WorldWideScience

Sample records for bacteriorhodopsin coated microcavities

  1. Laterally Confined Modes in Wet-Etched,Metal-Coated,Quantum-Dot-Inserted Pillar Microcavities

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hao; ZHENG Hou-Zhi; ZHANG Ji-Dong; XU Ping; TAN Ping-Heng; YANG Fu-Hua; ZENG Yi-Ping

    2004-01-01

    @@ We report the fabrication and the measurement of microcavities whose optical eigenmodes were discrete and were well predicted by using the model of the photonic dot with perfectly reflected sidewalls. These microcavities were consisted of the semiconductor pillar fabricated by the simple wet-etched process and successive metal coating. Angle-resolved photoluminescence spectra demonstrate the characteristic emission of the corresponding eigenmodes, as its pattern revealed by varying both polar (θ) and azimuthal (φ) angles. It is shown that the metal-coated sidewalls can provide an efficient way to suppress the emission due to the leaking modes in these pillar microcavities.

  2. Radiative rate modification in CdSe quantum dot-coated microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Veluthandath, Aneesh V.; Bisht, Prem B., E-mail: bisht@iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600036 (India)

    2015-12-21

    Whispering gallery modes (WGMs) of the microparticles with spherical or cylindrical symmetry have exceptionally high quality factors and small mode volume. Quantum dots (QDs) are zero dimensional systems with variable band gap as well as luminescent properties with applications in photonics. In this paper, the WGMs have been observed in the luminescence spectra of CdSe QD-coated single silica microspheres. Theoretical estimations of variation of resonance frequency, electric field, and Q-values have been done for a multilayer coating of QDs on silica microspheres. Observed WGMs have been identified for their mode number and polarization using Mie theory. Broadening of modes due to material absorption has been observed. Splitting of WGMs has also been observed due to coherent coupling of counter propagating waves in the microcavity due to the presence of QDs. At room temperature, the time-resolved study indicates the modification of the radiative rate due to coupling of WGMs of the microcavity-QD hybrid system.

  3. Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer

    CERN Document Server

    Xiao, Yun-Feng; Xue, Peng; Xiao, Lixin; Li, Yan; Dong, Chun-Hua; Han, Zheng-Fu; Gong, Qihuang

    2010-01-01

    Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.

  4. Quantum electrodynamics in a whispering-gallery microcavity coated with a polymer nanolayer

    International Nuclear Information System (INIS)

    Quasi-transverse-electric and -transverse-magnetic fundamental whispering gallery modes in a polymer-coated silica microtoroid are theoretically investigated and demonstrated to possess very high-quality factors. The existence of a nanometer-thickness layer not only evidently reduces the cavity mode volume but also draws the maximal electric field's position of the mode to the outside of the silica toroid, where single quantum dots or nanocrystals are located. Both effects result in a strongly enhanced coherent interaction between a single dipole (for example, a single defect center in a diamond crystal) and the quantized cavity mode. Since the coated microtoroid is highly feasible and robust in experiments, it may offer an excellent platform to study strong-coupling cavity quantum electrodynamics, quantum information, and quantum computation.

  5. Enhancement of UV Excited Photoluminescence by Fabry-Perot Microcavity

    Directory of Open Access Journals (Sweden)

    Chunxian Tao

    2015-01-01

    Full Text Available A light-emitting microcavity with the structure of dielectric mirror/phosphor coating/dielectric mirror for the enhancement of PL efficiency excited under UV light was designed and fabricated. The fluorescence emission of Lumogen S0795 coating within microcavity structure is significantly enhanced compared with the coating on bare substrate. The measurement results indicate the possibility of developing front illuminated CCD based on optical resonant cavity for UV-visible imaging with higher sensitivity.

  6. Carbon nanotube biconvex microcavities

    Science.gov (United States)

    Butt, Haider; Yetisen, Ali K.; Ahmed, Rajib; Yun, Seok Hyun; Dai, Qing

    2015-03-01

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2-3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  7. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  8. Absorption characteristics of bacteriorhodopsin molecules

    Indian Academy of Sciences (India)

    H K T Kumar; K Appaji Gowda

    2000-03-01

    The bacteriorhodopsin molecule absorbs light and undergoes a series of structural transformation following a well-defined photocycle. The complex photocycle is transformed to an equivalent level diagram by considering the lifetime of the intermediate states. Assuming that only and states are appreciably populated at any instant of time, the level diagram is further simplified to two-level system. Based on the rate equations for two-level system, an analytic expression for the absorption coefficient of bacteriorhodopsin molecule is derived. It is applied to study the behaviour of absorption coefficient of bacteriorhodopsin film in the visible wavelength region of 514 nm. The dependence of absorption coefficient of bacteriorhodopsin film on the thickness of the film, total number density of active molecules and initial number density of molecules in -state is presented in the graphical form.

  9. Titanium-enhanced Raman microcavity laser.

    Science.gov (United States)

    Deka, Nishita; Maker, Ashley J; Armani, Andrea M

    2014-03-15

    Whispering gallery mode microcavities are ideally suited to form microlaser devices because the high circulating intensity within the cavity results in ultralow lasing thresholds. However, to achieve low-threshold Raman lasing in silica devices, it is necessary to have quality factors above 100 million. One approach to circumvent this restriction is to intercalate a sensitizer into the silica, which increases the Raman gain. In the present work, we demonstrate a Raman laser based on a titanium sensitized silica solgel coated toroidal microcavity. By tuning the concentration of the Ti, the Raman efficiency improves over 3× while maintaining sub-mW thresholds. PMID:24690786

  10. Biexcitons in semiconductor microcavities

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.;

    2003-01-01

    In this paper, the present status of the experimental study of the optical properties of biexcitons in semiconductor microcavities is reviewed. In particular, a detailed investigation of a polariton-biexciton transition in a high-quality single quantum well GaAs/AlGaAs microcavity is reported...

  11. Nonlinear optical properties of bacteriorhodopsin

    Science.gov (United States)

    Hendrickx, Eric; Verbiest, Thierry; Clays, Koen J.; Persoons, Andre P.

    1993-04-01

    In this paper we show the applicability of Hyper-Rayleigh scattering to obtain hyperpolarizabilities of ionic and biochemical compounds. It was found that dark-adapted bacteriorhodopsin and its isolated chromophore have considerable second order nonlinear optical properties. Information obtained from depolarization studies of the scattered light is discussed.

  12. Orientation of a bacteriorhodopsin thin film deposited by dip coating technique and its chiral SHG as studied by SHG interference technique

    Science.gov (United States)

    Yamada, Toshiki; Haruyama, Yoshihiro; Kasai, Katsuyuki; Terui, Toshifumi; Tanaka, Shukichi; Kaji, Takahiro; Kikuchi, Hiroshi; Otomo, Akira

    2012-03-01

    We show that by observing SHG interference bR thin films prepared by a simple dip coating technique have a polar orientation with C∞ symmetry. The SHG interference measurements were performed under various input and output polarization combinations at different incident angles or under the rotation of the quarter-wave retardation plate at specific incident angles. The interference patterns provide us with insight into the characteristics of non-vanishing nonlinear optical coefficients including chiral components. Abundant information can be obtained by observing SHG interference by using two chiral SH active films.

  13. Transient Microcavity Sensor

    CERN Document Server

    Shu, Fang-Jie; Özdemir, Şahin Kaya; Yang, Lan; Guo, Guang-Can

    2015-01-01

    A transient and high sensitivity sensor based on high-Q microcavity is proposed and studied theoretically. There are two ways to realize the transient sensor: monitor the spectrum by fast scanning of probe laser frequency or monitor the transmitted light with fixed laser frequency. For both methods, the non-equilibrium response not only tells the ultrafast environment variance, but also enable higher sensitivity. As examples of application, the transient sensor for nanoparticles adhering and passing by the microcavity is studied. It's demonstrated that the transient sensor can sense coupling region, external linear variation together with the speed and the size of a nanoparticle. We believe that our researches will open a door to the fast dynamic sensing by microcavity.

  14. Resonant optical rectification in bacteriorhodopsin.

    Science.gov (United States)

    Groma, Géza I; Colonna, Anne; Lambry, Jean-Christophe; Petrich, Jacob W; Váró, György; Joffre, Manuel; Vos, Marten H; Martin, Jean-Louis

    2004-05-25

    The relative role of retinal isomerization and microscopic polarization in the phototransduction process of bacteriorhodopsin is still an open question. It is known that both processes occur on an ultrafast time scale. The retinal trans-->cis photoisomerization takes place on the time scale of a few hundred femtoseconds. On the other hand, it has been proposed that the primary light-induced event is a sudden polarization of the retinal environment, although there is no direct experimental evidence for femtosecond charge displacements, because photovoltaic techniques cannot be used to detect charge movements faster than picoseconds. Making use of the known high second-order susceptibility chi(2) of retinal in proteins, we have used a nonlinear technique, interferometric detection of coherent infrared emission, to study macroscopically oriented bacteriorhodopsin-containing purple membranes. We report and characterize impulsive macroscopic polarization of these films by optical rectification of an 11-fs visible light pulse in resonance with the optical transition. This finding provides direct evidence for charge separation as a precursor event for subsequent functional processes. A simple two-level model incorporating the resonant second-order optical properties of retinal, which are known to be a requirement for functioning of bacteriorhodopsin, is used to describe the observations. In addition to the electronic response, long-lived infrared emission at specific frequencies was observed, reflecting charge movements associated with vibrational motions. The simultaneous and phase-sensitive observation of both the electronic and vibrational signals opens the way to study the transduction of the initial polarization into structural dynamics. PMID:15148391

  15. Nonlinear Optical Studies of Bacteriorhodopsin

    Science.gov (United States)

    Rao, D. V. G. L. N.; Aranda, F. J.; Chen, Z.; Akkara, J. A.; Kaplan, D. L.; Nakashima, M.

    We report interesting results on nonlinear optics at low powers in bacteriorhodopsin films with applications in all-optical switching and modulation. Chemically stabilized films of bacteriorhodopsin in a polymer matrix for which the lifetime of the excited M state is 3 to 4 orders of magnitude longer than that of water solutions of wild-type bR were used in these experiments. Due to the sensitivity of the films, very small powers of order microwatts are required for optical phase conjugation. The influence of the fast photochemical M to B transition induced by blue light on the saturation intensity, phase conjugate intensity and switching time was established. We also report our measurements of the intensity dependence of the self-focusing and self-defocusing properties of wild-type bR in water solution using the Z-scan technique with low power cw lasers at two wavelengths on either side of the absorption band. Our measurements indicate that the sign of the nonlinearity depends on the wavelength and the magnitude depends on the fluence of the incident laser beam. The observed self-focusing and defocusing is not due to the intrinsic electronic nonlinearity. The observations can be explained in terms of the Kramers-Kronig dispersion relation that relates the real and imaginary parts of the complex index of refraction.

  16. Optical limiting by chemically enhanced bacteriorhodopsin films

    Science.gov (United States)

    Song, Q. Wang; Zhang, Chungping; Gross, Richard; Birge, Robert

    1993-05-01

    Measurements of effective nonlinearity of a chemically enhanced bacteriorhodopsin film are presented, using 2-scan method. Optical limiting properties and the film's nonlinear transmission properties of the film are also studied.

  17. Semiconductor microcavity polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Vinogradov, Evgenii A [Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region (Russian Federation)

    2002-12-31

    The optical properties of wide-gap semiconductor films on metal substrates were investigated experimentally by infrared spectroscopy, Raman scattering, and femtosecond spectroscopy techniques as well as theoretically in the framework of linear crystal optics. The optical spectra of such planar structures (microresonators) were shown to bear information on electromagnetic excitations of both the surface and the volume of the structure. The optical spectra are determined by the interaction of all dipole-active excitations of the component materials with the electromagnetic modes of the microresonator, which in turn are determined by the permittivities of each component material, microcavity (microresonator) thickness, and the experimental conditions. (reviews of topical problems)

  18. Nonlinear Optical Image Processing with Bacteriorhodopsin Films

    Science.gov (United States)

    Downie, John D.; Deiss, Ron (Technical Monitor)

    1994-01-01

    The transmission properties of some bacteriorhodopsin film spatial light modulators are uniquely suited to allow nonlinear optical image processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude transmission feature of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. The bacteriorhodopsin film displays the logarithmic amplitude response for write beam intensities spanning a dynamic range greater than 2.0 orders of magnitude. We present experimental results demonstrating the principle and capability for several different image and noise situations, including deterministic noise and speckle. Using the bacteriorhodopsin film, we successfully filter out image noise from the transformed image that cannot be removed from the original image.

  19. Novelty filter that uses a bacteriorhodopsin film

    Science.gov (United States)

    Okamoto, Takayuki; Yamaguchi, Ichirou; Boothroyd, Simon A.; Chrostowski, Jacek

    1997-01-01

    We propose a new novelty optical filter that uses a bacteriorhodopsin film. This filter is based on the time-dependent nonlinear diffraction efficiency of real-time holograms recorded in the film. As soon as the signal beam carrying a pattern is diffracted by the polarization hologram recorded in the bacteriorhodopsin film, it begins to erase the hologram and suppresses the diffraction of the beam at the position of the stationary part of the pattern. This filter enhances only leading edges of moving patterns. In this system undesired scattered light, which is orthogonally polarized to the diffracted beam, is discriminated by a polarizer.

  20. Bacteriorhodopsin-based bipolar photosensor for biomimetic sensing

    Science.gov (United States)

    Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Akiba, Makoto; Tominari, Yukihiro; Kaji, Takahiro; Terui, Toshifumi; Peper, Ferdinand; Tanaka, Shukichi; Katagiri, Yoshitada; Kikuchi, Hiroshi; Okada-Shudo, Yoshiko; Otomo, Akira

    2013-10-01

    Bacteriorhodopsin (bR) is a promising biomaterial for several applications. Optical excitation of bR at an electrode-electrolyte interface generates differential photocurrents while an incident light is turned on and off. This unique functional response is similar to that seen in retinal neurons. The bR-based bipolar photosensor consists of the bR dip-coated thin films patterned on two ITO plates and the electrolyte solution. This bipolar photocell will function as a biomimetic photoreceptor cell. The bipolar structure, due to the photocurrent being generated in alignment with the cathodic direction, makes the excitatory and inhibitory regions possible. This scheme shows our bipolar cell can act as a basic unit of edge detection and forms the artificial visual receptive field.

  1. Nonlinear transmittance of the 4-keto bacteriorhodopsin

    Science.gov (United States)

    Vanhanen, J.; Leppanen, V. P.; Jaaskelainen, T.; Parkkinen, J. P. S.; Parkkinen, S.

    1999-09-01

    The photocycle of the 4-keto bacteriorhodopsin is investigated. We constructed a multilevel theoretical model for the nonlinear transmittance properties of the material. Adjusting the relaxation parameters we are able to fit the theoretical intensity dependent transmittance curves into the experiments and to determine the photocycle from simple optical measurements.

  2. Biexciton dephasing in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, P.; Langbein, W.; Woggon, U.;

    2001-01-01

    The experimental observation of biexcitons in microcavities has been addressed recently. A well-resolved polariton-biexciton transition was observed in a high-quality GaAs single quantum well (QW) /spl lambda/-microcavity of 25 nm well width using a pump-probe experiment. In this microcavity the ...

  3. Nonlinear transmission properties in bacteriorhodopsin-embedded photonic crystal

    Science.gov (United States)

    Okada-Shudo, Yoshiko; Ishihara, Teruya

    2003-11-01

    Transmission spectra and photoinduced transmission change are observed in periodic waveguide which consist of a quartz grating substrate and a thin protein film of bacteriorhodopsin. We propose a scheme to achieve all optical switching using the photoinduced refractive index change of bacteriorhodopsin.

  4. Kinetic vs. Thermodynamic Control of Bacteriorhodopsin Pumping

    Science.gov (United States)

    Gunner, Marilyn

    2011-03-01

    Bacteriorhodopsin is a transmembrane proton pump that converts light energy to a transmembrane electrochemical gradient. Retinal, bound in the center of the protein, absorbs light and isomerizes from the all-trans to 13-cis configuration. A series of conformational changes and proton transfers then restores the structure to the all-trans ground state while pumping one proton from the high pH cell interior to the low pH exterior, saving energy in an electrochemical gradient. Poorly understood gating elements control key steps where incorrect proton transfer would return the protein to the ground state without pumping. The gate's barrier height determines how much the pump leaks. Analysis of high-resolution structures trapped in different intermediates has produced ideas for how bacteriorhodopsin ensures pumping. There are two contrasting strategies, one primarily thermodynamic and the other relying on kinetic control to ensure that protons are moved uphill. With thermodynamic control, residue protonation states always remain in quasi-equilibrium. Relatively slow conformational changes shift the energy landscape modifying site pKas. Residues then change ionization remaining in equilibrium in each metastable intermediate. The sequence of intermediates imparts the directionality to the transfers. Alternatively, the direction of transfer is determined by the accessibility of low energy pathways so is thus is under kinetic control. We will discuss which steps in the bacteriorhodopsin photocycle are under thermodynamic or under kinetic control. The role of three specific conformational changes (retinal isomerization, Arg82 reorientation and Glu194 and 204 separations) on the degree of proton transfer will be described. Supported by NFS MCB 1022208. Carried out with Yifan Song now at the University of Washington Department of Biochemistry.

  5. Retinal isomerization dynamics in dry bacteriorhodopsin films

    Science.gov (United States)

    Colonna, Anne; Groma, Géza I.; Vos, Marten H.

    2005-10-01

    The primary photoprocesses in neutral and acid forms of oriented dried bacteriorhodopsin films were investigated by femtosecond absorption spectroscopy. The excitation energy dependence of the signals was used to distinguish photochemistry from processes involving photophysics of photocycle intermediates. Both the kinetics and the quantum yield of all- trans excited state decay by retinal photoisomerization and subsequent J → K transition were found to be very similar as in hydrated environments. Therefore, unlike slower photocycle phases, communication of the retinal with the environment does not play a role in retinal isomerization. Our results are important for understanding recent nonlinear optical applications of such films.

  6. Ultrafast all-optical switching in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-04-01

    All-optical switching has been demonstrated in bacteriorhodopsin based on excited-state nonlinear absorption. A probe laser beam at 640 nm corresponding to the O-state absorption maximum is switched due to a strong pulsed pump laser beam at 570 nm, that corresponds to the maximum ground state absorption. We have studied the effect of variation in pulse width and in small signal absorption coefficient on the switching characteristics. The switching time decreases as the pulse width of the pump beam decreases and the small signal absorption coefficient increases. The switching contrast depends mainly on the peak pumping intensity.

  7. Diamond based photonic crystal microcavities.

    Science.gov (United States)

    Tomljenovic-Hanic, S; Steel, M J; de Sterke, C Martijn; Salzman, J

    2006-04-17

    Diamond based technologies offer a material platform for the implementation of qubits for quantum computing. The photonic crystal architecture provides the route for a scalable and controllable implementation of high quality factor (Q) nanocavities, operating in the strong coupling regime for cavity quantum electrodynamics. Here we compute the photonic band structures and quality factors of microcavities in photonic crystal slabs in diamond, and compare the results with those of the more commonly-used silicon platform. We find that, in spite of the lower index contrast, diamond based photonic crystal microcavities can exhibit quality factors of Q=3.0x10(4), sufficient for proof of principle demonstrations in the quantum regime. PMID:19516502

  8. Stokes Soliton in Optical Microcavities

    CERN Document Server

    Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-01-01

    Solitons are wavepackets that resist dispersion through a self-induced potential well. They are studied in many fields, but are especially well known in optics on account of the relative ease of their formation and control in optical fiber waveguides. Besides their many interesting properties, solitons are important to optical continuum generation, in mode-locked lasers and have been considered as a natural way to convey data over great distances. Recently, solitons have been realized in microcavities thereby bringing the power of microfabrication methods to future applications. This work reports a soliton not previously observed in optical systems, the Stokes soliton. The Stokes soliton forms and regenerates by optimizing its Raman interaction in space and time within an optical-potential well shared with another soliton. The Stokes and the initial soliton belong to distinct transverse mode families and benefit from a form of soliton trapping that is new to microcavities and soliton lasers in general. The di...

  9. Solution processing of microcavity for BioMEMS application

    Science.gov (United States)

    Luong, Vu Nam; Ukita, Yoshiaki; Takamura, Yuzuru; Mitani, Tadaoki; Shimoda, Tatsuya; Dung Dang, Thi My; Chien Dang, Mau

    2014-09-01

    Compared to the conventional silicon-based technology, the solution process appears to be a revolution in the field of micro/nanofabrication due to its advantages of high efficiency in material and energy consumption and the use of low cost material. In this paper, we introduce a new approach to fabricate BioMEMS devices using this novel technology to make microcavity. Zirconium oxide patterns were formed on the silicon substrate simply by spin coating its precursor and thermal imprinting technique. We used poly-propylene carbonate (PPC) for the sacrificial material due to its unique pyrolysis property. The PPC was coated on the ZrO patterns and excess film was etched by oxygen plasma but retaining PPC structure between the lines of ZrO pattern. Then another ZrO layer was coated to encapsulate the PPC. The final microcavity structures were obtained by just baking the substrate by pyrolyzing the PPC. The obtained results show the approach’s prospect of becoming an ideal alternative for the current BioMEMS micro/nanofabrication technologies

  10. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The morphology of bacteriorhodopsin reconstituted into dimyristoylphosphatidylcholine and egg-phosphatidylcholine vesicles was observed by freeze-fracture electron microscopy. The rotational diffusion of bacteriorhodopsin at different concentrations of melittin was measured by observing flash-induced transient dichroism in dimyristoylphosphatidylcholine vesicles. In the presence of melittin, bacteriorhodopsin molecules in dimyristoylphosphatidylcholine vesicles were aggregated into large particles or patches, and the ability of rotational diffusion of bacteriorhodop sin in vesicles was decreased. This suggests that melittin produces its effect via direct electrostatic interaction with bacteriorhodopsin. Low temperature-induced aggregation of bacteriorhodopsin was also observed in dimyristoylphosphatidylcholine vesicles. Low temperature may cause phase separation. Bacteriorhodopsin was also successfully reconstituted into egg-phosphatidylcholine vesicles, but Iow temperature-induced aggregation of bacteriorhodopsin in dimyristoylphosphati dylcholine cannot appear in egg-phosphatidylcholine vesicles. This suggests that different lipids have different effects on bacteriorhodopsin in vesicles.

  11. Multi-exponentially Photoelectric Response of Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    姚保利; 徐大纶; 侯洵; 胡坤生; 王敖金

    2001-01-01

    A thin oriented bacteriorhodopsin (bR) film is deposited on a stainless steel slide by use of the electrophoretic sedimentation method. A junction is made with electrolyte gels having a counterelectrode to construct a bRbased photoelectric detector. The photoelectric response signal to a 10ns laser pulse is measured. A theory on the photoelectric kinetics of bR is developed based on the concept of the charge displacement current and the bR photocycle rate equations. Comparison between the theoretical and experimental results proves that the bR photoelectric response to a short laser pulse is a multi-exponential process. The decay time constants and amplitudes of each exponential component are obtained by data fitting.

  12. Bacteriorhodopsin: Tunable Optical Nonlinear Magnetic Response

    CERN Document Server

    Bovino, F A; Sibilia, C; Giardina, M; Váró, G; Gergely, C

    2011-01-01

    We report on a strong and tunable magnetic optical nonlinear response of Bacteriorhodopsin (BR) under "off resonance" femtosecond (fs) pulse excitation, by detecting the polarization map of the noncollinear second harmonic signal of an oriented BR film, as a function of the input beam power. BR is a light-driven proton pump with a unique photochemistry initiated by the all trans retinal chromophore embedded in the protein. An elegant application of this photonic molecular machine has been recently found in the new area of optogenetics, where genetic expression of BR in brain cells conferred a light responsivity to the cells enabling thus specific stimulation of neurons. The observed strong tunable magnetic nonlinear response of BR might trigger promising applications in the emerging area of pairing optogenetics and functional magnetic resonance imaging susceptible to provide an unprecedented complete functional mapping of neural circuits.

  13. Enhanced spontaneous emission factor for microcavity lasers

    Institute of Scientific and Technical Information of China (English)

    Xiaoxia Zhang; Wei Pan

    2008-01-01

    The microcavity and the influence of nonradiative recombination can control spontaneous emission. An analytic resolution of rate equation is studied for microcavity lasers. The relationship between output prop- erties and structural parameters of multi-quantum wells (MQWs) is obtained. One of the most important consequences of the incrcased spontaneous emission factor is the reduction of laser threshold. It is found that the characteristic curve of a "thresholdless" laser is strongly nonradiative depopulation-dependent. The light output is increased by the enhanced well number and the reduced width. In particular, there is an optimal well number corresponding to the lowest threshold current density for MQW structure in the microcavity lasers.

  14. Ultralong distance coupling between asymmetric resonant microcavities

    OpenAIRE

    Shu, Fang-Jie; Zou, Chang-Ling; Chen, Wen-Cong; Sun, Fang-Wen

    2013-01-01

    The ultralong distance coupling between two Asymmetric Resonant Microcavities (ARCs) is studied. Different from traditional short distance tunneling coupling between microcavities, the high efficient free space directional emission and excitation allow ultralong distance energy transfer between ARCs. In this paper, a novel unidirectional emission ARC, which shows directionality I40 = 0.54, is designed for materials of refractive index n = 2.0. Compared with regular whispering gallery microres...

  15. Numerical simulation of the nonlinear optical response of bacteriorhodopsin

    Science.gov (United States)

    Kowalski, Gregory J.

    1996-10-01

    The numerical simulation of the nonlinear optical behavior of bacteriorhodopsin in a solution of water is described. Relationships for the intensity dependent absorption coefficient and index of refraction are developed and used in the numerical simulation of bacteriorhodopsin as an optical limiter and as defocussing element for laser pulses in the picosecond regime. The algorithm is a transient finite volume method that is coupled with a 'ray model' of the radiation which simultaneously solves the heat transfer and Maxwell's equations. The nonlinear behavior of the material is included in this analysis using a modified Euler predictor-corrector integration technique. Calculated power limiting and z-scan curves are in qualitative agreement with experiments. These results indicate that the code can be used to investigate and optimize optical systems which use the nonlinear behavior of bacteriorhodopsin.

  16. Bacteriorhodopsin overview of fundamentals and applications

    Science.gov (United States)

    Thai, Serey

    1999-07-01

    Bacteriorhodopsin (BR) is a light transducing photochromic protein in the purple membrane of a salt-loving microorganism that inhabits salt marshes. It has strong absorption in a broad region of the visible spectrum. The B- state in the photocycle can be considered to be the ground state, which has absorption maxima at 570 nm. Perhaps, the most intriguing features of this organic photopolymer are its extraordinary stability in the chemical, thermal and photochemical sense, its large optical nonlinearity, dynamic nature, durability, real-time holographic recording capabilities, and information storage potential. Furthermore, BR-doped polymer film can be fabricated for a large-scale application, whereas photorefractive crystals like BSO or KNSBM cannot be grown easily to the same dimension as BR. Hence, BR's potential in optical system includes transient dynamic applications of an M-type hologram and 3D optical memories of a branched photocycle that shows a great promise for data storage and retrieval due to its high capacity. The major advantages of this organic photopolymer include high density, low cost, low weight and portability which are a projected requirement for the Air Force and commercial applications.

  17. Enhancement of photoanisotropy in Bacteriorhodopsin films

    Science.gov (United States)

    Rao, D. V. G. L. N.; Wu, Pengfei

    2003-03-01

    The biological material of Bacteriorhodopsin (bR) and its derivatives are among the most promising candidates for potential applications in photonics in view of their large optical nonlinearity, ease of optimization and tailoring optical properties. We report a novel scheme for significant enhancement of photo-anisotropic effects in bR films using two exciting beams at different wavelengths with orthogonal polarization. We monitor the photoinduced anisotropy with a probe beam passing through the bR film placed between two crossed polarizers. Near twenty times enhancement of probe beam intensity has been observed as compared with the case of only one exciting beam. The mechanism of the enhancement originates from optimization of direction-selected photo-isomerization of the biomaterial controlled by the polarized exciting beams. We also demonstrate an all-optical switch with the additional novel feature of output sign-control by applying this technique. It is possible to achieve fast optical switching since the photo-isomerization of M to B state of the bR molecule may be as fast as nanoseconds.

  18. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2007-03-01

    We report the pump--probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  19. Fast integrated optical switching by the protein bacteriorhodopsin

    Science.gov (United States)

    Fábián, László; Wolff, Elmar K.; Oroszi, László; Ormos, Pál; Dér, András

    2010-07-01

    State-of-the-art photonic integration technology is ready to provide the passive elements of optical integrated circuits, based either on silicon, glass or plastic materials. The bottleneck is to find the proper nonlinear optical (NLO) materials in waveguide-based integrated optical circuits for light-controlled active functions. Recently, we proposed an approach where the active role is performed by the chromoprotein bacteriorhodopsin as an NLO material, that can be combined with appropriate integrated optical devices. Here we present data supporting the possibility of switching based on a fast photoreaction of bacteriorhodopsin. The results are expected to have important implications for photonic switching technology.

  20. Measurements of photoinduced refractive index changes in bacteriorhodopsin films

    Indian Academy of Sciences (India)

    Ravinder Kumar Banyal; B Raghavendra Prasad

    2007-03-01

    We report the pump-probe measurements of nonlinear refractive index changes in photochromic bacteriorhodopsin films. The photoinduced absorption is caused by pump beam at 532 nm and the accompanying refractive index changes are studied using a probe beam at 633 nm. The proposed technique is based on a convenient and accurate determination of optical path difference using digital interferometry-based local fringe shift. The results are presented for the wild-type as well as genetically modified D96N variant of the bacteriorhodopsin.

  1. Signature of Wave Chaos in Spectral Characteristics of Microcavity Lasers

    CERN Document Server

    Sunada, Satoshi; Fukushima, Takehiro; Harayama, Takahisa

    2016-01-01

    We report the spectral characteristics of fully chaotic and non-chaotic microcavity lasers under continuous-wave operating conditions. It is found that fully chaotic microcavity lasers operate in single mode, whereas non-chaotic microcavity lasers operate in multimode. The suppression of multimode lasing for fully chaotic microcavity lasers is explained by large spatial overlaps of the resonance wave functions that spread throughout the two-dimensional cavity due to the ergodicity of chaotic ray orbits.

  2. Ultimate-fast all-optical switching of a microcavity

    NARCIS (Netherlands)

    Yuce, E.

    2013-01-01

    In this thesis we study ultrafast all-optical switching of microcavities. We employ the electronic Kerr effect to switch the resonance frequency of microcavities operating at telecom wavelengths. We observe the fastest possible switching of a microcavity resonance within 300 fs. The switching speed

  3. Brillouin Optomechanics in Coupled Silicon Microcavities

    CERN Document Server

    Espinel, Yovanny A V; Luiz, Gustavo O; Alegre, Thiago P M; Wiederhecker, Gustavo S

    2016-01-01

    The simultaneous control of optical and mechanical waves has enabled a range of fundamental and technological breakthroughs, from the demonstration of ultra-stable frequency reference devices to the exploration of the quantum-classical boundaries in laser-cooling experiments. More recently, such an opto-mechanical interaction has been observed in integrated nano-waveguides and microcavities in the Brillouin regime, where short-wavelength mechanical modes scatters light at several GHz. Here we engineer coupled optical microcavities spectra to enable a low threshold excitation of mechanical travelling-wave modes through backward stimulated Brillouin scattering. Exploring the backward scattering we propose microcavity designs supporting super high frequency modes ($\\sim25$ GHz) an large optomechanical coupling rates ($g_0/2\\pi \\sim 50$ kHz).

  4. Exceptional points in anisotropic planar microcavities

    CERN Document Server

    Richter, Steffen; Sturm, Chris; Rosenow, Bernd; Grundmann, Marius; Schmidt-Grund, Rüdiger

    2016-01-01

    Planar microcavities allow the control and manipulation of spin-polarization, manifested in phenomena like the optical spin Hall effect due to the intrinsic polarization mode splitting. Here, we study a transparent microcavity with broken rotational symmetry, realized by aligning the optical axis of a uniaxial cavity material in the cavity plane. We demonstrate that the in-plane optical anisotropy gives rise to exceptional points in the dispersion relation, which occur pair-wise, are circularly polarized, and are cores of polarization vortices. These exceptional points are a result of the non-Hermitian character of the system, and are in close relationship to singular optical axes in absorptive biaxial systems.

  5. Open-access microcavities for chemical sensing

    Science.gov (United States)

    Vallance, Claire; Trichet, Aurelien A. P.; James, Dean; Dolan, Philip R.; Smith, Jason M.

    2016-07-01

    The recent development of open-access optical microcavities opens up a number of intriguing possibilities in the realm of chemical sensing. We provide an overview of the different possible sensing modalities, with examples of refractive index sensing, optical absorption measurements, and optical tracking and trapping of nanoparticles. The extremely small mode volumes within an optical microcavity allow very small numbers of molecules to be probed: our current best detection limits for refractive index and absorption sensing are around 105 and 102 molecules, respectively, with scope for further improvements in the future.

  6. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  7. Coatings.

    Science.gov (United States)

    Anderson, Dennis G.

    1989-01-01

    This review covers analytical techniques applicable to the examination of coatings, raw materials, and substrates upon which coatings are placed. Techniques include chemical and electrochemical methods, chromatography, spectroscopy, thermal analysis, microscopy, and miscellaneous techniques. (MVL)

  8. Low-threshold conical microcavity dye lasers

    DEFF Research Database (Denmark)

    Grossmann, Tobias; Schleede, Simone; Hauser, Mario;

    2010-01-01

    We report on lasing in rhodamine 6G-doped, conical polymeric microcavities with high quality factors fabricated on a silicon substrate. Threshold pump energies as low as 3 nJ are achieved by free-space excitation in the quasistationary pumping regime with lasing wavelengths around 600 nm. Finite...

  9. Biexcitons or bipolaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, Paola; Langbein, Wolfgang Werner; Woggon, U;

    2000-01-01

    A well-resolved nonlinear optical transition associated with biexcitons is observed in a high-quality microcavity with a Rabi splitting exceeding the binding energy of biexcitons in the embedded quantum well. This transition is identified as an induced absorption from the lower polariton to the b...

  10. Stimulated secondary emission from semiconductor microcavities

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Mizeikis, V.; Langbein, Wolfgang Werner;

    2001-01-01

    We find strong influence of final-state stimulation on the time-resolved light emission dynamics from semiconductor microcavities after pulsed excitation allowing angle-resonant polariton-polariton scattering on the lower-polariton branch. The polariton dynamics can be controlled by injection...

  11. Directional Secondary Emission of a Semiconductor Microcavity

    DEFF Research Database (Denmark)

    Langbein, Wolfgang; Jensen, Jacob Riis; Hvam, Jørn Märcher

    2000-01-01

    We investigate the time-resolved secondary emission of a homogeneously broadened microcavity after resonant excitation. The sample consists of a 25nm GaAs single quantum well (QW) in the center of a wedged ¥ë cavity with AlAs/AlGaAs Bragg reflectors, grown by molecular beam epitaxy. At zero detun...

  12. Optical Processing of Speckle Images with Bacteriorhodopsin for Pattern Recognition

    Science.gov (United States)

    Downie, John D.; Tucker, Deanne (Technical Monitor)

    1994-01-01

    Logarithmic processing of images with multiplicative noise characteristics can be utilized to transform the image into one with an additive noise distribution. This simplifies subsequent image processing steps for applications such as image restoration or correlation for pattern recognition. One particularly common form of multiplicative noise is speckle, for which the logarithmic operation not only produces additive noise, but also makes it of constant variance (signal-independent). We examine the optical transmission properties of some bacteriorhodopsin films here and find them well suited to implement such a pointwise logarithmic transformation optically in a parallel fashion. We present experimental results of the optical conversion of speckle images into transformed images with additive, signal-independent noise statistics using the real-time photochromic properties of bacteriorhodopsin. We provide an example of improved correlation performance in terms of correlation peak signal-to-noise for such a transformed speckle image.

  13. Nonlinear optical properties of bacteriorhodopsin, retinal, and related molecules

    Science.gov (United States)

    Hendrickx, Eric; Clays, Koen J.; Vinckier, A.; Persoons, Andre P.; Dehu, Christophe; Bredas, Jean-Luc

    1995-10-01

    The first hyperpolarizabilities, (beta) , of bacteriorhodopsin, retinal, and related molecules were determined experimentally by using the hyper-Rayleigh scattering technique and compared to the calculated values obtained with the semiempirical intermediate neglect of differential overlap/configuration interaction/sum-over-states method. The experimental and theoretical results are in excellent mutual agreeement. The hyper-Rayleigh scattering technique is shown to be very sensitive to the degree of solubilization of bacteriorhodopsin. Theoretical and experimental data confirm the expected dependence of (beta) on the first transition energy as well as an exponential increase of (beta) with the number of double bonds. It was found that, upon trans to 13-cis or 9-cis isomerization of a retinal double bond, a constant fraction of the (beta) value is lost, regardless of the nature of the electron withdrawing group or the solvent of choice.

  14. Do Cation-π Interactions Exist in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HU Kun-Sheng; WANG Guang-Yu; HE Jin-An

    2001-01-01

    Metal ions are essential to the structure and physiological functions of bacteriorhodopsin. Experimental evidence suggests the existence of specific cation binding to the negatively charged groups of Asp85 and Asp212 via an electrostatic interaction. However, only using electrostatic force is not enough to explain the role of the metal cations because the carboxylate of Asp85 is well known to be protonated in the M intermediate. Considering the presence of some aromatic amino acid residues in the vicinity of the retinal pocket, the existence of cation-π interactions between the metal cation and aromatic amino acid residues is suggested. Obviously, introduction of this kind of interaction is conducive to understanding the effects of the metal cations and aromatic amino acid residues inside the protein on the structural stability and proton pumping of bacteriorhodopsin.

  15. Nonlinear polarization interaction in bacteriorhodopsin films with anisotropically saturating absorption

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Druzhko, Anna B.; Dyukova, Tatyana V.

    1996-06-01

    The effect of protein and matrix modifications on the photoanisotropic properties is studied for developing the concept of impact upon the main optical properties of the dynamic optical material based on bacteriorhodopsin (BR) both interaction of transmembrane protein--chromophore complex BR with matrix and interaction of protein opsin with chromophore retinal. Also possibility of the application of BR-films for the light polarization modulator is proposed.

  16. Nonlinear polarization-modulated spectroscopy of bacteriorhodopsin and its analogues

    Science.gov (United States)

    Taranenko, V. B.; Bazhenov, V. Yu; Kulikovskaya, O. A.

    1996-09-01

    We report on a novel nonlinear polarization-modulated spectroscopic method for an accurate measurement of the nonlinear change of both real and imaginary parts of the complex refractive index in isotropic materials having either scalar or tensor photoresponse. It is based on a vector two-wave-mixing interaction and heterodyne detection of dynamic change of optical polarization. New data on steady-state and transient nonlinear characteristics of bacteriorhodopsin-based materials (suspensions and polymer films) are obtained using this method.

  17. All-optical logic-gates based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Zhang Chun-Ping; Guo Zong-Xia; Tian Jian-Guo; Zhang Guang-Yin; Song Qi-Wang

    2005-01-01

    Based on self-diffraction in bacteriorhodopsin (bR) film, we propose all-optical NOT, XOR, half adder and XNOR logic operations. Using the relation between diffraction light and the polarization states of recording beams, we demonstrate NOT and XNOR logic operations. Studying the relation of polarization states among the diffracting, recording and reading beams, we implement XOR logic and half adder operations with three inputs. The methods are simple and practicable.

  18. Fabrication of Two-Dimensional Organic Photonic Crystal Microcavity

    Institute of Scientific and Technical Information of China (English)

    JIANG Ping; HU Xiao-Yong; YANG Hong; GONG Qi-Huang

    2006-01-01

    @@ A two-dimensional polystyrene photonic crystal microcavity is fabricated by the method of focused ion beam etching. The scanning electron microscopy and the transmittance spectrum are used to characterize the properties of the photonic crystal microcavity. The quality factor and the transmittance of the photonic crystal microcavity is more than 530 and 90%, respectively. The measured results are in agreement with the theoretical predictions.

  19. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xian-Gao; HUANG Xin-Fan; CHEN Kun-Ji; QIAN Bo; CHEN San; DING Hong-Lin; LIU Sui; WANG Xiang; XU Jun; LI Wei

    2008-01-01

    Hydrogenated amorphous silicon nitride based coupled optical microcavity is investigated theoretically and experimentally. The theoretical calculation of the transmittance spectra of optical microcavity with one cavity and coupled microcavity with two-cavity is performed.The optical eigenmode splitting for coupled microcavity is found due to the interaction between the neighbouring localized cavities.Experimentally,the coupled cavity samples are prepared by plasma enhanced chemical vapour deposition and characterized by photoluminescence measurements.It is found that the photoluminescence peak wavelength agrees well with the cavity mode in the calculated transmittance spectra.This eigenmode splitting is analogous to the electron state energy splitting in diatom molecules.

  20. Antenna-coupled microcavities for terahertz emission

    Energy Technology Data Exchange (ETDEWEB)

    Madéo, J., E-mail: Julien.madeo@univ-paris-diderot.fr; Todorov, Y.; Sirtori, C. [Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Matériaux et Phénomènes Quantiques, UMR7162, 75013 Paris (France)

    2014-01-20

    We have investigated the capacitive coupling between dipolar antennas and metal-dielectric-metal wire microcavities with strong sub-wavelength confinement in the terahertz region. The coupling appears in reflectivity measurements performed on arrays of antenna-coupled elements, which display asymmetric Fano lineshapes. The experimental data are compared to a temporal coupled-mode theory and finite elements electromagnetic simulations. We show that the Fano interferences correspond to coupling between a subradiant mode (microcavity) and a superradiant mode (antennas). This phenomenon allows one to enhance and control the radiative coupling of the strongly confined mode with the vacuum. These concepts are very useful for terahertz optoelectronic devices based on deep-sub-wavelength active regions.

  1. Enhancement of microcavity polariton relaxation under confinement

    OpenAIRE

    Paraïso, Taofiq; Sarchi, Davide; Nardin, Gaël; Cerna, Roland; Leger, Yoan; Pietka, Barbara; Richard, Maxime; El Daïf, Ounsi; Morier-Genoud, Francois; Savona, Vincenzo; Deveaud-Plédran, Benoit

    2009-01-01

    We experimentally investigate the relaxation of spatially confined microcavity polaritons. We measure the time- and energy-resolved photoluminescence under resonant excitation and in the low-density regime. In this way, we have access to the time evolution of the energy distribution of the polariton population. We show that, when one confined level is resonantly excited, after an initial transient, the population of the confined levels is thermally distributed. The reported efficiency of the ...

  2. Ultranarrow polaritons in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Langbein, Wolfgang;

    2000-01-01

    We have achieved a record high ratio (19) of the Rabi splitting (3.6 meV) to the polariton linewidth (190 mu eV), in a semiconductor lambda microcavity with a single 25 nm GaAs quantum well at the antinode. The narrow polariton lines are obtained with a special cavity design which reduces the exc...... predicted using the linewidth averaging model. (C) 2000 American Institute of Physics....

  3. Photonic Binding in Silicon-Colloid Microcavities

    OpenAIRE

    Xifré-Pérez, E.; García de Abajo, Francisco Javier; Fenollosa Esteve, Roberto; Meseguer, Francisco

    2009-01-01

    Photonic binding between two identical silicon-colloid-based microcavities is studied by using a generalized multipolar expansion. In contrast with previous works, we focus on low-order cavity modes that resemble low-energy electronic orbitals. For conservative light intensities, the interaction between cavity modes with moderate Q factors produces extremely large particle acceleration values. Optical forces dominate over vanderWaals, gravity, and Brownian motion, and they show a binding-anti...

  4. Photonic crystal microcavity engineering and high-density bio-patterning for chip-integrated microarray applications

    Science.gov (United States)

    Chakravarty, Swapnajit; Lai, Wei-Cheng; Zou, Yi; Chen, Ray T.

    2012-01-01

    While Q ~ 1million has been demonstrated in freely suspended photonic crystal (PC) membranes, the reduced refractive index contrast when PC microcavities are immersed in phosphate buffered saline (PBS), a typical ambient for biomolecules, reduces Q by more than 2 orders of magnitude. We experimentally demonstrate photonic crystal microcavity based resonant sensors coupled to photonic crystal waveguides in silicon on insulator for chemical and bio-sensing. Linear L-type microcavities are considered. In contrast to cavities with small modes volumes but low quality factors for bio-sensing, we show that increasing the length of the microcavity enhances the quality factor of the resonance by an order of magnitude and also increases the resonance wavelength shift while still retaining compact device characteristics. Q~26,760 and sensitivity down to 7.5ng/ml and ~9pg/mm2 in bio-sensing was experimentally demonstrated in SOI devices for goat anti-rabbit IgG antibodies with Kd~10-6M. The increase in cavity length follows from fundamental engineering limitations in ink-jet printing or microfluidic channels when unique receptor biomolecules are coated on separate adjacent sensors in a microarray.

  5. Photon properties of light in semiconductor microcavities

    Institute of Scientific and Technical Information of China (English)

    Guangcun SHAN; Wei HUANG

    2009-01-01

    Properties of atom-like emitters in cavities are successfully described by cavity quantum electrodynamics(cavity-QED).In this work,we focus on the issue of the steady-state and spectral properties of the light emitted by a driven microcavity containing a quantum well (QW) with the excitonic interactions using simulation of fully quantum-mechanical treatment.The system is coherently pumped with laser,and it is found that depending on the relative values of pumping rate of stimulated emission,either one or two peaks close to the excitation energy of the QW or to the natural frequency of the cavity are shown in the emission spectrum.Furthermore,the nonclassical proprieties of the emitted photon have been investigated.This excitonic system presents several dynamical and statistical similarities to the atomic system,in particular for the bad-cavity and good-cavity limits.The results show that the photon emission can be significantly amplified due to the coupling strength between a single emitter and radiation field in the microcavity,and it is concluded that the present semiconductor microcavity system may serve as a QW laser with low threshold.

  6. Synthetic holography based on scanning microcavity

    Directory of Open Access Journals (Sweden)

    A. Di Donato

    2015-11-01

    Full Text Available Synthetic optical holography (SOH is an imaging technique, introduced in scanning microscopy to record amplitude and phase of a scattered field from a sample. In this paper, it is described a novel implementation of SOH through a lens-free low-coherence system, based on a scanning optical microcavity. This technique combines the low-coherence properties of the source with the mutual interference of scattered waves and the resonant behavior of a micro-cavity, in order to realize a high sensitive imaging system. Micro-cavity is compact and realized by approaching a cleaved optical fiber to the sample. The scanning system works in an open-loop configuration without the need for a reference wave, usually required in interferometric systems. Measurements were performed over calibration samples and a lateral resolution of about 1 μm is achieved by means of an optical fiber with a Numerical Aperture (NA equal to 0.1 and a Mode Field Diameter (MDF of 5.6 μm.

  7. Cavity polaritons in an organic single-crystalline rubrene microcavity

    Science.gov (United States)

    Tsuchimoto, Yuta; Nagai, Hikaru; Amano, Masamitsu; Bando, Kazuki; Kondo, Hisao

    2014-06-01

    We fabricated a single-crystalline rubrene microcavity using a simple solution technique and observed cavity polaritons in the microcavity at room temperature (RT). Large Rabi splitting energies were obtained from dispersion of the cavity polaritons. Furthermore, photoluminescence from the cavity polaritons was observed at RT. The findings will be of importance for the application of cavity polaritons.

  8. Rate Constant Change of Photo Reaction of Bacteriorhodopsin Observed in Trimeric Molecular System.

    Science.gov (United States)

    Tsujiuchi, Yutaka; Masumoto, Hiroshi; Goto, Takashi

    2016-04-01

    To elucidate the time evolution of photo reaction of bacteriorhodopsin in glycerol mixed purple membrane at around 196 K under irradiation by red light, a kinetic model was constructed. The change of absorption with irradiation at times of 560 nm and 412 nm was analyzed for the purpose of determining reaction rates of photo reaction of bacteriorhodopsin and its product M intermediate. In this study it is shown that reaction rates of conversion from bacteriorhodopsin to the M intermediate can be explained by a set of linear differential equations. This model analysis concludes that bacteriorhodopsin in which constitutes a trimer unit with other two bacteriorhodopsin molecules changes into M intermediates in the 1.73 of reaction rate, in the initial step, and according to the number of M intermediate in a trimer unit, from three to one, the reaction rate of bacteriorhodopsin into M intermediates smaller as 1.73, 0.80, 0.19 which caused by influence of inter-molecular interaction between bacteriorhodopsin. PMID:27451646

  9. Light-Induced Charge Separation and Transfer in Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    HUANG Yu-Hua; LI Qing-Guo; ZHAO You-Yuan; ZHANG Zhong-Bin; OU-YANG Xiao-Ping; GONG Qin-Gan; CHEN Ling-Bing; LI Fu-Ming; LIU Jian; DING Jian-Dong

    2000-01-01

    The photo-voltage signals in bacteriorhodopsin(bR) excited by 1064nm pulse laser are different from those by 532 or 355 nm. It shows that the positive and negative photoelectric signals are produced by the motion of the positive and negative charges, respectively, and more energy is needed for producing the positive charges than the negative. The mechanism of light-induced charge generation and charge transfer in bR was studied and analyzed by measuring the photoelectric signals with different impedance of measuring circuit and different pulse-width of 532 nm laser as pump light.

  10. The behaviours of optical novelty filter based on bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Yuan Yi-Zhe; Liang Xin; Xu Tang; Zhang Chun-Ping; Song Qi-Wang

    2006-01-01

    The quality of the novelty filter image is investigated at different intensities of the incident blue and yellow beams irradiating a bacteriorhodopsin (bR) film. The relationship between the transmitted blue beams and the incident yellow beams is established. The results show that the contrast of the novelty filter image depends on the lifetime of longest lived photochemical state (M state). These results enable one to identify the direction of a moving object and to improve the quality of the novel filter image by prolonging the lifetime of M state.

  11. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin

    OpenAIRE

    Renugopalakrishnan, Venkatesan; Barbiellini, Bernardo; King, Chris; Molinari, Michael; Mochalov, Konstantin; Sukhanova, Alyona; Nabiev, Igor; Fojan, Peter; Tuller, Harry L.; Chin, Michael; Somasundaran, Ponisseril; Padrós, Esteve; Ramakrishna, Seeram

    2014-01-01

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) ...

  12. Effective photochromic nonlinearity of dried blue-membrane bacteriorhodopsin films

    Science.gov (United States)

    Tallent, Jack; Song, Q. Wang; Li, Zengfa; Stuart, Jeff; Birge, R. R.

    1996-09-01

    We report the effective nonlinearity for photochromic conversion in a blue-membrane bacteriorhodopsin film hosted in a dry polyvinyl alcohol matrix. The shift in absorption maximum on photoconversion in this film is larger than that of the same material in hydrated form, thus offering a larger modulation of the refractive index. The photoexcited index modulation is stable for several months, which provides for holographic data recording and long-term photochromic data storage. The effective index modulation is experimentally measured and is in good agreement with the theoretical predictions based on the Kramers-Kronig transformation.

  13. Spontaneous pattern formation in a thin film of bacteriorhodopsin with mixed absorptive-dispersive nonlinearity

    Science.gov (United States)

    Glückstad, J.; Saffman, M.

    1995-03-01

    We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.

  14. Micro-Cavity Fluidic Dye Laser

    DEFF Research Database (Denmark)

    Helbo, Bjarne; Kristensen, Anders; Menon, Aric Kumaran

    2003-01-01

    We have successfully designed, fabricated and characterized a micro-cavity fluidic dye laser with metallic mirrors, which can be integrated with polymer based lab-on-a-chip microsystems without further processing steps. A simple rate-equation model is used to predict the average pumping power...... threshold for lasing as function of cavity-mirror reflectance, laser dye concentration and cavity length. The laser device is characterized using the laser dye Rhodamine 6G dissolved in ethanol. Lasing is observed, and the influence of dye concentration is investigated....

  15. All-optical nonlinear holographic correlation using bacteriorhodopsin films

    Science.gov (United States)

    Thoma, Ralph; Dratz, Michael; Hampp, Norbert

    1995-05-01

    Films made of the halobacterial photochrome bacteriorhodopsin (BR) can be used in a number of holographic real-time applications. Their application as active material in a dual-axis joint- Fourier-transform (DAJFT) real-time correlator was shown recently. The BR films have a strong nonlinear intensity dependence on the light-induced absorption and refractive-index changes. Therefore the holographic diffraction efficiency also shows a nonlinear dependence on the writing intensity. We investigate the effect of this nonlinearity on the result of the correlation process in a bacteriorhodopsin-based DAJFT correlator. Numerical models supporting the experimental observations are presented. It was found that the BR film combines the holographic function for most objects with that of a spatial bandpass filter, whose center frequency is tuned by the writing intensity. This results in smaller peak widths and a suppression of the sidelobes. BR films allow the application of this nonlinear behavior in real time to the all-optical correlation process.

  16. Mixed Potential Energy Surfaces of the Ultrafast Isomerization of Retinal in Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Prokhorenko Valentyn I.

    2013-03-01

    Full Text Available We observe, using electronic two-dimensional photon echo spectroscopy, that the cis and trans potential energy surfaces of the ultrafast isomerization of retinal in bacteriorhodopsin are mixed via the hydrogen out of plane (HOOP mode.

