WorldWideScience

Sample records for bacteriophage lysin plyc

  1. PlyC, a bacteriophage endolysin that is internalized by epithelial cells and retains bacteriolytic activity against intracellular streptococci

    Science.gov (United States)

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial...

  2. Increasing the stability of the bacteriophage endolysin PlyC using rationale-based FoldX computational modeling.

    Science.gov (United States)

    Heselpoth, Ryan D; Yin, Yizhou; Moult, John; Nelson, Daniel C

    2015-04-01

    Endolysins are bacteriophage-derived peptidoglycan hydrolases that represent an emerging class of proteinaceous therapeutics. While the streptococcal endolysin PlyC has been validated in vitro and in vivo for its therapeutic efficacy, the inherent thermosusceptible structure of the enzyme correlates to transient long-term stability, thereby hindering the feasibility of developing the enzyme as an antimicrobial. Here, we thermostabilized the cysteine, histidine-dependent amidohydrolase/peptidase (CHAP) domain of the PlyCA catalytic subunit of PlyC using a FoldX-driven computational protein engineering approach. Using a combination of FoldX and Rosetta algorithms, as well as visual inspection, a final list of PlyC point mutant candidates with predicted stabilizing ΔΔG values was assembled and thermally characterized. Five of the eight point mutations were found experimentally to be destabilizing, a result most likely attributable to computationally modeling a complex and dynamic nine-subunit holoenzyme with a corresponding 3.3-Å X-ray crystal structure. However, one of the mutants, PlyC (PlyCA) T406R, was shown experimentally to increase the thermal denaturation temperature by ∼2.2°C and kinetic stability 16-fold over wild type. This mutation is expected to introduce a thermally advantageous hydrogen bond between the Q106 side chain of the N-terminal glycosyl hydrolase domain and the R406 side chain of the C-terminal CHAP domain. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  3. A Novel Use of a Bacteriophage Lysin, PlyC, as a Disinfectant against Streptococcus equi

    Science.gov (United States)

    Streptococcus equi is the causative agent of a purulent infection in horses known as equine strangles and is transmitted through shedding of live bacteria from nasal secretions and abscess drainage. There are no accepted cures for equine strangles with conventional antibiotics being only partially ...

  4. A Highly Active and Negatively Charged Streptococcus pyogenes Lysin with a Rare d-Alanyl-l-Alanine Endopeptidase Activity Protects Mice against Streptococcal Bacteremia

    Science.gov (United States)

    Lood, Rolf; Raz, Assaf; Molina, Henrik; Euler, Chad W.

    2014-01-01

    Bacteriophage endolysins have shown great efficacy in killing Gram-positive bacteria. PlyC, a group C streptococcal phage lysin, represents the most efficient lysin characterized to date, with a remarkably high specificity against different streptococcal species, including the important pathogen Streptococcus pyogenes. However, PlyC is a unique lysin, in terms of both its high activity and structure (two distinct subunits). We sought to discover and characterize a phage lysin active against S. pyogenes with an endolysin architecture distinct from that of PlyC to determine if it relies on the same mechanism of action as PlyC. In this study, we identified and characterized an endolysin, termed PlyPy (phage lysin from S. pyogenes), from a prophage infecting S. pyogenes. By in silico analysis, PlyPy was found to have a molecular mass of 27.8 kDa and a pI of 4.16. It was active against a majority of group A streptococci and displayed high levels of activity as well as binding specificity against group B and C streptococci, while it was less efficient against other streptococcal species. PlyPy showed the highest activity at neutral pH in the presence of calcium and NaCl. Surprisingly, its activity was not affected by the presence of the group A-specific carbohydrate, while the activity of PlyC was partly inhibited. Additionally, PlyPy was active in vivo and could rescue mice from systemic bacteremia. Finally, we developed a novel method to determine the peptidoglycan bond cleaved by lysins and concluded that PlyPy exhibits a rare d-alanyl-l-alanine endopeptidase activity. PlyPy thus represents the first lysin characterized from Streptococcus pyogenes and has a mechanism of action distinct from that of PlyC. PMID:24637688

  5. Bacteriophage Lysin CF-301, a Potent Antistaphylococcal Biofilm Agent

    KAUST Repository

    Schuch, Raymond

    2017-05-02

    Biofilms pose a unique therapeutic challenge because of the antibiotic tolerance of constituent bacteria. Treatments for biofilm-based infections represent a major unmet medical need, requiring novel agents to eradicate mature biofilms. Our objective was to evaluate bacteriophage lysin CF-301 as a new agent to target Staphylococcus aureus biofilms. We used minimum biofilm-eradicating concentration (MBEC) assays on 95 S. aureus strains to obtain a 90% MBEC (MBEC90) value of <= 0.25 mu g/ml for CF-301. Mature biofilms of coagulase-negative staphylococci, Streptococcus pyogenes, and Streptococcus agalactiae were also sensitive to disruption, with MBEC90 values ranging from 0.25 to 8 mu g/ml. The potency of CF-301 was demonstrated against S. aureus biofilms formed on polystyrene, glass, surgical mesh, and catheters. In catheters, CF-301 removed all biofilm within 1 h and killed all released bacteria by 6 h. Mixed-species biofilms, formed by S. aureus and Staphylococcus epidermidis on several surfaces, were removed by CF-301, as were S. aureus biofilms either enriched for small-colony variants (SCVs) or grown in human synovial fluid. The antibacterial activity of CF-301 was further demonstrated against S. aureus persister cells in exponential-phase and stationary-phase populations. Finally, the antibiofilm activity of CF-301 was greatly improved in combinations with the cell wall hydrolase lysostaphin when tested against a range of S. aureus strains. In all, the data show that CF-301 is highly effective at disrupting biofilms and killing biofilm bacteria, and, as such, it may be an efficient new agent for treating staphylococcal infections with a biofilm component.

  6. Therapeutic use of chimeric bacteriophage (phage) lysins in staphylococcal endophthalmitis

    Science.gov (United States)

    Purpose: Phage endolysins are peptidoglycan hydrolases that are produced at the end of the phage lytic cycle to digest the host bacterial cell wall, facilitating the release of mature phage progeny. The aim of this study is to determine the antimicrobial activity of chimeric phage lysins against cli...

  7. Bacteriophage phi11 lysin: Physicochemical characterization and comparison with phage phi80α lysin.

    Science.gov (United States)

    Filatova, Lyubov Y; Donovan, David M; Foster-Frey, Juli; Pugachev, Vladimir G; Dmitrieva, Natalia F; Chubar, Tatiana A; Klyachko, Natalia L; Kabanov, Alexander V

    2015-06-01

    Phage lytic enzymes are promising antimicrobial agents. Lysins of phages phi11 (LysPhi11) and phi80α (LysPhi80α) can lyse (destroy) cells of antibiotic-resistant strains of Staphylococcus aureus. Stability of enzymes is one of the parameters making their practical use possible. The objectives of the study were to investigate the stability of lysins of phages phi11 and phi80α in storage and functioning conditions, to identify optimum storage conditions and causes of inactivation. Stability of the recombinant LysPhi11 and LysPhi80α was studied using turbidimetry. CD-spectroscopy, dynamic light scattering, and electrophoresis were used to identify causes of inactivation. At 37°C, pH 7.5 and concentration of NaCl not higher than 150mM, LysPhi11 molecules contain a high percentage of random coils (43%). However, in spite of this the enzyme has high activity (0.4-0.8OD600nms(-1)mg(-1)). In storage conditions (4°C and 22°C, pH 6.0-9.0, 10-500mM NaCl) LysPhi11 is inactivated by a monomolecular mechanism. The optimum storage conditions for LysPhi11 (4°C, pH 6.0-7.5, 10mM NaCl) were selected under which the time of the enzyme half-inactivation is 120-160 days. LysPhi80α stability is insufficient: at 37°C the enzyme loses half of its activity almost immediately; at 4°C and 22°C the time of half-inactivation of LysPhi80α varies in the range from several hours to 3 days. Despite the common properties in the manifestation of antistaphylococcal activity the kinetic behavior of the enzymes is different. LysPhi11 is a more promising candidate to be used as an antimicrobial agent. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Use of a bacteriophage lysin to identify a novel target for antimicrobial development.

    Directory of Open Access Journals (Sweden)

    Raymond Schuch

    Full Text Available We identified an essential cell wall biosynthetic enzyme in Bacillus anthracis and an inhibitor thereof to which the organism did not spontaneously evolve measurable resistance. This work is based on the exquisite binding specificity of bacteriophage-encoded cell wall-hydrolytic lysins, which have evolved to recognize critical receptors within the bacterial cell wall. Focusing on the B. anthracis-specific PlyG lysin, we first identified its unique cell wall receptor and cognate biosynthetic pathway. Within this pathway, one biosynthetic enzyme, 2-epimerase, was required for both PlyG receptor expression and bacterial growth. The 2-epimerase was used to design a small-molecule inhibitor, epimerox. Epimerox prevented growth of several Gram-positive pathogens and rescued mice challenged with lethal doses of B. anthracis. Importantly, resistance to epimerox was not detected (<10(-11 frequency in B. anthracis and S. aureus. These results describe the use of phage lysins to identify promising lead molecules with reduced resistance potential for antimicrobial development.

  9. A bacteriophage endolysin that eliminates intracellular streptococci.

    Science.gov (United States)

    Shen, Yang; Barros, Marilia; Vennemann, Tarek; Gallagher, D Travis; Yin, Yizhou; Linden, Sara B; Heselpoth, Ryan D; Spencer, Dennis J; Donovan, David M; Moult, John; Fischetti, Vincent A; Heinrich, Frank; Lösche, Mathias; Nelson, Daniel C

    2016-03-15

    PlyC, a bacteriophage-encoded endolysin, lyses Streptococcus pyogenes (Spy) on contact. Here, we demonstrate that PlyC is a potent agent for controlling intracellular Spy that often underlies refractory infections. We show that the PlyC holoenzyme, mediated by its PlyCB subunit, crosses epithelial cell membranes and clears intracellular Spy in a dose-dependent manner. Quantitative studies using model membranes establish that PlyCB interacts strongly with phosphatidylserine (PS), whereas its interaction with other lipids is weak, suggesting specificity for PS as its cellular receptor. Neutron reflection further substantiates that PlyC penetrates bilayers above a PS threshold concentration. Crystallography and docking studies identify key residues that mediate PlyCB-PS interactions, which are validated by site-directed mutagenesis. This is the first report that a native endolysin can traverse epithelial membranes, thus substantiating the potential of PlyC as an antimicrobial for Spy in the extracellular and intracellular milieu and as a scaffold for engineering other functionalities.

  10. The antibacterial activity of E. coli bacteriophage lysin lysep3 is enhanced by fusing the Bacillus amyloliquefaciens bacteriophage endolysin binding domain D8 to the C-terminal region.

    Science.gov (United States)

    Wang, Shuang; Gu, Jingmin; Lv, Meng; Guo, Zhimin; Yan, Guangmou; Yu, Ling; Du, Chongtao; Feng, Xin; Han, Wenyu; Sun, Changjiang; Lei, Liancheng

    2017-05-01

    Bacteriophage endolysin is one of the most promising antibiotic substitutes, but in Gram-negative bacteria, the outer membrane prevents the lysin from hydrolyzing peptidoglycans and blocks the development of lysin applications. The prime strategy for new antibiotic substitutes is allowing lysin to access the peptidoglycan from outside of the bacteria by reformation of the lysin. In this study, the novel Escherichia coli (E. coli) phage lyase lysep3, which lacks outside-in catalytic ability, was fused with the N-terminal region of the Bacillus amyloliquefaciens lysin including its cell wall binding domain D8 through the best manner of protein fusion based on the predicted tertiary structure of lysep3-D8 to obtain an engineered lysin that can lyse bacteria from the outside. Our results showed that lysep3-D8 could lyse both Gramnegative and Gram-positive bacteria, whereas lysep3 and D8 have no impact on bacterial growth. The MIC of lysep3-D8 on E. coli CVCC1418 is 60 μg/ml; lysep3-D8 can inhibit the growth of bacteria up to 12 h at this concentration. The bactericidal spectrum of lysep3-D8 is broad, as it can lyse of all of 14 E. coli strains, 3 P. aeruginosa strains, 1 Acinetobacter baumannii strain, and 1 Streptococcus strain. Lysep3-D8 has sufficient bactericidal effects on the 14 E. coli strains tested at the concentration of 100 μg/ml. The cell wall binding domain of the engineered lysin can destroy the integrity of the outer membrane of bacteria, thus allowing the catalytic domain to reach its target, peptidoglycan, to lyse the bacteria. Lysep3-D8 can be used as a preservative in fodder to benefit the health of animals. The method we used here proved to be a successful exploration of the reformation of phage lysin.

  11. Bacteriophages

    International Nuclear Information System (INIS)

    Klieve, A.V.

    2005-01-01

    Bacteriophages or phages are bacterial viruses and are present in the rumen in large numbers. They are obligate pathogens of bacteria and are ubiquitous to the rumen ecosystem. Bacteriophages are capable of lysing their bacterial hosts within the rumen and are therefore regarded as contributing to protein recycling within the rumen, a process identified as reducing the efficiency of feed utilization. However, their presence may not be entirely detrimental to the ecosystem, and it has been argued that phages may also be involved in the maintenance of a balanced ecosystem and may play a role in recycling limiting nutrients within the rumen. Furthermore, phage therapy is enjoying a renaissance and the use of phages to control or eliminate detrimental or unwanted microbes from the gastro-intestinal tract, such as Shiga-toxin producing E. coli (food-borne disease), Streptococcus bovis (acidosis in grain-fed cattle) and methanogens (produce the greenhouse gas methane), is the focus of current investigation. In order to be able to study the interaction between individual bacteriophages and their bacterial hosts, it is necessary to: (a) isolate the phage of interest from other viruses in the source material; (b) to derive stock cultures of known phage concentration; (c) store the isolated phages; and (d) determine basic physical characteristics, such as morphology. These procedures are achieved using classical microbiological procedures and this will be the methodology described in this chapter. It is also necessary to determine nucleic acid characteristics of the phage genome and to fingerprint the phage population in the rumen using molecular biological techniques. These will be described and discussed in Chapter 4.2

  12. Bacteriophages and bacteriophage-derived endolysins as potential therapeutics to combat Gram-positive spore forming bacteria.

    Science.gov (United States)

    Nakonieczna, A; Cooper, C J; Gryko, R

    2015-09-01

    Since their discovery in 1915, bacteriophages have been routinely used within Eastern Europe to treat a variety of bacterial infections. Although initially ignored by the West due to the success of antibiotics, increasing levels and diversity of antibiotic resistance is driving a renaissance for bacteriophage-derived therapy, which is in part due to the highly specific nature of bacteriophages as well as their relative abundance. This review focuses on the bacteriophages and derived lysins of relevant Gram-positive spore formers within the Bacillus cereus group and Clostridium genus that could have applications within the medical, food and environmental sectors. © 2015 The Society for Applied Microbiology.

  13. Campylobacter bacteriophages and bacteriophage therapy.

    Science.gov (United States)

    Connerton, P L; Timms, A R; Connerton, I F

    2011-08-01

    Members of the genus Campylobacter are frequently responsible for human enteric disease with occasionally very serious outcomes. Much of this disease burden is thought to arise from consumption of contaminated poultry products. More than 80% of poultry in the UK harbour Campylobacter as a part of their intestinal flora. To address this unacceptably high prevalence, various interventions have been suggested and evaluated. Among these is the novel approach of using Campylobacter-specific bacteriophages, which are natural predators of the pathogen. To optimize their use as therapeutic agents, it is important to have a comprehensive understanding of the bacteriophages that infect Campylobacter, and how they can affect their host bacteria. This review will focus on many aspects of Campylobacter-specific bacteriophages including: their first isolation in the 1960s, their use in bacteriophage typing schemes, their isolation from the different biological sources and genomic characterization. As well as their use as therapeutic agents to reduce Campylobacter in poultry their future potential, including their use in bio-sanitization of food, will be explored. The evolutionary consequences of naturally occurring bacteriophage infection that have come to light through investigations of bacteriophages in the poultry ecosystem will also be discussed. © 2011 The Authors. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology.

  14. Lytic bacteriophages

    Science.gov (United States)

    Sharma, Manan

    2013-01-01

    Foodborne illnesses resulting from the consumption of produce commodities contaminated with enteric pathogens continue to be a significant public health issue. Lytic bacteriophages may provide an effective and natural intervention to reduce bacterial pathogens on fresh and fresh-cut produce commodities. The use of multi-phage cocktails specific for a single pathogen has been most frequently assessed on produce commodities to minimize the development of bacteriophage insensitive mutants (BIM) in target pathogen populations. Regulatory approval for the use of several lytic phage products specific for bacterial pathogens such as Escherichia coli O157:H7, Salmonella spp. and Listeria monocytogenes in foods and on food processing surfaces has been granted by various agencies in the US and other countries, possibly allowing for the more widespread use of bacteriophages in the decontamination of fresh and minimally processed produce. Research studies have shown lytic bacteriophages specific for E. coli O157:H7, Salmonella spp. and Listeria monocytogenes have been effective in reducing pathogen populations on leafy greens, sprouts and tomatoes. PMID:24228223

  15. Bacteriophage populations

    International Nuclear Information System (INIS)

    Klieve, A.V.; Gilbert, R.A.

    2005-01-01

    Bacteriophages are ubiquitous to the rumen ecosystem; they have a role in nitrogen metabolism through bacterial lysis in the rumen, they may help to regulate bacterial population densities, be an agent for genetic exchange and be of use in biocontrol of bacterial populations through phage therapy. In Chapter 2.1, classical methodologies to enable the isolation, enumeration, storage and morphological characterization of phages were presented. In addition to these classic procedures, molecular biological techniques have resulted in a range of methodologies to investigate the type, topology and size of phage nucleic acids, to fingerprint individual phage strains and to create a profile of ruminal phage populations. Different phage families possess all the currently identified combinations of double-stranded or single-stranded RNA or DNA and may also possess unusual bases such as 5-hydroxymethylcytosine (found in T-even phage) or 5- hydroxymethyluracil and uracil in place of thymidine. In all morphological groups of phage except the filamentous phages, the nucleic acid is contained within a head or polyhedral structure, predominantly composed of protein. Filamentous phages have their nucleic acid contained inside the helical filament, occupying much of its length. Many of the procedures used with phage nucleic acids and double-stranded (ds) DNA, in particular, are not specific to ruminal phages but are the same as in other areas where nucleic acids are investigated and are covered elsewhere in the literature and this chapter. Most applications with rumen phages are similar to those reported for phages of non-ruminal bacteria and are covered in general texts such as Maniatis et al. In this chapter, we will concentrate on aspects of methodology as they relate to ruminal phages

  16. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins

    Directory of Open Access Journals (Sweden)

    James J. Bull

    2015-04-01

    Full Text Available Microbes produce a variety of compounds that are used to kill or suppress other species. Traditional antibiotics have their origins in these natural products, as do many types of compounds being pursued today in the quest for new antibacterial drugs. When a potential toxin can be encoded by and exported from a species that is not harmed, the opportunity exists to use directed evolution to improve the toxin’s ability to kill other species—allelopathy. In contrast to the typical application of directed evolution, this case requires the co-culture of at least two species or strains, a host that is unharmed by the toxin plus the intended target of the toxin. We develop mathematical and computational models of this directed evolution process. Two contexts are considered, one with the toxin encoded on a plasmid and the other with the toxin encoded in a phage. The plasmid system appears to be more promising than the phage system. Crucial to both designs is the ability to co-culture two species/strains (host and target such that the host is greatly outgrown by the target species except when the target species is killed. The results suggest that, if these initial conditions can be satisfied, directed evolution is feasible for the plasmid-based system. Screening with a plasmid-based system may also enable rapid improvement of a toxin.

  17. Bacteriophages and Biofilms

    Science.gov (United States)

    Harper, David R.; Parracho, Helena M. R. T.; Walker, James; Sharp, Richard; Hughes, Gavin; Werthén, Maria; Lehman, Susan; Morales, Sandra

    2014-01-01

    Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce) enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  18. Bacteriophages and Biofilms

    Directory of Open Access Journals (Sweden)

    David R. Harper

    2014-06-01

    Full Text Available Biofilms are an extremely common adaptation, allowing bacteria to colonize hostile environments. They present unique problems for antibiotics and biocides, both due to the nature of the extracellular matrix and to the presence within the biofilm of metabolically inactive persister cells. Such chemicals can be highly effective against planktonic bacterial cells, while being essentially ineffective against biofilms. By contrast, bacteriophages seem to have a greater ability to target this common form of bacterial growth. The high numbers of bacteria present within biofilms actually facilitate the action of bacteriophages by allowing rapid and efficient infection of the host and consequent amplification of the bacteriophage. Bacteriophages also have a number of properties that make biofilms susceptible to their action. They are known to produce (or to be able to induce enzymes that degrade the extracellular matrix. They are also able to infect persister cells, remaining dormant within them, but re-activating when they become metabolically active. Some cultured biofilms also seem better able to support the replication of bacteriophages than comparable planktonic systems. It is perhaps unsurprising that bacteriophages, as the natural predators of bacteria, have the ability to target this common form of bacterial life.

  19. Hyperexpansion of RNA Bacteriophage Diversity

    Science.gov (United States)

    Krishnamurthy, Siddharth R.; Janowski, Andrew B.; Zhao, Guoyan; Barouch, Dan; Wang, David

    2016-01-01

    Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. PMID:27010970

  20. Chlamydial plasmids and bacteriophages.

    Science.gov (United States)

    Pawlikowska-Warych, Małgorzata; Śliwa-Dominiak, Joanna; Deptuła, Wiesław

    2015-01-01

    Chlamydia are absolute pathogens of humans and animals; despite being rather well recognised, they are still open for discovery. One such discovery is the occurrence of extrachromosomal carriers of genetic information. In prokaryotes, such carriers include plasmids and bacteriophages, which are present only among some Chlamydia species. Plasmids were found exclusively in Chlamydia (C.) trachomatis, C. psittaci, C. pneumoniae, C. suis, C. felis, C. muridarum and C. caviae. In prokaryotic organisms, plasmids usually code for genes that facilitate survival of the bacteria in the environment (although they are not essential). In chlamydia, their role has not been definitely recognised, apart from the fact that they participate in the synthesis of glycogen and encode proteins responsible for their virulence. Furthermore, in C. suis it was evidenced that the plasmid is integrated in a genomic island and contains the tetracycline-resistance gene. Bacteriophages specific for chlamydia (chlamydiaphages) were detected only in six species: C. psittaci, C. abortus, C. felis, C. caviae C. pecorum and C. pneumoniae. These chlamydiaphages cause inhibition of the developmental cycle, and delay transformation of reticulate bodies (RBs) into elementary bodies (EBs), thus reducing the possibility of infecting other cells in time. Plasmids and bacteriophages can be used in the diagnostics of chlamydioses; although especially in the case of plasmids, they are already used for detection of chlamydial infections. In addition, bacteriophages could be used as therapeutic agents to replace antibiotics, potentially addressing the problem of increasing antibiotic-resistance among chlamydia.

  1. Bacteriophages of Clostridium perfringens

    Science.gov (United States)

    The specific aims of the book chapter are to: (1) Briefly review the nomenclature of bacteriophages and how these agents are classified. (2) Discuss the problems associated with addition/removal of antibiotics in commercial animal feeds. (3) Provide a brief overview of Clostridium perfringens biolog...

  2. Expanding lysine industry: industrial biomanufacturing of lysine and its derivatives.

    Science.gov (United States)

    Cheng, Jie; Chen, Peng; Song, Andong; Wang, Dan; Wang, Qinhong

    2018-04-13

    L-Lysine is widely used as a nutrition supplement in feed, food, and beverage industries as well as a chemical intermediate. At present, great efforts are made to further decrease the cost of lysine to make it more competitive in the markets. Furthermore, lysine also shows potential as a feedstock to produce other high-value chemicals for active pharmaceutical ingredients, drugs, or materials. In this review, the current biomanufacturing of lysine is first presented. Second, the production of novel derivatives from lysine is discussed. Some chemicals like L-pipecolic acid, cadaverine, and 5-aminovalerate already have been obtained at a lab scale. Others like 6-aminocaproic acid, valerolactam, and caprolactam could be produced through a biological and chemical coupling pathway or be synthesized by a hypothetical pathway. This review demonstrates an active and expansive lysine industry, and these green biomanufacturing strategies could also be applied to enhance the competitiveness of other amino acid industry.

  3. [RATIONAL ASPECTS OF BACTERIOPHAGES USE].

    Science.gov (United States)

    Vakarina, A A; Kataeva, L V; Karpukhina, N F

    2015-01-01

    Analysis of existing aspects of bacteriophage use and study features of their lytic activity by using various techniques. Effect of monophages and associated bacteriophages (staphylococci, piopolyvalent and piocombined, intestiphage, pneumonia klebsiella and polyvalent klebsiella produced by "Microgen") was studied with 380 strains of Staphylococcus aureus and 279 cultures of Klebsiella pneumoniae in liquid and solid nutrient media. From patients with intestinal disorder, sensitivity was analyzed to 184 strains of Salmonella genus bacteria 18 serological variants to salmonella bacteriophages, 137 strains of Escherichia coli (lactose-negative, hemolytic), as well as some members of OKA groups (21 serovars) to coli-proteic and piopolyvalent bacteriophages. Lytic ability of the piobacteriophage against Klebsiella and Proteus genus bacteria was determined. Staphylococcus aureus was sensitive to staphylococcus bacteriophage in 71.6% of cases and to piobacteriophage--in 86.15% of cases. A 100% lytic ability of salmonella bacteriophage against Salmonella spp. was established. Sensitivity of E. coli of various serogroups to coli-proteic and piobacteriophage was 66 - 100%. Klebsiella, Proteus genus bacteria were sensitive to piobacteriophage in only 35% and 43.15% of cases, respectively. A more rational use of bacteriophages is necessary: development of a technique, evaluation of sensitivity of bacteria to bacteriophage, introduction of corrections into their production (expansion of bacteriophage spectra, determination and indication of their concentration in accompanying documents).

  4. Bacteriophage-encoded virion-associated enzymes to overcome the carbohydrate barriers during the infection process.

    Science.gov (United States)

    Latka, Agnieszka; Maciejewska, Barbara; Majkowska-Skrobek, Grazyna; Briers, Yves; Drulis-Kawa, Zuzanna

    2017-04-01

    Bacteriophages are bacterial viruses that infect the host after successful receptor recognition and adsorption to the cell surface. The irreversible adherence followed by genome material ejection into host cell cytoplasm must be preceded by the passage of diverse carbohydrate barriers such as capsule polysaccharides (CPSs), O-polysaccharide chains of lipopolysaccharide (LPS) molecules, extracellular polysaccharides (EPSs) forming biofilm matrix, and peptidoglycan (PG) layers. For that purpose, bacteriophages are equipped with various virion-associated carbohydrate active enzymes, termed polysaccharide depolymerases and lysins, that recognize, bind, and degrade the polysaccharide compounds. We discuss the existing diversity in structural locations, variable architectures, enzymatic specificities, and evolutionary aspects of polysaccharide depolymerases and virion-associated lysins (VALs) and illustrate how these aspects can correlate with the host spectrum. In addition, we present methods that can be used for activity determination and the application potential of these enzymes as antibacterials, antivirulence agents, and diagnostic tools.

  5. Bacteriophages of Yersinia pestis.

    Science.gov (United States)

    Zhao, Xiangna; Skurnik, Mikael

    2016-01-01

    Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.

  6. Cytoplasmic bacteriophage display system

    Science.gov (United States)

    Studier, F. William; Rosenberg, Alan H.

    1998-06-16

    Disclosed are display vectors comprising DNA encoding a portion of a structural protein from a cytoplasmic bacteriophage, joined covalently to a protein or peptide of interest. Exemplified are display vectors wherein the structural protein is the T7 bacteriophage capsid protein. More specifically, in the exemplified display vectors the C-terminal amino acid residue of the portion of the capsid protein is joined to the N-terminal residue of the protein or peptide of interest. The portion of the T7 capsid protein exemplified comprises an N-terminal portion corresponding to form 10B of the T7 capsid protein. The display vectors are useful for high copy number display or lower copy number display (with larger fusion). Compositions of the type described herein are useful in connection with methods for producing a virus displaying a protein or peptide of interest.

  7. A family of microbial lysine transporter polypeptides

    DEFF Research Database (Denmark)

    2017-01-01

    The present invention provides a genetically modified microbial cell for production of lysine, comprising a transgene encoding a polypeptide capable of exporting lysine from the cell. The genetically modified microbial cell for production of lysine may be further characterized by genetic modifica......The present invention provides a genetically modified microbial cell for production of lysine, comprising a transgene encoding a polypeptide capable of exporting lysine from the cell. The genetically modified microbial cell for production of lysine may be further characterized by genetic...... a novel family of lysine transporter polypeptides; and the use of said polypeptide to enhance production of extracellular lysine in a microbial cell....

  8. Nano/Micro Formulations for Bacteriophage Delivery.

    Science.gov (United States)

    Cortés, Pilar; Cano-Sarabia, Mary; Colom, Joan; Otero, Jennifer; Maspoch, Daniel; Llagostera, Montserrat

    2018-01-01

    Encapsulation methodologies allow the protection of bacteriophages for overcoming critical environmental conditions. Moreover, they improve the stability and the controlled delivery of bacteriophages which is of great innovative value in bacteriophage therapy. Here, two different encapsulation methodologies of bacteriophages are described using two biocompatible materials: a lipid cationic mixture and a combination of alginate with the antacid CaCO 3 . To perform bacteriophage encapsulation, a purified lysate highly concentrated (around 10 10 -10 11  pfu/mL) is necessary, and to dispose of a specific equipment. Both methodologies have been successfully applied for encapsulating Salmonella bacteriophages with different morphologies. Also, the material employed does not modify the antibacterial action of bacteriophages. Moreover, both technologies can also be adapted to any bacteriophage and possibly to any delivery route for bacteriophage therapy.

  9. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  10. Bacteriophage in polar inland waters

    Science.gov (United States)

    Säwström, Christin; Lisle, John; Anesio, A.M.; Priscu, John C.; Laybourn-Parry, J.

    2008-01-01

    Bacteriophages are found wherever microbial life is present and play a significant role in aquatic ecosystems. They mediate microbial abundance, production, respiration, diversity, genetic transfer, nutrient cycling and particle size distribution. Most studies of bacteriophage ecology have been undertaken at temperate latitudes. Data on bacteriophages in polar inland waters are scant but the indications are that they play an active and dynamic role in these microbially dominated polar ecosystems. This review summarises what is presently known about polar inland bacteriophages, ranging from subglacial Antarctic lakes to glacial ecosystems in the Arctic. The review examines interactions between bacteriophages and their hosts and the abiotic and biotic variables that influence these interactions in polar inland waters. In addition, we consider the proportion of the bacteria in Arctic and Antarctic lake and glacial waters that are lysogenic and visibly infected with viruses. We assess the relevance of bacteriophages in the microbial loop in the extreme environments of Antarctic and Arctic inland waters with an emphasis on carbon cycling.

  11. Jumbo Bacteriophages: An Overview.

    Science.gov (United States)

    Yuan, Yihui; Gao, Meiying

    2017-01-01

    Tailed bacteriophages with genomes larger than 200 kbp are classified as Jumbo phages, and are rarely isolated by conventional methods. These phages are designated "jumbo" owing to their most notable features of a large phage virion and large genome size. However, in addition to these, jumbo phages also exhibit several novel characteristics that have not been observed for phages with smaller genomes, which differentiate jumbo phages in terms of genome organization, virion structure, progeny propagation, and evolution. In this review, we summarize available reports on jumbo phages and discuss the differences between jumbo phages and small-genome phages. We also discuss data suggesting that jumbo phages might have evolved from phages with smaller genomes by acquiring additional functional genes, and that these additional genes reduce the dependence of the jumbo phages on the host bacteria.

  12. Synthetic Biology to Engineer Bacteriophage Genomes.

    Science.gov (United States)

    Rita Costa, Ana; Milho, Catarina; Azeredo, Joana; Pires, Diana Priscila

    2018-01-01

    Recent advances in the synthetic biology field have enabled the development of new molecular biology techniques used to build specialized bacteriophages with new functionalities. Bacteriophages have been engineered towards a wide range of applications including pathogen control and detection, targeted drug delivery, or even assembly of new materials.In this chapter, two strategies that have been successfully used to genetically engineer bacteriophage genomes are addressed: a yeast-based platform and bacteriophage recombineering of electroporated DNA.

  13. Differential bacteriophage mortality on exposure to copper.

    Science.gov (United States)

    Li, Jinyu; Dennehy, John J

    2011-10-01

    Many studies report that copper can be used to control microbial growth, including that of viruses. We determined the rates of copper-mediated inactivation for a wide range of bacteriophages. We used two methods to test the effect of copper on bacteriophage survival. One method involved placing small volumes of bacteriophage lysate on copper and stainless steel coupons. Following exposure, metal coupons were rinsed with lysogeny broth, and the resulting fluid was serially diluted and plated on agar with the corresponding bacterial host. The second method involved adding copper sulfate (CuSO(4)) to bacteriophage lysates to a final concentration of 5 mM. Aliquots were removed from the mixture, serially diluted, and plated with the appropriate bacterial host. Significant mortality was observed among the double-stranded RNA (dsRNA) bacteriophages Φ6 and Φ8, the single-stranded RNA (ssRNA) bacteriophage PP7, the ssDNA bacteriophage ΦX174, and the dsDNA bacteriophage PM2. However, the dsDNA bacteriophages PRD1, T4, and λ were relatively unaffected by copper. Interestingly, lipid-containing bacteriophages were most susceptible to copper toxicity. In addition, in the first experimental method, the pattern of bacteriophage Φ6 survival over time showed a plateau in mortality after lysates dried out. This finding suggests that copper's effect on bacteriophage is mediated by the presence of water.

  14. Degradation of Amino Acids and Structure in Model Proteins and Bacteriophage MS2 by Chlorine, Bromine, and Ozone.

    Science.gov (United States)

    Choe, Jong Kwon; Richards, David H; Wilson, Corey J; Mitch, William A

    2015-11-17

    Proteins are important targets of chemical disinfectants. To improve the understanding of disinfectant-protein reactions, this study characterized the disinfectant:protein molar ratios at which 50% degradation of oxidizable amino acids (i.e., Met, Tyr, Trp, His, Lys) and structure were observed during HOCl, HOBr, and O3 treatment of three well-characterized model proteins and bacteriophage MS2. A critical question is the extent to which the targeting of amino acids is driven by their disinfectant rate constants rather than their geometrical arrangement. Across the model proteins and bacteriophage MS2 (coat protein), differing widely in structure, methionine was preferentially targeted, forming predominantly methionine sulfoxide. This targeting concurs with its high disinfectant rate constants and supports its hypothesized role as a sacrificial antioxidant. Despite higher HOCl and HOBr rate constants with histidine and lysine than for tyrosine, tyrosine generally was degraded in preference to histidine, and to a lesser extent, lysine. These results concur with the prevalence of geometrical motifs featuring histidines or lysines near tyrosines, facilitating histidine and lysine regeneration upon Cl[+1] transfer from their chloramines to tyrosines. Lysine nitrile formation occurred at or above oxidant doses where 3,5-dihalotyrosine products began to degrade. For O3, which lacks a similar oxidant transfer pathway, histidine, tyrosine, and lysine degradation followed their relative O3 rate constants. Except for its low reactivity with lysine, the O3 doses required to degrade amino acids were as low as or lower than for HOCl or HOBr, indicating its oxidative efficiency. Loss of structure did not correlate with loss of particular amino acids, suggesting the need to characterize the oxidation of specific geometric motifs to understand structural degradation.

  15. Lysine requirements of growing emus.

    Science.gov (United States)

    Mannion, P F; Kent, P B; Barram, K M; Trappett, P C; Blight, G W; Sales, J

    1999-05-01

    1. The lysine requirement of growing emus between 23 and 65 d of age was determined according to growth response variables. 2. The optimal lysine requirement of emus was found to be 0.83 and 0.90 g/MJ ME for growth rate and gain:food ratio respectively. These findings are in accordance with the recommended value of 0.80 g/MJ ME, but is lower than the recommended value for ostriches (1.02 g/MJ ME) and higher than determined values for broilers (0.75 g/MJ ME) of the same age range.

  16. Hydrodynamics of bacteriophages

    Science.gov (United States)

    Katsamba, Panayiota; Lauga, Eric

    2017-11-01

    Bacteriophage viruses, one of the most abundant entities in our planet, lack the ability to move independently. Instead, they crowd fluid environments in anticipation of a random encounter with bacteria. Once they 'land' on their victim's surface, they eject their genetic material inside the host cell. A big fraction of phage species, however, first attach to the flagella of bacteria. Being immotile, these so-called flagellotropic phages still manage to reach the cell body for infection, and the process by which they move up the flagellum has intrigued the scientific community for over four decades. In 1973 Berg and Anderson proposed the nut-and-bolt mechanism in which, just like a nut being rotated moves along a bolt, the phage wraps itself around a flagellum possessing helical grooves (due to the helical rows of flagellin molecules) and exploits the rotation of the flagellum in order to passively travel along it. We provide here a first-principle theoretical model for this nut-and-bolt mechanism and show that it is able to predict experiment observations.

  17. Characterization of bacteriophages virulent for Clostridium perfringens and identification of phage lytic enzymes as alternatives to antibiotics for potential control of the bacterium.

    Science.gov (United States)

    Seal, Bruce S

    2013-02-01

    There has been a resurgent interest in the use of bacteriophages or their gene products to control bacterial pathogens as alternatives to currently used antibiotics. Clostridium perfringens is a gram-positive, spore-forming anaerobic bacterium that plays a significant role in human foodborne disease as well as non-foodborne human, animal, and avian diseases. Countries that have complied with the ban on antimicrobial growth promoters in feeds have reported increased incidences of C. perfringens-associated diseases in poultry. To address these issues, new antimicrobial agents, putative lysins encoded by the genomes of bacteriophages, are being identified in our laboratory. Poultry intestinal material, soil, sewage, and poultry processing drainage water were screened for virulent bacteriophages that could lyse C. perfringens and produce clear plaques in spot assays. Bacteriophages were isolated that had long noncontractile tails, members of the family Siphoviridae, and with short noncontractile tails, members of the family Podoviridae. Several bacteriophage genes were identified that encoded N-acetylmuramoyl-l-alanine amidases, lysozyme-endopeptidases, and a zinc carboxypeptidase domain that has not been previously reported in viral genomes. Putative phage lysin genes (ply) were cloned and expressed in Escherichia coli. The recombinant lysins were amidases capable of lysing both parental phage host strains of C. perfringens as well as other strains of the bacterium in spot and turbidity reduction assays, but did not lyse any clostridia beyond the species. Consequently, bacteriophage gene products could eventually be used to target bacterial pathogens, such as C. perfringens via a species-specific strategy, to control animal and human diseases without having deleterious effects on beneficial probiotic bacteria.

