-infiltration of TiC- and ZrC-coated fiber tows with aluminum alloys was only partially successful. Experiments were performed to evaluate the effectiveness of carbide coats on carbon as barriers to prevent reaction between alluminum alloys and carbon. Initial results indicate that composites of aluminum and carbide-coated graphite are stable for long periods of time at temperatures near the alloy solidus.

  9. Determination of the DBTT of Aluminide Coatings and its Influence on the Mechanical Behavior of Coated Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Dryepondt, Sebastien N [ORNL; Pint, Bruce A [ORNL

    2010-01-01

    The ductility of various coatings deposited by chemical vapor deposition, pack cementation and slurry processes on Fe- and Ni-based alloys was characterized by indentation at room temperature. A hot indentation apparatus has also been developed to more rapidly determine the ductile to brittle transition temperature of coated specimens. Creep testing has been conducted on bare and coated alloy 230 (NiCrW) specimens at 800 C with a significant decrease in creep life observed. Based on the observed failure of coated 230 specimens, the impact of coating ductility on substrate creep properties is discussed.

  10. UV Coatings, Polarization, and Coronagraphy

    Science.gov (United States)

    Bolcar, Matthew R.; Quijada, Manuel; West, Garrett; Balasubramanian, Bala; Krist, John; Martin, Stefan; Sabatke, Derek

    2016-01-01

    Presenation for the Large UltraViolet Optical Infrared (LUVOIR) and Habitable Exoplanet Imager (HabEx) Science and Technology Definition Teams (STDT) on technical considerations regarding ultraviolet coatings, polarization, and coronagraphy. The presentations review the state-of-the-art in ultraviolet coatings, how those coatings generate polarization aberrations, and recent study results from both the LUVOIR and HabEx teams.

  11. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  12. ANALISIS STRUKTUR MIKRO LAPISAN BOND COAT NIAL THERMAL BARRIER COATING (TBC PADA PADUAN LOGAM BERBASIS CO

    Directory of Open Access Journals (Sweden)

    Toto Sudiro

    2012-11-01

    Full Text Available Kehandalan dan umur pakai sistem Thermal Barrier Coating (TBC ditentukan oleh kestabilan lapisan bond coat dan thermal grown oxide (TGO. Sehingga sangatlah penting untuk memahami mekanisme pembentukan dan degradasi lapisan ini. Pada makalah ini akan dibahas analisis struktur mikro lapisan bond coat NiAl yang dideposisikan pada substrat CoCrNi dengan menggunakan gabungan metoda electroplating dan pack-cementation. Pada makalah ini juga dibahas mekanisme pembentukan void disepanjang interface bond coat¬-substrat setelah tes oksidasi.

  13. Coatings for fast breeder reactor components

    International Nuclear Information System (INIS)

    Johnson, R.N.

    1984-04-01

    Several types of metallurgical coatings are used in the unique environments of the fast breeder reactor. Most of the coatings have been developed for tribological applications, but some also serve as corrosion barriers, diffusion barriers, or radionuclide traps. The materials that have consistently given the best performance as tribological coatings in the breeder reactor environments have been coatings based on chromium carbide, nickel aluminide, or Tribaloy 700 (a nickel-base hard-facing alloy). Other coatings that have been qualified for limited applications include chromium plating for low temperature galling protection and nickel plating for radionuclide trapping

  14. Doctor Blade-Coated Polymer Solar Cells

    KAUST Repository

    Cho, Nam Chul

    2016-10-25

    In this work, we report polymer solar cells based on blade-coated P3HT:PC71BM and PBDTTT-EFT:PC71BM bulk heterojunction photoactive layers. Enhanced power conversion efficiency of 2.75 (conventional structure) and 3.03% (inverted structure) with improved reproducibility was obtained from blade-coated P3HT:PC71BM solar cells, compared to spin-coated ones. Furthermore, by demonstrating 3.10% efficiency flexible solar cells using blade-coated PBDTTT-EFT:PC71BM films on the plastic substrates, we suggest the potential applicability of blade coating technique to the high throughput roll-to-roll fabrication systems.

  15. One-step spray-coating process for the fabrication of colorful superhydrophobic coatings with excellent corrosion resistance.

    Science.gov (United States)

    Li, Jian; Wu, Runni; Jing, Zhijiao; Yan, Long; Zha, Fei; Lei, Ziqiang

    2015-10-06

    A simple method was used to generate colorful hydrophobic stearate particles via chemical reactions between inorganic salts and sodium stearate. Colored self-cleaning superhydrophobic coatings were prepared through a facile one-step spray-coating process by spraying the stearate particle suspensions onto stainless steel substrates. Furthermore, the colorful superhydrophobic coating maintains excellent chemical stability under both harsh acidic and alkaline circumstances. After being immersed in a 3.5 wt % NaCl aqueous solution for 1 month, the as-prepared coatings remained superhydrophobic; however, they lost their self-cleaning property with a sliding angle of about 46 ± 3°. The corrosion behavior of the superhydrophobic coatings on the Al substrate was characterized by the polarization curve and electrochemical impedance spectroscopy (EIS). The electrochemical corrosion test results indicated that the superhydrophobic coatings possessed excellent corrosion resistance, which could supply efficient and long-term preservation for the bare Al substrate.

  16. Evanescent wave assisted nanomaterial coating.

    Science.gov (United States)

    Mondal, Samir K; Pal, Sudipta Sarkar; Kumbhakar, Dharmadas; Tiwari, Umesh; Bhatnagar, Randhir

    2013-08-01

    In this work we present a novel nanomaterial coating technique using evanescent wave (EW). The gradient force in the EW is used as an optical tweezer for tweezing and self-assembling nanoparticles on the source of EW. As a proof of the concept, we have used a laser coupled etched multimode optical fiber, which generates EW for the EW assisted coating. The section-wise etched multimode optical fiber is horizontally and superficially dipped into a silver/gold nanoparticles solution while the laser is switched on. The fiber is left until the solution recedes due to evaporation leaving the fiber in air. The coating time usually takes 40-50 min at room temperature. The scanning electron microscope image shows uniform and thin coating of self-assembled nanoparticles due to EW around the etched section. A coating thickness optical fiber probes and other plasmonic circuits.

  17. Coat/Tether Interactions—Exception or Rule?

    Science.gov (United States)

    Schröter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-01-01

    Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers. PMID:27243008

  18. Coat/Tether Interactions-Exception or Rule?

    Science.gov (United States)

    Schroeter, Saskia; Beckmann, Sabrina; Schmitt, Hans Dieter

    2016-01-01

    Coat complexes are important for cargo selection and vesicle formation. Recent evidence suggests that they may also be involved in vesicle targeting. Tethering factors, which form an initial bridge between vesicles and the target membrane, may bind to coat complexes. In this review, we ask whether these coat/tether interactions share some common mechanisms, or whether they are special adaptations to the needs of very specific transport steps. We compare recent findings in two multisubunit tethering complexes, the Dsl1 complex and the HOPS complex, and put them into context with the TRAPP I complex as a prominent example for coat/tether interactions. We explore where coat/tether interactions are found, compare their function and structure, and comment on a possible evolution from a common ancestor of coats and tethers.

  19. Carbon nanotube based functional superhydrophobic coatings

    Science.gov (United States)

    Sethi, Sunny

    The main objective of this dissertation is synthesis of carbon nanotube (CNT) based superhydrophobic materials. The materials were designed such that electrical and mechanical properties of CNTs could be combined with superhydrophobicity to create materials with unique properties, such as self-cleaning adhesives, miniature flotation devices, ice-repellant coatings, and coatings for heat transfer furnaces. The coatings were divided into two broad categories based on CNT structure: Vertically aligned CNT arrays (VA coatings) and mesh-like (non-aligned) carbon nanotube arrays (NA coatings). VA coatings were used to create self-cleaning adhesives and flexible field emission devices. Coatings with self cleaning property along with high adhesiveness were inspired from structure found on gecko foot. Gecko foot is covered with thousands of microscopic hairs called setae; these setae are further divided into hundreds of nanometer sized hairs called spatulas. When gecko presses its foot against any surface, these hairs bend and conform to the topology of the surface resulting into very large area of contact. Such large area of intimate contact allows geckos to adhere to surfaces using van der Waals (vdW) interactions alone. VA-CNTs adhere to a variety of surfaces using a similar mechanism. CNTs of suitable diameter could withstand four times higher adhesion force than gecko foot. We found that upon soiling these CNT based adhesives (gecko tape) could be cleaned using a water droplet (lotus effect) or by applying vibrations. These materials could be used for applications requiring reversible adhesion. VA coatings were also used for developing field emission devices. A single CNT can emit electrons at very low threshold voltages. Achieving efficient electron emission on large scale has a lot of challenges such as screening effect, pull-off and lower current efficiency. We have explored the use of polymer-CNT composite structures to overcome these challenges in this work. NA