  17. Microtorus a High Finesse Microcavity with Whispering-Gallery Modes

    CERN Document Server

    Ilchenko, V S; Yao, X S; Maleki, L; Ilchenko, Vladimir S.; Gorodetsky, Michael L.; Maleki, Lute

    2000-01-01

    We have demonstrated a 165 micron oblate spheroidal microcavity with free spectral range 383.7 GHz (3.06nm), resonance bandwidth 25 MHz (Q ~ 10^7) at 1550nm, and finesse F > 10^4. The highly oblate spheroidal dielectric microcavity combines very high Q-factor, typical of microspheres, with vastly reduced number of excited whispering-gallery (WG) modes (by two orders of magnitude). The very large free spectral range in the novel microcavity - few hundred instead of few GigaHertz in typical microspheres - is desirable for applications in spectral analysis, narrow-linewidth optical and RF oscillators, and cavity QED.

  18. Strong Exciton-photon Coupling in Semiconductor Microcavities

    DEFF Research Database (Denmark)

    Jensen, Jacob Riis; Borri, Paola; Hvam, Jørn Märcher;

    1999-01-01

    The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high directiona......The basic building block of vertical cavity surface emitting lasers (VCSELs) and high efficiency diodes, is a quantum well embedded in a semiconductor microcavity. The high finesse that may be achieved in such a cavity is utilised to get a low threshold current in the VCSELs and a high......-optical switches based on semiconductor microcavities....

  19. Modulation of high quality factors in rolled-up microcavities

    Science.gov (United States)

    Fang, Yangfu; Li, Shilong; Mei, Yongfeng

    2016-09-01

    We systematically investigate the evolution of resonant modes in a rolled-up microcavity as the overlap length between structural notches increases, which presents a modulation behavior for high Q factors. The resonant modes in the rolled-up microcavity display a deterministic mode chirality, which is well correlated to the Q factor. We derive a two-mode non-Hermitian Hamiltonian to clarify these unusual findings. It reveals that strong resonant interactions of scattered waves between the structural notches are responsible for the high mode chirality (thus high Q factor) and its modulation behavior in rolled-up microcavities.

  20. Resonating properties of passive spherical optical microcavities

    Institute of Scientific and Technical Information of China (English)

    李文; 王若鹏

    2004-01-01

    As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.

  1. 3D PIC Modeling of Microcavity Discharge

    Science.gov (United States)

    Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew

    2015-09-01

    We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.

  2. Dark Vibronic Polaritons and the Spectroscopy of Organic Microcavities

    CERN Document Server

    Herrera, Felipe

    2016-01-01

    Organic microcavities are photonic nanostructures that strongly confine the electromagnetic field, allowing exotic quantum regimes of light-matter interaction with disordered organic semiconductors. The unambiguous interpretation of the spectra of organic microcavities has been a long-standing challenge due to several competing effects involving electrons, vibrations and cavity photons. Here we present a theoretical framework that is able to describe the main spectroscopic features of organic microcavities consistently. We introduce a class of light-matter excitations called dark vibronic polaritons, which strongly emit but only weakly absorb light in the same frequency region of the bare electronic transition. Successful comparison with experimental data demonstrates the applicability of our theory. The proposed microscopic understanding of organic microcavities paves the way for the development of optoelectronic devices enhanced by quantum optics.

  3. Very strong coupling in GaAs based optical microcavities

    OpenAIRE

    Zhang, H.; Kim, N.Y.; Yamamoto, Y.; Na, N.

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility ...

  4. Separation and acceleration of magnetic monopole analogs in semiconductor microcavities

    OpenAIRE

    Flayac, H.; Solnyshkov, D.; Malpuech, G.

    2012-01-01

    Half-integer topological defects in polariton condensates can be regarded as magnetic charges, with respect to built-in effective magnetic fields present in microcavities. We show how an integer topological defect can be separated into a pair of half-integer ones, paving the way towards flows of magnetic charges: spin currents or magnetricity. We discuss the corresponding experimental implementation within microwires (with half-solitons) and planar microcavities (with half-vortices).

  5. Spin-to-Orbital Angular Momentum Conversion in Semiconductor Microcavities

    OpenAIRE

    Manni, Francesco; Lagoudakis, Konstantinos G.; Paraïso, Taofiq; Cerna, Roland; Léger, Yoan; Liew, Timothy Chi Hin; Shelykh, Ivan; Kavokin, Alexey V.; Morier-Genoud, François; Deveaud-Plédran, Benoît

    2011-01-01

    We experimentally demonstrate a technique for the generation of optical beams carrying orbital angular momentum using a planar semiconductor microcavity. Despite being isotropic systems with no structural gyrotropy, semiconductor microcavities, because of the transverse-electric–transverse-magnetic polarization splitting that they feature, allow for the conversion of the circular polarization of an incoming laser beam into the orbital angular momentum of the transmitted light field. The proce...

  6. Fiber probe microcavities for refractive index and temperature discrimination

    Science.gov (United States)

    André, Ricardo M.; Warren-Smith, Stephen C.; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M. I.; Latifi, H.; Marques, Manuel B.; Bartelt, Hartmut; Frazão, Orlando

    2016-05-01

    Fiber probe structures composed of two physical microcavities were created using focused ion beam technology. These structures have a tip-like shape as they were milled in preciously etched tapered fiber tips. The microprobes are then characterized for temperature and refractive index sensing using a signal filtering technique to discriminate signals from distinct microcavities. Using fast Fourier transforms combined with band-pass filters, it is possible to reconstruct the spectra of each cavity independently and thus measure their individual spectral shifts.

  7. Photonic Crystal Microcavities for Quantum Information Science

    Science.gov (United States)

    Hagemeier, Jenna Nicole

    Quantum information science and technology is a broad and fascinating field, encompassing diverse research areas such as materials science, atomic physics, superconductors, solid-state physics, and photonics. A goal of this field is to demonstrate the basic functions of information initialization, manipulation, and read-out in systems that take advantage of quantum physics to greatly enhance computing performance capabilities. In a hybrid quantum information network, different systems are used to perform different functions, to best exploit the advantageous properties of each system. For example, matter quantum bits (qubits) can be used for local data storage and manipulation while photonic qubits can be used for long-distance communication between storage points of the network. Our research focuses on the following two solid-state realizations of a matter qubit for the purpose of building such a hybrid quantum network: the electronic spin of a self-assembled indium arsenide quantum dot and the electronic spin of a nitrogen-vacancy defect center in diamond. Light--matter interactions are necessary to transfer the information from the matter qubit to the photonic qubit, and this interaction can be enhanced by embedding the spin system in an optical cavity. We focus on photonic crystal microcavities for this purpose, and we study interactions between the optical cavity modes and incorporated spin systems. To improve the performance of this spin--photon interface, it is important to maximize the coupling strength between the spin and photonic systems and to increase the read-out efficiency of information stored in the cavity. In this thesis, we present our work to deterministically couple a nitrogen-vacancy center in diamond to a photonic crystal microcavity in gallium phosphide. This is achieved by nanopositioning a pre-selected diamond nanocrystal in the intensity maximum of the optical cavity mode. We also present an optimized design of a photonic crystal

  8. Bacteriorhodopsin films for optical signal processing and data storage

    Science.gov (United States)

    Walkup, John F. (Principal Investigator); Mehrl, David J. (Principal Investigator)

    1996-01-01

    This report summarizes the research results obtained on NASA Ames Grant NAG 2-878 entitled 'Investigations of Bacteriorhodopsin Films for Optical Signal Processing and Data Storage.' Specifically we performed research, at Texas Tech University, on applications of Bacteriorhodopisin film to both (1) dynamic spatial filtering and (2) holographic data storage. In addition, measurements of the noise properties of an acousto-optical matrix-vestor multiplier built for NASA Ames by Photonic Systems Inc. were performed at NASA Ames' Photonics Laboratory. This research resulted in two papers presented at major optical data processing conferences and a journal paper which is to appear in APPLIED OPTICS. A new proposal for additional BR research has recently been submitted to NASA Ames Research Center.

  9. Thermochromism of bacteriorhodopsin and its pH dependence.

    Science.gov (United States)

    Neebe, Martin; Rhinow, Daniel; Schromczyk, Nina; Hampp, Norbert A

    2008-06-12

    Purple membranes (PMs), which consist of the photochromic membrane protein bacteriorhodopsin (BR) and lipids only, show complex thermochromic properties. Three different types of reversible temperature-dependent spectral transitions were found, involving spectral states absorbing at 460, 519, and 630 nm. These thermochromic absorption changes were analyzed in the range from 10 to 80 degrees C. In dependence on the bulk pH value, hypsochromic or bathochromic shifts in the BR absorption spectra are observed in BR gels as well as in BR films. The thermochromic changes between both purple and blue or purple and red were quantified in the CIE color system. The molecular changes causing these effects are discussed, and a model is presented in terms of intramolecular protonation equilibriums. The thermochromic properties of BR may be of interest in applications like security tags, as this feature may complement the well-known photochromic properties of BR. PMID:18491932

  10. Dynamics of Primary Events in the Photocycle of Excited Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    Jun-Jun LU; Ming MING; Yi YANG; Jia WU; Bo LI; Jian-Dong DING; Qing-Guo LI; Shi-Xiong QIAN

    2004-01-01

    Transient dynamic behavior of the excited bacteriorhodopsin (BR), which was isolated from the strain H. salinarum, was studied at excitation wavelength from 585 to 639 nm. With the one-color femtosecond (fs) pump-probe technique, we revealed the primary events in BR's photocycle that took place in an ultrafast time scale. From the analysis of the decay components of the dynamical traces, it was evident that the isomerization of the retinal chromophore in BR and the intermediate J's formation occurred within 500 fs. BR exhibited pH-dependent dynamical behaviors. When the medium pH was between 5 and 9, the BR ultrafast dynamics has no obvious change. In contrast, the dynamical curves were obviously affected when the pH was out of that region.

  11. Detecting conformational change by current transport in Bacteriorhodopsin

    CERN Document Server

    Alfinito, Eleonora

    2008-01-01

    Charge transport modification exhibiting an increase of conductance activated by an external green light in Bacteriorhodopsin is correlated to its conformational change. A theoretical model based on a map of the protein structure into a resistor network is implemented to account for a sequential tunneling mechanism of charge transfer through neighbouring amino-acids. The model is validated by comparison with current-voltage experiments and provides for the potential barriers involved in the charge transfer an average height of 69 meV over an interacting radius of 6 \\aa. The predictability of the model is also tested on bovine rhodopsin, the prototype of the G protein coupled receptor (GPCR) family also sensitive to the light, with results exhibiting the opposite behaviour of a decrease of conductance in the presence of light.

  12. Integrated optical switching based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Dér, András; Valkai, Sándor; Fábián, László; Ormos, Pál; Ramsden, Jeremy J; Wolff, Elmar K

    2007-01-01

    According to our earlier pioneering study, a dry film containing native bacteriorhodopsin (bR) shows unique nonlinear optical properties (refractive index change, controllable by light of different colors, greater than 2 x 10(-3)) that are in many respects superior to those of the materials presently applied in integrated optics. Here, we report on the first integrated optical application based on a miniature Mach-Zehnder interferometer (see Figs. 1 and 2) demonstrating a real switching effect by bR (efficiency higher than 90%) due to the M-state. Our results also imply that the refractive index change of the K-state (9 x 10(-4)) is high enough for fast switching. PMID:17132043

  13. Generalized model for all-optical light modulation in bacteriorhodopsin

    Science.gov (United States)

    Roy, Sukhdev; Singh, C. P.; Reddy, K. P. J.

    2001-10-01

    We present a generalized model for the photochemical cycle of bacteriorhodopsin (bR) protein molecule. Rate equations have been solved for the detailed light-induced processes in bR for its nine states: B→K↔L↔MI→MII↔N↔O↔P→Q→B. The complete steady-state intensity-induced population densities in various states of the molecule have been computed to obtain a general, exact, and analytical expression for the nonlinear absorption coefficient for multiple modulation pump laser beams. All-optical light modulation of different probe laser beam transmissions by intensity induced population changes due to one and two modulation laser beams has been analyzed. The proposed model has been shown to accurately model experimental results.

  14. Bacteriorhodopsin-the basis of molecular superfast nanoelectronics

    Science.gov (United States)

    Samoilovich, M. I.; Belyanin, A. F.; Grebennikov, E. P.; Guriyanov, A. V.

    2002-12-01

    We give some perspectives on the possibilities for application of the bacteriorhodopsin (BR) molecule in the development of nanoelectronic devices in conjunction with photonic crystals-materials with inhibited photonic band. This involves the use of a single BR molecule by `changing' the photon gradient formation with externally initiated electric fields, preserving the mechanisms of negative reverse communication, or the use of an intermolecular mechanism of photo transitions and dependence on the electric field. Greatly enhanced optical responses, linear and nonlinear, in metal nanocomposites and nanodiamond containing nanoscale surface features have been intensively studied in recent years. These results foreshadow fascinating possibilities for linear and nonlinear local spectroscopy of single molecules. Use of photonic crystals (at present the only technologically realized three-dimensional photonic crystals are the opal matrices) suggests the possible application of a number of physical phenomena.

  15. High-contrast, all-optical switching in bacteriorhodopsin films

    Science.gov (United States)

    Banyal, Ravinder Kumar; Raghavendra Prasad, B.

    2005-09-01

    We report experiments with nonlinear-absorption-based, high-contrast, all-optical switching in photochromic bacteriorhodopsin (BR) films. The switching action is accomplished by control of the transmission of a weak probe beam through a BR sample with the help of strong pump beam illumination at 532 nm wavelength. We found that the switching properties of BR films depend on several experimentally controllable parameters such as probe wavelength, pump beam intensity, and excitation rate. A comparative study of the switching behavior and other parameters of practical use was carried out at three probe wavelengths (543, 594, and 633 nm) and various beam powers and pump excitation rates. The results are presented for commercially available wild-type and D96N variant BR films.

  16. Nonlinear Optical Interactions in Bacteriorhodopsin Using Z-Scan

    Science.gov (United States)

    Aranda, Francisco J.; Rao, Devulapalli V. G. L. N.; Wong, Chi L.; Zhou, Ping; Chen, Zhong; Akkara, Joseph A.; Kaplan, David L.; Roach, Joseph F.

    1995-06-01

    Nonlinear refractive index coefficient n2 of bacteriorhodopsin suspensions in water is measured by the Z-scan technique with a low power continuous wave laser at 647.1 manometer wavelength. Our results indicate that both the magnitude and the sign of n2 depend strongly on the light intensity. Negative values for n2 are obtained for on axis laser irradiance at the focus above 3 W/cm2. The observed self-defocusing phenomena can be attributed to the index change due to the light induced transition between the photochromic states. The results elucidate the origin of n2 and offer a plausible explanation for the differences in the reported n2 measurements.

  17. Optical Microcavity: Sensing down to Single Molecules and Atoms

    Directory of Open Access Journals (Sweden)

    Shu-Yu Su

    2011-02-01

    Full Text Available This review article discusses fundamentals of dielectric, low-loss, optical micro-resonator sensing, including figures of merit and a variety of microcavity designs, and future perspectives in microcavity-based optical sensing. Resonance frequency and quality (Q factor are altered as a means of detecting a small system perturbation, resulting in realization of optical sensing of a small amount of sample materials, down to even single molecules. Sensitivity, Q factor, minimum detectable index change, noises (in sensor system components and microcavity system including environments, microcavity size, and mode volume are essential parameters to be considered for optical sensing applications. Whispering gallery mode, photonic crystal, and slot-type microcavities typically provide compact, high-quality optical resonance modes for optical sensing applications. Surface Bloch modes induced on photonic crystals are shown to be a promising candidate thanks to large field overlap with a sample and ultra-high-Q resonances. Quantum optics effects based on microcavity quantum electrodynamics (QED would provide novel single-photo-level detection of even single atoms and molecules via detection of doublet vacuum Rabi splitting peaks in strong coupling.

  18. Exciton Polaritons in Microcavities New Frontiers

    CERN Document Server

    Sanvitto, Daniele

    2012-01-01

    In the past decade, there has been a burst of new and fascinating physics associated to the unique properties of two-dimensional exciton polaritons, their recent demonstration of condensation under non-equilibrium conditions and all the related quantum phenomena, which have stimulated extensive research work. This monograph summarizes the current state of the art of research on exciton polaritons in microcavities: their interactions, fast dynamics, spin-dependent phenomena, temporal and spatial coherence, condensation under non-equilibrium conditions, related collective quantum phenomena and most advanced applications. The monograph is written by the most active authors who have strongly contributed to the advances in this area. It is of great interests to both physicists approaching this subject for the first time, as well as a wide audience of experts in other disciplines who want to be updated on this fast moving field.

  19. Interaction between dual cavity modes in a planar photonic microcavity

    Science.gov (United States)

    Noble, Elizabeth; Nair, Rajesh V.; Jagatap, B. N.

    2016-10-01

    We theoretically study the interaction between dual cavity modes in a planar photonic microcavity structure in the optical communication wavelength range. The merging and splitting of cavity mode is analysed with realistic microcavity structures. The merging of dual cavity resonance into a single cavity resonance is achieved by changing the number of layers between the two cavities. The splitting of single cavity resonance into dual cavity resonance is obtained with an increase in the reflectivity of mirrors in the front and rear side of the microcavity structure. The threshold condition for the merging and splitting of cavity mode is established in terms of structural parameters. The physical origin of the merging of dual cavity modes into a single cavity resonance is discussed in terms of the electric field intensity distribution in the microcavity structure. The microcavity structure with dual cavity modes is useful for the generation of entangled photon pairs, for achieving the strong-coupling regime between exciton and photon and for high-resolution multi-wavelength filters in optical communication.

  20. High-temperature ultrafast polariton parametric amplification in semiconductor microcavities

    Science.gov (United States)

    Saba, M.; Ciuti, C.; Bloch, J.; Thierry-Mieg, V.; André, R.; Dang, Le Si; Kundermann, S.; Mura, A.; Bongiovanni, G.; Staehli, J. L.; Deveaud, B.

    2001-12-01

    Cavity polaritons, the elementary optical excitations of semiconductor microcavities, may be understood as a superposition of excitons and cavity photons. Owing to their composite nature, these bosonic particles have a distinct optical response, at the same time very fast and highly nonlinear. Very efficient light amplification due to polariton-polariton parametric scattering has recently been reported in semiconductor microcavities at liquid-helium temperatures. Here we demonstrate polariton parametric amplification up to 120K in GaAlAs-based microcavities and up to 220K in CdTe-based microcavities. We show that the cut-off temperature for the amplification is ultimately determined by the binding energy of the exciton. A 5-µm-thick planar microcavity can amplify a weak light pulse more than 5,000 times. The effective gain coefficient of an equivalent homogeneous medium would be 107cm-1. The subpicosecond duration and high efficiency of the amplification could be exploited for high-repetition all-optical microscopic switches and amplifiers. 105 polaritons occupy the same quantum state during the amplification, realizing a dynamical condensate of strongly interacting bosons which can be studied at high temperature.

  1. Microcavity-Integrated Carbon Nanotube Photodetectors.

    Science.gov (United States)

    Liang, Shuang; Ma, Ze; Wu, Gongtao; Wei, Nan; Huang, Le; Huang, Huixin; Liu, Huaping; Wang, Sheng; Peng, Lian-Mao

    2016-07-26

    Carbon nanotubes (CNTs) are considered to be highly promising nanomaterials for multiwavelength, room-temperature infrared detection applications. Here, we demonstrate a single-tube diode photodetector monolithically integrated with a Fabry-Pérot microcavity. A ∼6-fold enhanced optical absorption can be achieved, because of the confined effect of the designed optical mode. Furthermore, taking advantage of Van-Hove-singularity band structures in CNTs, we open the possibility of developing chirality-specific (n,m) CNT-film-based signal detectors. Utilizing a concept of the "resonance and off-resonance" cavity, we achieved cavity-integrated chirality-sorted CNT-film detectors working at zero bias and resonance-allowed mode, for specific target signal detection. The detectors exhibited a higher suppression ratio until a power density of 0.07 W cm(-2) and photocurrent of 5 pA, and the spectral full width at half-maximum is ∼33 nm at a signal wavelength of 1200 nm. Further, with multiple array detectors aiming at different target signals integrated on a chip, a multiwavelength signal detector system can be expected to have applications in the fields of monitoring, biosensing, color imaging, signal capture, and on-chip or space information transfers. The approach can also bring other nanomaterials into on-chip or information optoelectronics, regardless of the available doping polarity. PMID:27379375

  2. Tuning a microcavity-coupled terahertz laser

    International Nuclear Information System (INIS)

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers

  3. GaN hemispherical micro-cavities

    Science.gov (United States)

    Zhang, Yiyun; Feng, Cong; Wang, T.; Choi, H. W.

    2016-01-01

    GaN-based micro-dome optical cavities supported on Si pedestals have been demonstrated by dry etching through gradually shrinking microspheres followed by wet-etch undercutting. Optically pumped whispering-gallery modes (WGMs) have been observed in the near-ultraviolet within the mushroom-like cavities, which do not support Fabry-Pérot resonances. The WGMs blue-shift monotonously as the excitation energies are around the lasing threshold. Concurrently, the mode-hopping effect is observed as the gain spectrum red-shifts under higher excitations. As the excitation energy density exceeds ˜15.1 mJ/cm2, amplified spontaneous emission followed by optical lasing is attained at room temperature, evident from a super-linear increase in emission intensity together with linewidth reduction to ˜0.7 nm for the dominant WGM. Optical behaviors within these WGM microcavities are further investigated using numerical computations and three-dimensional finite-difference time-domain simulations.

  4. Tuning a microcavity-coupled terahertz laser

    Science.gov (United States)

    Castellano, Fabrizio; Bianchi, Vezio; Li, Lianhe; Zhu, Jingxuan; Tredicucci, Alessandro; Linfield, Edmund H.; Giles Davies, A.; Vitiello, Miriam S.

    2015-12-01

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  5. Tuning a microcavity-coupled terahertz laser

    Energy Technology Data Exchange (ETDEWEB)

    Castellano, Fabrizio; Bianchi, Vezio; Vitiello, Miriam S., E-mail: miriam.vitiello@sns.it [NEST, CNR-Istituto Nanoscienze and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa (Italy); Li, Lianhe; Zhu, Jingxuan; Linfield, Edmund H.; Giles Davies, A. [School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT (United Kingdom); Tredicucci, Alessandro [Dipartimento di Fisica, Università degli Studi di Pisa, Largo Pontecorvo 6, 56127 Pisa (Italy)

    2015-12-28

    Tunable oscillators are a key component of almost all electronic and photonic systems. Yet, a technology capable of operating in the terahertz (THz)-frequency range and fully suitable for widescale implementation is still lacking. This issue is significantly limiting potential THz applications in gas sensing, high-resolution spectroscopy, hyper-spectral imaging, and optical communications. The THz quantum cascade laser is arguably the most promising solution in terms of output power and spectral purity. In order to achieve reliable, repeatable, and broad tunability, here we exploit the strong coupling between two different cavity mode concepts: a distributed feedback one-dimensional photonic resonator (providing gain) and a mechanically actuated wavelength-size microcavity (providing tuning). The result is a continuously tunable, single-mode emitter covering a 162 GHz spectral range, centered on 3.2 THz. Our source has a few tens of MHz resolution, extremely high differential efficiency, and unprecedented compact and simple design architecture. By unveiling the large potential that lies in this technique, our results provide a robust platform for radically different THz systems exploiting broadly tunable semiconductor lasers.

  6. Stroing single-photons in microcavities arrays

    Science.gov (United States)

    Mirza, Imran M.; Enk, S. J. Van; Kimble, H. J.

    2014-03-01

    Coupling light to arrays of microcavities is one of the most promising avenues to store/delay classical light pulses [F. Krauss, Nat. Phot. 2, 448-450 (2008)]. However, from the perspective of benefiting quantum communication protocols, the same ideas in principle can be extended down to the single-photon (quantum) level as well. Particularly, for the purposes of entanglement purification and quantum repeaters a reliable storage of single photons is needed. We consider in our work [I. M. Mirza, S. Van Enk, H. Kimble JOSA B, 30,10 (2013)] cavities that are coupled through an optical fiber which is assumed to be forming a Markovian bath. For this study two powerful open quantum system techniques, Input-Output theory for cascaded quantum systems and the Quantum Trajectory approach are used in combination. For the confirmation of photon delays the Time-Dependent Spectrum of such a single photon is obtained. Interestingly this leads to a hole-burning effect showing that only certain frequency components in the single photon wavepackets are stored inside the cavities and hence are delayed in time. Since on-demand production of single photons is not an easy task we include in our description the actual generation of the single photon by assuming a single emitter in one the resonators.

  7. Transient Fourier holography with bacteriorhodopsin films for breast cancer diagnostics

    Science.gov (United States)

    Rao, Devulapalli; Kothapalli, Sri-Rajasekar; Wu, Pengfei; Yelleswarapu, Chandra

    X-ray mammography is the current gold standard for breast cancer screening. Microcalcifications and other features which are helpful to the radiologist for early diagnostics are often buried in the noise generated by the surrounding dense tissue. So image processing techniques are required to enhance these important features to improve the sensitivity of detection. An innovative technique is demonstrated for recording a hologram of the mammogram. It is recorded on a thin polymer film of Bacteriorhodopsin (bR) as photo induced isomerization grating containing the interference pattern between the object beam containing the Fourier spatial frequency components of the mammogram and a reference beam. The hologram contains all the enhanced features of the mammogram. A significant innovation of the technique is that the enhanced components in the processed image can be viewed by the radiologist in time scale. A technician can record the movie and when the radiologist looks at the movie at his convenience, freezing the frame as and when desired, he would see the microcalcifications as the brightest and last long in time. He would also observe lesions with intensity decreasing as their size increases. The same bR film can be used repeatedly for recording holograms with different mammograms. The technique is versatile and a different frequency band can be chosen to be optimized by changing the reference beam intensity. The experimental arrangement can be used for mammograms in screen film or digital format.

  8. Engineering a Robust Photovoltaic Device with Quantum Dots and Bacteriorhodopsin.

    Science.gov (United States)

    Renugopalakrishnan, Venkatesan; Barbiellini, Bernardo; King, Chris; Molinari, Michael; Mochalov, Konstantin; Sukhanova, Alyona; Nabiev, Igor; Fojan, Peter; Tuller, Harry L; Chin, Michael; Somasundaran, Ponisseril; Padrós, Esteve; Ramakrishna, Seeram

    2014-07-31

    We present a route toward a radical improvement in solar cell efficiency using resonant energy transfer and sensitization of semiconductor metal oxides with a light-harvesting quantum dot (QD)/bacteriorhodopsin (bR) layer designed by protein engineering. The specific aims of our approach are (1) controlled engineering of highly ordered bR/QD complexes; (2) replacement of the liquid electrolyte by a thin layer of gold; (3) highly oriented deposition of bR/QD complexes on a gold layer; and (4) use of the Forster resonance energy transfer coupling between bR and QDs to achieve an efficient absorbing layer for dye-sensitized solar cells. This proposed approach is based on the unique optical characteristics of QDs, on the photovoltaic properties of bR, and on state-of-the-art nanobioengineering technologies. It permits spatial and optical coupling together with control of hybrid material components on the bionanoscale. This method paves the way to the development of the solid-state photovoltaic device with the efficiency increased to practical levels. PMID:25383133

  9. Integrated optical devices using bacteriorhodopsin as active nonlinear optical material

    Science.gov (United States)

    Dér, András; Fábián, László; Valkai, Sándor; Wolff, Elmar; Ramsden, Jeremy; Ormos, Pál

    2006-08-01

    Coupling of optical data-processing devices with microelectronics, telecocommunication and sensory functions, is among the biggest challenges in molecular electronics. Intensive research is going on to find suitable nonlinear optical materials that could meet the demanding requirements of optoelectronic applications, especially regarding high sensitivity and stability. In addition to inorganic and organic crystals, biological molecules have also been considered for use in integrated optics, among which the bacterial chromoprotein, bacteriorhodopsin (bR) generated the most interest. bR undergoes enormous absorption and concomitant refractive index changes upon initiation of a cyclic series of photoreactions by a burst of actinic light. This effect can be exploited to create highly versatile all-optical logical elements. We demonstrate the potential of this approach by investigating the static and dynamic response of several basic elements of integrated optical devices. Our results show that, due to its relatively high refractive index changes, bR can be used as an active nonlinear optical material to produce a variety of integrated optical switching and modulation effects.

  10. All-optical biomolecular parallel logic gates with bacteriorhodopsin.

    Science.gov (United States)

    Sharma, Parag; Roy, Sukhdev

    2004-06-01

    All-optical two input parallel logic gates with bacteriorhodopsin (BR) protein have been designed based on nonlinear intensity-induced excited-state absorption. Amplitude modulation of a continuous wave (CW) probe laser beam transmission at 640 nm corresponding to the peak absorption of O intermediate state through BR, by a modulating CW pump laser beam at 570 nm corresponding to the peak absorption of initial BR state has been analyzed considering all six intermediate states in its photocycle using the rate equation approach. The transmission characteristics have been shown to exhibit a dip, which is sensitive to normalized small-signal absorption coefficient (beta), rate constants of O and N intermediate states and absorption of the O state at 570 nm. There is an optimum value of beta for a given pump intensity range for which maximum modulation can be achieved. It is shown that 100% modulation can be achieved if the initial state of BR does not absorb the probe beam. The results have been used to design low-power all-optical parallel NOT, AND, OR, XNOR, and the universal NAND and NOR logic gates for two cases: 1) only changing the output threshold and 2) considering a common threshold with different beta values. PMID:15382746

  11. Dynamic Behaviour of Self-Diffraction in Bacteriorhodopsin Film

    Institute of Scientific and Technical Information of China (English)

    GUO Zong-Xia; CHEN Gui-Ying; ZHANG Chun-Ping; TIAN Jian-Guo; Q. Wang Song; SHEN Bin; FU Guang-Hua

    2004-01-01

    @@ We investigate the dependences of the diffraction efficiency of the first order self-diffracted beam in bacteriorhodopsin (bR) films on the illumination time, the intensity and wavelength of the incident light. When the blue light (λ = 488 nm) and low intensity red light (λ = 632.8 nm) are incident on the bR film respectively,the diffraction efficiencies increase from zero to a stable value with the illumination time. When the green light (λ = 533 nm) and high-intensity red light illuminate the bR film respectively, the diffraction efficiencies increase from zero to the maximum and then decrease to a stable value with the illumination time. Rise and decay times are dependent on the intensity and wavelength of the incident light. The maximaldiffraction efficiency of the red light is twice as high as that of the green light. The highest diffraction efficiency of 5.4% is obtained at 633nm.The diffraction efficiency change with the time for the green light is larger than that for the blue and red light.

  12. Spin noise amplification and giant noise in optical microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Ryzhov, I. I.; Poltavtsev, S. V.; Kozlov, G. G.; Zapasskii, V. S. [Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Kavokin, A. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom); Spin-Optics Laboratory, St. Petersburg State University, 198504 St. Petersburg (Russian Federation); Lagoudakis, P. V. [Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-06-14

    When studying the spin-noise-induced fluctuations of Kerr rotation in a quantum-well microcavity, we have found a dramatic increase of the noise signal (by more than two orders of magnitude) in the vicinity of anti-crossing of the polariton branches. The effect is explained by nonlinear optical instability of the microcavity giving rise to the light-power-controlled amplification of the polarization noise signal. In the framework of the developed model of built-in amplifier, we also interpret the nontrivial spectral and intensity-related properties of the observed noise signal below the region of anti-crossing of polariton branches. The discovered effect of optically controllable amplification of broadband polarization signals in microcavities in the regime of optical instability may be of interest for detecting weak oscillations of optical anisotropy in fundamental research and for other applications in optical information processing.

  13. Quantum nonlinear optics with polar J-aggregates in microcavities

    CERN Document Server

    Herrera, Felipe; Pachon, Leonardo A; Saikin, Semion K; Aspuru-Guzik, Alán

    2014-01-01

    We show that an ensemble of organic dye molecules with permanent electric dipole moments embedded in a microcavity can lead to strong optical nonlinearities at the single photon level. The strong long-range electrostatic interaction between chromophores due to their permanent dipoles introduces the desired nonlinearity of the light-matter coupling in the microcavity. We obtain the absorption spectra of a weak probe field under the influence of strong exciton-photon coupling with the cavity field. Using realistic parameters, we demonstrate that a single cavity photon can significantly modify the absorptive and dispersive response of the medium to a probe photon at a different frequency. Finally, we show that the system is in the regime of cavity-induced transparency with a broad transparency window for dye dimers. We illustrate our findings using pseudoisocyanine chloride (PIC) J-aggregates in currently-available optical microcavities.

  14. Flip-chip light emitting diode with resonant optical microcavity

    Science.gov (United States)

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  15. Electron microscopic observation and rotational diffusion measurement of bacteriorhodopsin in lipid vesicles

    Institute of Scientific and Technical Information of China (English)

    HU; Kunsheng

    2001-01-01

    [1]Stoeckenius, W.. Bacterial rhodopsins: Evolution of a mechanistic model for the ion pumps, Protein Science, 1999, 8: 447.[2]Ebrey. T. G, Light energy transduction in bacteriorhodopsin, in Thermodynamics of Membranes, Receptors and Channels (ed. Jackson. M.), New York: CRC Press, 1993. 353-387.[3]Lanyi. J. K.. Understanding structure and function in the light-driven proton pump bacteriorhodopsin, J. Struct. Biol., 1998,l24: 164.[4]Quay. S. C., Condie. C. C., Conformational studies of aqueous melittin: Thermodynamic parameters of the monomer-tetramer self-association reaction. Biochemistry, 1983, 22: 695.[5]Habermann. E.. Bee and wasp venoms. Science, 1972, 177: 314.[6]Tosteson. M. T., Holmes. S. J., Razin. M. et al., Melitton lysis of red cells, J. Membr. Biol., 1985, 87: 35.[7]Hu, K. S., Dufton, M. J., Morrison, I. E. G. et al., Cherry interaction of bee venom melittin with bacteriorhodopsin in lipid vesicles: Protein rotational diffusion measurement. Biochem. Biophys. Acta, 1985, 816(2): 358.[8]Shi, H., Hu, K. S., Huang, Y. et al., Effect of melittin on photocycle and photoresponse of purple membrane: sites of interaction between bacteriorhodopsin and melittin, Photochemistry and Photobiology, 1993, 58(3): 413.[9]Jiang. Q. X., Hu, K. S.. Shi. H., Interaction of both melittin and its site-specific mutants with bacteriorhodopsin of Halobacterium halobium: sites of electrostatic interaction on melittin Photochemistry and Photobiology, 1994, 60(2): 175.[10]Doebler, R., Basaran. N.. Goldston H. et al., Effect of protein aggregation into aqueous phase on the binding of membrane proteins to membranes, Biophys. J., 1999, 76: 928.[11]Rehorek, M., Heyn, M. P, Binding of all-trans-retinal to the purple membrane, Evidence for cooperativity and determination of the extinction coefficient, Biochemistry, 1979, 18: 4977.[12]Chen. P. S. Jr.. Toribara, T. Y., Warner, H., Microdetermination of phosphorous, Anal. Chem., t956, 28

  16. Nonlinear coherent optical image processing using logarithmic transmittance of bacteriorhodopsin films

    Science.gov (United States)

    Downie, John D.

    1995-08-01

    The transmission properties of some bacteriorhodopsin-film spatial light modulators are uniquely suited to allow nonlinear optical image-processing operations to be applied to images with multiplicative noise characteristics. A logarithmic amplitude-transmission characteristic of the film permits the conversion of multiplicative noise to additive noise, which may then be linearly filtered out in the Fourier plane of the transformed image. I present experimental results demonstrating the principle and the capability for several different image and noise situations, including deterministic noise and speckle. The bacteriorhodopsin film studied here displays the logarithmic transmission response for write intensities spanning a dynamic range greater than 2 orders of magnitude.

  17. Spatial light modulation based on photoinduced change in the complex refractive index of bacteriorhodopsin

    Science.gov (United States)

    Takei, Hiroyuki; Shimizu, Norio

    1996-04-01

    Bacteriorhodopsin exhibits photoinduced changes in both absorption and refractive index at 633 nm. To explore the possibility of exploiting this property in constructing a photoaddressed spatial light modulator, we investigated the transmission property of a Fabry-Perot interferometer containing a bacteriorhodopsin thin film. Film was formed that had a phase shift of pi /4 and sufficient interference fringe contrast for spatial light modulation. This establishes the possibility of constructing a spatial light modulator that features nonlinear input-output characteristics and can operate at moderate light intensities of the order of tens of milliwatts per centimeter square. spatial light modulation, complex refractive index.

  18. Investigation on spectral response of micro-cavity structure by symmetrical tapered fiber tips

    Science.gov (United States)

    Liu, Yan; Li, Yang; Yan, Xiaojun; Li, Weidong

    2016-06-01

    We proposed and experimentally demonstrated a micro-cavity structure made of symmetrical tapered fiber tips. The waist of a conventional fiber taper fabricated from heating and stretching technique is symmetrically cleaved, and the aligned fiber tips with air gap constitute a Fabry-Perot micro-cavity due to the reflection at the tip facet. The spectral responses of such micro-cavity structure have been investigated both in beam propagation models and experiments. The multibeam interference in the micro-cavity and the impact of the waist diameter and cavity length on the spectral response has been successfully demonstrated. And a micro-cavity structure with 45 μm waist diameter was experimentally achieved, the measured spectra agree well with the simulation ones, indicating that the spectral response of the micro-cavity structure is contributed by both the multibeam interference and the Fabry-Perot micro-cavity.

  19. Theory of polariton-mediated Raman scattering in microcavities.

    Science.gov (United States)

    León Hilario, L M; Bruchhausen, A; Lobos, A M; Aligia, A A

    2007-04-30

    We calculate the intensity of the polariton-mediated inelastic light scattering in semiconductor microcavities. We treat the exciton-photon coupling nonperturbatively and incorporate lifetime effects in both excitons and photons, and a coupling of the photons to the electron-hole continuum. Taking the matrix elements as fitting parameters, the results are in excellent agreement with measured Raman intensities due to optical phonons that are resonant with the upper polariton branches in II-VI microcavities with embedded CdTe quantum wells. PMID:21690956

  20. Self-Phasematched Nonlinear Optics in Integrated Semiconductor Microcavities

    CERN Document Server

    Hayat, Alex

    2007-01-01

    A novel concept of self-phasematched optical frequency conversion in dispersive dielectric microcavities is studied theoretically and experimentally. We develop a time-dependent model, incorporating the dispersion into the structure of the spatial cavity modes and translating the phasematching requirement into the optimization of a nonlinear cavity mode overlap. We design and fabricate integrated double-resonance semiconductor microcavities for self-phasematched second harmonic generation. The measured efficiency exhibits a significant maximum near the cavity resonance due to the intra-cavity enhancement of the input power and the dispersion-induced wavelength detuning effect on the mode overlap, in good agreement with our theoretical predictions.

  1. Very strong coupling in GaAs based optical microcavities

    CERN Document Server

    Zhang, H; Yamamoto, Y; Na, N

    2012-01-01

    We show that when following a simple cavity design metric, a quantum well exciton-microcavity photon coupling constant can be larger than the exciton binding energy in GaAs based optical microcavities. Such a very strong coupling significantly reduces the relative electron-hole motion and makes the polaritons robust against phonon collisions. The corresponding polariton dissociation and saturation boundaries on the phase diagram are much improved, and our calculations suggest the possibility of constructing a room temperature, high power exciton-polariton laser without resorting to wide bandgap semiconductors.

  2. Antenna-coupled microcavities for enhanced infrared photo-detection

    Energy Technology Data Exchange (ETDEWEB)

    Nga Chen, Yuk; Todorov, Yanko, E-mail: yanko.todorov@univ-paris-diderot.fr; Askenazi, Benjamin; Vasanelli, Angela; Sirtori, Carlo [Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot, Sorbonne Paris Cité, CNRS-UMR 7162, 75013 Paris (France); Biasiol, Giorgio [IOM CNR, Laboratorio TASC, Area Science Park, I-34149 Trieste (Italy); Colombelli, Raffaele [Institut d' Electronique Fondamentale, Université Paris Sud, CNRS-UMR 8622, F-91405 Orsay (France)

    2014-01-20

    We demonstrate mid-infrared detectors embedded into an array of double-metal nano-antennas. The antennas act as microcavities that squeeze the electric field into thin semiconductor layers, thus enhancing the detector responsivity. Furthermore, thanks to the ability of the antennas to gather photons from an area larger than the device's physical dimensions, the dark current is reduced without hindering the photo-generation rate. In these devices, the background-limited performance is improved with a consequent increase of the operating temperature. Our results illustrate how the antenna-coupled microcavity concept can be applied to enhance the performances of infrared opto-electronic devices.

  3. Black Phosphorus based One-dimensional Photonic Crystals and Microcavities

    CERN Document Server

    Kriegel, I

    2016-01-01

    The latest achievements in the fabrication of black phosphorus thin layers, towards the technological breakthrough of a phosphorene atomically thin layer, are paving the way for a their employment in electronics, optics, and optoelectronics. In this work, we have simulated the optical properties of one-dimensional photonic structures, i.e. photonic crystals and microcavities, in which few-layer black phosphorus is one of the components. The insertion of the 5 nm black phosphorous layers leads to a photonic band gap in the photonic crystals and a cavity mode in the microcavity interesting for light manipulation and emission enhancement.

  4. Polygonal silica toroidal microcavity for controlled optical coupling

    CERN Document Server

    Kato, Takumi; Tanabe, Takasumi

    2012-01-01

    We fabricated polygonal silica toroidal microcavities to achieve stable mechanical coupling with an evanescent coupler such as a tapered fiber. The polygonal cavity was fabricated by using a combination of isotropic etching, anisotropic etching and laser reflow. It offers both high and low coupling efficiencies with the cavity mode even when the coupler is in contact with the cavity, which offers the possibility of taking the device outside the laboratory. A numerical simulation showed that an octagonal silica toroidal microcavity had an optical quality factor of 8.8\\times10^6.

  5. Part I. Bacteriorhodopsin-related materials work for molecular electronics. Part II. Volumetric optical memory based on the branched photocycle of bacteriorhodopsin. Part III. The role of calcium in the bacteriorhodopsin binding site

    Science.gov (United States)

    Stuart, Jeffrey Alan

    Part I. A protocol for the routine isolation and purification of purple membrane sheets containing the integral membrane protein, bacteriorhodopsin, was developed based upon modifications of protocols already in the literature. This simplified protocol is geared toward the facile isolation of protein for use in molecular electronic devices. Methods for the incorporation of bacteriorhodopsin into various polymeric supports were also developed, primarily in the form of dried films and hydrated cubes. This work also represents the first reported production of dried films of the deionized protein, or blue membrane. Part II. An architecture for a volumetric optical memory based on the branched-photocycle of bacteriorhodopsin is presented. The branching reaction circumvents problems associated with destructive reading and writing processes and allows access to a stable, long-lived state, separated both temporally and energetically from the main photocycle, thereby making long-term data storage possible. The state, denoted as Q, can only be accessed by exposing the protein to two different wavelengths of light in the proper sequence, with the appropriate temporal separation (roughly 2 ms between the light pulses). The Q-state (assigned as a binary one) is transparent to both writing and reading processes, making them rigorously non-destructive. Bacteriorhodopsin in its resting state is assigned as a binary zero. A differential absorption reading process is used to determine the state of each volumetric binary element. Preliminary results are reported. Part III. The nature of the chromophore binding site of light-adapted bacteriorhodopsin is analyzed by using all-valence electron MNDO and MNDO-PSDCI molecular orbital theory to interpret previously reported linear and nonlinear optical spectroscopic measurements. It is concluded that the unique two-photon properties of the chromophore are due in part to the electrostatic field associated with a Casp{2+} ion near the

  6. Theoretical and experimental analysis of the propagation of sinusoidal signals in Bacteriorhodopsin films

    Science.gov (United States)

    Blaya, S.; Candela, M.; Acebal, P.; Carretero, L.; Gomariz, M.; Madrigal, R. F.; Fimia, A.

    2014-05-01

    Time-delay of transmitted pulses with respect to the incident pulse in bacteriorhodopsin films has been studied without the use of a pump beam. Based on a modified saturable absorber model, analytical expressions of the transmitted pulse have been obtained. As a result, time delay, distortion and fractional delay have been theoretically analyzed for sinusoidal pulses with a low background.

  7. Fundamentals of photoelectric effects in molecular electronic thin film devices: applications to bacteriorhodopsin-based devices.

    Science.gov (United States)

    Hong, F T

    1995-01-01

    This tutorial lecture focuses on the fundamental mechanistic aspects of light-induced charge movements in pigment-containing membranes. The topic is relevant to molecular electronics because many prototypes optoelectronic devices are configured as pigment-containing thin films. We use reconstituted bacteriorhodopsin membranes as an example to illustrate the underlying principle of measurements and data interpretation. Bacteriorhodopsin, a light-driven proton pump, is the only protein component in the purple membrane of Halobacterium halobium. It resembles the visual pigment rhodopsin chemically but performs the function of photosynthesis. Bacteriorhodopsin thus offers an unprecedented opportunity for us to compare the visual photoreceptor and the photosynthetic apparatus from a mechanistic point of view. Bacteriorhodopsin, well known for its exceptional chemical and mechanical stability, is also a popular advanced biomaterial for molecular device construction. The tutorial approaches the subject from two angles. First, the fundamental photoelectric properties are exploited for device construction. Second, basic design principles for photosensors and photon energy converters can be elucidated via 'reverse engineering'. The concept of molecular intelligence and the principle of biomimetic science are discussed.

  8. Study of nonlinear optical properties of multilayer Langmuir-Blodgett films containing bacteriorhodopsin.

    Science.gov (United States)

    Barmenkov Yu, O; Kir'yanov, A V; Starodumov, A N; Maslyanitsyn, I A; Shigorin, V D; Lemmetyinen, H

    2000-08-01

    Multilayer oriented Langmuir-Blodgett films of bacteriorhodopsin were prepared and their nonlinear optical properties, including second harmonic generation and photoresponse at a two phase-modulated beams mixing, were investigated. The nonlinear component of refractive index of the films was measured. PMID:10946566

  9. Real-time self-induced nonlinear optical Zernike-type filter in a bacteriorhodopsin film

    Science.gov (United States)

    Iturbe Castillo, David; Sanchez-de-la-Llave, David; Garcia, Ruben R.; Olivos-Perez, L. I.; Gonzalez, Luis A.; Rodriguez-Ortiz, M.

    2001-11-01

    We propose the use of a nonlinear bacteriorhodopsin film to self-induce a Zernike-type filter in robust optical phase-contrast systems. The device requires relatively low light intensity levels (as low as 200 nW/cm2) at wavelengths around 633 nm and can contrast dynamical phase distributions.

  10. Determination of the thermal expansion and thermo-optic coefficients of a bacteriorhodopsin film

    Science.gov (United States)

    Wang Song, Q.; Zhang, Chunping; Ku, Chin-Yu; Huang, Ming-Chieh; Gross, Richard B.; Birge, Robert R.

    1995-02-01

    The linear expansion and thermo-optic coefficients of a bacteriorhodopsin film were measured by using an interferometric method. The experimental results confirm the previous suspicions that the large refractive nonlinearity which occurs at high illumination intensities arises form a thermal effect. The results also suggest a possible way to increase the usable thermal nonlinearity by four times.

  11. Optical switching in bistable active cavity containing nonlinear absorber on bacteriorhodopsin

    Science.gov (United States)

    Bazhenov, Vladimir Y.; Taranenko, Victor B.; Vasnetsov, Mikhail V.

    1993-04-01

    The transverse nonlinear dynamics of switchings in an active system (laser with nonlinear saturable absorber on bacteriorhodopsin in a self-imaging cavity) is studied both experimentally and theoretically. The soliton-like light field structure formation and continuously cycled self-switching process are investigated.

  12. Evidence of multipolar response of Bacteriorhodopsin by noncollinear second harmonic generation.

    Science.gov (United States)

    Bovino, F A; Larciprete, M C; Sibilia, C; Váró, G; Gergely, C

    2012-06-18

    Noncollinear second harmonic generation from a Bacteriorhodopsin (BR) oriented multilayer film was systematically investigated by varying the polarization state of both fundamental beams. Both experimental results and theoretical simulations, show that the resulting polarization mapping is an useful tool to put in evidence the optical chirality of the investigated film as well as the corresponding multipolar contributions to the nonlinear. PMID:22714524

  13. Mode characteristics and directional emission for square microcavity lasers

    Science.gov (United States)

    Yang, Yue-De; Huang, Yong-Zhen

    2016-06-01

    Square microcavities with high quality factor whispering-gallery-like modes have a series of novel optical properties and can be employed as compact-size laser resonators. In this paper, the mode characteristics of square optical microcavities and the lasing properties of directional-emission square semiconductor microlasers are reviewed for the realization of potential light sources in the photonic integrated circuits and optical interconnects. A quasi-analytical model is introduced to describe the confined modes in square microcavities, and high quality factor whispering-gallery-like modes are predicted by the mode-coupling theory and confirmed by the numerical simulation. An output waveguide directly coupled to the position with weak mode field is used to achieve directional emission and control the lasing mode. Electrically-pumped InP-based directional-emission square microlasers are realized at room temperature, and the lasing spectra agree well with the mode analysis. Different kinds of square microcavity lasers, including dual-mode laser with a tunable interval, single-mode laser with a wide tunable wavelength range, and high-speed direct-modulated laser are also demonstrated experimentally.

  14. Dramatic impact of pumping mechanism on photon entanglement in microcavity

    OpenAIRE

    Poddubny, Alexander

    2011-01-01

    A theory of entangled photons emission from quantum dot in microcavity under continuous and pulsed incoherent pumping is presented. It is shown that the time-resolved two-photon correlations drastically depend on the pumping mechanism: the continuous pumping quenches the polarization entanglement and strongly suppresses photon correlation times. Analytical theory of the effect is presented.

  15. Higher-order photon bunching in a semiconductor microcavity

    DEFF Research Database (Denmark)

    Assmann, M.; Veit, F.; Bayer, M.;

    2009-01-01

    in the single-mode emission of a semiconductor microcavity in the weak and strong coupling regimes. The counting statistics of single photons were recorded with picosecond time resolution, allowing quantitative measurement of the few-photon bunching inside light pulses. Our results show bunching behavior...

  16. Nonlinear optics in high refractive index contrast photonic crystal microcavities

    Science.gov (United States)

    Cowan, Allan Ralph

    2005-07-01

    This thesis describes theoretical and experimental research on the nonlinear response of high refractive index contrast (HRIC) optical microcavities. An intuitive, numerically efficient model of second harmonic reflection from two dimensional (2D), planar photonic crystals made of sub-wavelength thick, non-centrosymmetric semiconductors is developed. It predicts that appropriate 2D texture can result in orders of magnitude enhancement of the reflected second order signal when harmonic plane waves are used to excite leaky photonic crystal eigenmodes. Local field enhancement in the textured slab, and other physical processes responsible for these enhancements are explained. A different formalism is developed to treat the Kerr-related bistable response of a 3D microcavity coupled to a single mode waveguide. This model predicts that optical bistability should be observed using only milliwatts of power to excite a cavity fabricated in Al0.18 Ga0.82As, having a quality factor of Q = 4000 and a mode volume of 0.05 mum 3. Two-photon absorption is shown to only slightly hinder the performance in Al0.18Ga0.82 As. By including nonresonant downstream reflections in the model, novel hysteresis loops are predicted, and their stability is analyzed. A coupled waveguide-microcavity structure is fabricated by selectively cladding a silicon ridge-Bragg grating waveguide with photoresist. Three-dimensionally localized optical modes are realized with Q values ranging from 200 to 1200, at ˜1.5 mum. Using 100 fs pulses, the transmission spectra of these structures is studied as a function of input power. The output power saturates when the cavity mode and pulse centre frequencies are resonant, and the output exhibits superlinear growth when they are appropriately detuned. These results are explained in terms of the filtering action of the microcavity on the nonlinear spectral distortion of the input pulse as it propagates through the waveguide. PbSe nanocrystals are deposited on a

  17. Comparison of Free Spectral Range and Quality Factor for Two-Dimensional Square and Circular Microcavities

    Institute of Scientific and Technical Information of China (English)

    国伟华; 黄永箴; 陆巧银; 于丽娟

    2004-01-01

    Free spectral range of whispering-gallery (WG)-like modes in a two-dimensional (2D) square microcavity is found to be twice that in a 2D circular microcavity. The quality factor of the WG-like mode with the low mode number in a 2D square microcavity, calculated by the finite-difference time-domain (FDTD) technique and the Pade approximation method, is found to exceed that of the WG mode in 2D circular microcavity with the same cavity dimension and close mode wavelength.