  18. Lysogenic bacteriophage isolated from acidophilium

    Science.gov (United States)

    Ward, Thomas W.; Bruhn, Debby F.; Bulmer, Deborah K.

    1992-01-01

    A bacteriophage identified as .phi.Ac1 capable of infecting acidophilic heterotropic bacteria (such as Acidiphilium sp.) and processes for genetically engineering acidophilic bacteria for biomining or sulfur removal from coal are disclosed. The bacteriophage is capable of growth in cells existing at pH at or below 3.0. Lytic forms of the phage introduced into areas experiencing acid drainage kill the bacteria causing such drainage. Lysogenic forms of the phase having genes for selective removal of metallic or nonmetallic elements can be introduced into acidophilic bacteria to effect removal of the desired element form ore or coal.

  19. Mur-LH, the Broad-Spectrum Endolysin of Lactobacillus helveticus Temperate Bacteriophage φ-0303

    Science.gov (United States)

    Deutsch, Stéphanie-Marie; Guezenec, Stéphane; Piot, Michel; Foster, Simon; Lortal, Sylvie

    2004-01-01

    φ-0303 is a temperate bacteriophage isolated from Lactobacillus helveticus CNRZ 303 strain after mitomycin C induction. In this work, the gene coding for a lytic protein of this bacteriophage was cloned using a library of φ-0303 in Escherichia coli DH5α. The lytic activity was detected by its expression, using whole cells of the sensitive strain L. helveticus CNRZ 892 as the substrate. The lysin gene was within a 4.1-kb DNA fragment of φ-0303 containing six open reading frames (ORFs) and two truncated ORFs. No sequence homology with holin genes was found within the cloned fragment. An integrase-encoding gene was also present in the fragment, but it was transcribed in a direction opposite that of the lysin gene. The lysin-encoding lys gene was verified by PCR amplification from the total phage DNA and subcloned. The lys gene is a 1,122-bp sequence encoding a protein of 373 amino acids (Mur-LH), whose product had a deduced molecular mass of 40,207 Da. Comparisons with sequences in sequence databases showed homology with numerous endolysins of other bacteriophages. Mur-LH was expressed in E. coli BL21, and by renaturing sodium dodecyl sulfate-polyacrylamide gel electrophoresis with L. helveticus CNRZ 892 as the substrate, the recombinant protein showed an apparent molecular mass of 40 kDa. The N-terminal sequence of the protein confirmed the start codon. Hydrolysis of cell walls of L. helveticus CNRZ 303 by the endolysin and biochemical analysis of the residues produced demonstrated that Mur-LH has N-acetylmuramidase activity. Last, the endolysin exhibited a broad spectrum of lytic activity, as it was active on different species, mainly thermophilic lactobacilli but also lactococci, pediococci, Bacillus subtilis, Brevibacterium linens, and Enterococcus faecium. PMID:14711630

  20. Replication of bacteriophage lambda DNA

    International Nuclear Information System (INIS)

    Tsurimoto, T.; Matsubara, K.

    1983-01-01

    In this paper results of studies on the mechanism of bacteriophage lambda replication using molecular biological and biochemical approaches are reported. The purification of the initiator proteins, O and P, and the role of the O and P proteins in the initiation of lambda DNA replication through interactions with specific DNA sequences are described. 47 references, 15 figures

  1. Bacteriophage: from exploration to exploitation

    NARCIS (Netherlands)

    Nobrega, Franklin L.

    2017-01-01

    Over the past decades, bacteriophage research has revealed the abundance of phages in nature, their morphological and genomic diversity, their influence in the regulation of microbial balance in the ecosystem and their impact on the evolution of microbial diversity. Since the 1950s, phages have also

  2. Bacteriophage endolysins as novel antimicrobials

    Science.gov (United States)

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can...

  3. Bacteriophage therapy in animal production

    Science.gov (United States)

    Concerns over the consequences of bacterial resistance to antibiotics with the use of antibiotics in animal production have led to an increase in research on alternatives to antibiotics. Bacteriophages kill bacteria, are natural, safe, plentiful, self replicating, self limiting, can be used to spec...

  4. Interaction of Bacteriophages with the Immune System: Induction of Bacteriophage-Specific Antibodies.

    Science.gov (United States)

    Dąbrowska, Krystyna

    2018-01-01

    In all cases when a bacteriophage makes direct contact with a mammalian organism, it may challenge the mammalian immunological system. Its major consequence is production of antibodies specific to the bacteriophage. Here we present protocols applicable in studies of bacteriophage ability to induce specific antibodies. The protocols have been divided into three parts: purification, immunization, and detection (ELISA).

  5. Metagenomic Analysis of Dairy Bacteriophages

    DEFF Research Database (Denmark)

    Muhammed, Musemma K.; Kot, Witold; Neve, Horst

    2017-01-01

    Despite their huge potential for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows to remove the bulk protein from ...... diversity. Possible co-induction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed....

  6. Optimization of lysine metabolism in Corynebacterium glutamicum

    DEFF Research Database (Denmark)

    Rytter, Jakob Vang

    Commercial pig and poultry production use the essential amino acid lysine as a feed additive with the purpose of optimizing the feed utilization. Lysine is produced by a fermentation process involving either Corynebacterium glutamicum or Escherichia coli. The global annual production is around 1......,000,000 tons. The aim of this project is to optimize the yield of lysine in C. glutamicum using metabolic engineering strategies. According to a genome scale model of C. glutamicum, theoretically there is much room for increasing the lysine yield (Kjeldsen and Nielsen 2009). Lysine synthesis requires NADPH...... the PPP, increasing the NADPH synthesis and enabling increased lysine production. Synthetic promoter libraries (SPL) enable fine tuning of the expression of genes. To test the feasibility of SPL in C. glutamicum four constitutive SPLs and one inducible SPL were constructed. The libraries were placed...

  7. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects.

    Science.gov (United States)

    Metges, C C; El-Khoury, A E; Henneman, L; Petzke, K J; Grant, I; Bedri, S; Pereira, P P; Ajami, A M; Fuller, M F; Young, V R

    1999-10-01

    We have investigated whether there is a net contribution of lysine synthesized de novo by the gastrointestinal microflora to lysine homeostasis in six adults. On two separate occasions an adequate diet was given for a total of 11 days, and a 24-h (12-h fast, 12-h fed) tracer protocol was performed on the last day, in which lysine turnover, oxidation, and splanchnic uptake were measured on the basis of intravenous and oral administration of L-[1-(13)C]lysine and L-[6,6-(2)H(2)]lysine, respectively. [(15)N(2)]urea or (15)NH(4)Cl was ingested daily over the last 6 days to label microbial protein. In addition, seven ileostomates were studied with (15)NH(4)Cl. [(15)N]lysine enrichment in fecal and ileal microbial protein, as precursor for microbial lysine absorption, and in plasma free lysine was measured by gas chromatography-combustion-isotope ratio mass spectrometry. Differences in plasma [(13)C]- and [(2)H(2)]lysine enrichments during the 12-h fed period were observed between the two (15)N tracer studies, although the reason is unclear, and possibly unrelated to the tracer form per se. In the normal adults, after (15)NH(4)Cl and [(15)N(2)]urea intake, respectively, lysine derived from fecal microbial protein accounted for 5 and 9% of the appearance rate of plasma lysine. With ileal microbial lysine enrichment, the contribution of microbial lysine to plasma lysine appearance was 44%. This amounts to a gross microbial lysine contribution to whole body plasma lysine turnover of between 11 and 130 mg. kg(-1). day(-1), depending on the [(15)N]lysine precursor used. However, insofar as microbial amino acid synthesis is accompanied by microbial breakdown of endogenous amino acids or their oxidation by intestinal tissues, this may not reflect a net increase in lysine absorption. Thus we cannot reliably estimate the quantitative contribution of microbial lysine to host lysine homeostasis with the present paradigm. However, the results confirm the significant presence of

  8. Druggability of methyl-lysine binding sites

    Science.gov (United States)

    Santiago, C.; Nguyen, K.; Schapira, M.

    2011-12-01

    Structural modules that specifically recognize—or read—methylated or acetylated lysine residues on histone peptides are important components of chromatin-mediated signaling and epigenetic regulation of gene expression. Deregulation of epigenetic mechanisms is associated with disease conditions, and antagonists of acetyl-lysine binding bromodomains are efficacious in animal models of cancer and inflammation, but little is known regarding the druggability of methyl-lysine binding modules. We conducted a systematic structural analysis of readers of methyl marks and derived a predictive druggability landscape of methyl-lysine binding modules. We show that these target classes are generally less druggable than bromodomains, but that some proteins stand as notable exceptions.

  9. Hemoglobin Labeled by Radioactive Lysine

    Science.gov (United States)

    Bale, W. F.; Yuile, C. L.; DeLaVergne, L.; Miller, L. L.; Whipple, G. H.

    1949-12-08

    This paper reports on the utilization of tagged epsilon carbon of DL-lysine by a dog both anemic and hypoproteinemic due to repeated bleeding plus a diet low in protein. The experiment extended over period of 234 days, a time sufficient to indicate an erythrocyte life span of at least 115 days based upon the rate of replacement of labeled red cell proteins. The proteins of broken down red cells seem not to be used with any great preference for the synthesis of new hemoglobin.

  10. Use of Bacteriophages to control bacterial pathogens

    Science.gov (United States)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  11. Nanoscale bacteriophage biosensors beyond phage display.

    Science.gov (United States)

    Lee, Jong-Wook; Song, Jangwon; Hwang, Mintai P; Lee, Kwan Hyi

    2013-01-01

    Bacteriophages are traditionally used for the development of phage display technology. Recently, their nanosized dimensions and ease with which genetic modifications can be made to their structure and function have put them in the spotlight towards their use in a variety of biosensors. In particular, the expression of any protein or peptide on the extraluminal surface of bacteriophages is possible by genetically engineering the genome. In addition, the relatively short replication time of bacteriophages offers researchers the ability to generate mass quantities of any given bacteriophage-based biosensor. Coupled with the emergence of various biomarkers in the clinic as a means to determine pathophysiological states, the development of current and novel technologies for their detection and quantification is imperative. In this review, we categorize bacteriophages by their morphology into M13-based filamentous bacteriophages and T4- or T7-based icosahedral bacteriophages, and examine how such advantages are utilized across a variety of biosensors. In essence, we take a comprehensive approach towards recent trends in bacteriophage-based biosensor applications and discuss their outlook with regards to the field of biotechnology.

  12. Molecular Characterization of a Clostridium difficile Bacteriophage and Its Cloned Biologically Active Endolysin▿ †

    Science.gov (United States)

    Mayer, Melinda J.; Narbad, Arjan; Gasson, Michael J.

    2008-01-01

    Clostridium difficile infection is increasing in both frequency and severity, with the emergence of new highly virulent strains highlighting the need for more rapid and effective methods of control. Here, we show that bacteriophage endolysin can be used to inhibit and kill C. difficile. The genome sequence of a novel bacteriophage that is active against C. difficile was determined, and the bacteriophage endolysin gene was subcloned and expressed in Escherichia coli. The partially purified endolysin was active against 30 diverse strains of C. difficile, and importantly, this group included strains of the major epidemic ribotype 027 (B1/NAP1). In contrast, a range of commensal species that inhabit the gastrointestinal tract, including several representatives of the clostridium-like Firmicutes, were insensitive to the endolysin. This endolysin provides a platform for the generation of both therapeutic and detection systems to combat the C. difficile problem. To investigate a method for the protected delivery and production of the lysin in the gastrointestinal tract, we demonstrated the expression of active CD27L endolysin in the lactic acid bacterium Lactococcus lactis MG1363. PMID:18708505

  13. Molecular characterization of a Clostridium difficile bacteriophage and its cloned biologically active endolysin.

    Science.gov (United States)

    Mayer, Melinda J; Narbad, Arjan; Gasson, Michael J

    2008-10-01

    Clostridium difficile infection is increasing in both frequency and severity, with the emergence of new highly virulent strains highlighting the need for more rapid and effective methods of control. Here, we show that bacteriophage endolysin can be used to inhibit and kill C. difficile. The genome sequence of a novel bacteriophage that is active against C. difficile was determined, and the bacteriophage endolysin gene was subcloned and expressed in Escherichia coli. The partially purified endolysin was active against 30 diverse strains of C. difficile, and importantly, this group included strains of the major epidemic ribotype 027 (B1/NAP1). In contrast, a range of commensal species that inhabit the gastrointestinal tract, including several representatives of the clostridium-like Firmicutes, were insensitive to the endolysin. This endolysin provides a platform for the generation of both therapeutic and detection systems to combat the C. difficile problem. To investigate a method for the protected delivery and production of the lysin in the gastrointestinal tract, we demonstrated the expression of active CD27L endolysin in the lactic acid bacterium Lactococcus lactis MG1363.

  14. PENILAIAN PENGARUH PENAMBAHAN LYSINE PADA NASI

    Directory of Open Access Journals (Sweden)

    Ignatius Tarwotjo

    2012-11-01

    Full Text Available Pengaruh penambahan lysine pada mutu protein nasi dilakukan pada tikus putih dengan mengukur Protein Efficiency Ratio. Nasi dan Nasi dengan sayur beserta laukpauk, seperti dikonsumsi oleh kebanyakan keluarga di Indonesia, yang berasnya lebih dulu ditambahi butiran premix berisi lysine, thiamine dan riboflavin ternaya menghasilkan Protein Efficiency Ratio lebih tinggi dari pada yang tidak ditambahi.

  15. Microbial production of lysine from sustainable feedstock

    DEFF Research Database (Denmark)

    Wang, Zhihao; Grishkova, Maria; Solem, Christian

    2014-01-01

    Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization.......Lysine is produced in a fermentation process using Corynebacterium glutamicum. And even though production strains have been improved for decades, there is still room for further optimization....

  16. Adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization in swine.

    Science.gov (United States)

    van Kempen, T A; van Heugten, E; Trottier, N L

    2001-09-01

    Adipic acid, upon catabolism, results in intermediates that bear a structural similarity to lysine degradation products. The objectives of this research were to determine whether adipic acid affects lysine concentrations in plasma and to evaluate whether adipic acid improves the efficiency of lysine utilization in pigs. In Exp. 1, nursery pigs (n = 14) were fed (for a period of 7 d) either a standard nursery diet or the same diet supplemented with 1% adipic acid to assess effects on plasma amino acid concentrations (plasma collected on d 7). In Exp. 2, nursery pigs (n = 56) were fed (for a period of 15 d) either a control diet or the same diet but deficient in either lysine, threonine, or tryptophan with or without supplemental adipic acid to assess the effects of adipic acid on the efficiency of amino acid utilization. The results from Exp. 1 showed that adipic acid increased plasma lysine (by 18%) but not alpha-amino adipic acid, an intermediate in lysine degradation. Experiment 2 demonstrated that adipic acid did not increase the efficiency of utilization of lysine, threonine, or tryptophan. The lack of effects on alpha-amino adipic acid in Exp. 1 and the lack of a positive effect on the efficiency of utilization of lysine, threonine, and tryptophan suggest that adipic acid does not inhibit the mitochondrial uptake of lysine and(or) its degradation in the mitochondrion. It is concluded that feeding adipic acid increases plasma lysine but does not improve the efficiency of lysine utilization.

  17. Radiosensitivity of Vi bacteriophage 3

    International Nuclear Information System (INIS)

    Zaremba, E.; Kwiatkowski, B.; Ciesielski, B.

    1989-01-01

    The radiosensitivity of Vi bacteriophages 3 under conditions of predominantly indirect radiation effects has been studied. The survival of the phages changed exponentially, with characteristic dose D 0 decreasing, during the first 120 minutes after irradiation due to postirradiation inactivation of the phages. Catalase reduced the toxic features of the irradiated medium. Inactivation of the phages caused by the presence of exogeneous H 2 O 2 in the medium had a similar character to inactivation caused by the medium preirradiated with adequate dose. It is concluded that hydrogen peroxide plays a critical role in postirradiation inactivation of Vi phages 3. 14 refs., 6 figs., 1 tab. (author)

  18. In vitro study of the antibacterial effect of the bacteriophage T5 thermostable endolysin on Escherichia coli cells.

    Science.gov (United States)

    Shavrina, M S; Zimin, A A; Molochkov, N V; Chernyshov, S V; Machulin, A V; Mikoulinskaia, G V

    2016-11-01

    This study aimed to evaluate lysis of Escherichia coli stationary cell cultures induced by the combined action of bacteriophage T5 endolysin (l-alanyl-d-glutamate peptidase) and low doses of various cationic agents permeabilizing the outer membrane of Gram-negative bacteria (polymyxin B, gramicidin D, poly-l-lysine, chlorhexidine and miramistin). The enzyme activity was assayed with the turbidimetric method. Antimicrobial activity was assessed through the number of colony-forming units (CFUs); the results of calculation were represented as logarithmic units. The optical microscopy examination of bacterial cells was conducted in the phase-contrast mode. The use of bacteriophage T5 endolysin in combination with polymyxin B (0·4 μg ml -1 ) or chlorhexidine (0·5 μg ml -1 ) made it possible to reduce the number of CFUs by five orders of magnitude; and in combination with poly-l-lysine (80 μg ml -1 ) by four orders, as compared to control. The endolysin was found to be a thermostable protein: it retained ~65% of its initial activity after heating for 30 min at 90°C. Examining the curves of its thermal denaturation revealed the half-transition temperature to be 56·3 ± 1·0°C. Circular dichroism spectra showed that after recooling the protein restored up to 80% of its native structure. A substantial synergistic effect of the bacteriophage T5 endolysin and membrane-permeabilizing compounds was demonstrated. The study of thermal stability of the bacteriophage T5 endolysin and the quantified assessment of its antimicrobial activity have been done for the first time. The approach examined lays foundations for designing a two-component preparation which would effectively lyse cells of Gram-negative pathogens from outside. © 2016 The Society for Applied Microbiology.

  19. Propagating the missing bacteriophages: a large bacteriophage in a new class

    Directory of Open Access Journals (Sweden)

    Hardies Stephen C

    2007-02-01

    Full Text Available Abstract The number of successful propagations/isolations of soil-borne bacteriophages is small in comparison to the number of bacteriophages observed by microscopy (great plaque count anomaly. As one resolution of the great plaque count anomaly, we use propagation in ultra-dilute agarose gels to isolate a Bacillus thuringiensis bacteriophage with a large head (95 nm in diameter, tail (486 × 26 nm, corkscrew-like tail fibers (187 × 10 nm and genome (221 Kb that cannot be detected by the usual procedures of microbiology. This new bacteriophage, called 0305φ8-36 (first number is month/year of isolation; remaining two numbers identify the host and bacteriophage, has a high dependence of plaque size on the concentration of a supporting agarose gel. Bacteriophage 0305φ8-36 does not propagate in the traditional gels used for bacteriophage plaque formation and also does not produce visible lysis of liquid cultures. Bacteriophage 0305φ8-36 aggregates and, during de novo isolation from the environment, is likely to be invisible to procedures of physical detection that use either filtration or centrifugal pelleting to remove bacteria. Bacteriophage 0305φ8-36 is in a new genomic class, based on genes for both structural components and DNA packaging ATPase. Thus, knowledge of environmental virus diversity is expanded with prospect of greater future expansion.

  20. Computational Determination of the Effects of Bacteriophage Bacteriophage Interactions in Human body.

    Science.gov (United States)

    Mostafa, Marwa Mostafa; Nassef, Mohammad; Badr, Amr

    2017-10-19

    Chronic diseases are becoming more serious and widely spreading and this carries a heavy burden on doctors to deal with such patients. Although many of these diseases can be treated by bacteriophages, the situation is significantly dangerous in patients having concomitant more than one chronic disease, where conflicts between phages used in treating these diseases are very closer to happen. This research paper presents a method to detecting the Bacteriophage-Bacteriophage Interaction. This method is implemented based on Domain-Domain Interactions model and it was used to infer Domain-Domain Interactions between the bacteriophages injected in the human body at the same time. By testing the method over bacteriophages that are used to treat tuberculosis, salmonella and virulent E.coli, many interactions have been inferred and detected between these bacteriophages. Several effects were detected for the resulted interactions such as: playing a role in DNA repair such as non-homologous end joining, playing a role in DNA replication, playing a role in the interaction between the immune system and the tumor cells and playing a role in the stiff man syndrome. We revised all patents relating to bacteriophage bacteriophage interactions and phage therapy. The proposed method is developed to help doctors to realize the effect of simultaneously injecting different bacteriophages into the human body to treat different diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  1. Immunocompatibility of Bacteriophages as Nanomedicines

    Directory of Open Access Journals (Sweden)

    Tranum Kaur

    2012-01-01

    Full Text Available Bacteriophage-based medical research provides the opportunity to develop targeted nanomedicines with heightened efficiency and safety profiles. Filamentous phages also can and have been formulated as targeted drug-delivery nanomedicines, and phage may also serve as promising alternatives/complements to antibiotics. Over the past decade the use of phage for both the prophylaxis and the treatment of bacterial infection, has gained special significance in view of a dramatic rise in the prevalence of antibiotic resistance bacterial strains. Two potential medical applications of phages are the treatment of bacterial infections and their use as immunizing agents in diagnosis and monitoring patients with immunodeficiencies. Recently, phages have been employed as gene-delivery vectors (phage nanomedicine, for nearly half a century as tools in genetic research, for about two decades as tools for the discovery of specific target-binding proteins and peptides, and for almost a decade as tools for vaccine development. As phage applications to human therapeutic development grow at an exponential rate, it will become essential to evaluate host immune responses to initial and repetitive challenges by therapeutic phage in order to develop phage therapies that offer suitable utility. This paper examines and discusses phage nanomedicine applications and the immunomodulatory effects of bacteriophage exposure and treatment modalities.

  2. Bacteriophages as Potential Treatment for Urinary Tract Infections.

    Science.gov (United States)

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M

    2016-01-01

    Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials.

  3. Induced High Lysine Mutants in Barley

    DEFF Research Database (Denmark)

    Doll, Hans; Køie, B.; Eggum, B. O.

    1974-01-01

    variety. Comparisons of six high lysine mutants with the parent variety showed that grain yield and seed size of the mutants are reduced between 10 and 30 per cent. However, the most promising mutant had the lowest reduction in grain yield, and the absolute lysine yield of this mutant was some 30 per cent...... above that of the parent variety. Feeding tests with rats revealed substantial increases in the biological value of the high lysine mutant protein. Also the net protein utilization was improved but less so because of a somewhat reduced digestibility of the mutant protein....

  4. Reactive lysine content in commercially available pet foods

    NARCIS (Netherlands)

    Rooijen, van C.; Bosch, G.; Poel, van der A.F.B.; Wierenga, P.A.; Alexander, L.; Hendriks, W.H.

    2014-01-01

    The Maillard reaction can occur during processing of pet foods. During this reaction, the e-amino group of lysine reacts with reducing sugars to become unavailable for metabolism. The aim of the present study was to determine the reactive lysine (RL; the remaining available lysine) to total lysine

  5. Arthrobacter globiformis and its bacteriophage in soil

    Science.gov (United States)

    Casida, L. E., Jr.; Liu, K.-C.

    1974-01-01

    An attempt was made to correlate bacteriophages for Arthrobacter globiformis with soils containing that bacterium. The phages were not detected unless the soil was nutritionally amended (with glucose or sucrose) and incubated for several days. Phage was continuously produced after amendment without the addition of host Arthrobacter. These results indicate that the bacteriophage is present in a masked state and that the bacteria are present in an insensitive form which becomes sensitive after addition of nutrient.

  6. Bacteriophages of Leuconostoc, Oenococcus, and Weissella

    DEFF Research Database (Denmark)

    Kot, Witold; Neve, Horst; Heller, Knut J

    2014-01-01

    can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore, bacteriophages attacking Leuconostoc strains may negatively influence the production process....... Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using...

  7. Bacteriophage Applications for Food Production and Processing.

    Science.gov (United States)

    Moye, Zachary D; Woolston, Joelle; Sulakvelidze, Alexander

    2018-04-19

    Foodborne illnesses remain a major cause of hospitalization and death worldwide despite many advances in food sanitation techniques and pathogen surveillance. Traditional antimicrobial methods, such as pasteurization, high pressure processing, irradiation, and chemical disinfectants are capable of reducing microbial populations in foods to varying degrees, but they also have considerable drawbacks, such as a large initial investment, potential damage to processing equipment due to their corrosive nature, and a deleterious impact on organoleptic qualities (and possibly the nutritional value) of foods. Perhaps most importantly, these decontamination strategies kill indiscriminately, including many—often beneficial—bacteria that are naturally present in foods. One promising technique that addresses several of these shortcomings is bacteriophage biocontrol, a green and natural method that uses lytic bacteriophages isolated from the environment to specifically target pathogenic bacteria and eliminate them from (or significantly reduce their levels in) foods. Since the initial conception of using bacteriophages on foods, a substantial number of research reports have described the use of bacteriophage biocontrol to target a variety of bacterial pathogens in various foods, ranging from ready-to-eat deli meats to fresh fruits and vegetables, and the number of commercially available products containing bacteriophages approved for use in food safety applications has also been steadily increasing. Though some challenges remain, bacteriophage biocontrol is increasingly recognized as an attractive modality in our arsenal of tools for safely and naturally eliminating pathogenic bacteria from foods.

  8. Bacteriophage endolysins as novel antimicrobials

    Science.gov (United States)

    Schmelcher, Mathias; Donovan, David M; Loessner, Martin J

    2013-01-01

    Endolysins are enzymes used by bacteriophages at the end of their replication cycle to degrade the peptidoglycan of the bacterial host from within, resulting in cell lysis and release of progeny virions. Due to the absence of an outer membrane in the Gram-positive bacterial cell wall, endolysins can access the peptidoglycan and destroy these organisms when applied externally, making them interesting antimicrobial candidates, particularly in light of increasing bacterial drug resistance. This article reviews the modular structure of these enzymes, in which cell wall binding and catalytic functions are separated, as well as their mechanism of action, lytic activity and potential as antimicrobials. It particularly focuses on molecular engineering as a means of optimizing endolysins for specific applications, highlights new developments that may render these proteins active against Gram-negative and intracellular pathogens and summarizes the most recent applications of endolysins in the fields of medicine, food safety, agriculture and biotechnology. PMID:23030422

  9. Bacteriophage endolysin production in Nicotiana benthamiana plants

    Science.gov (United States)

    The increasing spread of antibiotic resistant microorganisms is a growing concern for both modern animal husbandry and medicine. In recent years, peptidoglycan hydrolases (lysins) have acquired significant attention in the fight against bacterial diseases. The main advantages of lysins versus antib...

  10. 21 CFR 866.2050 - Staphylococcal typing bacteriophage.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Staphylococcal typing bacteriophage. 866.2050 Section 866.2050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... Staphylococcal typing bacteriophage. (a) Identification. A staphylococcal typing bacteriophage is a device...

  11. Prophage lysin Ply30 protects mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus infections.

    Science.gov (United States)

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping; Dai, Jianjun

    2015-11-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  12. Prophage Lysin Ply30 Protects Mice from Streptococcus suis and Streptococcus equi subsp. zooepidemicus Infections

    Science.gov (United States)

    Tang, Fang; Li, Dezhi; Wang, Haojin; Ma, Zhe; Lu, Chengping

    2015-01-01

    Streptococcus suis and Streptococcus equi subsp. zooepidemicus are capable of infecting humans and various animals, causing significant problems for the worldwide swine industry. As antibiotic resistance has increased, lysosomal enzymes encoded by phages have shown potential for use against pathogenic bacteria. In this study, a novel bacteriophage lysin, Ply30, encoded by the S. suis prophage phi30c, was recombinantly expressed and purified. Ply30 showed high bacteriolysis activity on S. suis and S. equi subsp. zooepidemicus in vitro. The ratio of the optical density at 600 nm (OD600) with treatment versus the OD600 with no treatment for most tested S. suis and S. equi subsp. zooepidemicus strains decreased from 1 to Streptococcus strains ranged from 16 to 512 μg/ml. In vivo, a 2-mg dose of Ply30 protected 90% (9/10 mice) of mice from infection with S. equi subsp. zooepidemicus and 80% (8/10 mice) of mice from infection with S. suis. Seven days after lysin Ply30 treatment, bacterial loads were significantly decreased in all tested organs and blood compared with those at 1 h postinfection without Ply30 treatment. Ply30 showed in vitro and in vivo antimicrobial efficiency and protected mice against two kinds of bacterial infections, indicating that Ply30 may be an effective therapeutic against streptococci. PMID:26253669

  13. Transport of lysine and hydroxylysine in Streptococcus faecalis.

    Science.gov (United States)

    Friede, J D; Gilboe, D P; Triebwasser, K C; Henderson, L M

    1972-01-01

    Data are presented which support the view that l-lysine is transported by two systems in Streptococcus faecalis. The system with the higher affinity for l-lysine appears to be specific for l-lysine among the common amino acids and to require an energy source. The second system transports both l-lysine and l-arginine and does not appear to require an energy source. Both of these systems will accept hydroxy-l-lysine as a substrate as shown by the energy requirement for hydroxy-l-lysine transport and by the inhibition of uptake by l-arginine as well as by l-lysine. The affinity of both systems appears to be considerably lower for hydroxy-l-lysine than for l-lysine. A mutant of S. faecalis which is resistant to the growth inhibitory action of hydroxy-l-lysine appears to differ from the parent strain by having a defective l-lysine-specific transport system. In this mutant, hydroxy-l-lysine is not readily transported via the l-lysine-specific system because of the mutation or via the second system because of the high concentration of l-arginine present in the growth medium. This overall lack of transport prevents hydroxy-l-lysine from reaching inhibitory levels within the cell.

  14. Photodynamic inactivation of mammalian viruses and bacteriophages.

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F; Neves, Maria Graça P M S; Cunha, Angela; Almeida, Adelaide

    2012-07-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  15. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Science.gov (United States)

    Costa, Liliana; Faustino, Maria Amparo F.; Neves, Maria Graça P. M. S.; Cunha, Ângela; Almeida, Adelaide

    2012-01-01

    Photodynamic inactivation (PDI) has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i) summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii) discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process. PMID:22852040

  16. Photodynamic Inactivation of Mammalian Viruses and Bacteriophages

    Directory of Open Access Journals (Sweden)

    Liliana Costa

    2012-06-01

    Full Text Available Photodynamic inactivation (PDI has been used to inactivate microorganisms through the use of photosensitizers. The inactivation of mammalian viruses and bacteriophages by photosensitization has been applied with success since the first decades of the last century. Due to the fact that mammalian viruses are known to pose a threat to public health and that bacteriophages are frequently used as models of mammalian viruses, it is important to know and understand the mechanisms and photodynamic procedures involved in their photoinactivation. The aim of this review is to (i summarize the main approaches developed until now for the photodynamic inactivation of bacteriophages and mammalian viruses and, (ii discuss and compare the present state of the art of mammalian viruses PDI with phage photoinactivation, with special focus on the most relevant mechanisms, molecular targets and factors affecting the viral inactivation process.

  17. Insights into the regulation of bacteriophage endolysin: multiple means to the same end.

    Science.gov (United States)

    Pohane, Amol Arunrao; Jain, Vikas

    2015-12-01

    Antibiotics are the molecules of choice to treat bacterial infections. However, because of the rapid emergence of drug-resistant bacteria, alternative modes of combating infections are being envisaged. Bacteriophages, which infect and lyse bacterial cells, may function as effective antimicrobial agents. Most bacteriophages produce their own peptidoglycan hydrolase called endolysin or lysin, which breaks down the cell wall of bacteria and aids in the release of newly assembled virions. Here, we discuss several findings that help us in understanding how endolysins are regulated. We observe that there is no common mechanism that is followed in all cases. Many different modes of activity regulation have been observed in endolysins, including regulation of protein expression, translocation across the cell membrane and post-translational modifications. These processes not only demonstrate how endolysins are made dependent on other accessory proteins and non-protein factors for their synthesis, translocation across the cytoplasmic membrane and activity, but also show how autoregulation helps in maintaining the enzyme in an inactive form. Various regulatory mechanisms that are discussed are particularly applicable to endolysins. Nevertheless, a detailed study of these methods opens new avenues of investigation in the area of protein translocation systems and the novel ways of enzyme activation and regulation in bacteria.

  18. Digestible reactive lysine in selected milk-based products.

    Science.gov (United States)

    Rutherfurd, S M; Moughan, P J

    2005-01-01

    Reactive lysine contents, true ileal reactive lysine digestibility, and true ileal digestible reactive lysine contents were determined in a wide range of processed milk products. A previously validated assay based on determining reactive lysine in both food and ileal digesta, after reaction of these materials with O-methylisourea, was applied. Semisynthetic diets containing milk products as the sole sources of protein and including chromic oxide as an indigestible marker were fed to growing rats. Digesta from the terminal ileum were collected posteuthanasia and, with samples of the diets, analyzed for reactive lysine (homoarginine) contents. True reactive lysine digestibility was determined after correcting for endogenous lysine loss at the terminal ileum of rats fed an enzyme hydrolyzed casein-based diet, followed by ultrafiltration (5000 Da) of the digesta. Digestible total lysine (determined using conventional methods) was also determined. The true ileal reactive lysine digestibility was high (>91%) in all the milk products tested, but was highest in the UHT milk (100%) and lowest in the infant formulas (91 to 93%). Total lysine digestibility (conventional measurement) significantly underestimated reactive lysine digestibility for all the products tested. The mean underestimation ranged from 1.3 to 7.1% units. The mean digestible total lysine content was significantly different from the available lysine content for most of the products examined. In some cases this difference was small (milk, whole milk protein, lactose hydrolyzed milk powder, and a sports formula) the difference was greater (6.5 to 14%). This would suggest firstly that total lysine and total lysine digestibility determined using conventional methods were inaccurate when applied to some milk-based foods, and secondly that some of the milk products have undergone lysine modification. In general, milk proteins are a highly digestible source of amino acids and lysine.

  19. Isolation of lytic bacteriophage against Vibrio harveyi.

    Science.gov (United States)

    Crothers-Stomps, C; Høj, L; Bourne, D G; Hall, M R; Owens, L

    2010-05-01

    The isolation of lytic bacteriophage of Vibrio harveyi with potential for phage therapy of bacterial pathogens of phyllosoma larvae from the tropical rock lobster Panulirus ornatus. Water samples from discharge channels and grow-out ponds of a prawn farm in northeastern Australia were enriched for 24 h in a broth containing four V. harveyi strains. The bacteriophage-enriched filtrates were spotted onto bacterial lawns demonstrating that the bacteriophage host range for the samples included strains of V. harveyi, Vibrio campbellii, Vibrio rotiferianus, Vibrio parahaemolyticus and Vibrio proteolyticus. Bacteriophage were isolated from eight enriched samples through triple plaque purification. The host range of purified phage included V. harveyi, V. campbellii, V. rotiferianus and V. parahaemolyticus. Transmission electron microscope examination revealed that six purified phage belonged to the family Siphoviridae, whilst two belonged to the family Myoviridae. The Myoviridae appeared to induce bacteriocin production in a limited number of host bacterial strains, suggesting that they were lysogenic rather than lytic. A purified Siphoviridae phage could delay the entry of a broth culture of V. harveyi strain 12 into exponential growth, but could not prevent the overall growth of the bacterial strain. Bacteriophage with lytic activity against V. harveyi were isolated from prawn farm samples. Purified phage of the family Siphoviridae had a clear lytic ability and no apparent transducing properties, indicating they are appropriate for phage therapy. Phage resistance is potentially a major constraint to the use of phage therapy in aquaculture as bacteria are not completely eliminated. Phage therapy is emerging as a potential antibacterial agent that can be used to control pathogenic bacteria in aquaculture systems. The development of phage therapy for aquaculture requires initial isolation and determination of the bacteriophage host range, with subsequent creation of

  20. Bacteriophages in the control of pathogenic vibrios

    DEFF Research Database (Denmark)

    Plaza, Nicolás; Castillo Bermúdez, Daniel Elías; Perez-Reytor, Diliana

    2018-01-01

    constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however......, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control....

  1. Bacteriophages as Potential Treatment for Urinary Tract Infections

    Science.gov (United States)

    Sybesma, Wilbert; Zbinden, Reinhard; Chanishvili, Nino; Kutateladze, Mzia; Chkhotua, Archil; Ujmajuridze, Aleksandre; Mehnert, Ulrich; Kessler, Thomas M.