  20. Nanostructured glass–ceramic coatings for orthopaedic applications

    Science.gov (United States)

    Wang, Guocheng; Lu, Zufu; Liu, Xuanyong; Zhou, Xiaming; Ding, Chuanxian; Zreiqat, Hala

    2011-01-01

    Glass–ceramics have attracted much attention in the biomedical field, as they provide great possibilities to manipulate their properties by post-treatments, including strength, degradation rate and coefficient of thermal expansion. In this work, hardystonite (HT; Ca2ZnSi2O7) and sphene (SP; CaTiSiO5) glass–ceramic coatings with nanostructures were prepared by a plasma spray technique using conventional powders. The bonding strength and Vickers hardness for HT and SP coatings are higher than the reported values for plasma-sprayed hydroxyapatite coatings. Both types of coatings release bioactive calcium (Ca) and silicon (Si) ions into the surrounding environment. Mineralization test in cell-free culture medium showed that many mushroom-like Ca and phosphorus compounds formed on the HT coatings after 5 h, suggesting its high acellular mineralization ability. Primary human osteoblasts attach, spread and proliferate well on both types of coatings. Higher proliferation rate was observed on the HT coatings compared with the SP coatings and uncoated Ti-6Al-4V alloy, probably due to the zinc ions released from the HT coatings. Higher expression levels of Runx2, osteopontin and type I collagen were observed on both types of coatings compared with Ti-6Al-4V alloy, possibly due to the Ca and Si released from the coatings. Results of this study point to the potential use of HT and SP coatings for orthopaedic applications. PMID:21292725

  1. Electron beam-cured coating

    International Nuclear Information System (INIS)

    Kishi, Naoyuki

    1976-01-01

    The method for hardening coatings by the irradiation with electron beams is reviewed. The report is divided into seven parts, namely 1) general description and characteristics of electron beam-cured coating, 2) radiation sources of curing, 3) hardening conditions and reaction behaviour, 4) uses and advantages, 5) latest trends of the industry, 6) practice in the field of construction materials, and 7) economy. The primary characteristics of the electron beam hardening is that graft reaction takes place between base resin and coating to produce strong adhesive coating without any pretreatment. A variety of base resins are developed. High class esters of acrylic acid monomers and methacrylic acid monomers are mainly used as dilutants recently. At present, scanning type accelerators are used, but the practical application of the system producing electron beam of curtain type is expected. The dose rate dependence, the repetitive irradiation and the irradiation atmosphere are briefly described. The filed patent applications on the electron beam hardening were analyzed by the officer of Japan Patent Agency. The production lines for coatings by the electron beam hardening in the world are listed. In the electron beam-cured coating, fifty percent of given energy is consumed effectively for the electron beam hardening, and the solvents discharged from ovens and polluting atmosphere are not used, because the paints of high solid type is used. The running costs of the electron beam process are one sixth of the thermal oven process. (Iwakiri, K.)

  2. Coated electroactive materials

    Science.gov (United States)

    Amine, Khalil; Abouimrane, Ali

    2016-08-30

    A process includes suspending an electroactive material in a solvent, suspending or dissolving a carbon precursor in the solvent; and depositing the carbon precursor on the electroactive material to form a carbon-coated electroactive material. Compositions include a graphene-coated electroactive material prepared from a solution phase mixture or suspension of an electroactive material and graphene, graphene oxide, or a mixture thereof.

  3. Rock-hard coatings

    OpenAIRE

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has signed an agreement with a number of parties to investigate this material further.

  4. Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin.

    Science.gov (United States)

    Faraji, Foad; Heshmat, Haleh; Banava, Sepideh

    2017-01-01

    EQUIA TM is a new gastrointestinal (GI) system with high compressive strength, surface microhardness (MH), and fluoride release potential. This in vitro study aimed to assess the effect of aging and type of protective coating on the MH of EQUIA TM GI cement. A total of 30 disc-shaped specimens measuring 9 mm in diameter and 2 mm in thickness were fabricated of EQUIA TM GI and divided into three groups of G-Coat nanofilled coating (a), no coating (b) and margin bond (c). The Vickers MH value of specimens was measured before (baseline) and at 3 and 6 months after water storage. Data were analyzed using repeated measures ANOVA. Group B had significantly higher MH than the other two groups at baseline. Both G-Coat and margin bond increased the surface MH of GI at 3 and 6 months. The MH values of G-Coat and margin bond groups did not significantly increase or decrease between 3 and 6 months. The increase in MH was greater in the G-Coat compared to the margin bond group in the long-term. Clinically, margin bond may be a suitable alternative when G-Coat is not available.

  5. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  6. Does hydroxyapatite coating have no advantage over porous coating in primary total hip arthroplasty? A meta-analysis.

    Science.gov (United States)

    Chen, Yun-Lin; Lin, Tiao; Liu, An; Shi, Ming-Min; Hu, Bin; Shi, Zhong-Li; Yan, Shi-Gui

    2015-01-28

    There are some arguments between the use of hydroxyapatite and porous coating. Some studies have shown that there is no difference between these two coatings in total hip arthroplasty (THA), while several other studies have shown that hydroxyapatite has advantages over the porous one. We have collected the studies in Pubmed, MEDLINE, EMBASE, and the Cochrane library from the earliest possible years to present, with the search strategy of "(HA OR hydroxyapatite) AND ((total hip arthroplasty) OR (total hip replacement)) AND (RCT* OR randomiz* OR control* OR compar* OR trial*)". The randomized controlled trials and comparative observation trials that evaluated the clinical and radiographic effects between hydroxyapatite coating and porous coating were included. Our main outcome measurements were Harris hip score (HHS) and survival, while the secondary outcome measurements were osteolysis, radiolucent lines, and polyethylene wear. Twelve RCTs and 9 comparative observation trials were included. Hydroxyapatite coating could improve the HHS (p hydroxyapatite coating had no advantages on survival (p = 0.32), polyethylene wear (p = 0.08), and radiolucent lines (p = 0.78). Hydroxyapatite coating has shown to have an advantage over porous coating. The HHS and survival was duration-dependent-if given the sufficient duration of follow-up, hydroxyapatite coating would be better than porous coating for the survival. The properties of hydroxyapatite and the implant design had influence on thigh pain incidence, femoral osteolysis, and polyethylene wear. Thickness of 50 to 80 μm and purity larger than 90% increased the thigh pain incidence. Anatomic design had less polyethylene wear.

  7. Thermal failure of nanostructured thermal barrier coatings with cold sprayed nanostructured NiCrAlY bond coat

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Li, Y.; Zhang, S.L.; Wang, X.R.; Yang, G.J.; Li, C.X.; Li, C.J. [Xi' an Jiaotong Univ., Xi' an (China)

    2008-07-01

    Nanostructured YSZ is expected to exhibit a high strain tolerability due to its low Young's modulus and consequently high durability. In this study, a porous YSZ as the thermal barrier coating was deposited by plasma spraying using an agglomerated nanostructured YSZ powder on a Ni-based superalloy Inconel 738 substrate with a cold-sprayed nanostructured NiCrAlY as the bond coat. The heat treatment in Ar atmosphere was applied to the cold-sprayed bond coat before deposition of YSZ. The isothermal oxidation and thermal cycling tests were applied to examine failure modes of plasma-sprayed nanostructured YSZ. The results showed that YSZ coating was deposited by partially melted YSZ particles. The nonmelted fraction of spray particles retains the porous nanostructure of the starting powder into the deposit. YSZ coating exhibits a bimodal microstructure consisting of nanosized particles retained from the powder and micro-columnar grains formed through the solidification of the melted fraction in spray particles. The oxidation of the bond coat occurs during the heat treatment in Ar atmosphere. The uniform oxide at the interface between the bond coat and YSZ can be formed during isothermal test. The cracks were observed at the interface between TGO/BC or TGO/YSZ after thermal cyclic test. However, the failure of TBCs mainly occurred through spalling of YSZ within YSZ coating. The failure characteristics of plasma-sprayed nanostructured YSZ are discussed based on the coating microstructure and formation of TGO on the bond coat surface. (orig.)