  18. ZnO-Based Microcavities Sculpted by Focus Ion Beam Milling.

    Science.gov (United States)

    Chang, Tsu-Chi; Hong, Kuo-Bin; Lai, Ying-Yu; Chou, Yu-Hsun; Wang, Shing-Chung; Lu, Tien-Chang

    2016-12-01

    We reported an easy fabrication method to realize ZnO-based microcavities with various cavity shapes by focused ion beam (FIB) milling. The optical characteristics of different shaped microcavities have been systematically carried out and analyzed. Through comprehensive studies of cathodoluminescence and photoluminescence spectra, the whispering gallery mode (WGM) was observed in different shaped microcavities. Up further increasing excitation, the lasing action was dominated by these WGMs and matched very well to the simulated results. Our experiment shows that ZnO microcavities with different shapes can be made with high quality by FIB milling for specific applications of microlight sources and optical devices. PMID:27364999

  19. Effective thermal resistance of a photonic crystal microcavity.

    Science.gov (United States)

    Haret, L-D; Ghrib, A; Checoury, X; Cazier, N; Han, Z; El Kurdi, M; Sauvage, S; Boucaud, P

    2014-02-01

    We present a simple method to accurately measure the effective thermal resistance of a photonic crystal microcavity. The cavity is embedded between two Schottky contacts forming a metal-semiconductor-metal device. The photocarriers circulating in the device provide a local temperature rise that can be dominated by Joule effect under certain conditions. We show that the effective thermal resistance (R(th)) can be experimentally deduced from the spectral shift of the cavity resonance wavelength measured at different applied bias. We deduce a value of R(th)1.6×10(4) KW(-1) for a microcavity on silicon-on-insulator, which is in good agreement with 3D thermal modeling by finite elements. PMID:24487839

  20. Spherical silicon photonic microcavities: From amorphous to polycrystalline

    Science.gov (United States)

    Fenollosa, R.; Garín, M.; Meseguer, F.

    2016-06-01

    Shaping silicon as a spherical object is not an obvious task, especially when the object size is in the micrometer range. This has the important consequence of transforming bare silicon material in a microcavity, so it is able to confine light efficiently. Here, we have explored the inside volume of such microcavities, both in their amorphous and in their polycrystalline versions. The synthesis method, which is based on chemical vapor deposition, causes amorphous microspheres to have a high content of hydrogen that produces an onionlike distributed porous core when the microspheres are crystallized by a fast annealing regime. This substantially influences the resonant modes. However, a slow crystallization regime does not yield pores, and produces higher-quality-factor resonances that could be fitted to the Mie theory. This allows the establishment of a procedure for obtaining size calibration standards with relative errors of the order of 0.1%.

  1. Applications of Optical Microcavity Resonators in Analytical Chemistry.

    Science.gov (United States)

    Wade, James H; Bailey, Ryan C

    2016-06-12

    Optical resonator sensors are an emerging class of analytical technologies that use recirculating light confined within a microcavity to sensitively measure the surrounding environment. Bolstered by advances in microfabrication, these devices can be configured for a wide variety of chemical or biomolecular sensing applications. We begin with a brief description of optical resonator sensor operation, followed by discussions regarding sensor design, including different geometries, choices of material systems, methods of sensor interrogation, and new approaches to sensor operation. Throughout, key developments are highlighted, including advancements in biosensing and other applications of optical sensors. We discuss the potential of alternative sensing mechanisms and hybrid sensing devices for more sensitive and rapid analyses. We conclude with our perspective on the future of optical microcavity sensors and their promise as versatile detection elements within analytical chemistry.

  2. Microcavity-array superhydrophobic surfaces: Limits of the model

    Science.gov (United States)

    Salvadori, M. C.; Oliveira, M. R. S.; Spirin, R.; Teixeira, F. S.; Cattani, M.; Brown, I. G.

    2013-11-01

    Superhydrophobic surfaces formed of microcavities can be designed with specific desired advancing and receding contact angles using a new model described by us in prior work. Here, we discuss the limits of validity of the model, and explore the application of the model to surfaces fabricated with small cavities of radius 250 nm and with large cavities of radius 40 μm. The Wenzel model is discussed and used to calculate the advancing and receding contact angles for samples for which our model cannot be applied. We also consider the case of immersion of a sample containing microcavities in pressurized water. A consideration that then arises is that the air inside the cavities can be dissolved in the water, leading to complete water invasion into the cavities and compromising the superhydrophobic character of the surface. Here, we show that this effect does not destroy the surface hydrophobia when the surface is subsequently removed from the water.

  3. Photothermal effects in ultra-precisely stabilized tunable microcavities

    CERN Document Server

    Brachmann, Johannes F S; Hänsch, Theodor W; Hunger, David

    2016-01-01

    We study the mechanical stability of a tunable high-finesse microcavity under ambient conditions and investigate light-induced effects that can both suppress and excite mechanical fluctuations. As an enabling step, we demonstrate the ultra-precise electronic stabilization of a microcavity. We then show that photothermal mirror expansion can provide high-bandwidth feedback and improve cavity stability by almost two orders of magnitude. At high intracavity power, we observe self-oscillations of mechanical resonances of the cavity. We explain the observations by a dynamic photothermal instability, leading to parametric driving of mechanical motion. For an optimized combination of electronic and photothermal stabilization, we achieve a feedback bandwidth of $500\\,$kHz and a noise level of $1.1 \\times 10^{-13}\\,$m rms.

  4. Dynamic process of free space excitation of asymmetry resonant microcavity

    CERN Document Server

    Shu, Fang-Jie; Sun, Fang-Wen

    2012-01-01

    The underlying physics and detailed dynamical processes of the free space beam excitation to the asymmetry resonant microcavity are studied numerically. Taking the well-studied quadrupole deformed microcavity as an example, we use a Gaussian beam to excite the high-Q mode. The simulation provides a powerful platform to study the underlying physics. The transmission spectrum and intracavity energy can be obtained directly. Irregular transmission spectrum was observed, showing asymmetric Fano-type lineshapes which could be attributed to interference between the different light paths. Then excitation efficiencies about the aim distance of the incident Gaussian beam and the rotation angle of the cavity were studied, showing great consistence with the reversal of emission efficiencies. By projecting the position dependent excitation efficiency to the phase space, the correspondence between the excitation and emission was demonstrated. In addition, we compared the Husimi distributions of the excitation processes an...

  5. Kinetic theory of non-equilibrium condensation of microcavity polaritons

    OpenAIRE

    Sarchi, Davide; Savona, Vincenzo

    2004-01-01

    We develop a kinetic theory of microcavity polaritons in presence of both Coulomb and polariton-phonon interaction, obeying particle number conservation. We study the growth of a macroscopic population of condensed particles in the lowest polariton state, under steady-state incoherent excitation of higher energy states. The collective excitation spectrum, resulting from the Coulomb Hamiltonian treated within the Hartree-Fock-Bogolubov framework, strongly influences the polariton condensation ...

  6. Seeding Dynamics of Nonlinear Polariton Emission from a Microcavity

    DEFF Research Database (Denmark)

    Østergaard, John Erland; Langbein, Wolfgang Werner; Jensen, Jacob Riis;

    2000-01-01

    Summary form only given. The dynamics of polaritons in microcavity samples is presently under intense debate, in particular whether or not the so-called Boser action is possible. In this work, we investigate a λ cavity with a homogeneously broadened 25 nm GaAs quantum well at the antinode at a te...... temperature of 10 K. We can thus inject well-defined polariton populations in k-space revealing how different initial and final state populations may influence the dynamics....

  7. Solid state microcavity dye lasers fabricated by nanoimprint lithography

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Nielsen, Theodor; Kristensen, Anders

    2004-01-01

    We present a solid state polymer microcavity dye laser, fabricated by thermal nanoimprint lithography (NIL) in a dye-doped thermoplast. The thermoplast poly-methylmethacrylate (PMMA) is used due to its high transparency in the visible range and its robustness to laser radiation. The laser dye...... offers the possibility for adding mode-selecting elements, e.g., diffractive- or sub-wavelength optical elements. ©2004 American Institute of Physics...

  8. Excitation mapping of whispering gallery modes in silica microcavities

    CERN Document Server

    Lin, Guoping; Orucevic, Fedja; Candela, Yves; Jager, Jean-Baptiste; Cai, Zhiping; Lefèvre-Seguin, Valérie; Hare, Jean

    2009-01-01

    We report the direct observation of the electromagnetic-field distribution of whispering?gallery modes in silica microcavities (spheres and toroids). It is revealed by their excitation efficiency with a tapered fiber coupler swept along the meridian. The originality of this method lies in the use of the coupler itself for the near field mapping, eliminating the need of additional tools used in previous work. This method is successfully applied to microspheres and microtoroids

  9. Heavy metal ion sensors based on organic microcavity lasers

    OpenAIRE

    Lozenko, Sergii

    2011-01-01

    Monitoring of environmental pollutants present at low concentrations requires creation of miniature, low-cost, and highly sensitive detectors that are capable to specifically identify target substances. In this thesis, a detection approach based on refractive index sensing with polymer micro-lasers is proposed and its application to the detection of heavy metal pollutants in water (mercury – Hg2+, cadmium – Cd2+ and lead – Pb2+) is studied. The resonance frequencies of the microcavity are hig...

  10. Multi-objective optimization of microcavity OLEDs with DBR mirror

    Science.gov (United States)

    Lu, Albert W.; Chan, J.; Ng, Alan Man Ching; Djurišić, A. B.; Rakić, A. D.

    2007-02-01

    In this work, the emission efficiency and spectral shift with respect to viewing angle were optimized by optimizing the design of the multi-layer top mirror of a microcavity OLED device. We first established criteria for the emission side mirror in order to optimize light intensity and spectral shift with viewing angle. Then we designed mirror using metallic and dielectric layers based on the target defined. The electroluminescence emission spectra of a microcavity OLED consisting of widely used organic materials, N,N'-di(naphthalene-1-yl)-N,N'-diphenylbenzidine (NPB) as a hole transport layer and tris (8-hydroxyquinoline) (Alq 3) as emitting and electron transporting layer was then calculated. Silver was used as the anode and back reflection mirror for the microcavity OLED. The simulation was performed for both the conventional LiF/Al cathode/top mirror and the optimized 5-layered top mirror. Our results indicate that by following the design procedure outlined, we simultaneously optimize the device for better light intensity and spectral shift with viewing angle.

  11. Photodetachment of hydrogen negative ion inside a circular microcavity

    Institute of Scientific and Technical Information of China (English)

    Wang De-Hua; Liu Sheng; Li Shao-Sheng; Wang Yi-Hao

    2013-01-01

    The photodetachment of a hydrogen negative ion inside a circular microcavity is studied based on the semiclassical closed orbit theory.The closed orbit of the photo-detached electron in a circular microcavity is investigated and the photodetachment cross section of this system is calculated.The calculation result suggests that oscillating structure appears in the photodetachment cross section,which is caused by the interference effects of the returning electron waves with the outgoing waves traveling along the closed orbits.Besides,our study suggests that the photodetachment cross section of the negative ions depends on the laser polarization sensitively.In order to show the correspondence between the cross section and the closed orbits of the detached electron clearly,we calculate the Fourier transformation of the cross section and find that each peak corresponds to the length of one closed orbit.We hope that our results will be useful for understanding the photodetachment process of negative ions or the electron transport in a microcavity.

  12. Multimode laser emission from free-standing cylindrical microcavities

    International Nuclear Information System (INIS)

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter

  13. Multimode laser emission from free-standing cylindrical microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Peter, Jaison, E-mail: jaisonpeter@cusat.ac.in; Radhakrishnan, P.; Nampoori, V.P.N.; Kailasnath, M.

    2014-05-01

    We report a well resolved whispering gallery mode (WGM) laser emission from a free-standing microring cavity based on a dye doped hollow polymer optical fiber (DDHPOF), which is transversely pumped by a pulsed Nd:YAG laser. The microring laser is characterized by a well-defined, low threshold pump power at which the emission spectral intensity dramatically increases and collapses into several dominant microcavity laser modes with reduced mode spacing and high Q-value. Resonant modes are excited inside the gain medium which is strongly confined along the radial direction so that the spacing of lasing modes is controlled by the diameter of the cylindrical microcavity. A variation in the free spectral range of WGM spectra from 0.23 to 0.09 nm coupled with a red-shift is observed with an increase in the diameter of DDHPOFs. - Highlights: • Different diameter free-standing cylindrical microcavity lasers have been fabricated and their performances have been evaluated. • The microring laser is characterized by a well-defined, low threshold pump power, with reduced mode spacing and high Q-value. • When the diameter of DDHPOF increases, the number of lasing peaks increases along with the decrease of the FSR as observed from our studies. • It is also found that whispering gallery lasing envelope is shifted from 559 to 571 nm (Stokes shift) with the diameter.

  14. Quantum yields for the light adaptations in Anabaena sensory rhodopsin and bacteriorhodopsin

    Science.gov (United States)

    Wada, Yoichiro; Kawanabe, Akira; Furutani, Yuji; Kandori, Hideki; Ohtani, Hiroyuki

    2008-02-01

    Archael-type rhodopsin has an all- trans or a 13- cis retinal. The light-induced interconversion between these two forms has been found in Anabaena sensory rhodopsin, even though only the photoreaction from the 13- cis form to the all- trans form exists in bacteriorhodopsin. In this study, we obtained the quantum yields for the 13- cis → all- trans and all- trans → 13- cis reactions of Anabaena sensory rhodopsin (0.24 ± 0.03 and 0.38 ± 0.07, respectively) and concluded that these values were independent of the wavelength of the excitation light as well as bacteriorhodopsin. In other words, no excess energy effects can be found in these reactions.

  15. Metal ion binding sites of bacteriorhodopsin. Laser-induced lanthanide luminescence study

    International Nuclear Information System (INIS)

    Laser-excited luminescence lifetimes of lanthanide ions bound to bacteriorhodopsin have been measured in deionized membranes. The luminescence titration curve, as well as the binding curve of apomembrane (retinal-free) with Eu3+, has shown that the removal of the retinal does not significantly affect the affinity of Eu3+ for the two high affinity sites of bacteriorhodopsin. The D2O effects on decay rate constants indicate that Eu3+ bound to the high affinity sites of native membrane or apomembrane is coordinated by about six ligands in the first coordination sphere. Tb3+ is shown to be coordinated by four ligands. The data indicate that metal ions bind to the protein with a specific geometry. From intermetal energy transfer experiments using Eu3+-Pr3+, Tb3+-Ho3+, and Tb3+-Er3+, the distance between the two high affinity sites is estimated to be 7-8 A

  16. Tryptophan fluorescence quenching by alkaline earth metal cations in deionized bacteriorhodopsin.

    Science.gov (United States)

    Wang, G; Wang, A J; Hu, K S

    2000-12-01

    Tryptophan quenching by the addition of alkaline earth metal cations to deionized bacteriorhodopsin suspensions was determined. The results show that the addition of cation primarily quenches fluorescence from surface tryptophan residues. The quenched intensity exhibits a 1/R dependence, where R is the ionic radius of the corresponding metal ion. This observation results from a stronger energy transfer coupling between the tryptophan and the retinal. The membrane curvature may be involved as a result of cations motion and correlated conformational changes. PMID:11332888

  17. The 3rd-order nonlinearity of bacteriorhodopsin by four-wave mixing

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The 3rd-order nonlinear optical susceptibility X(3) and the response time of the light-transducing biomolecule bacteriorhodopsin were measured with the four-wave mixing technique and a picosecond frequency-doubled Nd:YAG laser(532nm).The X(3) and the response time measured are 10-9 esu and 20 ps,respectively.The possible mechanism for generating the 3rd-order nonlinear optical susceptibility X(3) and response time were discussed.

  18. Can the Low-Resolution Structures of Photointermediates of Bacteriorhodopsin Explain Their Crystal Structures?

    OpenAIRE

    Kamikubo, Hironari; Kataoka, Mikio

    2004-01-01

    To understand the molecular mechanism of light-driven proton pumps, the structures of the photointermediates of bacteriorhodopsin have been intensively investigated. Low-resolution diffraction techniques have demonstrated substantial conformational changes at the helix level in the M and N intermediates, between which there are noticeable differences. The intermediate structures at atomic resolution have also been solved by x-ray crystallography. Although the crystal structures have demonstra...

  19. Optical signal processing on photorefractive crystal substrate and bacteriorhodopsin thin film

    Science.gov (United States)

    Azimipour, Mehdi; Pashaie, Ramin

    2013-03-01

    In this article we present a new approach for implementation of computation algorithms to perform nonlinear signal processing with light on the surface of a photorefractive crystal and Bacteriorhodopsin thin film. Using the developed mathematical models for the photodynamics of these materials, we demonstrate a specific operation mode and a design procedure to obtain nonlinear response which can be used for implementation of high-performance photonic computers.

  20. Polarization properties of four-wave interaction in dynamic recording material based on bacteriorhodopsin

    Science.gov (United States)

    Korchemskaya, Ellen Y.; Soskin, Marat S.

    1994-10-01

    The polarization properties of four-wave interaction on polymer films with bacteriorhodopsin that possess anisotropically saturating nonlinearity are studied both theoretically and experimentally. The amplitude and the polarization of the diffracted wave for recording material with anisotropically saturating nonlinearity are calculated. Low saturation intensity allows the operation of the polarization of low-intensity signals to be realized. It is shown that control of the diffractive wave polarization is possible only with the variation of the light recording intensity.

  1. Optical chirality of bacteriorhodopsin films via second harmonic Maker's fringes measurements

    Science.gov (United States)

    Larciprete, M. C.; Belardini, A.; Sibilia, C.; Saab, M.-b.; Váró, G.; Gergely, C.

    2010-05-01

    We experimentally investigated second harmonic generation from an oriented multilayer film of bacteriorhodopsin protein, deposited onto a charged surface. The generated signal is obtained as a function of incidence angle, at different polarization state of both fundamental and generated beams. We show that the measurements, together with the analytical curves, allow to retrieve the nonvanishing elements of the nonlinear optical tensor, including the ones introduced by optical chirality.

  2. Light-induced changes in the absorption spectrum of bacteriorhodopsin under two-wavelength excitation

    Science.gov (United States)

    Koklyushkin, A. V.; Korolev, A. E.

    2004-09-01

    The results of spectrophotometric measurements of nonlinear light-induced changes in the absorption spectrum of bacteriorhodopsin D96N occurring upon simultaneous excitation at the wavelengths 633 and 441 nm in the excitation intensity range typical for recording of dynamic holograms are presented. The quantitative conditions under which the action of the radiation at one wavelength reduces the change in the optical density caused by the radiation at the other wavelength are determined.

  3. Crystal structure of Escherichia coli-expressed Haloarcula marismortui bacteriorhodopsin I in the trimeric form.

    Directory of Open Access Journals (Sweden)

    Vitaly Shevchenko

    Full Text Available Bacteriorhodopsins are a large family of seven-helical transmembrane proteins that function as light-driven proton pumps. Here, we present the crystal structure of a new member of the family, Haloarcula marismortui bacteriorhodopsin I (HmBRI D94N mutant, at the resolution of 2.5 Å. While the HmBRI retinal-binding pocket and proton donor site are similar to those of other archaeal proton pumps, its proton release region is extended and contains additional water molecules. The protein's fold is reinforced by three novel inter-helical hydrogen bonds, two of which result from double substitutions relative to Halobacterium salinarum bacteriorhodopsin and other similar proteins. Despite the expression in Escherichia coli and consequent absence of native lipids, the protein assembles as a trimer in crystals. The unique extended loop between the helices D and E of HmBRI makes contacts with the adjacent protomer and appears to stabilize the interface. Many lipidic hydrophobic tail groups are discernible in the membrane region, and their positions are similar to those of archaeal isoprenoid lipids in the crystals of other proton pumps, isolated from native or native-like sources. All these features might explain the HmBRI properties and establish the protein as a novel model for the microbial rhodopsin proton pumping studies.

  4. Low-threshold indium gallium nitride quantum dot microcavity lasers

    Science.gov (United States)

    Woolf, Alexander J.

    Gallium nitride (GaN) microcavities with embedded optical emitters have long been sought after as visible light sources as well as platforms for cavity quantum electrodynamics (cavity QED) experiments. Specifically, materials containing indium gallium nitride (InGaN) quantum dots (QDs) offer an outstanding platform to study light matter interactions and realize practical devices, such as on-chip light emitting diodes and nanolasers. Inherent advantages of nitride-based microcavities include low surface recombination velocities, enhanced room-temperature performance (due to their high exciton binding energy, as high as 67 meV for InGaN QDs), and emission wavelengths in the blue region of the visible spectrum. In spite of these advantages, several challenges must be overcome in order to capitalize on the potential of this material system. Such diffculties include the processing of GaN into high-quality devices due to the chemical inertness of the material, low material quality as a result of strain-induced defects, reduced carrier recombination effciencies due to internal fields, and a lack of characterization of the InGaN QDs themselves due to the diffculty of their growth and therefore lack of development relative to other semiconductor QDs. In this thesis we seek to understand and address such issues by investigating the interaction of light coupled to InGaN QDs via a GaN microcavity resonator. Such coupling led us to the demonstration of the first InGaN QD microcavity laser, whose performance offers insights into the properties and current limitations of the nitride materials and their emitters. This work is organized into three main sections. Part I outlines the key advantages and challenges regarding indium gallium nitride (InGaN) emitters embedded within gallium nitride (GaN) optical microcavities. Previous work is also discussed which establishes context for the work presented here. Part II includes the fundamentals related to laser operation, including the

  5. Micro-cavity lasers with large device size for directional emission

    Science.gov (United States)

    Yan, Chang-ling; Li, Peng; Shi, Jian-wei; Feng, Yuan; Hao, Yong-qin; Zhu, Dongda

    2014-10-01

    Optical micro-cavity structures, which can confine light in a small mode volume with high quality factors, have become an important platform not only for optoelectronic applications with densely integrated optical components, but also for fundamental studies such as cavity quantum electrodynamics and nonlinear optical processes. Micro-cavity lasers with directional emission feature are becoming a promising resonator for the compact laser application. In this paper, we presented the limason-shaped cavity laser with large device size, and fabricated this type of micro-cavity laser with quantum cascade laser material. The micro-cavity laser with large device size was fabricated by using InP based InGaAs/InAlAs quantum cascade lasers material at about 10um emitting wavelength, and the micro-cavity lasers with the large device size were manufactured and characterized with light output power, threshold current, and the far-field pattern.

  6. Aharonov-Bohm quantum rings in high-Q microcavities

    OpenAIRE

    Alexeev, A. M.; Shelykh, I. A.; Portnoi, M. E.

    2013-01-01

    A single-mode microcavity with an embedded Aharonov-Bohm quantum ring, which is pierced by a magnetic flux and subjected to a lateral electric field, is studied theoretically. It is shown that external electric and magnetic fields provide additional means of control of the emission spectrum of the system. In particular, when the magnetic flux through the quantum ring is equal to a half-integer number of the magnetic flux quantum, a small change in the lateral electric field allows tuning of t...

  7. First results with a microcavity plasma panel detector

    OpenAIRE

    Ball, R; Ben-Moshe, M.; Benhammou, Y.(Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel); Bensimon, R.; J. W. Chapman; M. Davies; E. Etzion; Ferretti, C.; Friedman, P S; Levin, D S; Y. Silver; Varner, R. L.; Weaverdyck, C.; Zhou, B

    2014-01-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6 to 2.5 volt amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency of greater than 95% is calculated, for operati...

  8. Coupled spatial multi-mode solitons in microcavity wires

    CERN Document Server

    Slavcheva, G; Pimenov, A

    2016-01-01

    A modal expansion approach is developed and employed to investigate and elucidate the nonlinear mechanism behind the multistability and formation of coupled multi-mode polariton solitons in microcavity wires. With pump switched on and realistic dissipation parameters, truncating the expansion up to the second-order wire mode, our model predicts two distinct coupled soliton branches: stable and ustable. Modulational stability of the homogeneous solution and soliton branches stability are studied. Our simplified 1D model is in remarkably good agreement with the full 2D mean-field Gross-Pitaevskii model, reproducing correctly the soliton existence domain upon variation of pump amplitude and the onset of multistability.

  9. Ultra-fast polariton dynamics in an organic microcavity

    Directory of Open Access Journals (Sweden)

    Polli D.

    2013-03-01

    Full Text Available We study an organic semiconductor microcavity operating in the strong-coupling regime using femtosecond pump-probe spectroscopy. By probing the photo-induced absorption bands, we characterize the time-dependent population densities of states in the two polariton branches. We found evidence of a scattering process from the upper-branch cavity polaritons to the exciton reservoir having a rate of (150 fs-1. A slower process similarly populates lower-branch polaritons with a rate of around (3ps-1

  10. Temperature tunability of quantum emitter - cavity coupling in a photonic wire microcavity with shielded sidewall loss

    CERN Document Server

    Bernard, M

    2016-01-01

    Recent technological advancements have allowed to implement in solid-state cavity-based devices phenomena of quantum nature such as vacuum Rabi splitting, controllable single photon emission and quantum entanglement. For a sufficiently strong coupling between a quantum emitter and a cavity, large quality factors ($Q$) along with small modal volume ($V_{eff}$) are essential. Here we show that by applying a 5nm Al coating to the sidewalls of a submicrometer-sized Fabry-P\\'{e}rot microcavity, the cavity $Q$ can be temperature-tuned from few hundreds at room temperatures to 2$\\times$10$^5$ below 30~K. This is achieved by, first, a complete shielding of the sidewall loss with ideally reflecting lateral metallic mirrors and, secondly, a dramatic decrease of the cavity's axial loss for small-sized devices due to the largely off-axis wavevector within the multilayered structure. Our findings offer a novel temperature-tunable platform to study quantum electrodynamical phenomena of emitter-cavity coupling. We demonstra...

  11. Another model for a multiexcitonic quantum dot in an optical microcavity

    Institute of Scientific and Technical Information of China (English)

    SHAN Guang-cun; HUANG Wei; BAO Shu-ying

    2007-01-01

    Very recently, a multiexcitonic quantum dot in an optical microcavity have been theoretically studied [Herbert Vincka, Boris A. Rodriguez, and Augusto Gonzalez, Physica E, 2006, 35: 99-102]. However, due to the inevitable damping losses through the microcavity, in this work, we will present a more precise and sound model in the Lindblad form master equation to investigate the photonic properties of a single quantum dot (QD) in an optical microcavity system, in which the QD may confine the multiexcitons and be in resonant interaction with a single photonic mode of an optical microcavity. The excitation energies, and the properties of the emission photon from the QD microcavity are computed as functions of the exciton-photon coupling strength, detuning, and pump rate. We further compare our results with their results, and find that the calculated intensity of the emitted photon and the spectra crucially depend on the exciton-photon coupling strength g, the photon detuning, and the number of excitons in the QD. Finally, we will give a physical mechanism of the dressed-state picture for the strong coupling between the single mode of an optical microcavity and the QD emitters to explain the details of the emission photon spectra. Our study establishes useful guidelines for the experimental study of such multiexcitonic quantum dot in an optical microcavity system.

  12. Enhanced out-coupling factor of microcavity organic light-emitting devices with irregular microlens array

    Science.gov (United States)

    Lim, Jongsun; Oh, Seung Seok; Youp Kim, Doo; Cho, Sang Hee; Kim, In Tae; Han, S. H.; Takezoe, Hideo; Choi, Eun Ha; Cho, Guang Sup; Seo, Yoon Ho; Oun Kang, Seung; Park, Byoungchoo

    2006-07-01

    We studied microcavity organic light-emitting devices with a microlens system. A microcavity for organic light-emitting devices (OLED) was fabricated by stacks of SiO2 and SiNx layers and a metal cathode together with the microlens array. Electroluminescence of the devices showed that color variation under the viewing angle due to the microcavity is suppressed remarkably by microlens arrays, which makes the use of devices acceptable in many applications. It was also demonstrated that the external out-coupling factor of the devise increases by a factor of ~1.8 with wide viewing angles compared to conventional OLEDs.

  13. Composite modulation of Fano resonance in plasmonic microstructures by electric-field and microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Wu, Chenyun; Yang, Hong [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Hu, Xiaoyong, E-mail: xiaoyonghu@pku.edu.cn; Gong, Qihuang [State Key Laboratory for Mesoscopic Physics and Department of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing 100871 (China)

    2014-11-03

    Composite modulation of Fano resonance by using electric-field and microcavity simultaneously is realized in a plasmonic microstructure, which consists of a gold nanowire grating inserted into a Fabry-Perot microcavity composited of a liquid crystal layer sandwiched between two indium tin oxide layers. The Fano resonance wavelength varies with the applied voltage and the microcavity resonance. A large shift of 48 nm in the Fano resonance wavelength is achieved when the applied voltage is 20 V. This may provide a new way for the study of multi-functional integrated photonic circuits and chips based on plasmonic microstructures.

  14. Tuning the resonance of a photonic crystal microcavity with an AFM probe.

    Science.gov (United States)

    Märki, Iwan; Salt, Martin; Herzig, Hans Peter

    2006-04-01

    We present theoretical and experimental results on switching and tuning of a two-dimensional photonic crystal resonant microcavity by means of a silicon AFM tip, probing the highly localized optical field in the vicinity of the cavity. On-off switching and modulation of the transmission signal in the kHz range is achieved by bringing an AFM tip onto the center of the microcavity, inducing a damping effect on the transmission resonance. Tuning of the resonant wavelength in the order of several nanometers becomes possible by inserting the AFM tip into one of the holes of the Bragg mirror forming the microcavity in the propagation direction. PMID:19516436

  15. Narrow dark polariton due to coupled coherence in a quantum well microcavity

    Science.gov (United States)

    Wang, Tao; Li, Cui Li; Zhang, Rui; Zhuo, Zhong Chang; Su, Xue Mei

    2015-10-01

    A scheme is proposed to obtain slow light in a coulped quantum wells microcavity with tunneling induced transparency between intersubband electronic transitions. Three prolaritons are created by intracavity Fano interference between fundamental mode photon and two quantum oscillators of coherent subband electronic excitations. A narrow middle dark polariton of the three can be produced, which can be used to suppress the line profiles of the transmission or reflection spectra for the incident light. This leads to slow propagation of the incident light in the microcavity. The semiconductor optical microcavity can be an alternative choice of quantum photoelectronic devices in nanoscale.

  16. Enhancing the Robustness of the Microcavity Coupling System

    Institute of Scientific and Technical Information of China (English)

    YAN Ying-Zhan; JI Zhe; YAN Shu-Bin; LIU Jun; XUE Chen-Yang; ZHANG Wen-Doug; XIONG Ji-Jun

    2011-01-01

    A novel method to enhance the robustness of the microcavity coupling system(MCS) is presented by encapsulating and solidifying the MCS with a low refractive index(RI) curable UV polymer. The encapsulating process is illustrated in detail for a typical microsphere with a radius of R about 240 μm. Three differences of the resonant characteristics before and after the package are observed and analyzed. The first two differences refer to the enhancement of the coupling strength and the shift of the resonant spectrum to the longer wavelength, which are both mainly because of the microsphere surrounding RI variation. Another difference is the quality factor (Q-factor) which decreases from 7.8x 10(7) to 8.7x 10(6) after the package due to the polymer absorption. Moreover,rotation testing experiments have been carried out to verify the robustness of the package MCS. Experimental results demonstrate that the packaged MCR has much better robust performance than the un-package sample.The enhancement of the robustness greatly promotes the microcavity research from fundamental investigations to application fields.

  17. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    International Nuclear Information System (INIS)

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display

  18. Two-photon polarization data storage in bacteriorhodopsin films and its potential use in security applications

    Energy Technology Data Exchange (ETDEWEB)

    Imhof, Martin; Hampp, Norbert, E-mail: hampp@staff.uni-marburg.de [Department of Chemistry, Material Sciences Center, University of Marburg, Hans-Meerwein-Str., D-35032 Marburg (Germany); Rhinow, Daniel [Max-Planck-Institute of Biophysics, Max-von-Laue-Straße 3, D-60438 Frankfurt (Germany)

    2014-02-24

    Bacteriorhodopsin (BR) films allow write-once-read-many recording of polarization data by a two-photon-absorption (TPA) process. The optical changes in BR films induced by the TPA recording were measured and the Müller matrix of a BR film was determined. A potential application of BR films in security technology is shown. Polarization data can be angle-selective retrieved with high signal-to-noise ratio. The BR film does not only carry optical information but serves also as a linear polarizer. This enables that polarization features recorded in BR films may be retrieved by merely using polarized light from a mobile phone display.

  19. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    OpenAIRE

    Karna, Shashi P.; Craig R. Friedrich; Garrett, Gregory A.; Lueking, Donald R.; Winder, Eric M.; Griep, Mark H.

    2012-01-01

    An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs) and the optical protein bacteriorhodopsin (bR) is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18...

  20. Photoinduced Birefringence and Broadband All-Optical Photonic Switch in a Bacteriorhodopsin/Polymer Composite Film

    Institute of Scientific and Technical Information of China (English)

    WEI Lai; TENG Xue-Lei; Lu Ming; ZHAO You-Yuan; MA De-Wang; DING Jian-Dong

    2007-01-01

    Photoinduced birefringence with large optical nonlinearity in a bacteriorhodopsin/polymer composite film is observed.A high refractive index change of 8.5×10-5 photoinduced by 476nm pumping beam is reached at the low intensity of 6.5mW/cm2.Based on it,a broadband all-optical photonic switch is realized with an optical controlling switch system.Because of controlling beam's selectivity in switching,the transporting beams of different wavelengths with different intensities and shapes can be modulated by adjusting the wavelength and intensity of the controlling beam.

  1. Nonlinear photoinduced anisotropy and modifiable optical image display in a bacteriorhodopsin/polymer composite film

    Science.gov (United States)

    Wei, Lai; Luo, Jia; Zhu, Jiang; Lu, Ming; Zhao, You-yuan; Ma, De-wang; Ding, Jian-dong

    2007-04-01

    The nonlinear photoinduced anisotropy with large birefringence in a bacteriorhodopsin/polymer composite (bR/PC) film was observed. The contrast ratio, a ratio of the maximum to the minimum intensity of transmitted probe light through the bR/PC film within the linear gray scale range could reach ˜350:1. An all-optical image display in different colors was performed. The intensity of the transmitted signal could be modulated by adjusting the multibeam polarization states and intensities. Therefore, the positive image, negative image, and image erasure in display were demonstrated.

  2. A Novel Optical Filter for Removing Bright-Background Using an Enhanced Bacteriorhodopsin Thin Film

    Institute of Scientific and Technical Information of China (English)

    ZHANG Chun-Ping(张春平); GU Li-Qun(顾立群); CHEN Gm-Ying(陈桂英); GUO Zong-Xia(郭宗霞); FU Guang-Hua(富光华); ZHANG Guang-Yin(张光寅); ZHANG Tian-Hao(张天浩); LI Yu-Dong(李玉栋); Q. Wang SONG

    2003-01-01

    We found that the bacteriorhodopsin (bR) film has a special property of complementary suppression modulated transmission (CSMT). The yellow and the blue beams can be suppressed mutually when both the beams illuminate the bR film simultaneously. When the blue beam carrying an image with a bright-background noise illuminates on the bR film and then a yellow beam with uniform intensity distribution illuminates the same area, the brightbackground can be removed due to the CSMT. In our demonstration, the pattern model is letters "VLSI" with ground noise of small words and the ground noise is removed from the pattern by the new optical filter.

  3. Enhancement of photoelectric response of bacteriorhodopsin by multilayered WO3 x H2O nanocrystals/PVA membrane.

    Science.gov (United States)

    Li, Rui; Hu, Fengping; Bao, Qiaoliang; Bao, Shujuan; Qiao, Yan; Yu, Shucong; Guo, Jun; Li, Chang Ming

    2010-02-01

    For the first time, a multilayered WO(3) x H(2)O/PVA membrane on bacteriorhodopsin (bR) is constructed to significantly enhance the photoelectric response of bR by the spillover effect of WO(3) x H(2)O nanocrystals, providing great potential in its important applications in bioelectronics and proton exchange membrane fuel cells.

  4. Contrast enhancement and phase conjugation low-power optical signal in dynamic recording material based on bacteriorhodopsin

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Dukova, Tatjana V.; Vsevolodov, Nicolai N.

    1994-02-01

    Polymer films with fragments of the purple membranes containing protein bacteriorhodopsin (BR) have been used for the real-time optical information processing of low-power (several milliwatt) cw gas laser signals. The nonlinear recording media with BR have a potential in microscopic techniques for in-vivo diagnosis of the crystalline lens.

  5. Light diffusing effects of nano and micro-structures on OLED with microcavity.

    Science.gov (United States)

    Cho, Doo-Hee; Shin, Jin-Wook; Joo, Chul Woong; Lee, Jonghee; Park, Seung Koo; Moon, Jaehyun; Cho, Nam Sung; Chu, Hye Yong; Lee, Jeong-Ik

    2014-10-20

    We examined the light diffusing effects of nano and micro-structures on microcavity designed OLEDs. The results of FDTD simulations and experiments showed that the pillar shaped nano-structure was more effective than the concave micro-structure for light diffusing of microcavity OLEDs. The sharp luminance distribution of the microcavity OLED was changed to near Lambertian luminance distribution by the nano-structure, and light diffusing effects increased with the height of the nano-structure. Furthermore, the nano-structure has advantages including light extraction of the substrate mode, reproducibility of manufacturing process, and minimizing pixel blur problems in an OLED display panel. The nano-structure is a promising candidate for a light diffuser, resolving the viewing angle problems in microcavity OLEDs. PMID:25607307

  6. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Science.gov (United States)

    Guddala, Sriram; Dwivedi, Vindesh K.; Vijaya Prakash, G.; Narayana Rao, D.

    2013-12-01

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm-1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  7. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Guddala, Sriram; Narayana Rao, D., E-mail: dnr.laserlab@gmail.com, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500 046 (India); Dwivedi, Vindesh K.; Vijaya Prakash, G. [Nanophotonics Laboratory, Department of Physics, IIT Delhi, New Delhi 110 016 (India)

    2013-12-14

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm{sup −1}) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies.

  8. Electrically Injected Polariton Lasing from a GaAs-Based Microcavity under Magnetic Field

    KAUST Repository

    Bhattacharya, Pallab

    2012-01-01

    Suppression of relaxation bottleneck and subsequent polariton lasing is observed in a GaAs-based microcavity under the application of a magnetic field. The threshold injection current density is 0.32 A/cm2 at 7 Tesla.

  9. Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

    Energy Technology Data Exchange (ETDEWEB)

    Poellmann, C.; Leierseder, U.; Huber, R. [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Galopin, E.; Lemaître, A.; Amo, A.; Bloch, J. [CNRS-Laboratoire de Photonique et Nanostructures, Route de Nozay, 91460 Marcoussis (France); Ménard, J.-M., E-mail: jean-michel.menard@mpl.mpg.de [Department of Physics, University of Regensburg, 93040 Regensburg (Germany); Max Planck Institute for the Science of Light, Günther-Scharowsky-Straße 1, 91058 Erlangen (Germany)

    2015-05-28

    We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of λ = 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.

  10. Raman scattering enhancement in photon-plasmon resonance mediated metal-dielectric microcavity

    International Nuclear Information System (INIS)

    Here, we report the photon-plasmon interaction scheme and enhanced field strengths resulted into the amplification of phonon in a novel microcavity. A metal-dielectric microcavity, with unified cavity photonic mode and localized surface plasmon resonances, is visualized by impregnating the gold nanoparticles into the deep see-through nano-sized pores of porous silicon microcavity. The intense optical field strengths resulting from the photon-plasmon interactions are probed by both resonant and non-resonant Raman scattering experiments. Due to photon-plasmon-phonon interaction mechanism, several orders of enhancement in the intensity of scattered Raman Stokes photon (at 500 cm−1) are observed. Our metal nanoparticle-microcavity hybrid system shows the potential to improve the sensing figure of merit as well as the applications of plasmonics for optoelectronics, photovoltaics, and related technologies

  11. Hybrid Exciton-Polaritons in a Bad Microcavity Containing the Organic and Inorganic Quantum Wells

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-Xi; SUN Chang-Pu

    2001-01-01

    We study the hybrid exciton-polaritons in a bad microcavity containing the organic and inorganic quantum wells. The corresponding polariton states are given. The analytical solution and numerical result of the stationary spectrum for the cavity field are finished.``

  12. Microcavity design for low threshold polariton condensation with ultrashort optical pulse excitation

    CERN Document Server

    Poellmann, C; Galopin, E; Lemaître, A; Amo, A; Bloch, J; Huber, R; Ménard, J -M

    2016-01-01

    We present a microcavity structure with a shifted photonic stop-band to enable efficient non-resonant injection of a polariton condensate with spectrally broad femtosecond pulses. The concept is demonstrated theoretically and confirmed experimentally for a planar GaAs/AlGaAs multilayer heterostructure pumped with ultrashort near-infrared pulses while photoluminescence is collected to monitor the optically injected polariton density. As the excitation wavelength is scanned, a regime of polariton condensation can be reached in our structure at a consistently lower fluence threshold than in a state-of-the-art conventional microcavity. Our microcavity design improves the polariton injection efficiency by a factor of 4, as compared to a conventional microcavity design, when broad excitation pulses are centered at a wavelength of 740 nm. Most remarkably, this improvement factor reaches 270 when the excitation wavelength is centered at 750 nm.

  13. Studying of Phototransformation of Light Signal by Photoreceptor Pigments - Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2014-09-01

    Full Text Available This review article views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of nano- and biotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0.09 M Tris-borate buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual analyzer having the ability to analyze certain ranges of the optical spectrum, as colors was studied along with an analysis of the additive mixing of two colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceive them as separate or average wave length corresponding to mix color.

  14. New Nano- and Biotechnological Applications of Bacterial and Animal Photoreceptor Pigments  Bacteriorhodopsin, Rhodopsin and Iodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2016-03-01

    Full Text Available This paper views predominately the structure and function of animal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and new aspects of their nano- and biotechnological usage. On an example of bacteriorhodopsin was described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0.09 M Tris-HCl buffer (pH = 6,76 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual analyzer having the ability to analyze certain ranges of the optical spectrum, as colors was studied along with an analysis of the additive mixing of two colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceive them as separate or average wave length corresponding to mix color.

  15. Polariton condensation phase diagram in wide bandgap planar microcavities: GaN versus ZnO

    OpenAIRE

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J; Bouchoule, S.; Lafosse, X.; Li, F; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2015-01-01

    GaN and ZnO microcavities have been grown on patterned silicon substrate. Thanks to a common platform these microcavities share similar photonic properties with large quality factors and low photonic disorder which gives the possibility to determine the optimal spot diameter and to realize a complete comparative phase diagram study. Both systems have been investigated under the same experimental condition. Experimental results are well reproduced by simulation using Boltzmann equations. Lower...

  16. Polariton linewidth and the reservoir temperature dynamics in a semiconductor microcavity

    OpenAIRE

    Belykh, V. V.; Sob'yanin, D. N.

    2014-01-01

    A method of determining the temperature of the nonradiative reservoir in a microcavity exciton-polariton system is developed. A general relation for the homogeneous polariton linewidth is theoretically derived and experimentally used in the method. In experiments with a GaAs microcavity under nonresonant pulsed excitation, the reservoir temperature dynamics is extracted from the polariton linewidth. Within the first nanosecond the reservoir temperature greatly exceeds the lattice temperature ...

  17. Highly indistinguishable photons from a QD-microcavity with a large Purcell-factor

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.;

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled quantum dot-microcavity system operating in the weak coupling regime. Furthermore we model the degree of indistinguishability with our novel microscopic theory.......We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupled quantum dot-microcavity system operating in the weak coupling regime. Furthermore we model the degree of indistinguishability with our novel microscopic theory....

  18. Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities

    OpenAIRE

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-01-01

    We present some deterministic schemes to construct universal quantum gates, that is, controlled- NOT, three-qubit Toffoli, and Fredkin gates, between flying photon qubits and stationary electron-spin qubits assisted by quantum dots inside double-sided optical microcavities. The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are encoded on the confined electron spins in quantum dots inside optical microcavities. Our schemes for these...

  19. Three-Colour Single-Mode Electroluminescence from Alq3 Tuned by Microcavities

    Institute of Scientific and Technical Information of China (English)

    赵家民; 马凤英; 刘星元; 刘云; 初国强; 宁永强; 王立军

    2002-01-01

    Organic metal microcavities were fabricated by using full-reflectivity aluminium film and semi-transparent silverfilm as cavity mirrors. Unlike conventional organic microcavities, such as the typical structure of glass/DBR/ITO/-organic layers/metal mirror, a microcavity with a shorter cavity length was obtained by using two metal mirrors,where DBR is the distributed Bragg reflector consisting of alternate quarter-wave layers of high and low refractiveindex materials. It is realized that red, green and blue single-mode electroluminescence (EL) from the micro-cavities with the structure, glass/Ag/TPD/Alqa/A1, are electrically-driven when the thickness of the Alqa layerchanges. Compared to a non-cavity reference sample whose EL spectrum peak is located at 520nm with a fullwidth at half maximum (FWHM) of 93 nm, the microcavity devices show apparent cavity effects. The EL spectraof red, green and blue microcavities are peaked at 604nm, 540nm and 491 nm, with FWHM of 43 nm, 38nm and47nm, respectively.

  20. Coherence expansion and polariton condensate formation in a semiconductor microcavity.

    Science.gov (United States)

    Belykh, V V; Sibeldin, N N; Kulakovskii, V D; Glazov, M M; Semina, M A; Schneider, C; Höfling, S; Kamp, M; Forchel, A

    2013-03-29

    The dynamics of the expansion of the first order spatial coherence g(1) for a polariton system in a high-Q GaAs microcavity was investigated on the basis of Young's double slit experiment under 3 ps pulse excitation at the conditions of polariton Bose-Einstein condensation. It was found that in the process of condensate formation the coherence expands with a constant velocity of about 10(8)  cm/s. The measured coherence is smaller than that in a thermal equilibrium system during the growth of condensate density and well exceeds it at the end of condensate decay. The onset of spatial coherence is governed by polariton relaxation while condensate amplitude and phase fluctuations are not suppressed.

  1. Dual-microcavity narrow-linewidth Brillouin laser

    CERN Document Server

    Loh, William; Baynes, Frederick; Cole, Daniel; Quinlan, Franklyn; Lee, Hansuek; Vahala, Kerry; Papp, Scott; Diddams, Scott

    2014-01-01

    Ultralow noise, yet tunable lasers are a revolutionary tool in precision spectroscopy, displacement measurements at the standard quantum limit, and the development of advanced optical atomic clocks. Further applications include LIDAR, coherent communications, frequency synthesis, and precision sensors of strain, motion, and temperature. While all applications benefit from lower frequency noise, many also require a laser that is robust and compact. Here, we introduce a dual-microcavity laser that leverages one chip-integrable silica microresonator to generate tunable 1550 nm laser light via stimulated Brillouin scattering (SBS) and a second microresonator for frequency stabilization of the SBS light. This configuration reduces the fractional frequency noise to $7.8\\times10^{-14} 1/\\sqrt{Hz}$ at 10 Hz offset, which is a new regime of noise performance for a microresonator-based laser. Our system also features terahertz tunability and the potential for chip-level integration. We demonstrate the utility of our du...

  2. Hybrid polaritons in a resonant inorganic/organic semiconductor microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Höfner, M., E-mail: mhoefner@physik.hu-berlin.de; Sadofev, S.; Henneberger, F. [Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr.15, 12489 Berlin (Germany); Kobin, B.; Hecht, S. [Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin (Germany)

    2015-11-02

    We demonstrated the strong coupling regime in a hybrid inorganic-organic microcavity consisting of (Zn,Mg)O quantum wells and ladder-type oligo(p-phenylene) molecules embedded in a polymer matrix. A Fabry-Pérot cavity is formed by an epitaxially grown lower ZnMgO Bragg reflector and a dielectric mirror deposited atop of the organic layer. A clear anticrossing behavior of the polariton branches related to the Wannier-Mott and Frenkel excitons, and the cavity photon mode with a Rabi-splitting reaching 50 meV, is clearly identified by angular-dependent reflectivity measurements at low temperature. By tailoring the structural design, an equal mixing with weights of about 0.3 for all three resonances is achieved for the middle polariton branch at an incidence angle of about 35°.

  3. Strong exciton-photon coupling in open semiconductor microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Dufferwiel, S.; Fras, F.; Walker, P. M.; Li, F.; Giriunas, L.; Makhonin, M. N.; Wilson, L. R.; Skolnick, M. S.; Krizhanovskii, D. N. [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Trichet, A.; Smith, J. M. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Clarke, E. [EPSRC National Centre for III-V Technologies, University of Sheffield, Sheffield S1 3JD (United Kingdom)

    2014-05-12

    We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity containing quantum wells (QWs) grown on top and a dielectric concave DBR separated by a micrometer sized gap. Nanopositioners allow independent positioning of the two mirrors and the cavity mode energy can be tuned by controlling the distance between them. When close to resonance, we observe a characteristic anticrossing between the cavity modes and the QW exciton demonstrating strong coupling. For the smallest radii of curvature concave mirrors of 5.6 μm and 7.5 μm, real-space polariton imaging reveals submicron polariton confinement due to the hemispherical cavity geometry.

  4. Highly Efficient Boundary Element Analysis of Whispering Gallery Microcavities

    CERN Document Server

    Pan, Leyuan

    2014-01-01

    We demonstrate that the efficiency of the boundary element whispering gallery microcavity analysis can be improved by orders of magnitude with the inclusion of Fresnel approximation. Using this formulation, simulation of a microdisk with wave-number-radius product as large as $kR\\approx8,000$ was demonstrated in contrast to a previous record of $kR\\approx100$. In addition to its high accuracy on computing the modal field distribution and resonance wavelength, this method yields a relative error of $10%$ in calculating the quality factor as high as $10^{11}$ through a direct root searching method where the conventional boundary element method failed to achieve. Finally, quadrupole shaped cavities and double disks as large as $100 {\\mu}m$ in diameter were modeled by employing as few as $512$ boundary elements whilst the simulation of such large cavities using conventional boundary element method were not reported previously.

  5. Tunable polaritonic molecules in an open microcavity system

    International Nuclear Information System (INIS)

    We experimentally demonstrate tunable coupled cavities based upon open access zero-dimensional hemispherical microcavities. The modes of the photonic molecules are strongly coupled with quantum well excitons forming a system of tunable polaritonic molecules. The cavity-cavity coupling strength, which is determined by the degree of modal overlap, is controlled through the fabricated centre-to-centre distance and tuned in-situ through manipulation of both the exciton-photon and cavity-cavity detunings by using nanopositioners to vary the mirror separation and angle between them. We demonstrate micron sized confinement combined with high photonic Q-factors of 31 000 and lower polariton linewidths of 150 μeV at resonance along with cavity-cavity coupling strengths between 2.5 meV and 60 μeV for the ground cavity state

  6. Tunable polaritonic molecules in an open microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Dufferwiel, S.; Li, Feng, E-mail: f.li@sheffield.ac.uk; Giriunas, L.; Walker, P. M.; Skolnick, M. S.; Krizhanovskii, D. N., E-mail: d.krizhanovskii@sheffield.ac.uk [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Trichet, A. A. P.; Smith, J. M. [Department of Materials, University of Oxford, Oxford OX1 3PH (United Kingdom); Farrer, I.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE (United Kingdom)

    2015-11-16

    We experimentally demonstrate tunable coupled cavities based upon open access zero-dimensional hemispherical microcavities. The modes of the photonic molecules are strongly coupled with quantum well excitons forming a system of tunable polaritonic molecules. The cavity-cavity coupling strength, which is determined by the degree of modal overlap, is controlled through the fabricated centre-to-centre distance and tuned in-situ through manipulation of both the exciton-photon and cavity-cavity detunings by using nanopositioners to vary the mirror separation and angle between them. We demonstrate micron sized confinement combined with high photonic Q-factors of 31 000 and lower polariton linewidths of 150 μeV at resonance along with cavity-cavity coupling strengths between 2.5 meV and 60 μeV for the ground cavity state.

  7. Strain monitoring of bismaleimide composites using embedded microcavity sensor

    Science.gov (United States)

    Kaur, Amardeep; Anandan, Sudharshan; Yuan, Lei; Watkins, Steve E.; Chandrashekhara, K.; Xiao, Hai; Phan, Nam

    2016-03-01

    A type of extrinsic Fabry-Perot interferometer (EFPI) fiber optic sensor, i.e., the microcavity strain sensor, is demonstrated for embedded, high-temperature applications. The sensor is fabricated using a femtosecond (fs) laser. The fs-laser-based fabrication makes the sensor thermally stable to sustain operating temperatures as high as 800°C. The sensor has low sensitivity toward the temperature as compared to its response toward the applied strain. The performance of the EFPI sensor is tested in an embedded application. The host material is carbon fiber/bismaleimide (BMI) composite laminate that offer thermally stable characteristics at high ambient temperatures. The sensor exhibits highly linear response toward the temperature and strain. Analytical work done with embedded optical-fiber sensors using the out-of-autoclave BMI laminate was limited until now. The work presented in this paper offers an insight into the strain and temperature interactions of the embedded sensors with the BMI composites.

  8. Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities.

    Science.gov (United States)

    Chana, J K; Sich, M; Fras, F; Gorbach, A V; Skryabin, D V; Cancellieri, E; Cerda-Méndez, E A; Biermann, K; Hey, R; Santos, P V; Skolnick, M S; Krizhanovskii, D N

    2015-12-18

    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts. PMID:26722931

  9. PT Symmetry Breaking and Nonlinear Optical Isolation in Coupled Microcavities

    CERN Document Server

    Zhou, Xin

    2016-01-01

    We perform a theoretical study of nonlinear optical isolator devices based on coupled microcavities with gain and loss. Using coupled-mode theory, we derive a correspondence between the boundary of asymptotic stability in the nonlinear regime, where gain saturation is present, and the PT-breaking transition in the underlying linear system. For zero detuning and weak input intensity, the onset of optical isolation can be rigorously derived, and corresponds precisely to the PT transition point. When the couplings to the external ports are unequal, the isolation ratio exhibits an abrupt jump at the transition point, determined by the ratio of the couplings. This could be exploited to realize an actively controlled nonlinear optical isolator, in which strong optical isolation can be switched on or off using tiny variations in the inter-resonator separation.