    2016-01-01

    Background: Urinary tract infections (UTIs) are among the most prevalent microbial diseases and their financial burden on society is substantial. The continuing increase of antibiotic resistance worldwide is alarming so that well-tolerated, highly effective therapeutic alternatives are urgently needed. Objective: To investigate the effect of bacteriophages on Escherichia coli and Klebsiella pneumoniae strains isolated from the urine of patients suffering from UTIs. Material and methods: Forty-one E. coli and 9 K. pneumoniae strains, isolated from the urine of patients suffering from UTIs, were tested in vitro for their susceptibility toward bacteriophages. The bacteriophages originated from either commercially available bacteriophage cocktails registered in Georgia or from the bacteriophage collection of the George Eliava Institute of Bacteriophage, Microbiology and Virology. In vitro screening of bacterial strains was performed by use of the spot-test method. The experiments were implemented three times by different groups of scientists. Results: The lytic activity of the commercial bacteriophage cocktails on the 41 E. coli strains varied between 66% (Pyo bacteriophage) and 93% (Enko bacteriophage). After bacteriophage adaptation of the Pyo bacteriophage cocktail, its lytic activity was increased from 66 to 93% and only one E. coli strain remained resistant. One bacteriophage of the Eliava collection could lyse all 9 K. pneumoniae strains. Conclusions: Based on the high lytic activity and the potential of resistance optimization by direct adaption of bacteriophages as reported in this study, and in view of the continuing increase of antibiotic resistance worldwide, bacteriophage therapy is a promising treatment option for UTIs highly warranting randomized controlled trials. PMID:27148173

  2. Efficient Production of Enantiopure d-Lysine from l-Lysine by a Two-Enzyme Cascade System

    Directory of Open Access Journals (Sweden)

    Xin Wang

    2016-10-01

    Full Text Available The microbial production of d-lysine has been of great interest as a medicinal raw material. Here, a two-step process for d-lysine production from l-lysine by the successive microbial racemization and asymmetric degradation with lysine racemase and decarboxylase was developed. The whole-cell activities of engineered Escherichia coli expressing racemases from the strains Proteus mirabilis (LYR and Lactobacillus paracasei (AAR were first investigated comparatively. When the strain BL21-LYR with higher racemization activity was employed, l-lysine was rapidly racemized to give dl-lysine, and the d-lysine yield was approximately 48% after 0.5 h. Next, l-lysine was selectively catabolized to generate cadaverine by lysine decarboxylase. The comparative analysis of the decarboxylation activities of resting whole cells, permeabilized cells, and crude enzyme revealed that the crude enzyme was the best biocatalyst for enantiopure d-lysine production. The reaction temperature, pH, metal ion additive, and pyridoxal 5′-phosphate content of this two-step production process were subsequently optimized. Under optimal conditions, 750.7 mmol/L d-lysine was finally obtained from 1710 mmol/L l-lysine after 1 h of racemization reaction and 0.5 h of decarboxylation reaction. d-lysine yield could reach 48.8% with enantiomeric excess (ee ≥ 99%.

  3. Toward modern inhalational bacteriophage therapy: nebulization of bacteriophages of Burkholderia cepacia complex.

    Science.gov (United States)

    Golshahi, Laleh; Seed, Kimberley D; Dennis, Jonathan J; Finlay, Warren H

    2008-12-01

    Antibiotic-resistant bacterial infections have renewed interest in finding substitute methods of treatment. The purpose of the present in vitro study was to investigate the possibility of respiratory delivery of a Burkholderia cepacia complex (BCC) bacteriophage by nebulized aerosol administration. Bacteriophages in isotonic saline were aerosolized with Pari LC star and eFlow nebulizers, at titers with mean value (standard deviation) of 2.15 x 10(8) (1.63 x 10(8)) plaque-forming unit (PFU)/mL in 2.5-mL nebulizer fills. The breathing pattern of an adult was simulated using a pulmonary waveform generator. During breath simulation, the size distributions of the nebulized aerosol were measured using phase doppler anemometry (PDA). Efficiency of nebulizer delivery was subsequently determined by collection of aerosol on low resistance filters and measurement of bacteriophage titers. These filter titers were used as input data to a mathematical lung deposition model to predict regional deposition of bacteriophages in the lung and initial bacteriophage titers in the liquid surface layer of each conducting airway generation. The results suggest that BCC bacteriophages can be nebulized successfully within a reasonable delivery time and predicted titers in the lung indicate that this method may hold potential for treatment of bacterial lung infections common among cystic fibrosis patients.

  4. Radioactive Lysine in Protein Metabolism Studies

    Science.gov (United States)

    Miller, L. L.; Bale, W. F.; Yuile, C. L.; Masters, R. E.; Tishkoff, G. H.; Whipple,, G. H.

    1950-01-09

    Studies of incorporation of DL-lysine in various body proteins of the dog; the time course of labeled blood proteins; and apparent rate of disappearance of labeled plasma proteins for comparison of behavior of the plasma albumin and globulin fractions; shows more rapid turn over of globulin fraction.

  5. Lysine and arginine requirements of Salminus brasiliensis

    Directory of Open Access Journals (Sweden)

    Jony Koji Dairiki

    2013-08-01

    Full Text Available The objective of this work was to determine the dietary lysine (DL and dietary arginine (DA requirements of dourado (Salminus brasiliensis, through dose-response trials using the amino acid profiles of whole carcasses as a reference. Two experiments were carried out in a completely randomized design (n=4. In the first experiment, groups of 12 feed-conditioned dourado juveniles (11.4±0.2 g were stocked in 60 L cages placed in 300 L plastic indoor tanks in a closed circulation system. Fish were fed for 60 days on diets containing 1.0, 1.5, 2.0, 2.5, 3.0, or 3.5 % dietary lysine. In the second experiment, dourado juveniles (27.0±0.8 g were fed for 60 days on semipurified diets containing arginine at 1.0, 1.5, 2.0, 2.5 or 3.0%, in similar conditions to those of the first experiment. Optimal DL requirements, as determined by broken-line analysis method for final weight, weight gain and specific growth rate, were 2.15% DL or 5% lysine in dietary protein, and 1.48% DA or 3.43% arginine in dietary protein. The best feed conversion ratio is attained with 2.5% DL or 5.8% lysine in dietary protein and 1.4% DA or 3.25% arginine in dietary protein.

  6. Lysine acetylation of major Chlamydia trachomatis antigens

    Directory of Open Access Journals (Sweden)

    Jelena Mihailovic

    2016-03-01

    Our data show that important Ct antigens could be post-translationally modified by acetylation of lysine residues at multiple sites. Further studies are needed to investigate total acetylome of Ct and the impact PTMs might have on Ct biology and pathogenicity.

  7. Immunomodulatory activity of chicken NK-lysin peptides

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin), the chicken homologue of human granulysin, is a cationic amphiphilic antimicrobial peptide (AMP) produced by cytotoxic T cells and natural killer cells. We have previously demonstrated that cNK-lysin and cNK-2, which is a synthetic peptide incorporating core alpha-helic...

  8. ADSORPTION OF BACTERIOPHAGES ON CLAY MINERALS

    Science.gov (United States)

    Theability to predict the fate of microorganisms in soil is dependent on an understanding of the process of their sorption on soil and subsurface materials. Presently, we have focused on studying the thermodynamics of sorption of bacteriophages (T-2, MS-2, and

  9. Bacteriophages as surface and ground water tracers

    Directory of Open Access Journals (Sweden)

    P. Rossi

    1998-01-01

    Full Text Available Bacteriophages are increasingly used as tracers for quantitative analysis in both hydrology and hydrogeology. The biological particles are neither toxic nor pathogenic for other living organisms as they penetrate only a specific bacterial host. They have many advantages over classical fluorescent tracers and offer the additional possibility of multi-point injection for tracer tests. Several years of research make them suitable for quantitative transport analysis and flow boundary delineation in both surface and ground waters, including karst, fractured and porous media aquifers. This article presents the effective application of bacteriophages based on their use in differing Swiss hydrological environments and compares their behaviour to conventional coloured dye or salt-type tracers. In surface water and karst aquifers, bacteriophages travel at about the same speed as the typically referenced fluorescent tracers (uranine, sulphurhodamine G extra. In aquifers of interstitial porosity, however, they appear to migrate more rapidly than fluorescent tracers, albeit with a significant reduction in their numbers within the porous media. This faster travel time implies that a modified rationale is needed for defining some ground water protection area boundaries. Further developments of other bacteriophages and their documentation as tracer methods should result in an accurate and efficient tracer tool that will be a proven alternative to conventional fluorescent dyes.

  10. Comparative genomics of Shiga toxin encoding bacteriophages

    Directory of Open Access Journals (Sweden)

    Smith Darren L

    2012-07-01

    Full Text Available Abstract Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC, however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.

  11. Molecular Biology and Biotechnology of Bacteriophage

    Science.gov (United States)

    Onodera, Kazukiyo

    The development of the molecular biology of bacteriophage such as T4, lambda and filamentous phages was described and the process that the fundamental knowledge obtained in this field has subsequently led us to the technology of phage display was introduced.

  12. Molecular subgrouping of Wolbachia and bacteriophage WO ...

    Indian Academy of Sciences (India)

    2011-12-16

    Dec 16, 2011 ... Kittayapong P. 2011 Infection incidence and relative density of the bacteriophage WO-B in Aedes albopictus mosquitoes from fields in Thailand. Curr. Microbiol. 62, 816–820. Baldo L. and Werren J. H. 2007 Revisiting Wolbachia supergroup typing based on WSP: spurious lineages and discordance with.

  13. What history tells us XLIII Bacteriophage

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 42; Issue 3. What history tells us XLIII Bacteriophage: The contexts in which it was discovered. MICHEL MORANGE. Series Volume 42 Issue 3 September 2017 pp 359-362. Fulltext. Click here to view fulltext PDF. Permanent link:

  14. Global analysis of protein lysine succinylation profiles in common wheat.

    Science.gov (United States)

    Zhang, Yumei; Wang, Guangyuan; Song, Limin; Mu, Ping; Wang, Shu; Liang, Wenxing; Lin, Qi

    2017-04-20

    Protein lysine succinylation is an important post-translational modification and plays a critical regulatory role in almost every aspects of cell metabolism in both eukaryotes and prokaryotes. Common wheat is one of the major global cereal crops. However, to date, little is known about the functions of lysine succinylation in this plant. Here, we performed a global analysis of lysine succinylation in wheat and examined its overlap with lysine acetylation. In total, 330 lysine succinylated modification sites were identified in 173 proteins. Bioinformatics analysis showed that the modified proteins are distributed in multiple subcellular compartments and are involved in a wide variety of biological processes such as photosynthesis and the Calvin-Benson cycle, suggesting an important role for lysine succinylation in these processes. Five putative succinylation motifs were identified. A protein interaction network analysis revealed that diverse interactions are modulated by protein succinylation. Moreover, 21 succinyl-lysine sites were found to be acetylated at the same position, and 33 proteins were modified by both acetylation and succinylation, suggesting an extensive overlap between succinylation and acetylation in common wheat. Comparative analysis indicated that lysine succinylation is conserved between common wheat and Brachypodium distachyon. These results suggest that lysine succinylation is involved in diverse biological processes, especially in photosynthesis and carbon fixation. This systematic analysis represents the first global analysis of lysine succinylation in common wheat and provides an important resource for exploring the physiological role of lysine succinylation in this cereal crop and likely in all plants.

  15. Bacterial Lysine Decarboxylase Influences Human Dental Biofilm Lysine Content, Biofilm Accumulation and Sub-Clinical Gingival Inflammation

    Science.gov (United States)

    Lohinai, Z.; Keremi, B.; Szoko, E.; Tabi, T.; Szabo, C.; Tulassay, Z.; Levine, M.

    2012-01-01

    Background Dental biofilms contain a protein that inhibits mammalian cell growth, possibly lysine decarboxylase from Eikenella corrodens. This enzyme decarboxylates lysine, an essential amino acid for dentally attached cell turnover in gingival sulci. Lysine depletion may stop this turnover, impairing the barrier to bacterial compounds. The aims of this study were to determine biofilm lysine and cadaverine contents before oral hygiene restriction (OHR), and their association with plaque index (PI) and gingival crevicular fluid (GCF) after OHR for a week. Methods Laser-induced fluorescence after capillary electrophoresis was used to determine lysine and cadaverine contents in dental biofilm, tongue biofilm and saliva before OHR and in dental biofilm after OHR. Results Before OHR, lysine and cadaverine contents of dental biofilm were similar and 10-fold greater than in saliva or tongue biofilm. After a week of OHR, the biofilm content of cadaverine increased and that of lysine decreased, consistent with greater biofilm lysine decarboxylase activity. Regression indicated that PI and GCF exudation were positively related to biofilm lysine post-OHR, unless biofilm lysine exceeded the minimal blood plasma content in which case PI was further increased but GCF exudation was reduced. Conclusions After OHR, lysine decarboxylase activity seems to determine biofilm lysine content and biofilm accumulation. When biofilm lysine exceeds minimal blood plasma content after OHR, less GCF appeared despite more biofilm. Lysine appears important for biofilm accumulation and the epithelial barrier to bacterial proinflammatory agents. Clinical Relevance Inhibiting lysine decarboxylase may retard the increased GCF exudation required for microbial development and gingivitis. PMID:22141361

  16. K. OXYTOCA BACTERIOPHAGES ISOLATION METHODS IMPROVEMENT

    Directory of Open Access Journals (Sweden)

    G. R. Sadrtdinova

    2017-01-01

    Full Text Available The article presents the results of a study related to increasing the efficiency of phage isolation of bacteria of the species K. oxytoca, by developing the optimal composition of the medium used in the work. In scientific research, in almost all methods associated with the isolation of bacteriophages, meat-peptone broth and meat-peptone agar are used as the nutrient basis. The peculiarities of growth and cultivation of microorganisms create certain difficulties for the isolation of phages active against bacteria of the species K. oxytoca. The selection of components and the creation of an environment that would ensure the optimal growth of both the bacterial culture and the reproduction of the virus makes it possible to facilitate the isolation of bacteriophages. The number of bacterial strains used in the work was 7. All strains of cultures were obtained from the Museum of the Department of Microbiology, Virology, Epizootology and Veterinary and Sanitary Expertise of the Federal State Budget Educational Institution of Higher Education “Ulyanovsk State Agrarian University named after P.A. Stolypin”. The studies included 2 main stages. The first stage consisted in isolation of bacteriophages by the method of isolation from the external environment by the method of Adelson L.I., Lyashenko E.A. The material for the studies were samples: soil, sewage sample, fecal samples (2. Only 4 samples. According to the chosen method, the sowing of the putative phagolysate was carried out on meat-peptone agar (1.5% and the agar for isolating bacteriophages (Aph (1.5%. A positive result was the presence on the environment of negative colonies, clearly visible on the matt background of deep growth of bacteria. A negative result is a continuous growth (“lawn” of bacterial culture. As a control, the culture of the microorganism studied was used for the media. In the course of the conducted studies for the first stage, 2 bacteriophages were isolated, active

  17. Evolution and the complexity of bacteriophages

    Directory of Open Access Journals (Sweden)

    Serwer Philip

    2007-03-01

    Full Text Available Abstract Background The genomes of both long-genome (> 200 Kb bacteriophages and long-genome eukaryotic viruses have cellular gene homologs whose selective advantage is not explained. These homologs add genomic and possibly biochemical complexity. Understanding their significance requires a definition of complexity that is more biochemically oriented than past empirically based definitions. Hypothesis Initially, I propose two biochemistry-oriented definitions of complexity: either decreased randomness or increased encoded information that does not serve immediate needs. Then, I make the assumption that these two definitions are equivalent. This assumption and recent data lead to the following four-part hypothesis that explains the presence of cellular gene homologs in long bacteriophage genomes and also provides a pathway for complexity increases in prokaryotic cells: (1 Prokaryotes underwent evolutionary increases in biochemical complexity after the eukaryote/prokaryote splits. (2 Some of the complexity increases occurred via multi-step, weak selection that was both protected from strong selection and accelerated by embedding evolving cellular genes in the genomes of bacteriophages and, presumably, also archaeal viruses (first tier selection. (3 The mechanisms for retaining cellular genes in viral genomes evolved under additional, longer-term selection that was stronger (second tier selection. (4 The second tier selection was based on increased access by prokaryotic cells to improved biochemical systems. This access was achieved when DNA transfer moved to prokaryotic cells both the more evolved genes and their more competitive and complex biochemical systems. Testing the hypothesis I propose testing this hypothesis by controlled evolution in microbial communities to (1 determine the effects of deleting individual cellular gene homologs on the growth and evolution of long genome bacteriophages and hosts, (2 find the environmental conditions that

  18. Histone Lysine Methylation and Neurodevelopmental Disorders

    Directory of Open Access Journals (Sweden)

    Jeong-Hoon Kim

    2017-06-01

    Full Text Available Methylation of several lysine residues of histones is a crucial mechanism for relatively long-term regulation of genomic activity. Recent molecular biological studies have demonstrated that the function of histone methylation is more diverse and complex than previously thought. Moreover, studies using newly available genomics techniques, such as exome sequencing, have identified an increasing number of histone lysine methylation-related genes as intellectual disability-associated genes, which highlights the importance of accurate control of histone methylation during neurogenesis. However, given the functional diversity and complexity of histone methylation within the cell, the study of the molecular basis of histone methylation-related neurodevelopmental disorders is currently still in its infancy. Here, we review the latest studies that revealed the pathological implications of alterations in histone methylation status in the context of various neurodevelopmental disorders and propose possible therapeutic application of epigenetic compounds regulating histone methylation status for the treatment of these diseases.

  19. Optimization of Direct Lysine Decarboxylase Biotransformation for Cadaverine Production with Whole-Cell Biocatalysts at High Lysine Concentration.

    Science.gov (United States)

    Kim, Hyun Joong; Kim, Yong Hyun; Shin, Ji-Hyun; Bhatia, Shashi Kant; Sathiyanarayanan, Ganesan; Seo, Hyung-Min; Choi, Kwon Young; Yang, Yung-Hun; Park, Kyungmoon

    2015-07-01

    Cadaverine (1,5-diaminopentane) is an important industrial chemical with a wide range of applications. Although there have been many efforts to produce cadaverine through fermentation, there are not many reports of the direct cadaverine production from lysine using biotransformation. Whole-cell reactions were examined using a recombinant Escherichia coli strain overexpressing the E. coli MG1655 cadA gene, and various parameters were investigated for the whole-cell bioconversion of lysine to cadaverine. A high concentration of lysine resulted in the synthesis of pyridoxal-5'-phosphate (PLP) and it was found to be a critical control factor for the biotransformation of lysine to cadaverine. When 0.025 mM PLP and 1.75 M lysine in 500 mM sodium acetate buffer (pH6) were used, consumption of 91% lysine and conversion of about 80% lysine to cadaverine were successfully achieved.

  20. A first step toward liposome-mediated intracellular bacteriophage therapy.

    Science.gov (United States)

    Nieth, Anita; Verseux, Cyprien; Barnert, Sabine; Süss, Regine; Römer, Winfried

    2015-01-01

    The emergence of antibiotic-resistant bacteria presents a severe challenge to medicine and public health. While bacteriophage therapy is a promising alternative to traditional antibiotics, the general inability of bacteriophages to penetrate eukaryotic cells limits their use against resistant bacteria, causing intracellular diseases like tuberculosis. Bacterial vectors show some promise in carrying therapeutic bacteriophages into cells, but also bring a number of risks like an overload of bacterial antigens or the acquisition of virulence genes from the pathogen. As a first step in the development of a non-bacterial vector for bacteriophage delivery into pathogen-infected cells, we attempted to encapsulate bacteriophages into liposomes. Here we report effective encapsulation of the model bacteriophage λeyfp and the mycobacteriophage TM4 into giant liposomes. Furthermore, we show that liposome-associated bacteriophages are taken up into eukaryotic cells more efficiently than free bacteriophages. These are important milestones in the development of an intracellular bacteriophage therapy that might be useful in the fight against multi-drug-resistant intracellular pathogens like Mycobacterium tuberculosis.

  1. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  2. Bacteriophage interactions with marine pathogenic Vibrios

    DEFF Research Database (Denmark)

    Kalatzis, Panagiotis

    Incidents of Vibrio-associated diseases in marine aquaculture are increasingly reported on a global scale, incited also by the world’s rising temperature. Administration of antibiotics has been the most commonly applied remedy used for facing vibriosis outbreaks, giving rise to concerns about...... pathogens. The combinatory administration of virulent bacteriophages φSt2 and φGrn1, isolated against Vibrio alginolyticus significantly reduced the Vibrio load in cultures of Artemia salina live prey, decreasing subsequently the risk of a vibriosis outbreak in the marine hatchery. During infection...... to studying the interactions between marine pathogenic Vibrio and their corresponding bacteriophages, while discussing the potential and limitations of phage therapy application in the biological control of vibriosis....

  3. N'-formylkynurenine-photosensitized inactivation of bacteriophage

    International Nuclear Information System (INIS)

    Walrant, P.; Santus, R.; Redpath, J.L.; Pileni, M.P.

    1976-01-01

    Measurements have been made of the sensitizing properties of N'-formylkynurenine (FK) on bacteriophages, as part of a wider study of FK photosensitization of systems which have both protein and DNA components. Suspensions of bacteriophages T 6 and T 7 were near-U.V. (lambda > 320 nm) irradiated in solutions saturated with either O 2 or He in the presence of 5 x 10 -4 M FK. The survival curves obtained demonstrated that FK can act as a photosensitizer for biological inactivation. The involvement of singlet oxygen as one factor in this FK sensitized inactivation was clearly demonstrated by the increased rate of inactivation when the phage were suspended in O 2 -saturated D 2 O, in place of water, during irradiation. The complex mechanism of phage inactivation must involve direct interaction between excited FK and substrate, as well as singlet oxygen. FK is therefore a new natural photosensitizer of significance in cell photochemistry induced by sunlight. (U.K.)

  4. Application of bacteriophages in sensor development.

    Science.gov (United States)

    Peltomaa, Riikka; López-Perolio, Irene; Benito-Peña, Elena; Barderas, Rodrigo; Moreno-Bondi, María Cruz

    2016-03-01

    Bacteriophage-based bioassays are a promising alternative to traditional antibody-based immunoassays. Bacteriophages, shortened to phages, can be easily conjugated or genetically engineered. Phages are robust, ubiquitous in nature, and harmless to humans. Notably, phages do not usually require inoculation and killing of animals; and thus, the production of phages is simple and economical. In recent years, phage-based biosensors have been developed featuring excellent robustness, sensitivity, and selectivity in combination with the ease of integration into transduction devices. This review provides a critical overview of phage-based bioassays and biosensors developed in the last few years using different interrogation methods such as colorimetric, enzymatic, fluorescence, surface plasmon resonance, quartz crystal microbalance, magnetoelastic, Raman, or electrochemical techniques.

  5. Bacteriophages in the control of pathogenic vibrios

    Directory of Open Access Journals (Sweden)

    Nicolás Plaza

    2018-01-01

    Full Text Available Vibrios are common inhabitants of marine and estuarine environments. Some of them can be pathogenic to humans and/or marine animals using a broad repertory of virulence factors. Lately, several reports have indicated that the incidence of Vibrio infections in humans is rising and also in animals constitute a continuing threat for aquaculture. Moreover, the continuous use of antibiotics has been accompanied by an emergence of antibiotic resistance in Vibrio species, implying a necessity for efficient treatments. One promising alternative that emerges is the use of lytic bacteriophages; however, there are some drawbacks that should be overcome to make phage therapy a widely accepted method. In this work, we discuss about the major pathogenic Vibrio species and the progress, benefits and disadvantages that have been detected during the experimental use of bacteriophages to their control.

  6. A novel approach for separating bacteriophages from other bacteriophages using affinity chromatography and phage display.

    Science.gov (United States)

    Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna

    2013-11-14

    Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.

  7. Genomic impact of CRISPR immunization against bacteriophages.

    Science.gov (United States)

    Barrangou, Rodolphe; Coûté-Monvoisin, Anne-Claire; Stahl, Buffy; Chavichvily, Isabelle; Damange, Florian; Romero, Dennis A; Boyaval, Patrick; Fremaux, Christophe; Horvath, Philippe

    2013-12-01

    CRISPR (clustered regularly interspaced short palindromic repeats) together with CAS (RISPR-associated) genes form the CRISPR-Cas immune system, which provides sequence-specific adaptive immunity against foreign genetic elements in bacteria and archaea. Immunity is acquired by the integration of short stretches of invasive DNA as novel 'spacers' into CRISPR loci. Subsequently, these immune markers are transcribed and generate small non-coding interfering RNAs that specifically guide nucleases for sequence-specific cleavage of complementary sequences. Among the four CRISPR-Cas systems present in Streptococcus thermophilus, CRISPR1 and CRISPR3 have the ability to readily acquire new spacers following bacteriophage or plasmid exposure. In order to investigate the impact of building CRISPR-encoded immunity on the host chromosome, we determined the genome sequence of a BIM (bacteriophage-insensitive mutant) derived from the DGCC7710 model organism, after four consecutive rounds of bacteriophage challenge. As expected, active CRISPR loci evolved via polarized addition of several novel spacers following exposure to bacteriophages. Although analysis of the draft genome sequence revealed a variety of SNPs (single nucleotide polymorphisms) and INDELs (insertions/deletions), most of the in silico differences were not validated by Sanger re-sequencing. In addition, two SNPs and two small INDELs were identified and tracked in the intermediate variants. Overall, building CRISPR-encoded immunity does not significantly affect the genome, which allows the maintenance of important functional properties in isogenic CRISPR mutants. This is critical for the development and formulation of sustainable and robust next-generation starter cultures with increased industrial lifespans.

  8. Bacteriophages for detection of bacterial pathogens

    International Nuclear Information System (INIS)

    Kutateladze, M.

    2009-01-01

    The G. Eliava Institute of Bacteriophages, Microbiology and Virology (Tbilisi, Georgia) is one of the most famous institutions focused on bacteriophage research for the elaboration of appropriate phage methodologies for human and animal protection. The main direction of the institute is the study and production of bacteriophages against intestinal disorders (dysentery, typhoid, intesti) and purulent-septic infections (staphylococcus, streptococcus, pyophage, etc.). These preparations were successfully introduced during the Soviet era, and for decades were used throughout the former Soviet Union and in other Socialist countries for the treatment, prophylaxis, and diagnosis of various infectious diseases, including those caused by antibiotic-resistant bacterial strains. Bacteriophages were widely used for identifying and detecting infections caused by the most dangerous pathogens and causative agents of epidemiological outbreaks. The specific topic of this presentation is the phage typing of bacterial species, which can be an important method for epidemiological diagnostics. Together with different genetic methodologies - such as PCR-based methods, PFGE, plasmid fingerprinting, and ribosomal typing - phage typing is one method for identifying bacterial pathogens. The method has a high percentage of determination of phage types, high specificity of reaction, and is easy for interpretation and use by health workers. Phage typing was applied for inter-species differentiation of different species of Salmonella, S. typhi, Brucella spp, Staphylococcus aureus, E. col,i Clostridium deficile, Vibrio cholerae, Yersinia pestis, Yersinia enterocolitica, Lysteria monocytogenes, Clostridium perfringens, Clostridium tetani, plant pathogens, and other bacterial pathogens. In addition to addressing the utility and efficacy of phage typing, the paper will discuss the isolation and selection of diagnostic typing phages for interspecies differentiation of pathogens that is necessary

  9. Bacteriophages as recognition and identification agents

    International Nuclear Information System (INIS)

    Teodorescu, M.C.; Gaspar, Alexandre.

    1987-01-01

    Bacteriophages are employed as agents for recognition and identification of molecules and cellular materials, using their ability to recognize their bacterial host, by coating them with antibodies or by selecting them to perform in a manner analogous to antibodies. Visibility for identification is effected by incorporating a fluorescent agent, a radioisotope, a metal, an enzyme, or other staining material. The method of this invention may be utilized in selected clinical procedures, and is adaptable to use in an assay kit. (author)

  10. Mutagenesis in bacteriophage T 7. 2

    International Nuclear Information System (INIS)

    Meyer, M.; Witte, W.

    1976-01-01

    UV induced mutagenesis of bacteriophage T 7 was investigated by using a forward mutation system (host range system) and a back mutation system (amber system). The results indicate a dependence of mutation of T 7 after UV irradiation only on the rec gene controlled functions of the bacterial host. The functions controlled by pol and uvr genes have no influence. Among other types of mutations UV irradiation leads to transitions from AT to GC. (author)

  11. Enteroviruses and Bacteriophages in Bathing Waters

    OpenAIRE

    Mocé-Llivina, Laura; Lucena, Francisco; Jofre, Juan

    2005-01-01

    A new procedure for detecting and counting enteroviruses based on the VIRADEN method applied to 10 liters of seawater was examined. It improved the efficiency of detection by taking into account both the number of positive isolations and numbers found with traditional methods. It was then used to quantify viruses in bathing waters. A number of bacterial indicators and bacteriophages were also tested. Cultivable enteroviruses were detected in 55% of the samples, most of which complied with bac...

  12. Genetically modified bacteriophages in applied microbiology.

    Science.gov (United States)

    Bárdy, P; Pantůček, R; Benešík, M; Doškař, J

    2016-09-01

    Bacteriophages represent a simple viral model of basic research with many possibilities for practical application. Due to their ability to infect and kill bacteria, their potential in the treatment of bacterial infection has been examined since their discovery. With advances in molecular biology and gene engineering, the phage application spectrum has been expanded to various medical and biotechnological fields. The construction of bacteriophages with an extended host range or longer viability in the mammalian bloodstream enhances their potential as an alternative to conventional antibiotic treatment. Insertion of active depolymerase genes to their genomes can enforce the biofilm disposal. They can also be engineered to transfer various compounds to the eukaryotic organisms and the bacterial culture, applicable for the vaccine, drug or gene delivery. Phage recombinant lytic enzymes can be applied as enzybiotics in medicine as well as in biotechnology for pathogen detection or programmed cell death in bacterial expression strains. Besides, modified bacteriophages with high specificity can be applied as bioprobes in detection tools to estimate the presence of pathogens in food industry, or utilized in the control of food-borne pathogens as part of the constructed phage-based biosorbents. © 2016 The Society for Applied Microbiology.

  13. Widespread genetic exchange among terrestrial bacteriophages.

    Science.gov (United States)

    Silander, Olin K; Weinreich, Daniel M; Wright, Kevin M; O'Keefe, Kara J; Rang, Camilla U; Turner, Paul E; Chao, Lin

    2005-12-27

    Bacteriophages are the most numerous entities in the biosphere. Despite this numerical dominance, the genetic structure of bacteriophage populations is poorly understood. Here, we present a biogeography study involving 25 previously undescribed bacteriophages from the Cystoviridae clade, a group characterized by a dsRNA genome divided into three segments. Previous laboratory manipulation has shown that, when multiple Cystoviruses infect a single host cell, they undergo (i) rare intrasegment recombination events and (ii) frequent genetic reassortment between segments. Analyzing linkage disequilibrium (LD) within segments, we find no significant evidence of intrasegment recombination in wild populations, consistent with (i). An extensive analysis of LD between segments supports frequent reassortment, on a time scale similar to the genomic mutation rate. The absence of LD within this group of phages is consistent with expectations for a completely sexual population, despite the fact that some segments have >50% nucleotide divergence at 4-fold degenerate sites. This extraordinary rate of genetic exchange between highly unrelated individuals is unprecedented in any taxa. We discuss our results in light of the biological species concept applied to viruses.

  14. Call for a dedicated European legal framework for bacteriophage therapy.

    Science.gov (United States)

    Verbeken, Gilbert; Pirnay, Jean-Paul; Lavigne, Rob; Jennes, Serge; De Vos, Daniel; Casteels, Minne; Huys, Isabelle

    2014-04-01

    The worldwide emergence of antibiotic resistances and the drying up of the antibiotic pipeline have spurred a search for alternative or complementary antibacterial therapies. Bacteriophages are bacterial viruses that have been used for almost a century to combat bacterial infections, particularly in Poland and the former Soviet Union. The antibiotic crisis has triggered a renewed clinical and agricultural interest in bacteriophages. This, combined with new scientific insights, has pushed bacteriophages to the forefront of the search for new approaches to fighting bacterial infections. But before bacteriophage therapy can be introduced into clinical practice in the European Union, several challenges must be overcome. One of these is the conceptualization and classification of bacteriophage therapy itself and the extent to which it constitutes a human medicinal product regulated under the European Human Code for Medicines (Directive 2001/83/EC). Can therapeutic products containing natural bacteriophages be categorized under the current European regulatory framework, or should this framework be adapted? Various actors in the field have discussed the need for an adapted (or entirely new) regulatory framework for the reintroduction of bacteriophage therapy in Europe. This led to the identification of several characteristics specific to natural bacteriophages that should be taken into consideration by regulators when evaluating bacteriophage therapy. One important consideration is whether bacteriophage therapy development occurs on an industrial scale or a hospital-based, patient-specific scale. More suitable regulatory standards may create opportunities to improve insights into this promising therapeutic approach. In light of this, we argue for the creation of a new, dedicated European regulatory framework for bacteriophage therapy.

  15. Elucidating the effects of arginine and lysine on a monoclonal antibody C-terminal lysine variation in CHO cell cultures.

    Science.gov (United States)

    Zhang, Xintao; Tang, Hongping; Sun, Ya-Ting; Liu, Xuping; Tan, Wen-Song; Fan, Li

    2015-08-01

    C-terminal lysine variants are commonly observed in monoclonal antibodies (mAbs) and found sensitive to process conditions, especially specific components in culture medium. The potential roles of media arginine (Arg) and lysine (Lys) in mAb heavy chain C-terminal lysine processing were investigated by monitoring the lysine variant levels under various Arg and Lys concentrations. Both Arg and Lys were found to significantly affect lysine variant level. Specifically, lysine variant level increased from 18.7 to 31.8 % when Arg and Lys concentrations were increased from 2 to 10 mM. Since heterogeneity of C-terminal lysine residues is due to the varying degree of proteolysis by basic carboxypeptidases (Cps), enzyme (basic Cps) level, pH conditions, and product (Arg and Lys) inhibition, which potentially affect the enzymatic reaction, were investigated under various Arg and Lys conditions. Enzyme level and pH conditions were found not to account for the different lysine variant levels, which was evident from the minimal variation in transcription level and intracellular pH. On the other hand, product inhibition effect of Arg and Lys on basic Cps was evident from the notable intracellular and extracellular Arg and Lys concentrations comparable with Ki values (inhibition constant) of basic Cps and further confirmed by cell-free assays. Additionally, a kinetic study of lysine variant level during the cell culture process enabled further characterization of the C-terminal lysine processing.

  16. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages

    Science.gov (United States)

    Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven; Fajardo, Christopher P.; Foy, Brayden B.; Fuhriman, David A.; Gibby, Paul D.; Grossarth, Savannah E.; Harbaugh, Kala; Harris, Natalie; Hilton, Jared A.; Hurst, Emily; Hyde, Jonathan R.; Ingersoll, Kayleigh; Jacobson, Caitlin M.; James, Brady D.; Jarvis, Todd M.; Jaen-Anieves, Daniella; Jensen, Garrett L.; Knabe, Bradley K.; Kruger, Jared L.; Merrill, Bryan D.; Pape, Jenny A.; Payne Anderson, Ashley M.; Payne, David E.; Peck, Malia D.; Pollock, Samuel V.; Putnam, Micah J.; Ransom, Ethan K.; Ririe, Devin B.; Robinson, David M.; Rogers, Spencer L.; Russell, Kerri A.; Schoenhals, Jonathan E.; Shurtleff, Christopher A.; Simister, Austin R.; Smith, Hunter G.; Stephenson, Michael B.; Staley, Lyndsay A.; Stettler, Jason M.; Stratton, Mallorie L.; Tateoka, Olivia B.; Tatlow, P. J.; Taylor, Alexander S.; Thompson, Suzanne E.; Townsend, Michelle H.; Thurgood, Trever L.; Usher, Brittian K.; Whitley, Kiara V.; Ward, Andrew T.; Ward, Megan E. H.; Webb, Charles J.; Wienclaw, Trevor M.; Williamson, Taryn L.; Wells, Michael J.; Wright, Cole K.; Breakwell, Donald P.; Hope, Sandra

    2017-01-01

    ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages. PMID:29146842

  17. Genome Sequences of 19 Novel Erwinia amylovora Bacteriophages

    OpenAIRE

    Esplin, Ian N. D.; Berg, Jordan A.; Sharma, Ruchira; Allen, Robert C.; Arens, Daniel K.; Ashcroft, Cody R.; Bairett, Shannon R.; Beatty, Nolan J.; Bickmore, Madeline; Bloomfield, Travis J.; Brady, T. Scott; Bybee, Rachel N.; Carter, John L.; Choi, Minsey C.; Duncan, Steven

    2017-01-01

    ABSTRACT Erwinia amylovora is the causal agent of fire blight, a devastating disease affecting some plants of the Rosaceae family. We isolated bacteriophages from samples collected from infected apple and pear trees along the Wasatch Front in Utah. We announce 19 high-quality complete genome sequences of E. amylovora bacteriophages.

  18. Genomic diversity of bacteriophages infecting the fish pathogen Flavobacterium psychrophilum.

    Science.gov (United States)

    Castillo, Daniel; Middelboe, Mathias

    2016-12-01

    Bacteriophages infecting the fish pathogen Flavobacterium psychrophilum can potentially be used to prevent and control outbreaks of this bacterium in salmonid aquaculture. However, the application of bacteriophages in disease control requires detailed knowledge on their genetic composition. To explore the diversity of F. pyschrophilum bacteriophages, we have analyzed the complete genome sequences of 17 phages isolated from two distant geographic areas (Denmark and Chile), including the previously characterized temperate bacteriophage 6H. Phage genome size ranged from 39 302 to 89 010 bp with a G+C content of 27%-32%. None of the bacteriophages isolated in Denmark contained genes associated with lysogeny, whereas the Chilean isolates were all putative temperate phages and similar to bacteriophage 6H. Comparative genome analysis showed that phages grouped in three different genetic clusters based on genetic composition and gene content, indicating a limited genetic diversity of F. psychrophilum-specific bacteriophages. However, amino acid sequence dissimilarity (25%) was found in putative structural proteins, which could be related to the host specificity determinants. This study represents the first analysis of genomic diversity and composition among bacteriophages infecting the fish pathogen F. psychrophilum and discusses the implications for the application of phages in disease control. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. Expression of a bioactive bacteriophage endolysin in Nicotiana benthamiana plants

    Science.gov (United States)

    The emergence and spread of antibiotic-resistant pathogens has led to an increased interest in alternative antimicrobial treatments, such as bacteriophage, bacteriophage-encoded peptidoglycan hydrolases (endolysins) and antimicrobial peptides. In our study, the antimicrobial activity of the CP933 en...

  20. Bacteriophages: The viruses for all seasons of molecular biology

    Directory of Open Access Journals (Sweden)

    Karam Jim D

    2005-03-01

    Full Text Available Abstract Bacteriophage research continues to break new ground in our understanding of the basic molecular mechanisms of gene action and biological structure. The abundance of bacteriophages in nature and the diversity of their genomes are two reasons why phage research brims with excitement. The pages of Virology Journal will reflect the excitement of the "New Phage Biology."

  1. Sequence and comparative analysis of Leuconostoc dairy bacteriophages

    DEFF Research Database (Denmark)

    Kot, Witold; Hansen, Lars Henrik; Neve, Horst

    2014-01-01

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc...

  2. Enzymatic production of 5-aminovalerate from L-lysine using L-lysine monooxygenase and 5-aminovaleramide amidohydrolase.