  8. Mechanical matching and microstructural evolution at the coating/substrate interfaces of cold-sprayed Ni, Al coatings

    International Nuclear Information System (INIS)

    Lee, H.; Lee, S.; Shin, H.; Ko, K.

    2009-01-01

    The effect of mechanical hard/soft matching of raw powder and substrate in the cold gas dynamic spraying process (CDSP) on the formation of intermetallic compounds was examined. Instead of pre-alloyed materials, pure Al and Ni were selected as a soft and a hard material, respectively, and post-annealing was used for compound formation. Most of the aluminide layers were observed in the coated layer, but not in the substrate, along with the entire original interface for both Al coating on a Ni substrate and vice versa. Thickening of the compound layer depended mainly on the creation of defects during spraying and intrinsic diffusivity of atoms moving toward the coating side. When Ni was coated, the compound layer was made thicker by fast diffusion of Al, while the thickness was limited in soft Al coating on hard Ni substrate. However, the composition of the compound can be affected by relative transfer of diffusing atoms toward both the coating and the substrate. So, for Ni coating on an Al substrate, most of the intermetallic compound formed was Ni-rich and conversion of the Al-rich compound was observed after post-annealing above 500 deg. C.

  9. A Multifunctional Coating for Autonomous Corrosion Control

    Science.gov (United States)

    Calle, Luz M.; Li, Wenyan; Buhrow, Jerry W.; Jolley, Scott t.

    2011-01-01

    Nearly all metals and their alloys are subject to corrosion that causes them to lose their structural integrity or other critical functionality. Protective coatings are the most commonly used method of corrosion control. However, progressively stricter environmental regulations have resulted in the ban of many commercially available corrosion protective coatings due to the harmful effects of their solvents or corrosion inhibitors. This work concerns the development of a multifunctional smart coating for the autonomous control of corrosion. This coating is being developed to have the inherent ability to detect the chemical changes associated with the onset of corrosion and respond autonomously to indicate it and control it. The multi-functionality of the coating is based on microencapsulation technology specifically designed for corrosion control applications. This design has, in addition to all the advantages of existing microcapsulation designs, the corrosion controlled release function that triggers the delivery of corrosion indicators and inhibitors on demand, only when and where needed. Microencapsulation of self-healing agents for autonomous repair of mechanical damage to the coating is also being pursued. Corrosion indicators, corrosion inhibitors, as well as self-healing agents, have been encapsulated and dispersed into several paint systems to test the corrosion detection, inhibition, and self-healing properties of the coating. Key words: Corrosion, coating, autonomous corrosion control, corrosion indication, corrosion inhibition, self-healing coating, smart coating, multifunctional coating, microencapsulation.

  10. Precision Optical Coatings for Large Space Telescope Mirrors

    Science.gov (United States)

    Sheikh, David

    This proposal “Precision Optical Coatings for Large Space Telescope Mirrors” addresses the need to develop and advance the state-of-the-art in optical coating technology. NASA is considering large monolithic mirrors 1 to 8-meters in diameter for future telescopes such as HabEx and LUVOIR. Improved large area coating processes are needed to meet the future requirements of large astronomical mirrors. In this project, we will demonstrate a broadband reflective coating process for achieving high reflectivity from 90-nm to 2500-nm over a 2.3-meter diameter coating area. The coating process is scalable to larger mirrors, 6+ meters in diameter. We will use a battery-driven coating process to make an aluminum reflector, and a motion-controlled coating technology for depositing protective layers. We will advance the state-of-the-art for coating technology and manufacturing infrastructure, to meet the reflectance and wavefront requirements of both HabEx and LUVOIR. Specifically, we will combine the broadband reflective coating designs and processes developed at GSFC and JPL with large area manufacturing technologies developed at ZeCoat Corporation. Our primary objectives are to: Demonstrate an aluminum coating process to create uniform coatings over large areas with near-theoretical aluminum reflectance Demonstrate a motion-controlled coating process to apply very precise 2-nm to 5- nm thick protective/interference layers to large areas, Demonstrate a broadband coating system (90-nm to 2500-nm) over a 2.3-meter coating area and test it against the current coating specifications for LUVOIR/HabEx. We will perform simulated space-environment testing, and we expect to advance the TRL from 3 to >5 in 3-years.

  11. Waterborne UV coating for industrial applications

    International Nuclear Information System (INIS)

    Bhattacharya, I.N.

    2007-01-01

    (Full Text): Solvent borne industrial coatings are being replaced by environment friendly coatings like Ultra Violet (UV) or Electron Beam (Eb) cured coatings, Powder coatings and Waterborne coatings. Waterborne systems enjoy the biggest share from this shift. UV and EB coatings provide the advantages of instant cure at room temperature, high scratch and abrasion resistance combined with excellent chemical resistance. Polyurethane (PU) chemistry is the dominant chemistry in Industrial coatings as they provide a very high level of performance. Most PU coatings are solvent based 2-component systems comprising of a resin and a cross linker. Polyurethane dispersions (PUD) in water in single pack are available but mainly addresses the Do It Yourself (DIY) market because of their slow drying speeds. Performance of PUD in most cases is inferior to solvent borne 2-component PU systems.Therefore the combination of PU dispersion and UV/EB curable technology has led to new innovative waterborne polymers called UV curable polyurethane dispersions (UVPUD). UVPUD are zero VOC systems as they are coalescent free. They are higher in molecular weight than standard UV curable products resulting in lower shrinkage coatings and provide good adhesion to substrates. Their low-viscosity makes them suitable for application by spray, curtain coater and even roller coater, without having to use monomers. UVPUD display superior chemical and mechanical properties necessary to protect high quality surface from the challenging usage conditions. UVPUD resins are therefore tailor-made to address performance needs like excellence in outdoor durability, scratch resistance, stain resistance, adhesion etc. UVPUD technology is now growing rapidly in industrial coatings for applications such as resilient flooring, wooden parquet flooring, automotive interior plastics, mobile phones etc. (Author)

  12. Characterization of multilayer anti-fog coatings.

    Science.gov (United States)

    Chevallier, Pascale; Turgeon, Stéphane; Sarra-Bournet, Christian; Turcotte, Raphaël; Laroche, Gaétan

    2011-03-01

    Fog formation on transparent substrates constitutes a major challenge in several optical applications requiring excellent light transmission characteristics. Anti-fog coatings are hydrophilic, enabling water to spread uniformly on the surface rather than form dispersed droplets. Despite the development of several anti-fog coating strategies, the long-term stability, adherence to the underlying substrate, and resistance to cleaning procedures are not yet optimal. We report on a polymer-based anti-fog coating covalently grafted onto glass surfaces by means of a multistep process. Glass substrates were first activated by plasma functionalization to provide amino groups on the surface, resulting in the subsequent covalent bonding of the polymeric layers. The anti-fog coating was then created by the successive spin coating of (poly(ethylene-maleic anhydride) (PEMA) and poly(vinyl alcohol) (PVA) layers. PEMA acted as an interface by covalently reacting with both the glass surface amino functionalities and the PVA hydroxyl groups, while PVA added the necessary surface hydrophilicity to provide anti-fog properties. Each step of the procedure was monitored by XPS, which confirmed the successful grafting of the coating. Coating thickness was evaluated by profilometry, nanoindentation, and UV visible light transmission. The hydrophilic nature of the anti-fog coating was assessed by water contact angle (CA), and its anti-fog efficiency was determined visually and tested quantitatively for the first time using an ASTM standard protocol. Results show that the PEMA/PVA coating not only delayed the initial period required for fog formation but also decreased the rate of light transmission decay. Finally, following a 24 hour immersion in water, these PEMA/PVA coatings remained stable and preserved their anti-fog properties.

  13. Permeability of protective coatings to tritium

    International Nuclear Information System (INIS)

    Braun, J.M.