  10. Progress in Atom Chips and the Integration of Optical Microcavities

    Science.gov (United States)

    Hinds, E. A.; Trupke, M.; Darquie, B.; Goldwin, J.; Dutier, G.

    2008-04-01

    We review recent progress at the Centre for Cold Matter in developing atom chips. An important advantage of miniaturizing atom traps on a chip is the possibility of obtaining very tight trapping structures with the capability of manipulating atoms on the micron length scale. We recall some of the pros and cons of bringing atoms close to the chip surface, as is required in order to make small static structures, and we discuss the relative merits of metallic, dielectric and superconducting chip surfaces. We point out that the addition of integrated optical devices on the chip can enhance its capability through single atom detection and controlled photon production. Finally, we review the status of integrated microcavities that have recently been demonstrated at our Centre and discuss their prospects for future development.

  11. A porous silicon optical microcavity for sensitive bacteria detection

    Energy Technology Data Exchange (ETDEWEB)

    Li Sha; Huang Jianfeng; Cai Lintao, E-mail: lt.cai@siat.ac.cn [CAS Key Lab of Health Informatics, Shenzhen Key Laboratory of Cancer Nanotechnology, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055 (China)

    2011-10-21

    A porous silicon microcavity (PSM) is highly sensitive to subtle interface changes due to its high surface area, capillary condensation ability and a narrow resonance peak ({approx}10 nm). Based on the well-defined optical properties of a PSM, we successfully fabricated a bacteria detection chip for molecular or subcellular analysis by surface modification using undecylenic acid (UA), and the specific recognition binding of vancomycin to the D-alanyl-D-alanine of bacteria. The red shift of the PSM resonance peak showed a good linear relationship with bacteria concentration ranging from 100 to 1000 bacteria ml{sup -1} at the level of relative standard deviation of 0.994 and detection limit of 20 bacteria ml{sup -1}. The resulting PSM sensors demonstrated high sensitivity, good reproducibility, fast response and low cost for biosensing.

  12. Electrically tunable, optical microcavity based on metallized and ultra-soft PDMS gel

    Science.gov (United States)

    Franke, M.; Slowik, I.; Paschew, G.; Merkel, U.; Fröb, H.; Leo, K.; Richter, A.

    2016-04-01

    Tunable, optical microcavities (MC) gain more and more importance for display, laser or other optical applications. The setup of dielectric elastomer actuators (DEA) enables a simple integration of an optical cavity, since reflective electrodes can confine a cavity that is filled with a transparent elastomer. Applying a voltage to the electrodes leads to squeezing of the elastomer and, due to the cavity thickness decrease, the resonator modes of interfering light changes. In this work we present an electrically tunable, optical MC based on ultra-soft poly(dimethylsiloxane) (PDMS). The PDMS gel is coated on a glass substrate with a distributed Bragg reflector, an ITO bottom electrode and a flexible, highly reflective metal electrode and mirror on top. The usage of an ultra-soft PDMS gel, with a storage modulus of about 1kPa, allows to decrease the operating voltage down to a few hundred or even several ten volts. The critical step of fabrication is the metallization of the PDMS gel layer that requires a previous oxidizing surface activation to gain reflective and conductive silver based layers on top. Therefore, the effects of oxygen plasma and UV/ozone treatment on PDMS and the created metal layer were investigated intensively. The performance of the electrically tunable, optical MC is tremendously dependent from an adequate surface activation and structuring of the top electrodes considering the mirror displacement and activation voltage. Here we could show that tunable MCs based on oxygen plasma activated PDMS show a homogenous and high thickness decrease up to 70% at 200V.

  13. Solid-state NMR studies of bacteriorhodopsin and the purple membrane

    CERN Document Server

    Mason, A J

    2001-01-01

    proteins. This technique may prove particularly useful when studying large proteins that are difficult to orient where the MAS lineshapes will remain relatively unaffected in comparison with current static NMR methods. Finally the MAOSS method was extended to the study of the lipid components of the purple membrane and the feasibility of determining structural constraints from phospholipid headgroups was assessed. The potential of using sup 3 sup 1 P NMR to observe qualitative protein-lipid interactions in both the purple membrane and reconstituted membranes containing bovine rhodopsin was also demonstrated. Following the demonstration of a new MAS NMR method for resolving orientational constraints in uni-axially oriented biological membranes (Glaubitz and Watts, 1998), experiments were performed to realise the potential of the new method on large, oriented membrane proteins. Using bacteriorhodopsin in the purple membrane as a paradigm for large membrane proteins, the protein was specifically labelled with de...

  14. Generation and analysis of bacteriorhodopsin mutants with the potential for biotechnological applications.

    Science.gov (United States)

    Saeedi, P; Moosaabadi, J Mohammadian; Sebtahmadi, S Sina; Mehrabadi, J Fallah; Behmanesh, M; Nejad, H Rouhani; Nazaktabar, A

    2012-01-01

    The properties of bacteriorhodopsin (BR) can be manipulated by genetic engineering. Therefore, by the methods of gene engineering, Asp85 was replaced individually by two other amino acids (D85V, D85S). The resulting recombinant proteins were assembled into soybean vesicles retinylated to form functional BR-like nano-particles. Proton translocation was almost completely abrogated by the mutant D85S, while the D85V mutant was partially active in pumping protons. Compared with wild type, maximum absorption of the mutants, D85V and D85S, were 563 and 609 nm, which illustrated 5 nm reductions (blue shift) and 41 nm increases (red shift), respectively. Since proton transport activity and spectroscopic activities of the mutants are different, a wide variety of membrane bioreactors (MBr) have been developed. Modified proteins can be utilized to produce unique photo/Electro-chromic materials and tools. PMID:22976247

  15. High-effective cultivation of Halobacterium salinarum providing with bacteriorhodopsin production under controlled stress.

    Science.gov (United States)

    Kalenov, Sergei V; Baurina, Marina M; Skladnev, Dmitry A; Kuznetsov, Alexander Ye

    2016-09-10

    Submerged growth of Halobacterium salinarum and therefore synthesis of bacteriorhodopsin (BR) and carotenoids depend greatly on products of both chemical and/or photochemical oxidation of medium components and cellular metabolism which act as inhibitors. Some cultivation variants which allowed eliminating an adverse effect of inhibitors on biomass accumulation and BR synthesis are reviewed. The application of activated charcoal or ion exchange resin as adsorbents at preparing inoculums and the main cultivation stages was shown to allow controlling, namely lowering overstress of the halobacterial cells by metabolites. The halobacterial biomass containing BR up to 1,750mgL(-1) and the minimum amount of carotinoids that would BR greatly facilitate isolation was accumulated up to 45gL(-1) during eight-day cultivation with cell recycling through adsorbent suspension in a fed-batch mode. To control BR biosynthesis the express method of BR quantification based on colour shades of cell suspension was developed. PMID:27449487

  16. Calibration of Membrane Viscosity of the Reconstituted Vesicles by Measurement of the Rotational Diffusion of Bacteriorhodopsin

    Institute of Scientific and Technical Information of China (English)

    王敖金; 胡坤生

    2002-01-01

    Membrane viscosity of the reconstituted vesicles was calibrated by rotational diffusion of bacteriorhodopsin (BR) in dimyristoylphosphatidylcholine (DMPC) and egg phosphatidylcholine (PC) vesicles. Rotational diffusion of BR in the vesicles was measured by flash-induced absorption anisotropy decay. BR was, for the first time, reconstituted successfully into DMPC and egg PC vesicles. From the measurement of flash-induced absorption anisotropy decay of BR, the value of rotational diffusion coefficient D was obtained from each curve fitting by a global fitting procedure and, in turn, membrane viscosity η was estimated from D. The results have shown that membrane viscosity is temperature-dependent. It was decreased as temperature increased, but a transition occurred in the region of the respective phase transition of DMPC and egg PC, respectively. The decrease of η was fast near the phase transition for DMPC and egg PC. Few effects of lipid/BR ratio and glycerol or sucrose in suspension medium on membrane viscosity were found.

  17. High-speed integrated optical logic based on the protein bacteriorhodopsin.

    Science.gov (United States)

    Mathesz, Anna; Fábián, László; Valkai, Sándor; Alexandre, Daniel; Marques, Paulo V S; Ormos, Pál; Wolff, Elmar K; Dér, András

    2013-08-15

    The principle of all-optical logical operations utilizing the unique nonlinear optical properties of a protein was demonstrated by a logic gate constructed from an integrated optical Mach-Zehnder interferometer as a passive structure, covered by a bacteriorhodopsin (bR) adlayer as the active element. Logical operations were based on a reversible change of the refractive index of the bR adlayer over one or both arms of the interferometer. Depending on the operating point of the interferometer, we demonstrated binary and ternary logical modes of operation. Using an ultrafast transition of the bR photocycle (BR-K), we achieved high-speed (nanosecond) logical switching. This is the fastest operation of a protein-based integrated optical logic gate that has been demonstrated so far. The results are expected to have important implications for finding novel, alternative solutions in all-optical data processing research. PMID:23500476

  18. Broadband optical limiter based on nonlinear photoinduced anisotropy in bacteriorhodopsin film

    Science.gov (United States)

    Huang, Yuhua; Siganakis, Georgios; Moharam, M. G.; Wu, Shin-Tson

    2004-11-01

    Nonlinear photoinduced anisotropy in a bacteriorhodopsin film was theoretically and experimentally investigated and a broadband active optical limiter was demonstrated in the visible spectral range. A diode-pumped second harmonic yttrium aluminum garnet laser was used as a pumping beam and three different wavelengths at λ =442, 532, and 655nm from different lasers were used as probing beams. The pump and probe beams overlap at the sample. When the pumping beam is absent, the probing beam cannot transmit the crossed polarizers. With the presence of the pumping beam, a portion of the probing light is detected owing to the photoinduced anisotropy. Due to the optical nonlinearity, the transmitted probing beam intensity is clamped at a certain value, which depends on the wavelength, when the pumping beam intensity exceeds 5mW/mm2. Good agreement between theory and experiment is found.

  19. An all-optical time-delay relay based n a bacteriorhodopsin film

    Institute of Scientific and Technical Information of China (English)

    Chen Gui-Ying; Xu Xu-Xu; Zhang Chun-Ping; Qi Shen-Wen; Song Qi-Wang

    2008-01-01

    Using a special property of dynamic complementary-suppression-modulated transmission (DCSMT) in the bacteriorhodopsin (bR) film,we have demonstrated an all-optical time-delay relay.To extend our work,the relationship between the delay time of the all-optical time-delay relay and parameters of a bR film is numerically studied.We show how the delay time changes with the product of concentration and thickness (PCT) of a bR film.Furthermore,the shortest and longest delay times are given for the relay of 'switch off'.The saturable delay time and maximum delaytime of 'switch on' are also given.How the wavelengths (632.8,568,533 and 412 nm) and intensities of the illuminating light influence the delay time is also discussed.The simulation results are useful for optimizing the design of all-optical time-delay relays.

  20. All-optical switching characteristics in bacteriorhodopsin and its applications in integrated optics

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-03-01

    We experimentally and theoretically investigated the optical switching characteristics of bacteriorhodopsin (bR) at l=633 nm using the pump-probe method. A diode-pumped second harmonic YAG laser (l=532 nm which is located around the maximum initial Br state absorption) was used as a pumping beam and a cw He-Ne laser (l=633 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we have demonstrated an all-optical device functioning as 11 kinds of variable binary all-optical logic gates.

  1. Photoinduced nonlinear refraction in a polymeric film encapsulating a bacteriorhodopsin mutant

    Science.gov (United States)

    Teng, Xue-lei; Lu, Ming; Zhao, You-yuan; Ma, De-wang; Zhao, Ying-chun; Ding, Jian-dong; Huang, Wei-da

    2010-08-01

    The absorption change versus time after switching off the illumination on a polymeric film that contained a bacteriorhodopsin (BR) mutant has been measured. The M-lifetime of this BR mutant is ˜320 s. A pertinent Z-scan was performed to study the BR optical nonlinearity. A physical model with multi-level transitions in the Z-scan was suggested. The minimum saturated light intensity measured at 633 nm is ˜0.9 mW/cm2. A low intensity of 70 μW/cm2 has been used for recording in this film. The change in refraction index Δn633 is -3.0×10-3 and Δn476 is 8.5×10-3 with the intensity all at ˜100 mW/cm2.

  2. Cooperative phenomena in the photocycle of D96N mutant bacteriorhodopsin.

    Science.gov (United States)

    Radionov, A N; Kaulen, A D

    1995-12-27

    The M intermediate decay in the photocycle of D96N mutant bacteriorhodopsin does not depend on the light intensity of the exciting flash. Cooperative phenomena in the photocycle are revealed after addition of azide causing acceleration of the M decay and making it kinetically well separated from the N decay. Increase in the light intensity induces slight deceleration of the M decay and significant acceleration of the N decay. The data obtained directly confirm our recent model [Komrakov and Kaulen (1995) Biophys. Chem. 56, 113-119], according to which appearance of the Mslow intermediate in the photocycle of the wild type bR at high light intensity is due to destabilization of the N intermediate leading to the acceleration of the N-->M and N-->bR reactions. PMID:8549749

  3. Optical microcavities based on surface modes in two-dimensional photonic crystals and silicon-on-insulator photonic crystals

    DEFF Research Database (Denmark)

    Xiao, Sanshui; Qiu, M.

    2007-01-01

    Surface-mode optical microcavities based on two-dimensional photonic crystals and silicon-on-insulator photonic crystals are studied. We demonstrate that a high-quality-factor microcavity can be easily realized in these structures. With an increasing of the cavity length, the quality factor is gr...

  4. Development of L-lactate dehydrogenase biosensor based on porous silicon resonant microcavities as fluorescence enhancers.

    Science.gov (United States)

    Jenie, S N Aisyiyah; Prieto-Simon, Beatriz; Voelcker, Nicolas H

    2015-12-15

    The up-regulation of L-lactate dehydrogenase (LDH), an intracellular enzyme present in most of all body tissues, is indicative of several pathological conditions and cellular death. Herein, we demonstrate LDH detection using porous silicon (pSi) microcavities as a luminescence-enhancing optical biosensing platform. Non-fluorescent resazurin was covalently attached onto the pSi surface via thermal hydrocarbonisation, thermal hydrosylilation and acylation. Each surface modification step was confirmed by means of FTIR and the optical shifts of the resonance wavelength of the microcavity. Thermal hydrocarbonisation also afforded excellent surface stability, ensuring that the resazurin was not reduced on the pSi surface. Using a pSi microcavity biosensor, the fluorescence signal upon detection of LDH was amplified by 10 and 5-fold compared to that of a single layer and a detuned microcavity, respectively, giving a limit of detection of 0.08 U/ml. The biosensor showed a linear response between 0.16 and 6.5 U/ml, covering the concentration range of LDH in normal as well as damaged tissues. The biosensor was selective for LDH and did not produce a signal upon incubation with another NAD-dependant enzyme L-glutamic dehydrogenase. The use of the pSi microcavity as a sensing platform reduced reagent usage by 30% and analysis time threefold compared to the standard LDH assay in solution.

  5. Statistics of chaotic resonances in an optical microcavity.

    Science.gov (United States)

    Wang, Li; Lippolis, Domenico; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2016-04-01

    Distributions of eigenmodes are widely concerned in both bounded and open systems. In the realm of chaos, counting resonances can characterize the underlying dynamics (regular vs chaotic), and is often instrumental to identify classical-to-quantum correspondence. Here, we study, both theoretically and experimentally, the statistics of chaotic resonances in an optical microcavity with a mixed phase space of both regular and chaotic dynamics. Information on the number of chaotic modes is extracted by counting regular modes, which couple to the former via dynamical tunneling. The experimental data are in agreement with a known semiclassical prediction for the dependence of the number of chaotic resonances on the number of open channels, while they deviate significantly from a purely random-matrix-theory-based treatment, in general. We ascribe this result to the ballistic decay of the rays, which occurs within Ehrenfest time, and importantly, within the time scale of transient chaos. The present approach may provide a general tool for the statistical analysis of chaotic resonances in open systems.

  6. Dissipative soliton protocols in semiconductor microcavities at finite temperatures

    Science.gov (United States)

    Karpov, D. V.; Savenko, I. G.; Flayac, H.; Rosanov, N. N.

    2015-08-01

    We consider exciton polaritons in a semiconductor microcavity with a saturable absorber in the growth direction of the heterostructure. This feature promotes additional nonlinear losses of the system with the emergence of bistability of the condensate particles number on the nonresonant (electrical or optical) excitation intensity. Furthermore, we demonstrate a new type of bright spatial dissipative exciton-polariton soliton which emerges in the equilibrium between the regions with different particle density. We develop protocols of soliton creation and destruction. The switch to a solitonlike behavior occurs if the cavity is exposed by a short strong laser pulse with certain energy and duration. We estimate the characteristic times of soliton switch on and off and the time of return to the initial cycle. In particular, we demonstrate surprising narrowing of the spatial profile of the soliton and its vanishing at certain temperature due to interaction of the system with the thermal bath of acoustic phonons. We also address the role of polariton-polariton interaction (Kerr-like nonlinearity) on formation of dissipative solitons and show that the soliton may exist both in its presence and its absence.

  7. First results with a microcavity plasma panel detector

    CERN Document Server

    Ball, R; Benhammou, Y; Bensimon, R; Chapman, J W; Davis, M; Etzion, E; Ferretti, C; Friedman, P S; Levin, D S; Silver, Y; Varner, R L; Weaverdyck, C; Zhou, B

    2014-01-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6 to 2.5 volt amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency of greater than 95% is calculated, for operation of the detector over a 100V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3 to 4 orders of magnitude lower than the rate with the cell illuminated by the beta source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 4.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  8. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, Robert [University of Michigan; Ben Moshe, M. [Tel Aviv University, Israel; Benhammou, Yan [Tel Aviv University, Israel; Chapman, J. Wehrley [University of Michigan; Etzion, E [Tel Aviv University, Israel; Ferretti, Claudio [University of Michigan; Friedman, Dr. Peter S. [Integrated Sensors, LLC; Levin, Daniel S. [University of Michigan; Silver, Yiftah [Tel Aviv University, Israel; Varner Jr, Robert L [ORNL; Weaverdyck, Curtis [University of Michigan; Zhou, Bing [University of Michigan; Bensimon, R [Tel Aviv University School of Physics and Astronomy, Tel Aviv, Israel; Davies, Merlin [Tel Aviv University School of Physics and Astronomy, Tel Aviv, Israel

    2015-01-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1 x 1 x 2 mm cells. It has shown very clean signals of 0.6-2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with beta particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3-4 orders of magnitude lower than the rate with which the cell was illuminated by the beta source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm. (C) 2014 Elsevier B.V. All rights reserved.

  9. First results with a microcavity plasma panel detector

    Science.gov (United States)

    Ball, R.; Ben-Moshe, M.; Benhammou, Y.; Bensimon, R.; Chapman, J. W.; Davies, M.; Etzion, E.; Ferretti, C.; Friedman, P. S.; Levin, D. S.; Silver, Y.; Varner, R. L.; Weaverdyck, C.; Zhou, B.

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6-2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3-4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  10. First results with a microcavity plasma panel detector

    Energy Technology Data Exchange (ETDEWEB)

    Ball, R. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Ben-Moshe, M.; Benhammou, Y.; Bensimon, R. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Chapman, J.W. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Davies, M.; Etzion, E. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Ferretti, C., E-mail: claudiof@umich.edu [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Friedman, P.S. [Integrated Sensors, LLC, Ottawa Hills, OH 43606 (United States); Levin, D.S. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States); Silver, Y. [Tel Aviv University, School of Physics and Astronomy, Tel Aviv (Israel); Varner, R.L. [Oak Ridge National Laboratory, Physics Division, Oak Ridge, TN 737831 (United States); Weaverdyck, C.; Zhou, B. [University of Michigan, Department of Physics, Ann Arbor, MI 48109 (United States)

    2015-06-01

    A new type of gaseous micropattern particle detector based on a closed-cell microcavity plasma panel sensor is reported. The first device was fabricated with 1×1×2 mm cells. It has shown very clean signals of 0.6–2.5 V amplitude, fast rise time of approximately 2 ns and FWHM of about 2 ns with very uniform signal shapes across all pixels. From initial measurements with β particles from a radioactive source, a maximum pixel efficiency greater than 95% is calculated, for operation of the detector over a 100 V wide span of high voltages (HV). Over this same HV range, the background rate per pixel was measured to be 3–4 orders of magnitude lower than the rate with which the cell was illuminated by the β source. Pixel-to-pixel count rate uniformity is within 3% and stable within 3% for many days. The time resolution is 2.4 ns, and a very low cell-to-cell crosstalk has been measured between cells separated by 2 mm.

  11. Random nanostructure scattering layer for suppression of microcavity effect and light extraction in OLEDs.

    Science.gov (United States)

    Shin, Jin-Wook; Cho, Doo-Hee; Moon, Jaehyun; Joo, Chul Woong; Lee, Jonghee; Huh, Jin Woo; Park, Seung Koo; Han, Jun-Han; Cho, Nam Sung; Hwang, Joohyun; Chu, Hye Yong; Lee, Jeong-Ik

    2014-06-15

    In this study, we investigated the effect of a random nanostructure scattering layer (RSL) on the microcavity and light extraction in organic light emitting diodes (OLEDs). In the case of the conventional OLED, the optical properties change with the thickness of the hole transporting layer (HTL) because of the presence of a microcavity. However, OLEDs equipped with the an RSL showed similar values of external quantum efficiency and luminous efficacy regardless of the HTL thickness. These phenomena can be understood by the scattering effect because of the RSL, which suppresses the microcavity effect and extracts the light confined in the device. Moreover, OLEDs with the RSL led to reduced spectrum and color changes with the viewing angle. PMID:24978528

  12. Scanning probe microscopy of thermally excited mechanical modes of an optical microcavity

    CERN Document Server

    Kippenberg, T J; Vahala, K J

    2006-01-01

    The resonant buildup of light within optical microcavities elevates the radiation pressure which mediates coupling of optical modes to the mechanical modes of a microcavity. Above a certain threshold pump power, regenerative mechanical oscillation occurs causing oscillation of certain mechanical eigenmodes. Here, we present a methodology to spatially image the micro-mechanical resonances of a toroid microcavity using a scanning probe technique. The method relies on recording the induced frequency shift of the mechanical eigenmode when in contact with a scanning probe tip. The method is passive in nature and achieves a sensitivity sufficient to spatially resolve the vibrational mode pattern associated with the thermally agitated displacement at room temperature. The recorded mechanical mode patterns are in good qualitative agreement with the theoretical strain fields as obtained by finite element simulations.

  13. External pumping of hybrid nanostructures in microcavity with Frenkel and Wannier-Mott excitons

    Science.gov (United States)

    Dubovskiy, O. A.; Agranovich, V. M.

    2016-09-01

    The exciton-exciton interaction in hybrid nanostructures with resonating Frenkel and Wannier-Mott excitons was investigated in many publications. In microcavity the hybrid nanostructures can be exposed to different types of optical pumping, the most common one being pumping through one of the microcavity side. However, not investigated and thus never been discussed the hybrid excitons generation by pumping of confined quantum wells from the side of empty microcavity without nanostructures in a wave guided configuration. Here, we consider the hybrid excitations in cavity with organic and inorganic quantum wells and with different types of pumping from external source. The frequency dependence for intensity of excitations in hybrid structure is also investigated. The results may be used for search of most effective fluorescence and relaxation processes. The same approach may be used when both quantum wells are organic or inorganic.

  14. Cavity-polariton interaction mediated by coherent acoustic phonons in semiconductor microcavities

    DEFF Research Database (Denmark)

    de Lima, Mauricio; Hey, Rudolf; Santos, Paul;

    The strong coupling between excitons in a quantum well (QW) and photons in a semiconductor microcavity leads to the formation of quasi-particles known as cavity-polaritons. In this contribution, we investigate their interaction with coherent acoustic phonons in the form of surface acoustic waves...... (SAWs) in a GaAs QW embedded in a (Al,Ga)As/AlAs microcavity. The periodic modulation introduced by the phonons folds the cavity-polariton dispersion within a mini-Brillouin zone (MBZ) defined by the phonon wave vector ($k_\\mathrm{SAW}$). The appearance of well-defined mini-gaps at the edge of the MBZ...... as well as folded modes in the center of the MBZ are observed for different phonon densities and different cavity polariton detuning energies. The experimental results are in good agreement with calculations that take into account the modulation of the optical thickness of the microcavity spacer...

  15. Fabry-Perot microcavity sensor for H2-breath-test analysis

    Science.gov (United States)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  16. Numerical analysis of pulse signal restoration by stochastic resonance in a buckled microcavity.

    Science.gov (United States)

    Sun, Heng; Liu, Hongjun; Sun, Qibing; Huang, Nan; Wang, Zhaolu; Han, Jing

    2016-04-20

    A novel scheme is proposed to restore weak pulse signals immersed in noise by stochastic resonance based on photothermal-effect-induced optical bistability in a buckled dome microcavity. The bistable properties of the dome microcavity are analyzed with different initial detuning wavelengths and effective cavity lengths, and bistable transmission can be obtained for input powers in submilliwatt range. A theoretical model is derived to interpret the nonlinear process of pulse signal recovery through double-well potential theory. The cross-correlation coefficient between output signals and pure input pulses is calculated to quantitatively analyze the influence of noise intensity on stochastic resonance. A cross-correlation gain of 7 is obtained, and the noise-hidden signal can be recovered effectively though the buckled dome microcavity with negligible distortion. The simulation results show the potential of using this structure to restore low-level or noise-hidden pulse signals in all-optical integrated systems. PMID:27140110

  17. Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    We experimentally demonstrate a photonic crystal (PC) microcavity side coupled to a W1.05 photonic crystal waveguide fabricated in silicon-on-sapphire working in mid-IR regime at 3.43 μm. Using a fixed wavelength laser source, propagation characteristics of PC waveguides without microcavity are characterized as a function of lattice constant to determine the light line position, stop gap, and guided mode transmission behavior. The resonance of an L21 PC microcavity coupled to the W1.05 PCW in the guided mode transmission region is then measured by thermal tuning of the cavity resonance across the source wavelength. Resonance quality factor ∼3500 is measured from the temperature dependency curve

  18. Robust bound states in the continuum in Kerr microcavity embedded in photonic crystal waveguide

    CERN Document Server

    Bulgakov, Evgeny N

    2014-01-01

    We present a two-dimensional photonic crystal design with a microcavity of four defect dielectric rods with eigenfrequencies residing in the propagating band of directional waveguide. In the linear case for tuning of material parameters of defect rods the nonrobust bound state in the continuum (BSC) might occur. The BSC is a result of full destructive interference of resonant monopole and quadrupole modes with the same parity. % to trap light interior of the microcavity. A robust BSC arises in a self-adaptive way without necessity to tune the parameters of the microcavity with the Kerr effect. Lack of the superposition principle in nonlinear systems gives rise to coupling of the BSC with injecting light. That forms a peculiar shape of isolated transmittance resonance around BSC frequency. We show if injecting light is switched off the BSC storages light that opens a way for light accumulation.

  19. Bi-material crystalline whispering gallery mode microcavity structure for thermo-opto-mechanical stabilization

    Science.gov (United States)

    Itobe, Hiroki; Nakagawa, Yosuke; Mizumoto, Yuta; Kangawa, Hiroi; Kakinuma, Yasuhiro; Tanabe, Takasumi

    2016-05-01

    We fabricated a calcium fluoride (CaF2) whispering gallery mode (WGM) microcavity with a computer controlled ultra-precision cutting process. We observed a thermo-opto-mechanical (TOM) oscillation in the CaF2 WGM microcavity, which may influence the stability of the optical output when the cavity is employed for Kerr comb generation. We studied experimentally and numerically the mechanism of the TOM oscillation and showed that it is strongly dependent on cavity diameter. In addition, our numerical study suggests that a microcavity structure fabricated with a hybrid material (i.e. CaF2 and silicon), which is compatible with an ultra-high Q and high thermal conductivity, will allow us to reduce the TOM oscillation and stabilize the optical output.

  20. Silicon on-chip bandpass filters for the multiplexing of high sensitivity photonic crystal microcavity biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai, E-mail: hai.yan@utexas.edu; Zou, Yi; Yang, Chun-Ju [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com [Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Wang, Zheng [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Tang, Naimei; Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Department of Electrical and Computer Engineering, Microelectronics Research Center, The University of Texas at Austin, 10100 Burnet Rd., Austin, Texas 78758 (United States); Omega Optics, Inc., 8500 Shoal Creek Blvd., Austin, Texas 78757 (United States); Fan, Donglei [Materials Science and Engineering Program, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712 (United States); Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-03-23

    A method for the dense integration of high sensitivity photonic crystal (PC) waveguide based biosensors is proposed and experimentally demonstrated on a silicon platform. By connecting an additional PC waveguide filter to a PC microcavity sensor in series, a transmission passband is created, containing the resonances of the PC microcavity for sensing purpose. With proper engineering of the passband, multiple high sensitivity PC microcavity sensors can be integrated into microarrays and be interrogated simultaneously between a single input and a single output port. The concept was demonstrated with a 2-channel L55 PC biosensor array containing PC waveguide filters. The experiment showed that the sensors on both channels can be monitored simultaneously from a single output spectrum. Less than 3 dB extra loss for the additional PC waveguide filter is observed.

  1. Porous silicon microcavities: synthesis, characterization, and application to photonic barcode devices

    Science.gov (United States)

    Ramiro-Manzano, Fernando; Fenollosa, Roberto; Xifré-Pérez, Elisabet; Garín, Moises; Meseguer, Francisco

    2012-09-01

    We have recently developed a new type of porous silicon we name as porous silicon colloids. They consist of almost perfect spherical silicon nanoparticles with a very smooth surface, able to scatter (and also trap) light very efficiently in a large-span frequency range. Porous silicon colloids have unique properties because of the following: (a) they behave as optical microcavities with a high refractive index, and (b) the intrinsic photoluminescence (PL) emission is coupled to the optical modes of the microcavity resulting in a unique luminescence spectrum profile. The PL spectrum constitutes an optical fingerprint identifying each particle, with application for biosensing. In this paper, we review the synthesis of silicon colloids for developing porous nanoparticles. We also report on the optical properties with special emphasis in the PL emission of porous silicon microcavities. Finally, we present the photonic barcode concept.

  2. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities.

    Science.gov (United States)

    Yi, Xu; Yang, Qi-Fan; Yang, Ki Youl; Vahala, Kerry

    2016-08-01

    Dissipative Kerr cavity solitons experience a so-called self-frequency shift (SFS) as a result of Raman interactions. The frequency shift has been observed in several microcavity systems. The Raman process has also been shown numerically to influence the soliton pumping efficiency. Here, a perturbed Lagrangian approach is used to derive simple analytical expressions for the SFS and the soliton efficiency. The predicted dependences of these quantities on soliton pulse width are compared with measurements in a high-Q silica microcavity. The Raman time constant in silica is also inferred. Analytical expressions for the Raman SFS and soliton efficiency greatly simplify the prediction of soliton behavior over a wide range of microcavity platforms. PMID:27472583

  3. Realization of Plasmonic Microcavity with Full Transverse and Longitudinal Mode Selection

    Science.gov (United States)

    Liu, Ju; Chen, Yue-Gang; Gan, Lin; Xiao, Ting-Hui; Li, Zhi-Yuan

    2016-06-01

    Surface plasmon polaritons (SPPs) manipulation is of vital importance to construct ultracompact integrated micro/nano-optical devices and systems. Here we report the design, fabrication, and characterization of a SPP microcavity with full transverse and longitudinal mode selection and control on the surface of gold film. The designed microcavity supports the fundamental and first-order transverse modes of Gaussian mode beam with controllable longitudinal modes, respectively. The transverse mode is determined by two holographic mirrors made from deliberately designed groove patterns via the surface electromagnetic wave holography methodology, while the longitudinal mode is determined by the length of cavity. Both numerical simulations and leaky-wave SPP mode observations confirm the realization of full mode selection in the fabricated cavity. Our work opens up a powerful way to fully explore longitudinal and transverse mode control in SPP microcavities, which will be beneficial for light-matter interaction enhancement, construction of novel SPP nanolaser and microlaser, optical sensing, and optical information processing.

  4. An All Fiber Intrinsic Fabry-Perot Interferometer Based on an Air-Microcavity

    Directory of Open Access Journals (Sweden)

    Ruth I. Mata-Chávez

    2013-05-01

    Full Text Available In this work an Intrinsic Fabry-Perot Interferometer (IFPI based on an air-microcavity is presented. Here the air microcavity, with silica walls, is formed at a segment of a hollow core photonic crystal fiber (HCPCF, which is fusion spliced with a single mode fiber (SMF. Moreover, the spectral response of the IFPI is experimentally characterized and some results are provided. Finally, the viability to use the IFPI to implement a simple, compact size, and low cost refractive index sensor is briefly analyzed.

  5. Noise spectroscopy of the optical microcavity: nonlinear amplification of the spin noise signal and giant noise

    OpenAIRE

    Poltavtsev, S. V.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G.G.

    2014-01-01

    The spin-fluctuations-related Kerr rotation noise of the optical beam reflected from a microcavity with a quantum well in the intermirror gap is studied. In the regime of anti-crossing of the cavity polariton branches, the several hundred times enhancement of the noise signal, or giant noise, is observed. The effect of the amplification of the noise signal is explained by the nonlinear instability of the microcavity. In the frame of the developed model of built-in amplifier, the non-trivial p...

  6. Generalized Full-Vector Multi-Mode Matching Analysis of Whispering-Gallery Microcavities

    CERN Document Server

    Du, Xuan; Faucher, Mathieu; Picard, Marie-Josee; Lu, Tao

    2014-01-01

    We outline a full-vectorial three-dimensional multi-mode matching technique in a cylindrical coordinate system that addresses the mutual coupling among multiple modes copropagating in a perturbed whispering-gallery-mode microcavity. In addition to its superior accuracy in respect to our previously implemented single-mode matching technique, this current technique is suitable for modelling waveguide-to-cavity coupling where the influence of multi-mode coupling is non-negligible. Using this methodology, a robust scheme for hybrid integration of a microcavity onto a silicon-on-insulator platform is proposed.

  7. Studying proton pumping mechanism of bacteriorhodopsin and cytochrome c oxidase with multi-conformation continuum electrostatics

    Science.gov (United States)

    Song, Yifan

    The proton gradient across the biological membrane is important for the biological systems. Bacteriorhodopsin and cytochrome c oxidase convert different energy sources into this gradient. The focus of this thesis is to understand the mechanism of these proteins using computational methods. In bacteriorhodopsin, residue ionization states were calculated in 9 crystal structures trapped in bR, early M and late M states by Multi-Conformation Continuum Electrostatics (MCC). The three groups in the central cluster are ionized in bR structures while a proton has transferred from the SB+ to Asp 85 - in the late M structures matching prior experimental results. The proton release cluster binds one proton in bR structure which is lost to water by pH 8 in late M. Modest changes in intra-protein interactions cause the charge shifts within the clusters. Motions of Arg 82 couple the proton shift in the central cluster to proton release. Changes in the total charge of the two clusters are coupled by direct long-range interactions. Cytochrome c oxidase is a transmembrane proton pump that builds an electrochemical gradient using chemical energy from the reduction of O2. Ionization states of all residues were calculated with MCCE in seven anaerobic oxidase redox states ranging from fully oxidized to fully reduced in Rb. sphaeroides cytochrome c oxidase. At pH 7, only a hydroxide coordinated to CuB shifts its pKa from below 7 to above 7, and so picks up a proton when Heme a3 and CuB are reduced. Glu I-286, Tyr I-288, His I-334 and a second hydroxide on Heme a3 all have pKas above 7. The propionic acids near the BNC are deprotonated with pKas well below 7. This suggests electroneutrality in the BNC is not maintained during the anaerobic reduction. The electrochemical midpoint potential (E m) of Heme a is calculated to shift down when the BNC is reduced, which agrees with prior experiments. If the BNC reduction is electroneutral, then the Heme a Em is independent of the BNC redox state.

  8. Detecting single DNA molecule interactions with optical microcavities (Presentation Recording)

    Science.gov (United States)

    Vollmer, Frank

    2015-09-01

    as the detection of less than 1 kDa intercalating small molecules[1]. [1] M. D. Baaske, M. R. Foreman, and F. Vollmer, "Single molecule nucleic acid interactions monitored on a label-free microcavity biosensing platform," Nature Nanotechnology, vol. 9, pp. 933-939, 2014. [2] Y. Wu, D. Y. Zhang, P. Yin, and F. Vollmer, "Ultraspecific and Highly Sensitive Nucleic Acid Detection by Integrating a DNA Catalytic Network with a Label-Free Microcavity," Small, vol. 10, pp. 2067-2076, 2014. [3] M. R. Foreman, W.-L. Jin, and F. Vollmer, "Optimizing Detection Limits in Whispering Gallery Mode Biosensing," Optics Express, vol. 22, pp. 5491-5511, 2014. [4] M. A. Santiago-Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, "Nanoparticle-based protein detection by optical shift of a resonant microcavity," Applied Physics Letters, vol. 99, Aug 2011. [5] M. R. Foreman and F. Vollmer, "Theory of resonance shifts of whispering gallery modes by arbitrary plasmonic nanoparticles," New Journal of Physics, vol. 15, p. 083006, Aug 2013. [6] M. R. Foreman and F. Vollmer "Level repulsion in hybrid photonic-plasmonic microresonators for enhanced biodetection" Phys. Rev. A 88, 023831 (2013).

  9. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV–100 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadi, Morteza; Lunscher, Nolan [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada); Yeow, John T.W., E-mail: jyeow@uwaterloo.ca [Waterloo Institute for Nanotechnology and Department of Systems Design Engineering, University of Waterloo, 200 University Ave., W., Waterloo, Ontario, Canada N2L 3G1 (Canada)

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10–200 keV and 1–20 MeV) in which X-ray imaging and radiotherapy machines work.

  10. Effective atomic numbers and electron densities of bacteriorhodopsin and its comprising amino acids in the energy range 1 keV-100 GeV

    Science.gov (United States)

    Ahmadi, Morteza; Lunscher, Nolan; Yeow, John T. W.

    2013-04-01

    Recently, there has been an interest in fabrication of X-ray sensors based on bacteriorhodopsin, a proton pump protein in cell membrane of Halobacterium salinarium. Therefore, a better understanding of interaction of X-ray photons with bacteriorhodopsin is required. We use WinXCom program to calculate the mass attenuation coefficient of bacteriorhodopsin and its comprising amino acids for photon energies from 1 keV to 100 GeV. These amino acids include alanine, arginine, asparagine, aspartic acid, glutamine, glutamic acid, glycine, isoleucine, leucine, lysine, methionine, phenylalanine, proline, serine, threonine, tryptophan, tyrosine, valine, Asx1, Asx2, Glx1 and Glx2. We then use that data to calculate effective atomic number and electron densities for the same range of energy. We also emphasize on two ranges of energies (10-200 keV and 1-20 MeV) in which X-ray imaging and radiotherapy machines work.

  11. Hybridization of photon-plasmon modes in metal-coated microtubular cavities

    CERN Document Server

    Yin, Yin; Engemaier, Vivienne; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    The coupling of resonant light and surface plasmons in metal layer coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on opto-plasmonic microtubular cavities. By changing the cavity structure and the metal layer thickness, weakly, moderately and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. An effective potential approach is applied to illustrate the hybridization of photon-plasmon modes relying on the competition between light confinement by the cavity wall and the potential barrier introduced by the metal layer. Our work reveals the basic physical mechanisms for the generation of hybrid modes in metal-coated whispering-gallery-mode microcavities, and is of importance for the study of enhanced light-matter interactions and potential sensing applications.

  12. Hybridization of photon-plasmon modes in metal-coated microtubular cavities

    Science.gov (United States)

    Yin, Yin; Li, Shilong; Engemaier, Vivienne; Giudicatti, Silvia; Saei Ghareh Naz, Ehsan; Ma, Libo; Schmidt, Oliver G.

    2016-07-01

    The coupling of resonant light and surface plasmons in metal layer-coated optical microcavities results in the formation of hybrid photon-plasmon modes. Here, we comprehensively investigate the hybridization mechanism of photon-plasmon modes based on optoplasmonic microtubular cavities. By changing the thicknesses of both the cavity wall and the metal layer, weakly, moderately, and strongly hybridized resonant modes are demonstrated depending on the photon-plasmon coupling strength. An effective potential approach is applied to illustrate the hybridization of photon-plasmon modes relying on the competition between light confinement by the cavity wall and the potential barrier introduced by the metal layer. Our work reveals the basic physical mechanisms for the generation of hybrid modes in metal-coated whispering-gallery-mode microcavities, and is of importance for the study of enhanced light-matter interactions and potential sensing applications.

  13. Modified Photoluminescence by Silicon-Based One-Dimensional Photonic Crystal Microcavities

    Institute of Scientific and Technical Information of China (English)

    CHEN San; QIAN Bo; WEI Jun-Wei; CHEN Kun-Ji; XU Jun; LI Wei; HUANG Xin-Fan

    2005-01-01

    @@ Photoluminescence (PL) from one-dimensional photonic band structures is investigated. The doped photonic crystal with microcavities are fabricated by using alternating hydrogenated amorphous silicon nitride (a-SiNx :H/aSiNy:H) layers in a plasma enhanced chemical vapour deposition (PECVD) chamber. It is observed that microcavities strongly modify the PL spectra from active hydrogenated amorphous silicon nitride (a-SiNz :H) thin film.By comparison, the wide emission band width 208nm is strongly narrowed to 11 nm, and the resonant enhancement of the peak PL intensity is about two orders of magnitude with respect to the emission of the λ/2-thick layer of a-SiNz:H. A linewidth of △λ = 11 nm and a quality factor of Q = 69 are achieved in our one-dimensional a-SiNz photonic crystal microcavities. Measurements of transmittance spectra of the as-grown samples show that the transmittance resonant peak of a cavity mode at 710 nm is introduced into the band gap of one-dimensional photonic crystal distributed Bragg reflector (DBR), which further verifies the microcavity effects.

  14. Nichtlineare optische Eigenschaften von Quantum-Well-Systemen in Micro-Cavities

    OpenAIRE

    Steib, Reiner

    2012-01-01

    In this thesis the nonlinear response of a microcavity containing a thin layer of a nonlinear optical medium, a quantum well was studied. Particularly, the pump-probe configuration where the nonlinear optical medium is excited by a pump field and the interaction between the pump field and the medium is detected with a probe field was considered.

  15. Antibunching effect of the radiation field in a microcavity with a mirror undergoing heavily damping oscillation

    OpenAIRE

    Liu, Yu-xi; Sun, Chang-pu

    2000-01-01

    The interaction between the radiation field in a microcavity with a mirror undergoing damping oscillation is investigated. Under the heavily damping cases, the mirror variables are adiabatically eliminated. The the stationary conditions of the system are discussed. The small fluctuation approximation around steady values is applied to analysis the antibunching effect of the cavity field. The antibunching condition is given under two limit cases.

  16. Abnormal high-$Q$ modes of coupled stadium-shaped microcavities

    CERN Document Server

    Ryu, Jung-Wan; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-01-01

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a 'rounded bow tie' mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to whispering gallery mode.

  17. Abnormal high-Q modes of coupled stadium-shaped microcavities.

    Science.gov (United States)

    Ryu, Jung-Wan; Lee, Soo-Young; Kim, Inbo; Choi, Muhan; Hentschel, Martina; Kim, Sang Wook

    2014-07-15

    It is well known that the strongly deformed microcavity with fully chaotic ray dynamics cannot support high-Q modes due to its fast chaotic diffusion to the critical line of refractive emission. Here, we investigate how the Q factor is modified when two chaotic cavities are coupled, and show that some modes, whose Q factor is about 10 times higher than that of the corresponding single cavity, can exist. These abnormal high-Q modes are the result of an optimal combination of coupling and cavity geometry. As an example, in the coupled stadium-shaped microcavities, the mode pattern extends over both cavities such that it follows a whispering-gallery-type mode at both ends, whereas a big coupling spot forms at the closest contact of the two microcavities. The pattern of such a "rounded bow tie" mode allows the mode to have a high-Q factor. This mode pattern minimizes the leakage of light at both ends of the microcavities as the pattern at both ends is similar to the whispering gallery mode. PMID:25121685

  18. In-fiber silicon microsphere as a hybrid Fabry-Pérot microcavity for temperature sensing

    OpenAIRE

    Xiao, L.M.; Healy, N; Hawkins, T.; Jones, M; Ballato, J.; Gibson, U.; Peacock, A. C.

    2015-01-01

    A silicon microsphere was fabricated inside a fiber forming a hybrid Fabry-Pérot microcavity. The large difference in indices and thermal-optic coefficients of the sphere and its silica cladding are exploited for high-sensitivity temperature sensing.

  19. Direct evidence of reduced dynamic scattering in the lower polariton of a semiconductor microcavity

    DEFF Research Database (Denmark)

    Borri, Paola; Jensen, Jacob Riis; Langbein, Wolfgang;

    2000-01-01

    The temperature dependent linewidths of homogeneously broadened GaAs/AlxGa1 - xAs microcavity polaritons are investigated. The linewidths of the lower, middle, and upper polariton resonances are measured directly from reflection spectra at normal incidence (k(parallel to) = 0). The Linewidth of t...

  20. Integrated self-aligned tips for dispersion tuning in a photonic crystal micro-cavity

    NARCIS (Netherlands)

    Abdulla, S.M.C.; Kauppinen, L.J.; Ridder, de R.M.; Krijnen, G.J.M.

    2011-01-01

    A micro-bimorph cantilever is monolithically integrated with a photonic crystal micro-cavity based device, using surface micro-machining techniques. The integrated cantilever is equipped with self-aligned dielectric tips with respect to the holes of the photonic crystal and on electrostatic actuatio

  1. Modeling of optical fields in laser microcavities using a modal method

    DEFF Research Database (Denmark)

    Gregersen, Niels

    2013-01-01

    , the cavity should allow for efficient out-coupling of light, which in low-V systems represents an additional design challenge. Engineering a microcavity meeting these demands requires a in-depth physical under-standing of the governing physical mechanisms of the system. In the low-V cavity, a central...

  2. Enhanced photocurrent generation in bacteriorhodopsin based bio-sensitized solar cells using gel electrolyte.

    Science.gov (United States)

    Chellamuthu, Jeganathan; Nagaraj, Pavithra; Chidambaram, Sabari Girisun; Sambandam, Anandan; Muthupandian, Ashokkumar

    2016-09-01

    High purity light sensitive photoactive protein Bacteriorhodopsin (BR) was isolated successfully via a simple two phase extraction technique (ATPS) as an alternate method for the tedious sucrose gradient ultracentrifugation procedure (SGU). Bio sensitized solar cells (BSSCs) were fabricated by the integration of BR into TiO2 (photo anode) with acetamide based gel electrolytes and platinum (photo cathode) as a counter electrode. The structural and photoelectrical behaviours of BR and BSSCs were analyzed by Atomic Force Microscopy, Raman spectroscopy, photocurrent and photovoltage (IV) measurement and electrochemical impedance spectroscopy. The short circuit photocurrent (Jsc) and photoelectric conversion efficiency (η) of acetamide based gel electrolyte (AG) (1.08mAcm(-2), 0.49%) are twice higher than that of traditional triiodide based liquid electrolyte (LE) (0.62mAcm(-2), 0.19%). Also, quasi-Fermi level and lifetime of photogenerated electrons in acetamide based gel electrolyte is about four times higher than that observed in traditional triiodide redox electrolyte. A comparison of the observed results with similar BSSCs made of other natural photoactive protein systems shows that BR as sensitizer has better photovoltaic performance. The enhanced photocurrent generation of the BSSC constructed in our study could be due to the interaction of BR with acetamide based modified poly(ethylene)oxide (PEO) gel electrolyte. PMID:27380296

  3. Bacteriorhodopsin-based Langmuir-Schaefer films for solar energy capture.

    Science.gov (United States)

    Bertoncello, Paolo; Nicolini, Davide; Paternolli, Cristina; Bavastrello, Valter; Nicolini, Claudio

    2003-06-01

    The photovoltaic (PV) solar cell, converting incident solar radiation directly into electrical energy, today represents the most common power source for the earth-orbiting spacecraft, and the utilization of organic materials in this context is here explored in comparison with the present state of the art placing emphasis in organic nanotechnology. Poly[3-3'(vinylcarbazole)] (PVK) was synthesized by oxidative polymerization with ferric chloride of N-vinylcarbazole. The resulting polymer was then deposited on solid support by using the Langmuir-Schaefer (LS) technique. The pressure-area isotherm of PVK revealed the possibility of compact monolayer formation at the air-water interface. Different layers of PVK were doped with iodine vapors. The cyclic voltammetry investigation of PVK-doped I2 showed a distinctive electrochemical behavior. The photoinduced charge transfer across a donor/acceptor (D/A) hybrid interface provided an effective method to study the PV properties of the composite LS films. The results are compared with other approaches within the biological framework, such as bacteriorhodopsin (BR), and organic nanostructured materials. PMID:15382669

  4. The effect of silver nanoparticles on the photocycle of bacteriorhodopsin of purple membranes of Halobacterium salinarum

    Science.gov (United States)

    Oleinikov, V. A.; Mochalov, K. E.; Solovyeva, D. O.; Chistyakov, A. A.; Lukashev, E. P.; Nabiev, I. R.

    2016-08-01

    The effect of silver nanoparticles (AgNPs) that are adsorbed on the surface of the purple membranes of Halobacterium salinarium bacteria on the optical properties and functional peculiarities of the lightsensitive protein bacteriorhodopsin (BR) has been demonstrated for the first time. Two mechanisms of the effect of AgNPs on the protein photocycle have been demonstrated using Raman scattering, giant Raman scattering, flash photolysis, and atomic force microscopy. It has been shown that the nanoparticles in the immediate spatial vicinity of BR fix its photocycle at the stage where it was at the moment of interaction with the nanoparticles. At greater distances, which reach three radii of an AgNPs, they have a weaker effect on BR, under which it retains the ability to be involved in the photocycle, however, has its parameters significantly changed. Thus, in the case of wild-type BR the photocycle accelerates and for the BR-D96N mutant it becomes slower. The data that are obtained could be of significance for creation of such optoelectronic hybrid systems with BR, where the parameters of its photocycle can be controlled using NPs. The results of the study may also be used in the field of nanobioengineering research, which is directed to creation of unique materials with controlled properties for recording and storage of information, energy transformation, and identification and characterization of trace amounts of analytes.

  5. Photosensory behaviour of a bacteriorhodopsin-deficient mutant, ET-15, of Halobacterium halobium

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrand, E.; Schimz, A. (Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). Inst. fuer Neurobiologie)

    1983-05-01

    Halobacterium halobium, strain ET-15, which does not contain detectable amounts of bacteriorhodopsin (BR) shows behavioral responses to UV and yellow-green light. Attractant stimuli, i.e. light-increases in the yellow-green range or light-decreases in the UV, suppress the spontaneous reversals of the swimming direction for a certain time. Repellent stimuli, i.e. light-decreases in the yellow-green range or light-increases in the UV, elicit an additional reversal response after a few seconds. Action spectra of both sensory photosystems, PS 370 and PS 565, were measured with attractant as well as with repellent stimuli. As in BR-containing cells, maximal sensitivity was always found at 370 nm for the UV-system and at 565 nm for the long-wavelength system. Fluence-response curves at 370 and 565 nm obtained with strain ET-15 and with a BR-containing strain show that the sensitivity of both photosystems is not reduced in the absence of BR. It is concluded that BR is required neither for PS 565 nor for PS 370. Instead retinal-containing pigments different from BR have to be assumed to mediate photosensory behavior.

  6. Schiff base switch II precedes the retinal thermal isomerization in the photocycle of bacteriorhodopsin.

    Directory of Open Access Journals (Sweden)

    Ting Wang

    Full Text Available In bacteriorhodopsin, the order of molecular events that control the cytoplasmic or extracellular accessibility of the Schiff bases (SB are not well understood. We use molecular dynamics simulations to study a process involved in the second accessibility switch of SB that occurs after its reprotonation in the N intermediate of the photocycle. We find that once protonated, the SB C15 = NZ bond switches from a cytoplasmic facing (13-cis, 15-anti configuration to an extracellular facing (13-cis, 15-syn configuration on the pico to nanosecond timescale. Significantly, rotation about the retinal's C13 = C14 double bond is not observed. The dynamics of the isomeric state transitions of the protonated SB are strongly influenced by the surrounding charges and dielectric effects of other buried ions, particularly D96 and D212. Our simulations indicate that the thermal isomerization of retinal from 13-cis back to all-trans likely occurs independently from and after the SB C15 = NZ rotation in the N-to-O transition.

  7. Deposition of bacteriorhodopsin protein in a purple membrane form on nitrocellulose membranes for enhanced photoelectric response.

    Science.gov (United States)

    Kim, Young Jun; Neuzil, Pavel; Nam, Chang-Hoon; Engelhard, Martin

    2012-12-27

    Bacteriorhodopsin protein (bR)-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO) electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM) can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices.