    Science.gov (United States)

    Liu, Pan; Zhang, Haiwei; Lv, Min; Hu, Mandong; Li, Zhong; Gao, Chao; Xu, Ping; Ma, Cuiqing

    2014-07-11

    5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. L-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of L-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate from L-lysine. Under optimal conditions, 20.8 g/L 5-aminovalerate was produced from 30 g/L L-lysine in 12 h. Because L-lysine is an industrial fermentation product, the two-enzyme coupled system presents a promising alternative for the production of 5-aminovalerate.

  3. Molecular evolution of the lysine biosynthetic pathways.

    Science.gov (United States)

    Velasco, A M; Leguina, J I; Lazcano, A

    2002-10-01

    Among the different biosynthetic pathways found in extant organisms, lysine biosynthesis is peculiar because it has two different anabolic routes. One is the diaminopimelic acid pathway (DAP), and the other over the a-aminoadipic acid route (AAA). A variant of the AAA route that includes some enzymes involved in arginine and leucine biosyntheses has been recently reported in Thermus thermophilus (Nishida et al. 1999). Here we describe the results of a detailed genomic analysis of each of the sequences involved in the two lysine anabolic routes, as well as of genes from other routes related to them. No evidence was found of an evolutionary relationship between the DAP and AAA enzymes. Our results suggest that the DAP pathway is related to arginine metabolism, since the lysC, asd, dapC, dapE, and lysA genes from lysine biosynthesis are related to the argB, argC, argD, argE, and speAC genes, respectively, whose products catalyze different steps in arginine metabolism. This work supports previous reports on the relationship between AAA gene products and some enzymes involved in leucine biosynthesis and the tricarboxylic acid cycle (Irvin and Bhattacharjee 1998; Miyazaki et al. 2001). Here we discuss the significance of the recent finding that several genes involved in the arginine (Arg) and leucine (Leu) biosynthesis participate in a new alternative route of the AAA pathway (Miyazaki et al. 2001). Our results demonstrate a clear relationship between the DAP and Arg routes, and between the AAA and Leu pathways.

  4. The effects of bacteriophage and nanoparticles on microbial processes

    Science.gov (United States)

    Moody, Austin L.

    There are approximately 1031 tailed phages in the biosphere, making them the most abundant organism. Bacteriophages are viruses that infect bacteria. Due to the large diversity and abundance, no two bacteriophages that have been isolated are genetically the same. Phage products have potential in disease therapy to solve bacteria-related problems, such as infections resulting from resistant strains of Staphylococcus aureus. A bacteriophage capable of infecting methicillin-resistant S. aureus (MRSA) was isolated from bovine hair. The bacteriophage, named JB phage, was characterized using purification, amplification, cesium chloride banding, scanning electron microscopy, and transmission electron microscopy. JB phage and nanoparticles were used in various in vitro and in vivo models to test their effects on microbial processes. Scanning and transmission electron microscopy studies revealed strong interactions between JB phage and nanoparticles, which resulted in increased bacteriophage infectivity. JB phage and nanoparticle cocktails were used as a therapeutic to treat skin and systemic infections in mice caused by MRSA.

  5. [THE IDENTIFICATION AND DIFFERENTIATION OF BACTERIOPHAGES OF HUMAN PATHOGENIC VIBRIO].

    Science.gov (United States)

    Gaevskaia, N E; Kudriakova, T A; Makedonova, L D; Kachkina, G V

    2015-04-01

    The issue of identification and differentiation of large group of bacteriophages of human pathogenic vibrio is still unresolved. In research and practical applied purposes it is important to consider characteristics of bacteriophages for establishing similarity and differences between them. The actual study was carried out to analyze specimens of DNA-containing bacteriophages of pathogenic vibrio. The overwhelming majority of them characterized by complicated type of symmetry--phages with double-helical DNA and also phages with mono-helical DNA structure discovered recently in vibrio. For the first time, the general framework of identification and differentiation of bacteriophages of pathogenic vibrio was developed. This achievement increases possibility to establish species assignment of phages and to compare with phages registered in the database. "The collection of bacteriophages and test-strains of human pathogenic vibrio" (No2010620549 of 24.09.210).

  6. Genomic sequence of bacteriophage ATCC 8074-B1 and activity of its endolysin and engineered variants against Clostridium sporogenes.

    Science.gov (United States)

    Mayer, Melinda J; Gasson, Michael J; Narbad, Arjan

    2012-05-01

    Lytic bacteriophage ATCC 8074-B1 produces large plaques on its host Clostridium sporogenes. Sequencing of the 47,595-bp genome allowed the identification of 82 putative open reading frames, including those encoding proteins for head and tail morphogenesis and lysis. However, sequences commonly associated with lysogeny were absent. ORF 22 encodes an endolysin, CS74L, that shows homology to N-acetylmuramoyl-L-alanine amidases, and when expressed in Escherichia coli, the protein causes effective lysis of C. sporogenes cells when added externally. CS74L was also active on Clostridium tyrobutyricum and Clostridium acetobutylicum. The catalytic domain expressed alone (CS74L(1-177)) exhibited a similar activity and the same host range as the full-length endolysin. A chimeric endolysin consisting of the CS74L catalytic domain fused to the C-terminal domain of endolysin CD27L, derived from Clostridium difficile bacteriophage ΦCD27, was produced. This chimera (CSCD) lysed C. sporogenes cells with an activity equivalent to that of the catalytic domain alone. In contrast, the CD27L C-terminal domain reduced the efficacy of the CS74L catalytic domain when tested against C. tyrobutyricum. The addition of the CD27L C-terminal domain did not enable the lysin to target C. difficile or other CD27L-sensitive bacteria.

  7. Biomarkers of arginine and lysine excess.

    Science.gov (United States)

    Luiking, Yvette C; Deutz, Nicolaas E P

    2007-06-01

    Arginine supplementation is used in several disease states. In arginine-deficient states, supplementation is a logical choice of therapy. However, the definition of an arginine-deficient state is complex. For example, plasma arginine levels could be within normal range but intracellular arginine levels could be reduced because of membrane transport problems. Lysine competes with arginine for transport into the cell. In these situations, arginine supplementation of higher than required levels is proposed. Arginine has several important functions in metabolism as it is a precursor of metabolically active components such as nitric oxide (NO), ornithine, creatine, and polyamines. Supplementing arginine in excess could potentially overstimulate metabolism via enhanced production of NO. NO is a reactive component that, via production of radicals, will inactivate proteins. NO is also a powerful vasodilator, which could lead to severe hemodynamic instability. A good marker for excess supplementation of arginine or lysine could be an increased or reduced production rate of NO. However, NO production is difficult to measure because NO is a very labile component and is rapidly oxidized in blood. Stable isotope-labeled arginine and citrulline are used to trace the arginine-NO route. During supplementation of arginine in septic pigs or patients in septic shock, NO production, measured with stable isotope technology, is enhanced.

  8. The growing landscape of lysine acetylation links metabolism and cell signalling

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Weinert, Brian Tate; Nishida, Yuya

    2014-01-01

    Lysine acetylation is a conserved protein post-translational modification that links acetyl-coenzyme A metabolism and cellular signalling. Recent advances in the identification and quantification of lysine acetylation by mass spectrometry have increased our understanding of lysine acetylation...

  9. Lytic bacteriophages reduce Escherichia coli O157

    Science.gov (United States)

    Ferguson, Sean; Roberts, Cheryl; Handy, Eric; Sharma, Manan

    2013-01-01

    The role of lytic bacteriophages in preventing cross contamination of produce has not been evaluated. A cocktail of three lytic phages specific for E. coli O157:H7 (EcoShield™) or a control (phosphate buffered saline, PBS) was applied to lettuce by either; (1) immersion of lettuce in 500 ml of EcoShield™ 8.3 log PFU/ml or 9.8 log PFU/ml for up to 2 min before inoculation with E. coli O157:H7; (2) spray-application of EcoShield™ (9.3 log PFU/ml) to lettuce after inoculation with E. coli O157:H7 (4.10 CFU/cm2) following exposure to 50 μg/ml chlorine for 30 sec. After immersion studies, lettuce was spot-inoculated with E. coli O157:H7 (2.38 CFU/cm2). Phage-treated, inoculated lettuce pieces were stored at 4°C for and analyzed for E. coli O157:H7 populations for up to 7 d. Immersion of lettuce in 9.8 log PFU/ml EcoShield™ for 2 min significantly (p bacteriophages on the surface of fresh cut lettuce, potentially contributing to the efficacy of the lytic phages on lettuce. Spraying phages on to inoculated fresh cut lettuce after being washed in hypochlorite solution was significantly more effective in reducing E. coli O157:H7 populations (2.22 log CFU/cm2) on day 0 compared with control treatments (4.10 log CFU/cm2). Both immersion and spray treatments provided protection from E. coli O157:H7 contamination on lettuce, but spray application of lytic bacteriophages to lettuce was more effective in immediately reducing E. coli O157:H7 populations fresh cut lettuce. PMID:23819106

  10. A mechanical model of bacteriophage DNA ejection

    Science.gov (United States)

    Arun, Rahul; Ghosal, Sandip

    2017-08-01

    Single molecule experiments on bacteriophages show an exponential scaling for the dependence of mobility on the length of DNA within the capsid. It has been suggested that this could be due to the ;capstan mechanism; - the exponential amplification of friction forces that result when a rope is wound around a cylinder as in a ship's capstan. Here we describe a desktop experiment that illustrates the effect. Though our model phage is a million times larger, it exhibits the same scaling observed in single molecule experiments.

  11. Bioavailability of lysine in heat-treated foods and feedstuffs

    NARCIS (Netherlands)

    McArtney Rutherfurd, S.

    2010-01-01

    During the processing of foodstuffs, lysine can react with other compounds present to form nutritionally unavailable derivatives, the most common example of which are Maillard products. Maillard products can cause serious problems when determining the available lysine content of processed foods or

  12. Effects of infused methionine, lysine and rumen-protected ...

    African Journals Online (AJOL)

    Keratin contains about l}Vo arginine, thus a lysine-induced arginine deficiency may depress fibre production as in the study of Sahlu & Fernandez (1992) with. Angora goats. Supply of both methionine and lysine appeared to limit wool growth of sheep limit fed high roughage diets contain- ing non-protein nitrogen as the ...

  13. Threonine and lysine requirements for maintenance in chickens ...

    African Journals Online (AJOL)

    The maintenance requirement for threonine and lysine were estimated in two different experiments by measuring the nitrogen balance of adult male cockerels. Measured amounts of a diet first-limiting in threonine or lysine were fed by intubation each day for 4 d to give a range of intakes (unbalanced series) of from 0 to 239 ...

  14. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76 and B. megaterium ...

  15. effects of dietary chromium tripicolinate and lysine on growth

    African Journals Online (AJOL)

    AISA

    These results show that CrPic has minimal effects on growth efficiency, while lysine affects significantly growth performance, carcass characteristics and most of plasma metabolites in growing-finishing pigs. Key-words : Pig, chromium, lysine, growth, metabolites, USA. RESUME. EFFETS DU TRIPICOLINATE DE CHROME ...

  16. Digestible lysine levels in diets supplemented with ractopamine

    Directory of Open Access Journals (Sweden)

    Evelar de Oliveira Souza

    2011-10-01

    Full Text Available In order evaluate digestible lysine levels in diets supplemented with 20 ppm of ractopamine on the performance and carcass traits, 64 barrows with high genetic potential at finishing phase were allotted in a completely randomized block design with four digestible lysine levels (0.80, 0.90, 1.00, and 1.10%, eight replicates and two pigs per experimental unit. Initial body weight and pigs' kinship were used as criteria in the blocks formation. Diets were mainly composed of corn and soybean meal supplemented with minerals, vitamins and amino acids to meet pigs' nutritional requirements at the finishing phase, except for digestible lysine. No effect of digestible lysine levels was observed in animal performance. The digestible lysine intake increased linearly by increasing the levels of digestible lysine in the diets. Carcass traits were not influenced by the dietary levels of digestible lysine. The level of 0.80% of digestible lysine in diets supplemented with 20 ppm ractopamine meets the nutritional requirements of castrated male pigs during the finishing phase.

  17. Antibiotic and surfactant effects on lysine accumulation by Bacillus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-05-16

    May 16, 2008 ... The effects of antibiotics and surfactants on lysine accumulation in the culture broth of three strains of. Bacillus megaterium (B. megaterium SP 86, B. megaterium SP 76 and B. megaterium SP 14) were investigated. Lincomycin, neomycin and tetracycline stimulated lysine increase in B. megaterium SP 76.

  18. Analysis of Grain Protein, Tryptophan and Lysine Contents of Quality ...

    African Journals Online (AJOL)

    Maize proteins, however, have poor nutritional value for humans, because of reduced content of essential amino acids such as lysine, tryptophan and threonine. Maize proteins contain on an average about 2% lysine, which is less than one-half of the concentration recommended for human nutrition. Therefore, healthy diets ...

  19. An Overview on Bacteriophages: A Natural Nanostructured Antibacterial Agent.

    Science.gov (United States)

    Rastogi, Vaibhav; Pragya; Verma, Navneet; Mishra, Arun Kumar; Nath, Gopal; Gaur, Praveen Kumar; Verma, Anurag

    2018-01-01

    Recent advances in the field of bionanomedicine not only enable us to produce biomaterials but also to manipulate them at molecular level. Viruses particularly bacteriophages are a promising nanomaterial that can be functionalized with great precision. Bacteriophages are the natural antimicrobial agents that fight against antibiotic resistant bacteria which cause infections in animals, humans, or in crops of agricultural value. The idea of utilizing bacteriophages as therapeutic agents is due to their ability to kill bacteria at the end of the infectious cycle. This paper reviewed the general biology of bacteriophages and the presence of receptors on the bacteria which are necessary for the recognition and adsorption of bacteriophages. Pharmacokinetics and therapeutic potential of bacteriophages administered through various routes in treating diverse bacterial infections is also reviewed along with the problems associated with bacteriophage therapy. Among various routes of administration, parenteral route is found to be the most thriving route for the treatment of systemic infections whereas oral route is meant to treat gastrointestinal infections and; local delivery (skin, nasal, ears) of phages has proven its potency to treat topical infections. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. Contractile injection systems of bacteriophages and related systems

    DEFF Research Database (Denmark)

    Taylor, Nicholas M I; van Raaij, Mark J; Leiman, Petr G

    2018-01-01

    through the target cell membrane. Subsequently, the bacteriophage genome is injected through the tube. The structural transformation of the bacteriophage T4 baseplate upon binding to the host cell has been recently described in near-atomic detail. In this review we discuss structural elements and features...... of this mechanism that are likely to be conserved in all contractile injection systems (systems evolutionary and structurally related to contractile bacteriophage tails). These include the type VI secretion system (T6SS), which is used by bacteria to transfer effectors into other bacteria and into eukaryotic cells...

  1. The role of bacteriophages in periodontal health and disease.

    Science.gov (United States)

    Pinto, Graça; Silva, Maria Daniela; Peddey, Mark; Sillankorva, Sanna; Azeredo, Joana

    2016-10-01

    The human periodontium health is commonly compromised by chronic inflammatory conditions and has become a major public health concern. Dental plaque, the precursor of periodontal disease, is a complex biofilm consisting mainly of bacteria, but also archaea, protozoa, fungi and viruses. Viruses that specifically infect bacteria - bacteriophages - are most common in the oral cavity. Despite this, their role in the progression of periodontal disease remains poorly explored. This review aims to summarize how bacteriophages interact with the oral microbiota, their ability to increase bacterial virulence and mediate the transfer of resistance genes and suggests how bacteriophages can be used as an alternative to the current periodontal disease therapies.

  2. Bacteriophage therapy in implant-related infections: an experimental study.

    Science.gov (United States)

    Yilmaz, Cengiz; Colak, Mehmet; Yilmaz, Banu Coskun; Ersoz, Gulden; Kutateladze, Mzia; Gozlugol, Mehmet

    2013-01-16

    Implant-related infections with bacteria resistant to multiple antibiotics represent one of the major problems in orthopaedic surgery. It was our hypothesis that local application of bacteriophages, which are bacteria-destroying viruses, would be effective against biofilm-forming bacteria. An implant-related infection model was created using methicillin-resistant Staphylococcus aureus (MRSA) in forty-eight rats and Pseudomonas aeruginosa in another forty-eight rats. Each group was divided into four subgroups; one subgroup received a bacterium-specific bacteriophage (Sb-1 in the MRSA group and PAT14 in the Pseudomonas aeruginosa group), one received antibiotic for fourteen days (20 mg/kg/day teicoplanin in the MRSA group, and 120 mg/kg/day imipenem + cilastatin and 25 mg/kg/day amikacin in the Pseudomonas group), one received antibiotic and bacteriophage, and one received no treatment. Animals receiving bacteriophage therapy were injected locally with 107 bacteriophages in a 0.1-mL suspension on three consecutive days. All animals were killed on the fifteenth day after initiation of treatment, and the tibia was excised. Results were assessed with use of microbiology, light microscopy, and electron microscopy. In the MRSA group, the antibiotic administration significantly decreased the number of colony-forming units per subject in quantitative cultures (control subgroup, 50,586; bacteriophage, 30,788; antibiotic, 17,165; antibiotic + bacteriophage, 5000; p = 0.004 for the comparison of the latter group with the control). Biofilm was absent only in the antibiotic + bacteriophage subgroup. In the Pseudomonas group, the number of colony-forming units per subject in quantitative cultures was significantly lower in each treatment subgroup compared with the control subgroup (control subgroup, 14,749; bacteriophage, 6484 [p = 0.016]; antibiotic, 2619 [p = 0.01]; antibiotic + bacteriophage, 1705 [p bacteriophage subgroup was also significantly lower than the values in the

  3. Bacteriophages use hypermodified nucleosides to evade host's defence systems

    DEFF Research Database (Denmark)

    Kot, Witold; Olsen, Nikoline S.; Carstens, Alexander Byth

    Since the very beginning of life, primitive cells were forced to face selfish genetic elements like viruses or plasmids. Bacteria, continually exposed to infections, developed several phage resistance mechanisms e.g. restriction-modification and CRISPR-Cas systems. On the other hand, bacteriophages...... to investigate this mechanism in detail we have used several methods including direct plaque sequencing, restriction endonuclease analysis and CRISPR-Cas genome editing. Through generation of specific mutants, we were able to introduce a restriction sensitive phenotype in the CAjan bacteriophage providing new...... insight on use of alternative bases by bacteriophages....

  4. Bacteriophages and Their Role in Food Safety

    Directory of Open Access Journals (Sweden)

    Sanna M. Sillankorva

    2012-01-01

    Full Text Available The interest for natural antimicrobial compounds has increased due to alterations in consumer positions towards the use of chemical preservatives in foodstuff and food processing surfaces. Bacteriophages fit in the class of natural antimicrobial and their effectiveness in controlling bacterial pathogens in agro-food industry has led to the development of different phage products already approved by USFDA and USDA. The majority of these products are to be used in farm animals or animal products such as carcasses, meats and also in agricultural and horticultural products. Treatment with specific phages in the food industry can prevent the decay of products and the spread of bacterial diseases and ultimately promote safe environments in animal and plant food production, processing, and handling. This is an overview of recent work carried out with phages as tools to promote food safety, starting with a general introduction describing the prevalence of foodborne pathogens and bacteriophages and a more detailed discussion on the use of phage therapy to prevent and treat experimentally induced infections of animals against the most common foodborne pathogens, the use of phages as biocontrol agents in foods, and also their use as biosanitizers of food contact surfaces.

  5. A bacteriophages journey through the human body.

    Science.gov (United States)

    Barr, Jeremy J

    2017-09-01

    The human body is colonized by a diverse collective of microorganisms, including bacteria, fungi, protozoa and viruses. The smallest entity of this microbial conglomerate are the bacterial viruses. Bacteriophages, or phages for short, exert significant selective pressure on their bacterial hosts, undoubtedly influencing the human microbiome and its impact on our health and well-being. Phages colonize all niches of the body, including the skin, oral cavity, lungs, gut, and urinary tract. As such our bodies are frequently and continuously exposed to diverse collections of phages. Despite the prevalence of phages throughout our bodies, the extent of their interactions with human cells, organs, and immune system is still largely unknown. Phages physically interact with our mucosal surfaces, are capable of bypassing epithelial cell layers, disseminate throughout the body and may manipulate our immune system. Here, I establish the novel concept of an "intra-body phageome," which encompasses the collection of phages residing within the classically "sterile" regions of the body. This review will take a phage-centric view of the microbiota, human body, and immune system with the ultimate goal of inspiring a greater appreciation for both the indirect and direct interactions between bacteriophages and their mammalian hosts. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. [TL, the new bacteriophage of Pseudomonas aeruginosa and its application for the search of halo-producing bacteriophages].

    Science.gov (United States)

    Pleteneva, E A; Burkal'tseva, M V; Shaburova, O V; Krylov, S V; Pechnikova, E V; Sokolova, O S; Krylov, V N

    2011-01-01

    The properties of new virulent bacteriophage TL of Pseudomonas aeruginosa belonging to the family Podoviridae (genome size of 46 kb) were investigated. This bacteriophage is capable of lysogenizing the bacterial lawn in halo zones around negative colonies (NC) of other bacteriophages. TL forms large NC, that are hardly distinguishable on the lawn of P. aeruginisa PAO1. At the same time, on the lawns of some phage-resistant PAO1 mutants, as well as on those produced by a number of clinical isolates, TL forms more transparent NC. It is suggested that more effective growth of the bacteriophage TL NC is associated with the differences in outer lipopolysaccharide (LPS) layer of the cell walls of different bacterial strains, as well as of the bacteria inside and outside of the halos. This TL property was used to optimize selection of bacteriophages producing halos around NC on the lawn of P. aeruginosa PAO1. As a result, a group of bacteriophages differing in the patterns of interaction between their halos and TL bacteriophage, as well as in some characters was identified. Taking into consideration the importance of cell-surfaced structures of P. aeruginosa in manifestation of virulence and pathogenicity, possible utilization of specific phage enzymes, polysacchadide depolymerases, for more effective treatment of P. aeruginosa infections is discussed.

  7. Histone H4 Lysine 20 methylation

    DEFF Research Database (Denmark)

    Jørgensen, Stine; Schotta, Gunnar; Sørensen, Claus Storgaard

    2013-01-01

    of histones have emerged as key regulators of genomic integrity. Intense research during the past few years has revealed histone H4 lysine 20 methylation (H4K20me) as critically important for the biological processes that ensure genome integrity, such as DNA damage repair, DNA replication and chromatin...... compaction. The distinct H4K20 methylation states are mediated by SET8/PR-Set7 that catalyses monomethylation of H4K20, whereas SUV4-20H1 and SUV4-20H2 enzymes mediate further H4K20 methylation to H4K20me2 and H4K20me3. Disruption of these H4K20-specific histone methyltransferases leads to genomic...

  8. Stabilization of T4 bacteriophage at acidic and basic pH by adsorption on paper.

    Science.gov (United States)

    Meyer, Abigail; Greene, Melissa; Kimmelshue, Chad; Cademartiri, Rebecca

    2017-12-01

    Bacteriophages find applications in agriculture, medicine, and food safety. Many of these applications can expose bacteriophages to stresses that inactivate them including acidic and basic pH. Bacteriophages can be stabilized against these stresses by materials including paper, a common material in packaging and consumer products. Combining paper and bacteriophages creates antibacterial materials, which can reduce the use of antibiotics. Here we show that adsorption on paper protects T4, T5, and T7 bacteriophage from acidic and basic pH. We added bacteriophages to filter paper functionalized with carboxylic acid (carboxyl methyl cellulose) or amine (chitosan) groups, and exposed them to pH from 5.6 to 14. We determined the number of infective bacteriophages after exposure directly on the paper. All papers extended the lifetime of infective bacteriophage by at least a factor of four with some papers stabilizing bacteriophages for up to one week. The degree of stabilization depended on five main factors (i) the family of the bacteriophage, (ii) the charge of the paper and bacteriophages, (iii) the location of the bacteriophages within the paper, (iv) the ability of the paper to prevent bacteriophage-bacteriophage aggregation, and (v) the sensitivity of the bacteriophage proteins to the tested pH. Even when adsorbed on paper the bacteriophages were able to remove E. coli in milk. Choosing the right paper modification or material will protect bacteriophages adsorbed on that material against detrimental pH and other environmental challenges increasing the range of applications of bacteriophages on materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Combined use of bacteriophage K and a novel bacteriophage to reduce Staphylococcus aureus biofilm

    DEFF Research Database (Denmark)

    Alves, D.R.; Gaudion, A.; Bean, J.E.

    2014-01-01

    Biofilms are major causes of impairment of wound healing and patient morbidity. One of the most common and aggressive wound pathogens is Staphylococcus aureus, displaying a large repertoire of virulence factors and commonly reduced susceptibility to antibiotics, such as the spread of methicillin-......-resistant S. aureus (MRSA). Bacteriophages are obligate parasites of bacteria. They multiply intracellularly and lyse their bacterial host, releasing their progeny. We isolated a novel phage, DRA88, which has a ...

  10. Lysine Acetylation and Deacetylation in Brain Development and Neuropathies.

    Science.gov (United States)

    Tapias, Alicia; Wang, Zhao-Qi

    2017-02-01

    Embryonic development is critical for the final functionality and maintenance of the adult brain. Brain development is tightly regulated by intracellular and extracellular signaling. Lysine acetylation and deacetylation are posttranslational modifications that are able to link extracellular signals to intracellular responses. A wealth of evidence indicates that lysine acetylation and deacetylation are critical for brain development and functionality. Indeed, mutations of the enzymes and cofactors responsible for these processes are often associated with neurodevelopmental and psychiatric disorders. Lysine acetylation and deacetylation are involved in all levels of brain development, starting from neuroprogenitor survival and proliferation, cell fate decisions, neuronal maturation, migration, and synaptogenesis, as well as differentiation and maturation of astrocytes and oligodendrocytes, to the establishment of neuronal circuits. Hence, fluctuations in the balance between lysine acetylation and deacetylation contribute to the final shape and performance of the brain. In this review, we summarize the current basic knowledge on the specific roles of lysine acetyltransferase (KAT) and lysine deacetylase (KDAC) complexes in brain development and the different neurodevelopmental disorders that are associated with dysfunctional lysine (de)acetylation machineries. Copyright © 2017 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  11. Myeloperoxidase-mediated protein lysine oxidation generates 2-aminoadipic acid and lysine nitrile in vivo.

    Science.gov (United States)

    Lin, Hongqiao; Levison, Bruce S; Buffa, Jennifer A; Huang, Ying; Fu, Xiaoming; Wang, Zeneng; Gogonea, Valentin; DiDonato, Joseph A; Hazen, Stanley L

    2017-03-01

    Recent studies reveal 2-aminoadipic acid (2-AAA) is both elevated in subjects at risk for diabetes and mechanistically linked to glucose homeostasis. Prior studies also suggest enrichment of protein-bound 2-AAA as an oxidative post-translational modification of lysyl residues in tissues associated with degenerative diseases of aging. While in vitro studies suggest redox active transition metals or myeloperoxidase (MPO) generated hypochlorous acid (HOCl) may produce protein-bound 2-AAA, the mechanism(s) responsible for generation of 2-AAA during inflammatory diseases are unknown. In initial studies we observed that traditional acid- or base-catalyzed protein hydrolysis methods previously employed to measure tissue 2-AAA can artificially generate protein-bound 2-AAA from an alternative potential lysine oxidative product, lysine nitrile (LysCN). Using a validated protease-based digestion method coupled with stable isotope dilution LC/MS/MS, we now report protein bound 2-AAA and LysCN are both formed by hypochlorous acid (HOCl) and the MPO/H 2 O 2 /Cl - system of leukocytes. At low molar ratio of oxidant to target protein N ε -lysine moiety, 2-AAA is formed via an initial N ε -monochloramine intermediate, which ultimately produces the more stable 2-AAA end-product via sequential generation of transient imine and semialdehyde intermediates. At higher oxidant to target protein N ε -lysine amine ratios, protein-bound LysCN is formed via initial generation of a lysine N ε -dichloramine intermediate. In studies employing MPO knockout mice and an acute inflammation model, we show that both free and protein-bound 2-AAA, and in lower yield, protein-bound LysCN, are formed by MPO in vivo during inflammation. Finally, both 2-AAA and to lesser extent LysCN are shown to be enriched in human aortic atherosclerotic plaque, a tissue known to harbor multiple MPO-catalyzed protein oxidation products. Collectively, these results show that MPO-mediated oxidation of protein lysyl

  12. Bacteriophage-antibiotic synergism to control planktonic and biofilm ...

    African Journals Online (AJOL)

    Bacteriophage-antibiotic synergism to control planktonic and biofilm producing clinical isolates of Pseudomonas aeruginosa. Amina Amal Mahmoud Nouraldin, Manal Mohammad Baddour, Reem Abdel Hameed Harfoush, Sara AbdelAziz Mohamed Essa ...

  13. Methods for Initial Characterization of Campylobacter jejuni Bacteriophages.

    Science.gov (United States)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.

  14. Bacteria vs. bacteriophages: parallel evolution of immune arsenals

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-08-01

    Full Text Available Bacteriophages are the most common entities on earth and represent a constant challenge to bacterial populations. To fend off bacteriophage infection, bacteria evolved immune systems to avert phage adsorption and block invader DNA entry. They developed restriction-modification systems and mechanisms to abort infection and interfere with virion assembly, as well as newly recognized clustered regularly interspaced short palindromic repeats (CRISPR. In response to bacterial immune systems, bacteriophages synchronously evolved resistance mechanisms, such as the anti-CRISPR systems to counterattack bacterial CRISPR-cas systems, in a continuing evolutionary arms race between virus and host. In turn, it is fundamental to the survival of the bacterial cell to evolve a system to combat bacteriophage immune strategies.

  15. Bacteriophages displaying anticancer peptides in combined antibacterial and anticancer treatment.

    Science.gov (United States)

    Dąbrowska, Krystyna; Kaźmierczak, Zuzanna; Majewska, Joanna; Miernikiewicz, Paulina; Piotrowicz, Agnieszka; Wietrzyk, Joanna; Lecion, Dorota; Hodyra, Katarzyna; Nasulewicz-Goldeman, Anna; Owczarek, Barbara; Górski, Andrzej

    2014-01-01

    Novel anticancer strategies have employed bacteriophages as drug carriers and display platforms for anticancer agents; however, bacteriophage-based platforms maintain their natural antibacterial activity. This study provides the assessment of combined anticancer (engineered) and antibacterial (natural) phage activity in therapies. An in vivo BALB/c mouse model of 4T1 tumor growth accompanied by surgical wound infection was applied. The wounds were located in the areas of tumors. Bacteriophages (T4) were modified with anticancer Tyr-Ile-Gly-Ser-Arg (YIGSR) peptides by phage display and injected intraperitoneally. Tumor growth was decreased in mice treated with YIGSR-displaying phages. The acuteness of wounds, bacterial load and inflammatory markers in phages-treated mice were markedly decreased. Thus, engineered bacteriophages combine antibacterial and anticancer activity.

  16. Comparative Genomics of Bacteriophage of the Genus Seuratvirus

    DEFF Research Database (Denmark)

    Sazinas, Pavelas; Redgwell, Tamsin; Rihtman, Branko

    2017-01-01

    Despite being more abundant and having smaller genomes than their bacterial host, relatively few bacteriophages have had their genomes sequenced. Here, we isolated 14 bacteriophages from cattle slurry and performed de novo genome sequencing, assembly, and annotation. The commonly used marker genes...... polB and terL showed these bacteriophages to be closely related to members of the genus Seuratvirus. We performed a core-gene analysis using the 14 new and four closely related genomes. A total of 58 core genes were identified, the majority of which has no known function. These genes were used...... to construct a core-gene phylogeny, the results of which confirmed the new isolates to be part of the genus Seuratvirus and expanded the number of species within this genus to four. All bacteriophages within the genus contained the genes queCDE encoding enzymes involved in queuosine biosynthesis. We suggest...

  17. Bacteriophage-based nanoprobes for rapid bacteria separation

    Science.gov (United States)

    Chen, Juhong; Duncan, Bradley; Wang, Ziyuan; Wang, Li-Sheng; Rotello, Vincent M.; Nugen, Sam R.

    2015-10-01

    The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying concentrations were determined. The results indicated a similar bacteria capture efficiency between the two nanoprobes.The lack of practical methods for bacterial separation remains a hindrance for the low-cost and successful development of rapid detection methods from complex samples. Antibody-tagged magnetic particles are commonly used to pull analytes from a liquid sample. While this method is well-established, improvements in capture efficiencies would result in an increase of the overall detection assay performance. Bacteriophages represent a low-cost and more consistent biorecognition element as compared to antibodies. We have developed nanoscale bacteriophage-tagged magnetic probes, where T7 bacteriophages were bound to magnetic nanoparticles. The nanoprobe allowed the specific recognition and attachment to E. coli cells. The phage magnetic nanprobes were directly compared to antibody-conjugated magnetic nanoprobes. The capture efficiencies of bacteriophages and antibodies on nanoparticles for the separation of E. coli K12 at varying

  18. Microarray analysis of gene expression during bacteriophage T4 infection.

    Science.gov (United States)

    Luke, Kimberly; Radek, Agnes; Liu, XiuPing; Campbell, John; Uzan, Marc; Haselkorn, Robert; Kogan, Yakov

    2002-08-01

    Genomic microarrays were used to examine the complex temporal program of gene expression exhibited by bacteriophage T4 during the course of development. The microarray data confirm the existence of distinct early, middle, and late transcriptional classes during the bacteriophage replicative cycle. This approach allows assignment of previously uncharacterized genes to specific temporal classes. The genomic expression data verify many promoter assignments and predict the existence of previously unidentified promoters.

  19. Methods for initial characterization of Campylobacter jejuni bacteriophages

    DEFF Research Database (Denmark)

    Sørensen, Martine Camilla Holst; Gencay, Yilmaz Emre; Brøndsted, Lone

    2017-01-01

    Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity.......Here we describe an initial characterization of Campylobacter jejuni bacteriophages by host range analysis, genome size determination by pulsed-field gel electrophoresis, and receptor-type identification by screening mutants for phage sensitivity....

  20. Predicting post-translational lysine acetylation using support vector machines

    DEFF Research Database (Denmark)

    Gnad, Florian; Ren, Shubin; Choudhary, Chunaram

    2010-01-01

    Lysine acetylation is a post-translational protein modification and a primary regulatory mechanism that controls many cell signaling processes. Lysine acetylation sites are recognized by acetyltransferases and deacetylases through sequence patterns (motifs). Recently, we used high-resolution mass...... spectrometry to identify 3600 lysine acetylation sites on 1750 human proteins covering most of the previously annotated sites and providing the most comprehensive acetylome so far. This dataset should provide an excellent source to train support vector machines (SVMs) allowing the high accuracy in silico...

  1. Effects of dietary chromium tripicolinate and lysine on growth ...

    African Journals Online (AJOL)

    A la fin de l'essai, les taux des acides gras non estérifiés ont été élevés par la lysine (lys quadratique, p < 0,08), de même que ceux des protéines totales (lys quadratique, p < 0,02). Les valeurs de l'azote de l'urée étaient également élevées par la lysine (lys linéaire, p < 0,0002). L'effet de l'interaction de CrPic et de la lysine

  2. HDAC inhibitors induce global changes in histone lysine and arginine methylation and alter expression of lysine demethylases.

    Science.gov (United States)

    Lillico, Ryan; Sobral, Marina Gomez; Stesco, Nicholas; Lakowski, Ted M

    2016-02-05

    Histone deacetylase (HDAC) inhibitors are cancer treatments that inhibit the removal of the epigenetic modification acetyllysine on histones, resulting in altered gene expression. Such changes in expression may influence other histone epigenetic modifications. We describe a validated liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify lysine acetylation and methylation and arginine methylation on histones extracted from cultured cells treated with HDAC inhibitors. The HDAC inhibitors vorinostat, mocetinostat and entinostat induced 400-600% hyperacetylation in HEK 293 and K562 cells. All HDAC inhibitors decreased histone methylarginines in HEK 293 cells but entinostat produced dose dependent reductions in asymmetric dimethylarginine, not observed in K562 cells. Vorinostat produced increases in histone lysine methylation and decreased expression of some lysine demethylases (KDM), measured by quantitative PCR. Entinostat had variable effects on lysine methylation and decreased expression of some KDM while increasing expression of others. Mocetinostat produced dose dependent increases in histone lysine methylation by LC-MS/MS. This was corroborated with a multiplex colorimetric assay showing increases in histone H3 lysine 4, 9, 27, 36 and 79 methylation. Increases in lysine methylation were correlated with dose dependent decreases in the expression of seven KDM. Mocetinostat functions as an HDAC inhibitor and a de facto KDM inhibitor. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Genomic Diversity of Type B3 Bacteriophages of Caulobacter crescentus.

    Science.gov (United States)

    Ash, Kurt T; Drake, Kristina M; Gibbs, Whitney S; Ely, Bert

    2017-07-01

    The genomes of the type B3 bacteriophages that infect Caulobacter crescentus are among the largest phage genomes thus far deposited into GenBank with sizes over 200 kb. In this study, we introduce six new bacteriophage genomes which were obtained from phage collected from various water systems in the southeastern United States and from tropical locations across the globe. A comparative analysis of the 12 available genomes revealed a "core genome" which accounts for roughly 1/3 of these bacteriophage genomes and is predominately localized to the head, tail, and lysis gene regions. Despite being isolated from geographically distinct locations, the genomes of these bacteriophages are highly conserved in both genome sequence and gene order. We also identified the insertions, deletions, translocations, and horizontal gene transfer events which are responsible for the genomic diversity of this group of bacteriophages and demonstrated that these changes are not consistent with the idea that modular reassortment of genomes occurs in this group of bacteriophages.

  4. Bacteriophages as indicators of faecal pollution and enteric ...

    Science.gov (United States)

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.