    1987-10-01

    The permeability of four protective coatings to tritium gas and tritiated water was investigated. The coatings, including two epoxies, one vinyl and one urethane, were selected for their suitability in CANDU plant service in Ontario Hydro. Sorption rates of tritium gas into the coatings were considerably larger than for tritiated water, by as much as three to four orders of magnitude. However, as a result of the very large solubility of tritiated water in the coatings, the overall permeability to tritium gas and tritiated water are comparable, being somewhat larger for HTO. Marked differences were also evident among the four coatings, the vinyl proving to be unique in behaviour and morphology. Because of a highly porous surface structure water condensation takes place at high relative humidities, leading to an abnormally high retention of free water. Desorption rates from the four coatings were otherwise quite similar. Of practical importance was the observation that more effective desorption of tritiated water could be carried out at relatively high humidities, in this case 60%. It was believed that isotopic exchange was responsible for this phenomenon. It appears that epoxy coatings having a high pigment-to-binder ratio are most suited for coating concrete in tritium handling facilities

  14. High temperature oxidation behavior of hafnium modified NiAl bond coat in EB-PVD thermal barrier coating system

    Energy Technology Data Exchange (ETDEWEB)

    Guo Hongbo; Sun Lidong; Li Hefei [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China); Gong Shengkai [Department of Material Science and Engineering, Beijing University of Aeronautics and Astronautics, No.37 Xueyuan Road, Beijing 100083 (China)], E-mail: gongsk@buaa.edu.cn

    2008-06-30

    NiAl coatings doped with 0.5 at.% and 1.5 at.% Hf were produced by co-evaporation of NiAl and Hf ingots by electron beam physical vapor deposition (EB-PVD), respectively. The addition of 0.5 at.% Hf significantly improved the cyclic oxidation resistance of the NiAl coating. The TGO layer in the 1.5 at.% Hf doped NiAl coating is straight; while that in the 0.5 at.% Hf doped coating became undulated after thermal cycling. The doped NiAl thermal barrier coatings (TBCs) revealed improved thermal cycling lifetimes at 1423 K, compared to the undoped TBC. Failure of the 0.5 at.% Hf doped TBC occurred by cracking at the interface between YSZ topcoat and bond coat, while the 1.5 at.% Hf doped TBC cracked at the interface between bond coat and substrate.

  15. Method of coating the interior surface of hollow objects with a diffusion coating

    Science.gov (United States)

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  16. Transparent nanocrystalline diamond coatings and devices

    Science.gov (United States)

    Sumant, Anirudha V.; Khan, Adam

    2017-08-22

    A method for coating a substrate comprises producing a plasma ball using a microwave plasma source in the presence of a mixture of gases. The plasma ball has a diameter. The plasma ball is disposed at a first distance from the substrate and the substrate is maintained at a first temperature. The plasma ball is maintained at the first distance from the substrate, and a diamond coating is deposited on the substrate. The diamond coating has a thickness. Furthermore, the diamond coating has an optical transparency of greater than about 80%. The diamond coating can include nanocrystalline diamond. The microwave plasma source can have a frequency of about 915 MHz.

  17. Coatings for fusion reactor environments

    International Nuclear Information System (INIS)

    Mattox, D.M.

    1979-01-01

    The internal surfaces of a tokamak fusion reactor control the impurity injection and gas recycling into the fusion plasma. Coating of internal surfaces may provide a desirable and possibly necessary design flexibility for achieving the temperatures, ion densities and containment times necessary for net energy production from fusion reactions to take place. In this paper the reactor environments seen by various componentare reviewed along with possible materials responses. Characteristics of coating-substrate systems, important to fusion applications, are delineated and the present status of coating development for fusion applications is reviewed. Coating development for fusion applications is just beginning and poses a unique and important challenge for materials development

  18. Decontamination and coating of lead

    International Nuclear Information System (INIS)

    Rankin, W.N.; Bush, S.P.; Lyon, C.E.; Walker, V.

    1988-01-01

    Technology is being developed to decontaminate lead used in shielding applications in contaminated environments for recycle as shieldings. Technology is also being developed to coat either decontaminated lead or new lead before it is used in contaminated environments. The surface of the coating is expected to be much easier to decontaminate than the original lead surface. If contamination becomes severely embedded in the coating and cannot be removed, it can be easily cut with a knife and removed from the lead. The used coating can be disposed of as radioactive (hot hazardous) waste. The lead can then be recoated for further use as a shielding material

  19. Effect of Suspension Plasma-Sprayed YSZ Columnar Microstructure and Bond Coat Surface Preparation on Thermal Barrier Coating Properties

    Science.gov (United States)

    Bernard, Benjamin; Quet, Aurélie; Bianchi, Luc; Schick, Vincent; Joulia, Aurélien; Malié, André; Rémy, Benjamin

    2017-08-01

    Suspension plasma spraying (SPS) is identified as promising for the enhancement of thermal barrier coating (TBC) systems used in gas turbines. Particularly, the emerging columnar microstructure enabled by the SPS process is likely to bring about an interesting TBC lifetime. At the same time, the SPS process opens the way to a decrease in thermal conductivity, one of the main issues for the next generation of gas turbines, compared to the state-of-the-art deposition technique, so-called electron beam physical vapor deposition (EB-PVD). In this paper, yttria-stabilized zirconia (YSZ) coatings presenting columnar structures, performed using both SPS and EB-PVD processes, were studied. Depending on the columnar microstructure readily adaptable in the SPS process, low thermal conductivities can be obtained. At 1100 °C, a decrease from 1.3 W m-1 K-1 for EB-PVD YSZ coatings to about 0.7 W m-1 K-1 for SPS coatings was shown. The higher content of porosity in the case of SPS coatings increases the thermal resistance through the thickness and decreases thermal conductivity. The lifetime of SPS YSZ coatings was studied by isothermal cyclic tests, showing equivalent or even higher performances compared to EB-PVD ones. Tests were performed using classical bond coats used for EB-PVD TBC coatings. Thermal cyclic fatigue performance of the best SPS coating reached 1000 cycles to failure on AM1 substrates with a β-(Ni,Pt)Al bond coat. Tests were also performed on AM1 substrates with a Pt-diffused γ-Ni/γ'-Ni3Al bond coat for which more than 2000 cycles to failure were observed for columnar SPS YSZ coatings. The high thermal compliance offered by both the columnar structure and the porosity allowed the reaching of a high lifetime, promising for a TBC application.

  20. Chromate conversion coatings and their current application

    Directory of Open Access Journals (Sweden)

    P. Pokorny

    2016-04-01

    Full Text Available This paper describes formation, composition and possible production technologies of application chromate coatings. Summation of common examples of applications of these coatings in corrosion protection of metals and alloys is provided. Individual chromate coatings are divided by their dominant anions either with CrVI or CrIII. Restrictions of chromate coatings with dominantly CrVI and related toxicity of hexavalent chromium is discussed in detail. In conclusion, examples of both chromium and other, alternative coatings are summed up. Application of these coatings as a protection for concrete hot-dip galvanized reinforcement is also reviewed.

  1. Evaluation of coat uniformity and taste-masking efficiency of irregular-shaped drug particles coated in a modified tangential spray fluidized bed processor.

    Science.gov (United States)

    Xu, Min; Heng, Paul Wan Sia; Liew, Celine Valeria

    2015-01-01

    To explore the feasibility of coating irregular-shaped drug particles in a modified tangential spray fluidized bed processor (FS processor) and evaluate the coated particles for their coat uniformity and taste-masking efficiency. Paracetamol particles were coated to 20%, w/w weight gain using a taste-masking polymer insoluble in neutral and basic pH but soluble in acidic pH. In-process samples (5, 10 and 15%, w/w coat) and the resultant coated particles (20%, w/w coat) were collected to monitor the changes in their physicochemical attributes. After coating to 20%, w/w coat weight gain, the usable yield was 81% with minimal agglomeration (coat compared with the uncoated particles. A 15%, w/w coat was optimal for inhibiting drug release in salivary pH with subsequent fast dissolution in simulated gastric pH. The FS processor shows promise for direct coating of irregular-shaped drug particles with wide size distribution. The coated particles with 15% coat were sufficiently taste masked and could be useful for further application in orally disintegrating tablet platforms.