  8. Deposition of Bacteriorhodopsin Protein in a Purple Membrane Form on Nitrocellulose Membranes for Enhanced Photoelectric Response

    Directory of Open Access Journals (Sweden)

    Chang-Hoon Nam

    2012-12-01

    Full Text Available Bacteriorhodopsin protein (bR-based systems are one of the simplest known biological energy converters. The robust chemical, thermal and electrochemical properties of bR have made it an attractive material for photoelectric devices. This study demonstrates the photoelectric response of a dry bR layer deposited on a nitrocellulose membrane with indium tin oxide (ITO electrodes. Light-induced electrical current as well as potential and impedance changes of dried bR film were recorded as the function of illumination. We have also tested bR in solution and found that the electrical properties are strongly dependent on light intensity changing locally proton concentration and thus pH of the solution. Experimental data support the assumption that bR protein on a positively charged nitrocellulose membrane (PNM can be used as highly sensitive photo- and pH detector. Here the bR layer facilitates proton translocation and acts as an ultrafast optoelectric signal transducer. It is therefore useful in applications related to bioelectronics, biosensors, bio-optics devices and current carrying junction devices.

  9. Kinetics of picosecond laser pulse induced charge separation and proton transfer in bacteriorhodopsin.

    Science.gov (United States)

    Yao, Baoli; Xu, Dalun; Hou, Xun; Hu, Kunsheng; Wang, Aojin

    2003-01-01

    Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast falling edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BR photodetector has at least 100-ps response time and can also serve as a fast photoelectric switch. PMID:12542379

  10. B-M-type anisotropy in bacteriorhodopsin films for nonlinear spatial light modulation

    Science.gov (United States)

    Korchemskaya, Elena Y.; Stepanchikov, Dmitriy A.; Dyukova, Tatyana V.; Shakhbazian, Valery Y.

    2003-02-01

    Bacteriorhodopsin (BR), a photoreceptor protein possesses a photochemical cycle of several distinct intermediates; all of them are photoactive. The BR molecules both in the initial form of the photocycle, BR570 (absorption maximum around 570 nm) and longest-lived (in films) intermediate M412 (absorption maximum at 412 nm) possess anisotropic absorption. Under the action of linearly polarized light, the reversible anisotropic photoselection of BR molecules takes place. So far only the method of photoinduced anisotropy based on anisotropic properties of BR570 was applied to realtime optical processing. In the present work, the potentialities for the use of photoinduced anisotropy in the BR-films based on both BR570 and M412 for the spatial light modulation are demonstrated. The overall blocking of highintensity features from an image is shown. Mixed B-M-type anisotropy in the chemically modified BR films, as applied to the edge enhancement, can provide a contrast ratio as high as 250:1. Low saturation intensity of the BR-films allows for the blocking of any intensity feature from an image that is carried out by choosing an appropriate intensity level of a controlling He-Ne laser beam without analyzer rotation. The photoanisotropic incoherent-to-coherent optical conversion with concurrent spatial-intensity modulation is also performed on the BR-films.

  11. Polarization multiplexed write-once-read-many optical data storage in bacteriorhodopsin films

    Science.gov (United States)

    Yao, Baoli; Lei, Ming; Ren, Liyong; Menke, Neimule; Wang, Yingli; Fischer, Thorsten; Hampp, Norbert

    2005-11-01

    In polymeric films of bacteriorhodopsin (BR) a photoconversion product, which was named the F620 state, was observed on excitation of the film with 532 nm nanosecond laser pulses. This photoproduct shows a strong nonlinear absorption. Such BR films can be used for write-once-read-many (WORM) optical data storage. We demonstrate that a photoproduct similar or even identical to that obtained with nanosecond pulses is generated on excitation with 532 nm femtosecond pulses. This photoproduct also shows strong anisotropic absorption, which facilitates polarization storage of data. The product is thermally stable and is irretrievable to the initial B state either by photochemical reaction or through a thermal pathway. The experimental results indicate that the product is formed by a two-photon absorption process. Optical WORM storage is demonstrated by use of two polarization states, but more polarization states may be used. The combination of polarization data multiplexing and extremely short recording time in the femtosecond range enables very high data volumes to be stored within a very short time.

  12. All-optical switching and all-optical logic gates based on bacteriorhodopsin

    Science.gov (United States)

    Huang, Yuhua; Wu, Shin-Tson; Zhao, Youyuan

    2004-06-01

    We demonstrate an all-optical switching using a bacteriorhodopsin (bR) film. The transmission of the bR film is investigated using the pump-probe method. A diode-pumped second harmonic YAG laser (λ = 532nm which is around the maximum initial B state absorption) was used as a pumping beam and a cw He-Ne laser (λ = 632 nm which is around the peaks of K and O states) was used as a probe. Due to the nonlinear intensity induced excited state absorption of the K, L, M, N, and O states in the bR photocycle, the switching characteristics are sensitive to the intensity of the probe and pump beams. Based on this property, we design an all-optical operating device functioning as 11 kinds of variable binary all-optical logic gates. The incident 532nm beam acts as an input to the logic gate and the transmission of the 632nm bears the output of the gate.

  13. Förster Resonance Energy Transfer between Core/Shell Quantum Dots and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Mark H. Griep

    2012-01-01

    Full Text Available An energy transfer relationship between core-shell CdSe/ZnS quantum dots (QDs and the optical protein bacteriorhodopsin (bR is shown, demonstrating a distance-dependent energy transfer with 88.2% and 51.1% of the QD energy being transferred to the bR monomer at separation distances of 3.5 nm and 8.5 nm, respectively. Fluorescence lifetime measurements isolate nonradiative energy transfer, other than optical absorptive mechanisms, with the effective QD excited state lifetime reducing from 18.0 ns to 13.3 ns with bR integration, demonstrating the Förster resonance energy transfer contributes to 26.1% of the transferred QD energy at the 3.5 nm separation distance. The established direct energy transfer mechanism holds the potential to enhance the bR spectral range and sensitivity of energies that the protein can utilize, increasing its subsequent photocurrent generation, a significant potential expansion of the applicability of bR in solar cell, biosensing, biocomputing, optoelectronic, and imaging technologies.

  14. Enhanced Photocurrent Generation from Bacteriorhodopsin Photocells Using Grating-Structured Transparent Conductive Oxide Electrodes.

    Science.gov (United States)

    Kaji, Takahiro; Kasai, Katsuyuki; Haruyama, Yoshihiro; Yamada, Toshiki; Inoue, Shin-Ichiro; Tominari, Yukihiro; Ueda, Rieko; Terui, Toshifumi; Tanaka, Shukichi; Otomo, Akira

    2016-04-01

    We fabricated a grating-structured electrode made of indium-doped zinc oxide (IZO) with a high refractive index (approximately 2) for a bacteriorhodopsin (bR) photocell. We investigated the photocurrent characteristics of the bR photocell and demonstrated that the photocurrent values from the bR/IZO electrode with the grating structure with a grating period of 340 nm were more than 3.5-4 times larger than those without the grating structure. The photocurrent enhancement was attributed to the resonance effect due to light coupling to the grating structure as well as the scattering effect based on the experimental results and analysis using the photonic band structure determined using finite-difference time-domain (FDTD) simulations. The refractive index of the bR film in electrolyte solution (1.40) used in the FDTD simulations was estimated by analyzing the extinction peak wavelength of 20-nm gold colloids in the bR film. Our results indicate that the grating- or photonic-crystal-structured transparent conductive oxide (TCO) electrodes can increase the light use efficiency of various bR devices such as artificial photosynthetic devices, solar cells, and light-sensing devices. PMID:27451605

  15. Nonlinear optical method for the investigation of spectral properties of biomolecular complexes: second harmonic generation in ordered structures of bacteriorhodopsin

    Science.gov (United States)

    Aktsipetrov, Oleg A.; Fedyanin, Andrew A.; Murzina, Tatyana V.; Borisevich, G. P.; Kononenko, A. A.

    1995-02-01

    For the first time the method of the second harmonic generation was used to study the photo- and electrically induced nonlinear optical transformations in thin oriented films of purple membranes (PM). Variations of the film nonlinear susceptibility were investigated as the bacteriorhodopsin (bR) molecule underwent the cycle of photoinduced transformations for both dry electrically oriented films and bR molecules embedded into poly(vinyl alcohol) matrix. The electrically induced changes of the nonlinear optical properties were studied for the electrostatic field strength up to the values 4 (DOT) 104 V/cm. Nonlinear susceptibilities of oriented and nonoriented dried PM films are compared.

  16. High resolution electron diffraction analysis of structural changes associated with the photocycle of bacteriorhodopsin

    Energy Technology Data Exchange (ETDEWEB)

    Han, B. -G. [Lawrence Berkeley Lab., CA (United States). Life Sciences Div.; Univ. of California, Berkeley, CA (United States). Dept. of Biophysics

    1994-04-01

    Changes in protein structure that occur during the formation of the M photointermediate of bacteriorhodopsin can be directly visualized by electron diffraction techniques. Samples containing a high percentage of the M intermediate were trapped by rapidly cooling the crystals with liquid nitrogen following illumination with filtered green light at 240K and 260K respectively. Difference Fourier projection maps for M minus bR at two temperatures and for M{sub 260K} minus M{sub 240K} are presented. While it is likely that a unique M-substate is trapped when illuminated at 260K produces a mixture of the M{sub 240K} substate and a second M-substate which may have a protein structure similar to the N-intermediate. The diffraction data clearly show that statistically significant structural changes occur upon formation of the M{sub 240K} specimen and then further upon formation of the second substate which is present in the mixture that is produced at 260K. A preliminary 3-D difference map, based on data collected with samples tilted up to 30{degree}, has been constructed at a resolution of 3.5{angstrom} parallel to the membrane plane and a resolution of 8.5{angstrom} perpendicular to the membrane. The data have been analyzed by a number of different criteria to ensure that the differences seen reflect real conformation changes at a level which is significantly above the noise in the map. Furthermore, a comparison of the positions of specific backbone and side-chain groups relative to significant difference peaks suggests that it will be necessary to further refine the atomic resolution model before it will be possible to interpret the changes in chemical structure that occur in the protein at this stage of the photocycle.

  17. Optical Fourier and Holographic Techniques for Medical Image Processing with Bacteriorhodopsin

    Science.gov (United States)

    Yelleswarapu, Chandra

    2008-03-01

    The biological photochrome bacteriorhodopsin (bR) shows many intrinsic optical and physical properties. The active chromophore in bR is a retinal group which absorbs light and goes through a photocycle. The unique feature of the system is its flexibility -- the photocycle can be optically controllable since the process of photoisomerization can go in both directions depending on wavelength, intensity and polarization of the incident light, opening a variety of possibilities for manipulating amplitude, phase, polarization and index of refraction of the incident light. Over the years we studied the basic nonlinear optics and successfully exploited the unique properties for several optical spatial filtering techniques with applications in medical image processing. For nonlinear Fourier filtering, the photo-controlled light modulating characteristics of bR films are exploited. At the Fourier plane, the spatial frequency information carried by a blue probe beam at 442 nm is selectively manipulated in the bR film by changing the position and intensity of a yellow control beam at 568 nm. In transient Fourier holography, photoisomerizative gratings are recorded and reconstructed in bR films. Desired spatial frequencies are obtained by matching the reference beam intensity to that of the particular frequency band in object beam. A novel feature of the technique is the ability to transient display of selected spatial frequencies in the reconstructing process which enables radiologists to study the features of interest in time scale. The results offer useful information to radiologists for early detection of breast cancer. Some of the highlights will be presented.

  18. All-Optical Switching in Bacteriorhodopsin Based on Excited-State Absorption

    Science.gov (United States)

    Roy, Sukhdev

    2008-03-01

    Switching light with light is of tremendous importance for both fundamental and applied science. The advent of nano-bio-photonics has led to the design, synthesis and characterization of novel biomolecules that exhibit an efficient nonlinear optical response, which can be utilized for designing all-optical biomolecular switches. Bacteriorhodopsin (bR) protein found in the purple membrane of Halobacterium halobium has been the focus of intense research due to its unique properties that can also be tailored by physical, chemical and genetic engineering techniques to suit desired applications. The talk would focus on our recent results on all-optical switching in bR and its mutants, based on excited-state absorption, using the pump-probe technique. We would discuss the all-optical control of various features of the switching characteristics such as switching contrast, switching time, switching pump intensity, switched probe profile and phase, and relative phase-shift. Optimized conditions for all-optical switching that include optimized values of the small-signal absorption coefficient (for cw case), the pump pulse width and concentration for maximum switching contrast (for pulsed case), would be presented. We would discuss the desired optimal spectral and kinetic properties for device applications. We would also discuss the application of all-optical switching to design low power all-optical computing devices, such as, spatial light modulators, logic gates and multiplexers and compare their performance with other natural photoreceptors such as pharaonis phoborhodopsin, proteorhodopsin, photoactive yellow protein and the blue light plant photoreceptor phototropin.

  19. Application of nonlinear absorption properties and light adaptation process in the polymer films based on bacteriorhodopsin for the low-power optical signal processing

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.

    1994-01-01

    Experimental and theoretical investigations were made of the characteristics of nonlinear transmission and light adaptation processes of polymer films based on bacteriorhodopsin (BR). It was found that media containing BR can be used to enhance the contrast of low-power signals for realization of the connection structure of the neural network.

  20. Studying the Mechanism of Phototransformation of Light Signal by Various Mammal and Bacterial Photoreceptor Pigments  Rhodopsin, Iodopsin and Bacteriorhodopsin

    Directory of Open Access Journals (Sweden)

    Ignat Ignatov

    2015-06-01

    Full Text Available This review article outlines the structure and function of mammal and bacterial photoreceptor pigments (rhodopsin, iodopsin, bacteriorhodopsin and their aspects of bio-nanotechnological usage. On an example of bacteriorhodopsin is described the method of its isolation from purple membranes of photo-organotrophic halobacterium Halobacterium halobium ET 1001 by cellular autolysis by distilled water, processing of bacterial biomass by ultrasound at 22 KHz, alcohol extraction of low and high-weight molecular impurities, cellular RNA, carotenoids and lipids, the solubilization with 0,5 % (w/v SDS-Na and subsequent fractionation by methanol and gel filtration chromatography on Sephadex G-200 Column balanced with 0,09 M Tris-buffer (pH = 8,35 with 0,1 % (w/v SDS-Na and 2,5 mM EDTA. Within the framework of the research the mechanism of color perception by the visual retina analyzer having the ability to analyze certain ranges of the optical spectrum as colors, was studied along with an analysis of the additive mixing of two or more colors. It was shown that at the mixing of electromagnetic waves with different wavelengths, the visual analyzer perceives them as the separate or average wave length corresponding to the mixing color.

  1. A residue substitution near the beta-ionone ring of the retinal affects the M substates of bacteriorhodopsin

    Science.gov (United States)

    Varo, G.; Zimanyi, L.; Chang, M.; Ni, B.; Needleman, R.; Lanyi, J. K.

    1992-01-01

    The switch in the bacteriorhodopsin photocycle, which reorients access of the retinal Schiff base from the extracellular to the cytoplasmic side, was suggested to be an M1----M2 reaction (Varo and Lanyi. 1991. Biochemistry. 30:5008-5015, 5016-5022). Thus, in this light-driven proton pump it is the interconversion of proposed M substates that gives direction to the transport. We find that in monomeric, although not purple membrane-lattice immobilized, D115N bacteriorhodopsin, the absorption maximum of M changes during the photocycle: in the time domain between its rise and decay it shifts 15 nm to the blue relative to the spectrum at earlier times. This large shift strongly supports the existence of two M substates. Since D115 is located near the beta-ionone ring of the retinal, the result raises questions about the possible involvement of the retinal chain or protein residues as far away as 10 A from the Schiff base in the mechanism of the switching reaction.

  2. High-performance Refractive Index Sensor Based on Photonic Crystal Single Mode Resonant Micro-cavity

    Institute of Scientific and Technical Information of China (English)

    Shengye Huang; Junfeng Shi; Dongsheng Wang; Wei Li

    2006-01-01

    An effective refractive index sensor built with square lattice photonic crystal is proposed, which can be applicable to photonic integrated circuits. Two photonic crystal waveguides rather than conventional ridge waveguides are used as entrance/exit waveguides to the micro-cavity. Three layers of photonic lattice are set between the photonic crystal waveguides and the micro-cavity to achieve both a high transmission and a high sensitivity. The plane wave method is utilized to calculate the disperse curves and the finite difference time domain scheme is employed to simulate the light propagation. At the resonant wavelength of about 1500 nm, the resonant wavelength shifts up by 0.7 nm for each increment of △n=0.001. A transmission of more than 0.75 is observed. Although the position disorder of the photonic crystal doesn't affect the sensitivity of the sensor,the transmission reduces rapidly as the disorder increases.

  3. Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity

    CERN Document Server

    Shen, Bo-Qiang; Zhi, Yanyan; Wang, Li; Kim, Donghyun; Gong, Qihuang; Xiao, Yun-Feng

    2016-01-01

    Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode microcavities, which can enhance significantly the light-matter interaction, have emerged as promising platforms for label-free detection of nanoscale objects. Different from the conventional whispering-gallery-mode sensing relying on the reactive (i.e., dispersive) interaction, here we propose and demonstrate to detect single lossy nanoparticles using the dissipative interaction in a high-$Q$ toroidal microcavity. In the experiment, detection of single gold nanorods in an aqueous environment is realized by monitoring simultaneously the linewidth change and shift of the cavity mode. The experimental result falls within the theoretical prediction. Remarkably, the reactive and dissipative s...

  4. A SINGLE PHOTON SOURCE MODEL BASED ON QUANTUM DOT AND MICROCAVITY

    Directory of Open Access Journals (Sweden)

    Moez ATTIA

    2011-12-01

    Full Text Available We report a single photon source model which consists on InAs/GaAs pyramidal quantum dot (QDmodel based on effective mass theory to calculate the emitted photons energies. We study the choice ofgeometrics parameters of QD to obtain emission at 1550 nm. This quantum dot must be embedded on amicrocavity to improve the live time of photon at 1550 nm and inhibit the others photons to increase theprobability to obtain only one emitted photon. We present two kinds of microcavities; the first based ontwo dimensional photonic crystal over GaAs, we study the geometric parameters choice to obtain a heightdensity of mode (DOM at 1550 nm; the second microcavity is based on microdisk structure over GaAswe evaluate the impact of radius variation to obtain whispering-gallery mode at 1550 nm. This study canserve for the conception of new quantum communications protocols.

  5. Localized surface plasmons selectively coupled to resonant light in tubular microcavities

    CERN Document Server

    Yin, Yin; Böttner, Stefan; Yuan, Feifei; Giudicatti, Silvia; Naz, Ehsan Saei Ghareh; Ma, Libo; Schmidt, Oliver G

    2016-01-01

    Vertical gold-nanogaps are created on microtubular cavities to explore the coupling between resonant light supported by the microcavities and surface plasmons localized at the nanogaps. Selective coupling of optical axial modes and localized surface plasmons critically depends on the exact location of the gold-nanogap on the microcavities which is conveniently achieved by rolling-up specially designed thin dielectric films into three dimensional microtube ring resonators. The coupling phenomenon is explained by a modified quasi-potential model based on perturbation theory. Our work reveals the coupling of surface plasmon resonances localized at the nanoscale to optical resonances confined in microtubular cavities at the microscale, implying a promising strategy for the investigation of light-matter interactions.

  6. Slow reflection and two-photon generation of microcavity exciton-polaritons

    CERN Document Server

    Steger, Mark; Snoke, David W; Pfeiffer, Loren; West, Ken

    2014-01-01

    We resonantly inject polaritons into a microcavity and track them in time and space as they feel a force due to the cavity gradient. This is an example of "slow reflection," as the polaritons, which can be viewed as renormalized photons, slow down to zero velocity and then move back in the opposite direction. These measurements accurately measure the lifetime of the polaritons in our samples, which is 180 $\\pm$ 10 ps, corresponding to a cavity leakage time of 135 ps and a cavity $Q$ of 320,000. Such long-lived polaritons propagate millimeters in these wedge-shaped microcavities. Additionally, we generate polaritons by two-photon excitation directly into the polariton states, allowing the possibility of modulation of the two-photon absorption by a polariton condensate.

  7. Tuning the Microcavity of Organic Light Emitting Diodes by Solution Processable Polymer-Nanoparticle Composite Layers.

    Science.gov (United States)

    Preinfalk, Jan B; Schackmar, Fabian R; Lampe, Thomas; Egel, Amos; Schmidt, Tobias D; Brütting, Wolfgang; Gomard, Guillaume; Lemmer, Uli

    2016-02-01

    In this study, we present a simple method to tune and take advantage of microcavity effects for an increased fraction of outcoupled light in solution-processed organic light emitting diodes. This is achieved by incorporating nonscattering polymer-nanoparticle composite layers. These tunable layers allow the optimization of the device architecture even for high film thicknesses on a single substrate by gradually altering the film thickness using a horizontal dipping technique. Moreover, it is shown that the optoelectronic device parameters are in good agreement with transfer matrix simulations of the corresponding layer stack, which offers the possibility to numerically design devices based on such composite layers. Lastly, it could be shown that the introduction of nanoparticles leads to an improved charge injection, which combined with an optimized microcavity resulted in a maximum luminous efficacy increase of 85% compared to a nanoparticle-free reference device.

  8. Coexisting localized and extended optical Bloch states in a periodic deep wire array microcavity

    Science.gov (United States)

    Löchner, Franz J. F.; Mischok, Andreas; Brückner, Robert; Lyssenko, Vadim G.; Zakhidov, Alexander A.; Fröb, Hartmut; Leo, K.

    2015-09-01

    We embed periodic SiO2 wires in an organic microcavity, producing a rectangular potential by the different optical thicknesses of the active layer due to the additional SiO2 layer. By μ -photoluminescence spectroscopy, we observe the energy dispersion of the photons and obtain discrete localized below and extended Bloch states above the potential barrier, respectively, showing that electro-magnetic waves can behave like massive particles, such as electrons, in crystal lattices. We investigate the dependencies on wire width and period and use the Kronig-Penney model to describe the photon energy dispersion, including an "effective mass" of a photon propagating through a microcavity implying polarization splitting. We obtain excellent agreement between experiment, simulation and analytical calculation.

  9. Optofluidic tunable manipulation of microparticles by integrating graded-index fiber taper with a microcavity.

    Science.gov (United States)

    Gong, Yuan; Zhang, Chenlin; Liu, Qun-Feng; Wu, Yu; Wu, Huijuan; Rao, Yunjiang; Peng, Gang-Ding

    2015-02-01

    We propose and demonstrate optofluidic tunable manipulation of polystyrene microparticles based on the combination of a graded-index fiber (GIF) taper and a microcavity. The tunability on the manipulation length is experimentally explored by changing the balance between the optical force and the microfluidic flow force, as well as by tuning the focus of light emitting from the GIF taper via adjusting the length of an air microcavity. By optimizing the geometric shape of the GIF taper, as well as the flow rate and laser power, a manipulation length of 177 μm is achieved, more than 4 times longer than the state-of-the-art optical fiber tweezers. This method has advantages of high flexibility, ease of fabrication and use, integration with microfluidics and has the potential for optofluidic sensing applications. PMID:25836228

  10. Intensity modulated SMF cascaded tapers with a hollow core PCF based microcavity for curvature sensing

    Science.gov (United States)

    Dass, Sumit; Narayan Dash, Jitendra; Jha, Rajan

    2016-03-01

    We propose a highly sensitive curvature sensor based on cascaded single mode fiber (SMF) tapers with a microcavity. The microcavity is created by splicing a small piece of hollow core photonic crystal fiber (HCPCF) at the end of an SMF to obtain a sharp interference pattern. Experimental results show that two SMF tapers enhance the curvature sensitivity of the system and by changing the tapering parameters of the second taper, the curvature sensitivity of the system can be tailored, together with the fringe contrast of the interference pattern. A maximum curvature sensitivity of 10.4 dB/m-1 is observed in the curvature range 0 to 1 m-1 for a second taper diameter of 18 μm. The sensing setup is highly stable and shows very low temperature sensitivity. As the interrogation is intensity based, a low cost optical power meter can be utilized to determine the curvature.

  11. Quantum Dots in H1 Photonic Crystal Microcavities for Quantum Information

    Science.gov (United States)

    Hagemeier, Jenna; Bonato, Cristian; Truong, Tuan-Anh; Kim, Hyochul; Bakker, Morten; Beirne, Gareth J.; van Exter, Martin P.; Petroff, Pierre; Bouwmeester, Dirk

    2013-03-01

    Coupling semiconductor quantum dots to optical microcavities is a promising technique for implementing quantum information processing protocols in the solid-state. By placing one or more emitters in a cavity, it is possible to create an efficient source of single photons or to explore collective interactions of few-emitter systems. Our devices consist of two layers of quantum dots, embedded in the cavity region of H1 photonic crystal microcavities. One of the quantum dot layers can be frequency-tuned deterministically, allowing two resonant quantum dots to be coupled to a single cavity mode. Because good mode-matching between the cavity mode and the input/output channel is necessary for many applications, we optimize the far-field profiles of our H1 cavities and demonstrate strong enhancement of the external mode matching properties. We will discuss our far-field optimization results as well as our ongoing work to study interactions of multiple emitters in a cavity.

  12. Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2013-07-29

    We investigate the possibility of achieving scalable photonic quantum computing by the giant optical circular birefringence induced by a quantum-dot spin in a double-sided optical microcavity as a result of cavity quantum electrodynamics. We construct a deterministic controlled-not gate on two photonic qubits by two single-photon input-output processes and the readout on an electron-medium spin confined in an optical resonant microcavity. This idea could be applied to multi-qubit gates on photonic qubits and we give the quantum circuit for a three-photon Toffoli gate. High fidelities and high efficiencies could be achieved when the side leakage to the cavity loss rate is low. It is worth pointing out that our devices work in both the strong and the weak coupling regimes.

  13. Model microcavity laser with CdSe/CdS quantum dots as lasing media

    Science.gov (United States)

    Naveed, H. B.; Popov, S.; Shafique, M.

    2016-02-01

    A model is established for a microcavity laser with cadmium selenium/cadmium sulfide (CdSe/CdS) core/shell quantum dots (QDs) as a lasing medium. The research was organised to develop and solve the rate equations for the above mentioned microcavity laser to calculate the output parameters during lasing. Using time-resolved fluorescence spectroscopy, the radiative life time of the lasing medium was measured along with its fluorescence and absorption spectra. A model is also established on the basis of the segment contact method (SCM) to demonstrate the threshold gain profile using the absorption spectrum of CdSe/CdS core/shell type-II QDs residing in the cavity. A laser cavity of size 1 μm was pumped with an optical source (532 nm) to achieve an optimised laser peak at 470 nm.

  14. Tunable thermal entanglement in an effective spin-star system using coupled microcavities

    Institute of Scientific and Technical Information of China (English)

    Yang Wan-Li; Wei Hua; Feng Mang; An Jun-Hong

    2009-01-01

    We theoretically explore the possibility of realizing controllable thermal entanglement of effective spins in a fourqubit anisotropic Heisenberg XXZ coupling spin-star system constructed by coupled microcavities. We analyse the dependence of thermal entanglement in this system on temperature,inhomogeneity of the magnetic field,and anisotropy,which can be readily tuned via the external laser fields. The peculiar characteristic and the full controllability of the thermal entanglement are demonstrated to be useful for quantum information processing.

  15. Microcavity with saturable nonlinearity under simultaneous resonant and nonresonant pumping: multistability, Hopf bifurcations and chaotic behaviour.

    Science.gov (United States)

    Iorsh, Ivan; Alodjants, Alexander; Shelykh, Ivan A

    2016-05-30

    We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the saturation of the excitonic absorption. Stable periodic Rabi-type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.

  16. Coherent Control of Transmission Probability of a Cold Atom Through Microcavity Potentials

    Institute of Scientific and Technical Information of China (English)

    何小灵; 杜四德; 陈灏; 陆靖

    2003-01-01

    We investigate the transmission probability of a two-level cold atom through a quantum microcavity when the atom is initially prepared in a coherent superposition of its excited state and ground state. We can control the transmissibility of the atom by this initial coherence. Remarkable step and switch effect are discovered in the atomic transmission for the case of weak and intense quantized fields, respectively.

  17. Efficient optical path folding by using multiple total internal reflections in a microcavity

    CERN Document Server

    Shinohara, Susumu; Fukushima, Takehiro; Harayama, Takahisa; Arai, Kenichi; Yoshimura, Kazuyuki

    2014-01-01

    We propose using an asymmetric resonant microcavity for the efficient generation of an optical path that is much longer than the diameter of the cavity. The path is formed along a star polygonal periodic orbit within the cavity, which is stable and confined by total internal reflection. We fabricated a semiconductor device based on this idea with an average diameter of 0.3 mm, and achieved a path length of 2.79 mm experimentally.

  18. Raman Theory for a Molecule in a Vibrating Microcavity Oscillating in Fundamental Resonance

    Institute of Scientific and Technical Information of China (English)

    YANG XiaoXue; WU Ying

    2001-01-01

    We propose a model to describe the energy structure and dynamics of a system of a molecule interacting with infinite photon modes in a vibrating microcavity whose boundary oscillates in the fundamental resonance. By constructing an so(2,1) Lie algebra for the infinite photon modes, we obtain analytical expressions of the energy eigenstates, energy eigenvalues and the system's evolution operator for this Raman model under certain conditions.``

  19. Coherent coupling of molecular resonators with a micro-cavity mode

    CERN Document Server

    Shalabney, Atef; Hutchison, James A; Pupillo, Guido; Genet, Cyriaque; Ebbesen, Thomas W

    2014-01-01

    Strong coupling is at the heart of optomechanics where it enables coherent quantum state transfer between light and micromechanical oscillators. Strongly coupled molecule-cavity systems have also revealed unique properties enabling even the control of chemical rates through the optical hybridization of the electronic states. Here we combine these notions to show that molecular vibrational modes of the electronic ground state can be coherently coupled with a micro-cavity mode at room temperature, given the low vibrational thermal occupation factors n_{\

  20. Hybrid quantum gates between flying photon and diamond nitrogen-vacancy centers assisted by optical microcavities

    OpenAIRE

    Hai-Rui Wei; Gui Lu Long

    2015-01-01

    Hybrid quantum gates hold great promise for quantum information processing since they preserve the advantages of different quantum systems. Here we present compact quantum circuits to deterministically implement controlled-NOT, Toffoli, and Fredkin gates between a flying photon qubit and diamond nitrogen-vacancy (NV) centers assisted by microcavities. The target qubits of these universal quantum gates are encoded on the spins of the electrons associated with the diamond NV centers and they ha...

  1. Microcavity with saturable nonlinearity under simultaneous resonant and nonresonant pumping: multistability, Hopf bifurcations and chaotic behaviour

    CERN Document Server

    Iorsh, Ivan; Shelykh, Ivan

    2016-01-01

    We studied optical response of microcavity non-equilibrium exciton-polariton Bose-Einstein condensate with saturable nonlinearity under simultaneous resonant and non-resonant pumping. We demonstrated the emergence of multistabile behavior due to the satutration of the excitonic absorbtion. Stable periodic Rabi- type oscillations of the excitonic and photonic condensate components in the regime of the stationary pump and their transition to the chaotic dynamics through the cascade of Hopf bifurcations by tuning of the electrical pump are revealed.

  2. Spectrum and thermal fluctuations of a microcavity polariton Bose-Einstein condensate

    OpenAIRE

    Sarchi, D.; Savona, V.

    2007-01-01

    The Hartree-Fock-Popov theory of interacting Bose particles is developed, for modeling exciton-polaritons in semiconductor microcavities undergoing Bose-Einstein condensation. A self-consistent treatment of the linear exciton-photon coupling and of the exciton non-linearity provides a thermal equilibrium description of the collective excitation spectrum, of the polariton energy shifts and of the phase diagram. Quantitative predictions support recent experimental findings.

  3. Nonclassical light from an incoherently pumped quantum dot in a microcavity

    OpenAIRE

    Teuber, L.; Grünwald, P.; Vogel, W.

    2015-01-01

    Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of semiconductor quantum optics. In many cases however, technical and physical issues limit the study of optical fields to incoherently excited systems. We analyze the model of a two-level system in a single-mode cavity, where the former is incoherently driven. The specific structure of the applied master equation yields a recurrence relation for the steady-state values of correlations of the i...

  4. Single Semiconductor Quantum Dots in Microcavities: Bright sources of indistinguishable Photons

    OpenAIRE

    Schneider, C.; Gold, P.; Lu, C. -Y.; Höfling, S.; Pan, J. -W.; Kamp, M.

    2015-01-01

    In this chapter we will discuss the technology and experimental techniques to realize quantum dot (QD) single photon sources combining high outcoupling efficiencies and highest degrees of non-postselected photon indistinguishability. The system, which is based on ultra low density InAs QDs embedded in a quasi planar single sided microcavity with natural photonic traps is an ideal testbed to study quantum light emission from single QDs. We will discuss the influence of the excitation condition...

  5. Angular Dependence of the Sharply Directed Emission in Organic Light Emitting Diodes with a Microcavity Structure

    Science.gov (United States)

    Juang, Fuh-Shyang; Laih, Li-Hong; Lin, Chia-Ju; Hsu, Yu-Jen

    2002-04-01

    An optical microcavity structure was used in organic light emitting diodes. We succeeded in fabricating a device with sharply directed emission vertical to an emission surface. The device shows green emission (bright green) at normal position which turns red (bright red) at the 30° position. The angular dependences of the electroluminescence and the emission patterns versus viewing angle in the microcavity OLED were studied. The resonance wavelength λ decreases with viewing angle. The emission peak at 490 nm is directed vertically to the device surface more sharply than that at 632 nm. The microcavity structure shows non-Lambertian emission. The spectra appear more blue off-axis and the intensity of the green-like emission decreases rapidly with increasing viewing angle. A significantly narrow linewidth of 7.4 nm in the 0° direction for the 490 nm peak was observed. The full-widths at half maximum (FWHM) of the green-like spectra are much smaller than those of the red-like ones, indicating better cavity quality.

  6. Formation and all-optical control of optical patterns in semiconductor microcavities

    Science.gov (United States)

    Binder, R.; Tsang, C. Y.; Tse, Y. C.; Luk, M. H.; Kwong, N. H.; Chan, Chris K. P.; Leung, P. T.; Lewandowski, P.; Schumacher, Stefan; Lafont, O.; Baudin, E.; Tignon, J.

    2016-05-01

    Semiconductor microcavities offer a unique way to combine transient all-optical manipulation of GaAs quantum wells with the benefits of structural advantages of microcavities. In these systems, exciton-polaritons have dispersion relations with very small effective masses. This has enabled prominent effects, for example polaritonic Bose condensation, but it can also be exploited for the design of all-optical communication devices. The latter involves non-equilibrium phase transitions in the spatial arrangement of exciton-polaritons. We consider the case of optical pumping with normal incidence, yielding a spatially homogeneous distribution of exciton-polaritons in optical cavities containing the quantum wells. Exciton-exciton interactions can trigger instabilities if certain threshold behavior requirements are met. Such instabilities can lead, for example, to the spontaneous formation of hexagonal polariton lattices (corresponding to six-spot patterns in the far field), or to rolls (corresponding to two-spot far field patterns). The competition among these patterns can be controlled to a certain degree by applying control beams. In this paper, we summarize the theory of pattern formation and election in microcavities and illustrate the switching between patterns via simulation results.

  7. High quality factor Er-doped Fabry-Perot microcavities by sol-gel processing

    Energy Technology Data Exchange (ETDEWEB)

    Li Yigang; Fortes, Luis M; Almeida, Rui M [Departamento de Engenharia de Materiais/ICEMS, Instituto Superior Tecnico/TULisbon, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Chiappini, Andrea; Ferrari, Maurizio, E-mail: yigang.li@ist.utl.p, E-mail: rui.almeida@ist.utl.p [CNR-IFN, Istituto di Fotonica e Nanotecnologie, CSMFO Lab., Via alla Cascata 56/C, Povo, 38123 Trento (Italy)

    2009-10-21

    An optimized sol-gel process was developed to fabricate 1D photonic bandgap structures. Several erbium-doped Fabry-Perot microcavities were prepared and characterized. The thickest sample contained two Bragg mirrors, each having 12 distributed Bragg reflector periods of alternating silicate glass and titania layers. The total thickness of this sample reached {approx}12 {mu}m. The Er{sup 3+} photoluminescence spectra at 1.5 {mu}m were measured for the microcavities. A quality factor of 250 and an Er{sup 3+} photoluminescence enhancement of 96 times at 1.5 {mu}m have been reached. The sol-gel processing details, the crystallization of the titania films and the refractive index of the deposited materials are discussed in detail. The simulated optical spectra of the microcavities were found to agree well with the actually measured curves. These results demonstrate that the present sol-gel processing technique is of potential interest for low cost fabrication of 1D photonic bandgap devices.

  8. Pool boiling on surfaces with mini-fins and micro-cavities

    International Nuclear Information System (INIS)

    The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 – 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids – smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).

  9. Phase sensitive properties and coherent manipulation of a photonic crystal microcavity.

    Science.gov (United States)

    Quiring, Wadim; Jonas, Björn; Förstner, Jens; Rai, Ashish K; Reuter, Dirk; Wieck, Andreas D; Zrenner, Artur

    2016-09-01

    We present phase sensitive cavity field measurements on photonic crystal microcavities. The experiments have been performed as autocorrelation measurements with ps double pulse laser excitation for resonant and detuned conditions. Measured E-field autocorrelation functions reveal a very strong detuning dependence of the phase shift between laser and cavity field and of the autocorrelation amplitude of the cavity field. The fully resolved phase information allows for a precise frequency discrimination and hence for a precise measurement of the detuning between laser and cavity. The behavior of the autocorrelation amplitude and phase and their detuning dependence can be fully described by an analytic model. Furthermore, coherent control of the cavity field is demonstrated by tailored laser excitation with phase and amplitude controlled pulses. The experimental proof and verification of the above described phenomena became possible by an electric detection scheme, which employs planar photonic crystal microcavity photo diodes with metallic Schottky contacts in the defect region of the resonator. The applied photo current detection was shown to work also efficiently at room temperature, which make electrically contacted microcavities attractive for real world applications. PMID:27607671

  10. Voltage dependence of proton pumping by bacteriorhodopsin mutants with altered lifetime of the M intermediate.

    Directory of Open Access Journals (Sweden)

    Sven Geibel

    Full Text Available The light-driven proton pump bacteriorhodopsin (BR from Halobacterium salinarum is tightly regulated by the [H(+] gradient and transmembrane potential. BR exhibits optoelectric properties, since spectral changes during the photocycle are kinetically controlled by voltage, which predestines BR for optical storage or processing devices. BR mutants with prolonged lifetime of the blue-shifted M intermediate would be advantageous, but the optoelectric properties of such mutants are still elusive. Using expression in Xenopus oocytes and two-electrode voltage-clamping, we analyzed photocurrents of BR mutants with kinetically destabilized (F171C, F219L or stabilized (D96N, D96G M intermediate in response to green light (to probe H(+ pumping and blue laser flashes (to probe accumulation/decay of M. These mutants have divergent M lifetimes. As for BR-WT, this strictly correlates with the voltage dependence of H(+ pumping. BR-F171C and BR-F219L showed photocurrents similar to BR-WT. Yet, BR-F171C showed a weaker voltage dependence of proton pumping. For both mutants, blue laser flashes applied during and after green-light illumination showed reduced M accumulation and shorter M lifetime. In contrast, BR-D96G and BR-D96N exhibited small photocurrents, with nonlinear current-voltage curves, which increased strongly in the presence of azide. Blue laser flashes showed heavy M accumulation and prolonged M lifetime, which accounts for the strongly reduced H(+ pumping rate. Hyperpolarizing potentials augmented these effects. The combination of M-stabilizing and -destabilizing mutations in BR-D96G/F171C/F219L (BR-tri shows that disruption of the primary proton donor Asp-96 is fatal for BR as a proton pump. Mechanistically, M destabilizing mutations cannot compensate for the disruption of Asp-96. Accordingly, BR-tri and BR-D96G photocurrents were similar. However, BR-tri showed negative blue laser flash-induced currents even without actinic green light, indicating

  11. Synthesis of 13C and 2H labelled retinals: spectroscopic investigations on isotopically labelled rhodopsin and bacteriorhodopsin

    International Nuclear Information System (INIS)

    In order to develop probes of the structure of chromophores, the author introduces isotopic modifications at specific chromophoric positions as structural probes. To obtain bacteriorhodopsin, rhodopsin and their photoproducts labelled in the chromophore at selected positions, bacterioopsin and opsin were reacted with the appropriate labelled a11-trans and 11-cis retinals. The author describes the synthesis of a11-trans retinal selectively 13C labelled at different positions. The characterization of these labelled a11-trans retinals by mass spectrometry, 300 MHz 1H NMR and 75 MHz 13C NMR spectroscopy is given. The photochemical preparation and isolation of the pure 9-, 11- and 13-cis forms is described in the experimental part. (Auth.)

  12. Crystallographic structure of the K intermediate of bacteriorhodopsin: conservation of free energy after photoisomerization of the retinal.

    Science.gov (United States)

    Schobert, Brigitte; Cupp-Vickery, Jill; Hornak, Viktor; Smith, Steven; Lanyi, Janos

    2002-08-23

    The K state, an early intermediate of the bacteriorhodopsin photocycle, contains the excess free energy used for light-driven proton transport. The energy gain must reside in or near the photoisomerized retinal, but in what form has long been an open question. We produced the K intermediate in bacteriorhodopsin crystals in a photostationary state at 100K, with 40% yield, and determined its X-ray diffraction structure to 1.43 A resolution. In independent refinements of data from four crystals, the changes are confined mainly to the photoisomerized retinal. The retinal is 13-cis,15-anti, as known from vibrational spectroscopy. The C13=C14 bond is rotated nearly fully to cis from the initial trans configuration, but the C14-C15 and C15=NZ bonds are partially counter-rotated. This strained geometry keeps the direction of the Schiff base N-H bond vector roughly in the extracellular direction, but the angle of its hydrogen bond with water 402, that connects it to the anionic Asp85 and Asp212, is not optimal. Weakening of this hydrogen bond may account for many of the reported features of the infrared spectrum of K, and for its photoelectric signal, as well as the deprotonation of the Schiff base later in the cycle. Importantly, although 13-cis, the retinal does not assume the expected bent shape of this configuration. Comparison of the calculated energy of the increased angle of C12-C13=C14, that allows this distortion, with the earlier reported calorimetric measurement of the enthalpy gain of the K state indicates that a significant part of the excess energy is conserved in the bond strain at C13.

  13. Ultra-high Q one-dimensional hybrid PhC-SPP waveguide microcavity with large structure tolerance

    Science.gov (United States)

    Liu, Feng; Zhang, Lingxuan; Lu, Xiaoyuan; Wang, Weiqiang; Wang, Leiran; Wang, Guoxi; Zhang, Wenfu; Zhao, Wei

    2016-07-01

    A photonic crystal - surface plasmon-polaritons hybrid transverse magnetic mode waveguide based on a one-dimensional optical microcavity is designed to work in the communication band. A Gaussian field distribution in a stepping heterojunction taper is designed by band engineering, and a silica layer compresses the mode field to the subwavelength scale. The designed microcavity possesses a resonant mode with a quality factor of 1609 and a modal volume of 0.01 cubic wavelength. The constant period and the large structure tolerance make it realizable by current processing techniques.

  14. The influence of a transmembrane pH gradient on protonation probabilities of bacteriorhodopsin: the structural basis of the back-pressure effect.

    Science.gov (United States)

    Calimet, Nicolas; Ullmann, G Matthias

    2004-06-01

    Bacteriorhodopsin pumps protons across a membrane using the energy of light. The proton pumping is inhibited when the transmembrane proton gradient that the protein generates becomes larger than four pH units. This phenomenon is known as the back-pressure effect. Here, we investigate the structural basis of this effect by predicting the influence of a transmembrane pH gradient on the titration behavior of bacteriorhodopsin. For this purpose we introduce a method that accounts for a pH gradient in protonation probability calculations. The method considers that in a transmembrane protein, which is exposed to two different aqueous phases, each titratable residue is accessible for protons from one side of the membrane depending on its hydrogen-bond pattern. This method is applied to several ground-state structures of bacteriorhodopsin, which residues already present complicated titration behaviors in the absence of a proton gradient. Our calculations show that a pH gradient across the membrane influences in a non-trivial manner the protonation probabilities of six titratable residues which are known to participate in the proton transfer: D85, D96, D115, E194, E204, and the Schiff base. The residues connected to one side of the membrane are influenced by the pH on the other side because of their long-range electrostatic interactions within the protein. In particular, D115 senses the pH at the cytoplasmic side of the membrane and transmits this information to D85 and the Schiff base. We propose that the strong electrostatic interactions found between D85, D115, and the Schiff base as well as the interplay of their respective protonation states under the influence of a transmembrane pH gradient are responsible for the back-pressure effect on bacteriorhodopsin.

  15. Tricolor microcavity OLEDs based on P-nc-Si:H films as the complex anodes

    Institute of Scientific and Technical Information of China (English)

    Li Yang; Liu Xingyuan; Wu Chunya; Meng Zhiguo; Wang Yi; Xiong Shaozhen

    2009-01-01

    A P+-nc-Si:H film (boron-doped nc-Si:H thin film) was used as a complex anode of an OLED. As an ideal candidate for the composite anode, the P+-nc-Si:H thin film has a good conductivity with a high work function (~5.7 eV) and outstanding optical properties of high reflectivity, transmission, and a very low absorption. As a result, the combination of the relatively high reflectivity of a P+-nc-Si:H film/ITO complex anode with the very high reflectivity of an Al cathode could form a micro-cavity structure with a certain Q to improve the efficiency of the OLED fabricated on it. An RGB pixel generated by microcavity OLEDs is beneficial for both the reduction of the light loss and the improvement of the color purity and the efficiency. The small molecule Alq would be useful for the emitting light layer (EML) of the MOLED, and the P+-nc-Si film would be used as a complex anode of the MOLED, whose configuration can be constructed as Glass/LTO/P+-nc-Si:H/ITO/MoO3/NPB/Alq/LiF/Al. By adjusting the thickness of the organic layer NPB/Alq, the optical length of the microcavity and the REB colors of the device can be obtained. The peak wavelengths of an OLED are located at 486, 550, and 608 nm, respectively.The CIE coordinates are (0.21,0.45), (0.33,0.63), and (0.54,0.54), and the full widths at half maximum (FWHM)are 35, 32, and 39 nm for red, green, and blue, respectively.

  16. Microreflectivity studies of wavelength control in oxidised AlGaAs microcavities

    International Nuclear Information System (INIS)

    Wet oxidation of GaAs/AlGaAs structures is an important technique in the processing of advanced devices such as vertical cavity surface emitting lasers (VCSELs). In one VCSEL application, the low-index and electrically-insulating AlxOy layers have been used to obtain high-reflectivity and broad bandwidth distributed Bragg reflector mirrors (DBRs). A further recent development has shown that combined lateral-vertical oxidation of intracavity AlGaAs layers can be used to tune the resonant wavelength of a semiconductor microcavity. The slow oxidation rate limits the lateral scale of practical wet oxidation to mesas structures of 50-100 μm in width. Therefore post-processing assessment of spectral changes requires microreflectivity measurement capability with high spatial resolution. In the following, we describe the fabrication and assessment of microcavity structures in the 1.3 μm range. The micro-reflectivity set-up consists of microscope-objective focussing of broadband light, combined with optics to relay the data to a spectrograph, and a CCD camera for alignment. This simple set-up allows the measurement of calibrated reflectivity for features down to a few 10's of μm in size over a large spectral range (600-1800 nm). We present microreflectivity measurements of wide-bandwidth oxidised DBRs, and most significantly, for the first time to our knowledge, of oxidation control of the resonant wavelength of a microcavity in the 1.3 μm range

  17. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    International Nuclear Information System (INIS)

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  18. Dynamical narrowing of the Rayleigh scattering ring from a semiconductor microcavity

    DEFF Research Database (Denmark)

    Langbein, W.; Hvam, Jørn Märcher

    2001-01-01

    In resonant secondary emission of light (SE), scattering by static disorder leads to coherent resonant Rayleigh scattering (RRS), while the scattering with other quasi-particles (e.g. phonons) leads to an incoherent emission called photoluminescence (PL). For a bare quantum well (QW) the SE does...... not depend significantly on the emission direction due to the small exciton dispersion within the optically accessible in-plane wave vectors. Compared to bare excitons the dispersion of microcavity (MC) polaritons is steep at small in-plane wavevectors, so that MC polaritons show a directional RRS...

  19. Ultrasensitive Detection of a Protein by Optical Trapping in a Photonic-Plasmonic Microcavity

    CERN Document Server

    Santiago-Cordoba, Miguel A; Boriskina, Svetlana V; Vollmer, Frank; Demirel, Melik C

    2012-01-01

    Microcavity and whispering gallery mode (WGM) biosensors derive their sensitivity from monitoring frequency shifts induced by protein binding at sites of highly confined field intensities, where field strengths can be further amplified by excitation of plasmon resonances in nanoparticle layers. Here, we propose a mechanism based on optical trapping of a protein at the site of plasmonic field enhancements for achieving ultra sensitive detection in only microliter-scale sample volumes, and in real-time. We demonstrate femto-Molar sensitivity corresponding to a few 1000s of macromolecules. Simulations based on Mie theory agree well with the optical trapping concept at plasmonic 'hotspots' locations.

  20. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Science.gov (United States)

    Dietrich, Christof P.; Höfling, Sven; Gather, Malte C.

    2014-12-01

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm).

  1. Multi-state lasing in self-assembled ring-shaped green fluorescent protein microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Christof P., E-mail: cpd3@st-andrews.ac.uk; Höfling, Sven; Gather, Malte C., E-mail: mcg6@st-andrews.ac.uk [SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS (United Kingdom)

    2014-12-08

    We demonstrate highly efficient lasing from multiple photonic states in microcavities filled with self-assembled rings of recombinant enhanced green fluorescent protein (eGFP) in its solid state form. The lasing regime is achieved at very low excitation energies of 13 nJ and occurs from cavity modes dispersed in both energy and momentum. We attribute the momentum distribution to very efficient scattering of incident light at the surface of the eGFP rings. The distribution of lasing states in energy is induced by the large spectral width of the gain spectrum of recombinant eGFP (FWHM ≅ 25 nm)

  2. Controlling the emission from semiconductor quantum dots using ultra-small tunable optical microcavities

    OpenAIRE

    Di, Ziyun; Jones, Helene V; Dolan, Philip R.; Fairclough, Simon M.; Wincott, Matthew B; Fill, Johnny; Hughes, Gareth M.; Smith, Jason M.

    2012-01-01

    We report the control of spontaneous emission from CdSe/ZnS core-shell quantum dots coupled to novel open-access optical microcavities. The cavities are fabricated by focused ion beam milling, and provide mode volumes less than a cubic micrometre. The quantum dot emission spectrum, spatial modes, and lifetime are all modified substantially by the presence of the cavity, and can be tuned by actively varying the cavity length. An increase in emission rate of 75% is achieved at room temperature,...

  3. Properties of monolithic InGaN quantum dot pillar microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Sebald, K.; Seyfried, M.; Kalden, J.; Gutowski, J. [Semiconductor Optics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany); Dartsch, H.; Tessarek, C.; Aschenbrenner, T.; Figge, S.; Kruse, C.; Hommel, D. [Semiconductor Epitaxy, Institute of Solid State Physics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany); Florian, M.; Jahnke, F. [Institue of Theoretical Physics, University of Bremen, P.O. Box 330 440, 28334 Bremen (Germany)

    2011-07-15

    InGaN quantum dots were successfully implemented into fully epitaxially grown nitride-based monolithic microcavities (MCs). The discrete modes of airpost pillar MCs prepared out of the planar sample are shown in microreflectivity as well as in microphotoluminescence. These measurements are compared to theoretical simulations based on a vectorial-transfer matrix method. Quality factors of up to 280 have been achieved and the emission of a single quantum dot was traced up to a temperature of 125 K. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Enhancement of photon intensity in forced coupled quantum wells inside a semiconductor microcavity.

    Science.gov (United States)

    Eleuch, Hichem; Prasad, Awadhesh; Rotter, Ingrid

    2013-02-01

    We study numerically the photon emission from a semiconductor microcavity containing N≥2 quantum wells under the influence of a periodic external forcing. The emission is determined by the interplay between external forcing and internal interaction between the wells. While the external forcing synchronizes the periodic motion, the internal interaction destroys it. The nonlinear term of the Hamiltonian supports the synchronization. The numerical results show a jump of the photon intensity to very large values at a certain critical value of the external forcing when the number of quantum wells is not too large. We discuss the dynamics of the system across this transition. PMID:23496600

  5. Strong exciton-photon coupling with colloidal nanoplatelets in an open microcavity

    OpenAIRE

    Flatten, Lucas C.; Christodoulou, Sotirios; Patel, Robin K.; Buccheri, Alexander; Coles, David M.; Benjamin P. L. Reid; Taylor, Robert A.; Moreels, Iwan; Smith, Jason M.

    2016-01-01

    Colloidal semiconductor nanoplatelets exhibit quantum size effects due to their thickness of only few monolayers, together with strong optical band-edge transitions facilitated by large lateral extensions. In this article we demonstrate room temperature strong coupling of the light and heavy hole exciton transitions of CdSe nanoplatelets with the photonic modes of an open planar microcavity. Vacuum Rabi splittings of $66 \\pm 1$ meV and $58 \\pm 1$ meV are observed for the heavy and light hole ...