  5. Bacteriophage cocktail for biocontrol of Salmonella in dried pet food.

    Science.gov (United States)

    Heyse, Serena; Hanna, Leigh Farris; Woolston, Joelle; Sulakvelidze, Alexander; Charbonneau, Duane

    2015-01-01

    Human salmonellosis has been associated with contaminated pet foods and treats. Therefore, there is interest in identifying novel approaches for reducing the risk of Salmonella contamination within pet food manufacturing environments. The use of lytic bacteriophages shows promise as a safe and effective way to mitigate Salmonella contamination in various food products. Bacteriophages are safe, natural, highly targeted antibacterial agents that specifically kill bacteria and can be targeted to kill food pathogens without affecting other microbiota. In this study, we show that a cocktail containing six bacteriophages had a broadspectrum activity in vitro against a library of 930 Salmonella enterica strains representing 44 known serovars. The cocktail was effective against 95% of the strains in this tested library. In liquid culture dose-ranging experiments, bacteriophage cocktail concentrations of ≥10(8) PFU/ml inactivated more than 90% of the Salmonella population (10(1) to 10(3) CFU/ml). Dried pet food inoculated with a mixture containing equal proportions of Salmonella serovars Enteritidis (ATCC 4931), Montevideo (ATCC 8387), Senftenberg (ATCC 8400), and Typhimurium (ATCC 13311) and then surface treated with the six-bacteriophage cocktail (≥2.5 ± 1.5 × 10(6) PFU/g) achieved a greater than 1-log (P food that tested positive for Salmonella. Our results indicate that bacteriophage biocontrol of S. enterica in dried pet food is technically feasible.

  6. Engineering of filamentous bacteriophage for protein sensing

    Science.gov (United States)

    Brasino, Michael

    Methods of high throughput, sensitive and cost effective quantification of proteins enables personalized medicine by allowing healthcare professionals to better monitor patient condition and response to treatment. My doctoral research has attempted to advance these methods through the use of filamentous bacteriophage (phage). These bacterial viruses are particularly amenable to both genetic and chemical engineering and can be produced efficiently in large amounts. Here, I discuss several strategies for modifying phage for use in protein sensing assays. These include the expression of bio-orthogonal conjugation handles on the phage coat, the incorporation of specific recognition sequences within the phage genome, and the creation of antibody-phage conjugates via a photo-crosslinking non-canonical amino acid. The physical and chemical characterization of these engineered phage and the results of their use in modified protein sensing assays will be presented.

  7. Ingestion without inactivation of bacteriophages by Tetrahymena.

    Science.gov (United States)

    Akunyili, Agnes A; Alfatlawi, Miaad; Upadhyaya, Bandana; Rhoads, Laura S; Eichelberger, Henry; Van Bell, Craig T

    2008-01-01

    Tetrahymena has been shown to ingest and inactivate bacteriophages, such as T4, in co-incubation experiments. In this study, Tetrahymena thermophila failed to inactivate phages PhiX174 and MS2 in co-incubations, although PhiX174 were ingested by T. thermophila, as demonstrated by: (1) recovery at defecation in a pulse-chase experiment, (2) recovery from Tetrahymena by detergent lysis, and (3) transmission electron microscopy. We conclude, therefore, that the phages must be digestion-resistant. Internalized PhiX174 were further shown to be partially protected from lethal damage by ultraviolet (UV) C and UVB irradiation. Finally, ingested PhiX174 were shown to be rapidly transported through buffer in a horizontal swimming, race tube-like assay. The transport and protection of phages may confer evolutionary advantages that explain the acquisition of digestion-resistance by some phages.

  8. Effect of vitamins and bivalent metals on lysine yield in Bacillus ...

    African Journals Online (AJOL)

    The effects of vitamins and bivalent metals on lysine accumulation in Bacillus strains were investigated. Biotin enhanced lysine production in all the Bacillus strains, while folic acid and riboflavin stimulated lysine yields in Bacillus megaterium SP 86 only. All bivalent metals stimulated lysine accumulation in B. megaterium ...

  9. Enzymatic production of 5-aminovalerate from l-lysine using l-lysine monooxygenase and 5-aminovaleramide amidohydrolase

    OpenAIRE

    Liu, Pan; Zhang, Haiwei; Lv, Min; Hu, Mandong; Li, Zhong; Gao, Chao; Xu, Ping; Ma, Cuiqing

    2014-01-01

    5-Aminovalerate is a potential C5 platform chemical for synthesis of valerolactam, 5-hydroxyvalerate, glutarate, and 1,5-pentanediol. It is a metabolite of l-lysine catabolism through the aminovalerate pathway in Pseudomonas putida. l-Lysine monooxygenase (DavB) and 5-aminovaleramide amidohydrolase (DavA) play key roles in the biotransformation of l-lysine into 5-aminovalerate. Here, DavB and DavA of P. putida KT2440 were expressed, purified, and coupled for the production of 5-aminovalerate ...

  10. Bacteriophages of Leuconostoc, Oenococcus and Weissella

    Directory of Open Access Journals (Sweden)

    Witold P. Kot

    2014-04-01

    Full Text Available Leuconostoc (Ln., Weissella and Oenococcus form a group of related genera of lactic acid bacteria, which once all shared the name Leuconostoc. They are associated with plants, fermented vegetable products, raw milk, dairy products, meat and fish. Most of industrially relevant Leuconostoc strains can be classified as either Ln. mesenteroides or Ln. pseudomesenteroides. They are important flavor producers in dairy fermentations and they initiate nearly all vegetable fermentations. Therefore bacteriophages attacking Leuconostoc strains may negatively influence the production process. Bacteriophages attacking Leuconostoc strains were first reported in 1946. Since then, the majority of described Leuconostoc phages was isolated from either dairy products or fermented vegetable products. Both lytic and temperate phages of Leuconostoc were reported. Most of Leuconostoc phages examined using electron microscopy belong to the Siphoviridae family and differ in morphological details. Hybridization and comparative genomic studies of Leuconostoc phages suggest that they can be divided into several groups, however overall diversity of Leuconostoc phages is much lower as compared to e.g. lactococcal phages. Several fully sequenced genomes of Leuconostoc phages have been deposited in public databases. Lytic phages of Leuconostoc can be divided into two host species-specific groups with similarly organized genomes that shared very low nucleotide similarity. Phages of dairy Leuconostoc have rather limited host-ranges. The receptor binding proteins of two lytic Ln. pseudomesenteroides phages have been identified. Molecular tools for detection of dairy Leuconostoc phages have been developed. The rather limited data on phages of Oenococcus and Weissella show that i lysogeny seems to be abundant in Oenococcus strains, and ii several phages infecting Weissella cibaria are also able to productively infect strains of other Weissella species and even strains of the genus

  11. ß-Lysine discrimination by lysyl-tRNA synthetase

    DEFF Research Database (Denmark)

    Gilreath, Marla S; Roy, Hervé; Bullwinkle, Tammy J

    2011-01-01

    guided by the PoxA structure. A233S LysRS behaved as wild type with a-lysine, while the G469A and A233S/G469A variants decreased stable a-lysyl-adenylate formation. A233S LysRS recognized ß-lysine better than wildtype, suggesting a role for this residue in discriminating a- and ß-amino acids. Both...

  12. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei.

    Science.gov (United States)

    Mathieu, Christoph; Macêdo, Juan P; Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander C; Suter Grotemeyer, Marianne; González-Salgado, Amaia; Schmidt, Remo S; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris

    2017-01-01

    For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (Km 3.6 ± 0.4 μM) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arginine-β-naphthylamide, while lysine was inhibitory only at 100-times excess, and histidine or ornithine did not reduce arginine uptake rates significantly. TbAAT16-1 is a high affinity (Km 4.3 ± 0.5 μM) and highly selective L-lysine transporter and of the compounds tested, only L-lysine and thialysine were competing for L-lysine uptake. TbAAT5-3 and TbAAT16-1 are expressed in both procyclic and bloodstream form T. brucei and cMyc-tagged proteins indicate localization at the plasma membrane. RNAi-mediated down-regulation of TbAAT5 and TbAAT16 in bloodstream form trypanosomes resulted in growth arrest, demonstrating that TbAAT5-mediated arginine and TbAAT16-mediated lysine transport are essential for T. brucei. Growth of induced RNAi lines could partially be rescued by supplementing a surplus of arginine or lysine, respectively, while addition of both amino acids was less efficient. Single and double RNAi lines indicate that additional low affinity uptake systems for arginine and lysine are present in T. brucei.

  13. Studies on lysine production by Bacillus megaterium | Ekwealor ...

    African Journals Online (AJOL)

    A Lysine-producing strain recovered from soil was found to produce large amount of the amino acid. The bacterium identified as Bacillus megaterium SP 14 accumulated a lysine yield of 3.56 mg/ml in a broth culture in 96 h. Fermentation experiments show that 8.0% (w/v) glucose and 4.0% (w/v) ammonium chloride used as ...

  14. Characterization of the endolysin from the Enterococcus faecalis bacteriophage VD13

    Science.gov (United States)

    Bacteriophage infecting bacteria produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can also lyse Gram-positive bacteria when added exogenously. As a potential alternative to antibiotics, we cloned and...

  15. Biofortification of rice with lysine using endogenous histones.

    Science.gov (United States)

    Wong, H W; Liu, Q; Sun, S S M

    2015-02-01

    Rice is the most consumed cereal grain in the world, but deficient in the essential amino acid lysine. Therefore, people in developing countries with limited food diversity who rely on rice as their major food source may suffer from malnutrition. Biofortification of stable crops by genetic engineering provides a fast and sustainable method to solve this problem. In this study, two endogenous rice lysine-rich histone proteins, RLRH1 and RLRH2, were over-expressed in rice seeds to achieve lysine biofortification. Their protein sequences passed an allergic sequence-based homology test. Their accumulations in rice seeds were raised to a moderate level by the use of a modified rice glutelin 1 promoter with lowered expression strength to avoid the occurrence of physiological abnormalities like unfolded protein response. The expressed proteins were further targeted to protein storage vacuoles for stable storage using a glutelin 1 signal peptide. The lysine content in the transgenic rice seeds was enhanced by up to 35 %, while other essential amino acids remained balanced, meeting the nutritional standards of the World Health Organization. No obvious unfolded protein response was detected. Different degrees of chalkiness, however, were detected in the transgenic seeds, and were positively correlated with both the levels of accumulated protein and lysine enhancement. This study offered a solution to the lysine deficiency in rice, while at the same time addressing concerns about food safety and physiological abnormalities in biofortified crops.

  16. A beta-lysine adenylating enzyme and a beta-lysine binding protein involved in poly beta-lysine chain assembly in nourseothricin synthesis in Streptomyces noursei.

    Science.gov (United States)

    Grammel, Nicolas; Pankevych, Kvitka; Demydchuk, Julia; Lambrecht, Klaus; Saluz, Hans-Peter; Krügel, Hans

    2002-01-01

    Nourseothricins (syn. Streptothricins), a group of nucleoside peptides produced by several streptomycete strains, contain a poly beta-lysine chain of variable length attached in amide linkage to the amino sugar moiety gulosamine of the nucleoside portion. We show that the nourseothricin-producing Streptomyces noursei contains an enzyme (NpsA) of an apparent M(r) 56,000 that specifically activates beta-lysine by adenylation but does not bind to it as a thioester. Cloning and sequencing of npsA from S. noursei including its flanking DNA regions revealed that it is closely linked to the nourseothricin resistance gene nat1 and some other genes on the chromosome possibly involved in nourseothricin biosynthesis. The deduced amino-acid sequence revealed that NpsA is a stand-alone adenylation domain with similarity to the adenylation domains of nonribosomal peptide synthetases (NRPS). Further analysis revealed that S. noursei contains a beta-lysine binding enzyme (NpsB) of about M(r) 64,100 which can be loaded by NpsA with beta-lysine as a thioester. Analysis of the deduced amino-acid sequence from the gene (npsB) of NpsB showed that it consists of two domains. The N-terminal domain of approximately 100 amino-acid residues has high similarity to PCP domains of NRPSs whereas the 450-amino-acid C-terminal domain has a high similarity to epimerization (E)-domains of NRPSs. Remarkably, in this E-domain the conserved H-H-motif is changed to H-Q, which suggests that either the domain is nonfunctional or has a specialized function. The presence of one single adenylating beta-lysine activating enzyme in nourseothricin-producing streptomycete and a separate binding protein suggests an iteratively operating NRPS-module catalyses synthesis of the poly beta-lysine chain.

  17. Bacteriophages limit the existence conditions for conjugative plasmids.

    Science.gov (United States)

    Harrison, Ellie; Wood, A Jamie; Dytham, Calvin; Pitchford, Jonathan W; Truman, Julie; Spiers, Andrew; Paterson, Steve; Brockhurst, Michael A

    2015-06-02

    Bacteriophages are a major cause of bacterial mortality and impose strong selection on natural bacterial populations, yet their effects on the dynamics of conjugative plasmids have rarely been tested. We combined experimental evolution, mathematical modeling, and individual-based simulations to explain how the ecological and population genetics effects of bacteriophages upon bacteria interact to determine the dynamics of conjugative plasmids and their persistence. The ecological effects of bacteriophages on bacteria are predicted to limit the existence conditions for conjugative plasmids, preventing persistence under weak selection for plasmid accessory traits. Experiments showed that phages drove faster extinction of plasmids in environments where the plasmid conferred no benefit, but they also revealed more complex effects of phages on plasmid dynamics under these conditions, specifically, the temporary maintenance of plasmids at fixation followed by rapid loss. We hypothesized that the population genetic effects of bacteriophages, specifically, selection for phage resistance mutations, may have caused this. Further mathematical modeling and individual-based simulations supported our hypothesis, showing that conjugative plasmids may hitchhike with phage resistance mutations in the bacterial chromosome. Conjugative plasmids are infectious loops of DNA capable of transmitting DNA between bacterial cells and between species. Because plasmids often carry extra genes that allow bacteria to live in otherwise-inhospitable environments, their dynamics are central to understanding bacterial adaptive evolution. The plasmid-bacterium interaction has typically been studied in isolation, but in natural bacterial communities, bacteriophages, viruses that infect bacteria, are ubiquitous. Using experiments, mathematical models, and computer simulations we show that bacteriophages drive plasmid dynamics through their ecological and evolutionary effects on bacteria and ultimately

  18. 40 CFR 180.1261 - Xanthomonas campestris pv. vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages.

    Science.gov (United States)

    2010-07-01

    ... and Pseudomonas syringae pv. tomato specific Bacteriophages. 180.1261 Section 180.1261 Protection of.... vesicatoria and Pseudomonas syringae pv. tomato specific Bacteriophages. An exemption from the requirement of... syringae pv. tomato specific bacteriophages in or on pepper and tomato. [74 FR 26536, June 3, 2009] ...

  19. Whole-genome sequence of the bacteriophage-sensitive strain Campylobacter jejuni NCTC12662

    DEFF Research Database (Denmark)

    Gencay, Yilmaz Emre; Sørensen, Martine C.H.; Brøndsted, Lone

    2017-01-01

    Campylobacter jejuni NCTC12662 has been the choice bacteriophage isolation strain due to its susceptibility to C. jejuni bacteriophages. This trait makes it a good candidate for studying bacteriophage-host interactions. We report here the whole-genome sequence of NCTC12662, allowing future...

  20. A novel potentiometric biosensor for determination of L-lysine in commercial pharmaceutical L-lysine tablet and capsule.

    Science.gov (United States)

    Yarar, Saniye; Karakuş, Emine

    2016-01-01

    The construction of an L-lysine biosensor on ammonium-selective poly(vinylchloride) (PVC) membrane electrode is described in this study. The construction procedure occurs in two stages: (I) the preparation of ammonium-selective poly(vinylchloride) (PVC) membrane electrode and (II) the chemical immobilization of lysine oxidase on this ammonium-selective electrode by using glutaraldehyde. The ammonium ions produced after enzymatic reaction were determined potentiometrically. The sensitivity of the lysine biosensor against ammonium ions and lysine were studied. The response time, linear working range, reproducibility and life time of the biosensor were also determined. The interfering effect of other amino acids on the biosensor performance was also studied and potentiometric selectivity coefficients were calculated. Although the biosensor responded mainly against tyrosine, a lot of amino acids and ascorbic acid that can be present in some real samples did not show any important interference. Additionally, lysine assay in commercial pharmaceutical lysine tablets and capsules was also successfully carried out. The results were in good agreement with previously reported values.

  1. Bacteriophages as an alternative strategy for fighting biofilm development.

    Science.gov (United States)

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  2. Alternative bacteriophage life cycles: the carrier state of Campylobacter jejuni.

    Science.gov (United States)

    Siringan, Patcharin; Connerton, Phillippa L; Cummings, Nicola J; Connerton, Ian F

    2014-03-26

    Members of the genus Campylobacter are frequently responsible for human enteric disease, often through consumption of contaminated poultry products. Bacteriophages are viruses that have the potential to control pathogenic bacteria, but understanding their complex life cycles is key to their successful exploitation. Treatment of Campylobacter jejuni biofilms with bacteriophages led to the discovery that phages had established a relationship with their hosts typical of the carrier state life cycle (CSLC), where bacteria and bacteriophages remain associated in equilibrium. Significant phenotypic changes include improved aerotolerance under nutrient-limited conditions that would confer an advantage to survive in extra-intestinal environments, but a lack in motility eliminated their ability to colonize chickens. Under these circumstances, phages can remain associated with a compatible host and continue to produce free virions to prospect for new hosts. Moreover, we demonstrate that CSLC host bacteria can act as expendable vehicles for the delivery of bacteriophages to new host bacteria within pre-colonized chickens. The CSLC represents an important phase in the ecology of Campylobacter bacteriophage.

  3. Bacteriophage therapy for safeguarding animal and human health: a review.

    Science.gov (United States)

    Tiwari, Ruchi; Dhama, Kuldeep; Kumar, Amit; Rahal, Anu; Kapoor, Sanjay

    2014-02-01

    Since the discovery of bacteriophages at the beginning of the 19th century their contribution to bacterial evolution and ecology and use in a variety of applications in biotechnology and medicine has been recognized and understood. Bacteriophages are natural bacterial killers, proven as best biocontrol agents due to their ability to lyse host bacterial cells specifically thereby helping in disease prevention and control. The requirement of such therapeutic approach is straight away required in view of the global emergence of Multidrug Resistant (MDR) strains of bacteria and rapidly developing resistance to antibiotics in both animals and humans along with increasing food safety concerns including of residual antibiotic toxicities. Phage typing is a popular tool to differentiate bacterial isolates and to identify and characterize outbreak-associated strains of Salmonella, Campylobacter, Escherichia and Listeria. Numerous methods viz. plaque morphology, ultracentrifugation in the density gradient of CsCl2, and random amplified polymorphic DNA (RAPD) have been found to be effective in detection of various phages. Bacteriophages have been isolated and recovered from samples of animal waste products of different livestock farms. High titer cocktails of broad spectrum lytic bacteriophages are usually used for clinical trial for assessing their therapeutic efficacy against antibiotic unresponsive infections in different animals. Bacteriophage therapy also helps to fight various bacterial infections of poultry viz. colibacillosis, salmonellosis and listeriosis. Moreover, the utility of phages concerning biosafety has raised the importance to explore and popularize the therapeutic dimension of this promising novel therapy which forms the topic of discussion of the present review.

  4. Diffusion of bacteriophages through artificial biofilm models.

    Science.gov (United States)

    Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2012-01-01

    The simple two-chamber diffusion method was improved to study the diffusion properties of bacteriophage (phage) T4 through a model biofilm agarose gel membrane (AGM) embedded with dead host Escherichia coli K12 cells. The apparent diffusion coefficient (D(app) ) of phage T4 was calculated to be 2.4 × 10(-12) m(2) /s in 0.5% AGM, which was lower than the coefficient of 4.2 × 10(-12) m(2) /s in 0.5% AGM without host cells. The phage adsorption process by dead host cells slowed the apparent phage diffusion. The Langmuir adsorption equation was used to simulate phage adsorption under different multiplicity of infections (MOIs); the maximum adsorbed phage MOI was calculated to be 417 PFU/CFU, and the Langmuir adsorption constant K(L) was 6.9 × 10(-4) CFU/PFU. To evaluate the effects of phage proliferation on diffusion, a simple syringe-based biofilm model was developed. The phage was added into this homogenous biofilm model when the host cells were in an exponential growth phase, and the apparent diffusion coefficient was greatly enhanced. We concluded that D(app) of phages through biofilms could be distinctly affected by phage adsorption and proliferation, and that the idea of D(app) and these methods can be used to study diffusion properties through real biofilms. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  5. Characterisation of methacrylate monoliths for bacteriophage purification.

    Science.gov (United States)

    Smrekar, Franc; Ciringer, Mateja; Strancar, Aleš; Podgornik, Aleš

    2011-04-29

    Binding of three different bacteriophages (phages), namely T7, lambda and M13 on methacrylate monoliths was investigated. Phage M13 exhibited the highest dynamic binding capacity of 4.5×10(13) pfu/mL while T7 and lambda showed capacity of 1×10(13) pfu/mL, all corresponding to values of around 1mg/mL. Interestingly, capacity for lambda phage was increased 5-fold by increasing NaCl concentration in a loaded sample from 0 to 0.2M while there was a constant capacity decrease for T7 and M13 phages. Under optimal conditions, recovery for all three phages approached 100%. Measurement of a pressure drop increase during loading enabled estimation of adsorbed phage layer thickness. At a maximal capacity it was calculated to be around 50 nm for T7 phage and 60 nm for lambda phage matching closely capside size thus indicating monolayer adsorption while 80 nm layer thickness was estimated for M13 phage showing its orientation along the pore. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Nutritional consequences of interspecies differences in arginine and lysine metabolism.

    Science.gov (United States)

    Ball, Ronald O; Urschel, Kristine L; Pencharz, Paul B

    2007-06-01

    Differences in lysine and arginine requirements among various species such as omnivores (humans, pigs, rats, dogs), carnivores (cats), herbivores (rabbits, horses), ruminants (cattle), poultry, and fish, are covered in detail in this article. Although lysine is classified as an indispensable amino acid across species, the classification of arginine as either an indispensable or dispensable amino acid is more ambiguous because of differences among species in rates of de novo arginine synthesis. Because lysine is most often the limiting amino acid in the diet, its requirement has been extensively studied. By use of the ideal protein concept, the requirements of the other indispensable amino acids can be extrapolated from the lysine requirement. The successful use of this concept in pigs is compared with potential application of the ideal protein concept in humans. The current dietary arginine requirement varies widely among species, with ruminants, rabbits, and rats having relatively low requirements and carnivores, fish, and poultry having high requirements. Interspecies differences in metabolic arginine utilization and reasons for different rates of de novo arginine synthesis are reviewed in detail, as these are the primary determinants of the dietary arginine requirement. There is presently no dietary requirement for humans of any age, although this needs to be reassessed, particularly in neonates. A thorough understanding of the factors contributing to the lysine and arginine requirements in different species will be useful in our understanding of human amino acid requirements.

  7. Proton sensitization in γ-radiation injury to bacteriophage

    International Nuclear Information System (INIS)

    Shabarchina, L.I.; Sukhorukov, B.I.; Yurov, S.S.

    1979-01-01

    With exposure of bacteriophage T4Br + to doses up to 10 krad the phenomenon of proton sensitization is observed which is manifested by the considerable increase in the radiation inactivation and mutagenic effect of γ-quanta at the increased concentration of H + -ions in the exposed phage suspension. A mechanism of this phenomenon is proposed and the hypothesis is expounded that radiosensitivity of bacteriophages is determined chiefly by the content therein of the protonated structures of nitrogen bases and by amino acids. With a dose of above 7 krad, along with the proton sensitization, the phenomenon of proton protection is also observed which is related to the protonated structures of products of radiation disintegration of the bacteriophage

  8. Inactivation of clay-associated bacteriophage MS-2 by chlorine.

    Science.gov (United States)

    Stagg, C H; Wallis, C; Ward, C H

    1977-01-01

    The model system consisted of bacteriophage MS-2, bentonite clay, and hypochlorous acid (HOC1). Factors that influenced association of the bacterial virus with bentonite were the titer of unadsorbed viruses, clay concentration, cation concentration, temperature, stirring rate, and the presence of soluble organics. Variation of the kinetic adsorption rate constant with stirring speed indicates that phage attachment is a diffusion-limited process; the attachment reaction has an apparent activation energy of 1 kcal/mol. About 18% of clay-associated bacteriophages was recovered by mixing the suspension with an organic eluent. Inactivation data were obtained from batch reactors operated under those conditions in which loss of HOC1 was minimal during the reaction. Bacteriophages attached to clay were more resistant to HOC1 than were freely suspended phages; for equivalent HOC1 concentrations, clay-associated phages required about twice the time that freely suspended phages required for loss of 99% of the initial virus titer. PMID:192148

  9. Bacteriophages as potential treatment option for antibiotic resistant bacteria.

    Science.gov (United States)

    Bragg, Robert; van der Westhuizen, Wouter; Lee, Ji-Yun; Coetsee, Elke; Boucher, Charlotte

    2014-01-01

    The world is facing an ever-increasing problem with antibiotic resistant bacteria and we are rapidly heading for a post-antibiotic era. There is an urgent need to investigate alterative treatment options while there are still a few antibiotics left. Bacteriophages are viruses that specifically target bacteria. Before the development of antibiotics, some efforts were made to use bacteriophages as a treatment option, but most of this research stopped soon after the discovery of antibiotics. There are two different replication options which bacteriophages employ. These are the lytic and lysogenic life cycles. Both these life cycles have potential as treatment options. There are various advantages and disadvantages to the use of bacteriophages as treatment options. The main advantage is the specificity of bacteriophages and treatments can be designed to specifically target pathogenic bacteria while not negatively affecting the normal microbiota. There are various advantages to this. However, the high level of specificity also creates potential problems, the main being the requirement of highly specific diagnostic procedures. Another potential problem with phage therapy includes the development of immunity and limitations with the registration of phage therapy options. The latter is driving research toward the expression of phage genes which break the bacterial cell wall, which could then be used as a treatment option. Various aspects of phage therapy have been investigated in studies undertaken by our research group. We have investigated specificity of phages to various avian pathogenic E. coli isolates. Furthermore, the exciting NanoSAM technology has been employed to investigate bacteriophage replication and aspects of this will be discussed.

  10. Bacteriophages of Soft Rot Enterobacteriaceae-a minireview.

    Science.gov (United States)

    Czajkowski, Robert

    2016-01-01

    Soft rot Enterobacteriaceae (Pectobacterium spp. and Dickeya spp., formerly pectinolytic Erwinia spp.) are ubiquitous necrotrophic bacterial pathogens that infect a large number of different plant species worldwide, including economically important crops. Despite the fact that these bacteria have been studied for more than 50 years, little is known of their corresponding predators: bacteriophages, both lytic and lysogenic. The aim of this minireview is to critically summarize recent ecological, biological and molecular research on bacteriophages infecting Pectobacterium spp. and Dickeya spp. with the main focus on current and future perspectives in that field. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Engineered enzymatically active bacteriophages and methods of uses thereof

    Energy Technology Data Exchange (ETDEWEB)

    Collins, James J [Newton, MA; Kobayashi, Hideki [Yokohama, JP; Kearn, Mads [Ottawa, CA; Araki, Michihiro [Minatoku, JP; Friedland, Ari [Boston, MA; Lu, Timothy Kuan-Ta [Palo Alto, CA

    2012-05-22

    The present invention provides engineered bacteriophages that express at least one biofilm degrading enzyme on their surface and uses thereof for degrading bacterial biofilms. The invention also provides genetically engineered bacteriophages expressing the biofilm degrading enzymes and proteins necessary for the phage to replicate in different naturally occurring biofilm producing bacteria. The phages of the invention allow a method of biofilm degradation by the use of one or only a few administration of the phage because the system using these phages is self perpetuating, and capable of degrading biofilm even when the concentration of bacteria within the biofilm is low.

  12. Norovirus and FRNA bacteriophage determined by RT-qPCR and infectious FRNA bacteriophage in wastewater and oysters.

    Science.gov (United States)

    Flannery, John; Keaveney, Sinéad; Rajko-Nenow, Paulina; O'Flaherty, Vincent; Doré, William

    2013-09-15

    Norovirus (NoV), the leading cause of adult non-bacterial gastroenteritis can be commonly detected in wastewater but the extent of NoV removal provided by wastewater treatment plants (WWTPs) is unclear. We monitored a newly commissioned WWTP with UV disinfection on a weekly basis over a six month period for NoV using RT-qPCR and for FRNA bacteriophage GA using both RT-qPCR (total concentration) and a plaque assay (infectious concentration). Mean concentrations of NoV GI and GII in influent wastewater were reduced by 0.25 and 0.41 log10 genome copies 100 ml(-1), respectively by the WWTP. The mean concentration of total FRNA bacteriophage GA was reduced by 0.35 log genome copies 100 ml(-1) compared to a reduction of infectious FRNA bacteriophage GA of 2.13 log PFU 100 ml(-1). A significant difference between concentrations of infectious and total FRNA bacteriophage GA was observed in treated, but not in untreated wastewaters. We conclude that RT-qPCR in isolation underestimates the reduction of infectious virus during wastewater treatment. We further compared the concentrations of infectious virus in combined sewer overflow (CSO) and UV treated effluents using FRNA bacteriophage GA. A greater percentage (98%) of infectious virus is released in CSO discharges than UV treated effluent (44%). Following a CSO discharge, concentrations of NoV GII and infectious FRNA bacteriophage GA in oysters from less than the limit of detection to 3150 genome copies 100 g(-1) and 1050 PFU 100 g(-1) respectively. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Novel bacteriophages containing a genome of another bacteriophage within their genomes.

    Science.gov (United States)

    Swanson, Maud M; Reavy, Brian; Makarova, Kira S; Cock, Peter J; Hopkins, David W; Torrance, Lesley; Koonin, Eugene V; Taliansky, Michael

    2012-01-01

    A novel bacteriophage infecting Staphylococus pasteuri was isolated during a screen for phages in Antarctic soils. The phage named SpaA1 is morphologically similar to phages of the family Siphoviridae. The 42,784 bp genome of SpaA1 is a linear, double-stranded DNA molecule with 3' protruding cohesive ends. The SpaA1 genome encompasses 63 predicted protein-coding genes which cluster within three regions of the genome, each of apparently different origin, in a mosaic pattern. In two of these regions, the gene sets resemble those in prophages of Bacillus thuringiensis kurstaki str. T03a001 (genes involved in DNA replication/transcription, cell entry and exit) and B. cereus AH676 (additional regulatory and recombination genes), respectively. The third region represents an almost complete genome (except for the short terminal segments) of a distinct bacteriophage, MZTP02. Nearly the same gene module was identified in prophages of B. thuringiensis serovar monterrey BGSC 4AJ1 and B. cereus Rock4-2. These findings suggest that MZTP02 can be shuttled between genomes of other bacteriophages and prophages, leading to the formation of chimeric genomes. The presence of a complete phage genome in the genome of other phages apparently has not been described previously and might represent a 'fast track' route of virus evolution and horizontal gene transfer. Another phage (BceA1) nearly identical in sequence to SpaA1, and also including the almost complete MZTP02 genome within its own genome, was isolated from a bacterium of the B. cereus/B. thuringiensis group. Remarkably, both SpaA1 and BceA1 phages can infect B. cereus and B. thuringiensis, but only one of them, SpaA1, can infect S. pasteuri. This finding is best compatible with a scenario in which MZTP02 was originally contained in BceA1 infecting Bacillus spp, the common hosts for these two phages, followed by emergence of SpaA1 infecting S. pasteuri.

  14. Structural aspects of the solvation shell of lysine and acetylated lysine: A Car-Parrinello and classical molecular dynamics investigation

    International Nuclear Information System (INIS)

    Carnevale, V.; Raugei, S.

    2009-01-01

    Lysine acetylation is a post-translational modification, which modulates the affinity of protein-protein and/or protein-DNA complexes. Its crucial role as a switch in signaling pathways highlights the relevance of charged chemical groups in determining the interactions between water and biomolecules. A great effort has been recently devoted to assess the reliability of classical molecular dynamics simulations in describing the solvation properties of charged moieties. In the spirit of these investigations, we performed classical and Car-Parrinello molecular dynamics simulations on lysine and acetylated-lysine in aqueous solution. A comparative analysis between the two computational schemes is presented with a focus on the first solvation shell of the charged groups. An accurate structural analysis unveils subtle, yet statistically significant, differences which are discussed in connection to the significant electronic density charge transfer occurring between the solute and the surrounding water molecules.

  15. Immobilization of Active Bacteriophages on Polyhydroxyalkanoate Surfaces.

    Science.gov (United States)

    Wang, Chanchan; Sauvageau, Dominic; Elias, Anastasia

    2016-01-20

    A rapid, efficient technique for the attachment of bacteriophages (phages) onto polyhydroxyalkanoate (PHA) surfaces has been developed and compared to three reported methods for phage immobilization. Polymer surfaces were modified to facilitate phage attachment using (1) plasma treatment alone, (2) plasma treatment followed by activation by 1-ethyl-3-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS), (3) plasma-initiated acrylic acid grafting, or (4) plasma-initiated acrylic acid grafting with activation by EDC and sulfo-NHS. The impact of each method on the surface chemistry of PHA was investigated using contact angle analysis and X-ray photoelectron spectroscopy. Each of the four treatments was shown to result in both increased hydrophilicity and in the modification of the surface functional groups. Modified surfaces were immersed in suspensions of phage T4 for immobilization. The highest level of phage binding was observed for the surfaces modified by plasma treatment alone. The change in chemical bond states observed for surfaces that underwent plasma treatment is suspected to be the cause of the increased binding of active phages. Plasma-treated surfaces were further analyzed through phage-staining and fluorescence microscopy to assess the surface density of immobilized phages and their capacity to capture hosts. The infective capability of attached phages was confirmed by exposing the phage-immobilized surfaces to the host bacteria Escherichia coli in both plaque and infection dynamic assays. Plasma-treated surfaces with immobilized phages displayed higher infectivity than surfaces treated with other methods; in fact, the equivalent initial multiplicity of infection was 2 orders of magnitude greater than with other methods. Control samples - prepared by immersing polymer surfaces in phage suspensions (without prior plasma treatment) - did not show any bacterial growth inhibition, suggesting they did not bind

  16. Multiple roles of genome-attached bacteriophage terminal proteins

    International Nuclear Information System (INIS)

    Redrejo-Rodríguez, Modesto; Salas, Margarita

    2014-01-01

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer

  17. Toxicity test and bacteriophage typing of Staphylococcus aureus ...

    African Journals Online (AJOL)

    Toxicity test and bacteriophage typing of Staphylococcus aureus isolates from food contact surfaces and foods prepared by families in Zaria, Nigeria. ... contamination of products by toxigenic strains of organisms. Keywords: Staphylococcus aureus, enterotoxin production, phage typing, haemolysis and food poisoning ...

  18. Structural characterization of bacteriophage M13 solubilization by amphiphiles

    NARCIS (Netherlands)

    Stopar, D.; Spruijt, R.B.; Wolfs, C.J.A.M.; Hemminga, M.A.

    2002-01-01

    The structural properties of bacteriophage M13 during disassembly were studied in different membrane model systems, composed of a homologue series of the detergents sodium octyl sulfate, sodium decyl sulfate, and sodium dodecyl sulfate. The structural changes during phage disruption were monitored

  19. Bacteriophages as indicators of faecal pollution and enteric virus removal

    Science.gov (United States)

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize con...

  20. Bacteriophages as enteric viral indicators in bivalve mollusc management.

    Science.gov (United States)

    Hodgson, Kate R; Torok, Valeria A; Turnbull, Alison R

    2017-08-01

    Human enteric viruses, such as norovirus and hepatitis A virus, are spread by a variety of routes including faecal-oral transmission. Contaminated bivalve shellfish are regularly implicated in foodborne viral disease outbreaks internationally. Traditionally indicator bacteria, the coliforms and Escherichia coli, have been used to detect faecal pollution in growing waters and shellfish. However, studies have established that they are inadequate as indicators of the risk of human enteric viruses. Bacteriophages have been identified as potential indicators or surrogates for human enteric viruses due to their similarities in morphology, behaviour in water environments and resistance to disinfectant treatments. The somatic coliphages, male-specific RNA coliphages (FRNA coliphages) and the bacteriophages of Bacteroides are the groups recognised as most suitable for water and shellfish testing. In this review, we discuss the rationale and supporting evidence for the application of bacteriophages as surrogates for human enteric viruses in shellfish under a variety of conditions. There is some evidence to support the validity of using bacteriophage levels to indicate viral risk in shellfish in highly contaminated sites and following adverse sewage events. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  1. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets

    DEFF Research Database (Denmark)

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole

    2016-01-01

    and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e. contigs) of phage origin in metage-nomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic...

  2. Use of bacteriophages in controlling E. coli in leafy vegetables

    Science.gov (United States)

    Bacteriophages are viruses that can infect and lys (kill) bacteria. These viruses are not harmful to humans and are present in the environment and many foods. Enterohemmorhagic E. coli (EHEC), like E. coli O157:H7, have been associated with contaminated bagged leafy green commodities. Outbreaks o...

  3. Natural mummification of the human gut preserves bacteriophage DNA.

    Science.gov (United States)

    Santiago-Rodriguez, Tasha M; Fornaciari, Gino; Luciani, Stefania; Dowd, Scot E; Toranzos, Gary A; Marota, Isolina; Cano, Raul J

    2016-01-01

    The natural mummification process of the human gut represents a unique opportunity to study the resulting microbial community structure and composition. While results are providing insights into the preservation of bacteria, fungi, pathogenic eukaryotes and eukaryotic viruses, no studies have demonstrated that the process of natural mummification also results in the preservation of bacteriophage DNA. We characterized the gut microbiome of three pre-Columbian Andean mummies, namely FI3, FI9 and FI12, and found sequences homologous to viruses. From the sequences attributable to viruses, 50.4% (mummy FI3), 1.0% (mummy FI9) and 84.4% (mummy FI12) were homologous to bacteriophages. Sequences corresponding to the Siphoviridae, Myoviridae, Podoviridae and Microviridae families were identified. Predicted putative bacterial hosts corresponded mainly to the Firmicutes and Proteobacteria, and included Bacillus, Staphylococcus, Clostridium, Escherichia, Vibrio, Klebsiella, Pseudomonas and Yersinia. Predicted functional categories associated with bacteriophages showed a representation of structural, replication, integration and entry and lysis genes. The present study suggests that the natural mummification of the human gut results in the preservation of bacteriophage DNA, representing an opportunity to elucidate the ancient phageome and to hypothesize possible mechanisms of preservation. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. BACTERIOPHAGE TRANSPORT IN SANDY SOIL AND FRACTURED TUFF

    Science.gov (United States)

    Bacteriophage transport was investigated in laboratory column experiments using sandy soil, a controlled field study in a sandy wash, and laboratory experiments using fractured rock. In the soil columns, the phage MS-2 exhibited significant dispersion and was excluded from 35 to ...