  2. Nanophase hardfaced coatings

    Energy Technology Data Exchange (ETDEWEB)

    Reisgen, U.; Stein, L.; Balashov, B.; Geffers, C. [RWTH Aachen University (Germany). ISF - Welding and Joining Institute

    2009-08-15

    This paper demonstrates the possibility of producing iron or chromium-based nanophase hardfaced coatings by means of common arc welding methods (TIG, PTA). The appropriate composition of the alloys to be deposited allows to control the structural properties and thus also the coating properties of the weld metal. Specific variations of the alloying elements allow also the realisation of a nanostructured solidification of the carbides and borides with cooling rates that are common for arc surfacing processes. The hardfaced coatings, which had been thus produced, showed phase dimensions of approximately 100-300 nm. Based on the results it is established that the influence of the surfacing parameters and of the coating thickness and thus the influence of the heat control on the nanostructuring process is, compared with the influence of the alloy composition, of secondary importance. The generation of nanoscale structures in hardfaced coatings allows the improvement of mechanical properties, wear resistance and corrosion resistance. Potential applications for these types of hardfaced coatings lie, in particular, in the field of cutting tools that are exposed to corrosion and wear. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Diese Arbeit demonstriert die Moeglichkeit zur Herstellung Eisen- und Chrom-basierter nanophasiger Hartauftragschweissschichten mithilfe ueblicher Lichtbogenschweissverfahren (WIG-, Plasma-Pulver-Auftragschweissen - PPA). Eine geeignete Zusammensetzung der aufzutragenden Legierungen ermoeglicht es, die Gefuegeeigenschaften und damit die Schichteigenschaften des Schweissgutes zu kontrollieren. Gezielte Variationen der Legierungselemente erlauben die Realisierung einer nanostrukturierten Erstarrung der Karbide und Boride bei fuer Lichtbogen-Auftragschweissprozessen ueblichen Abkuehlgeschwindigkeiten. In den so erzeugten Hartschichten werden Phasengroessen von ca. 100-300 nm erreicht. Auf Basis der gewonnenen Ergebnisse kann

  3. Avian Egg and Egg Coat.

    Science.gov (United States)

    Okumura, Hiroki

    2017-01-01

    An ovulated egg of vertebrates is surrounded by unique extracellular matrix, the egg coat or zona pellucida, playing important roles in fertilization and early development. The vertebrate egg coat is composed of two to six zona pellucida (ZP) glycoproteins that are characterized by the evolutionarily conserved ZP-domain module and classified into six subfamilies based on phylogenetic analyses. Interestingly, investigations of biochemical and functional features of the ZP glycoproteins show that the roles of each ZP-glycoprotein family member in the egg-coat formation and the egg-sperm interactions seemingly vary across vertebrates. This might be one reason why comprehensive understandings of the molecular basis of either architecture or physiological functions of egg coat still remain elusive despite more than 3 decades of intensive investigations. In this chapter, an overview of avian egg focusing on the oogenesis are provided in the first section, and unique features of avian egg coat, i.e., perivitelline layer, including the morphology, biogenesis pathway, and physiological functions are discussed mainly on chicken and quail in terms of the characteristics of ZP glycoproteins in the following sections. In addition, these features of avian egg coat are compared to mammalian zona pellucida, from the viewpoint that the structural and functional varieties of ZP glycoproteins might be associated with the evolutionary adaptation to their reproductive strategies. By comparing the egg coat of birds and mammals whose reproductive strategies are largely different, new insights into the molecular mechanisms of vertebrate egg-sperm interactions might be provided.

  4. Ranking protective coatings: Laboratory vs. field experience

    Science.gov (United States)

    Conner, Jeffrey A.; Connor, William B.

    1994-12-01

    Environmentally protective coatings are used on a wide range of gas turbine components for survival in the harsh operating conditions of engines. A host of coatings are commercially available to protect hot-section components, ranging from simple aluminides to designer metallic overlays and ceramic thermal barrier coatings. A variety of coating-application processes are available, and they range from simple pack cementation processing to complex physical vapor deposition, which requires multimillion dollar facilities. Detailed databases are available for most coatings and coating/process combinations for a range of laboratory tests. Still, the analysis of components actually used in engines often yields surprises when compared against predicted coating behavior from laboratory testing. This paper highlights recent work to develop new laboratory tests that better simulate engine environments. Comparison of in-flight coating performance as well as industrial and factory engine testing on a range of hardware is presented along with laboratory predictions from standard testing and from recently developed cyclic burner-rig testing.

  5. FABRICATION OF GAS-FILLED TUNGSTEN-COATED GLASS SHELLS

    International Nuclear Information System (INIS)

    NIKROO, A; BAUGH, W; STEINMAN, D.A.

    2003-09-01

    OAK-B135 Deuterium (D 2 ) filled glass shells coated with a high Z element are needed for high energy density (HED) experiments by researchers at Los Alamos National Laboratory. They report here on our initial attempt to produce such shells. Glass shells made using the drop tower technique were coated with gold, palladium or tungsten, or a mixture of two of these elements. It was found that gold and palladium coatings did not stick well to the glass and resulted in poor or delaminated films. Tungsten coatings resulted in films suitable for these targets. Bouncing of shells during coating resulted in uniform tungsten coatings, but the surface of such coatings were filled with small nodules. Proper agitation of shells using a tapping technique resulted in smooth films with minimal particulate contamination. For coating rates of ∼ 0.15 (micro)m/hr coatings with ∼ 2 nm RMS surface finish could be deposited. The surface roughness of coatings at higher rates, 0.7 (micro)m/hr, was considerably worse (∼ 100 nm RMS). The columnar structure of the coatings allowed permeation filling of the tungsten coated glass shells with deuterium at 300 C

  6. Absorptive coating for aluminum solar panels

    Science.gov (United States)

    Desmet, D.; Jason, A.; Parr, A.

    1979-01-01

    Method for coating forming coating of copper oxide from copper component of sheet aluminum/copper alloy provides strong durable solar heat collector panels. Copper oxide coating has solar absorption characteristics similar to black chrome and is much simpler and less costly to produce.

  7. Study on nano-coating on uranium

    International Nuclear Information System (INIS)

    Zhang Yongbin; Xian Xiaobin; Lu Xuechao; Lang Dingmu; Li Kexue; Tang Kai

    2002-01-01

    The SiO 2 , TiO 2 coatings on uranium have been prepared by sol-gel method under different processes. By evaluating the coating quality with SEM, the optimal process parameters have been determined. Corrosion test shows that the coatings have anticorrosion property

  8. Functional coatings: the sol-gel approach

    International Nuclear Information System (INIS)

    Belleville, Ph.

    2010-01-01

    CEA's sol-gel laboratory is specialized in the development of innovative sol-gel optical coatings and has extended its application field to membrane materials and coatings for energy conversion, to electric coatings for microelectronics devices and to thin films for gas sensing. This article describes, by way of examples, the laboratory's research on sol-gel functional coatings, including nano-material synthesis, organic-inorganic hybrid-based solution preparation as well as deposition process development and prototyping. (author)

  9. Laser reflector with an interference coating

    International Nuclear Information System (INIS)

    Vol'pyan, O D; Semenov, A A; Yakovlev, P P

    1998-01-01

    An analysis was made of the reflectivity of interference coatings intended for the use in optical pumping of solid-state lasers. Ruby and Nd 3+ :YAG lasers were used as models in comparative pumping efficiency measurements, carried out employing reflectors with interference and silver coatings. Estimates of the service life of reflectors with interference coatings were obtained. The power of a thermo-optical lens was reduced by the use of such coatings in cw lasers. (laser system components)

  10. Electrical contact arrangement for a coating process

    Science.gov (United States)

    Kabagambe, Benjamin; McCamy, James W; Boyd, Donald W

    2013-09-17

    A protective coating is applied to the electrically conductive surface of a reflective coating of a solar mirror by biasing a conductive member having a layer of a malleable electrically conductive material, e.g. a paste, against a portion of the conductive surface while moving an electrodepositable coating composition over the conductive surface. The moving of the electrodepositable coating composition over the conductive surface includes moving the solar mirror through a flow curtain of the electrodepositable coating composition and submerging the solar mirror in a pool of the electrodepositable coating composition. The use of the layer of a malleable electrically conductive material between the conductive member and the conductive surface compensates for irregularities in the conductive surface being contacted during the coating process thereby reducing the current density at the electrical contact area.

  11. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  12. Laser cladding of bioactive glass coatings.

    Science.gov (United States)

    Comesaña, R; Quintero, F; Lusquiños, F; Pascual, M J; Boutinguiza, M; Durán, A; Pou, J

    2010-03-01

    Laser cladding by powder injection has been used to produce bioactive glass coatings on titanium alloy (Ti6Al4V) substrates. Bioactive glass compositions alternative to 45S5 Bioglass were demonstrated to exhibit a gradual wetting angle-temperature evolution and therefore a more homogeneous deposition of the coating over the substrate was achieved. Among the different compositions studied, the S520 bioactive glass showed smoother wetting angle-temperature behavior and was successfully used as precursor material to produce bioactive coatings. Coatings processed using a Nd:YAG laser presented calcium silicate crystallization at the surface, with a uniform composition along the coating cross-section, and no significant dilution of the titanium alloy was observed. These coatings maintain similar bioactivity to that of the precursor material as demonstrated by immersion in simulated body fluid. Copyright 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  13. Laser-based coatings removal

    International Nuclear Information System (INIS)

    Freiwald, J.G.; Freiwald, D.A.