  6. Density Functional Theory Approach for Charged Hard Sphere Fluids Confined in Spherical Micro-Cavity

    Institute of Scientific and Technical Information of China (English)

    KANG Yan-Shuang; WANG Hai-Jun

    2009-01-01

    Within the framework of the density functional theory for classical fluids,the equilibrium density profiles of charged hard sphere fluid confined in micro-cavity are studied by means of the modified fundamental measure theory.The dimension of micro-cavity,the charge of hard sphere and the applied electric field are found to have significant effects on the density profiles.In particular,it is shown that Coulomb interaction,excluded volume interaction and applied electric Geld play the central role in controlling the aggregated structure of the system.

  7. Acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons.

    Science.gov (United States)

    Nguyen, H S; Gerace, D; Carusotto, I; Sanvitto, D; Galopin, E; Lemaître, A; Sagnes, I; Bloch, J; Amo, A

    2015-01-23

    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics; in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and supersonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.

  8. Analogies between optical propagation and heat diffusion: Applications to micro-cavities, gratings and cloaks

    CERN Document Server

    Amra, Claude; Zerrad, Myriam; Guenneau, Sébastien; Soriano, Gabriel; Gralak, Boris; Bellieud, Michel; Veynante, Denis; Rolland, Nathalie

    2015-01-01

    A new analogy between optical propagation and heat diffusion in heterogeneous anisotropic media has been proposed recently [S. Guenneau, C. Amra, and D. Veynante, Optics Express Vol. 20, 8207-8218 (2012)]. A detailed derivation of this unconventional correspondence is presented and developed. In time harmonic regime, all thermal parameters are related to optical ones in artificial metallic media, thus making possible to use numerical codes developed for optics. Then the optical admittance formalism is extended to heat conduction in multilayered structures. The concepts of planar micro-cavities, diffraction gratings, and planar transformation optics for heat conduction are addressed. Results and limitations of the analogy are emphasized.

  9. Phase Transition and Superfluid of Photons and Photon Pairs in a Two-Dimensional Optical Microcavity

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Jun; YUAN Jian-Hui; ZHANG Jun-Pei; CHENG Ze

    2012-01-01

    We analyze the ground-state properties and the excitation spectrum of Bose Einstein condensates of photons and PPs in a two-dimensional optical microcavity. First, using the variational method, we discuss the ground- state phase transition of the two-component system. We also investigate the energy gap between the ground state and the first excited state. Moreover, by investigating the excitation spectrum, we also illustrate how the superfluid behavior of photons and PPs can be associated with the phase transition of the system.

  10. Tuning of exciton-photon coupling in a planar semiconductor microcavity by applying hydrostatic pressure

    International Nuclear Information System (INIS)

    By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure. (author)

  11. Tuning of exciton-photon coupling in a planar semiconductor microcavity by applying hydrostatic pressure

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Jidong; Zhang Hao; Chen Jinghao; Deng Yuanming; Hu Chengyong; An Long; Yang Fuhua; Li Guohua; Zheng Houzhi [National Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing (China)

    2002-06-03

    By means of hydrostatic pressure tuning, we have observed the strong-coupling exciton-polariton mode in a planar microcavity with an InGaAs/GaAs quantum well embedded in it, over a pressure range from 0.37 to 0.41 GPa. The experimental data can be fitted very well to a corresponding theoretical formula with a unique value of the vacuum Rabi splitting equal to 6.0 meV. A comparison between pressure tuning and other tuning methods is made as regards to what extent the intrinsic features of the exciton and cavity will be influenced during the tuning procedure. (author)

  12. Circularly polarized lasing in chiral modulated semiconductor microcavity with GaAs quantum wells

    CERN Document Server

    Demenev, A A; Schneider, C; Brodbeck, S; Kamp, M; Höfling, S; Lobanov, S V; Weiss, T; Gippius, N A; Tikhodeev, S G

    2016-01-01

    We report the elliptically, close to circularly polarized lasing at $\\hbar\\omega = 1.473$ and 1.522 eV from an AlAs/AlGaAs Bragg microcavity with 12 GaAs quantum wells in the active region and chiral-etched upper distributed Bragg refractor under optical pump at room temperature. The advantage of using the chiral photonic crystal with a large contrast of dielectric permittivities is its giant optical activity, allowing to fabricate a very thin half-wave plate, with a thickness of the order of the emitted light wavelength, and to realize the monolithic control of circular polarization.

  13. Organic white-light-emitting devices based on a multimode resonant microcavity

    Science.gov (United States)

    Zhang, Hongmei; You, Han; Wang, Wei; Shi, Jiawei; Guo, Shuxu; Liu, Mingda; Ma, Dongge

    2006-08-01

    Organic white-light-emitting devices (OLEDs) based on a multimode resonant microcavity defined by a pair of dielectric mirrors and metal mirrors were presented. By selective effects of the quarter-wave dielectric stack mirror on mode, white light emission containing three individual narrow peaks of red, green and blue was achieved, and showed weak dependence on the viewing angle. The Commission Internationale De L'Eclairage (CIE) chromaticity coordinates changed from (0.29, 0.37) at 0° to (0.31, 0.33) at 40°. Furthermore, the brightness and electroluminescence efficiency of the microcavity OLEDs were enhanced compared with noncavity OLEDs. The maximum brightness reached 1940 cd m-2 at a current density of 200 mA cm-2, and the maximum current efficiency and power efficiency are 1.6 cd A-1 at a current density of 12 mA cm-2 and 0.41 lm W-1 at a current density of 1.6 mA cm-2, which are over 1.6 times higher than that of a noncavity OLED.

  14. Optical properties of single infrared resonant circular microcavities for surface phonon polaritons.

    Science.gov (United States)

    Wang, Tao; Li, Peining; Hauer, Benedikt; Chigrin, Dmitry N; Taubner, Thomas

    2013-11-13

    Plasmonic antennas are crucial components for nano-optics and have been extensively used to enhance sensing, spectroscopy, light emission, photodetection, and others. Recently, there is a trend to search for new plasmonic materials with low intrinsic loss at new plasmon frequencies. As an alternative to metals, polar crystals have a negative real part of permittivity in the Reststrahlen band and support surface phonon polaritons (SPhPs) with weak damping. Here, we experimentally demonstrate the resonance of single circular microcavities in a thin gold film deposited on a silicon carbide (SiC) substrate in the mid-infrared range. Specifically, the negative permittivity of SiC leads to a well-defined, size-tunable SPhP resonance with a Q factor of around 60 which is much higher than those in surface plasmon polariton (SPP) resonators with similar structures. These infrared resonant microcavities provide new possibilities for widespread applications such as enhanced spectroscopy, sensing, coherent thermal emission, and infrared photodetectors among others throughout the infrared frequency range. PMID:24117024

  15. Laser-Machined Microcavities for Simultaneous Measurement of High-Temperature and High-Pressure

    Directory of Open Access Journals (Sweden)

    Zengling Ran

    2014-08-01

    Full Text Available Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  16. Exciton-photon interaction in a quantum dot embedded in a photonic microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Sodagar, Majid; Khoshnegar, Milad; Eftekharian, Amin; Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, PO Box 11365-9363, Tehran (Iran, Islamic Republic of)

    2009-04-28

    We present a detailed analysis of exciton-photon interaction in a microcavity made out of a photonic crystal slab. Here we have analysed a disc-like quantum dot where an exciton is formed. Excitonic eigen functions in addition to their eigen energies are found through direct matrix diagonalization, while wavefunctions corresponding to unbound electron and hole are chosen as the basis set for this procedure. In order to evaluate these wavefunctions precisely, we have used the 6 x 6 Luttinger Hamiltonian in the case of hole while ignoring bands adjacent to the conduction band for electron states. After analysing excitonic states, a photonic crystal-based microcavity with a relatively high quality factor mode has been proposed and its lattice constant has been adjusted to obtain the prescribed resonant frequency. We use a finite-difference time-domain method in order to simulate our cavity with sufficient precision. Finally, we formulate the coupling constants for the exciton-photon interaction both where intra-band and inter-band transitions occur. By evaluating a sample coupling constant, it has been shown that the system can be in a strong-coupling regime and Rabi oscillations can occur.

  17. Exciton-photon interaction in a quantum dot embedded in a photonic microcavity

    International Nuclear Information System (INIS)

    We present a detailed analysis of exciton-photon interaction in a microcavity made out of a photonic crystal slab. Here we have analysed a disc-like quantum dot where an exciton is formed. Excitonic eigen functions in addition to their eigen energies are found through direct matrix diagonalization, while wavefunctions corresponding to unbound electron and hole are chosen as the basis set for this procedure. In order to evaluate these wavefunctions precisely, we have used the 6 x 6 Luttinger Hamiltonian in the case of hole while ignoring bands adjacent to the conduction band for electron states. After analysing excitonic states, a photonic crystal-based microcavity with a relatively high quality factor mode has been proposed and its lattice constant has been adjusted to obtain the prescribed resonant frequency. We use a finite-difference time-domain method in order to simulate our cavity with sufficient precision. Finally, we formulate the coupling constants for the exciton-photon interaction both where intra-band and inter-band transitions occur. By evaluating a sample coupling constant, it has been shown that the system can be in a strong-coupling regime and Rabi oscillations can occur.

  18. Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity

    Science.gov (United States)

    Shen, Bo-Qiang; Yu, Xiao-Chong; Zhi, Yanyan; Wang, Li; Kim, Donghyun; Gong, Qihuang; Xiao, Yun-Feng

    2016-02-01

    Ultrasensitive optical detection of nanometer-scaled particles is highly desirable for applications in early-stage diagnosis of human diseases, environmental monitoring, and homeland security, but remains extremely difficult due to ultralow polarizabilities of small-sized, low-index particles. Optical whispering-gallery-mode microcavities, which can enhance significantly the light-matter interaction, have emerged as promising platforms for label-free detection of nanoscale objects. Different from the conventional whispering-gallery-mode sensing relying on the reactive (i.e., dispersive) interaction, here we propose and demonstrate to detect single lossy nanoparticles using the dissipative interaction in a high-Q toroidal microcavity. In the experiment, detection of single gold nanorods in an aqueous environment is realized by monitoring simultaneously the linewidth change and shift of the cavity mode. The experimental result falls within the theoretical prediction. Remarkably, the reactive and dissipative sensing methods are evaluated by setting the probe wavelength on and off the surface plasmon resonance to tune the absorption of nanorods, which demonstrates clearly the great potential of the dissipative sensing method to detect lossy nanoparticles. Future applications could also combine the dissipative and reactive sensing methods, which may provide better characterizations of nanoparticles.

  19. Fabry-Perot Microcavity Modes in Single GaP/GaNP Core/Shell Nanowires.

    Science.gov (United States)

    Dobrovolsky, Alexander; Stehr, Jan E; Sukrittanon, Supanee; Kuang, Yanjin; Tu, Charles W; Chen, Weimin M; Buyanova, Irina A

    2015-12-16

    Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (μ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry.

  20. SERS-active ZnO/Ag hybrid WGM microcavity for ultrasensitive dopamine detection

    Science.gov (United States)

    Lu, Junfeng; Xu, Chunxiang; Nan, Haiyan; Zhu, Qiuxiang; Qin, Feifei; Manohari, A. Gowri; Wei, Ming; Zhu, Zhu; Shi, Zengliang; Ni, Zhenhua

    2016-08-01

    Dopamine (DA) is a potential neuro modulator in the brain which influences a variety of motivated behaviors and plays a key role in life science. A hybrid ZnO/Ag microcavity based on Whispering Gallery Mode (WGM) effect has been developed for ultrasensitive detection of dopamine. Utilizing this effect of structural cavity mode, a Raman signal of R6G (5 × 10-3 M) detected by this designed surface-enhanced Raman spectroscopy (SERS)-active substrate was enhanced more than 10-fold compared with that of ZnO film/Ag substrate. Also, this hybrid microcavity substrate manifests high SERS sensitivity to rhodamine 6 G and detection limit as low as 10-12 M to DA. The Localized Surface Plasmons of Ag nanoparticles and WGM-enhanced light-matter interaction mainly contribute to the high SERS sensitivity and help to achieve a lower detection limit. This designed SERS-active substrate based on the WGM effect has the potential for detecting neurotransmitters in life science.

  1. Magnetic field interaction of exciton-polaritons in GaInAs quantum well-microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi-Iman, Arash; Schneider, Christian; Fischer, Julian; Amthor, Matthias; Hoefling, Sven; Reitzenstein, Stephan; Kamp, Martin; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg, D-97074 Wuerzburg (Germany)

    2011-07-01

    Polaritons formed by excitons and photons in strongly coupled quantum well (QW) semiconductor microcavities have initiated intensive studies of multiple particle physics in solids during the last decade. Bose-Einstein condensation of these quasi particles and the so-called polariton-lasing represent very interesting physical phenomena investigated in different material systems (Deng et al. 2002, Kasprzak et al. 2006). Since condensation is not feasible in ideal 2D systems, it only occurs in planar cavities if natural or artificial traps are provided. We have studied polariton emission from artificial traps in planar cavities in the presence of external magnetic fields up to 5 T, The work focuses on the interaction of the spin-resolved excitonic component of trapped polaritons due to the Zeeman effect. We report on trap-size dependent Zeeman splittings up to 100 {mu}eV and diamagnetic coefficients up to 0.025 meV/T{sup 2} of exciton-polaritons spatially confined by photonic quantum boxes in a planar single GaInAs QW-microcavity at 5 T. Providing a size variation of the traps ranging from 0.5 to 10 {mu}m on a wide detuning range, quantized polariton modes were observed under non-resonant optical pumping.

  2. Multi-quantum-well microcavity structures for electrical excitation of exciton-polaritons

    Energy Technology Data Exchange (ETDEWEB)

    Lermer, Matthias; Rahimi-Iman, Arash; Schneider, Christian; Hoefling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg (Germany); Kim, Na Young; Yamamoto, Yoshihisa [E.L. Ginzton Laboratory, Stanford University, Stanford, CA (United States)

    2010-07-01

    In semiconductor microcavities strong coupling between quantum-well (QW) excitons and cavity-photons can be realized. In low excitation regime, bosonic quasiparticles, the so called exciton-polaritons, are formed, consisting of half-light/half-matter and exhibit unique properties like stimulated scattering, Bose-Einstein-Condensation and lasing, which have been intensively investigated so far by optical excitation. We have studied planar AlGaAs/AlAs microcavities featuring 1, 4 and 12 GaAs/AlAs QWs and investigated the strong coupling in photoluminescence and reflection for varying temperatures. To amplify the process of stimulated scattering, it is important to enhance the density of polaritons, thus in the presented work we carefully increased the number of QWs in the device. At the same time homogenous pumping of the QWs has to be ensured as it is critical for the purpose of realization of an electrically driven polariton structure. In that way we could achieve a light emitting diode operation in the strong coupling regime, namely a polariton diode. Our results show that the number of GaAs/AlAs QWs in combination with a sophisticated cavity design is of key importance for studies in the field of polaritronics.

  3. Modelling Laser Milling of Microcavities for the Manufacturing of DES with Ensembles

    Directory of Open Access Journals (Sweden)

    Pedro Santos

    2014-01-01

    Full Text Available A set of designed experiments, involving the use of a pulsed Nd:YAG laser system milling 316L Stainless Steel, serve to study the laser-milling process of microcavities in the manufacture of drug-eluting stents (DES. Diameter, depth, and volume error are considered to be optimized as functions of the process parameters, which include laser intensity, pulse frequency, and scanning speed. Two different DES shapes are studied that combine semispheres and cylinders. Process inputs and outputs are defined by considering the process parameters that can be changed under industrial conditions and the industrial requirements of this manufacturing process. In total, 162 different conditions are tested in a process that is modeled with the following state-of-the-art data-mining regression techniques: Support Vector Regression, Ensembles, Artificial Neural Networks, Linear Regression, and Nearest Neighbor Regression. Ensemble regression emerged as the most suitable technique for studying this industrial problem. Specifically, Iterated Bagging ensembles with unpruned model trees outperformed the other methods in the tests. This method can predict the geometrical dimensions of the machined microcavities with relative errors related to the main average value in the range of 3 to 23%, which are considered very accurate predictions, in view of the characteristics of this innovative industrial task.

  4. Photonic lattices in organic microcavities: Bloch states and control of lasing

    Science.gov (United States)

    Mischok, Andreas; Brückner, Robert; Fröb, Hartmut; Lyssenko, Vadim G.; Leo, Karl

    2015-09-01

    Organic microcavities comprising the host:guest emitter system Alq3:DCM offer an interesting playground to experimentally study the dispersion characteristics of laterally patterned microlasers due to the broad emission spectrum and large oscillator strength of the organic dye. By structuring of metallic or dielectric sublayers directly on top of the bottom mirror, we precisely manipulate the mode structure and influence the coherent emission properties of the device. Embedding silver layers into a microcavity leads to an interaction of the optical cavity-state in the organic layer and the neighboring metal which red-shifts the cavity resonance, creating a Tamm-plasmon-polariton state. A patterning of the metal can in turn be exploited to fabricate deep photonic wells of micron-size, efficiently confining light in lateral direction. In periodic arrays of silver wires, we create a Kronig-Penney-like optical potential in the cavity and in turn observe optical Bloch states spanning over several photonic wires. We modify the Kronig-Penney theory to analytically describe the full far-field emission dispersion of our cavities and show the emergence of either zero- , π-, or 2π- phase-locking in the system. By investigating periodic SiO2 patterns, we experimentally observe stimulated emission from the ground and different excited discrete states at room temperature and are able to directly control the laser emission from both extended and confined modes of the photonic wires at room-temperature.

  5. Exciton-polariton in graphene nano-ribbon embedded In semiconductor microcavity

    Science.gov (United States)

    Shojaei, S.; Imannezhad, S.

    2016-03-01

    In this paper, we investigated coupling of confined photons in the semiconductor microcavity consists of Distributed Bragg Reflectors (DBR) (Si3N4/SiO2 and AlAs/Al0.1Ga0.9As) with excitons of gapped Armchair Graphene NanoRibbon (A-GNR) that placed at the maximum of electric field amplitude inside the semiconductor microcavity. Our calculations show that the coupling between GNR's exciton and confined photon modes and appearance of vacuum Rabi splitting (VRS), is possible. By the means of Transfer Matrix Method (TMM) we obtain angle dependent reflectance spectrum and Upper, Lower Polariton Branches (UPB&LPB) for the structure. Clear anticrossing between the neutral exciton and the cavity modes with a splitting of about 3 meV obtained that can be enhanced in double-GNR. While, our calculations certify the formation of graphene based exciton-polariton, propose the enhancement of VRS by optimization of relevant parameters to implement the graphene based cavity polaritons in optoelectronic devices.

  6. Femtosecond laser 3D fabrication of whispering-gallery- mode microcavities

    Institute of Scientific and Technical Information of China (English)

    XU HuaiLiang; SUN HongBo

    2015-01-01

    Whispering-gallery-mode (WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM mi- cro-cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse dura- tion, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femto- second laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional (3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs mi- crocavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-micro- cavity device. Lastly, a summary of this dynamic field with a future perspective is given.

  7. Dynamical Fano-Like Interference between Rabi Oscillations and Coherent Phonons in a Semiconductor Microcavity System

    Science.gov (United States)

    Yoshino, S.; Oohata, G.; Mizoguchi, K.

    2015-10-01

    We report on dynamical interference between short-lived Rabi oscillations and long-lived coherent phonons in CuCl semiconductor microcavities resulting from the coupling between the two oscillations. The Fourier-transformed spectra of the time-domain signals obtained from semiconductor microcavities by using a pump-probe technique show that the intensity of the coherent longitudinal optical phonon of CuCl is enhanced by increasing that of the Rabi oscillation, which indicates that the coherent phonon is driven by the Rabi oscillation through the Fröhlich interaction. Moreover, as the Rabi oscillation frequency decreases upon crossing the phonon frequency, the spectral profile of the coherent phonon changes from a peak to a dip with an asymmetric structure. The continuous wavelet transformation reveals that these peak and dip structures originate from constructive and destructive interference between Rabi oscillations and coherent phonons, respectively. We demonstrate that the asymmetric spectral structures in relation to the frequency detuning are well reproduced by using a classical coupled oscillator model on the basis of dynamical Fano-like interference.

  8. Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells.

    Science.gov (United States)

    Wuchter, Patrick; Saffrich, Rainer; Giselbrecht, Stefan; Nies, Cordula; Lorig, Hanna; Kolb, Stephanie; Ho, Anthony D; Gottwald, Eric

    2016-06-01

    In previous studies human mesenchymal stromal cells (MSCs) maintained the "stemness" of human hematopoietic progenitor cells (HPCs) through direct cell-cell contact in two-dimensional co-culture systems. We establish a three-dimensional (3D) co-culture system based on a custom-made chip, the 3(D)-KITChip, as an in vitro model system of the human hematopoietic stem cell niche. This array of up to 625 microcavities, with 300 μm size in each orientation, was inserted into a microfluidic bioreactor. The microcavities of the 3(D)-KITChip were inoculated with human bone marrow MSCs together with umbilical cord blood HPCs. MSCs used the microcavities as a scaffold to build a complex 3D mesh. HPCs were distributed three-dimensionally inside this MSC network and formed ß-catenin- and N-cadherin-based intercellular junctions to the surrounding MSCs. Using RT(2)-PCR and western blots, we demonstrate that a proportion of HPCs maintained the expression of CD34 throughout a culture period of 14 days. In colony-forming unit assays, the hematopoietic stem cell plasticity remained similar after 14 days of bioreactor co-culture, whereas monolayer co-cultures showed increasing signs of HPC differentiation and loss of stemness. These data support the notion that the 3D microenvironment created within the microcavity array preserves vital stem cell functions of HPCs more efficiently than conventional co-culture systems. PMID:26829941

  9. Two-photon fluorescence excitation using an integrated optical microcavity: a promising tool for biosensing of natural chromophores

    NARCIS (Netherlands)

    Krioukov, Evgueni; Klunder, Dion; Driessen, Alfred; Greve, Jan; Otto, Cees

    2005-01-01

    Application of an integrated optics (IO) microcavity (MC) for evanescent excitation of two-photon excited fluorescence (TPF) is demonstrated. The MC provides a high local intensity, which is required for the TPF, because of resonant enhancement of the intracavity power and a strong two-dimensional c

  10. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Science.gov (United States)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2015-11-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  11. Microheater-integrated silicon coupled photonic crystal microcavities for low-power thermo-optic switching over a wide spectrum

    Science.gov (United States)

    Zhang, Xingyu; Chakravarty, Swapnajit; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T.

    2016-03-01

    We design, fabricate and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and antibonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20dB, an on-off switching power of 18.2mW, a therm-optic tuning efficiency of 0.63nm/mW, a rise time of 14.8μsec and a fall time of 18.5μsec. The measured on-chip loss on the transmission band is as low as 1dB.

  12. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xingyu, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chakravarty, Swapnajit, E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Chen, Ray T., E-mail: xzhang@utexas.edu, E-mail: swapnajit.chakravarty@omegaoptics.com, E-mail: chenrt@austin.utexas.edu [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Omega Optics, Inc., Austin, Texas 78757 (United States)

    2015-11-30

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB.

  13. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    International Nuclear Information System (INIS)

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 μm-long coupled L0-type photonic crystal microcavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystal microcavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystal microcavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 μs, and a fall time of 18.5 μs. The measured on-chip loss on the transmission band is as low as 1 dB

  14. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, S.; McCutcheon, Dara; Dambach, M.;

    We demonstrate the emission of highly indistinguishable photons from a quasiresonantly pumped coupled quantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing the sample temperature allows us to vary the quantum dot–cavity detuning, and on spectral...

  15. Two-photon interference from a quantum dot-microcavity: Persistent pure-dephasing and suppression of time-jitter

    DEFF Research Database (Denmark)

    Unsleber, Sebastian; McCutcheon, Dara; Dambach, Michael;

    2015-01-01

    We demonstrate the emission of highly indistinguishable photons from a quasi-resonantly pumped coupledquantum dot–microcavity system operating in the regime of cavity quantum electrodynamics. Changing thesample temperature allows us to vary the quantum dot–cavity detuning and, on spectral resonance...

  16. Studies on the microstructure, optical and electrical properties of organic microcavity devices based on a porous silicon reflector

    Institute of Scientific and Technical Information of China (English)

    XIONG; Zuhong; FAN; Yongliang; ZHAN; Yiqiang; ZHANG; Song

    2005-01-01

    A novel type of microcavity organic light-emitting diode based on a porous silicon distributed Bragg reflector (PS-DBR) has first been achieved and its microstructure, optical, and electrical properties have also been investigated in detail. The microcavity is made up of the central active organic multilayer sandwiched between a top silver film and a bottom PS-DBR, formed by electrochemical etching of p++-Si substrate. The field- emission scanning electron microscopy cross-section images show the nanometer-scale layered structure and flat interfaces inside the microcavity. The reflectivity (relative to an Al mirror) of the PS-DBR is up to 99%, and the stopband is about 160 nm wide. Resonant cavity mode appears as a tip in the reflectivity spectrum of the Si-based organic multilayer films, which is a symbol that the Si-based organic multilayer structure is indeed a microcavity. The peak widths of the electroluminescence (EL) spectra from the cavities emitting green and red light are greatly reduced from 85 nm and 70 nm to 8 nm and 12 nm, respectively, as compared with those measured from non-cavity structures. Note that the EL emission from the cavity devices is single-mode, and the off-resonant optical modes are highly suppressed. Moreover, increases of a factor of about 6 and 4 of the resonant peak intensity from the cavities emitting green and red light are also observed, respectively. In addition, the current-brightness-voltage characteristics and effect parameters on the lifetime of the cavity devices are also discussed. The present technique for obtaining enhanced EL emission from Si-based organic microcavity may also be another novel effective method for realizing Si-based optoelectronics device integration.

  17. Recent Advances in the Field of Bionanotechnology: An Insight into Optoelectric Bacteriorhodopsin, Quantum Dots, and Noble Metal Nanoclusters

    Directory of Open Access Journals (Sweden)

    Christopher Knoblauch

    2014-10-01

    Full Text Available Molecular sensors and molecular electronics are a major component of a recent research area known as bionanotechnology, which merges biology with nanotechnology. This new class of biosensors and bioelectronics has been a subject of intense research over the past decade and has found application in a wide variety of fields. The unique characteristics of these biomolecular transduction systems has been utilized in applications ranging from solar cells and single-electron transistors (SETs to fluorescent sensors capable of sensitive and selective detection of a wide variety of targets, both organic and inorganic. This review will discuss three major systems in the area of molecular sensors and electronics and their application in unique technological innovations. Firstly, the synthesis of optoelectric bacteriorhodopsin (bR and its application in the field of molecular sensors and electronics will be discussed. Next, this article will discuss recent advances in the synthesis and application of semiconductor quantum dots (QDs. Finally, this article will conclude with a review of the new and exciting field of noble metal nanoclusters and their application in the creation of a new class of fluorescent sensors.

  18. Topological change and impedance spectrum of rat olfactory receptor I7: A comparative analysis with bovine rhodopsin and bacteriorhodopsin

    Science.gov (United States)

    Alfinito, Eleonora; Pennetta, Cecilia; Reggiani, Lino

    2009-04-01

    We present a theoretical investigation on possible selection of olfactory receptors (ORs) as sensing components of nanobiosensors. Accordingly, we generate the impedance spectra of the rat OR I7 in the native and activated states and analyze their differences. In this way, we connect the protein morphological transformation, caused by the sensing action, with its change in electrical impedance. The results are compared with those obtained by studying the best known protein of the G protein coupled receptor (GPCR) family: bovine rhodopsin. Our investigations indicate that a change in morphology goes with a change in impedance spectrum mostly associated with a decrease in the static impedance up to about 60% of the initial value, in qualitative agreement with existing experiments on rat OR I7. The predictiveness of the model is tested successfully for the case of recent experiments on bacteriorhodopsin. The present results point to a promising development of a new class of nanobiosensors based on the electrical properties of GPCR and other sensing proteins.

  19. Application of polymer films based on bacteriorhodopsin and its analogs for low-light-level imaging systems

    Science.gov (United States)

    Korchemskaya, Elena Y.; Soskin, Marat S.; Stepanchikov, Dmitriy A.; Djukova, T. V.; Druzhko, Anna B.; Vsevolodov, Nicolai N.

    1995-03-01

    In recent years polymer films based on bacteriorhodopsin (BR) have attracted a lot of attention in the area of optical imaging systems. The high photosensitivity of these films allows the processing of low-power optical signals (several mW/cm2 CW gas laser irradiation). Spatial resolution does not fall below 5000 lines/mm, photoresponse time is 50 microsecond(s) and images can be recorded and erased over million cycles. Polymer film with BR combine a dynamic recording with optical image processing. The characteristics of anisotropically-saturating nonlinearity of polymer films with BR allow a suppression of the background with greater intensity than usable signal intensity of be performed. Low saturation intensity of the polymer films with BR allows the operation of the polarization of low-intensity signals to be realized. Nonlinear photoresponse of the high photosensitivity BR genetic variant Asp96-Glu is studied in this work too. We hope that the polymer films based on BR and its analogs will find potential use precisely in the medical low- light-level imaging systems.

  20. All-optical switching in bacteriorhodopsin based on M state dynamics and its application to photonic logic gates

    Science.gov (United States)

    Singh, Chandra Pal; Roy, Sukhdev

    2003-03-01

    All-optical switching has been theoretically analyzed in bacteriorhodopsin (bR) based on nonlinear intensity induced excited state absorption of the M state. The transmission of a cw probe laser beam at 410 nm corresponding to the peak absorption of M state through a bR film is switched by a pulsed pump laser beam at 570 nm that corresponds to the maximum initial B state absorption. The switching characteristics have been numerically simulated using the rate equation approach considering all the six intermediate states (B, K, L, M, N and O) in the bR photocycle. The switching characteristics are shown to be sensitive to various parameters such as the pump pulse width, pump intensity, life time of the M state, thickness of the film and absorption cross-section of the B-state at probe wavelength ( σBp). It has been shown that the probe laser beam can be completely switched off (100% modulation) by the pump laser beam at relatively low pump powers, for σBp=0. The switching characteristics have also been used to theoretically design all-optical NOT, OR, AND and the universal NOR and NAND logic gates with two pulsed pump laser beams using the six state model.

  1. Entropic Lattice Boltzmann study of hydrodynamics in a microcavity - Part 1

    Energy Technology Data Exchange (ETDEWEB)

    Karlin, I. V.; Ansumali, S.; Frouzakis, Ch. E.; Boulouchos, K. [Eidgenoessische Technische Hochschule (ETH), Labor fuer Aerothermochemie und Verbrennungssysteme ETHZ, ETH-Zentrum, Zuerich (Switzerland)

    2005-07-01

    This yearly report for 2004 presents a review of work being done on behalf of the Swiss Federal Office of Energy (SFOE) at the Laboratory for Aero-thermochemistry and Combustion Systems at the Federal Institute of Technology ETH in Zurich, Switzerland, on the development of a new approximation method for use in micrometer-scale flow calculations. The method, based on recently-developed so-called minimal entropy-kinetic models of the Boltzmann-kinetic equation, is discussed. Two detailed studies of micro-flows in specific geometries are discussed. The potential of the new method as a replacement for costly microscopic simulation methods is examined. The development and testing of a new thermal model - the so-called Thermal D2Q9 model - is discussed. A second study examined flows in a micro-cavity. A detailed parametric study of the quantitative and qualitative properties of the flows for a comprehensive range of dilution is mentioned.

  2. Estimation of Purcell factor from mode-splitting spectra in an optical microcavity

    CERN Document Server

    Ozdemir, Sahin Kaya; He, Lina; Yang, Lan

    2011-01-01

    We investigate scattering process in an ultra-high-Q optical microcavity coupled to subwavelength scatterers by introducing "splitting quality" Qsp, a dimensionless parameter defined as the ratio of the scatterer-induced mode splitting to the total loss of the coupled system. A simple relation is introduced to directly estimate the Purcell factor from single-shot measurement of transmission spectrum of scatterer-coupled cavity. Experiments with polystyrene (PS) and gold (Au) nanoparticles, Erbium ions and Influenza A virions show that Purcell-factor-enhanced preferential funneling of scattering into the cavity mode takes place regardless of the scatterer type. Experimentally determined highest Qsp for single PS and Au nanoparticles are 9.4 and 16.19 corresponding to Purcell factors with lower bounds of 353 and 1049, respectively. The highest observed Qsp was 31.2 for an ensemble of Au particles. These values are the highest Qsp and Purcell factors reported up to date.

  3. Local Intensity Enhancements in Spherical Microcavities: Implications for Photonic Chemical and Biological Sensors

    Science.gov (United States)

    Fuller, Kirk A.

    2005-01-01

    In this report, we summarize recent findings regarding the use spherical microcavities in the amplification of light that is inelastically scattered by either fluorescent or Raman-active molecules. This discussion will focus on Raman scattering, with the understanding that analogous processes apply to fluorescence. Raman spectra can be generated through the use of a very strong light source that stimulates inelastic light scattering by molecules, with the scattering occurring at wavelengths shifted from that of the source and being most prominent at shifts associated with the molecules natural vibrational frequencies. The Raman signal can be greatly enhanced by exposing a molecule to the intense electric fields that arise near surfaces (typically of gold or silver) exhibiting nanoscale roughness. This is known as surface-enhanced Raman scattering (SERS). SERS typically produces gain factors of 103 - 106, but under special conditions, factors of 1010 - 1014 have been achieved.

  4. Simultaneous measurement of quality factor and wavelength shift by phase shift microcavity ring down spectroscopy

    CERN Document Server

    Cheema, M Imran; Hayat, Ahmad A; Peter, Yves-Alain; Armani, Andrea M; Kirk, Andrew G

    2012-01-01

    Optical resonant microcavities with ultra high quality factors are widely used for biosensing. Until now, the primary method of detection has been based upon tracking the resonant wavelength shift as a function of biological events. One of the sources of noise in all resonant-wavelength shift measurements is the noise due to intensity fluctuations of the laser source. An alternative approach is to track the change in the quality factor of the optical cavity by using phase shift cavity ring down spectroscopy, a technique which is insensitive to the intensity fluctuations of the laser source. Here, using biotinylated microtoroid resonant cavities, we show simultaneous measurement of the quality factor and the wavelength shift by using phase shift cavity ring down spectroscopy. These measurements were performed for disassociation phase of biotin-streptavidin reaction. We found that the disassociation curves are in good agreement with the previously published results. Hence, we demonstrate not only the applicatio...

  5. Looking through the mirror: optical microcavity-mirror image photonic interaction.

    Science.gov (United States)

    Shi, Lei; Xifré-Pérez, E; García de Abajo, F J; Meseguer, F

    2012-05-01

    Although science fiction literature and art portray extraordinary stories of people interacting with their images behind a mirror, we know that they are not real and belong to the realm of fantasy. However, it is well known that charges or magnets near a good electrical conductor experience real attractive or repulsive forces, respectively, originating in the interaction with their images. Here, we show strong interaction between an optical microcavity and its image under external illumination. Specifically, we use silicon nanospheres whose high refractive index makes well-defined optical resonances feasible. The strong interaction produces attractive and repulsive forces depending on incident wavelength, cavity-metal separation and resonance mode symmetry. These intense repulsive photonic forces warrant a new kind of optical levitation that allows us to accurately manipulate small particles, with important consequences for microscopy, optical sensing and control of light by light at the nanoscale. PMID:22565747

  6. A simple method for characterizing and engineering thermal relaxation of an optical microcavity

    Science.gov (United States)

    Chen, Weijian; Zhu, Jiangang; Özdemir, Şahin Kaya; Peng, Bo; Yang, Lan

    2016-08-01

    Thermal properties of a photonic resonator are determined not only by intrinsic properties of materials, such as thermo-optic coefficient, but also by the geometry and structure of the resonator. Techniques for characterization and measurement of thermal properties of individual photonic resonator will benefit numerous applications. In this work, we demonstrate a method to optically measure the thermal relaxation time and effective thermal conductance of a whispering gallery mode microcavity using optothermal effect. Two nearby optical modes within the cavity are optically probed, which allows us to quantify the thermal relaxation process of the cavity by analyzing changes in the transmission spectra induced by optothermal effect. We show that the effective thermal conductance can be experimentally deduced from the thermal relaxation measurement, and it can be tailored by changing the geometric parameters of the cavity. The experimental observations are in good agreement with the proposed analytical modeling. This method can be applied to various resonators in different forms.

  7. Behavior of three modes of decay channels and their self-energies of elliptic dielectric microcavity

    Science.gov (United States)

    Park, Kyu-Won; Kim, Jaewan; Jeong, Kabgyun

    2016-09-01

    The Lamb shift (self-energy) of an elliptic dielectric microcavity is studied. We show that the size of the Lamb shift, which is a small energy shift due to the system-environment coupling in the quantum regime, is dependent on the geometry of the boundary conditions. It shows a global transition depending on the eccentricity of the ellipsis. These transitions can be classified into three types of decay channels known as whispering-gallery modes, stable-bouncing-ball modes, and unstable-bouncing-ball modes. These modes are manifested through the Poincaré surface of section with the Husimi distribution function in classical phase space. It is found that the similarity (measured in Bhattacharyya distance) between the Husimi distributions below critical lines of two different modes increases as the difference of their self-energies decreases when the quality factors of the modes are on the same order of magnitude.

  8. Polarization dependence of nonlinear wave mixing of spinor polaritons in semiconductor microcavities

    CERN Document Server

    Lewandowski, Przemyslaw; Baudin, Emmanuel; Chan, Chris K P; Leung, P T; Luk, Samuel M H; Galopin, Elisabeth; Lemaitre, Aristide; Bloch, Jacqueline; Tignon, Jerome; Roussignol, Philippe; Kwong, N H; Binder, Rolf; Schumacher, Stefan

    2015-01-01

    The pseudo-spin dynamics of propagating exciton-polaritons in semiconductor microcavities are known to be strongly influenced by TE-TM splitting. As a vivid consequence, in the Rayleigh scattering regime, the TE-TM splitting gives rise to the optical spin Hall effect (OSHE). Much less is known about its role in the nonlinear optical regime in which four-wave mixing for example allows the formation of spatial patterns in the polariton density, such that hexagons and two-spot patterns are observable in the far field. Here we present a detailed analysis of spin-dependent four-wave mixing processes, by combining the (linear) physics of TE-TM splitting with spin-dependent nonlinear processes, i.e., exciton-exciton interaction and fermionic phase-space filling. Our combined theoretical and experimental study elucidates the complex physics of the four-wave mixing processes that govern polarization and orientation of off-axis modes.

  9. The quantum features of the photon statistics in a semiconductor microcavity

    Institute of Scientific and Technical Information of China (English)

    Wei Wei

    2006-01-01

    The quantum features of the temporal photon statistics of an exciton-cavity coupled system in a quantum-well semiconductor microcavity are investigated analytically. Under the secular approximation, if the nonlinear interactions, i.e. the exciton-exciton coupling and the phase-space filling, are much weaker than the exciton-photon interaction, the evolution of the Fano factor shows that the distribution of the photon numbers exhibits the feature of collapses-revivals (CRs), and the relevant revival time may be adjusted by several factors such as the total particle number, the detuning, and the nonlinear coupling strengths, etc. Especially, the ideal maximum antibunching with the minimum value 0 of the Fano factor occurs periodically for such a situation, with the dissipation of exciton-polariton being ignored.

  10. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    International Nuclear Information System (INIS)

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  11. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Mazzeo, M., E-mail: marco.mazzeo@unisalento.it [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Genco, A. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); Gambino, S. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy); Ballarini, D.; Mangione, F.; Sanvitto, D. [NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); Di Stefano, O.; Patanè, S.; Savasta, S. [Dipartimento di Fisica e Scienze della Terra, Università di Messina, Viale F. Stagno d' Alcontres 31, 98166 Messina (Italy); Gigli, G. [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via Monteroni, 73100 Lecce (Italy); NNL, Istituto Nanoscienze - CNR, Via Arnesano, 73100 Lecce (Italy); CBN, Istituto Italiano Tecnologia, Via Barsanti 1, 73010 Lecce (Italy)

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  12. Tuning microcavities in thermally rearranged polymer membranes for CO2 capture.

    Science.gov (United States)

    Han, S H; Kwon, H J; Kim, K Y; Seong, J G; Park, C H; Kim, S; Doherty, C M; Thornton, A W; Hill, A J; Lozano, A E; Berchtold, K A; Lee, Y M

    2012-04-01

    Microporous materials have a great importance in catalysis, delivery, storage and separation in terms of their performance and efficiency. Most microporous materials are comprised of inorganic frameworks, while thermally rearranged (TR) polymers are a microporous organic polymer which is tuned to optimize the cavity sizes and distribution for difficult separation applications. The sub-nano sized microcavities are controlled by in situ thermal treatment conditions which have been investigated by positron annihilation lifetime spectroscopy (PALS). The size and relative number of cavities increased from room temperature to 230 °C resulting in improvements in both permeabilities and selectivities for H(2)/CO(2) separation due to the significant increase of gas diffusion and decrease of CO(2) solubility. The highest performance of the well-tuned TR-polymer membrane was 206 Barrer for H(2) permeability and 6.2 of H(2)/CO(2) selectivity, exceeding the polymeric upper bound for gas separation membranes.

  13. Interaction-induced hopping phase in driven-dissipative coupled photonic microcavities

    CERN Document Server

    Rodriguez, S R K; Sagnes, I; Gratiet, L Le; Galopin, E; Lemaitre, A; Bloch, J

    2016-01-01

    Bosons hopping across sites and interacting on-site are the essence of the Bose-Hubbard model (BHM). Inspired by the success of BHM simulators with atoms in optical lattices, proposals for implementing the BHM with photons in coupled nonlinear cavities have emerged. Two coupled semiconductor microcavities constitute a model system where the hopping, interaction, and decay of exciton polaritons --- mixed light-matter quasiparticles --- can be engineered in combination with site-selective coherent driving to implement the driven-dissipative two-site optical BHM. Here we explore the interplay of interference and nonlinearity in this system, in a regime where three distinct density profiles can be observed under identical driving conditions. We demonstrate how the phase acquired by polaritons hopping between cavities can be controlled through effective polariton-polariton interactions. Our results open new perspectives for synthesizing density-dependent gauge fields for polaritons in two-dimensional multicavity s...

  14. Nonreciprocity light propagation in coupled microcavities system beyond weak-excitation approximation

    CERN Document Server

    Zheng, A S; Chen, H; Mei, T; Liu, J

    2016-01-01

    We propose an alternative scheme for nonreciprocal light propagation in two coupled cavities system, in which a two-level quantum emitter is coupled to one of the optical microcavities. For the case of parity-time (\\textrm{PT}) system (i.e., active-passive coupled cavities system), the cavity gain can significantly enhance the optical nonlinearity induced by the interaction between a quantum emitter and cavity field beyond weak-excitation approximation. The giant optical nonlinearity results in the non-lossy nonreciprocal light propagation with high isolation ratio in proper parameters range. In addition, our calculations show that nonreciprocal light propagation will not be affected by the unstable output field intensity caused by optical bistability and we can even switch directions of nonreciprocal light propagation by appropriately adjusting the system parameters.

  15. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform.

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W; Werner, Carsten; Pompe, Tilo

    2016-01-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin. PMID:27535453

  16. Room temperature strong coupling effects from single ZnO nanowire microcavity

    KAUST Repository

    Das, Ayan

    2012-05-01

    Strong coupling effects in a dielectric microcavity with a single ZnO nanowire embedded in it have been investigated at room temperature. A large Rabi splitting of ?100 meV is obtained from the polariton dispersion and a non-linearity in the polariton emission characteristics is observed at room temperature with a low threshold of 1.63 ?J/cm2, which corresponds to a polariton density an order of magnitude smaller than that for the Mott transition. The momentum distribution of the lower polaritons shows evidence of dynamic condensation and the absence of a relaxation bottleneck. The polariton relaxation dynamics were investigated by timeresolved measurements, which showed a progressive decrease in the polariton relaxation time with increase in polariton density. © 2012 Optical Society of America.

  17. Parallel Photonic Quantum Computation Assisted by Quantum Dots in One-Side Optical Microcavities

    Science.gov (United States)

    Luo, Ming-Xing; Wang, Xiaojun

    2014-07-01

    Universal quantum logic gates are important elements for a quantum computer. In contrast to previous constructions on one degree of freedom (DOF) of quantum systems, we investigate the possibility of parallel quantum computations dependent on two DOFs of photon systems. We construct deterministic hyper-controlled-not (hyper-CNOT) gates operating on the spatial-mode and the polarization DOFs of two-photon or one-photon systems by exploring the giant optical circular birefringence induced by quantum-dot spins in one-sided optical microcavities. These hyper-CNOT gates show that the quantum states of two DOFs can be viewed as independent qubits without requiring auxiliary DOFs in theory. This result can reduce the quantum resources by half for quantum applications with large qubit systems, such as the quantum Shor algorithm.

  18. Fast two-qubit gates for quantum computing in semiconductor quantum dots using a photonic microcavity

    Science.gov (United States)

    Solenov, Dmitry; Economou, Sophia E.; Reinecke, T. L.

    2013-01-01

    Implementations for quantum computing require fast single- and multiqubit quantum gate operations. In the case of optically controlled quantum dot qubits, theoretical designs for long-range two- or multiqubit operations satisfying all the requirements in quantum computing are not yet available. We have developed a design for a fast, long-range two-qubit gate mediated by a photonic microcavity mode using excited states of the quantum-dot-cavity system that addresses these needs. This design does not require identical qubits, it is compatible with available optically induced single-qubit operations, and it advances opportunities for scalable architectures. We show that the gate fidelity can exceed 90% in experimentally accessible systems.

  19. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jun; Wang, Yafeng; Hu, Tao; Wu, Lin; Shen, Xuechu; Chen, Zhanghai, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Cao, Runan; Xu, Fei [Department of Physics, Shanghai University, Shanghai 200444 (China); Da, Peimei; Zheng, Gengfeng [Laboratory of Advanced Materials, Department of Chemistry, Fudan University, Shanghai 200433 (China); Lu, Jian, E-mail: lujian@fudan.edu.cn, E-mail: zhanghai@fudan.edu.cn [State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Fudan University, Shanghai 200433 (China); Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210 (China)

    2016-01-11

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources.

  20. Distinguishing autocrine and paracrine signals in hematopoietic stem cell culture using a biofunctional microcavity platform

    Science.gov (United States)

    Müller, Eike; Wang, Weijia; Qiao, Wenlian; Bornhäuser, Martin; Zandstra, Peter W.; Werner, Carsten; Pompe, Tilo

    2016-08-01

    Homeostasis of hematopoietic stem cells (HSC) in the mammalian bone marrow stem cell niche is regulated by signals of the local microenvironment. Besides juxtacrine, endocrine and metabolic cues, paracrine and autocrine signals are involved in controlling quiescence, proliferation and differentiation of HSC with strong implications on expansion and differentiation ex vivo as well as in vivo transplantation. Towards this aim, a cell culture analysis on a polymer microcavity carrier platform was combined with a partial least square analysis of a mechanistic model of cell proliferation. We could demonstrate the discrimination of specific autocrine and paracrine signals from soluble factors as stimulating and inhibitory effectors in hematopoietic stem and progenitor cell culture. From that we hypothesize autocrine signals to be predominantly involved in maintaining the quiescent state of HSC in single-cell niches and advocate our analysis platform as an unprecedented option for untangling convoluted signaling mechanisms in complex cell systems being it of juxtacrine, paracrine or autocrine origin.

  1. Purcell effect in an organic-inorganic halide perovskite semiconductor microcavity system

    International Nuclear Information System (INIS)

    Organic-inorganic halide perovskite semiconductors with the attractive physics properties, including strong photoluminescence (PL), huge oscillator strengths, and low nonradiative recombination losses, are ideal candidates for studying the light-matter interaction in nanostructures. Here, we demonstrate the coupling of the exciton state and the cavity mode in the lead halide perovskite microcavity system at room temperature. The Purcell effect in the coupling system is clearly observed by using angle-resolved photoluminescence spectra. Kinetic analysis based on time-resolved PL reveals that the spontaneous emission rate of the halide perovskite semiconductor is significantly enhanced at resonance of the exciton energy and the cavity mode. Our results provide the way for developing electrically driven organic polariton lasers, optical devices, and on-chip coherent quantum light sources

  2. Dissipative optomechanics of a single-layer graphene in a microcavity

    CERN Document Server

    Xiao, Lin-Da; Liu, Yong-Chun; Yan, Meng-Yuan; Xiao, Yun-Feng

    2014-01-01

    We study the optomechanical coupling of a single-layer graphene with a high-Q Fabry-P?erot microcavity in the membrane-in-the-middle configuration. In ordinary dissipative coupling systems, mechanical oscillators modulate the loss associated with the input coupling of the cavity mode; while in our system, the graphene oscillator couples dissipatively with the cavity mode through modulating its absorption loss. By analyzing the effects of the interband transition of a graphene suspended near the node of the cavity field, we obtain strong and tunable dissipative coupling without excessively reducing the optical quality factor. Finally, it is found that the exural mode of the graphene could be cooled down to its ground state in the present coupling system. This study provides new insights for graphene optomechanics in the visible range.

  3. A fiber inclinometer using a fiber microtaper with an air-gap microcavity fiber interferometer

    Science.gov (United States)

    Feng, Zhongyao; Gang, Tingting; Hu, Manli; Qiao, Xueguang; Liu, Nan; Rong, Qiangzhou

    2016-04-01

    A micro-inclinometer is proposed and demonstrated experimentally; the device consists of a micro-fiber taper followed by an air-gap microcavity. A part of the core mode can couple to cladding modes via the taper. These cladding modes and residual core modes transmitted to downstream of the Fabry-Perot (FP) interferometer. A fraction of these modes are reflected back to the SMF by two surfaces of the FP cavity and eventually recoupled to the leading-in SMF, resulting in a well-defined interference spectrum. The fringe contrast of the interferometer is highly sensitive to fiber bending with direction-independence and thus is capable of measuring tilt angles in high resolution. In addition, the interference wavelength always remains unchanged during the fiber bending.

  4. Highly Sensitive On-Chip Magnetometer with Saturable Absorbers in Two-Color Microcavities

    CERN Document Server

    Gazzano, O

    2016-01-01

    Interacting resonators can lead to strong non-linearities but the details can be complicated to predict. In this work, we study the non-linearities introduced by two nested microcavities that interact with nitrogen vacancy centers in a diamond waveguide. Each cavity has differently designed resonance; one in the green and one in the infrared. The magnetic-field dependence of the nitrogen vacancy center absorption rates on the green and the recently observed infrared transitions allows us to propose a scalable on-chip magnetometer that combines high magnetic-field sensitivity and micrometer spatial resolution. By investigating the system behaviors over several intrinsic and extrinsic parameters, we explain the main non-linearities induced by the NV centers and enhanced by the cavities. We finally show that the cavities can improve the magnetic-field sensitivity by up to two orders of magnitudes.

  5. Transverse-mode coupling and diffraction loss in tunable Fabry-P\\'erot microcavities

    CERN Document Server

    Benedikter, Julia; Mader, Matthias; Schlederer, Benedikt; Reichel, Jakob; Hänsch, Theodor W; Hunger, David

    2015-01-01

    We report on measurements and modeling of the mode structure of tunable Fabry-P\\'erot optical microcavities with imperfect mirrors. We find that non-spherical mirror shape and finite mirror size lead to loss, mode deformation, and shifted resonance frequencies at particular mirror separations. For small mirror diameters, the useful cavity length is limited to values significantly below the expected stability range. We explain the observations by resonant coupling between different transverse modes of the cavity and mode-dependent diffraction loss. A model based on resonant state expansion that takes into account the measured mirror profile can reproduce the measurements and identify the parameter regime where detrimental effects of mode mixing are avoided.

  6. Mass and Momentum Transport in Microcavities for Diffusion-Dominant Cell Culture Applications

    Science.gov (United States)

    Yew, Alvin G.; Pinero, Daniel; Hsieh, Adam H.; Atencia, Javier

    2012-01-01

    For the informed design of microfluidic devices, it is important to understand transport phenomena at the microscale. This letter outlines an analytically-driven approach to the design of rectangular microcavities extending perpendicular to a perfusion microchannel for microfluidic cell culture devices. We present equations to estimate the spatial transition from advection- to diffusion-dominant transport inside cavities as a function of the geometry and flow conditions. We also estimate the time required for molecules, such as nutrients or drugs to travel from the microchannel to a given depth into the cavity. These analytical predictions can facilitate the rational design of microfluidic devices to optimize and maintain long-term, physiologically-based culture conditions with low fluid shear stress.

  7. Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    Science.gov (United States)

    Altmann, E. G.; DelMagno, G.; Hentschel, M.

    2008-10-01

    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.