  5. Design of thermolabile bacteriophage repressor mutants by comparative molecular modeling

    NARCIS (Netherlands)

    Nauta, A; vandenBurg, B; Karsens, H; Venema, G; Kok, J; Burg, Bertus van den

    1997-01-01

    Comparative molecular modeling was performed with repressor protein Rro of the temperate Lactococcus lactis bacteriophage r1t using the known 3D-structures of related repressors in order to obtain thermolabile derivatives of Rro. Rro residues presumed to stabilize a nonhomologous but structurally

  6. Role of osmotic and hydrostatic pressures in bacteriophage genome ejection

    NARCIS (Netherlands)

    Lemay, Serge Joseph Guy; Panja, D.; Molineux, I.

    2013-01-01

    A critical step in the bacteriophage life cycle is genome ejection into host bacteria. The ejection process for double-stranded DNA phages has been studied thoroughly in vitro, where after triggering with the cellular receptor the genome ejects into a buffer. The experimental data have been

  7. [Bacteriophages in the battle against multidrug resistant bacteria

    NARCIS (Netherlands)

    Meer, J.W.M. van der; Vandenbroucke-Grauls, C.

    2018-01-01

    Bacteriophages are viruses that infect bacteria. They are highly specific for a bacterial species. The so-called 'lytic phages' can lyse bacteria when they infect them; these phages can be used to treat bacterial infections. Despite a century of experience with phage therapy, the evidence for

  8. Multiple roles of genome-attached bacteriophage terminal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Redrejo-Rodríguez, Modesto; Salas, Margarita, E-mail: msalas@cbm.csic.es

    2014-11-15

    Protein-primed replication constitutes a generalized mechanism to initiate DNA or RNA synthesis in linear genomes, including viruses, gram-positive bacteria, linear plasmids and mobile elements. By this mechanism a specific amino acid primes replication and becomes covalently linked to the genome ends. Despite the fact that TPs lack sequence homology, they share a similar structural arrangement, with the priming residue in the C-terminal half of the protein and an accumulation of positively charged residues at the N-terminal end. In addition, various bacteriophage TPs have been shown to have DNA-binding capacity that targets TPs and their attached genomes to the host nucleoid. Furthermore, a number of bacteriophage TPs from different viral families and with diverse hosts also contain putative nuclear localization signals and localize in the eukaryotic nucleus, which could lead to the transport of the attached DNA. This suggests a possible role of bacteriophage TPs in prokaryote-to-eukaryote horizontal gene transfer. - Highlights: • Protein-primed genome replication constitutes a strategy to initiate DNA or RNA synthesis in linear genomes. • Bacteriophage terminal proteins (TPs) are covalently attached to viral genomes by their primary function priming DNA replication. • TPs are also DNA-binding proteins and target phage genomes to the host nucleoid. • TPs can also localize in the eukaryotic nucleus and may have a role in phage-mediated interkingdom gene transfer.

  9. Antioxidant activity of maillard reaction products from lysine-glucose ...

    African Journals Online (AJOL)

    Maillard reaction (MR) was carried out in L-lysine-D-glucose (Lys-Glu) model system heated at 120°C for 0 to 10 h without pH control. Optical property (UV-Vis absorbance and fluorescence) development of MR was monitored. Antioxidant activity of maillard reaction products (MRPs) was investigated by a series of in vitro ...

  10. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Science.gov (United States)

    Villegas, María F.; Garcia-Uriostegui, Lorena; Rodríguez, Ofelia; Izquierdo-Barba, Isabel; Salinas, Antonio J.; Toriz, Guillermo; Vallet-Regí, María; Delgado, Ezequiel

    2017-01-01

    This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR) studies of lysine-grafted MCM-41 (MCM-LYS) simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%). This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion. PMID:28952559

  11. Effect of low protein diets and lysine supplementation on growth ...

    African Journals Online (AJOL)

    The present study was to assess the effect of feeding low protein diet with or without supplemental lysine to meet NRC (1998) requirement on growth performance, carcass trait, meat composition, and meat quality of pigs. An experiment of 126 days was conducted on 21 crossbred Landrace pigs (average weight 11.72 ...

  12. Enhancement of Monoclonal Antibody Production by Lysine-Containing Peptides

    Czech Academy of Sciences Publication Activity Database

    Franěk, František; Eckschlager, T.; Hermann, K.

    2003-01-01

    Roč. 19, č. 1 (2003), s. 169-174 ISSN 8756-7938 R&D Projects: GA MŠk OC 844.10 Institutional research plan: CEZ:AV0Z5038910; CEZ:MSM 111300005 Keywords : Monoclonal Antibody * Lysine-Containing Peptides Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.488, year: 2003

  13. Lysine metabolism in antisense C-hordein barley grains

    DEFF Research Database (Denmark)

    Schmidt, Daiana; Rizzi, Vanessa; Gaziola, Salete A

    2015-01-01

    The grain proteins of barley are deficient in lysine and threonine due to their low concentrations in the major storage protein class, the hordeins, especially in the C-hordein subgroup. Previously produced antisense C-hordein transgenic barley lines have an improved amino acid composition, with ...

  14. Detection of salt bridges to lysines in solution in barnase

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Williamson, Michael P.; Hounslow, Andrea M.

    2013-01-01

    We show that salt bridges involving lysines can be detected by deuterium isotope effects on NMR chemical shifts of the sidechain amine. Lys27 in the ribonuclease barnase is salt bridged, and mutation of Arg69 to Lys retains a partially buried salt bridge. The salt bridges are functionally important....

  15. Effect of Low Protein-Methionine-and-Lysine-Supplemented Diets ...

    African Journals Online (AJOL)

    Two experiments were conducted to investigate the effect of supplementing low CP diets with methionine and lysine on broiler performance, carcass measure and their immune response against Infectious Bursa Disease (IBD) virus. In Experiment 1, ten diets were formulated. Diet 1 (control diet) contained 23.0% CP and ...

  16. Identification of catechols as histone-lysine demethylase inhibitors

    DEFF Research Database (Denmark)

    Nielsen, Anders L; Kristensen, Line H; Stephansen, Karen B

    2012-01-01

    Identification of inhibitors of histone-lysine demethylase (HDM) enzymes is important because of their involvement in the development of cancer. An ELISA-based assay was developed for identification of inhibitors of the HDM KDM4C in a natural products library. Based on one of the hits with affinity...

  17. Effect Of Sprouting On Available Lysine Content Of Cowpea ( Vigna ...

    African Journals Online (AJOL)

    This study was conducted to determine the effect of sprouting on available Lysine content of cowpea (Vigna unguiculata) flour and the performance of the flour used for producing “moi – moi” (steamed bean cake). Cowpea seed was subjected to sprouting for different periods of 1 day, 2 days and 3 days for samples B, C and ...

  18. Lysine-Grafted MCM-41 Silica as an Antibacterial Biomaterial

    Directory of Open Access Journals (Sweden)

    María F. Villegas

    2017-09-01

    Full Text Available This paper proposes a facile strategy for the zwitterionization of bioceramics that is based on the direct incorporation of l-lysine amino acid via the ε-amino group onto mesoporous MCM-41 materials. Fourier transform infrared (FTIR studies of lysine-grafted MCM-41 (MCM-LYS simultaneously showed bands at 3080 and 1540 cm−1 and bands at 1625 and 1415 cm−1 corresponding to -NH3+/COO− pairs, which demonstrate the incorporation of the amino acid on the material surface keeping its zwitterionic character. Both elemental and thermogravimetric analyses showed that the amount of grafted lysine was 8 wt. % based on the bioceramic total weight. Moreover, MCM-LYS exhibited a reduction of adhesion of S. aureus and E. coli bacteria in 33% and 50%, respectively at physiological pH, as compared with pristine MCM-41. Biofilm studies onto surfaces showed that lysine functionalization elicited a reduction of the area covered by S. aureus biofilm from 42% to only 5% (88%. This research shows a simple and effective approach to chemically modify bioceramics using single amino acids that provides zwitterionic functionality, which is useful to develop new biomaterials that are able to resist bacterial adhesion.

  19. protein, tryptophan and lysine contents in quality protien maize

    African Journals Online (AJOL)

    owner

    study of protein, tryptophan and lysine composition of quality protein maize varieties (9). The tryptophan content of eleven superior QPM genotypes was much higher than those of wheat,. * Jimma University, College of Agriculture and Veterinary Medicine, Department of Crop Sciences, P.O. Box 307,. Jimma , Ethiopia.

  20. Growth responses to dietary lysine at high and low ambient temperatures in male turkeys

    NARCIS (Netherlands)

    Veldkamp, T.; Ferket, P.; Kwakkel, R.P.; Kogut, J.; Verstegen, M.W.A.

    2003-01-01

    Several researchers have postulated that dietary lysine requirements for turkeys are dependent upon ambient temperature. To test and quantify this hypothesis, a factorial experiment was designed with four dietary lysine levels (75, 90, 105, and 120% of NRC lysine recommendations) from 1 d of age

  1. Optimization of lysine production in Corynebacteriumglutamicum ATCC15032 by Response surface methodology

    Directory of Open Access Journals (Sweden)

    Mehrnaz Haghi

    2017-03-01

    Discussion and conclusion: According to the results, the proposed culture media by response surface methodology causes 1400 times increase in the lysine production compared with M9 culture media and methionine had an important role in the production of lysine, probably by inhibiting the other metabolic pathway which has common metabolic precursor with lysine production metabolic pathway.

  2. Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains.

    Directory of Open Access Journals (Sweden)

    Janet Y Nale

    Full Text Available The hypervirulent Clostridium difficile ribotype 027 can be classified into subtypes, but it unknown if these differ in terms of severity of C. difficile infection (CDI. Genomic studies of C. difficile 027 strains have established that they are rich in mobile genetic elements including prophages. This study combined physiological studies, electron microscopy analysis and molecular biology to determine the potential role of temperate bacteriophages in disease and diversity of C. difficile 027.We induced prophages from 91 clinical C. difficile 027 isolates and used transmission electron microscopy and pulsed-field gel electrophoresis to characterise the bacteriophages present. We established a correlation between phage morphology and subtype. Morphologically distinct tailed bacteriophages belonging to Myoviridae and Siphoviridae were identified in 63 and three isolates, respectively. Dual phage carriage was observed in four isolates. In addition, there were inducible phage tail-like particles (PT-LPs in all isolates. The capacity of two antibiotics mitomycin C and norfloxacin to induce prophages was compared and it was shown that they induced specific prophages from C. difficile isolates. A PCR assay targeting the capsid gene of the myoviruses was designed to examine molecular diversity of C. difficile myoviruses. Phylogenetic analysis of the capsid gene sequences from eight ribotypes showed that all sequences found in the ribotype 027 isolates were identical and distinct from other C. difficile ribotypes and other bacteria species.A diverse set of temperate bacteriophages are associated with C. difficile 027. The observed correlation between phage carriage and the subtypes suggests that temperate bacteriophages contribute to the diversity of C. difficile 027 and may play a role in severity of disease associated with this ribotype. The capsid gene can be used as a tool to identify C. difficile myoviruses present within bacterial genomes.

  3. The biology of lysine acetylation integrates transcriptional programming and metabolism

    Directory of Open Access Journals (Sweden)

    Mujtaba Shiraz

    2011-03-01

    Full Text Available Abstract The biochemical landscape of lysine acetylation has expanded from a small number of proteins in the nucleus to a multitude of proteins in the cytoplasm. Since the first report confirming acetylation of the tumor suppressor protein p53 by a lysine acetyltransferase (KAT, there has been a surge in the identification of new, non-histone targets of KATs. Added to the known substrates of KATs are metabolic enzymes, cytoskeletal proteins, molecular chaperones, ribosomal proteins and nuclear import factors. Emerging studies demonstrate that no fewer than 2000 proteins in any particular cell type may undergo lysine acetylation. As described in this review, our analyses of cellular acetylated proteins using DAVID 6.7 bioinformatics resources have facilitated organization of acetylated proteins into functional clusters integral to cell signaling, the stress response, proteolysis, apoptosis, metabolism, and neuronal development. In addition, these clusters also depict association of acetylated proteins with human diseases. These findings not only support lysine acetylation as a widespread cellular phenomenon, but also impel questions to clarify the underlying molecular and cellular mechanisms governing target selectivity by KATs. Present challenges are to understand the molecular basis for the overlapping roles of KAT-containing co-activators, to differentiate between global versus dynamic acetylation marks, and to elucidate the physiological roles of acetylated proteins in biochemical pathways. In addition to discussing the cellular 'acetylome', a focus of this work is to present the widespread and dynamic nature of lysine acetylation and highlight the nexus that exists between epigenetic-directed transcriptional regulation and metabolism.

  4. T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2017-03-01

    This work demonstrates the use of bacteriophage conjugated magnetic particles (Fe 3 O 4 ) for the rapid capturing and isolation of Escherichia coli. The investigation of T4 bacteriophage adsorption to silane functionalised Fe 3 O 4 with amine (NH 2 ), carboxylic (COOH) and methyl (CH 3 ) surface functional groups reveals the domination of net electrostatic and hydrophobic interactions in governing bacteriophage adsorption. The bare Fe 3 O 4 and Fe 3 O 4 -NH 2 with high T4 loading captured 3-fold more E. coli (∼70% capturing efficiency) compared to the low loading T4 on Fe 3 O 4 -COOH, suggesting the significance of T4 loading in E. coli capturing efficiency. Importantly, it is further revealed that E. coli capture is highly dependent on the incubation temperature and the presence of tryptone in the media. Effective E. coli capturing only occurs at 37°C in tryptone-containing media with the absence of either conditions resulted in poor bacteria capture. The incubation temperature dictates the capturing ability of Fe 3 O 4 /T4, whereby T4 and E. coli need to establish an irreversible binding that occurred at 37°C. The presence of tryptophan-rich tryptone in the suspending media was also critical, as shown by a 3-fold increase in E. coli capture efficiency of Fe 3 O 4 /T4 in tryptone-containing media compared to that in tryptone-free media. This highlights for the first time that successful bacteria capturing requires not only an optimum tailoring of the particle's surface physicochemical properties for favourable bacteriophage loading, but also an in-depth understanding of how factors, such as temperature and solution chemistry influence the subsequent bacteriophage-bacteria interactions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Molecular Characterization of a Clostridium difficile Bacteriophage and Its Cloned Biologically Active Endolysin▿ †

    OpenAIRE

    Mayer, Melinda J.; Narbad, Arjan; Gasson, Michael J.

    2008-01-01

    Clostridium difficile infection is increasing in both frequency and severity, with the emergence of new highly virulent strains highlighting the need for more rapid and effective methods of control. Here, we show that bacteriophage endolysin can be used to inhibit and kill C. difficile. The genome sequence of a novel bacteriophage that is active against C. difficile was determined, and the bacteriophage endolysin gene was subcloned and expressed in Escherichia coli. The partially purified end...

  6. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry.

    Science.gov (United States)

    Owens, Jane; Barton, Mary D; Heuzenroeder, Michael W

    2013-02-22

    Six hundred and sixty one samples - primarily fresh chicken faeces - were processed to isolate wild type Campylobacter jejuni bacteriophages, via overlay agar methods using C. jejuni NCTC 12662. The aims of this study were to isolate and purify bacteriophages and then test for their ability to lyse field strains of C. jejuni in vitro. Of all samples processed, 130 were positive for bacteriophages. A distinct difference was observed between samples from different poultry enterprises. No bacteriophages could be isolated from indoor broilers. The majority of bacteriophages were isolated from free range poultry - both broilers and egg layers. Bacteriophages were purified and then selected for characterization based on their ability to produce clear lysis on plaque assay, as opposed to turbid plaques. Two hundred and forty one C. jejuni field isolates were tested for sensitivity to the bacteriophages. Lysis was graded subjectively and any minimal lysis was excluded. Using this system, 59.0% of the C. jejuni isolates showed significant sensitivity to at least one bacteriophage. The sensitivity to individual bacteriophages ranged from 10.0% to 32.5% of the C. jejuni isolates. Five bacteriophages were examined by electron microscopy and determined to belong to the Myoviridae family. The physical size, predicted genetic composition and genome size of the bacteriophages correlated well with other reported Campylobacter bacteriophages. The reasons for the observed difference between indoor broilers and free range poultry is unknown, but are postulated to be due to differences in the Campylobacter population in birds under different rearing conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Effect of hydroxylysine on the biosynthesis of lysine in Streptococcus faecalis.

    Science.gov (United States)

    Gilboe, D P; Friede, J D; Henderson, L M

    1968-03-01

    We were able to show that two lysine-independent mutants of Streptococcus faecalis ATCC 8043 contained the enzymes for the usual bacterial pathway for lysine biosynthesis. Because of this synthetic capacity, one mutant, the Lys(+)OHLys(s) strain, could not grow in the presence of hydroxylysine without a lysine supplement. Both lysine and hydroxylysine inhibited the first enzyme of the pathway, aspartokinase. Unlike the Escherichia coli enzyme, S. faecalis dihydrodipicolinic acid synthetase was not inhibited by either lysine or hydroxylysine. Both amino acids caused the repression of dihydrodipicolinic acid synthetase and diaminopimelic acid decarboxylase. Failure of Lys(+)OHLys(s) strain to grow in hydroxylysine-supplemented medium was caused by the mimicking of lysine control by hydroxylysine. Because hydroxylysine could not completely substitute for lysine and lysine could not be synthesized, the organism did not grow. We tested three lysine analogues and found that they prevented lysine-depletion lysis in the Lsy(-)OHLys(s) strain, as did hydroxylysine. Each analogue seemed to support cell wall mucopeptide synthesis, although ornithine did not. Preliminary data indicated that these analogues like hydroxylysine, have growth-inhibitory action on the Lys(+)OHLys(s) strain, but not the Lys(+)OHLys(r) strain. The nature of the specificity of the lysine-adding enzyme for cell wall mucopeptide synthesis is discussed.

  8. Newly Isolated Bacteriophages from the Podoviridae, Siphoviridae, and Myoviridae Families Have Variable Effects on Putative Novel Dickeya spp.

    Science.gov (United States)

    Alič, Špela; Naglič, Tina; Tušek-Žnidarič, Magda; Ravnikar, Maja; Rački, Nejc; Peterka, Matjaž; Dreo, Tanja

    2017-01-01

    Soft rot pathogenic bacteria from the genus Dickeya cause severe economic losses in orchid nurseries worldwide, and there is no effective control currently available. In the last decade, the genus Dickeya has undergone multiple changes as multiple new taxa have been described, and just recently a new putative Dickeya species was reported. This study reports the isolation of three bacteriophages active against putative novel Dickeya spp. isolates from commercially produced infected orchids that show variable host-range profiles. Bacteriophages were isolated through enrichment from Dickeya-infected orchid tissue. Convective interaction media monolith chromatography was used to isolate bacteriophages from wastewaters, demonstrating its suitability for the isolation of infective bacteriophages from natural sources. Based on bacteriophage morphology, all isolated bacteriophages were classified as being in the order Caudovirales, belonging to three different families, Podoviridae, Myoviridae, and Siphoviridae. The presence of three different groups of bacteriophages was confirmed by analyzing the bacteriophage specificity of bacterial hosts, restriction fragment length polymorphism and plaque morphology. Bacteriophage BF25/12, the first reported Podoviridae bacteriophage effective against Dickeya spp., was selected for further characterization. Its genome sequence determined by next-generation sequencing showed limited similarity to other characterized Podoviridae bacteriophages. Interactions among the bacteriophages and Dickeya spp. were examined using transmission electron microscopy, which revealed degradation of electron-dense granules in response to bacteriophage infection in some Dickeya strains. The temperature stability of the chosen Podoviridae bacteriophage monitored over 1 year showed a substantial decrease in the survival of bacteriophages stored at -20°C over longer periods. It showed susceptibility to low pH and UV radiation but was stable in neutral and

  9. Characterization of Paenibacillus larvae bacteriophages and their genomic relationships to firmicute bacteriophages.

    Science.gov (United States)

    Merrill, Bryan D; Grose, Julianne H; Breakwell, Donald P; Burnett, Sandra H

    2014-08-30

    Paenibacillus larvae is a Firmicute bacterium that causes American Foulbrood, a lethal disease in honeybees and is a major source of global agricultural losses. Although P. larvae phages were isolated prior to 2013, no full genome sequences of P. larvae bacteriophages were published or analyzed. This report includes an in-depth analysis of the structure, genomes, and relatedness of P. larvae myoviruses Abouo, Davis, Emery, Jimmer1, Jimmer2, and siphovirus phiIBB_Pl23 to each other and to other known phages. P. larvae phages Abouo, Davies, Emery, Jimmer1, and Jimmer2 are myoviruses with ~50 kbp genomes. The six P. larvae phages form three distinct groups by dotplot analysis. An annotated linear genome map of these six phages displays important identifiable genes and demonstrates the relationship between phages. Sixty phage assembly or structural protein genes and 133 regulatory or other non-structural protein genes were identifiable among the six P. larvae phages. Jimmer1, Jimmer2, and Davies formed stable lysogens resistant to superinfection by genetically similar phages. The correlation between tape measure protein gene length and phage tail length allowed identification of co-isolated phages Emery and Abouo in electron micrographs. A Phamerator database was assembled with the P. larvae phage genomes and 107 genomes of Firmicute-infecting phages, including 71 Bacillus phages. Phamerator identified conserved domains in 1,501 of 6,181 phamilies (only 24.3%) encoded by genes in the database and revealed that P. larvae phage genomes shared at least one phamily with 72 of the 107 other phages. The phamily relationship of large terminase proteins was used to indicate putative DNA packaging strategies. Analyses from CoreGenes, Phamerator, and electron micrograph measurements indicated Jimmer1, Jimmer2, Abouo and Davies were related to phages phiC2, EJ-1, KC5a, and AQ113, which are small-genome myoviruses that infect Streptococcus, Lactobacillus, and Clostridium

  10. Development of a novel and highly efficient method of isolating bacteriophages from water.

    Science.gov (United States)

    Liu, Weili; Li, Chao; Qiu, Zhi-Gang; Jin, Min; Wang, Jing-Feng; Yang, Dong; Xiao, Zhong-Hai; Yuan, Zhao-Kang; Li, Jun-Wen; Xu, Qun-Ying; Shen, Zhi-Qiang

    2017-08-01

    Bacteriophages are widely used to the treatment of drug-resistant bacteria and the improvement of food safety through bacterial lysis. However, the limited investigations on bacteriophage restrict their further application. In this study, a novel and highly efficient method was developed for isolating bacteriophage from water based on the electropositive silica gel particles (ESPs) method. To optimize the ESPs method, we evaluated the eluent type, flow rate, pH, temperature, and inoculation concentration of bacteriophage using bacteriophage f2. The quantitative detection reported that the recovery of the ESPs method reached over 90%. The qualitative detection demonstrated that the ESPs method effectively isolated 70% of extremely low-concentration bacteriophage (10 0 PFU/100L). Based on the host bacteria composed of 33 standard strains and 10 isolated strains, the bacteriophages in 18 water samples collected from the three sites in the Tianjin Haihe River Basin were isolated by the ESPs and traditional methods. Results showed that the ESPs method was significantly superior to the traditional method. The ESPs method isolated 32 strains of bacteriophage, whereas the traditional method isolated 15 strains. The sample isolation efficiency and bacteriophage isolation efficiency of the ESPs method were 3.28 and 2.13 times higher than those of the traditional method. The developed ESPs method was characterized by high isolation efficiency, efficient handling of large water sample size and low requirement on water quality. Copyright © 2017. Published by Elsevier B.V.

  11. Methods for generation of reporter phages and immobilization of active bacteriophages on a polymer surface

    Science.gov (United States)

    Applegate, Bruce Michael (Inventor); Perry, Lynda Louise (Inventor); Morgan, Mark Thomas (Inventor); Kothapalli, Aparna (Inventor)

    2012-01-01

    Novel reporter bacteriophages are provided. Provided are compositions and methods that allow bacteriophages that are used for specific detection or killing of E. coli 0157:H7 to be propagated in nonpathogenic E. coli, thereby eliminating the safety and security risks of propagation in E. coli 0157:H7. Provided are compositions and methods for attaching active bacteriophages to the surface of a polymer in order to kill target bacteria with which the phage comes into contact. Provided are modified bacteriophages immobilized to a surface, which capture E. coli 0157:H7 and cause the captured cells to emit light or fluorescence, allowing detection of the bacteria in a sample.

  12. The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration

    Directory of Open Access Journals (Sweden)

    Boratyński Janusz

    2009-01-01

    Full Text Available Abstract Background The antibacterial activity of bacteriophages has been described rather well. However, knowledge about the direct interactions of bacteriophages with mammalian organisms and their other, i.e. non-antibacterial, activities in mammalian systems is quite scarce. It must be emphasised that bacteriophages are natural parasites of bacteria, which in turn are parasites or symbionts of mammals (including humans. Bacteriophages are constantly present in mammalian bodies and the environment in great amounts. On the other hand, the perspective of the possible use of bacteriophage preparations for antibacterial therapies in cancer patients generates a substantial need to investigate the effects of phages on cancer processes. Results In these studies the migration of human and mouse melanoma on fibronectin was inhibited by purified T4 and HAP1 bacteriophage preparations. The migration of human melanoma was also inhibited by the HAP1 phage preparation on matrigel. No response of either melanoma cell line to lipopolysaccharide was observed. Therefore the effect of the phage preparations cannot be attributed to lipopolysaccharide. No differences in the effects of T4 and HAP1 on melanoma migration were observed. Conclusion We believe that these observations are of importance for any further attempts to use bacteriophage preparations in antibacterial treatment. The risk of antibiotic-resistant hospital infections strongly affects cancer patients and these results suggest the possibility of beneficial phage treatment. We also believe that they will contribute to the general understanding of bacteriophage biology, as bacteriophages, extremely ubiquitous entities, are in permanent contact with human organisms.

  13. The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration.

    Science.gov (United States)

    Dabrowska, Krystyna; Skaradziński, Grzegorz; Jończyk, Paulina; Kurzepa, Aneta; Wietrzyk, Joanna; Owczarek, Barbara; Zaczek, Maciej; Switała-Jeleń, Kinga; Boratyński, Janusz; Poźniak, Gryzelda; Maciejewska, Magdalena; Górski, Andrzej

    2009-01-20

    The antibacterial activity of bacteriophages has been described rather well. However, knowledge about the direct interactions of bacteriophages with mammalian organisms and their other, i.e. non-antibacterial, activities in mammalian systems is quite scarce. It must be emphasised that bacteriophages are natural parasites of bacteria, which in turn are parasites or symbionts of mammals (including humans). Bacteriophages are constantly present in mammalian bodies and the environment in great amounts. On the other hand, the perspective of the possible use of bacteriophage preparations for antibacterial therapies in cancer patients generates a substantial need to investigate the effects of phages on cancer processes. In these studies the migration of human and mouse melanoma on fibronectin was inhibited by purified T4 and HAP1 bacteriophage preparations. The migration of human melanoma was also inhibited by the HAP1 phage preparation on matrigel. No response of either melanoma cell line to lipopolysaccharide was observed. Therefore the effect of the phage preparations cannot be attributed to lipopolysaccharide. No differences in the effects of T4 and HAP1 on melanoma migration were observed. We believe that these observations are of importance for any further attempts to use bacteriophage preparations in antibacterial treatment. The risk of antibiotic-resistant hospital infections strongly affects cancer patients and these results suggest the possibility of beneficial phage treatment. We also believe that they will contribute to the general understanding of bacteriophage biology, as bacteriophages, extremely ubiquitous entities, are in permanent contact with human organisms.

  14. Bacteriophage-based synthetic biology for the study of infectious diseases

    Science.gov (United States)

    Lu, Timothy K.

    2014-01-01

    Since their discovery, bacteriophages have contributed enormously to our understanding of molecular biology as model systems. Furthermore, bacteriophages have provided many tools that have advanced the fields of genetic engineering and synthetic biology. Here, we discuss bacteriophage-based technologies and their application to the study of infectious diseases. New strategies for engineering genomes have the potential to accelerate the design of novel phages as therapies, diagnostics, and tools. Though almost a century has elapsed since their discovery, bacteriophages continue to have a major impact on modern biological sciences, especially with the growth of multidrug-resistant bacteria and interest in the microbiome. PMID:24997401

  15. Isolating E.Coli Bacteriophage from Raw Sewage and Determining its Selectivity to the Host Cell

    Directory of Open Access Journals (Sweden)

    SM Imeni

    2016-05-01

    Full Text Available Introduction: Bacteriophages are viruses that infect and destroy prokaryote cells, specifically the bacteria. They act too selective, so as each bacteriophage affects only on specific type of bacteria. Due to their specific features, bacteriophages can be used as an appropriate substitute for antibiotics in infectious diseases treatment. Therefore, this study aimed to isolate E. coli-specific bacteriophage from raw sewage. Methods: Eight samples of raw sewage, each containing approximately 50 ml of raw sewage with 10 minute gap, were prepared from Zargandeh wastewater treatment plant, Tehran, Iran. The sewages were mixed with Brain-heart infusion medium (BHI as a liquid culture medium in order to let the microorganisms grow. Incubation, purification and determination of bacteria were followed repeatedly to isolate the bacteriophage. Then it was tested on E.coli (ATCC 25922, Enterococcus faecalis (ATCC 19433, Staphylococcus aureus (ATCC 2392, and Yersinia enterocolitica (ATCC 9610 in order to determine the bacteriophage selectivity. Results: The E.coli bacteriophages were successfully isolated from all the eight samples, that were completely able to lyse and destroy E.coli bacterial cells, though no effect was observed on other types of bacteria. Conclusion: The study findings revealed that bacteriophages act selectively. Considering the raise of antibiotic resistance in the world, bacteriophages can serve as a good substitute for antibiotics in treating infectious diseases.

  16. Recombinant Antibodies for the Detection of Bacteriophage MS2 and Ovalbumin

    National Research Council Canada - National Science Library

    O'Connell, Kevin

    2002-01-01

    ...) genes are expressed on the surface of bacteriophage (bacterial virus) particles. We describe here the isolation of additional recombinant antibodies that bind two simulants of biothreat agents...

  17. Susceptibility of Escherichia coli isolated from uteri of postpartum dairy cows to antibiotic and environmental bacteriophages. Part I: Isolation and lytic activity estimation of bacteriophages.

    Science.gov (United States)

    Bicalho, R C; Santos, T M A; Gilbert, R O; Caixeta, L S; Teixeira, L M; Bicalho, M L S; Machado, V S

    2010-01-01

    The objective of this study was to isolate bacteriophages from environmental samples of 2 large commercial dairy farms using Escherichia coli isolated from the uteri of postpartum Holstein dairy cows as hosts. A total of 11 bacteriophage preparations were isolated from manure systems of commercial dairy farms and characterized for in vitro antimicrobial activity. In addition, a total of 57 E. coli uterine isolates from 5 dairy cows were phylogenetically grouped by triplex PCR. Each E. coli bacterial host from the uterus was inoculated with their respective bacteriophage preparation at several different multiplicities of infections (MOI) to determine minimum inhibitory MOI. The effect of a single dose (MOI=10(2)) of bacteriophage on the growth curve of all 57 E. coli isolates was assessed using a microplate technique. Furthermore, genetic diversity within and between the different bacteriophage preparations was assessed by bacteriophage purification followed by DNA extraction, restriction, and agarose gel electrophoresis. Phylogenetic grouping based on triplex PCR showed that all isolates of E. coli belonged to phylogroup B1. Bacterial growth was completely inhibited at considerably low MOI, and the effect of a single dose (MOI=10(2)) of bacteriophage preparations on the growth curve of all 57 E. coli isolates showed that all bacteriophage preparations significantly decreased the growth rate of the isolates. Bacteriophage preparation 1230-10 had the greatest antimicrobial activity and completely inhibited the growth of 71.7% (n=57) of the isolates. The combined action of bacteriophage preparations 1230-10, 6375-10, 2540-4, and 6547-2, each at MOI=10(2), had the broadest spectrum of action and completely inhibited the growth (final optical density at 600 nm bacteriophages that were genetically distinct from each other according to the banding pattern of the fragments. The combination of several different bacteriophages can improve the spectrum of action, and the

  18. Metabolic engineering for L-lysine production by Corynebacterium glutamicum.

    Science.gov (United States)

    de Graaf, A A; Eggeling, L; Sahm, H

    2001-01-01

    Corynebacterium glutamicum has been used since several decades for the large-scale production of amino acids, esp. L-glutamate and L-lysine. After initial successes of random mutagenesis and screening approaches, further strain improvements now require a much more rational design, i.e. metabolic engineering. Not only recombinant DNA technology but also mathematical modelling of metabolism as well as metabolic flux analysis represent important metabolic engineering tools. This review covers as state-of-the-art examples of these techniques the genetic engineering of the L-lysine biosynthetic pathway resulting in a vectorless strain with significantly increased dihydrodipicolinate synthase activity, and the detailed metabolic flux analysis by 13C isotopomer labelling strategies of the anaplerotic enzyme activities in C. glutamicum resulting in the identification of gluconeogenic phosphoenolpyruvate carboxykinase as a limiting enzyme.

  19. MOLECULAR DYNAMICS SIMULATION OF LYSINE DENDRIMER AND SEMAX PEPTIDES INTERACTION

    Directory of Open Access Journals (Sweden)

    E. V. Popova

    2016-07-01

    Full Text Available The paper deals with the possibility of complex formation of therapeutic Semax peptides with lysine dendrimer by molecular modeling methods. Dendrimers are often used for delivery of drugs and biological molecules (e.g., DNA, peptides and polysaccharides. Since lysine dendrimers are less toxic than conventional synthetic dendrimers (e.g., polyamidoamine (PAMAM dendrimer, we chose them and studied two systems containing dendrimer and the different number of Semax peptides. The study was carried out by molecular dynamics method. It was obtained that the stable complexes were formed in both cases. The equilibrium structures of these complexes were investigated. These complexes can be used in the future in therapy of various diseases as Semax peptides have significant antioxidant, antihypoxic and neuroprotecting action.

  20. Insights into bacteriophage application in controlling Vibrio species

    Directory of Open Access Journals (Sweden)

    Vengadesh Letchumanan

    2016-07-01

    Full Text Available Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non antibiotic based methods of preventing and treating bacterial infections. Bacteriophages - viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy.

  1. Salmonella and Campylobacter: Antimicrobial resistance and bacteriophage control in poultry.

    Science.gov (United States)

    Grant, Ar'Quette; Hashem, Fawzy; Parveen, Salina

    2016-02-01

    Salmonella and Campylobacter are major causes of foodborne related illness and are traditionally associated with consuming undercooked poultry and/or consuming products that have been cross contaminated with raw poultry. Many of the isolated Salmonella and Campylobacter that can cause disease have displayed antimicrobial resistance phenotypes. Although poultry producers have reduced on-the-farm overuse of antimicrobials, antimicrobial resistant Salmonella and Campylobacter strains still persist. One method of bio-control, that is producing promising results, is the use of lytic bacteriophages. This review will highlight the current emergence and persistence of antimicrobial resistant Salmonella and Campylobacter recovered from poultry as well as bacteriophage research interventions and limitations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Effect of HZE particles and space hadrons on bacteriophages

    International Nuclear Information System (INIS)

    Iurov, S.S.; Akoev, I.G.; Leonteva, G.A.

    1983-01-01

    The effects of particle radiation of the type encountered in space flight on bacteriophages are investigated. Survival and mutagenesis were followed in dry film cultures or liquid suspensions of T4Br(+) bacteriophage exposed to high-energy (HZE) particles during orbital flight, to alpha particles and accelerator-generated hardrons in the laboratory, and to high-energy cosmic rays at mountain altitudes. The HZE particles and high-energy hadrons are found to have a greater relative biological efficiency than standard gamma radiation, while exhibiting a highly inhomogeneous spatial structure in the observed biological and genetic effects. In addition, the genetic lesions observed are specific to the type of radiation exposure, consisting primarily of deletions and multiple lesions of low revertability, with mode of action depending on the linear energy transfer. 18 references

  3. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Science.gov (United States)

    Merabishvili, Maia; Vandenheuvel, Dieter; Kropinski, Andrew M; Mast, Jan; De Vos, Daniel; Verbeken, Gilbert; Noben, Jean-Paul; Lavigne, Rob; Vaneechoutte, Mario; Pirnay, Jean-Paul

    2014-01-01

    Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively), high burst size (125 and 145, respectively), stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  4. Biocontrol of Pectobacterium carotovorum subsp. carotovorum using bacteriophage PP1.

    Science.gov (United States)

    Lim, Jeong-A; Jee, Samnyu; Lee, Dong Hwan; Roh, Eunjung; Jung, Kyusuk; Oh, Changsik; Heu, Sunggi

    2013-08-01

    Pectobacterium carotovorum subsp. carotovorum (formerly Erwinia carotovora subsp. carotovora) is a plant pathogen that causes soft rot and stem rot diseases in several crops, including Chinese cabbage, potato, and tomato. To control this bacterium, we isolated a bacteriophage, PP1, with lytic activity against P. carotovorum subsp. carotovorum. Transmission electron microscopy revealed that the PP1 phage belongs to the Podoviridae family of the order Caudovirales, which exhibit icosahedral heads and short non-contractile tails. PP1 phage showed high specificity for P. carotovorum subsp. carotovorum, and several bacteria belonging to different species and phyla were resistant to PP1. This phage showed rapid and strong lytic activity against its host bacteria in liquid medium and was stable over a broad range of pH values. Disease caused by P. carotovorum subsp. carotovorum was significantly reduced by PP1 treatment. Overall, PP1 bacteriophage effectively controls P. carotovorum subsp. carotovorum.