    1995-01-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D ampersand D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings

  14. Coatings to prevent frost

    DEFF Research Database (Denmark)

    Lusada, Ricardo; Holberg, Stefan; Bennedsen, Jeanette Marianne Dalgaard

    2016-01-01

    The ability of hydrophobic, organic–inorganic hybrid coatings to decelerate frost propagation was investigated. Compared to a bare aluminum surface, the coatings do not significantly reduce the freezing probability of supercooled water drops. On both surfaces, the probability for ice nucleation...... at temperatures just below 0°C, for example at −4°C, is low. Freezing of a single drop on aluminum leads, however, to instant freezing of the complete surface. On hydrophobic coatings, such a freezing drop is isolated; the frozen area grows slowly. At −4°C surface temperature in a +12°C/90% relative humidity...

  15. Laser-based coatings removal

    Energy Technology Data Exchange (ETDEWEB)

    Freiwald, J.G.; Freiwald, D.A. [F2 Associates, Inc., Albuquerque, NM (United States)

    1995-10-01

    Over the years as building and equipment surfaces became contaminated with low levels of uranium or plutonium dust, coats of paint were applied to stabilize the contaminants in place. Most of the earlier paint used was lead-based paint. More recently, various non-lead-based paints, such as two-part epoxy, are used. For D&D (decontamination and decommissioning), it is desirable to remove the paints or other coatings rather than having to tear down and dispose of the entire building. This report describes the use of pulse-repetetion laser systems for the removal of paints and coatings.

  16. Biomedical coatings on magnesium alloys - a review.

    Science.gov (United States)

    Hornberger, H; Virtanen, S; Boccaccini, A R

    2012-07-01

    This review comprehensively covers research carried out in the field of degradable coatings on Mg and Mg alloys for biomedical applications. Several coating methods are discussed, which can be divided, based on the specific processing techniques used, into conversion and deposition coatings. The literature review revealed that in most cases coatings increase the corrosion resistance of Mg and Mg alloys. The critical factors determining coating performance, such as corrosion rate, surface chemistry, adhesion and coating morphology, are identified and discussed. The analysis of the literature showed that many studies have focused on calcium phosphate coatings produced either using conversion or deposition methods which were developed for orthopaedic applications. However, the control of phases and the formation of cracks still appear unsatisfactory. More research and development is needed in the case of biodegradable organic based coatings to generate reproducible and relevant data. In addition to biocompatibility, the mechanical properties of the coatings are also relevant, and the development of appropriate methods to study the corrosion process in detail and in the long term remains an important area of research. Copyright © 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  17. Demonstration and Validation of Two Coat High Performance Coating System for Steel Structures in Corrosive Environments

    Science.gov (United States)

    2016-12-01

    Many of these steel buildings and equipment are tradi- tionally painted with an alkyd enamel or waterborne coating for a top coat. These paint systems...bridging minor cracks or for surfaces that have vi- bration and/or movement. These qualities are necessary in a barrier coat- ing primer for it to remain

  18. Radiation curable compositions useful as transfer coatings

    International Nuclear Information System (INIS)

    McCarty, W.H.; Nagy, F.A.; Guarino, J.P.

    1983-01-01

    The invention is on a method for applying a coating to a thin porous substrate and reducing absorption of the coating into the substrate by applying a radiation-curable composition to a carrying web; the radiation-curable coating composition having a crosslink density of 0.02 to about 1.0 determined by calculation of the gram moles of branch points per 100 grams of uncured coating, and a glass transition temperature of the radiation cured coating within the approximate range of -80 degrees to +100 degrees C. The carrying web being of a nature such that the coating composition, when cured, will not adhere to its surface

  19. Permeation Barrier Coatings for the Helical Heat Exchanger

    International Nuclear Information System (INIS)

    Korinko, P.S.

    1999-01-01

    A permeation barrier coating was specified for the Helical Heat Exchanger (HHE) to minimize contamination through emissions and/or permeation into the nitrogen system for ALARA reasons. Due to the geometry of the HHE, a special coating practice was needed since the conventional method of high temperature pack aluminization was intractable. A survey of many coating companies was undertaken; their coating capabilities and technologies were assessed and compared to WSRC needs. The processes and limitations to coating the HHE are described. Slurry coating appears to be the most technically sound approach for coating the HHE

  20. CrCuAgN PVD nanocomposite coatings: Effects of annealing on coating morphology and nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xingguang, E-mail: xingguangliu1@gmail.com [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Iamvasant, Chanon, E-mail: ciamvasant1@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Liu, Chang, E-mail: chang.liu@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom); Matthews, Allan, E-mail: allan.matthews@manchester.ac.uk [Pariser Building - B24 ICAM, School of Materials, The University of Manchester, Manchester, M13 9PL (United Kingdom); Leyland, Adrian, E-mail: a.leyland@sheffield.ac.uk [Department of Materials Science and Engineering, Sir Robert Hadfield Building, The University of Sheffield, Mappin Street, Sheffield, S1 3JD (United Kingdom)

    2017-01-15

    Highlights: • Coatings with nitrogen content up to 16 at.% exhibit a metallic Cr solid solution, even after post-coat annealing at 300 °C and 500 °C. • At higher N/Cr atomic ratios (approaching Cr{sub 2}N stoichiometry), chromium was still inclined to exist in solid solution with nitrogen, rather than as a ceramic nitride phase, even after annealing at 500 °C. • Transportation of Cu and Ag to the surface depends on annealing temperature, annealing duration, nitrogen concentration and ‘global’ Cu + Ag concentration. • Incorporation of copper appears to be a powerful strategy to enhance Ag mobility at low concentration (∼3 at.% Ag in this study) under moderately high service temperature. • A significant decrease in friction coefficient was obtained at room temperature after annealing, or during sliding wear testing at elevated temperature. - Abstract: CrCuAgN PVD nanocomposite coatings were produced using pulsed DC unbalanced magnetron sputtering. This investigation focuses on the effects of post-coat annealing on the surface morphology, phase composition and nanostructure of such coatings. In coatings with nitrogen contents up to 16 at.%, chromium exists as metallic Cr with N in supersaturated solid solution, even after 300 °C and 500 °C post-coat annealing. Annealing at 300 °C did not obviously change the phase composition of both nitrogen-free and nitrogen-containing coatings; however, 500 °C annealing resulted in significant transformation of the nitrogen-containing coatings. The formation of Ag aggregates relates to the (Cu + Ag)/Cr atomic ratio (threshold around 0.2), whereas the formation of Cu aggregates relates to the (Cu + Ag + N)/Cr atomic ratio (threshold around 0.5). The primary annealing-induced changes were reduced solubility of Cu, Ag and N in Cr, and the composition altering from a mixed ultra-fine nanocrystalline and partly amorphous phase constitution to a coarser, but still largely nanocrystalline structure. It was also

  1. Tuning roughness and gloss of powder coating paint by encapsulating the coating particles with thin Al

    NARCIS (Netherlands)

    Valdesueiro, David; Hettinga, Hans; Drijfhout, Jan Pieter; Lips, Priscilla; Meesters, G.M.H.; Kreutzer, M.T.; van Ommen, J.R.

    2017-01-01

    In this work, we report a method to change the surface finish of a standard polyester-based powder coating paint, from gloss to matt, by depositing ultrathin films of Al2O3 on the powder coating particles. The coating experiments were performed in a fluidized bed reactor at

  2. Nanocontainer-based corrosion sensing coating

    International Nuclear Information System (INIS)

    Maia, F; Tedim, J; Bastos, A C; Ferreira, M G S; Zheludkevich, M L

    2013-01-01

    The present paper reports on the development of new sensing active coating on the basis of nanocontainers containing pH-indicating agent. The coating is able to detect active corrosion processes on different metallic substrates. The corrosion detection functionality based on the local colour change in active cathodic zones results from the interaction of hydroxide ions with phenolphthalein encapsulated in mesoporous nanocontainers which function as sensing nanoreactors. The mesoporous silica nanocontainers are synthesized and loaded with pH indicator phenolphthalein in a one-stage process. The resulting system is mesoporous, which together with bulkiness of the indicator molecules limits their leaching. At the same time, penetration of water molecules and ions inside the container is still possible, allowing encapsulated phenolphthalein to be sensitive to the pH in the surrounding environment and outperforming systems when an indicator is directly dispersed in the coating layer. The performed tests demonstrate the pH sensitivity of the developed nanocontainers being dispersed in aqueous solutions. The corrosion sensing functionality of the protective coatings with nanocontainers are proven for aluminium- and magnesium-based metallic substrates. As a result, the developed nanocontainers show high potential to be used in a new generation of active protective coatings with corrosion-sensing coatings. (paper)