  8. Non-Hamiltonian dynamics in optical microcavities resulting from wave-inspired corrections to geometric optics

    CERN Document Server

    Altmann, Eduardo G; Hentschel, Martina

    2008-01-01

    We introduce and investigate billiard systems with an adjusted ray dynamics that accounts for modifications of the conventional reflection of rays due to universal wave effects. We show that even small modifications of the specular reflection law have dramatic consequences on the phase space of classical billiards. These include the creation of regions of non-Hamiltonian dynamics, the breakdown of symmetries, and changes in the stability and morphology of periodic orbits. Focusing on optical microcavities, we show that our adjusted dynamics provides the missing ray counterpart to previously observed wave phenomena and we describe how to observe its signatures in experiments. Our findings also apply to acoustic and ultrasound waves and are important in all situations where wavelengths are comparable to system sizes, an increasingly likely situation considering the systematic reduction of the size of electronic and photonic devices.

  9. Experimental Test of Fractal Weyl Law in a High-Q Asymmetric Optical Microcavity

    CERN Document Server

    Wang, Li; Li, Ze-Yang; Jiang, Xue-Feng; Gong, Qihuang; Xiao, Yun-Feng

    2015-01-01

    We experimentally test the fractal Weyl law by counting whispering-gallery modes (WGMs) in the transmission spectrum of a deformed microcavity, as a function of the openness of the system. These high-Q WGMs are excited indirectly but efficiently by a laser beam via dynamical tunneling, and provide information on the number of chaotic states that live inside the cavity, while the openness is controlled by varying the size of a high-index silicon pillar underneath the low-index silica microtoroid. A fractal Weyl law describing the number of quasibound chaotic states well captures our data, whereas we find significant deviations from a Random-Matrix-Theory-based prediction, which is ascribed to the ballistic decay of the rays occurring within Ehrenfest time.

  10. Generation of Antibunched Light by Excited Molecules in a Microcavity Trap

    Science.gov (United States)

    DeMartini, F.; DiGiuseppe, G.; Marrocco, M.

    1996-01-01

    The active microcavity is adopted as an efficient source of non-classical light. By this device, excited by a mode-locked laser at a rate of 100 MHz, single-photons are generated over a single field mode with a nonclassical sub-poissonian distribution. The process of adiabatic recycling within a multi-step Franck-Condon molecular optical-pumping mechanism, characterized in our case by a quantum efficiency very close to one, implies a pump self-regularization process leading to a striking n-squeezing effect. By a replication of the basic single-atom excitation process a beam of quantum photon (Fock states) can be created. The new process represents a significant advance in the modern fields of basic quantum-mechanical investigation, quantum communication and quantum cryptography.

  11. Chaos-induced transparency in an ultrahigh-Q optical microcavity

    CERN Document Server

    Xiao, Yun-Feng; Yang, Qi-Fan; Wang, Li; Shi, Kebin; Li, Yan; Gong, Qihuang

    2012-01-01

    We demonstrate experimentally a new form of induced transparency, i.e., chaos-induced transparency, in a slightly deformed microcavity which support both continuous chaotic modes and discrete regular modes with Q factors exceeding 3X?10^7. When excited by a focused laser beam, the induced transparency in the transmission spectrum originates from the destructive interference of two parallel optical pathways: (i) directly refractive excitation of the chaotic modes, and (ii) excitation of the ultra-high-Q regular mode via chaos-assisted dynamical tunneling mechanism coupling back to the chaotic modes. By controlling the focal position of the laser beam, the induced transparency experiences a highly tunable Fano-like asymmetric lineshape. The experimental results are modeled by a quantum scattering theory and show excellent agreement. This chaos-induced transparency is accompanied by extremely steep normal dispersion, and may open up new possibilities a dramatic slow light behavior and a significant enhancement o...

  12. What is- and what is not- Electromagnetically-Induced-Transparency in Whispering-Gallery-Microcavities

    CERN Document Server

    Peng, Bo; Chen, Weijian; Nori, Franco; Yang, Lan

    2014-01-01

    Electromagnetically-induced-transparency (EIT) and Autler-Townes splitting (ATS) are two prominent examples of coherent interactions between optical fields and multilevel atoms. They have been observed in various physical systems involving atoms, molecules, meta-structures and plasmons. In recent years, there has been an increasing interest in the implementations of all-optical analogues of EIT and ATS via the interacting resonant modes of one or more optical microcavities. Despite the differences in their underlying physics, both EIT and ATS are quantified by the appearance of a transparency window in the absorption or transmission spectrum, which often leads to a confusion about its origin. While in EIT the transparency window is a result of Fano interference among different transition pathways, in ATS it is the result of strong field-driven interactions leading to the splitting of energy levels. Being able to tell objectively whether a transparency window observed in the spectrum is due to EIT or ATS is cr...

  13. Thermomagnetic writing into magnetophotonic microcavities controlling thermal diffusion for volumetric magnetic holography.

    Science.gov (United States)

    Isogai, Ryosuke; Nakamura, Yuichi; Takagi, Hiroyuki; Goto, Taichi; Lim, Pang Boey; Inoue, Mitsuteru

    2016-01-11

    Holographic memory is expected to become a high-capacity data storage. Magnetic volumetric holograms are rewritable holograms that are recorded as magnetization directions through thermomagnetic recording. However, the effective depth of magnetic holograms is limited by thermal diffusion that causes merging of magnetic fringes. In this study, we propose the insertion of heat-sink layers (HSLs) for retaining well-defined magnetic fringes during volumetric writing. Magnetophotonic microcavity media were used for demonstrating the HSL effect, and the structural design principle was established in numerical calculations. The results indicate that deep and clear magnetic fringes and an improvement in the diffraction efficiency can be achieved by the insertion of HSLs. PMID:26832282

  14. Strong coupling and stimulated emission in single parabolic quantum well microcavity for terahertz cascade

    Energy Technology Data Exchange (ETDEWEB)

    Tzimis, A.; Savvidis, P. G. [Department of Materials Science and Technology, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Trifonov, A. V.; Ignatiev, I. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); Christmann, G.; Tsintzos, S. I. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Hatzopoulos, Z. [Institute of Electronic Structure and Laser, Foundation for Research and Technology - Hellas, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Kavokin, A. V. [Spin Optics Laboratory, State University of Saint-Petersburg, 1 Ulianovskaya, 198504 St. Petersburg (Russian Federation); School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-09-07

    We report observation of strong light-matter coupling in an AlGaAs microcavity (MC) with an embedded single parabolic quantum well. The parabolic potential is achieved by varying aluminum concentration along the growth direction providing equally spaced energy levels, as confirmed by Brewster angle reflectivity from a reference sample without MC. It acts as an active region of the structure which potentially allows cascaded emission of terahertz (THz) light. Spectrally and time resolved pump-probe spectroscopy reveals characteristic quantum beats whose frequencies range from 0.9 to 4.5 THz, corresponding to energy separation between relevant excitonic levels. The structure exhibits strong stimulated nonlinear emission with simultaneous transition to weak coupling regime. The present study highlights the potential of such devices for creating cascaded relaxation of bosons, which could be utilized for THz emission.

  15. Morbus Coats

    Science.gov (United States)

    Förl, B.; Schmack, I.; Grossniklaus, H.E.; Rohrschneider, K.

    2010-01-01

    Der fortgeschrittene Morbus Coats stellt im Kleinkindalter eine der schwierigsten Differenzialdiagnosen zum Retinoblastom dar. Wir beschreiben die klinischen und histologischen Befunde zweier Jungen im Alter von 9 und 21 Monaten mit einseitiger Leukokorie. Trotz umfassender Diagnostik mittels Narkoseuntersuchung, MRT und Ultraschall konnte ein Retinoblastom nicht sicher ausgeschlossen werden, und es erfolgte eine Enukleation. Histologisch wurde die Diagnose eines Morbus Coats gesichert. Da eine differenzialdiagnostische Abgrenzung zwischen Morbus Coats und Retinoblastom schwierig sein kann, halten wir in zweifelhaften Fällen auch angesichts der eingeschränkten Visusprognose und potenzieller Sekundärkomplikationen beim fortgeschrittenen Morbus Coats eine Enukleation für indiziert. PMID:18299842

  16. Mono- to few-layered graphene oxide embedded randomness assisted microcavity amplified spontaneous emission source

    Science.gov (United States)

    Das, Pratyusha; Maiti, Rishi; Barman, Prahalad K.; Ray, Samit K.; Shivakiran, Bhaktha B. N.

    2016-02-01

    The realization of optoelectronic devices using two-dimensional materials such as graphene and its intermediate product graphene oxide (GO) is extremely challenging owing to the zero band gap of the former. Here, a novel amplified spontaneous emission (ASE) system based on a GO-embedded all-dielectric one-dimensional photonic crystal (1DPhC) micro-resonator is presented. The mono- to few-layered GO sheet is inserted within a microcavity formed by two 5-bilayered SiO2/SnO2 Bragg reflectors. Significantly enhanced photoluminescence (PL) emission of GO embedded in 1DPhC is explicated by studying the electric field confined within the micro-resonator using the transfer matrix method. The inherent randomness, due to fabrication limitations, in the on-average periodic 1DPhC is exploited to further enhance the PL of the optically active micro-resonator. The 1DPhC and randomness assisted field confinement reduces the ASE threshold of the mono- to few-layered weak emitter making the realization of an ASE source feasible. Consequently, ASE at the microcavity resonance and at the low-frequency band-edge of photonic stop-band is demonstrated. Variation of the detection angle from 5° to 30°, with respect to the sample surface normal allows reallocation of the defect mode ASE peak over a spectral range of 558-542 nm, making the GO-incorporated 1DPhC a novel and attractive system for integrated optic applications.

  17. Vertical Single-Crystalline Organic Nanowires on Graphene: Solution-Phase Epitaxy and Optical Microcavities.

    Science.gov (United States)

    Zheng, Jian-Yao; Xu, Hongjun; Wang, Jing Jing; Winters, Sinéad; Motta, Carlo; Karademir, Ertuğrul; Zhu, Weigang; Varrla, Eswaraiah; Duesberg, Georg S; Sanvito, Stefano; Hu, Wenping; Donegan, John F

    2016-08-10

    Vertically aligned nanowires (NWs) of single crystal semiconductors have attracted a great deal of interest in the past few years. They have strong potential to be used in device structures with high density and with intriguing optoelectronic properties. However, fabricating such nanowire structures using organic semiconducting materials remains technically challenging. Here we report a simple procedure for the synthesis of crystalline 9,10-bis(phenylethynyl) anthracene (BPEA) NWs on a graphene surface utilizing a solution-phase van der Waals (vdW) epitaxial strategy. The wires are found to grow preferentially in a vertical direction on the surface of graphene. Structural characterization and first-principles ab initio simulations were performed to investigate the epitaxial growth and the molecular orientation of the BPEA molecules on graphene was studied, revealing the role of interactions at the graphene-BPEA interface in determining the molecular orientation. These free-standing NWs showed not only efficient optical waveguiding with low loss along the NW but also confinement of light between the two end facets of the NW forming a microcavity Fabry-Pérot resonator. From an analysis of the optical dispersion within such NW microcavities, we observed strong slowing of the waveguided light with a group velocity reduced to one-tenth the speed of light. Applications of the vertical single-crystalline organic NWs grown on graphene will benefit from a combination of the unique electronic properties and flexibility of graphene and the tunable optical and electronic properties of organic NWs. Therefore, these vertical organic NW arrays on graphene offer the potential for realizing future on-chip light sources. PMID:27438189

  18. Weak-microcavity organic light-emitting diodes with improved light-extraction and wide viewing-angle

    Science.gov (United States)

    Cho, Sang-Hwan; Lee, Yong-Hee; Song, Young-Woo; Kim, Yoon-Chang; Lee, Joon-Gu; Lee, Jong Hyuk; Hwang, Kyu Hwan; Zang, Dong-Sik

    2009-02-01

    We propose and demonstrate weak-microcavity organic light-emitting diode (OLED) displays that deliver both a high light-extraction efficiency and wide viewing-angle characteristics. A single pair of low- and high-index layers is inserted between indium tin oxide (ITO) and a glass substrate. The electroluminescent (EL) efficiencies of discrete red, green, and blue weak-microcavity OLEDs (WMOLEDs) are enhanced by 56%, 107%, and 26%, respectively with minimal changes viewing angle and EL spectra characteristics. The color purity is also improved for all three colors. Moreover, we fabricated full-color 128×160 passive-matrix bottom-emitting WMOLED displays to prove their manufacturability. This design is realized by simple one-step 20-nm etching of the low-index layer of red/green subpixels. The EL efficiency of white color in the WMOLED display is 27% higher than that of a conventional OLED display.

  19. Substantial enhancement of red emission intensity by embedding Eu-doped GaN into a microcavity

    Directory of Open Access Journals (Sweden)

    Tomohiro Inaba

    2016-04-01

    Full Text Available We investigate resonantly excited photoluminescence from a Eu,O-codoped GaN layer embedded into a microcavity, consisting of an AlGaN/GaN distributed Bragg reflector and a Ag reflecting mirror. The microcavity is responsible for a 18.6-fold increase of the Eu emission intensity at ∼10K, and a 21-fold increase at room temperature. We systematically investigate the origin of this enhancement, and we conclude that it is due to the combination of several effects including, the lifetime shortening of the Eu emission, the strain-induced piezoelectric effect, and the increased extraction and excitation field efficiencies. This study paves the way for an alternative method to enhance the photoluminescence intensity in rare-earth doped semiconductor structures.

  20. Localized surface plasmon enhanced emission of organic light emitting diode coupled to DBR-cathode microcavity by using silver nanoclusters.

    Science.gov (United States)

    Khadir, Samira; Chakaroun, Mahmoud; Belkhir, Abderrahmane; Fischer, Alexis; Lamrous, Omar; Boudrioua, Azzedine

    2015-09-01

    In this work, we aim to increase the emission of the standard guest-host organic light emitting diode (OLED) thanks to localized surface plasmon and to investigate this effect in a microcavity. As a first step, we consider thermal deposition of silver clusters within an OLED guest-host stack. We investigate both the influence of the size of silver nanoparticles (Ag-NPs) and their position within the OLED heterostructure. Secondly, we study the optimized OLED within a microcavity formed by Al-cathode top mirror and a Distributed Bragg Reflector (DBR) bottom mirror. The experimental results show a substantial enhancement of the electroluminescence (EL) intensity as well as a reduction of the spectral width at a half maximum.

  1. Enhancement of the blue photoluminescence intensity for the porous silicon with HfO2 filling into microcavities.

    Science.gov (United States)

    Jiang, Ran; Du, Xianghao; Sun, Weideng; Han, Zuyin; Wu, Zhengran

    2015-01-01

    With HfO2 filled into the microcavities of the porous single-crystal silicon, the blue photoluminescence was greatly enhanced at room temperature. On one hand, HfO2 contributes to the light emission with the transitions of the defect levels for oxygen vacancy. On the other hand, the special filling-into-microcavities structure of HfO2 leads to the presence of ferroelectricity, which greatly enhances the blue emission from porous silicon. Since both HfO2 and Si are highly compatible with Si-based electronic industry, combined the low-cost and convenient process, the HfO2-filled porous Si shows a promising application prospect. PMID:26503804

  2. Interplay between tightly focused excitation and ballistic propagation of polariton condensates in a ZnO microcavity

    Science.gov (United States)

    Hahe, R.; Brimont, C.; Valvin, P.; Guillet, T.; Li, F.; Leroux, M.; Zuniga-Perez, J.; Lafosse, X.; Patriarche, G.; Bouchoule, S.

    2015-12-01

    The formation and propagation of a polariton condensate under tightly focused excitation is investigated in a ZnO microcavity both experimentally and theoretically. Two-dimensional (2D) near-field and far-field images of the condensate are measured under quasicontinuous nonresonant excitation. The corresponding spatial profiles are compared to a model based on the Gross-Pitaevskii equation under cylindrical geometry. This paper allows one to connect the experiments performed with a small excitation laser spot and the previous kinetic models of condensation in a 2D infinite microcavity and to determine the relevant parameters of both the interaction and the relaxation between the reservoir and the condensate. Two main parameters are identified: The exciton-photon detuning through the polariton effective mass and the temperature, which determines the efficiency of the relaxation from the reservoir to the condensate.

  3. Feedback control of ultra-high-Q microcavities: application to micro-Raman lasers and microparametric oscillators

    OpenAIRE

    Carmon, Tal; Kippenberg, Tobias J.; Yang, Lan; Rokhsari, Hosein; Spillane, Sean; Vahala, Kerry J.

    2005-01-01

    We demonstrate locking of an on-chip, high-Q toroidal-cavity to a pump laser using two, distinct methods: coupled power stabilization and wavelength locking of pump laser to the microcavity. In addition to improvements in operation of previously demonstrated micro-Raman and micro-OPO lasers, these techniques have enabled observation of a continuous, cascaded nonlinear process in which photons generated by optical parametric oscillations (OPO) function as a pump for Raman lasing. Dynamical beh...

  4. Impact of biexcitons on the relaxation mechanisms of polaritons in III-nitride based multiple quantum well microcavities

    OpenAIRE

    Corfdir, P.; Levrat, J.; Rossbach, G; Butte, R.; Feltin, E.; Carlin, J.-F.; Christmann, G.; Lefebvre, P.; Ganiere, J. -D.; Grandjean, N.; Deveaud-Pledran, B.

    2012-01-01

    We report on the direct observation of biexcitons in a III-nitride based multiple quantum well microcavity operating in the strong light-matter coupling regime by means of nonresonant continuous wave and time-resolved photoluminescence at low temperature. First, the biexciton dynamics is investigated for the bare active medium (multiple quantum wells alone) evidencing localization on potential fluctuations due to alloy disorder and thermalization between both localized and free excitonic and ...

  5. Effect of patterned coupled optical micro-cavities in twodimensional Si-ZnO hybrid photonic structure

    International Nuclear Information System (INIS)

    The optical characterization of the Si-ZnO hybrid photonic device fabricated and studied in this work revealed its ability to selectively enhance the reflectance on specific wavelengths in the border of VIS-NIR range. This ability was attributed to the coupling of the embedded micro-cavities in the photonic crystal. The results found suggest the presence of a photonic band gap around the border of VIS-NIR range in the hybrid photonic structure studied

  6. Polariton condensation phase diagram in wide-band-gap planar microcavities: GaN versus ZnO

    Science.gov (United States)

    Jamadi, O.; Réveret, F.; Mallet, E.; Disseix, P.; Médard, F.; Mihailovic, M.; Solnyshkov, D.; Malpuech, G.; Leymarie, J.; Lafosse, X.; Bouchoule, S.; Li, F.; Leroux, M.; Semond, F.; Zuniga-Perez, J.

    2016-03-01

    The polariton condensation phase diagram is compared in GaN and ZnO microcavities grown on mesa-patterned silicon substrate. Owing to a common platform, these microcavities share similar photonic properties with large quality factors and low photonic disorder, which makes it possible to determine the optimal spot diameter and to realize a thorough phase diagram study. Both systems have been investigated under the same experimental conditions. The experimental results and the subsequent analysis reveal clearly that longitudinal optical phonons have no influence in the thermodynamic region of the condensation phase diagram, while they allow a strong (slight) decrease of the polariton lasing threshold in the trade-off zone (kinetic region). Phase diagrams are compared with numerical simulations using Boltzmann equations, and are in satisfactory agreement. A lower polariton lasing threshold has been measured at low temperature in the ZnO microcavity, as is expected due to a larger Rabi splitting. This study highlights polariton relaxation mechanisms and their importance in polariton lasing.

  7. A dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled with a waveguide system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Boyun; Wang, Tao, E-mail: wangtao@hust.edu.cn; Tang, Jian; Li, Xiaoming; Zhu, Youjiang [Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-07

    We theoretically propose a dynamic and ultrafast group delay tuning mechanism in two microcavities side-coupled to a waveguide system through external optical pump beams. The optical Kerr effect modulation method is applied to improve tuning rate with response time of subpicoseconds or even femtoseconds. The group delay of an all-optical analog to electromagnetically induced transparency effect can be controlled by tuning either the frequency of photonic crystal microcavities or the propagation phase of line waveguide. Group delay is controlled between 5.88 and 70.98 ps by dynamically tuning resonant frequencies of the microcavities. Alternatively, the group delay is controlled between 1.86 and 12.08 ps by dynamically tuning the propagation phase of line waveguide. All observed schemes are analyzed rigorously through finite-difference time-domain simulations and coupled-mode formalism. Results show a new direction toward microstructure integration optical pulse trapping and all-optical dynamical storage of light devices in optical communication and quantum information processing.

  8. Electrically-driven AlGaAs/AlAs quantum well-microcavities for exciton-polariton studies

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi-Iman, Arash; Lermer, Matthias; Schneider, Christian; Hoefling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred [Technische Physik, Universitaet Wuerzburg (Germany); Kim, Na Young; Yamamoto, Yoshihisa [Ginzton Laboratory, Stanford University, CA (United States)

    2010-07-01

    In a semiconductor microcavity with embedded quantum wells (QWs) new eigenmodes are formed called the polaritons when the confined cavity photon modes strongly couple to the QW excitons. Cavity polaritons and their ability to undergo Bose-Einstein condensation have been intensively studied in the last decade, mainly in the optical pumping regime. Very recently, also electrically driven polariton systems for further studies and future applications have been brought into focus. Doped microcavity structures with p-i-n-diode type design have proven as appropriate systems for current injection into the active region of the cavity. We have realized and studied electrically contacted AlGaAs/AlAs microcavities containing 4 GaAs QWs in a {lambda}/2 AlAs cavity sandwiched between an n-doped lower and an p-doped upper distributed Bragg reflector. For the planar sample structure, we observed strong coupling associated with a Rabi-splitting of {approx}10 meV in photo- as well as electroluminescence. We report on angularly resolved studies on polariton emission under both optical and electrical excitation. The respective data will be compared with results obtained from polariton LEDs based on InGaAs QWs.

  9. Sprayed coatings

    Science.gov (United States)

    Steffens, H. D.

    1980-03-01

    Thermal spraying is shown to be an efficient means for the protection of surface areas against elevated temperature, wear, corrosion, hot gas corrosion, and erosion in structural aircraft components. Particularly in jet engines, numerous parts are coated by flame, detonation, or plasma spraying techniques. The applied methods of flame, detonation, and plasma spraying are explained, as well as electric arc spraying. Possibilities for spray coatings which meet aircraft service requirements are discussed, as well as methods for quality control, especially nondestructive test methods. In particular, coating characteristics and properties obtained by different spray methods are described, and special attention is paid to low pressure plasma spraying.

  10. pH-Sensitive photoinduced energy transfer from bacteriorhodopsin to single-walled carbon nanotubes in SWNT-bR hybrids.

    Science.gov (United States)

    El Hadj, Karim; Bertoncini, Patricia; Chauvet, Olivier

    2013-10-22

    Energy transfer mechanisms in noncovalently bound bacteriorhodopsin/single-walled carbon nanotube (SWNT) hybrids are investigated using optical absorption and photoluminescence excitation measurements. The morphology of the hybrids was investigated by atomic force microscopy. In this study, proteins are immobilized onto the sidewall of the carbon nanotubes using a sodium cholate suspension-dialysis method that maintains the intrinsic optical and fluorescence properties of both molecules. The hybrids are stable in aqueous solutions for pH ranging from 4.2 to 9 and exhibit photoluminescence properties that are pH-dependent. The study reveals that energy transfer from bacteriorhodopsin to carbon nanotubes takes place. So, at pH higher than 5 and up to 9, the SWNTs absorb the photons emitted by the aromatic residues of the protein, inducing a strong increase in intensity of the E11 emissions of SWNTs through their E33 and E44 excitations. From pH = 4.2 to pH = 5, the protein fluorescence is strongly quenched whatever the emission wavelengths, while additional fluorescence features appear at excitation wavelengths ranging from 660 to 680 nm and at 330 nm. The presence of these features is attributed to a resonance energy transfer mechanism that has an efficiency of 0.94 ± 0.02. More, by increasing the pH of the dispersion, the fluorescence characteristics become those observed at higher pH values and vice versa.

  11. Hard coatings

    OpenAIRE

    Dan, J.; Boving, H.; Hintermann, H.

    1993-01-01

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many process...

  12. FAST TRACK COMMUNICATION: Self-patterned aluminium interconnects and ring electrodes for arrays of microcavity plasma devices encapsulated in Al2O3

    Science.gov (United States)

    Kim, K. S.; Park, S.-J.; Eden, J. G.

    2008-01-01

    Automatic formation of Al interconnects and ring electrodes, fully encapsulated by alumina, in planar arrays of Al2O3/Al/Al2O3 microcavity plasma devices has been accomplished by electrochemical processing of Al foil. Following the fabrication of cylindrical microcavities (50-350 µm in diameter) in 127 µm thick Al foil, virtually complete anodization of the foil yields azimuthally symmetric Al electrodes surrounding each cavity and interconnects between adjacent microcavities that are produced and simultaneously buried within a transparent Al2O3 film without the need for conventional patterning techniques. The diameter and pitch of the microcavities prior to anodization, as well as the anodization process parameters, determine which of the microcavity plasma devices in a one- or two-dimensional array are connected electrically. Data presented for 200 µm diameter cavities with a pitch of 150-225 µm illustrate the patterning of the interconnects and electrode connectivity after 4-10 h of anodization in oxalic acid. Self-patterned, linear arrays comprising 25 dielectric barrier devices have been excited by a sinusoidal or bipolar pulse voltage waveform and operated in 400-700 Torr of rare gas. Owing to the electrochemical conversion of most of the Al foil into Al2O3, the self-formed arrays exhibit an areal capacitance ~82% lower than that characteristic of previous Al/Al2O3 device arrays (Park et al 2006 J. Appl. Phys. 99 026107).

  13. Hard coatings

    International Nuclear Information System (INIS)

    Hard, wear resistant and low friction coatings are presently produced on a world-wide basis, by different processes such as electrochemical or electroless methods, spray technologies, thermochemical, CVD and PVD. Some of the most advanced processes, especially those dedicated to thin film depositions, basically belong to CVD or PVD technologies, and will be looked at in more detail. The hard coatings mainly consist of oxides, nitrides, carbides, borides or carbon. Over the years, many processes have been developed which are variations and/or combinations of the basic CVD and PVD methods. The main difference between these two families of deposition techniques is that the CVD is an elevated temperature process (≥ 700 C), while the PVD on the contrary, is rather a low temperature process (≤ 500 C); this of course influences the choice of substrates and properties of the coating/substrate systems. Fundamental aspects of the vapor phase deposition techniques and some of their influences on coating properties will be discussed, as well as the very important interactions between deposit and substrate: diffusions, internal stress, etc. Advantages and limitations of CVD and PVD respectively will briefly be reviewed and examples of applications of the layers will be given. Parallel to the development and permanent updating of surface modification technologies, an effort was made to create novel characterisation methods. A close look will be given to the coating adherence control by means of the scratch test, at the coating hardness measurement by means of nanoindentation, at the coating wear resistance by means of a pin-on-disc tribometer, and at the surface quality evaluation by Atomic Force Microscopy (AFM). Finally, main important trends will be highlighted. (orig.)

  14. Temperature dependence of the polariton relaxation bottleneck in a GaN microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Stokker-Cheregi, F. [LENS and Department of Physics, University of Florence (Italy); NILPRP, Lasers Department, Magurele, Bucharest (Romania); Vinattieri, A.; Colocci, M.; Gurioli, M. [LENS and Department of Physics, University of Florence (Italy); Semond, F.; Leroux, M.; Massies, J. [CRHEA-CNRS, Valbonne (France); Sellers, I.R. [CRHEA-CNRS, Valbonne (France); Department of Physics, University of Buffalo, NY (United States)

    2008-07-01

    We present an experimental study aimed to investigate discuss the possible presence of a phonon bottleneck in a GaN bulk microcavity. Clear anticrossing between the lower (LP) and upper polariton (UP) branches has been observed up to room temperature in photoluminescence (PL) by angular measurements with a Rabi splitting of the order of 30 meV. In order to determine the presence of a relaxation bottleneck, angular PL measurements have been performed at different temperatures for negative detuning. At low T the PL shows a clear maximum, at the angle corresponding to the resonance between the exciton and the photon modes, which is an experimental demonstration of the presence of a relaxation bottleneck. The PL enhancement in resonance condition is suppressed with increasing T and it almost disappears at room temperature. We therefore demonstrate that the exciton-phonon interaction washes out the polariton bottleneck in GaN MCs at room temperature. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Characteristics of exciton-polaritons in ZnO-based hybrid microcavities.

    Science.gov (United States)

    Chen, Jun-Rong; Lu, Tien-Chang; Wu, Yung-Chi; Lin, Shiang-Chi; Hsieh, Wen-Feng; Wang, Shing-Chung; Deng, Hui

    2011-02-28

    Wide bandgap semiconductors are promising materials for the development of polariton-based optoelectronic devices operating at room temperature (RT). We report the characteristics of ZnO-based microcavities (MCs) in the strong coupling regime at RT with a vacuum Rabi splitting of 72 meV. The impact of scattering states of excitons on polariton dispersion is investigated. Only the lower polariton branches (LPBs) can be clearly observed in ZnO MCs since the large vacuum Rabi splitting pushes the upper polariton branches (UPBs) into the scattering absorption states in the ZnO bulk active region. In addition, we systematically investigate the polariton relaxation bottleneck in bulk ZnO-based MCs. Angle-resolved photoluminescence measurements are performed from 100 to 300 K for different cavity-exciton detunings. A clear polariton relaxation bottleneck is observed at low temperature and large negative cavity detuning conditions. The bottleneck is suppressed with increasing temperature and decreasing detuning, due to more efficient phonon-assisted relaxation and a longer radiative lifetime of the polaritons. PMID:21369239

  16. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-10-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths.

  17. Photonic Crystal Microcavities in Advanced Silicon-On-Insulator Complementary-Metal-Oxide-Semiconductor Technology

    CERN Document Server

    Poulton, Christopher V; Orcutt, Jason S; Shainline, Jeffrey M; Wade, Mark T; Popovic, Milos A

    2014-01-01

    We demonstrate the first (to the best of our knowledge) monolithically integrated linear photonic crystal microcavities in an advanced SOI CMOS microelectronics process (IBM 45nm 12SOI) with no in-foundry process modifications. The cavities were integrated into a standard microelectronics design flow meeting process design rules, and included in a chip set alongside standard microelectronic circuits and microprocessors in the same device layer as transistors. We demonstrate both 1520nm wavelength telecom band and 1180nm cavity designs, using different structures owing to design rule limitations. Loaded Q's of 2,000 and 4,000, and extracted intrinsic loss Q's of the order of 100,000 and 50,000 are demonstrated. We also demonstrate an evanescent coupling geometry which entirely decouples the cavity and waveguide-coupling design, and investigate some of the mode features inherent in this coupling approach. The cavities support extended modes due to the thin device layer that limits optical confinement, and as a ...

  18. Microcavity Silicon Photodetectors at 1.55 μm

    Directory of Open Access Journals (Sweden)

    M. Casalino

    2011-01-01

    Full Text Available The design, the realization, and the characterization of silicon resonant cavity enhanced (RCE photodetectors, working at 1.55 μm, are reported. The photodetectors are constituted by a Fabry-Perot microcavity incorporating a Schottky diode. The working principle is based on the internal photoemission effect. We investigated two types of structures: top and back-illuminated. Concerning the top-illuminated photodetectors, a theoretical and numerical analysis has been provided and the device quantum efficiency has been calculated. Moreover, a comparison among three different photodetectors, having as Schottky metal: gold, silver, or copper, was proposed. Concerning the back-illuminated devices, two kinds of Cu/p-Si RCE photodetectors, having various bottom-mirror reflectivities, were realized and characterized. Device performances in terms of responsivity, free spectral range, and finesse were theoretically and experimentally calculated in order to prove an enhancement in efficiency due to the cavity effect. The back-illuminated device fabrication process is completely compatible with the standard silicon technology.

  19. Toward Multiplexing Detection of Wound Healing Biomarkers on Porous Silicon Resonant Microcavities

    Science.gov (United States)

    Krismastuti, Fransiska Sri Herwahyu; Cavallaro, Alex; Prieto‐Simon, Beatriz

    2016-01-01

    Bacterial wound infections can cause septicemia and lead to limb amputation or death. Therefore, early detection of bacteria is important in chronic wound management. Here, an optical biosensor based on porous silicon resonant microcavity (pSiRM) structure modified with fluorogenic peptide substrate is demonstrated to detect the presence of Sortase A (SrtA), a bacterial enzyme found in the cell membrane protein of Staphylococcus aureus. The combination of fluorescence enhancement effects of the pSiRM architecture with the incorporation of SrtA fluorogenic peptide substrate within the pSi matrix enables the sensing of SrtA with an outstanding limit of detection of 8 × 10−14 m. Modification of the pSiRM structure with microscale spots of two fluorogenic peptide substrates, one specific for SrtA and the other for matrix metalloproteinases, effectively demonstrates the feasibility to perform multiplexed biomarker analysis. The results in this study highlight the potential of the pSiRM sensing platform as a point‐of‐care diagnostic tool for biomarkers of bacterial wound infection.

  20. Nonclassical light from an incoherently pumped quantum dot in a microcavity

    Science.gov (United States)

    Teuber, L.; Grünwald, P.; Vogel, W.

    2015-11-01

    Semiconductor microcavities with artificial single-photon emitters have become one of the backbones of semiconductor quantum optics. In many cases, however, technical and physical issues limit the study of optical fields to incoherently excited systems. We analyze the model of an incoherently driven two-level system in a single-mode cavity. The specific structure of the applied master equation yields a recurrence relation for the steady-state values of correlations of the intracavity field and the emitter. We provide boundary conditions that permit a systematic solution which is numerically less demanding than standard methods. The method allows us to directly infer reasonable cutoff conditions from the system parameters. Different cavity systems from previous experiments are analyzed in terms of field correlation functions which can be measured via homodyne correlation measurements. We find that nonclassical correlations occur in systems of moderate quantum-dot-cavity coupling rather than strong coupling. Our boundary conditions also allow us to derive analytical results for the overall quantum state and its higher-order moments. We obtain very good approximations for the full quantum state of the field in terms of the characteristic functions. It turns out that for every physically reasonable set of system parameters, the state of the intracavity field is nonclassical.

  1. Physical analysis of the response properties of porous silicon microcavity biosensor

    Science.gov (United States)

    Wu, Chao; Rong, Guoguang; Xu, Junteng; Pan, Shengfei; Zhu, Yongxin

    2012-04-01

    Porous silicon possesses great potential in developing label-free biosensors of high sensitivity. In this work, a well-tuned resonant structure or microcavity is fabricated, and based on it, an intensity-interrogated sensing technique is thoroughly investigated. Using glucose as a target, this method is demonstrated to be advantageous in lowering detection limit while achieving high reliability. In this experiment the limit is extended from approximately 7×10-4RIU to 7×10-5RIU, compared with the redshift method. We also elaborate the physical mechanisms in the sensing process, which give rise to the aberration of reflectivity variation when different procedures (i.e. dynamic vs. static) are executed. It is postulated to be caused by concentration profile change in diffusion boundary layer in response to flow rate difference. We also find that the response time keeps a steady low value before ramping up in extremely low concentration sensing schemes. We arbitrarily cut the response time vs. concentration curve into two regimes, which are dominated by relatively high adsorption rate and slow mass diffusion. In the last part, tailing effect is investigated and eliminated by increasing flow rate. The theory will be instructive in achieving optimum results in operations where physisorption in the porous material plays an important role.

  2. Near-infrared exciton-polaritons in strongly coupled single-walled carbon nanotube microcavities

    Science.gov (United States)

    Graf, Arko; Tropf, Laura; Zakharko, Yuriy; Zaumseil, Jana; Gather, Malte C.

    2016-01-01

    Exciton-polaritons form upon strong coupling between electronic excitations of a material and photonic states of a surrounding microcavity. In organic semiconductors the special nature of excited states leads to particularly strong coupling and facilitates condensation of exciton-polaritons at room temperature, which may lead to electrically pumped organic polariton lasers. However, charge carrier mobility and photo-stability in currently used materials is limited and exciton-polariton emission so far has been restricted to visible wavelengths. Here, we demonstrate strong light-matter coupling in the near infrared using single-walled carbon nanotubes (SWCNTs) in a polymer matrix and a planar metal-clad cavity. By exploiting the exceptional oscillator strength and sharp excitonic transition of (6,5) SWCNTs, we achieve large Rabi splitting (>110 meV), efficient polariton relaxation and narrow band emission (<15 meV). Given their high charge carrier mobility and excellent photostability, SWCNTs represent a promising new avenue towards practical exciton-polariton devices operating at telecommunication wavelengths. PMID:27721454

  3. Numerical investigation of high-contrast ultrafast all-optical switching in low-refractive-index polymeric photonic crystal nanobeam microcavities

    Science.gov (United States)

    Meng, Zi-Ming; Zhong, Xiao-Lan; Wang, Chen; Li, Zhi-Yuan

    2012-06-01

    With the development of micro- or nano-fabrication technologies, great interest has been aroused in exploiting photonic crystal nanobeam structures. In this article the design of high-quality-factor (Q) polymeric photonic crystal nanobeam microcavities suitable for realizing ultrafast all-optical switching is presented based on the three-dimensional finite-difference time-domain method. Adopting the pump-probe technique, the ultrafast dynamic response of the all-optical switching in a nanobeam microcavity with a quality factor of 1000 and modal volume of 1.22 (λ/n)3 is numerically studied and a switching time as fast as 3.6 picoseconds is obtained. Our results indicate the great promise of applying photonic crystal nanobeam microcavities to construct integrated ultrafast tunable photonic devices or circuits incorporating polymer materials with large Kerr nonlinearity and ultrafast response speed.

  4. Nanostructured Coatings

    Science.gov (United States)

    Rivière, J.-P.

    In many branches of technology where surfaces are playing a growing role, the use of coatings is often the only way to provide surfaces with specific functional properties. For example, the austenitic stainless steels or titanium alloys exhibit poor resistance to wear and low hardness values, which limits the field of applications. The idea then is to develop new solutions which would improve the mechanical performance and durability of objects used in contact and subjected to mechanical forces in hostile gaseous or liquid environments. Hard coatings are generally much sought after to enhance the resistance to wear and corrosion. They are of particular importance because they constitute a class of protective coatings which is already widely used on an industrial scale to improve the hardness and lifetime of cutting tools.

  5. On chip, high-sensitivity thermal sensor based on high-Q polydimethylsiloxane-coated microresonator

    CERN Document Server

    Li, Bei-Bei; Xiao, Yun-Feng; Jiang, Xue-Feng; Li, Yan; Xiao, Lixin; Gong, Qihuang

    2010-01-01

    A high-sensitivity thermal sensing is demonstrated by coating a layer of polydimethylsiloxane (PDMS) on the surface of a silica toroidal microresonator on a silicon wafer. Possessing high-Q whispering gallery modes (WGMs), the PDMS-coated microresonator is highly sensitive to the temperature change of the surroundings. We find that, when the PDMS layer becomes thicker, the WGM experiences a transition from red- to blue-shift with temperature increasing due to the negative thermal-optic coefficient of PDMS. The measured sensitivity (0.151 nm/K) is one order of magnitude higher than pure silica microcavity sensors. The ultra-high resolution of the thermal sensor is also analyzed to reach 10-4 K.

  6. Fabrication and optical properties of non-polar III-nitride air-gap distributed Bragg reflector microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Renchun, E-mail: rctao@iis.u-tokyo.ac.jp; Kako, Satoshi [Institute for Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arita, Munetaka [Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Arakawa, Yasuhiko [Institute for Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2013-11-11

    Using the thermal decomposition technique, non-polar III-nitride air-gap distributed Bragg reflector (DBR) microcavities (MCs) with a single quantum well have been fabricated. Atomic force microscopy reveals a locally smooth DBR surface, and room-temperature micro-photoluminescence measurements show cavity modes. There are two modes per cavity due to optical birefringence in the non-polar MCs, and a systematic cavity mode shift with cavity thickness was also observed. Although the structures consist of only 3 periods (top) and 4 periods (bottom), a quality factor of 1600 (very close to the theoretical value of 2100) reveals the high quality of the air-gap DBR MCs.

  7. Probing bacteriorhodopsin photochemistry with nonlinear optics. Comparing the second harmonic generation of bR and the photochemically induced intermediate K

    Energy Technology Data Exchange (ETDEWEB)

    Bouevitch, O.; Lewis, A. [Hebrew Univ., Jerusalem (Israel); Sheves, M. [Weizmann Inst. of Science, Rehevot (Israel)

    1995-06-29

    The nonlinear optical properties of the bacteriorhodopsin chromophore in the bR568 and K states are investigated by second harmonic generation. The comparison of amplitudes and phases of the second-order nonlinear optical polarizabilities of the retinal chromophore in the two states has revealed a noticeable increase of the induced dipole of the retinal as a result of the bR568 $YLD K transition. The results have been explained in terms of recent theoretical understandings of the nonlinear optical properties of polyenes. Within the context of these understandings we have discussed the molecular origins of the light-induced color changes and the possible mechanism of photon energy storage observed in this protein. 54 refs., 8 figs., 3 tabs.

  8. Recording of dynamic gratings in the nonlinear optical coating of a planar waveguide

    Science.gov (United States)

    Kozhevnikov, N. M.; Korolev, A. E.; Koklyushkin, A. V.; Lipovskaya, M. Yu.; Nazarov, V. N.

    2003-04-01

    The possibility of controlled energy exchange between interfering waveguide modes in a singlemode planar waveguide with a nonlinear optical coating is analyzed. As the coating, a suspension of bacteriorhodopsin D96N was used, which makes it possible to realize two spectrally separated mechanisms of recording and controlling dynamic gratings, i.e., the spatial modulation of the trans-cis excitation rate and the spatial modulation of the cis-trans relaxation rate. The method of phase-modulated beams was used to implement the energy exchange. The dynamic gratings in the coating were recorded by using both radiation with a wavelength within the absorption band of the trans state (630 nm) and radiation with a wavelength within the absorption band of the cis state (440 nm). Efficient control of the energy exchange between the waveguide modes by means of uniform exposure of their interference region to radiation with another wavelength was observed. A completely integral geometrical layout for optically controlled energy exchange was realized. The results obtained are compared with known data on energy exchange between beams in the bulk of a similar nonlinear medium.

  9. Very Bright and Efficient Microcavity Top-Emitting Quantum Dot Light-Emitting Diodes with Ag Electrodes.

    Science.gov (United States)

    Liu, Guohong; Zhou, Xiang; Chen, Shuming

    2016-07-01

    The microcavity effect in top-emitting quantum dot light-emitting diodes (TQLEDs) is theoretically and experimentally investigated. By carefully optimizing the cavity length, the thickness of the top Ag electrode and the thickness of the capping layer, very bright and efficient TQLEDs with external quantum efficiency (EQE) of 12.5% are demonstrated. Strong dependence of luminance and efficiency on cavity length is observed, in good agreement with theoretical calculation. By setting the normal-direction resonant wavelength around the peak wavelength of the intrinsic emission, highest luminance of 112 000 cd/m(2) (at a driving voltage of 7 V) and maximum current efficiency of 27.8 cd/A are achieved, representing a 12-fold and a 2.1-fold enhancement compared to 9000 cd/m(2) and 13.2 cd/A of the conventional bottom emitting devices, respectively, whereas the highest EQE of 12.5% is obtained by setting the resonant wavelength 30 nm longer than the peak wavelength of the intrinsic emission. Benefit from the very narrow spectrum of QDs and the low absorption of silver electrodes, the potential of microcavity effect can be fully exploited in TQLEDs.

  10. Spontaneous emission of Bloch oscillation radiation under the competing influences of microcavity enhancement and inhomogeneous interface degradation

    Energy Technology Data Exchange (ETDEWEB)

    Sokolov, V. N. [Department of Theoretical Physics, Institute for Semiconductor Physics, NASU, Pr. Nauki 41, Kiev 03028 (Ukraine); Iafrate, G. J. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695-8617 (United States)

    2014-02-07

    A theory for the spontaneous emission (SE) of terahertz radiation for a Bloch electron traversing a single energy miniband of a superlattice (SL) in a cavity, while undergoing elastic scattering is presented. The Bloch electron is accelerated under the influence of a superimposed external constant electric field and an internal inhomogeneous electric field, while radiating into a microcavity. The analysis of the SE accounts for both the spectral structure of nonharmonic miniband components and the Bloch oscillation degradation effects arising from elastic scattering due to SL interface roughness. The interface roughness effects are decomposed into contributions arising from independent planar and cross-correlated neighboring planar interfaces; parametric numerical estimates show that the cross-correlated contribution to the SE relaxation rate is relatively small, representing less than roughly 10% of the total relaxation rate. It is shown that the degradation effects from SL interface roughness can be more than compensated for by the enhancements derived from microcavity-based tuning of the emission frequency to the cavity density of states peak. The theoretical approach developed herein has general applicability beyond its use for elastic scattering due to interface roughness. As well, the results obtained in this analysis can be useful in the development of SL-based Bloch-oscillator terahertz devices.

  11. Purcell-enhanced single-photon emission from nitrogen-vacancy centers coupled to a tunable microcavity

    CERN Document Server

    Kaupp, Hanno; Mader, Matthias; Schlederer, Benedikt; Benedikter, Julia; Haeusser, Philip; Chang, Huan-Cheng; Fedder, Helmut; Hänsch, Theodor W; Hunger, David

    2016-01-01

    Optical microcavities are a powerful tool to enhance spontaneous emission of individual quantum emitters. However, the broad emission spectra encountered in the solid state at room temperature limit the influence of a cavity, and call for ultra-small mode volume. We demonstrate Purcell-enhanced single photon emission from nitrogen-vacancy (NV) centers in nanodiamonds coupled to a tunable fiber-based microcavity with a mode volume down to $1.0\\,\\lambda^{3}$. We record cavity-enhanced fluorescence images and study several single emitters with one cavity. The Purcell effect is evidenced by enhanced fluorescence collection, as well as tunable fluorescence lifetime modification, and we infer an effective Purcell factor of up to 2.0. With numerical simulations, we furthermore show that a novel regime for light confinement can be achieved, where a Fabry-Perot mode is combined with additional mode confinement by the nanocrystal itself. In this regime, effective Purcell factors of up to 11 for NV centers and 63 for si...

  12. Coherent inter-polariton scattering on moving gratings in microcavity with 25 nm GaAs/AlGaAs single quantum well

    DEFF Research Database (Denmark)

    Birkedal, Dan; Lyssenko, V. G.; Hvam, Jørn Märcher

    2003-01-01

    We report on a new coherent phenomenon in semiconductor microcavities at polariton selective resonance excitation by two femtosecond pulses, propagating along k/sub 2/ and k/sub 1/, associated with exciton gratings, travelling in lateral direction +or- (k/sub 2/ - k/sub 1/). Diffracted polaritons...

  13. Air-core microcavities and metal-dielectric filters - building blocks for optofluidic microsystems

    Science.gov (United States)

    Allen, Trevor Warren

    This thesis describes a study on two optical devices intended to be building blocks for the creation of integrated optical/microfluidic lab-on-a-chip systems. First, arrays of curved-mirror dome-shaped microcavities were fabricated by buckling self-assembly of a-Si/SiO2 multilayers. This novel technique employs controlled, stress-induced film delamination to form highly symmetric cavities with minimal roughness defects or geometrical imperfections. Measured cavity heights were in good agreement with predictions from elastic buckling theory. Also, the measured finesse (> 103) and quality factor (> 104 in the 1550-nm range) were close to reflectance-limited predictions, indicating low defects and roughness. Hermite- and Laguerre-Gaussian modes were observable, indicating a high degree of cylindrical symmetry. In the second part of the research, transmittance in periodic metal-dielectric multilayer structures was studied. Metal-dielectric stacks have many potential applications in optofluidic microsystems, including as transmission filters, superlenses, and substrates for surface plasmon sensors. In this work, we showed that potential transmittance theory provides a good method for describing the tunneling of photons through metal-dielectric stacks, for both Fabry-Perot and surface plasmon resonances. This approach explains the well-known fact that for a given thickness of metal, subdividing the metal into several thin films can increase the maximum transmittance. Conditions for admittance matching of dielectric-metal-dielectric unit cells to an external air medium were explored for Fabry-Perot based tunneling, revealing that thicker metal films require higher-index dielectrics for optimal admittance matching. It was also shown for the first time that potential transmittance theory can be used to predict the maximum possible transmittance in surface-plasmon-mediated tunneling. In a subsequent study, potential transmittance was used to derive an expression for

  14. Corrosion resistant coating

    Science.gov (United States)

    Wrobleski, Debra A.; Benicewicz, Brian C.; Thompson, Karen G.; Bryan, Coleman J.

    1997-01-01

    A method of protecting a metal substrate from corrosion including coating a metal substrate of, e.g., steel, iron or aluminum, with a conductive polymer layer of, e.g., polyaniline, coating upon said metal substrate, and coating the conductive polymer-coated metal substrate with a layer of a topcoat upon the conductive polymer coating layer, is provided, together with the resultant coated article from said method.

  15. Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities.

    Science.gov (United States)

    Hu, Shi; Cui, Wen-Xue; Wang, Dong-Yang; Bai, Cheng-Hua; Guo, Qi; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2015-01-01

    Teleportation of unitary operations can be viewed as a quantum remote control. The remote realization of robust multiqubit logic gates among distant long-lived qubit registers is a key challenge for quantum computation and quantum information processing. Here we propose a simple and deterministic scheme for teleportation of a Toffoli gate among three spatially separated electron spin qubits in optical microcavities by using local linear optical operations, an auxiliary electron spin, two circularly-polarized entangled photon pairs, photon measurements, and classical communication. We assess the feasibility of the scheme and show that the scheme can be achieved with high average fidelity under the current technology. The scheme opens promising perspectives for constructing long-distance quantum communication and quantum computation networks with solid-state qubits. PMID:26225781

  16. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    CERN Document Server

    Yüce, Emre; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2015-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities operating in the "original" telecom band by exploiting the instantaneous electronic Kerr effect. We demonstrate that resonance frequency reversibly shifts within a picosecond and the magnitude of the shift is affected by the backbone of the $\\lambda-$layer. We investigate experimentally and theoretically the role of the quality factor in terms of its effect on resonance frequency shift. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the cavity cavity storage time is matched. Our experiments and our calculations indicate that the resonance frequency shift induced via the electronic Kerr effect can be maximized by judicious tuning of the pump frequency, pump power and pump pulse duration relative to the storage time of the cavity.

  17. Identifying the role of the local density of optical states in frequency conversion of light in a microcavity

    CERN Document Server

    Yüce, Emre; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L

    2014-01-01

    We have reversibly switched the resonance of a GaAs-AlAs microcavity in the near-infrared near $\\lambda =1300$ nm within 300 fs by the electronic Kerr effect. We reveal by pump-probe spectroscopy a remarkable red shift or blue shift of the light confined inside the cavity for small pulse delays, depending on their temporal ordering. The color-converted light is efficiently generated in a broad frequency continuum that differs markedly from the instantaneous cavity resonance in terms of the central frequency and bandwidth. From observations on cavities with different quality factors, we identify the role of the local density of optical states (LDOS) available to the newly generated light frequencies. In particular, we distinguish the effect of the LDOS related to the cavity resonance itself, and the LDOS continuum that leaks in from the vacuum surrounding the cavity. Our new insights provide a unified picture for seemingly disparate results in traditional and nanophotonic nonlinear optics.

  18. Step-by-Step Laser Crystallization of Amorphous Si:H/SiNx:H Multilayer for Active Layer in Microcavities

    Institute of Scientific and Technical Information of China (English)

    QIAN Bo; CHEN San; CEN Zhan-Hong; CHEN Kun-Ji; LIU Yan-Song; XU Jun; MA Zhong-Yuan; LI Wei; HUANG Xin-Fan

    2006-01-01

    @@ We report the crystallization and photoluminescence (PL) properties of amorphous Si:H/SiNx :H multilayer (ML)films treated by step-by-step laser annealing. The results of Raman measurements show that the nanocrystalline Si (nc-Si) grains are formed in the a-Si:H layers under the constrained growth mechanism. The blue shift of PL peak with grain size is observed and can be attributed to the quantum confinement effect. For comparison, we also report the crystallization and PL of a-Si:H/SiNx :H ML samples by normal one-step treatment. This method of step-by-step laser treatment will be a candidate to make nc-Si quantum dots in amorphous Si:H/SiNx :H ML as an active layer in microcavities.

  19. Suppression of cross-hatched polariton disorder in GaAs/AlAs microcavities by strain compensation

    Science.gov (United States)

    Zajac, Joanna M.; Clarke, Edmund; Langbein, Wolfgang

    2012-07-01

    Zinc-blende semiconductor heterostructures grown in the [001] direction with a small lattice mismatch accommodate stress by developing a cross-hatch dislocation pattern. In GaAs based planar microcavities grown by molecular beam epitaxy, this pattern creates a potential landscape for exciton-polaritons, causing scattering and localization. We report here on suppressing the cross-hatch by introducing strain-compensating AlP layers into the center of the low index AlAs layers of the distributed Bragg reflectors. We observe a reduction of the cross-hatch dislocation density by at least one order of magnitude for 1.1 nm thick AlP layers, which correspond to an effective AlAs0.985P0.015 low index layer. These compensated structures show a remaining polariton disorder potential in the 10 μeV range.