  5. Insights into Bacteriophage Application in Controlling Vibrio Species

    Science.gov (United States)

    Letchumanan, Vengadesh; Chan, Kok-Gan; Pusparajah, Priyia; Saokaew, Surasak; Duangjai, Acharaporn; Goh, Bey-Hing; Ab Mutalib, Nurul-Syakima; Lee, Learn-Han

    2016-01-01

    Bacterial infections from various organisms including Vibrio sp. pose a serious hazard to humans in many forms from clinical infection to affecting the yield of agriculture and aquaculture via infection of livestock. Vibrio sp. is one of the main foodborne pathogens causing human infection and is also a common cause of losses in the aquaculture industry. Prophylactic and therapeutic usage of antibiotics has become the mainstay of managing this problem, however, this in turn led to the emergence of multidrug resistant strains of bacteria in the environment; which has raised awareness of the critical need for alternative non-antibiotic based methods of preventing and treating bacterial infections. Bacteriophages – viruses that infect and result in the death of bacteria – are currently of great interest as a highly viable alternative to antibiotics. This article provides an insight into bacteriophage application in controlling Vibrio species as well underlining the advantages and drawbacks of phage therapy. PMID:27486446

  6. BACTERIOPHAGE ENDOLYSINS AND THEIR USE IN BIOTECHNOLOGICAL PROCESSES

    Directory of Open Access Journals (Sweden)

    Lenka Tišáková

    2014-02-01

    Full Text Available Bacteriophage endolysins are peptidoglycan hydrolases, produced in the lytic system of bacteriophage in order to lyse host peptidoglycan from within and release virions into the environment. Phages infecting Gram-positive bacteria express endolysin genes with the characteristic modular structure, consisting of at least two functional domains: N-terminal enzymatically active domain (EAD and C-terminal cell wall binding domain (CBD. CBDs specifically recognize ligands and bind to the bacterial cell wall, whereas EAD catalyze lysis of the peptidoglycan bonds. The reveal of endolysin modular structure leads to new opportunities for domain swapping, construction of chimeras and production of specifically engineered recombinant endolysins and their functional domains with the diverse biotechnological applications from without, such as in detection, elimination and biocontrol of pathogens, or as anti-bacterials in experimental therapy.

  7. Characterization of newly isolated lytic bacteriophages active against Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Maia Merabishvili

    Full Text Available Based on genotyping and host range, two newly isolated lytic bacteriophages, myovirus vB_AbaM_Acibel004 and podovirus vB_AbaP_Acibel007, active against Acinetobacter baumannii clinical strains, were selected from a new phage library for further characterization. The complete genomes of the two phages were analyzed. Both phages are characterized by broad host range and essential features of potential therapeutic phages, such as short latent period (27 and 21 min, respectively, high burst size (125 and 145, respectively, stability of activity in liquid culture and low frequency of occurrence of phage-resistant mutant bacterial cells. Genomic analysis showed that while Acibel004 represents a novel bacteriophage with resemblance to some unclassified Pseudomonas aeruginosa phages, Acibel007 belongs to the well-characterized genus of the Phikmvlikevirus. The newly isolated phages can serve as potential candidates for phage cocktails to control A. baumannii infections.

  8. Acetylation site specificities of lysine deacetylase inhibitors in human cells

    DEFF Research Database (Denmark)

    Schölz, Christian; Weinert, Brian Tate; Wagner, Sebastian A

    2015-01-01

    Lysine deacetylases inhibitors (KDACIs) are used in basic research, and many are being investigated in clinical trials for treatment of cancer and other diseases. However, their specificities in cells are incompletely characterized. Here we used quantitative mass spectrometry (MS) to obtain acety......1-α, providing a possible mechanistic explanation of its adverse, pro-inflammatory effects. Our results offer a systems view of KDACI specificities, providing a framework for studying function of acetylation and deacetylases....

  9. PLMD: An updated data resource of protein lysine modifications.

    Science.gov (United States)

    Xu, Haodong; Zhou, Jiaqi; Lin, Shaofeng; Deng, Wankun; Zhang, Ying; Xue, Yu

    2017-05-20

    Post-translational modifications (PTMs) occurring at protein lysine residues, or protein lysine modifications (PLMs), play critical roles in regulating biological processes. Due to the explosive expansion of the amount of PLM substrates and the discovery of novel PLM types, here we greatly updated our previous studies, and presented a much more integrative resource of protein lysine modification database (PLMD). In PLMD, we totally collected and integrated 284,780 modification events in 53,501 proteins across 176 eukaryotes and prokaryotes for up to 20 types of PLMs, including ubiquitination, acetylation, sumoylation, methylation, succinylation, malonylation, glutarylation, glycation, formylation, hydroxylation, butyrylation, propionylation, crotonylation, pupylation, neddylation, 2-hydroxyisobutyrylation, phosphoglycerylation, carboxylation, lipoylation and biotinylation. Using the data set, a motif-based analysis was performed for each PLM type, and the results demonstrated that different PLM types preferentially recognize distinct sequence motifs for the modifications. Moreover, various PLMs synergistically orchestrate specific cellular biological processes by mutual crosstalks with each other, and we totally found 65,297 PLM events involved in 90 types of PLM co-occurrences on the same lysine residues. Finally, various options were provided for accessing the data, while original references and other annotations were also present for each PLM substrate. Taken together, we anticipated the PLMD database can serve as a useful resource for further researches of PLMs. PLMD 3.0 was implemented in PHP + MySQL and freely available at http://plmd.biocuckoo.org. Copyright © 2017 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  10. Bacteriophage and bacteriocin typing scheme for Clostridium difficile.

    OpenAIRE

    Sell, T L; Schaberg, D R; Fekety, F R

    1983-01-01

    The study of the epidemiology of infection with Clostridium difficile would be aided by a way to type individual bacterial isolates. We therefore sought bacteriophages for use in typing. With mitomycin C exposure (3 micrograms/ml), filtrates from 10 strains of C. difficile had plaque-forming lytic activity on other C. difficile strains. Individual phage were passaged and made into high-titer stock preparations for typing. Electron microscopy revealed tailed phage particles from one such prepa...

  11. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages

    OpenAIRE

    M. Mozammel Hoque; Iftekhar Bin Naser; S. M. Nayeemul Bari; Jun Zhu; John J. Mekalanos; Shah M. Faruque

    2016-01-01

    Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found t...

  12. Bacteriophages infecting Bacteroides as a marker for microbial source tracking.

    Science.gov (United States)

    Jofre, Joan; Blanch, Anicet R; Lucena, Francisco; Muniesa, Maite

    2014-05-15

    Bacteriophages infecting certain strains of Bacteroides are amid the numerous procedures proposed for tracking the source of faecal pollution. These bacteriophages fulfil reasonably well most of the requirements identified as appropriate for a suitable marker of faecal sources. Thus, different host strains are available that detect bacteriophages preferably in water contaminated with faecal wastes corresponding to different animal species. For phages found preferably in human faecal wastes, which are the ones that have been more extensively studied, the amounts of phages found in waters contaminated with human fecal samples is reasonably high; these amounts are invariable through the time; their resistance to natural and anthropogenic stressors is comparable to that of other relatively resistant indicator of faecal pollution such us coliphages; the abundance ratios of somatic coliphages and bacteriophages infecting Bacteroides thetaiotaomicron GA17 are unvarying in recent and aged contamination; and standardised detection methods exist. These methods are easy, cost effective and provide data susceptible of numerical analysis. In contrast, there are some uncertainties regarding their geographical stability, and consequently suitable hosts need to be isolated for different geographical areas. However, a feasible method has been described to isolate suitable hosts in a given geographical area. In summary, phages infecting Bacteroides are a marker of faecal sources that in our opinion merits being included in the "toolbox" for microbial source tracking. However, further research is still needed in order to make clear some uncertainties regarding some of their characteristics and behaviour, to compare their suitability to the one of emerging methods such us targeting Bacteroidetes by qPCR assays; or settling molecular methods for their determination. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Lysis of lysis-inhibited bacteriophage T4-infected cells.

    OpenAIRE

    Abedon, S T

    1992-01-01

    T4 bacteriophage (phage)-infected cells show a marked increase in latent-period length, called lysis inhibition, upon adsorption of additional T4 phages (secondary adsorption). Lysis inhibition is a complex phenotype requiring the activity of at least six T4 genes. Two basic mysteries surround our understanding of the expression of lysis inhibition: (i) the mechanism of initiation (i.e., how secondary adsorption leads to the expression of lysis inhibition) and (ii) the mechanism of lysis (i.e...

  14. Bacteriophages: The Enemies of Bad Bacteria Are Our Friends!

    OpenAIRE

    Gutiérrez, Diana; Fernández, Lucía; Martínez, Beatriz; Rodríguez, Ana; García, Pilar

    2017-01-01

    Some bacteria can enter the human body and make people ill. Usually, these diseases can be cured by antibiotics, but sometimes bacteria are resistant to them, meaning that the antibiotics do not kill the bacteria. In these cases, bacteria become very dangerous. Bacteriophages are viruses that infect bacteria but are harmless to humans. To reproduce, they get into a bacterium, where they multiply, and finally they break the bacterial cell open to release the new viruses. Therefore, bacteriopha...

  15. Bacteriophages against Serratia as Fish Spoilage Control Technology

    OpenAIRE

    Hern?ndez, Igor

    2017-01-01

    Bacteria of the genus Serratia, mainly S. proteamaculans and S. fonticola, are important spoilage agents in Atlantic horse mackerel (Trachurus trachurus). In order to evaluate whether bacteriophages against Serratia could delay the spoilage process, 11 viral strains active against this genus were isolated from food and best candidate was applied to fresh mackerel filets. All the phages belong to the Siphoviridae and Podoviridae families and were active at multiplicity of infection (MOI) level...

  16. Hyperbranched lysine-arginine copolymer for gene delivery.

    Science.gov (United States)

    Peng, Qi; Zhu, Jianjun; Yu, Yongsheng; Hoffman, Lee; Yang, Xingkun

    2015-01-01

    Based on the reactivity of amine groups and carboxyl groups of L-lysine and L-arginine, thermal polymerization of these two natural amino acids results in hyperbranched lysine-arginine copolymers (P-lys-argX, where X refers to the relevant molar ratio of arginine to lysine). Hyperbranched polylysine (P-lys) and two derivatives (P-lys-arg0.10 and P-lys-arg0.20) have been prepared. The arginine-rich hyperbranched polymers can interact with plasmid DNA to form nano-sized particles. The polyplexes were physicochemically analyzed by agarose gel electrophoresis, dynamic light scattering, and zeta potential measurements. Furthermore, their transfection efficiency was assessed, employing COS-7, 293T, and HeLa cell lines. It was found that P-lys showed poorly in its ability of condensation with DNA and transfection efficiency. On the other hand, arginine-rich products resulted to significant enhancement of its transfection efficiency, which is dependent on the content of arginine in the polymers, and the cell line used. P-lys-arg0.20 exhibited better transfection efficiency under all the condition studied. Besides, P-lys-arg0.20 showed lower toxicity in COS-7 cells.

  17. Chemical mechanisms of histone lysine and arginine modifications.

    Science.gov (United States)

    Smith, Brian C; Denu, John M

    2009-01-01

    Histone lysine and arginine residues are subject to a wide array of post-translational modifications including methylation, citrullination, acetylation, ubiquitination, and sumoylation. The combinatorial action of these modifications regulates critical DNA processes including replication, repair, and transcription. In addition, enzymes that modify histone lysine and arginine residues have been correlated with a variety of human diseases including arthritis, cancer, heart disease, diabetes, and neurodegenerative disorders. Thus, it is important to fully understand the detailed kinetic and chemical mechanisms of these enzymes. Here, we review recent progress towards determining the mechanisms of histone lysine and arginine modifying enzymes. In particular, the mechanisms of S-adenosyl-methionine (AdoMet) dependent methyltransferases, FAD-dependent demethylases, iron dependent demethylases, acetyl-CoA dependent acetyltransferases, zinc dependent deacetylases, NAD(+) dependent deacetylases, and protein arginine deiminases are covered. Particular attention is paid to the conserved active-site residues necessary for catalysis and the individual chemical steps along the catalytic pathway. When appropriate, areas requiring further work are discussed.

  18. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide)-b-Poly(L-Lysine Hydrochloride) and Poly(N-Isopropylacrylamide-co-Acrylamide)-b-Poly(L-Lysine Hydrochloride)

    NARCIS (Netherlands)

    Spasojevic, Milica; Vorenkamp, Eltjo; Jansen, Mark R. P. A. C. S.; de Vos, Paul; Schouten, Arend Jan

    The synthesis of poly(N-isopropylacrylamide)-b-poly(L-lysine) and poly(N-isopropylacrylamide- co-acrylamide)-b-poly(L-lysine) copolymers was accomplished by combining atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP). For this purpose, a di-functional initiator with

  19. Molecular and structural insight into lysine selection on substrate and ubiquitin lysine 48 by the ubiquitin-conjugating enzyme Cdc34

    DEFF Research Database (Denmark)

    Suryadinata, Randy; Holien, Jessica K; Yang, George

    2013-01-01

    The attachment of ubiquitin (Ub) to lysines on substrates or itself by ubiquitin-conjugating (E2) and ubiquitin ligase (E3) enzymes results in protein ubiquitination. Lysine selection is important for generating diverse substrate-Ub structures and targeting proteins to different fates; however, t...

  20. Isolation of Lactic Acid Bacteria Bacteriophages from Dairy Products

    Directory of Open Access Journals (Sweden)

    Elnaz Shokrani

    2013-09-01

    Full Text Available Backgrounds: Lactococcus lactis (L. lactis is one of the most important microorganisms used in dairy industry for production of fermented milk products. Bacteriophages which attack  L. lactis are a serious threat to the dairy industry because of their negative effects on fermentation processes. Methods: Samples of raw milk were examined for the presence of lactococcal bacteriophages. Samples were centrifuged and then filtered through 0.45µm pore size filters. The filtrates were added to early-exponential cultures of Lactococcus lactis subspp. Lactis (PTCC 1336. Overlay method was used to detect the formation of plaques. After isolation and concentration of phages, serial dilutions of phage stock were used to determine titer of phage in concentrated sample. Electron Microscopy was used for observation and characterization of structural details of bacteriophages. Results: Two phages were isolated; one of them had a hexagonal head of 45×30 nm in diameter and a flexible non-contractile tail of 70nm long which belonged to Siphoviridae. The other had a short tail and a hexagonal head of 53×60 nm in diameter which was a member of Podoviridae family. Conclusion: In this study, for the first time, two phages were isolated from milk. This does not reduce the significance of phage control in different stages of the production. The spread of the phages in the production plant can be very harmful.

  1. Neutron and γ-irradiation of bacteriophage M13 DNA

    International Nuclear Information System (INIS)

    Singh, S.P.; Lavin, M.F.; Cohen, D.; Dytlewski, N.; Houldsworth, J.

    1990-01-01

    We describe here the use of the Van de Graaff accelerator as a source of high energy neutrons for biological irradiation. Single-stranded bacteriophage M13 DNA was chosen as the system to determine the relative biological effectiveness of monoenergetic neutrons. A Standard Neutron Irradiation Facility (SNIF) was established using a 3 MV Van de Graaff accelerator. The 2 D (d,n) 3 He nuclear reaction was used to produce neutron fluxes of 3 x 10 8 cm -2 sec -1 yielding dose rates as high as 50 Gy h -1 . A detailed description of the neutron source, neutron fluence measurement, dose calculation and calibration are included. Exposure of single-stranded bacteriophage M13 DNA to 90 Gy of neutrons reduced survival to 0.18% of the unirradiated value. Five hundred Gy of γ-rays were required for the same level of killing, and RBE was estimated at 6 based on Do values. Determination of the extent of DNA damage after exposure to cleavage using gel electrophoresis, gave RBE values of 6-8 which was very similar to that observed for bacteriophage survival. The facility described here provides a reproducible source of high energy monoenergetic neutrons and dose levels suitable for experiments designed to measure DNA damage and effects on DNA synthesis. (author)

  2. Effect of alpha particles on bacteriophage T4Br(+)

    International Nuclear Information System (INIS)

    Leonteva, G.A.; Akoev, I.G.; Grigorev, A.E.

    1983-01-01

    The effects of heavy particle radiation, which is believed to be responsible for the high relative biological effectiveness (RBE) of space hadrons, on bacteriophages are investigated. Dry film cultures of bacteriophage T4 were irradiated with 5.3 MeV Po-210 alpha particles to doses from 5 to 60 Gray, and compared with cultures irradiated by Co-60 gamma radiation. Examination of the exponential dose-response curves for bacteriophage survival indicates an RBE of 4.68 for the alpha particles. The r-mutation frequency per 10,000 surviving phages is found to peak at 7.1 at doses between 65 and 85 Gray for gamma radiation, however it declines steadily from a level of 10.2 per 10,000 survivors with increasing dose of alpha radiation. Comparison of the mutation frequencies at the same levels of lethality and the spectra of mutations produced by the two types of radiation indicates alpha and gamma radiation to differ as well in the mechanisms of mutation production. It is concluded that the observed high RBE of space hadrons cannot be explained by the presence of high-energy particles in the secondary radiation. 13 references

  3. Co-option of bacteriophage lysozyme genes by bivalve genomes.

    Science.gov (United States)

    Ren, Qian; Wang, Chunyang; Jin, Min; Lan, Jiangfeng; Ye, Ting; Hui, Kaimin; Tan, Jingmin; Wang, Zheng; Wyckoff, Gerald J; Wang, Wen; Han, Guan-Zhu

    2017-01-01

    Eukaryotes have occasionally acquired genetic material through horizontal gene transfer (HGT). However, little is known about the evolutionary and functional significance of such acquisitions. Lysozymes are ubiquitous enzymes that degrade bacterial cell walls. Here, we provide evidence that two subclasses of bivalves (Heterodonta and Palaeoheterodonta) acquired a lysozyme gene via HGT, building on earlier findings. Phylogenetic analyses place the bivalve lysozyme genes within the clade of bacteriophage lysozyme genes, indicating that the bivalves acquired the phage-type lysozyme genes from bacteriophages, either directly or through intermediate hosts. These bivalve lysozyme genes underwent dramatic structural changes after their co-option, including intron gain and fusion with other genes. Moreover, evidence suggests that recurrent gene duplication occurred in the bivalve lysozyme genes. Finally, we show the co-opted lysozymes exhibit a capacity for antibacterial action, potentially augmenting the immune function of related bivalves. This represents an intriguing evolutionary strategy in the eukaryote-microbe arms race, in which the genetic materials of bacteriophages are co-opted by eukaryotes, and then used by eukaryotes to combat bacteria, using a shared weapon against a common enemy. © 2017 The Authors.

  4. MetaPhinder—Identifying Bacteriophage Sequences in Metagenomic Data Sets

    Science.gov (United States)

    Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    2016-01-01

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder. PMID:27684958

  5. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.

    Directory of Open Access Journals (Sweden)

    Vanessa Isabell Jurtz

    Full Text Available Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.

  6. MetaPhinder-Identifying Bacteriophage Sequences in Metagenomic Data Sets.

    Science.gov (United States)

    Jurtz, Vanessa Isabell; Villarroel, Julia; Lund, Ole; Voldby Larsen, Mette; Nielsen, Morten

    Bacteriophages are the most abundant biological entity on the planet, but at the same time do not account for much of the genetic material isolated from most environments due to their small genome sizes. They also show great genetic diversity and mosaic genomes making it challenging to analyze and understand them. Here we present MetaPhinder, a method to identify assembled genomic fragments (i.e.contigs) of phage origin in metagenomic data sets. The method is based on a comparison to a database of whole genome bacteriophage sequences, integrating hits to multiple genomes to accomodate for the mosaic genome structure of many bacteriophages. The method is demonstrated to out-perform both BLAST methods based on single hits and methods based on k-mer comparisons. MetaPhinder is available as a web service at the Center for Genomic Epidemiology https://cge.cbs.dtu.dk/services/MetaPhinder/, while the source code can be downloaded from https://bitbucket.org/genomicepidemiology/metaphinder or https://github.com/vanessajurtz/MetaPhinder.

  7. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community

    Science.gov (United States)

    Tikhe, Chinmay V.; Husseneder, Claudia

    2018-01-01

    The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87–90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales). Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of

  8. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community

    Directory of Open Access Journals (Sweden)

    Chinmay V. Tikhe

    2018-01-01

    Full Text Available The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87–90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales. Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core

  9. Metavirome Sequencing of the Termite Gut Reveals the Presence of an Unexplored Bacteriophage Community.

    Science.gov (United States)

    Tikhe, Chinmay V; Husseneder, Claudia

    2017-01-01

    The Formosan subterranean termite; Coptotermes formosanus is nutritionally dependent on the complex and diverse community of bacteria and protozoa in their gut. Although, there have been many studies to decipher the taxonomic and functional diversity of bacterial communities in the guts of termites, their bacteriophages remain unstudied. We sequenced the metavirome of the guts of Formosan subterranean termite workers to study the diversity of bacteriophages and other associated viruses. Results showed that the termites harbor a virome in their gut comprised of varied and previously unknown bacteriophages. Between 87-90% of the predicted dsDNA virus genes by Metavir showed similarity to the tailed bacteriophages (Caudovirales) . Many predicted genes from the virome matched to bacterial prophage regions. These data are suggestive of a virome dominated by temperate bacteriophages. We predicted the genomes of seven novel Caudovirales bacteriophages from the termite gut. Three of these predicted bacteriophage genomes were found in high proportions in all the three termite colonies tested. Two bacteriophages are predicted to infect endosymbiotic bacteria of the gut protozoa. The presence of these putative bacteriophages infecting endosymbionts of the gut protozoa, suggests a quadripartite relationship between the termites their symbiotic protozoa, endosymbiotic bacteria of the protozoa and their bacteriophages. Other than Caudovirales, ss-DNA virus related genes were also present in the termite gut. We predicted the genomes of 12 novel Microviridae phages from the termite gut and seven of those possibly represent a new proposed subfamily. Circovirus like genomes were also assembled from the termite gut at lower relative abundance. We predicted 10 novel circovirus genomes in this study. Whether these circoviruses infect the termites remains elusive at the moment. The functional and taxonomical annotations suggest that the termites may harbor a core virome comprised of the

  10. A review of current methods using bacteriophages in live animals, food and animal products intended for human consumption.

    Science.gov (United States)

    Cooper, Ian R

    2016-11-01

    Bacteriophages are utilised in the food industry as biocontrol agents to reduce the load of bacteria, and thus reduce potential for human infection. This review focuses on current methods using bacteriophages within the food chain. Limitations of research will be discussed, and the potential for future food-based bacteriophage research. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Pasteurella haemolytica bacteriophage: identification, partial characterization, and relationship of temperate bacteriophages from isolates of Pasteurella haemolytica (biotype A, serotype 1)

    International Nuclear Information System (INIS)

    Richards, A.B.; Renshaw, H.W.; Sneed, L.W.

    1985-01-01

    Pasteurella haemolytica (biotype A, serotype 1) isolates (n = 15) from the upper respiratory tract of clinically normal cattle, as well as from lung lesions from cases of fatal bovine pasteurellosis, were examined for the presence of bacteriophage after irradiation with UV light. Treatment of all P haemolytica isolates with UV irradiation resulted in lysis of bacteria due to the induction of vegetative development of bacteriophages. The extent of growth inhibition and bacterial lysis in irradiated cultures was UV dose-dependent. Bacterial cultures exposed to UV light for 20 s reached peak culture density between 60 and 70 minutes after irradiation; thereafter, culture density declined rapidly, so that by 120 minutes, it was approximately 60% of the original value. When examined ultrastructurally, lytic cultures from each isolate revealed bacteriophages with an overall length of approximately 200 nm and that appeared to have a head with icosahedral symmetry and a contractile tail. Cell-free filtrate from each noninduced bacterial isolate was inoculated onto the other bacterial isolates in a cross-culture sensitivity assay for the presence of phages lytic for the host bacterial isolates. Zones of lysis (plaques) did not develop when bacterial lawns grown from the different isolates were inoculated with filtrates from the heterologous isolates

  12. Methodical investigations on the determination of metabolic lysine requirements in broiler chickens. 1

    International Nuclear Information System (INIS)

    Bergner, H.; Nguyen Thi Nhan; Wilke, A.

    1987-01-01

    For the estimation of lysine requirement 128 male broiler chickens were used at an age of 7 to 21 days posthatching. They received a lysine-deficient diet composed of wheat and wheat gluten. To this basal diet L-lysine-HCL was supplemented successively resulting in 8 lysine levels ranging from 5.8 to 23.3 g lysine per kg dry matter (DM) (2.2 to 8.7 g lysine per 16 g N). At the end of the two-week feeding period of the experimental diets 14 C-lysine was injected intravenously 1.5 and 5.5 hours after feed withdrawal. During the following 4 hours the exretion of CO 2 and 14 CO 2 was measured. The highest daily gain of 21.5 g was observed in animals fed 13.3 g lysine-kg DM. Lysine concentrations exceeding 18.3 g/kg DM depressed body weight gain. The CO 2 excretion was not influenced by lysine intake. 14 CO 2 excretion was low with diets low in lysine content and increased 3 to 4 times with diets meeting the lysine requirement. Based on measurements 1.5 to 5.5 hours after feed withdrawal the saturation value for lysine was reached at 13.3 g/kg DM. This value was lowered (10.8 g/kg DM), however, if the estimation was carried out 5.5 to 9.5 hours after feed withdrawal. These results suggest a higher metabolic lysine requirement during the earlier period after feed intake. Both, reduced weight gain and non linearity in 14 CO 2 excretion in diets exceeding a lysine content of 18.3 g/kg DM indicate a limited capacity of the organism to degrade excessive lysine. According to the results a lysine requirement betwen 10.8 and 13.3 g/kg DM (27% CP and 660 EFU/sub hen//kg DM) was estimated for broiler chickens 3 weeks posthatching. (author)

  13. Complete Genome Sequences ofVibrio cholerae-Specific Bacteriophages 24 and X29.

    Science.gov (United States)

    Bhandare, Sudhakar G; Warry, Andrew; Emes, Richard D; Hooton, Steven P T; Barrow, Paul A; Atterbury, Robert J

    2017-11-16

    The complete genomes of two Vibrio cholerae bacteriophages of potential interest for cholera bacteriophage (phage) therapy were sequenced and annotated. The genome size of phage 24 is 44,395 bp encoding 71 putative proteins, and that of phage X29 is 41,569 bp encoding 68 putative proteins. Copyright © 2017 Bhandare et al.

  14. Polymer-based delivery systems for support and delivery of bacteriophages

    Science.gov (United States)

    Brown, Alyssa Marie

    One of the most urgent problems in the fields of medicine and agriculture is the decreasing effectiveness of antibiotics. Once a miracle drug, antibiotics have recently become associated with the creation of antibiotic-resistant bacteria. The main limitations of these treatments include lack of both adaptability and specificity. To overcome these shortcomings of current antibiotic treatments, there has been a renewed interest in bacteriophage research. Bacteriophages are naturally-occurring viruses that lyse bacteria. They are highly specific, with each bacteriophage type lysing a narrow range of bacteria strains. Bacteriophages are also ubiquitous biological entities, populating environments where bacterial growth is supported. Just as humans are exposed to bacteria in their daily lives, we are exposed to bacteriophages as well. To use bacteriophages in practical applications, they must be delivered to the site of an infection in a controlled-release system. Two systems were studied to observe their support of bacteriophage lytic activity, as well as investigate the possibility of controlling bacteriophage release rates. First, hydrogels were studied, using crosslinking and blending techniques to achieve a range of release profiles. Second, polyanhydride microparticles were studied, evaluating release rates as a function of monomer chemistries.

  15. Ultrastructure and viral metagenome of bacteriophages from an anaerobic methane oxidizing Methylomirabilis bioreactor enrichment culture

    Directory of Open Access Journals (Sweden)

    Lavinia Gambelli

    2016-11-01

    Full Text Available With its capacity for anaerobic methane oxidation and denitrification, the bacterium Methylomirabilis oxyfera plays an important role in natural ecosystems. Its unique physiology can be exploited for more sustainable wastewater treatment technologies. However, operational stability of full-scale bioreactors can experience setbacks due to, for example, bacteriophage blooms. By shaping microbial communities through mortality, horizontal gene transfer and metabolic reprogramming, bacteriophages are important players in most ecosystems. Here, we analysed an infected Methylomirabilis sp. bioreactor enrichment culture using (advanced electron microscopy, viral metagenomics and bioinformatics. Electron micrographs revealed four different viral morphotypes, one of which was observed to infect Methylomirabilis cells. The infected cells contained densely packed ~55 nm icosahedral bacteriophage particles with a putative internal membrane. Various stages of virion assembly were observed. Moreover, during the bacteriophage replication, the host cytoplasmic membrane appeared extremely patchy, which suggests that the bacteriophages may use host bacterial lipids to build their own putative internal membrane. The viral metagenome contained 1.87 million base pairs of assembled viral sequences, from which five putative complete viral genomes were assembled and manually annotated. Using bioinformatics analyses, we could not identify which viral genome belonged to the Methylomirabilis- infecting bacteriophage, in part because the obtained viral genome sequences were novel and unique to this reactor system. Taken together these results show that new bacteriophages can be detected in anaerobic cultivation systems and that the effect of bacteriophages on the microbial community in these systems is a topic for further study.

  16. Genotyping Staphylococcus aureus allows one to identify bacteriophages harboring unknow endolysins.

    Science.gov (United States)

    Background and Objectives. The search of new bacteriophage endolysins is important in view of the ability of staphylococci to acquire resistance to commonly used antibiotics. Most known genomes of Staphylococcus aureus strains contain two or more temperate bacteriophages. For example, the chromosome...

  17. Predicting bacteriophage proteins located in host cell with feature selection technique.

    Science.gov (United States)

    Ding, Hui; Liang, Zhi-Yong; Guo, Feng-Biao; Huang, Jian; Chen, Wei; Lin, Hao

    2016-04-01

    A bacteriophage is a virus that can infect a bacterium. The fate of an infected bacterium is determined by the bacteriophage proteins located in the host cell. Thus, reliably identifying bacteriophage proteins located in the host cell is extremely important to understand their functions and discover potential anti-bacterial drugs. Thus, in this paper, a computational method was developed to recognize bacteriophage proteins located in host cells based only on their amino acid sequences. The analysis of variance (ANOVA) combined with incremental feature selection (IFS) was proposed to optimize the feature set. Using a jackknife cross-validation, our method can discriminate between bacteriophage proteins located in a host cell and the bacteriophage proteins not located in a host cell with a maximum overall accuracy of 84.2%, and can further classify bacteriophage proteins located in host cell cytoplasm and in host cell membranes with a maximum overall accuracy of 92.4%. To enhance the value of the practical applications of the method, we built a web server called PHPred (〈http://lin.uestc.edu.cn/server/PHPred〉). We believe that the PHPred will become a powerful tool to study bacteriophage proteins located in host cells and to guide related drug discovery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Intestinal colonization by enteroaggregative Escherichia coli supports long-term bacteriophage replication in mice.

    Science.gov (United States)

    Maura, Damien; Morello, Eric; du Merle, Laurence; Bomme, Perrine; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-08-01

    Bacteriophages have been known to be present in the gut for many years, but studies of relationships between these viruses and their hosts in the intestine are still in their infancy. We isolated three bacteriophages specific for an enteroaggregative O104:H4 Escherichia coli (EAEC) strain responsible for diarrhoeal diseases in humans. We studied the replication of these bacteriophages in vitro and in vivo in a mouse model of gut colonization. Each bacteriophage was able to replicate in vitro in both aerobic and anaerobic conditions. Each bacteriophage individually reduced biofilms formed on plastic pegs and a cocktail of the three bacteriophages was found to be more efficient. The cocktail was also able to infect bacterial aggregates formed on the surface of epithelial cells. In the mouse intestine, bacteriophages replicated for at least 3 weeks, provided the host was present, with no change in host levels in the faeces. This model of stable and continuous viral replication provides opportunities for studying the long-term coevolution of virulent bacteriophages with their hosts within a mammalian polymicrobial ecosystem. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  19. Conformational Studies of ε- CBz- L- Lysine and L- Valine Block Copolypeptides

    Directory of Open Access Journals (Sweden)

    Ajay Kumar

    2010-01-01

    Full Text Available Conformational studies of ε-CBz-L-lysine and L-valine block copoylpeptides using x- ray diffraction and CD spectra are described. The block copolypeptides contain valine block in the center and on both side of the valine are ε-CBz-L-lysine blocks. The conformation of the copolypeptides changes with increases in the chain length of ε- CBz-L- lysine blocks. When length of ε- CBZ- L- lysine blocks is 9, the block copolypeptide has exclusive beta sheet structure. With the increase in chain length of ε-CBz-L-lysine blocks from 9 to 14, the block copolypeptide shows presence of both alpha helix and beta sheet components. With further increase in chain length of ε- CBz- L- lysine blocks, the beta sheet component disappears and block copolypeptides exhibits exclusive α -helix conformation.

  20. Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring.

    Science.gov (United States)

    Liana, Ayu Ekajayanthi; Chia, Ed Win; Marquis, Christopher P; Gunawan, Cindy; Gooding, J Justin; Amal, Rose

    2016-04-15

    The work investigates the influence of surface physicochemical properties of planar indium tin oxide (ITO) as a model substrate on T4 bacteriophage adsorption. A comparative T4 bacteriophage adsorption study shows a significant difference in bacteriophage adsorption observed on chemically modified planar ITO when compared to similarly modified particulate ITO, which infers that trends observed in virus-particle interaction studies are not necessarily transferrable to predict virus-planar surface adsorption behaviour. We also found that ITO surfaces modified with methyl groups, (resulting in increased surface roughness and hydrophobicity) remained capable of adsorbing T4 bacteriophage. The adsorption of T4 onto bare, amine and carboxylic functionalised planar ITO suggests the presence of a unique binding behaviour involving specific functional groups on planar ITO surface beyond the non-specific electrostatic interactions that dominate phage to particle interactions. The paper demonstrates the significance of physicochemical properties of surfaces on bacteriophage-surface interactions. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Potential of a lytic bacteriophage to disrupt Acinetobacter baumannii biofilms in vitro.

    Science.gov (United States)

    Liu, Yannan; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Wang, Yong; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Li, Puyuan; Tong, Yigang; Bai, Changqing

    2016-10-01

    The ability of Acinetobacter baumannii to form biofilms and develop antibiotic resistance makes it difficult to control infections caused by this bacterium. In this study, we explored the potential of a lytic bacteriophage to disrupt A. baumannii biofilms. The potential of the lytic bacteriophage to disrupt A. baumannii biofilms was assessed by performing electron microscopy, live/dead bacterial staining, crystal violet staining and by determining adenosine triphosphate release. The bacteriophage inhibited the formation of and disrupted preformed A. baumannii biofilms. Results of disinfection assay showed that the lytic bacteriophage lysed A. baumannii cells suspended in blood or grown on metal surfaces. These results suggest the potential of the lytic bacteriophage to disrupt A. baumannii biofilms.

  2. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni

    OpenAIRE

    Dassanayake, Rohana P.; Falkenberg, Shollie M.; Briggs, Robert E.; Tatum, Fred M.; Sacco, Randy E.

    2017-01-01

    Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activi...

  3. Beyond Histones: New Substrate Proteins of Lysine Deacetylases in Arabidopsis Nuclei

    Directory of Open Access Journals (Sweden)

    Magdalena Füßl

    2018-04-01

    Full Text Available The reversible acetylation of lysine residues is catalyzed by the antagonistic action of lysine acetyltransferases and deacetylases, which can be considered as master regulators of their substrate proteins. Lysine deacetylases, historically referred to as histone deacetylases, have profound functions in regulating stress defenses and development in plants. Lysine acetylation of the N-terminal histone tails promotes gene transcription and decondensation of chromatin, rendering the DNA more accessible to the transcription machinery. In plants, the classical lysine deacetylases from the RPD3/HDA1-family have thus far mainly been studied in the context of their deacetylating activities on histones, and their versatility in molecular activities is still largely unexplored. Here we discuss the potential impact of lysine acetylation on the recently identified nuclear substrate proteins of lysine deacetylases from the Arabidopsis RPD3/HDA1-family. Among the deacetylase substrate proteins, many interesting candidates involved in nuclear protein import, transcriptional regulation, and chromatin remodeling have been identified. These candidate proteins represent key starting points for unraveling new molecular functions of the Arabidopsis lysine deacetylases. Site-directed engineering of lysine acetylation sites on these target proteins might even represent a new approach for optimizing plant growth under climate change conditions.

  4. Minoxidil specifically decreases the expression of lysine hydroxylase in cultured human skin fibroblasts.

    Science.gov (United States)

    Hautala, T; Heikkinen, J; Kivirikko, K I; Myllylä, R

    1992-01-01

    The levels of lysine hydroxylase protein and the levels of the mRNAs for lysine hydroxylase and the alpha- and beta-subunits of proline 4-hydroxylase were measured in cultured human skin fibroblasts treated with 1 mM-minoxidil. The data demonstrate that minoxidil decreases the amount of lysine hydroxylase protein, this being due to a decrease in the level of lysine hydroxylase mRNA. The effect of minoxidil appears to be highly specific, as no changes were observed in the amounts of mRNAs for the alpha- and beta-subunits of proline 4-hydroxylase. Images Fig. 1. Fig. 2. Fig. 3. PMID:1314568

  5. Arginine and Lysine Transporters Are Essential for Trypanosoma brucei.

    OpenAIRE

    Mathieu, Christoph; Pereira de Macêdo, Juan; Hürlimann, Daniel; Wirdnam, Corina; Haindrich, Alexander; Suter, Marianne; González Salgado, Amaia; Schmidt, Remo; Inbar, Ehud; Mäser, Pascal; Bütikofer, Peter; Zilberstein, Dan; Rentsch, Doris

    2017-01-01

    For Trypanosoma brucei arginine and lysine are essential amino acids and therefore have to be imported from the host. Heterologous expression in Saccharomyces cerevisiae mutants identified cationic amino acid transporters among members of the T. brucei AAAP (amino acid/auxin permease) family. TbAAT5-3 showed high affinity arginine uptake (K m 3.6 ? 0.4 ?M) and high selectivity for L-arginine. L-arginine transport was reduced by a 10-times excess of L-arginine, homo-arginine, canavanine or arg...

  6. Identification of lysine acetyltransferase substrates using bioorthogonal chemical proteomics.

    Science.gov (United States)

    Grammel, Markus; Hang, Howard C

    2013-01-01

    Bioorthogonal chemical proteomics is a valuable method to identify enzyme-specific substrates, a challenging task by traditional biochemical standards. The addition of recombinant enzyme and alkynyl chemical reporter to complex protein mixtures, such as cell lysates, allows the detection and identification of modified substrates. Proteins that have been modified with the chemical reporter can be selectively labeled with fluorescent dyes for detection or affinity tags for biochemical enrichment and subsequent identification by mass spectrometry. Here, we describe the detection and identification of substrates of the lysine acetyltransferase p300 in nuclear extracts using the chemical reporter 4-pentynoyl-CoA.