  3. Leading edge erosion of coated wind turbine blades: Review of coating life models

    NARCIS (Netherlands)

    Slot, H.M.; Gelinck, E.R.M.; Rentrop, A.; van der Heide, Emile

    2015-01-01

    Erosion of the leading edge of wind turbine blades by droplet impingement wear, reduces blade aerodynamic efficiency and power output. Eventually, it compromises the integrity of blade surfaces. Elastomeric coatings are currently used for erosion resistance, yet the life of such coatings cannot be

  4. Nanocomposite Coatings: Preparation, Characterization, Properties, and Applications

    Directory of Open Access Journals (Sweden)

    Phuong Nguyen-Tri

    2018-01-01

    Full Text Available Incorporation of nanofillers into the organic coatings might enhance their barrier performance, by decreasing the porosity and zigzagging the diffusion path for deleterious species. Thus, the coatings containing nanofillers are expected to have significant barrier properties for corrosion protection and reduce the trend for the coating to blister or delaminate. On the other hand, high hardness could be obtained for metallic coatings by producing the hard nanocrystalline phases within a metallic matrix. This article presents a review on recent development of nanocomposite coatings, providing an overview of nanocomposite coatings in various aspects dealing with the classification, preparative method, the nanocomposite coating properties, and characterization methods. It covers potential applications in areas such as the anticorrosion, antiwear, superhydrophobic area, self-cleaning, antifouling/antibacterial area, and electronics. Finally, conclusion and future trends will be also reported.

  5. Evolution of rhodopsin ion pumps in haloarchaea

    Directory of Open Access Journals (Sweden)

    Ford Doolittle W

    2007-05-01

    Full Text Available Abstract Background The type 1 (microbial rhodopsins are a diverse group of photochemically reactive proteins that display a broad yet patchy distribution among the three domains of life. Recent work indicates that this pattern is likely the result of lateral gene transfer (LGT of rhodopsin genes between major lineages, and even across domain boundaries. Within the lineage in which the microbial rhodopsins were initially discovered, the haloarchaea, a similar patchy distribution is observed. In this initial study, we assess the roles of LGT and gene loss in the evolution of haloarchaeal rhodopsin ion pump genes, using phylogenetics and comparative genomics approaches. Results Mapping presence/absence of rhodopsins onto the phylogeny of the RNA polymerase B' subunit (RpoB' of the haloarchaea supports previous notions that rhodopsins are patchily distributed. The phylogeny for the bacteriorhodopsin (BR protein revealed two discrepancies in comparison to the RpoB' marker, while the halorhodopsin (HR tree showed incongruence to both markers. Comparative analyses of bacteriorhodopsin-linked regions of five haloarchaeal genomes supported relationships observed in the BR tree, and also identified two open reading frames (ORFs that were more frequently linked to the bacteriorhodopsin gene than those genes previously shown to be important to the function and expression of BR. Conclusion The evidence presented here reveals a complex evolutionary history for the haloarchaeal rhodopsins, with both LGT and gene loss contributing to the patchy distribution of rhodopsins within this group. Similarities between the BR and RpoB' phylogenies provide supportive evidence for the presence of bacteriorhodopsin in the last common ancestor of haloarchaea. Furthermore, two loci that we have designated bacterio-opsin associated chaperone (bac and bacterio-opsin associated protein (bap are inferred to have important roles in BR biogenesis based on frequent linkage and co

  6. Black molecular adsorber coatings for spaceflight applications

    Science.gov (United States)

    Abraham, Nithin S.; Hasegawa, Mark M.; Straka, Sharon A.

    2014-09-01

    The molecular adsorber coating is a new technology that was developed to mitigate the risk of on-orbit molecular contamination on spaceflight missions. The application of this coating would be ideal near highly sensitive, interior surfaces and instruments that are negatively impacted by outgassed molecules from materials, such as plastics, adhesives, lubricants, epoxies, and other similar compounds. This current, sprayable paint technology is comprised of inorganic white materials made from highly porous zeolite. In addition to good adhesion performance, thermal stability, and adsorptive capability, the molecular adsorber coating offers favorable thermal control characteristics. However, low reflectivity properties, which are typically offered by black thermal control coatings, are desired for some spaceflight applications. For example, black coatings are used on interior surfaces, in particular, on instrument baffles for optical stray light control. Similarly, they are also used within light paths between optical systems, such as telescopes, to absorb light. Recent efforts have been made to transform the white molecular adsorber coating into a black coating with similar adsorptive properties. This result is achieved by optimizing the current formulation with black pigments, while still maintaining its adsorption capability for outgassing control. Different binder to pigment ratios, coating thicknesses, and spray application techniques were explored to develop a black version of the molecular adsorber coating. During the development process, coating performance and adsorption characteristics were studied. The preliminary work performed on black molecular adsorber coatings thus far is very promising. Continued development and testing is necessary for its use on future contamination sensitive spaceflight missions.

  7. Sensitivity to contamination of optical coatings

    International Nuclear Information System (INIS)

    Macleod, A.

    1999-01-01

    A simple theory is presented of the sensitivity to contamination of optical coatings, which permits prediction of performance degradation in the presence of small deposit s of absorbing material. Although a major objective is the ability to compare the sensitivities of different coating types, absolute values can be made possible by adopting a standard contamination layer consisting of a 1 Angstrom thickness of carbon. Results are quoted for a number of common thin-film coatings and filters and are sometimes surprising. The common high-reflectance coating is the quarterwave stack and, at its reference wavelength, it has very low sensitivity to contamination. Although minor constructional errors have little effect on the reflectance, they can seriously affect the contamination sensitivity. Further, the level of contamination determines the maximum reflectance it is possible to achieve, regardless of the number of layers in the coating. The admittance diagram helps in understanding the reasons for the very large variations in sensitivity between coatings with quite similar reflectance

  8. High gain durable anti-reflective coating

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Colson, Thomas E.; Gonsalves, Peter R.; Abrams, Ze' ev R.

    2017-06-27

    Disclosed herein are polysilsesquioxane-based anti-reflective coating (ARC) compositions, methods of preparation, and methods of deposition on a substrate. In one embodiment, the polysilsesquioxane of this disclosure is prepared in a two-step process of acid catalyzed hydrolysis of organoalkoxysilane followed by addition of tetralkoxysilane that generates silicone polymers with >40 mol % silanol based on Si-NMR. These high silanol siloxane polymers are stable and have a long shelf-life in polar organic solvents at room temperature. Also disclosed are low refractive index ARC made from these compositions with and without additives such as porogens, templates, thermal radical initiator, photo radical initiators, crosslinkers, Si--OH condensation catalyst and nano-fillers. Also disclosed are methods and apparatus for applying coatings to flat substrates including substrate pre-treatment processes, coating processes and coating curing processes including skin-curing using hot-air knives. Also disclosed are coating compositions and formulations for highly tunable, durable, highly abrasion-resistant functionalized anti-reflective coatings.

  9. Coating technologies in the nuclear industry

    International Nuclear Information System (INIS)

    Kaae, J.L.

    1993-01-01

    Metallic, ceramic, and organic coatings are so commonly used in modern industry that virtually everyone can name several applications in which coatings are employed. Thus, it is no surprise that coating technologies are widely employed in the nuclear industry. Some of these technologies utilize processes that are mature and well developed, and others utilize processes that are new and state of the art. In this paper, five generic coating processes that include almost all vapor deposition processes are described, and then applications of each of these processes for deposition of specific materials in nuclear applications are described. These latter selections, of course, are very subjective, and others will be able to name other applications. Because of their wide range of application, coating technologies are considered to be national critical technologies. The generic coating processes that cover almost all vapor deposition technologies are as follows: (1) stationary substrate chemical vapor deposition; (2) fluidized bed chemical vapor deposition; (3) plasma-assisted chemical deposition; (4) sputtering; (5) evaporation

  10. Coating compositions comprising bismuth-alloyed zinc

    DEFF Research Database (Denmark)

    2008-01-01

    The present application discloses (i) a coating composition comprising a particulate zinc-based alloyed material, said material comprising 0.05-0.7% by weight of bismuth (Bi), the D50 of the particulate material being in the range of 2.5-30 µm; (ii) a coated structure comprising a metal structure...... having a first coating of the zinc-containing coating composition applied onto at least a part of the metal structure in a dry film thickness of 5-100 µm; and an outer coating applied onto said zinc-containing coating in a dry film thickness of 30-200 µm; (iii) a particulate zinc-based alloyed material......, wherein the material comprises 0.05-0.7%(w/w) of bismuth (Bi), and wherein the D50 of the particulate material is in the range of 2.5-30 µm; (iv) a composite powder consisting of at least 25%(w/w) of the particulate zinc-based alloyed material, the rest being a particulate material consisting of zinc...