  20. Coupling of a single diamond nanocrystal to a whispering-gallery microcavity: Photon transport benefitting from Rayleigh scattering

    Energy Technology Data Exchange (ETDEWEB)

    Liu Yongchun; Xiao Yunfeng; Li Beibei; Jiang Xuefeng; Li Yan; Gong Qihuang [State Key Lab for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2011-07-15

    We study the Rayleigh scattering induced by a diamond nanocrystal in a whispering-gallery-microcavity-waveguide coupling system and find that it plays a significant role in the photon transportation. On the one hand, this study provides insight into future solid-state cavity quantum electrodynamics aimed at understanding strong-coupling physics. On the other hand, benefitting from this Rayleigh scattering, effects such as dipole-induced transparency and strong photon antibunching can occur simultaneously. As a potential application, this system can function as a high-efficiency photon turnstile. In contrast to B. Dayan et al. [Science 319, 1062 (2008)], the photon turnstiles proposed here are almost immune to the nanocrystal's azimuthal position.

  1. Low-temperature tapered-fiber probing of diamond NV ensembles coupled to GaP microcavities

    CERN Document Server

    Fu, K -M C; Santori, C; Faraon, A; Beausoleil, R G

    2011-01-01

    In this work we present a platform for testing the device performance of a cavity-emitter system, using an ensemble of emitters and a tapered optical fiber. This method provides high-contrast spectra of the cavity modes, selective detection of emitters coupled to the cavity, and an estimate of the device performance in the single- emitter case. Using nitrogen-vacancy (NV) centers in diamond and a GaP optical microcavity, we are able to tune the cavity onto the NV resonance at 10 K, couple the cavity-coupled emission to a tapered fiber, and measure the fiber-coupled NV spontaneous emission decay. Theoretically we show that the fiber-coupled average Purcell factor is 2-3 times greater than that of free-space collection; although due to ensemble averaging it is still a factor of 3 less than the Purcell factor of a single, ideally placed center.

  2. Analysis of ultra-high sensitivity configuration in chip-integrated photonic crystal microcavity bio-sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chakravarty, Swapnajit, E-mail: swapnajit.chakravarty@omegaoptics.com; Hosseini, Amir; Xu, Xiaochuan [Omega Optics, Inc., Austin, Texas 78757 (United States); Zhu, Liang; Zou, Yi [Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States); Chen, Ray T., E-mail: raychen@uts.cc.utexas.edu [Omega Optics, Inc., Austin, Texas 78757 (United States); Department of Electrical and Computer Engineering, University of Texas at Austin, Austin, Texas 78758 (United States)

    2014-05-12

    We analyze the contributions of quality factor, fill fraction, and group index of chip-integrated resonance microcavity devices, to the detection limit for bulk chemical sensing and the minimum detectable biomolecule concentration in biosensing. We analyze the contributions from analyte absorbance, as well as from temperature and spectral noise. Slow light in two-dimensional photonic crystals provide opportunities for significant reduction of the detection limit below 1 × 10{sup −7} RIU (refractive index unit) which can enable highly sensitive sensors in diverse application areas. We demonstrate experimentally detected concentration of 1 fM (67 fg/ml) for the binding between biotin and avidin, the lowest reported till date.

  3. Scalable quantum computing based on stationary spin qubits in coupled quantum dots inside double-sided optical microcavities.

    Science.gov (United States)

    Wei, Hai-Rui; Deng, Fu-Guo

    2014-12-18

    Quantum logic gates are the key elements in quantum computing. Here we investigate the possibility of achieving a scalable and compact quantum computing based on stationary electron-spin qubits, by using the giant optical circular birefringence induced by quantum-dot spins in double-sided optical microcavities as a result of cavity quantum electrodynamics. We design the compact quantum circuits for implementing universal and deterministic quantum gates for electron-spin systems, including the two-qubit CNOT gate and the three-qubit Toffoli gate. They are compact and economic, and they do not require additional electron-spin qubits. Moreover, our devices have good scalability and are attractive as they both are based on solid-state quantum systems and the qubits are stationary. They are feasible with the current experimental technology, and both high fidelity and high efficiency can be achieved when the ratio of the side leakage to the cavity decay is low.

  4. Graphene Coatings

    DEFF Research Database (Denmark)

    Stoot, Adam Carsten; Camilli, Luca; Bøggild, Peter

    2014-01-01

    Owing to its remarkable electrical and mechanical properties, graphene has been attracting tremendous interest in materials science. In particular, its chemical stability and impermeability make it a promising protective membrane. However, recent investigations reveal that single layer graphene...... cannot be used as a barrier in the long run, due to galvanic corrosion phenomena arising when oxygen or water penetrate through graphene cracks or domain boundaries. Here, we overcome this issue by using a multilayered (ML) graphene coating. Our lab- as well as industrial-scale tests demonstrate that ML...... graphene can effectively protect Ni in harsh environments, even after long term exposure. This is made possible by the presence of a high number of graphene layers, which can efficiently mask the cracks and domain boundaries defects found in individual layers of graphene. Our findings thus show...

  5. Electrocurtain coating process for coating solar mirrors

    Science.gov (United States)

    Kabagambe, Benjamin; Boyd, Donald W.; Buchanan, Michael J.; Kelly, Patrick; Kutilek, Luke A.; McCamy, James W.; McPheron, Douglas A.; Orosz, Gary R.; Limbacher, Raymond D.

    2013-10-15

    An electrically conductive protective coating or film is provided over the surface of a reflective coating of a solar mirror by flowing or directing a cation containing liquid and an anion containing liquid onto the conductive surface. The cation and the anion containing liquids are spaced from, and preferably out of contact with one another on the surface of the reflective coating as an electric current is moved through the anion containing liquid, the conductive surface between the liquids and the cation containing liquid to coat the conductive surface with the electrically conductive coating.

  6. Identification of Specific Effect of Chloride on the Spectral Properties and Structural Stability of Multiple Extracellular Glutamic Acid Mutants of Bacteriorhodopsin

    Science.gov (United States)

    Lazarova, Tzvetana; Mlynarczyk, Krzysztof; Querol, Enric; Tenchov, Boris; Filipek, Slawomir; Padrós, Esteve

    2016-01-01

    In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants. The DSC data display reappearance of the reversible thermal transition, higher Tm of denaturation and an increase in the enthalpy of unfolding of the mutants in 1 M KCl solutions. Molecular dynamics simulations indicate high affinity binding of Cl- to Arg82 and to Gln204 and Gln194 residues in the mutants. Analysis of the experimental data suggests that simultaneous elimination of the negatively charged side chain of Glu194 and Glu204 is the major cause for mutants’ alterations. Specific Cl- binding efficiently coordinates distorted hydrogen bonding interactions of the EC region and reconstitutes the conformation and structure stability of mutated bR in WT-like fashion. PMID:27657718

  7. Steric interaction between the 9-methyl group of the retinal and tryptophan 182 controls 13-cis to all-trans reisomerization and proton uptake in the bacteriorhodopsin photocycle

    Energy Technology Data Exchange (ETDEWEB)

    Weidlich, O.; Schalt, B.; Siebert, F. [Albert-Ludwigs-Universitaet, Freiburg (Germany)] [and others

    1996-08-20

    The hypothesis was tested whether in bacteriorhodopsin (BR) the reduction of the steric interaction between the 9-methyl group of the chromophore all-trans-retinal and the tryptophan at position 182 causes the same changes as observed in the photocycle of 9-demethyl-BR. For this, the photocycle of the mutant W182F was investigated by time-resolved UV-vis and pH measurements and by static and time-resolved FT-IR difference spectroscopy. We found that the second half of the photocycle was similarly distorted in the two modified systems: based on the amide-I band, the protonation state of D96, and the kinetics of proton uptake, four N intermediates could be identified, the last one having a lifetime of several seconds; no O intermediate could be detected; the proton uptake showed a pronounced biphasic time course; and the pK{sub a} of group(s) on the cytoplasmic side in N was reduced from 11 in wild type BR to around 7.5. In contrast to 9-demethyl-BR, in the W182F mutant the first part of the photocycle does not drastically deviate from that of wild type BR. The results demonstrate the importance of the steric interaction between W182 and the 9-methyl group of the retinal in providing tight coupling between chromophore isomerization and the late proton transfer steps. 51 refs., 7 figs.

  8. Influence of dielectric microcavity on the spontaneous emission rate of atom: a perspective on the closed-orbit theory of photons

    Institute of Scientific and Technical Information of China (English)

    Shubao Wang; Xueyou Xu; Hongyun Li; Zhengmao Jia; Shenglu Lin

    2008-01-01

    The formulas of the quantum electrodynamics have been applied to calculate the spontaneous emission rate of excited atom in dielectric microcavity.The results exhibit damping oscillating Patterns which depend sensitively on the scaling parameter and geometrical structure.Compared with the case that the emitting atom is immersed in dielectric,the spontaneous emission rate is depressed obviously and the center or the mean value of the oscillations is intimately related to the real refractive index of the local position where the atom is.In order to explain this phenomenon,we utilize the closed-orbit theory to deal with the classical trajectories of the emitted photon.and extract the corresponding frequencies of the oscillations by Fourier transform.It is found that the oscillations can be represented in terms of the closed-orbits of the photon motion constrained in dielectric microcavity,thus providing another perspective on the spontaneous emission of atom sandwiched by dielectric slabs.

  9. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    Science.gov (United States)

    Liu, Bin; Liu, Yun-Feng; Jia, Chen; He, Xing-Dao

    2016-06-01

    A high efficiency all-optical diode based on photonic crystal (PC) waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD) method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in red shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.

  10. Multi-layer coatings

    Energy Technology Data Exchange (ETDEWEB)

    Maghsoodi, Sina; Brophy, Brenor L.; Abrams, Ze' ev R.; Gonsalves, Peter R.

    2016-06-28

    Disclosed herein are coating materials and methods for applying a top-layer coating that is durable, abrasion resistant, highly transparent, hydrophobic, low-friction, moisture-sealing, anti-soiling, and self-cleaning to an existing conventional high temperature anti-reflective coating. The top coat imparts superior durability performance and new properties to the under-laying conventional high temperature anti-reflective coating without reducing the anti-reflectiveness of the coating. Methods and data for optimizing the relative thickness of the under-layer high temperature anti-reflective coating and the top-layer thickness for optimizing optical performance are also disclosed.

  11. Research on Biosensor Based on Porous Silicon Optical Microcavity%一种硅基光学微腔生物传感器的研究

    Institute of Scientific and Technical Information of China (English)

    张勇; 吕小毅; 张红燕; 贾振红

    2012-01-01

    In this paper,a kind of microcavity structure of porous silicon is prepared through the method of electrochemical etching and then it was treated by thermal oxidation; the experiment measures the reflectance spectrometry of biological molecules before and after they enter the microcavity structure of one-dimensional porous silicon; meanwhile,the calculated reflectivity spectra of the biosensor were studied contrastively before and after attachment of small molecules.The research result shows that the porous silicon microcavity biosensor has the characteristics of high sensitivity and specificity,short monitoring period,high accuracy and label-free.The results of this study will help guide practical design of silicon-based photonic microcavity biosensor.%本文我们通过电化学腐蚀方法实验制备出一种多孔硅微腔结构,采用热氧化功能处理,采用APTES小分子进行了生物传感实验,实验测量了生物分子进入到一维多孔硅微腔前后的反射光谱;同时,我们采用转移矩阵理论,利用Matlab进行理论仿真小分子进入到一维多孔硅微腔前后的反射光谱.研究结果表明:一维多孔硅光子晶体微腔结构的生物传感器,具有很高的特异性和灵敏度,且有检测周期短、精度高、免标签等优点.此项研究也有助于指导设计实用化多孔硅微腔结构光子晶体生物传感器.

  12. A High-Temperature Solar Selective Absorber Based upon Periodic Shallow Microstructures Coated by Multi-Layers Using Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Makoto Shimizu

    2016-03-01

    Full Text Available Regarding the fabrication of solar selective absorbers, the ability to create microstructures on top of metal surfaces is a promising technology. Typically, these materials are able to possess spectrally-selective absorption properties for high-temperature usage. Solar-selective absorbers that function at temperatures up to 700 °C and possess shallow honeycomb cylindrical microcavities coated with a metal-dielectric multi-layer have been investigated. Honeycomb array cylindrical microcavities were fabricated on W substrate with interference lithography and multi-layers consisting of Pt nano-film sandwiched by Al2O3 layers were created for a uniform coating via atomic layer deposition. The absorbance spectrum of fabricated samples reveals results consistent with a simulation based on a rigorous coupled-wave analysis method. A solar absorbance value of 0.92 and a hemispherical total emittance value of 0.18 at 700 °C was determined from the fabricated solar-selective absorber. Additionally, thermal stability of up to 700 °C was confirmed in vacuum.

  13. Flow coating apparatus and method of coating

    Science.gov (United States)

    Hanumanthu, Ramasubrahmaniam; Neyman, Patrick; MacDonald, Niles; Brophy, Brenor; Kopczynski, Kevin; Nair, Wood

    2014-03-11

    Disclosed is a flow coating apparatus, comprising a slot that can dispense a coating material in an approximately uniform manner along a distribution blade that increases uniformity by means of surface tension and transfers the uniform flow of coating material onto an inclined substrate such as for example glass, solar panels, windows or part of an electronic display. Also disclosed is a method of flow coating a substrate using the apparatus such that the substrate is positioned correctly relative to the distribution blade, a pre-wetting step is completed where both the blade and substrate are completed wetted with a pre-wet solution prior to dispensing of the coating material onto the distribution blade from the slot and hence onto the substrate. Thereafter the substrate is removed from the distribution blade and allowed to dry, thereby forming a coating.

  14. Coating of pumps; coating af pumper

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Hans; Moritzen, J.; Thoegersen, Jeanette

    2005-11-15

    Coating of pumps is a quite new activity. For many years pipes and containers have been coated inside in order to avoid corrosion, but the technology has only been used inside pumps for the last ten years. The technology comes from USA and is originally developed in the space technology industry as an exceptionally durable and corrosion constant coating. The project is a further development of results found in a previous R and D project in which measurements were performed before and after coating two different installations. Both installations showed large efficiency improvements. This project supplements the theory behind losses in pumps with measurements on more pumps. (BA)

  15. Second-harmonic generation of biological interfaces: probing the membrane protein bacteriorhodopsin and imaging membrane potential around GFP molecules at specific sites in neuronal cells of C. elegans

    Science.gov (United States)

    Lewis, Aaron; Khatchatouriants, Artium; Treinin, Millet; Chen, Zhongping; Peleg, Gadi; Friedman, Noga; Bouevitch, Oleg; Rothman, Zvi; Loew, Leslie; Sheres, Mordechai

    1999-07-01

    Second-harmonic generation (SHG) is applied to problems of probing membrane proteins and functionally imaging around selective sites and at single molecules in biological membranes. The membrane protein bacteriorhodopsin (bR) has been shown to have large second-harmonic (SH) intensities that are modulated by protein/retinylidene chromophore interactions. The nonlinear optical properties of model compounds, which simulate these protein chromophore interactions in retinal proteins, are studied in this work by surface SHG and by hyper-Rayleigh scattering. Our results indicate that non-conjugated charges and hydrogen bonding effects have a large effect on the molecular hyperpolarizability of the retinal chromophore. However, mbR, the model system studies suggest that polarizable amino acids strongly affect the vertically excited state of the retinylidene chromophore and appear to play the major role in the observed protein enhancement (>50%) of the retinylidene chromophore molecular hyperpolarizability and associated induced dipole. Furthermore, the data provide insights on emulating these interactions for the design of organic nonlinear optical materials. Our studies have also led to the development of dyes with large SH intensities that can be embedded in cell membranes and can functionally image membrane potential. Single molecules of such dyes in selected single molecular regions of a cell membrane have been detected. SHG from green fluorescent protein (GFP) selectively expressed in concert with a specific protein in neuronal cells in a transgenic form of the worm C. elegans is also reported. The membrane potential around the GFP molecules expressed in these cells has been imaged with SHG in live animals.

  16. European coatings conference - Marine coatings. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This volume contains 13 lectures (manuscripts or powerpoint foils) with the following topics: 1. Impact of containerization on polyurethane and polyurea in marine and protective coatings (Malte Homann); 2. The application of combinatorial/high-throughput methods to the development of marine coatings (Bret Chisholm); 3. Progress and perspectives in the AMBIO (advanced nanostructured surfaces for the control of biofouling) Project (James Callow); 4. Release behaviour due to shear and pull-off of silicone coatings with a thickness gradient (James G. Kohl); 5. New liquid rheology additives for high build marine coatings (Andreas Freytag); 6. Effective corrosion protection with polyaniline, polpyrrole and polythiophene as anticorrosice additives for marine paints (Carlos Aleman); 7. Potential applications of sol gel technology for marine applications (Robert Akid); 8: Performance of biocide-free Antifouling Coatings for leisure boats (Bernd Daehne); 9. Novel biocidefree nanostructured antifouling coatings - can nano do the job? (Corne Rentrop); 10. One component high solids, VOC compliant high durability finish technology (Adrian Andrews); 11. High solid coatings - the hybrid solution (Luca Prezzi); 12. Unique organofunctional silicone resins for environmentally friendly high-performance coatings (Dieter Heldmann); 13. Silicone-alkyd paints for marine applications: from battleship-grey to green (Thomas Easton).

  17. Nonlinear Optical Characteristic Measurement of Chemically Enhanced Bacteriorhodopsin Film Using Z-scan Technology%利用Z扫描技术测量菌紫质膜的非线性光学参数

    Institute of Scientific and Technical Information of China (English)

    徐军; 何俊发; 侯素霞; 胡坤生; 张亦南

    2000-01-01

    本文讨论一种有发展前景的光敏生物材料-细菌视紫红质(菌紫质),采用化学增强法制备菌紫质膜,利用Z扫描技术测量了菌紫质膜的非线性光学参数,结果表明菌紫质具有大的非线性光学系数,在光信息处理领域有十分广泛的应用.%We present a unique biological material that exhibits interesting photochromic characteristics and important optoelectric properties. This distinctive material is related to the visual pigment rhodopsin and is called bacteriorhodopsin (bR). In this paper the films of the chemically enhanced bacteriorhodopsin are prepared and the effective nonlinearity n2 of the film is measured with the Z-scan Technology. Anomalous absorption at three wavelengths is observed. Large optical nonlinearities of bR should be useful for both information storage and compulation.

  18. PIT Coating Requirements Analysis

    International Nuclear Information System (INIS)

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products

  19. PIT Coating Requirements Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MINTEER, D.J.

    2000-10-20

    This study identifies the applicable requirements for procurement and installation of a coating intended for tank farm valve and pump pit interior surfaces. These requirements are intended to be incorporated into project specification documents and design media. This study also evaluates previously recommended coatings and identifies requirement-compliant coating products.

  20. Radiation Simulations of Top-Emitting Organic Light-Emitting Devices With Two- and Three-Microcavity Structures

    Science.gov (United States)

    Lee, Jiun-Haw; Chen, Kuan-Yu; Hsiao, Chia-Chiang; Chen, Hung-Chi; Chang, Chih-Hsiang; Kiang, Yean-Woei; Yang, C. C.

    2006-06-01

    We demonstrate the simulation results of the radiation properties from top-emitting organic light-emitting devices (top-emitting OLEDs) with two- and three-microcavity structures based on the general electromagnetic theory. The parameters of the layer thickness and complex refractive index of each layer, the locations and density of the oscillating dipoles, and the emission photoluminescence spectrum are varied to optimize the device performance. In evaluating the deice performances, the output spectrum, the intensity distribution, and the viewing-angle characteristics of a top-emitting OLED are concerned. The simulation results are consistent with the Fabry-Pérot cavity equation, which can be used as a guideline for designing a two-cavity top-emitting OLED. In such a design process, the dipole position is chosen first. Then the thicknesses of the whole organic layer, the semi-transparent cathode, and the dielectric layer are adjusted for optimizing the device performance. In a three-cavity top-emitting OLED, not only the emission intensity and the viewing angle can be optimized at the same time, but also the emission wavelength can be independently tuned. Besides, the use of a three-cavity structure helps to narrow the spectral width and increase the color purity.

  1. Optimal all-optical switching of a microcavity resonance in the telecom range using the electronic Kerr effect

    Science.gov (United States)

    Yüce, Emre; Ctistis, Georgios; Claudon, Julien; Gérard, Jean-Michel; Vos, Willem L.

    2016-01-01

    We have switched GaAs/AlAs and AlGaAs/AlAs planar microcavities that operate in the "Original" (O) telecom band by exploiting the instantaneous electronic Kerr effect. We observe that the resonance frequency reversibly shifts within one picosecond. We investigate experimentally and theoretically the role of several main parameters: the material backbone and its electronic bandgap, the pump power, the quality factor, and the duration of the switch pulse. The magnitude of the shift is reduced when the backbone of the central $\\lambda-$layer has a greater electronic bandgap; pumping with photon energies near the bandgap resonantly enhances the switched magnitude. Our model shows that the magnitude of the resonance frequency shift depends on the pump pulse duration and is maximized when the duration matches the cavity storage time that is set by the quality factor. We provide the settings for the essential parameters so that the frequency shift of the cavity resonance can be increased to one linewidth.

  2. Ultra-compact and wide-spectrum-range thermo-optic switch based on silicon coupled photonic crystal microcavities

    CERN Document Server

    Zhang, Xingyu; Chung, Chi-Jui; Pan, Zeyu; Yan, Hai; Chen, Ray T

    2016-01-01

    We design, fabricate, and experimentally demonstrate a compact thermo-optic gate switch comprising a 3.78 um-long coupled L0-type photonic crystalmicrocavities on a silicon-on-insulator substrate. A nanohole is inserted in the center of each individual L0 photonic crystalmicrocavity. Coupling between identical microcavities gives rise to bonding and anti-bonding states of the coupled photonic molecules. The coupled photonic crystalmicrocavities are numerically simulated and experimentally verified with a 6 nm-wide flat-bottom resonance in its transmission spectrum, which enables wider operational spectrum range than microring resonators. An integrated micro-heater is in direct contact with the silicon core to efficiently drive the device. The thermo-optic switch is measured with an optical extinction ratio of 20 dB, an on-off switching power of 18.2 mW, a thermo-optic tuning efficiency of 0.63 nm/mW, a rise time of 14.8 us, and a fall time of 18.5 us. The measured on-chip loss on the transmission band is as l...

  3. Q-factor of (In,Ga)N containing III-nitride microcavity grown by multiple deposition techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gačević, Ž., E-mail: gacevic@isom.upm.es; Calleja, E. [Universidad Politécnica de Madrid, Avda. Complutense s/n, 28040 Madrid (Spain); Rossbach, G.; Butté, R.; Glauser, M.; Levrat, J.; Cosendey, G.; Carlin, J.-F.; Grandjean, N. [Institute of Condensed Matter Physics, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Réveret, F. [Institut Pascal, UMR 6602 UBP/CNRS, Clermont Université, 24 Avenue des Landais, F-63177 Aubière Cedex (France)

    2013-12-21

    A 3λ/2 (In,Ga)N/GaN resonant cavity, designed for ∼415 nm operation, is grown by molecular beam epitaxy and is sandwiched between a 39.5-period (In,Al)N/GaN distributed Bragg reflector (DBR), grown on c-plane GaN-on-sapphire pseudo-substrate by metal-organic vapor phase epitaxy and an 8-period SiO{sub 2}/ZrO{sub 2} DBR, deposited by electron beam evaporation. Optical characterization reveals an improvement in the cavity emission spectral purity of approximately one order of magnitude due to resonance effects. The combination of spectrophotometric and micro-reflectivity measurements confirms the strong quality (Q)-factor dependence on the excitation spot size. We derive simple analytical formulas to estimate leak and residual absorption losses and propose a simple approach to model the Q-factor and to give a quantitative estimation of the weight of cavity disorder. The model is in good agreement with both transfer-matrix simulation and the experimental findings. We point out that the realization of high Q-factor (In,Ga)N containing microcavities on GaN pseudo-substrates is likely to be limited by the cavity disorder.

  4. Emission from quantum-dot high- microcavities: transition from spontaneous emission to lasing and the effects of superradiant emitter coupling

    CERN Document Server

    Kreinberg, S; Wolters, J; Schneider, C; Gies, C; Jahnke, F; Höfling, S; Kamp, M; Reitzenstein, S

    2016-01-01

    Measured and calculated results are presented on the emission properties of a new class of emitters operating in the cavity quantum electrodynamics regime. The structures are based on high-finesse GaAs/AlAs micropillar cavities, each with an active medium consisting of a layer of InGaAs quantum dots and distinguishing feature of having substantial fraction of spontaneous emission channeled into one cavity mode (high-beta factor). This paper shows that the usual criterion for lasing with a conventional (low-beta factor) cavity, a sharp nonlinearity in an input-output curve accompanied by noticeable linewidth narrowing, has to be reinforced by the equal-time second-order photon autocorrelation function for confirming lasing. It will also show that the equal-time second-order photon autocorrelation function is useful for recognizing superradiance, a manifestation of the correlations possible in high- microcavities operating with quantum dots. In terms of consolidating the collected data and identifying the physi...

  5. Competition between electronic Kerr and free carrier effects in an ultimate-fast optically switched semiconductor microcavity

    CERN Document Server

    Yüce, E; Claudon, J; Dupuy, E; Boller, K J; Gérard, J M; Vos, W L

    2012-01-01

    We have performed ultrafast pump-probe experiments on a GaAs-AlAs microcavity with a resonance near 1300 nm in the "original" telecom band. We concentrate on ultimate-fast optical switching of the cavity resonance that is measured as a function of pump-pulse energy. We observe that at low pump-pulse energies the switching of the cavity resonance is governed by the instantaneous electronic Kerr effect and is achieved within 300 fs. At high pump-pulse energies the index change induced by free carriers generated in the GaAs start to compete with the electronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model which predicts this competition in agreement with the experimental data. Our model includes a new term in the intensity-dependent refractive index that considers the effect of the probe pulse intensity, which is resonantly enhanced by the cavity. We calculate the effect of the resonantly enhanced probe light on the refractive index change induced by the electronic Ker...

  6. Optical Properties of Window Coatings

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Window coating used for the building in recent years is described. Important design principles, practical coating materials, and attainable optical properties for research-type coatings are introduced. Discussion is carried out on the spectrally selective coatings, the electrochromic coatings, and the thermochromic coatings.

  7. Metallic coating of microspheres

    International Nuclear Information System (INIS)

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates

  8. ATHENA optimized coating design

    DEFF Research Database (Denmark)

    Ferreira, Desiree Della Monica; Christensen, Finn Erland; Jakobsen, Anders Clemen;

    2012-01-01

    The optimization of coating design for the ATHENA mission si described and the possibility of increasing the telescope effective area in the range between 0.1 and 10 keV is investigated. An independent computation of the on-axis effective area based on the mirror design of ATHENA is performed...... in order to review the current coating baseline. The performance of several material combinations, considering a simple bi-layer, simple multilayer and linear graded multilayer coatings are tested and simulation of the mirror performance considering both the optimized coating design and the coating...

  9. Antibacterial polymer coatings.

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Mollye C.; Allen, Ashley N.; Barnhart, Meghan; Tucker, Mark David; Hibbs, Michael R.

    2009-09-01

    A series of poly(sulfone)s with quaternary ammonium groups and another series with aldehyde groups are synthesized and tested for biocidal activity against vegetative bacteria and spores, respectively. The polymers are sprayed onto substrates as coatings which are then exposed to aqueous suspensions of organisms. The coatings are inherently biocidal and do not release any agents into the environment. The coatings adhere well to both glass and CARC-coated coupons and they exhibit significant biotoxicity. The most effective quaternary ammonium polymers kills 99.9% of both gram negative and gram positive bacteria and the best aldehyde coating kills 81% of the spores on its surface.

  10. Coated Aerogel Beads

    Science.gov (United States)

    Littman, Howard (Inventor); Plawsky, Joel L. (Inventor); Paccione, John D. (Inventor)

    2014-01-01

    Methods and apparatus for coating particulate material are provided. The apparatus includes a vessel having a top and a bottom, a vertically extending conduit having an inlet in the vessel and an outlet outside of the vessel, a first fluid inlet in the bottom of the vessel for introducing a transfer fluid, a second fluid inlet in the bottom of the vessel for introducing a coating fluid, and a fluid outlet from the vessel. The method includes steps of agitating a material, contacting the material with a coating material, and drying the coating material to produce a coated material. The invention may be adapted to coat aerogel beads, among other materials. A coated aerogel bead and an aerogel-based insulation material are also disclosed.

  11. Anticorrosive coatings: a review

    DEFF Research Database (Denmark)

    Sørensen, Per Aggerholm; Kiil, Søren; Dam-Johansen, Kim;

    2009-01-01

    of volatile organic compounds (VOCs) have caused significant changes in the anticorrosive coating industry. The requirement for new VOC-compliant coating technologies means that coating manufacturers can no longer rely on the extensive track record of their time-served products to convince consumers......, and inhibitive coatings are outlined. In the past decades, several alternatives to organic solvent-borne coatings have reached the commercial market. This review also presents some of these technologies and discusses some of their advantages and limitations. Finally, some of the mechanisms leading to degradation...... of their suitability for use. An important aspect in the development of new VOC-compliant, high-performance anticorrosive coating systems is a thorough knowledge of the components in anticorrosive coatings, their interactions, their advantages and limitations, as well as a detailed knowledge on the failure modes...

  12. Combustion chemical vapor desposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States)

    1995-10-01

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings.

  13. Distinguishing photon and polariton lasing from GaAs microcavities by spectral and temporal analysis of the two-threshold behavior

    OpenAIRE

    Tempel, Jean-Sebastian; Veit, Franziska; Aßmann, Marc; Kreilkamp, Lars Erik; Rahimi-Iman, Arash; Löffler, Andreas; Höfling, Sven; Reitzenstein, Stephan; Worschech, Lukas; Forchel, Alfred; Bayer, Manfred

    2011-01-01

    We compare polariton lasing with photon lasing of a planar GaAs/GaAlAs microcavity with zero detuning between the bare cavity mode and the bare exciton mode. For the emission from the lower energy-momentum dispersion branch we find a two-threshold behavior of the ground state in the input-output curve where each transition is accompanied by characteristic changes of the in-plane mode dispersion. In particular, we show that the thresholds are unambiguously evidenced in the photon statistics of...

  14. Quadratic electro-optic effects in bacteriorhodopsin: Measurement of γ(-ω;0,0,ω) in dried gelatin thin films

    Science.gov (United States)

    Yamazaki, Mikio; Goodisman, Jerry; Birge, Robert R.

    1998-04-01

    Quadratic electro-optic effects (dc or low frequency Kerr effect) of bacteriorhodopsin dispersed in dried gelatin thin films are examined in the near resonance region at three wavelengths: 633, 647, and 676 nm. The films show relatively large quadratic electro-optic effects compared to other molecular dispersed systems. The purple membrane is fixed within the polymerized gelatin matrix, and we show that the electronic contribution to γ dominates over possible orientational contributions. At 676 nm, the quadratic electro-optic coefficient s1133(-ω;0,0,ω) is 6.7×10-20m2/V2 and the third order nonlinear susceptibility χ1133(3)(-ω;0,0,ω) is 7.0×10-13cm4 statCoulomb-2, with both values obtained for a protein concentration of 6.9×1018cm-3. The orientationally averaged second molecular hyperpolarizability determined from the quadratic electro-optic coefficients at 676 nm assuming an Onsager ellipsoidal local field factor is (10.8±5.1)×10-32 cm7 statCoulomb-2 [(1.34±0.63)×10-56 F3 m4 C-2]. The value increases roughly tenfold when the probe wavelength is decreased to 633 nm. The behavior of γ(-ω;0,0,ω), when fit to a two-state model, predicts that γ(-ω;0,0,ω) is strongly enhanced via type III processes. Thus, the magnitude of γ(-ω;0,0,ω) is dominated by a term (Δμ102×μ102)/(ω10-ω)3, where Δμ10 is the change in dipole moment, μ10 is the transition moment, and ω10 is the transition energy of the lowest-lying allowed 1Bu*+-like π,π* state. We calculate that Δμ10 is 12.8±1.2 D, in good agreement with previous Stark and two-photon experimental values. Time-dependent Hartree-Fock methods based on the MNDO Hamiltonian yield reasonable agreement with experiment, underestimating γ(-ω;0,0,ω) by factors of only 2-4, with the error increasing as the frequency approaches resonance.

  15. Preliminary coating design and coating developments for ATHENA

    DEFF Research Database (Denmark)

    Jakobsen, Anders Clemen; Ferreira, Desiree Della Monica; Christensen, Finn Erland;

    2011-01-01

    We present initial novel coating design for ATHENA. We make use of both simple bilayer coatings of Ir and B4C and more complex constant period multilayer coatings to enhance the effective area and cover the energy range from 0.1 to 10 keV. We also present the coating technology used for these...... designs and present test results from coatings....

  16. Optical microcavities and enhanced electroluminescence from electroformed Al-Al{sub 2}O{sub 3}-Ag diodes

    Energy Technology Data Exchange (ETDEWEB)

    Hickmott, T. W. [Department of Physics, State University of New York at Albany, Albany, New York 12222 (United States)

    2013-12-21

    Electroluminescence (EL) and electron emission into vacuum (EM) occur when a non-destructive dielectric breakdown of Al-Al{sub 2}O{sub 3}-Ag diodes, electroforming, results in the development of a filamentary region in which current-voltage (I-V) characteristics exhibit voltage-controlled negative resistance. The temperature dependence of I-V curves, EM, and, particularly, EL of Al-Al{sub 2}O{sub 3}-Ag diodes with anodic Al{sub 2}O{sub 3} thicknesses between 12 nm and 30 nm, has been studied. Two filters, a long-pass (LP) filter with transmission of photons with energies less than 3.0 eV and a short-pass (SP) filter with photon transmission between 3.0 and 4.0 eV, have been used to characterize EL. The voltage threshold for EL with the LP filter, V{sub LP}, is ∼1.5 V. V{sub LP} is nearly independent of Al{sub 2}O{sub 3} thickness and of temperature and is 0.3–0.6 V less than the threshold voltage for EL for the SP filter, V{sub SP}. EL intensity is primarily between 1.8 and 3.0 eV when the bias voltage, V{sub S} ≲ 7 V. EL in the thinnest diodes is enhanced compared to EL in thicker diodes. For increasing V{sub S}, for diodes with the smallest Al{sub 2}O{sub 3} thicknesses, there is a maximum EL intensity, L{sub MX}, at a voltage, V{sub LMX}, followed by a decrease to a plateau. L{sub MX} and EL intensity at 4.0 V in the plateau region depend exponentially on Al{sub 2}O{sub 3} thickness. The ratio of L{sub MX} at 295 K for a diode with 12 nm of Al{sub 2}O{sub 3} to L{sub MX} for a diode with 25 nm of Al{sub 2}O{sub 3} is ∼140. The ratio of EL intensity with the LP filter to EL intensity with the SP filter, LP/SP, varies between ∼3 and ∼35; it depends on Al{sub 2}O{sub 3} thickness and V{sub S}. Enhanced EL is attributed to the increase of the spontaneous emission rate of a dipole in a non-resonant optical microcavity. EL photons interact with the Ag and Al films to create surface plasmon polaritons (SPPs) at the metal-Al{sub 2}O

  17. Biocompatibility of Niobium Coatings

    OpenAIRE

    René Olivares-Navarrete; Jhon Jairo Olaya; Claudia Ramírez; Sandra Elizabeth Rodil

    2011-01-01

    Niobium coatings deposited by magnetron sputtering were evaluated as a possible surface modification for stainless steel (SS) substrates in biomedical implants. The Nb coatings were deposited on 15 mm diameter stainless steel substrates having an average surface roughness of 2 mm. To evaluate the biocompatibility of the coatings three different in vitro tests, using human alveolar bone derived cells, were performed: cellular adhesion, proliferation and viability. Stainles...

  18. Superhard Nanocomposite Coatings

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The recent development in the field of nanocomposite coatings with good mechanical properties is critically reviewed in this paper. The design principle and materials selection for the nanocomposite coatings are introduced. Different methods for the preparation of superhard nanocomposite coatings are described with emphasis on the magnetron sputtering. Based on recent theoretical and experimental results regarding the appearance of superhardness in nanocomposite coating, lattice parameter changes, crystallite size, microstructure and morphology are reviewed in detail. Also emphasized are the mechanical properties (especially on hardness) and the ways by which the properties are derived.

  19. Oxide coating development

    Energy Technology Data Exchange (ETDEWEB)

    Stinton, D.P.

    1995-06-01

    Monolithic SiC heat exchangers and fiber-reinforced SiC-matrix composite heat exchangers and filters are susceptible to corrosion by alkali metals at elevated temperatures. Protective coatings are currently being developed to isolate the SiC materials from the corrodants. Unfortunately, these coatings typically crack and spall when applied to SiC substrates. The purpose of this task is to determine the feasibility of using a compliant material between the protective coating and the substrate. The low-modulus compliant layer could absorb stresses and eliminate cracking and spalling of the protective coatings.

  20. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Science.gov (United States)

    Li, Jiahua; Yu, Rong; Ma, Jinyong; Wu, Ying

    2014-10-01

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  1. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    International Nuclear Information System (INIS)

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  2. Proposal for efficient mode converter based on cavity quantum electrodynamics dark mode in a semiconductor quantum dot coupled to a bimodal microcavity

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jiahua [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China); Key Laboratory of Fundamental Physical Quantities Measurement of Ministry of Education, Wuhan 430074 (China); Yu, Rong, E-mail: yurong321@126.com [School of Science, Hubei Province Key Laboratory of Intelligent Robot, Wuhan Institute of Technology, Wuhan 430073 (China); Ma, Jinyong; Wu, Ying, E-mail: yingwu2@163.com [School of Physics, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2014-10-28

    The ability to engineer and convert photons between different modes in a solid-state approach has extensive technological implications not only for classical communication systems but also for future quantum networks. In this paper, we put forward a scheme for coherent mode conversion of optical photons by utilizing the intermediate coupling between a single quantum dot and a bimodal photonic crystal microcavity via a waveguide. Here, one mode of the photonic crystal microcavity is coherently driven by an external single-frequency continuous-wave laser field and the two cavity modes are not coupled to each other due to their orthogonal polarizations. The undriven cavity mode is thus not directly coupled to the input driving laser and the only way it can get light is via the quantum dot. The influences of the system parameters on the photon-conversion efficiency are analyzed in detail in the limit of weak probe field and it is found that high photon-conversion efficiency can be achieved under appropriate conditions. It is shown that the cavity dark mode, which is a superposition of the two optical modes and is decoupled from the quantum dot, can appear in such a hybrid optical system. We discuss the properties of the dark mode and indicate that the formation of the dark mode enables the efficient transfer of optical fields between the two cavity modes.

  3. Silicon on-chip side-coupled high-Q micro-cavities for the multiplexing of high sensitivity photonic crystal integrated sensors array

    Science.gov (United States)

    Yang, Daquan; Wang, Chunhong; Yuan, Wei; Wang, Bo; Yang, Yujie; Ji, Yuefeng

    2016-09-01

    A novel two-dimensional (2D) silicon (Si) photonic crystal (PC) α-H0-slot micro-cavity with high Q-factor and high sensitivity (S) is presented. Based on the proposed α-H0-Slot micro-cavities, an optimal design of photonic crystal integrated sensors array (PC-ISA) on monolithic silicon on insulator (SOI) is displayed. By using finite-difference time-domain (FDTD) method, the simulation results demonstrate that both large S of 200 nm/RIU (RIU=refractive index unit) and high Q-factor >104 at telecom wavelength range can be achieved simultaneously. And the sensor figure of merit (FOM)>7000 is featured, an order of magnitude improvement over previous 2D PC sensors array. In addition, for the proposed 2D PC-ISA device, each sensor unit is shown to independently shift its resonance wavelength in response to the changes in refractive index (RI) and does not perturb the others. Thus, it is potentially an ideal platform for realizing ultra-compact lab-on-a-chip applications with dense arrays of functionalized spots for multiplexed sensing, and also can be used as an opto-fluidic architecture for performing highly parallel detection of biochemical interactions in aqueous environments.

  4. All-optical diode structure based on asymmetrical coupling by a micro-cavity and FP cavity at two sides of photonic crystal waveguide

    Directory of Open Access Journals (Sweden)

    Bin Liu

    2016-06-01

    Full Text Available A high efficiency all-optical diode based on photonic crystal (PC waveguide has been proposed and numerically investigated by finite-difference time-domain (FDTD method. The structure is asymmetrically coupled by a micro-cavity containing nonlinear Kerr medium and a FP cavity at sides of PC waveguide. Because of interference between two cavities, Fano peak and FP peak can both appear in transmission spectra and unidirectional transmission can be achieved. The working wavelength can set between two peaks and near to the Fano peak. For forward launch with suitable light intensity, nonlinear Kerr effect of micro-cavity can been excited. It will result in red shift of Fano peak and achieving forward transmission. But for backward launch, a stronger incidence light is needed to the excite Kerr effect due to the design of asymmetric structure. This design has many advantages, including high maximum transmittance, high transmittance contrast ratio, low power threshold, short response time, and ease of integration.

  5. High reflectance dielectric distributed Bragg reflectors for near ultra-violet planar microcavities: SiO2/HfO2 versus SiO2/SiNx

    Science.gov (United States)

    Réveret, F.; Bignet, L.; Zhigang, W.; Lafosse, X.; Patriarche, G.; Disseix, P.; Médard, F.; Mihailovic, M.; Leymarie, J.; Zúñiga-Pérez, J.; Bouchoule, S.

    2016-09-01

    SiO2/SiNx and SiO2/HfO2 distributed Bragg reflectors for the ultra-violet (λ = 360 nm-380 nm) are compared through their structural and optical properties. The SiO2/HfO2 system exhibits a lower interface roughness, higher reflectance, larger stop band, and lower penetration depth than SiO2/SiNx. A cavity quality factor of 3700 at about 360 nm is measured on a passive SiO2/HfO2-based planar microcavity. Compared with values obtained in the literature for the near UV range, the latter is rather large. Micro-reflectance measurements have been performed on a series of passive microcavities with increasing cavity thickness to determine the residual absorption in the SiO2 and HfO2 layers. Absorption coefficients of 30 (k = 0.86 × 10-4) and 160 cm-1 (k = 4.59 × 10-4) near λ ˜ 360 nm have been extracted for SiO2 and HfO2, respectively. Transfer-matrix simulations taking into account the residual absorption show that microcavity quality factors up to 8000 can be expected at 360-380 nm with this material system. Such values are well-suited for the fabrication of UV-vertical cavity surface emitting lasers or microcavity polariton lasers operating at room temperature.

  6. Incorporation of the dopamine D2L receptor and bacteriorhodopsin within bicontinuous cubic lipid phases. 2. Relevance to in meso crystallization of integral membrane proteins in novel lipid systems

    Energy Technology Data Exchange (ETDEWEB)

    Conn, Charlotte E.; Darmanin, Connie; Sagnella, Sharon M.; Mulet, Xavier; Greaves, Tamar L.; Varghese, Joseph N.; Drummond, Calum J.

    2014-09-24

    The dopamine D2 long (D2L) receptor and bacteriorhodopsin (bR), which are integral membraneproteins, have been incorporated within bicontinuous cubic mesophases formed by the lipids anandamide and H-farnesoyl monoethanolamide, which have been specifically investigated by us for use as in mesocrystallization media. We show that the incorporated membraneprotein affects the structure of the cubic phases with the particular effect observed dependent on the geometry of the underlying cubic phase. The results are complementary to those obtained in Part 1 of this series, where we demonstrated that the structural effects observed depend on the structure of the membraneprotein. Importantly protein concentrations commonly used for crystallization can destroy the cubic phase matrix, particularly where there is a large discrepancy between the hydrophilic and the hydrophobic spans of the membraneprotein, and the hydrophilic and hydrophobic domain sizes of the cubic phase.

  7. Determination of the Waist Position of a Gaussian Beam by Bacteriorhodopsin Film%由细菌视紫红质测定高斯光束的束腰位置

    Institute of Scientific and Technical Information of China (English)

    陈桂英; 郭宗霞; 张春平; 田建国; Q.W.Song; Mingchien Huang

    2004-01-01

    Relation between transmitted intensity of bacteriorhodopsin(bR) film and the incident intensity was tested.A new method of determining waist position of a Gaussian beam passing an optical system was proposed by the nonlinear transmission of the bR film.The measured results are in agreement with the calculated results based on the parameters of the Guassian beam.%介绍并测量了细菌视紫红质(bR)的透过光强随入射光强的变化特性,并提出利用bR的非线性透过特性测定高斯光束的束腰位置,测量结果与利用已知的高斯光束参数所计算的结果相一致.

  8. Innovations in coating technology.

    Science.gov (United States)

    Behzadi, Sharareh S; Toegel, Stefan; Viernstein, Helmut

    2008-01-01

    Despite representing one of the oldest pharmaceutical techniques, coating of dosage forms is still frequently used in pharmaceutical manufacturing. The aims of coating range from simply masking the taste or odour of drugs to the sophisticated controlling of site and rate of drug release. The high expectations for different coating technologies have required great efforts regarding the development of reproducible and controllable production processes. Basically, improvements in coating methods have focused on particle movement, spraying systems, and air and energy transport. Thereby, homogeneous distribution of coating material and increased drying efficiency should be accomplished in order to achieve high end product quality. Moreover, given the claim of the FDA to design the end product quality already during the manufacturing process (Quality by Design), the development of analytical methods for the analysis, management and control of coating processes has attracted special attention during recent years. The present review focuses on recent patents claiming improvements in pharmaceutical coating technology and intends to first familiarize the reader with the available procedures and to subsequently explain the application of different analytical tools. Aiming to structure this comprehensive field, coating technologies are primarily divided into pan and fluidized bed coating methods. Regarding pan coating procedures, pans rotating around inclined, horizontal and vertical axes are reviewed separately. On the other hand, fluidized bed technologies are subdivided into those involving fluidized and spouted beds. Then, continuous processing techniques and improvements in spraying systems are discussed in dedicated chapters. Finally, currently used analytical methods for the understanding and management of coating processes are reviewed in detail in the last section of the review. PMID:19075909

  9. Combustion chemical vapor deposited coatings for thermal barrier coating systems

    Energy Technology Data Exchange (ETDEWEB)

    Hampikian, J.M.; Carter, W.B. [Georgia Institute of Technology, Atlanta, GA (United States). School of Materials Science and Engineering

    1995-12-31

    The new deposition process, combustion chemical vapor deposition, shows a great deal of promise in the area of thermal barrier coating systems. This technique produces dense, adherent coatings, and does not require a reaction chamber. Coatings can therefore be applied in the open atmosphere. The process is potentially suitable for producing high quality CVD coatings for use as interlayers between the bond coat and thermal barrier coating, and/or as overlayers, on top of thermal barrier coatings. In this report, the evaluation of alumina and ceria coatings on a nickel-chromium alloy is described.

  10. Molecular Adsorber Coating

    Science.gov (United States)

    Straka, Sharon; Peters, Wanda; Hasegawa, Mark; Hedgeland, Randy; Petro, John; Novo-Gradac, Kevin; Wong, Alfred; Triolo, Jack; Miller, Cory

    2011-01-01

    A document discusses a zeolite-based sprayable molecular adsorber coating that has been developed to alleviate the size and weight issues of current ceramic puck-based technology, while providing a configuration that more projects can use to protect against degradation from outgassed materials within a spacecraft, particularly contamination-sensitive instruments. This coating system demonstrates five times the adsorption capacity of previously developed adsorber coating slurries. The molecular adsorber formulation was developed and refined, and a procedure for spray application was developed. Samples were spray-coated and tested for capacity, thermal optical/radiative properties, coating adhesion, and thermal cycling. Work performed during this study indicates that the molecular adsorber formulation can be applied to aluminum, stainless steel, or other metal substrates that can accept silicate-based coatings. The coating can also function as a thermal- control coating. This adsorber will dramatically reduce the mass and volume restrictions, and is less expensive than the currently used molecular adsorber puck design.

  11. Rock-hard coatings

    NARCIS (Netherlands)

    Muller, M.

    2007-01-01

    Aircraft jet engines have to be able to withstand infernal conditions. Extreme heat and bitter cold tax coatings to the limit. Materials expert Dr Ir. Wim Sloof fits atoms together to develop rock-hard coatings. The latest invention in this field is known as ceramic matrix composites. Sloof has sign

  12. Coating of graphene

    NARCIS (Netherlands)

    Schneider, G.F.; Dekker, C.

    2014-01-01

    The present invention is in the field of highly crystalline graphene and coating said graphene with a layer. Said graphene may have further structures, such as nanopores, nanogaps, and nanoribbons. The coated graphene can be used for biomolecular analysis and modification, such as DNA-sequencing, as

  13. Fast-drying coating

    Science.gov (United States)

    Bartoszek, E. J.

    1978-01-01

    Nontoxic coating has excellent optical properties and can be pigmented in many different colors. It bonds well, can be applied by conventional methods, weathers well, and is self-extinguishing. Coating composition comprises latex blends of fluorocarbons, acrylic resins, stabilizers, modifiers, variety of inorganic pigments, and other additives. Suitable latex primers have also been developed from acrylic latex base.

  14. Catalytic thermal barrier coatings

    Science.gov (United States)

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  15. Charged-particle coating

    International Nuclear Information System (INIS)

    Advanced target designs require thicker (approx. 300 μm) coatings and better surface finishes that can be produced with current coating techniques. An advanced coating technique is proposed to provide maximum control of the coating flux and optimum manipulation of the shell during processing. In this scheme a small beam of ions or particles of known incident energy are collided with a levitated spherical mandrel. Precise control of the incident energy and angle of the deposition flux optimizes the control of the coating morphology while controlled rotation and noncontact support of the shell minimizes the possibility of particulate or damage generated defects. Almost infinite variability of the incident energy and material in this process provides increased flexibility of the target designs which can be physically realized

  16. Modern coating processes

    International Nuclear Information System (INIS)

    Articles collected in this volume explain both the present state of technique and current developments and problems in the environment of the following coating processes: - Hardfacing welding and soldering; - Thermal spraying; - Thin film technique (CVD, PVD); - Galvanising. Apart from basic representation of the conventional use of the different processes, both the new technological and material developments are to the fore. In this context, the purposeful post-treatment of coatings and the combination of different processes to achieve special coating properties should be mentioned. Examples of this show the hot isostatic pressing or laser melting of sprayed coatings, the simultaneous spraying and shot-blasting and the combination of galvanic and thin film techniques for the manufacture of hybrid systems. A further important group of subjects concerns the testing of various coatings. (orig.)

  17. Isomolybdate conversion coatings

    Science.gov (United States)

    Minevski, Zoran (Inventor); Maxey, Jason (Inventor); Nelson, Carl (Inventor); Eylem, Cahit (Inventor)

    2002-01-01

    A conversion coating solution and process forms a stable and corrosion-resistant layer on metal substrates or layers or, more preferably, on a boehmite layer or other base conversion coating. The conversion coating process involves contacting the substrate, layer or coating with an aqueous alkali metal isomolybdate solution in order to convert the surface of the substrate, layer or coating to a stable conversion coating. The aqueous alkali metal molybdates are selected from sodium molybdate (Na.sub.2 MoO.sub.4), lithium molybdate (Li.sub.2 MoO.sub.4), potassium molybdate (K.sub.2 MoO.sub.4), or combinations thereof, with the most preferred alkali metal molybdate being sodium molybdate. The concentration of alkali metal molybdates in the solution is preferably less than 5% by weight. In addition to the alkali metal molybdates, the conversion coating solution may include alkaline metal passivators selected from lithium nitrate (LiNO.sub.3), sodium nitrate (NaNO.sub.3), ammonia nitrate (NH.sub.4 NO.sub.3), and combinations thereof; lithium chloride, potassium hexafluorozirconate (K.sub.2 ZrF.sub.6) or potassium hexafluorotitanate (K.sub.2 TiF.sub.6).

  18. Fluorine Based Superhydrophobic Coatings

    Directory of Open Access Journals (Sweden)

    Jean-Denis Brassard

    2012-05-01

    Full Text Available Superhydrophobic coatings, inspired by nature, are an emerging technology. These water repellent coatings can be used as solutions for corrosion, biofouling and even water and air drag reduction applications. In this work, synthesis of monodispersive silica nanoparticles of ~120 nm diameter has been realized via Stöber process and further functionalized using fluoroalkylsilane (FAS-17 molecules to incorporate the fluorinated groups with the silica nanoparticles in an ethanolic solution. The synthesized fluorinated silica nanoparticles have been spin coated on flat aluminum alloy, silicon and glass substrates. Functionalization of silica nanoparticles with fluorinated groups has been confirmed by Fourier Transform Infrared spectroscopy (FTIR by showing the presence of C-F and Si-O-Si bonds. The water contact angles and surface roughness increase with the number of spin-coated thin films layers. The critical size of ~119 nm renders aluminum surface superhydrophobic with three layers of coating using as-prepared nanoparticle suspended solution. On the other hand, seven layers are required for a 50 vol.% diluted solution to achieve superhydrophobicity. In both the cases, water contact angles were more than 150°, contact angle hysteresis was less than 2° having a critical roughness value of ~0.700 µm. The fluorinated silica nanoparticle coated surfaces are also transparent and can be used as paint additives to obtain transparent coatings.

  19. Inorganic Coatings Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The inorganic Coatings Lab provides expertise to Navy and Joint Service platforms acquisition IPTs to aid in materials and processing choices which balance up-front...

  20. Aluminum phosphate coatings

    Science.gov (United States)

    Sambasivan, Sankar; Steiner, Kimberly A.; Rangan, Krishnaswamy K.

    2007-12-25

    Aluminophosphate compounds and compositions as can be used for substrate or composite films and coating to provide or enhance, without limitation, planarization, anti-biofouling and/or anti-microbial properties.