  11. Effect of coating thickness on interfacial shear behavior of zirconia-coated sapphire fibers in a polycrystalline alumina matrix

    International Nuclear Information System (INIS)

    Hellmann, J.R.; Chou, Y.S.

    1995-01-01

    The effect of zirconia (ZrO 2 ) interfacial coatings on the interfacial shear behavior in sapphire reinforced alumina was examined in this study. Zirconia coatings of thicknesses ranging from 0.15 to 1.45 μm were applied to single crystal sapphire (Saphikon) fibers using a particulate loaded sol dipping technique. After calcining at 1,100 C in air, the coated fibers were incorporated into a polycrystalline alumina matrix via hot pressing. Interfacial shear strength and sliding behavior of the coated fibers was examined using thin-slice indentation fiber pushout and pushback techniques. In all cases, debonding and sliding occurred at the interface between the fibers and the coating. The coatings exhibited a dense microstructure and led to a higher interfacial shear strength (> 240 MPa) and interfacial sliding stress (> 75 MPa) relative to previous studies on the effect of a porous interphase on interfacial properties. The interfacial shear strength decreased with increasing fiber coating thickness (from 389 ± 59 to 241 ± 43 MPa for 0.15 to 1.45 microm thick coatings, respectively). Sliding behavior exhibited load modulation with increasing displacement during fiber sliding which is characteristic of fiber roughness-induced stick-slip. The high interfacial shear strengths and sliding stresses measured in this study, as well as the potentially strength degrading surface reconstruction observed on the coated fibers after hot pressing and heat treatment, indicate that dense zirconia coatings are not suitable candidates for optimizing composite toughness and strength in the sapphire fiber reinforced alumina system

  12. Biomarkers in white-coat hypertension

    OpenAIRE

    Martin, Catherine Ann

    2017-01-01

    The introduction of ambulatory blood pressure monitoring in the 1960s provided new insights into the nature of high blood pressure disorders. Blood pressure is now categorised into four quadrants:normotension, masked hypertension, hypertension and white-coat hypertension. In white-coat hypertension blood pressure is elevated when taken at the doctor’s office but normal if taken outside the doctor’s office. Several controversies are associated with white-coat hypertension, which are discuss...

  13. Heat-resistant hydrophobic-oleophobic coatings

    OpenAIRE

    Uyanik, Mehmet; Arpac, Ertugrul; Schmidt, Helmut K.; Akarsu, Murat; Sayilkan, Funda; Sayilkan, Hikmet

    2006-01-01

    Thermally and chemically durable hydrophobic oleophobic coatings, containing different ceramic particles such as SiO2, SiC, Al 2O3, which can be alternative instead of Teflon, have been developed and applied on the aluminum substrates by spin-coating method. Polyimides, which are high-thermal resistant heteroaromatic polymers, were synthesized, and fluor oligomers were added to these polymers to obtain hydrophobic-oleophobic properties. After coating, Al surface was subjected to Taber-abrasio...

  14. Electroless alloy/composite coatings

    Indian Academy of Sciences (India)

    The market for these coatings is expanding fast as the potential applications are on the rise. In the present article, an attempt has been made to review different electroless alloy/composite coatings with respect to bath types and their composition, properties and applications. Different characterisation studies have been ...

  15. Amphiphilic copolymers for fouling-release coatings

    DEFF Research Database (Denmark)

    Noguer, Albert Camós; Olsen, Stefan Møller; Hvilsted, Søren

    of the coatings [9,10,11]. This work shows the effect of an amphiphilic copolymer that induces hydrophilicity on the surface of the silicone-based fouling release coatings. The behaviour of these copolymers within the coating upon immersion and the interaction of these surface-active additives with other...

  16. Electron beam treatments of electrophoretic ceramic coatings

    International Nuclear Information System (INIS)

    De Riccardis, M.F.; Carbone, D.; Piscopiello, E.; Antisari, M. Vittori

    2008-01-01

    In this work a method to densify ceramic coating obtained by electrophoresis and to improve its adhesion to the substrate is proposed. It consists in irradiating the coating surface by electron beam (EB). Alumina and alumina-zirconia coatings were deposited on stainless steel substrates and treated by low power EB. SEM, XRD and TEM characterizations demonstrated that the sintering occurred. Moreover, it is shown that on alumina-zirconia coating the EB irradiation produced a composite material consisting principally of tetragonal zirconia particles immersed in an amorphous alumina matrix. The adhesion stress of EB treated coating was estimated by stud pull test and it was found to be comparable to that of plasma-sprayed coatings

  17. Effect of protective coating on microhardness of a new glass ionomer cement: Nanofilled coating versus unfilled resin

    OpenAIRE

    Faraji, Foad; Heshmat, Haleh; Banava, Sepideh

    2017-01-01

    Background and Objectives: EQUIATM is a new gastrointestinal (GI) system with high compressive strength, surface microhardness (MH), and fluoride release potential. This in vitro study aimed to assess the effect of aging and type of protective coating on the MH of EQUIATM GI cement. Materials and Methods: A total of 30 disc-shaped specimens measuring 9 mm in diameter and 2 mm in thickness were fabricated of EQUIATM GI and divided into three groups of G-Coat nanofilled coating (a), no coating ...

  18. "m=1" coatings for neutron guides

    DEFF Research Database (Denmark)

    Cooper-Jensen, C.P.; Vorobiev, A.; Klinkby, Esben Bryndt

    2014-01-01

    A substantial part of the price for a neutron guide is the shielding needed because of the gamma ray produced when neutrons are absorbed. This absorption occurs in the coating and the substrate of the neutron guides. Traditional m=1 coatings have been made of Ni and if reflectivity over...... the critical angle of Ni is needed one has used Ni58 or Ni/Ti multilayer coatings. Ni has one of the highest neutron scattering density but it also has a fairly high absorption cross section for cold and thermal neutrons and when a neutron is absorbed it emits a lot of gamma rays, some with energies above 9 Me...... of diamond coatings to show the potential for using these coatings in neutron guides....

  19. Structure and corrosion properties of PVD Cr-N coatings

    International Nuclear Information System (INIS)

    Liu, C.; Bi, Q.; Ziegele, H.; Leyland, A.; Matthews, A.

    2002-01-01

    PVD Cr-N coatings produced by physical vapor deposition (PVD) are increasingly used for mechanical and tribological applications in various industrial sectors. These coatings are particularly attractive for their excellent corrosion resistance, which further enhances the lifetime and service quality of coated components. PVD Cr-N coated steels in an aqueous solution are usually corroded by galvanic attack via through-coating 'permeable' defects (e.g., pores). Therefore, the corrosion performance of Cr-N coated steel is determined by a number of variables of the coating properties and corrosive environment. These variables include: (i) surface continuity and uniformity; (ii) through-coating porosity; (iii) film density and chemical stability; (iv) growth stresses; (v) interfacial and intermediate layers; (vi) coating thickness; (vii) coating composition; and (viii) substrate properties. In this article, PVD Cr-N coatings were prepared, by electron-beam PVD and sputter deposition, with different compositions, thicknesses, and surface roughnesses, by changing the N 2 flow rate, applying multilayering techniques and changing the substrate finish prior to coating. The microstructure of such coatings is investigated by various analytical techniques such as glancing angle x-ray diffraction and scanning electron microscopy, which are also correlated with the corrosion performance of the coated steel. Both dc polarization and ac impedance spectroscopy were employed to investigate the corrosion resistance of Cr-N coated steel in a 0.5N NaCl solution. It has been found that the N 2 flow rate during reactive deposition strongly determines the microstructure of Cr-N coatings (due to the changing nitrogen content in the film) and can thus affect the corrosion resistance of coated systems. The surface finish of the steel substrate also affects the uniformity and coverage of PVD coatings; grooves and inclusions on the original substrate can raise the susceptibility of coated

  20. Hex Chrome Free Coatings for Electronics Overview

    Science.gov (United States)

    Kessel, Kurt

    2013-01-01

    The overall objective of the Hex Chrome Free Coatings for Electronics project is to evaluate and test pretreatment coating systems not containing hexavalent chrome in avionics and electronics housing applications. This objective will be accomplished by testing strong performing coating systems from prior NASA and DoD testing or new coating systems as determined by the stakeholders.