  7. Determination of the dietary lysine requirement by measuring plasma free lysine concentrations in rainbow trout Oncorhynchus mykiss after dorsal aorta cannulation

    Directory of Open Access Journals (Sweden)

    Hyeonho Yun

    2016-03-01

    Full Text Available Abstract This study evaluated the dietary lysine requirement by measuring the plasma free lysine concentrations in rainbow trout, Oncorhynchus mykiss after dorsal aorta cannulation. A basal diet containing 36.6 % crude protein (29.6 % crystalline amino acids mixture, 5 % casein and 2 % gelatin was formulated to one of the seven L-amino acid based diets containing graded levels of lysine (0.72, 1.12, 1.52, 1.92, 2.32, 2.72 or 3.52 % dry diet. A total of 35 fish averaging 512 ± 6.8 g (mean ± SD were randomly distributed into seven groups with five fish in each group. After 48 h of feed deprivation, each group of fish was fed one of the experimental diets by intubation at 1 % body weight. Blood samples were taken at 0, 5 and 24 h after intubation. Post-prandial plasma free lysine concentrations (PPlys, 5 h after intubation of fish fed diets containing ≥ 2.32 % lysine were higher than those of fish fed diets containing ≤ 1.92 % lysine. Post-absorptive free lysine concentrations (PAlys, 24 h after intubation of fish fed diets containing 2.32 and 3.52 % lysine were higher than those of fish fed diets containing ≤ 1.52 % lysine. The broken-line regression analysis on the basis of PPlys and PAlys indicated that the lysine requirement of rainbow trout could be 2.34 and 2.20 % in diet. Therefore, these results strongly suggested that the dietary lysine requirement based on the broken-line model analyses of PPlys and PAlys could be greater than 2.2 but less than 2.34 % (corresponding to be 6.01 % ≤, but ≤ 6.39 % in dietary protein basis, respectively in rainbow trout. Also, these results shown that the quantitative estimation of lysine requirement by using PPlys and PAlys could be an acceptable method in fish.

  8. Cholera dynamics with Bacteriophage infection: A mathematical study

    International Nuclear Information System (INIS)

    Misra, A.K.; Gupta, Alok; Venturino, Ezio

    2016-01-01

    Highlights: • A mathematical model for the biological control of cholera has been proposed. • The feasibility and stability of all the equilibria have been investigated. • The ODE model is found to exhibit Hopf-bifurcation. • Conditions of global asymptotic stability have been obtained. • The impact of important parameters on cholera spread has been shown. - Abstract: Mathematical modeling of waterborne diseases, such as cholera, including a biological control using Bacteriophage viruses in the aquatic reservoirs is of great relevance in epidemiology. In this paper, our aim is twofold: at first, to understand the cholera dynamics in the region around a water body; secondly, to understand how the spread of Bacteriophage infection in the cholera bacterium V. cholerae controls the disease in the human population. For this purpose, we modify the model proposed by Codeço, for the spread of cholera infection in human population and the one proposed by Beretta and Kuang, for the spread of Bacteriophage infection in the bacteria population [1, 2]. We first discuss the feasibility and local asymptotic stability of all the possible equilibria of the proposed model. Further, in the numerical investigation, we have found that the parameter ϕ, called the phage adsorption rate, plays an important role. There is a critical value, ϕ c , at which the model possess Hopf-bifurcation. For lower values than ϕ c , the equilibrium E * is unstable and periodic solutions are observed, while above ϕ c , the equilibrium E * is locally asymptotically stable, and further shown to be also globally asymptotically stable. We investigate the effect of the various parameters on the dynamics of the infected humans by means of numerical simulations.

  9. Modified Filamentous Bacteriophage as a Scaffold for Carbon Nanofiber.

    Science.gov (United States)

    Szot-Karpińska, Katarzyna; Golec, Piotr; Leśniewski, Adam; Pałys, Barbara; Marken, Frank; Niedziółka-Jönsson, Joanna; Węgrzyn, Grzegorz; Łoś, Marcin

    2016-12-21

    With the advent of nanotechnology, carbon nanomaterials such as carbon nanofibers (CNF) have aroused substantial interest in various research fields, including energy storage and sensing. Further improvement of their properties might be achieved via the application of viral particles such as bacteriophages. In this report, we present a filamentous M13 bacteriophage with a point mutation in gene VII (pVII-mutant-M13) that selectively binds to the carbon nanofibers to form 3D structures. The phage-display technique was utilized for the selection of the pVII-mutant-M13 phage from the phage display peptide library. The properties of this phage make it a prospective candidate for a scaffold material for CNFs. The results for binding of CNF by mutant phage were compared with those for maternal bacteriophage (pVII-M13). The efficiency of binding between pVII-mutant-M13 and CNF is about 2 orders of magnitude higher compared to that of the pVII-M13. Binding affinity between pVII-mutant-M13 and CNF was also characterized using atomic force microscopy, scanning electron microscopy, and transmission electron microscopy, which confirmed the specificity of the interaction of the phage pVII-mutant-M13 and the CNF; the binding occurs via the phage's ending, where the mutated pVII protein is located. No similar behavior has been observed for other carbon nanomaterials such as graphite, reduced graphene oxide, single-walled carbon nanotubes, and multiwalled carbon nanotubes. Infrared spectra confirmed differences in the interaction with CNF between the pVII-mutant-M13 and the pVII-M13. Basing on conducted research, we hypothesize that the interactions are noncovalent in nature, with π-π interactions playing the dominant role. Herein, the new bioconjugate material is introduced.

  10. In vitro degradation of lysine by ruminal fluid-based fermentations and by Fusobacterium necrophorum.

    Science.gov (United States)

    Elwakeel, E A; Amachawadi, R G; Nour, A M; Nasser, M E A; Nagaraja, T G; Titgemeyer, E C

    2013-01-01

    The objective of these studies was to characterize some factors affecting lysine degradation by mixed ruminal bacteria and by ruminal Fusobacterium necrophorum. Mixed ruminal bacteria degraded lysine, and addition of pure cultures of F. necrophorum did not increase lysine degradation. Addition of acetic or propionic acid strikingly reduced NH(3) production from lysine by mixed ruminal bacteria at pH 6, but not at pH 7. Although typical ruminal environments with acidic pH and normal concentrations of volatile fatty acids might inhibit lysine degradation by F. necrophorum, ruminal fluid contained enough bacteria with a lysine-degrading capacity to ferment 50 mM lysine in vitro. Of 7 strains of ruminal F. necrophorum tested, all grew on both lactate and lysine as the primary energy source. Both subspecies of ruminal F. necrophorum (necrophorum and funduliforme) used lysine as a primary C and energy source. Lysine and glutamic acid were effectively fermented by F. necrophorum, but alanine and tryptophan were not, and histidine and methionine were fermented only to a minor extent. The end products of lactate fermentation by F. necrophorum were propionate and acetate, and those of lysine degradation were butyrate and acetate. Fermentation of glutamic acid by F. necrophorum yielded acetate and butyrate in a ratio near to 2:1. The minimum inhibitory concentration of tylosin for F. necrophorum was not dependent on whether bacteria were grown with lactate or lysine, but F. necrophorum was more susceptible to monensin when grown on lysine than on lactate. Although F. necrophorum is generally resistant to monensin, the ionophore may reduce lysine degradation by F. necrophorum in the rumen. The essential oil components limonene, at 20 or 100 μg/mL, and thymol, at 100 μg/mL, inhibited F. necrophorum growth, whereas eugenol, guaiacol, and vanillin had no effect. Our findings may lead to ways to minimize ruminal lysine degradation and thus increase its availability to the animal

  11. Filamentous bacteriophage fd as an antigen delivery system in vaccination.

    Science.gov (United States)

    Prisco, Antonella; De Berardinis, Piergiuseppe

    2012-01-01

    Peptides displayed on the surface of filamentous bacteriophage fd are able to induce humoral as well as cell-mediated immune responses, which makes phage particles an attractive antigen delivery system to design new vaccines. The immune response induced by phage-displayed peptides can be enhanced by targeting phage particles to the professional antigen presenting cells, utilizing a single-chain antibody fragment that binds dendritic cell receptor DEC-205. Here, we review recent advances in the use of filamentous phage fd as a platform for peptide vaccines, with a special focus on the use of phage fd as an antigen delivery platform for peptide vaccines in Alzheimer's Disease and cancer.

  12. Metagenomic Approaches to Assess Bacteriophages in Various Environmental Niches.

    Science.gov (United States)

    Hayes, Stephen; Mahony, Jennifer; Nauta, Arjen; van Sinderen, Douwe

    2017-05-24

    Bacteriophages are ubiquitous and numerous parasites of bacteria and play a critical evolutionary role in virtually every ecosystem, yet our understanding of the extent of the diversity and role of phages remains inadequate for many ecological niches, particularly in cases in which the host is unculturable. During the past 15 years, the emergence of the field of viral metagenomics has drastically enhanced our ability to analyse the so-called viral 'dark matter' of the biosphere. Here, we review the evolution of viral metagenomic methodologies, as well as providing an overview of some of the most significant applications and findings in this field of research.

  13. Re-initiation repair in bacteriophage T4

    International Nuclear Information System (INIS)

    Cupido, M.

    1981-01-01

    Irradiation of bacteriophage T4 with ultraviolet light induces the formation of pyrimidine dimers in its DNA. These dimers hamper replication of DNA and, to a lesser extent, transcription of DNA after its infection of bacteria. A number of pathways enable phage T4 to multiply dimer-containing DNA. One of these pathways has been named replication repair and is described in this thesis. The properties of two phage strains, unable to perform replication repair, have been studied to obtain a picture of the repair process. The mutations in these strains that affect replication repair have been located on the genomic map of T4. (Auth.)

  14. Identification and characterization of a highly thermostable bacteriophage lysozyme

    OpenAIRE

    Lavigne, R; Briers, Y; Hertveldt, K; ROBBEN, Johan; Volckaert, G

    2004-01-01

    Pseudomonas aeruginosa bacteriophage phiKMV is a T7-like lytic phage. Liquid chromatography-mass spectrometry of the structural proteins revealed gene product 36 (gp36) as part of the phiKMV phage particle. The presence of a lysozyme domain in the C terminal of this protein (gp36C) was verified by turbidimetric assays on chloroform-treated P. aeruginosa PAO1 and Escherichia coli WK6 cells. The molecular mass (20,884 Da) and pI (6.4) of recombinant gp36C were determined, as were the optimal en...

  15. Selection and Characterization of a Lysine Yielding Mutant of Corynebacterium glutamicum - a Soil Isolate from Pakistan

    Directory of Open Access Journals (Sweden)

    Habib-ur-Rehman§٭, Abdul Hameed and Safia Ahmed

    2012-01-01

    Full Text Available L-lysine is the second limiting amino acid for poultry and supplemented in broiler feed for optimal performance. Lysine can be produced by inducing mutation in glutamate producing bacteria. The study was conducted to enhance lysine production from a local strain of Corynebacterium glutamicum. The bacterium was mutated by exposure to UV. Mutants resistant to s-2-aminoethyle L-cystein (AEC and showing auxotrophy for L-homoserine were screened for lysine production qualitatively and quantitatively. A mutant showing highest production of lysine (8.2 mg/mL was selected for optimization of physical and nutritional parameters for maximum production of lysine in shake flask. An initial pH 7.6, 30˚C temperature, 300 rpm and 60 h incubation time were the optimized values of physical requirements. Cane molasses and corn starch hydrolysate were required at 15% (w/v in the fermentation media which provided around 9% total sugars to produce maximum lysine (17 to 18 mg/mL. When amonium sulphate was used at 3.5% (w/v level in molasses or corn starch hydrolysate based fermentation media, production of lysine slightly increased above 18 mg/mL. It is concluded that industrial by products like cane molasses, corn steep liquor, and corn starch hydrolysate can be used as carbon and organic nitrogen sources in fermentation medium for scale up process of lysine production and this lysine enriched broth may be used in broiler feed later. However, more potent lysine producing mutant and additional in vivo trials would be required to commercialize this product.

  16. Enrichment of fusobacteria from the rumen that can utilize lysine as an energy source for growth.

    Science.gov (United States)

    Russell, James B

    2005-06-01

    Ruminal lysine degradation is a wasteful process that deprives the animal of an essential amino acid. Mixed ruminal bacteria did not deaminate lysine (50 mM) at a rapid rate, but lysine degrading bacteria could be enriched if Trypticase (5 mg/mL) was also added. Lysine degrading isolates produced acetate, butyrate and ammonia, were non-motile, stained Gram-negative and could also utilize lactate, glucose, maltose or galactose as an energy source for growth. Lactate was converted to acetate and propionate, and 16S rDNA indicated that their closest relatives were Fusobacterium necrophorum. Growing cultures produced ammonia at rates as high as 2400 nmol/mg protein/mL/min. Washed cell suspensions took up (14)C lysine (3 microM) at an initial rate of 6 nmol/mg protein/min, and glucose addition did not affect the transport. Cells washed aerobically had the same transport rate as those handled anaerobically, but only if the transport buffer contained sodium. The affinity constant for sodium was 8 mM, and sodium could not be replaced by lithium. Cells treated with the sodium/proton antiporter, monensin (5 microM), did not take up lysine, but a protonophore that inhibited growth (tetrachlorosalicylanilide, 10 microM) had no effect. An artificial membrane potential created by potassium diffusion did not increase the rate of lysine transport, and an Eadie-Hofstee plot indicated the transport rate was directly proportional to the lysine concentration. Decreasing the pH from 6.7 to 5.5 caused an 85% decrease in the rate of lysine transport. The addition of F. necrophorum JB2 (130 microg protein/mL) to mixed ruminal bacteria increased lysine degradation 10-fold, but only if the pH was 6.7 and monensin was not present. Further work will be needed to see if dietary lysine enriches fusobacteria in vivo.

  17. Ribosomes slide on lysine-encoding homopolymeric A stretches

    Science.gov (United States)

    Koutmou, Kristin S; Schuller, Anthony P; Brunelle, Julie L; Radhakrishnan, Aditya; Djuranovic, Sergej; Green, Rachel

    2015-01-01

    Protein output from synonymous codons is thought to be equivalent if appropriate tRNAs are sufficiently abundant. Here we show that mRNAs encoding iterated lysine codons, AAA or AAG, differentially impact protein synthesis: insertion of iterated AAA codons into an ORF diminishes protein expression more than insertion of synonymous AAG codons. Kinetic studies in E. coli reveal that differential protein production results from pausing on consecutive AAA-lysines followed by ribosome sliding on homopolymeric A sequence. Translation in a cell-free expression system demonstrates that diminished output from AAA-codon-containing reporters results from premature translation termination on out of frame stop codons following ribosome sliding. In eukaryotes, these premature termination events target the mRNAs for Nonsense-Mediated-Decay (NMD). The finding that ribosomes slide on homopolymeric A sequences explains bioinformatic analyses indicating that consecutive AAA codons are under-represented in gene-coding sequences. Ribosome ‘sliding’ represents an unexpected type of ribosome movement possible during translation. DOI: http://dx.doi.org/10.7554/eLife.05534.001 PMID:25695637

  18. Predicting In Vivo Efficacy of Therapeutic Bacteriophages Used To Treat Pulmonary Infections

    Science.gov (United States)

    Henry, Marine; Lavigne, Rob

    2013-01-01

    The potential of bacteriophage therapy to treat infections caused by antibiotic-resistant bacteria has now been well established using various animal models. While numerous newly isolated bacteriophages have been claimed to be potential therapeutic candidates on the basis of in vitro observations, the parameters used to guide their choice among billions of available bacteriophages are still not clearly defined. We made use of a mouse lung infection model and a bioluminescent strain of Pseudomonas aeruginosa to compare the activities in vitro and in vivo of a set of nine different bacteriophages (PAK_P1, PAK_P2, PAK_P3, PAK_P4, PAK_P5, CHA_P1, LBL3, LUZ19, and PhiKZ). For seven bacteriophages, a good correlation was found between in vitro and in vivo activity. While the remaining two bacteriophages were active in vitro, they were not sufficiently active in vivo under similar conditions to rescue infected animals. Based on the bioluminescence recorded at 2 and 8 h postinfection, we also define for the first time a reliable index to predict treatment efficacy. Our results showed that the bacteriophages isolated directly on the targeted host were the most efficient in vivo, supporting a personalized approach favoring an optimal treatment. PMID:24041900

  19. Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria.

    Science.gov (United States)

    Pérez Pulido, Rubén; Grande Burgos, Maria José; Gálvez, Antonio; Lucas López, Rosario

    2016-10-01

    Bacteriophages have attracted great attention for application in food biopreservation. Lytic bacteriophages specific for human pathogenic bacteria can be isolated from natural sources such as animal feces or industrial wastes where the target bacteria inhabit. Lytic bacteriophages have been tested in different food systems for inactivation of main food-borne pathogens including Listeria monocytogenes, Staphylococcus aureus, Escherichia coli O157:H7, Salmonella enterica, Shigella spp., Campylobacter jejuni and Cronobacter sakazkii, and also for control of spoilage bacteria. Application of lytic bacteriophages could selectively control host populations of concern without interfering with the remaining food microbiota. Bacteriophages could also be applied for inactivation of bacteria attached to food contact surfaces or grown as biofilms. Bacteriophages may receive a generally recognized as safe status based on their lack of toxicity and other detrimental effects to human health. Phage preparations specific for L. monocytogenes, E. coli O157:H7 and S. enterica serotypes have been commercialized and approved for application in foods or as part of surface decontamination protocols. Phage endolysins have a broader host specificity compared to lytic bacteriophages. Cloned endolysins could be used as natural preservatives, singly or in combination with other antimicrobials such as bacteriocins.

  20. Virulent Bacteriophages Can Target O104:H4 Enteroaggregative Escherichia coli in the Mouse Intestine

    Science.gov (United States)

    Maura, Damien; Galtier, Matthieu; Le Bouguénec, Chantal

    2012-01-01

    In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner. These decreases in ileal and fecal bacterial concentrations were only transient, since 55989Str concentrations returned to their original levels 3 days later. These transient decreases were independent of the mouse microbiota, as similar results were obtained with axenic mice. We studied the infectivity of each bacteriophage in the ileal and fecal environments and found that 55989Str bacteria in the mouse ileum were permissive to all three bacteriophages, whereas those in the feces were permissive to only one bacteriophage. Our results provide the first demonstration that bacterial permissivity to infection with virulent bacteriophages is not uniform throughout the gut; this highlights the need for a detailed characterization of the interactions between bacteria and bacteriophages in vivo for the further development of phage therapy targeting intestinal pathogens found in the gut of asymptomatic human carriers. PMID:23006754

  1. Bacteriophages to reduce gut carriage of antibiotic resistant uropathogens with low impact on microbiota composition.

    Science.gov (United States)

    Galtier, Matthieu; De Sordi, Luisa; Maura, Damien; Arachchi, Harindra; Volant, Stevenn; Dillies, Marie-Agnès; Debarbieux, Laurent

    2016-07-01

    Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs) worldwide, causing over 150 million clinical cases annually. There is currently no specific treatment addressing the asymptomatic carriage in the gut of UPEC before they initiate UTIs. This study investigates the efficacy of virulent bacteriophages to decrease carriage of gut pathogens. Three virulent bacteriophages infecting an antibiotic-resistant UPEC strain were isolated and characterized both in vitro and in vivo. A new experimental murine model of gut carriage of E. coli was elaborated and the impact of virulent bacteriophages on colonization levels and microbiota diversity was assessed. A single dose of a cocktail of the three bacteriophages led to a sharp decrease in E. coli levels throughout the gut. We also observed that microbiota diversity was much less affected by bacteriophages than by antibiotics. Therefore, virulent bacteriophages can efficiently target UPEC strains residing in the gut, with potentially profound public health and economic impacts. These results open a new area with the possibility to manipulate specifically the microbiota using virulent bacteriophages, which could have broad applications in many gut-related disorders/diseases and beyond. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  2. Effects of bacteriophage on the quality and shelf life of Paralichthys olivaceus during chilled storage.

    Science.gov (United States)

    Li, Meng; Lin, Hong; Khan, Muhammad Naseem; Wang, Jingxue; Kong, Linghong

    2014-06-01

    The microbiological spoilage of fishery foods is mainly due to specific spoilage organisms (SSOs), with Shewanella putrefaciens being the SSO of most chilled marine fish. Bacteriophages have shown excellent capability to control micro-organisms. The aim of this study was to determine a specific bacteriophage to prevent spoilage by reducing SSO (S. putrefaciens) levels in the marine fish Paralichthys olivaceus (olive flounder) under chilled storage. Chilled flounder fillets were inoculated with S. putrefaciens and treated with different concentrations of bacteriophage Spp001 ranging from 10(4) to 10(8) plaque-forming units (pfu) mL(-1) . Bacterial growth (including total viable count and SSO) of the bacteriophage-treated groups was significantly inhibited compared with that of the negative control group (P bacteriophage could extend the shelf life of chilled flounder fillets (from bacteriophage concentrations of 10(6) and 10(8) pfu mL(-1) were more effective than the chemical preservative potassium sorbate (5 g L(-1) ). The bacteriophage Spp001 offered effective biocontrol of S. putrefaciens under chilled conditions, retaining the quality characteristics of spiked fish fillets, and thus could be a potential candidate for use in chilled fish fillet biopreservation. © 2013 Society of Chemical Industry.

  3. Virulent bacteriophages can target O104:H4 enteroaggregative Escherichia coli in the mouse intestine.

    Science.gov (United States)

    Maura, Damien; Galtier, Matthieu; Le Bouguénec, Chantal; Debarbieux, Laurent

    2012-12-01

    In vivo bacteriophage targeting of enteroaggregative Escherichia coli (EAEC) was assessed using a mouse intestinal model of colonization with the O104:H4 55989Str strain and a cocktail of three virulent bacteriophages. The colonization model was shown to mimic asymptomatic intestinal carriage found in humans. The addition of the cocktail to drinking water for 24 h strongly decreased ileal and weakly decreased fecal 55989Str concentrations in a dose-dependent manner. These decreases in ileal and fecal bacterial concentrations were only transient, since 55989Str concentrations returned to their original levels 3 days later. These transient decreases were independent of the mouse microbiota, as similar results were obtained with axenic mice. We studied the infectivity of each bacteriophage in the ileal and fecal environments and found that 55989Str bacteria in the mouse ileum were permissive to all three bacteriophages, whereas those in the feces were permissive to only one bacteriophage. Our results provide the first demonstration that bacterial permissivity to infection with virulent bacteriophages is not uniform throughout the gut; this highlights the need for a detailed characterization of the interactions between bacteria and bacteriophages in vivo for the further development of phage therapy targeting intestinal pathogens found in the gut of asymptomatic human carriers.

  4. Pulmonary Bacteriophage Therapy on Pseudomonas aeruginosa Cystic Fibrosis Strains: First Steps Towards Treatment and Prevention

    Science.gov (United States)

    Morello, Eric; Saussereau, Emilie; Maura, Damien; Huerre, Michel; Touqui, Lhousseine; Debarbieux, Laurent

    2011-01-01

    Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy—the use of specific viruses that infect bacteria—is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose) administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose) resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections. PMID:21347240

  5. Pulmonary bacteriophage therapy on Pseudomonas aeruginosa cystic fibrosis strains: first steps towards treatment and prevention.

    Directory of Open Access Journals (Sweden)

    Eric Morello

    Full Text Available Multidrug-resistant bacteria are the cause of an increasing number of deadly pulmonary infections. Because there is currently a paucity of novel antibiotics, phage therapy--the use of specific viruses that infect bacteria--is now more frequently being considered as a potential treatment for bacterial infections. Using a mouse lung-infection model caused by a multidrug resistant Pseudomonas aeruginosa mucoid strain isolated from a cystic fibrosis patient, we evaluated bacteriophage treatments. New bacteriophages were isolated from environmental samples and characterized. Bacteria and bacteriophages were applied intranasally to the immunocompetent mice. Survival was monitored and bronchoalveolar fluids were analysed. Quantification of bacteria, bacteriophages, pro-inflammatory and cytotoxicity markers, as well as histology and immunohistochemistry analyses were performed. A curative treatment (one single dose administrated 2 h after the onset of the infection allowed over 95% survival. A four-day preventive treatment (one single dose resulted in a 100% survival. All of the parameters measured correlated with the efficacy of both curative and preventive bacteriophage treatments. We also showed that in vitro optimization of a bacteriophage towards a clinical strain improved both its efficacy on in vivo treatments and its host range on a panel of 20 P. aeruginosa cystic fibrosis strains. This work provides an incentive to develop clinical studies on pulmonary bacteriophage therapy to combat multidrug-resistant lung infections.

  6. Dehydration of bacteriophages in electrospun nanofibers: effect of excipients in polymeric solutions

    Science.gov (United States)

    Koo, Charmaine K. W.; Senecal, Kris; Senecal, Andre; Nugen, Sam R.

    2016-12-01

    Bacteriophages are viruses capable of infecting and lysing target bacterial cells; as such they have potential applications in agriculture for decontamination of foods, food contact surfaces and food rinse water. Although bacteriophages can retain infectivity long-term using lyophilized storage, the process of freeze-drying can be time consuming and expensive. In this study, electrospinning was used for dehydrating bacteriophages in polyvinylpyrrolidone polymer solutions with addition of excipients (sodium chloride, magnesium sulfate, Tris-HCl, sucrose) in deionized water. The high voltage dehydration reduced the infectivity of bacteriophages following electrospinning, with the damaging effect abated with addition of storage media (SM) buffer and sucrose. SM buffer and sucrose also provided the most protection over extended storage (8 weeks; 20 °C 1% relative humidity) by mitigating environmental effects on the dried bacteriophages. Magnesium sulfate however provided the least protection due to coagulation effects of the ion, which can disrupt the native conformation of the bacteriophage protein coat. Storage temperatures (20 °C, 4 °C and -20 °C 1% relative humidity) had a minimal effect while relative humidity had substantial effect on the infectivity of bacteriophages. Nanofibers stored in higher relative humidity (33% and 75%) underwent considerable damage due to extensive water absorption and disruption of the fibers. Overall, following storage of nanofiber mats for eight weeks at ambient temperatures, high infective phage concentrations (106-107 PFU ml-1) were retained. Therefore, this study provided valuable insights on preservation and dehydration of bacteriophages by electrospinning in comparison to freeze drying and liquid storage, and the influence of excipients on the viability of bacteriophages.

  7. Lysine Rich Proteins in the Salt-Soluble Protein Fraction of Barley

    DEFF Research Database (Denmark)

    Ingversen, J.; Køie, B.

    1973-01-01

    Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2.......Fractionation of the protein complex from Emir barley showed that the salt-soluble fraction accounts for 44% of the total lysine content but only for 2....

  8. The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3

    DEFF Research Database (Denmark)

    Cloos, Paul A C; Christensen, Jesper; Agger, Karl

    2006-01-01

    Methylation of lysine and arginine residues on histone tails affects chromatin structure and gene transcription. Tri- and dimethylation of lysine 9 on histone H3 (H3K9me3/me2) is required for the binding of the repressive protein HP1 and is associated with heterochromatin formation...

  9. Effects of various dietary arginine and lysine concentrations on plasma and liver cholesterol concentrations in rats.

    Science.gov (United States)

    Spielmann, Julia; Noatsch, Anne; Brandsch, Corinna; Stangl, Gabriele I; Eder, Klaus

    2008-01-01

    It has been hypothesized that the arginine:lysine ratio of dietary proteins influences cholesterol concentrations in plasma and liver of men and animals. This study was performed to test this hypothesis in rats by using diets with various concentrations of arginine and lysine, differing in their arginine:lysine ratios. Two experiments with growing rats were performed, some of which received diets containing 4.5, 9 or 18 g arginine/kg and 9 or 18 g lysine/kg, respectively, for a period of 21 days. In the first experiment, a cholesterol-free diet was used; in the second experiment, a diet supplemented with cholesterol and sodium cholate as hypercholesterolaemic compounds was used. In experiment 1, increasing the arginine concentration lowered HDL and plasma cholesterol concentration; however, cholesterol concentrations in liver, LDL and VLDL remained unchanged. In experiment 2, increasing the arginine concentration lowered HDL cholesterol and increased liver cholesterol (plysine concentration concerned the effect on VLDL and liver cholesterol concentration, which were both lower in rats fed the diets with 18 g lysine/kg than in those fed the diets with 9 g lysine/kg (parginine:lysine ratio between 0.25 and 2.0 had no influence on cholesterol concentration in LDL and VLDL in both experiments; HDL cholesterol concentration was lowered by increasing this ratio (parginine:lysine ratio causes hypocholesterolaemic effects in rats. Copyright 2008 S. Karger AG, Basel.

  10. Lysine Methylation of Nuclear Co-repressor Receptor Interacting Protein 140

    Science.gov (United States)

    Huq, MD Mostaqul; Ha, Sung Gil; Barcelona, Helene; Wei, Li-Na

    2009-01-01

    Receptor interacting protein 140 (RIP140) undergoes extensive posttranslational modifications (PTMs), including phosphorylation, acetylation, arginine methylation, and pyridoxylation. PTMs affect its sub-cellular distribution, protein-protein interaction, and biological activity in adipocyte differentiation. Arginine methylation on Arg240, Arg650, and Arg948 suppresses the repressive activity of RIP140. Here we find that endogenous RIP140 in differentiated 3T3-L1 cells is also modified by lysine methylation. Three lysine residues, Lys591, Lys653, and Lys757 are mapped as potential methylation sites by mass spectrometry. Site-directed mutagenesis study shows that lysine methylation enhances its gene repressive activity. Mutation of lysine methylation sites enhances arginine methylation, while mutation on arginine methylation sites has little effect on its lysine methylation, suggesting a relationship between lysine methylation and arginine methylation. Kinetic analysis of PTMs of endogenous RIP140 in differentiated 3T3-L1 cells demonstrates sequential modifications on RIP140, initiated from constitutive lysine methylation, followed by increased arginine methylation later in differentiation. This study reveals a potential hierarchy of modifications, at least for lysine and arginine methylation, which bi-directionally regulate the functionality of a non-histone protein. PMID:19216533

  11. Fortification of lysine for improving protein quality in multiple-fortified quick cooking rice : Review

    NARCIS (Netherlands)

    Wongmetinee, T.; Boonstra, A.; Zimmermann, M.B.; Chavasit, V.

    2009-01-01

    Previous studies in Thailand indicated that rice-based complementary foods of breast-fed infants normally provided inadequate iron and calcium. Quick-cooking rice fortified with different nutrients was therefore developed. The idea of lysine fortification was based on the fact that lysine is a

  12. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    NARCIS (Netherlands)

    Lurling, M.; Van Oosterhout, F.

    2014-01-01

    We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We

  13. Comprehensive Proteomic Analysis of Lysine Acetylation in the Foodborne Pathogen Trichinella spiralis

    Directory of Open Access Journals (Sweden)

    Yong Yang

    2018-01-01

    Full Text Available Lysine acetylation is a dynamic and highly conserved post-translational modification that plays a critical role in regulating diverse cellular processes. Trichinella spiralis is a foodborne parasite with a considerable socio-economic impact. However, to date, little is known regarding the role of lysine acetylation in this parasitic nematode. In this study, we utilized a proteomic approach involving anti-acetyl lysine-based enrichment and highly sensitive mass spectrometry to identify the global acetylated proteome and investigate lysine acetylation in T. spiralis. In total, 3872 lysine modification sites were identified in 1592 proteins that are involved in a wide variety of biological processes. Consistent with the results of previous studies, a large number of the acetylated proteins appear to be involved in metabolic and biosynthetic processes. Interestingly, according to the functional enrichment analysis, 29 acetylated proteins were associated with phagocytosis, suggesting an important role of lysine acetylation in this process. Among the identified proteins, 15 putative acetylation motifs were detected. The presence of serine downstream of the lysine acetylation site was commonly observed in the regions surrounding the sites. Moreover, protein interaction network analysis revealed that various interactions are regulated by protein acetylation. These data represent the first report of the acetylome of T. spiralis and provide an important resource for further explorations of the role of lysine acetylation in this foodborne pathogen.

  14. Egg quality of hens fed different digestible lysine and arginine levels

    Directory of Open Access Journals (Sweden)

    FB de Carvalho

    2015-03-01

    Full Text Available This experiment aimed at evaluating the influence of the supplementation of digestible lysine and digestible arginine at different ratios in the diet fed to layers between 24 to 44 weeks of age on egg quality. In total,320 Lohmann LSL laying hens were allotted according to a completely randomized design in a 2 x 4factorial arrangement, consisting of two digestible lysine levels (700 or 900 mg/kg of diet and four digestible arginine levels (700, 800, 900,or 1000 mg/kg of diet. Diets contained, therefore, digestible Lys:Arg ratios of 100, 114, 128, and 142 when the diet contained 700 mg digestible lysine per kg of diet, and 78, 89, 100, and 111 when 900 mg digestible lysine per kg was supplemented. The data obtained with digestible arginine levels were fitted to polynomial regression equations, and with digestible lysine, the F test (5% probability was used to compare the means. The following variables were evaluated: egg weight; internal egg quality (yolk percentage and index, albumen percentage, Haugh units, eggshell quality (specific gravity andeggshell percentage; and whole egg, albumen, and yolk solids content. Digestible lysine and arginine interaction did not affect egg quality. Increasing levels of digestible lysine and arginine reduced eggshell quality and albumen solids, respectively. The levels of these amino acids suggested to improveegg quality are 700 mg digestible lysine and 700 mg digestible arginine/kg of feed at a Dig Lys: Dig Arg ratio of 100.

  15. Structural Basis of Histone Demethylase KDM6B Histone 3 Lysine 27 Specificity

    DEFF Research Database (Denmark)

    Jones, Sarah E; Olsen, Lars; Gajhede, Michael

    2018-01-01

    KDM subfamily 6 enzymes KDM6A and KDM6B specifically catalyze demethylation of di- and trimethylated lysine on histone 3 lysine 27 (H3K27me3/2) and play an important role in repression of developmental genes. Despite identical amino acid sequence in the immediate surroundings of H3K9me3/2 (ARKS...

  16. Mapping and genotypic analysis of NK-lysin gene in chicken

    Science.gov (United States)

    NK-lysin is a cationic anti-microbial peptide that plays a critical role in innate immunity against infectious pathogens. Chicken NK-lysin has been cloned and its antimicrobial and anticancer activity has been described but its location in the chicken genome prior this study was unknown. A 6000 rad ...

  17. Mechanistic study of ruthenium (III) catalysed oxidation of L-lysine by ...

    Indian Academy of Sciences (India)

    Administrator

    III)-L-lysine complex, which further reacts with one molecule of ... because of their biological significance and selecti- vity towards the oxidant. 1.2. L-lysine is an .... product formed during reaction or oxidation of alkali by oxidant, etc. This is also ...

  18. Malonylome Analysis Reveals the Involvement of Lysine Malonylation in Metabolism and Photosynthesis in Cyanobacteria.

    Science.gov (United States)

    Ma, Yanyan; Yang, Mingkun; Lin, Xiaohuang; Liu, Xin; Huang, Hui; Ge, Feng

    2017-05-05

    As a recently validated reversible post translational modification, lysine malonylation regulates diverse cellular processes from bacteria to mammals, but its existence and function in photosynthetic organisms remain unknown. Cyanobacteria are the most ancient group of photosynthetic prokaryotes and contribute about 50% of the total primary production on Earth. Previously, we reported the lysine acetylome in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis). Here we performed the first proteomic survey of lysine malonylation in Synechocystis using highly accurate tandem mass spectrometry in combination with affinity purification. We identified 598 lysine malonylation sites on 339 proteins with high confidence in total. A bioinformatic analysis suggested that these malonylated proteins may play various functions and were distributed in diverse subcellular compartments. Among them, many malonylated proteins were involved in cellular metabolism. The functional significance of lysine malonylation in the metabolic enzyme activity of phosphoglycerate kinase (PGK) was determined by site-specific mutagenesis and biochemical studies. Interestingly, 27 proteins involved in photosynthesis were found to be malonylated for the first time, suggesting that lysine malonylation may be involved in photosynthesis. Thus our results provide the first lysine malonylome in a photosynthetic organism and suggest a previously unexplored role of lysine malonylation in the regulation of metabolic processes and photosynthesis in Synechocystis as well as in other photosynthetic organisms.

  19. Chlorpromazine photosensitization-I. Effect of near-UV irradiation on bacteriophages sensitized with chlorpromazine

    International Nuclear Information System (INIS)

    Matsuo, I.; Ohkido, M.; Fujita, H.; Suzuki, K.

    1980-01-01

    Both DNA bacteriophage and RNA bacteriophage were inactivated when they were irradiated with near-UV light (black light) in the presence of chlorpromazine. The far-UV sensitive mutants of bacteriophage T4D, T4Dv, T4Dpx and T4Dy, were no more sensitive to UV light plus chlorpromazine than the wild type. Electron microscopic observations showed that adsorption of T4D was greatly influenced by the treatment. The present results indicated that the inactivation of T4D was due to the loss of adsorption caused by impairment in the tail or the tail fiber protein rather than the inactivation of DNA. (author)

  20. Cleavage leads to expansion of bacteriophage P4 procapsids in vitro

    International Nuclear Information System (INIS)

    Wang Sifang; Chandramouli, Preethi; Butcher, Sarah; Dokland, Terje

    2003-01-01

    Proteolytic cleavage of the structural proteins is an important part of the maturation process for most bacteriophages and other viruses. In the double-stranded DNA bacteriophages this cleavage is associated with DNA packaging, capsid expansion, and scaffold removal. To understand the role of protein cleavage in the expansion of bacteriophages P2 and P4, we have experimentally cleaved P4 procapsids produced by overexpression of the capsid and scaffolding proteins. The cleavage leads to particle expansion and scaffold removal in vitro. The resulting expanded capsid has a thin-shelled structure similar, but not identical, to that of mature virions

  1. Use of the integration elements encoded by the temperate lactococcal bacteriophage TP901-1

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Hammer, Karin

    1999-01-01

    Previously we showed that only one phage-expressed protein (Orf1), a 425-bp region upstream of the orf1 gene (presumably encoding a promoter), and the attP region are necessary and also sufficient for integration of the bacteriophage TP901-1 genome into the chromosome of Lactococcus lactis subsp......P region seem to be necessary for site-specific integration of the temperate bacteriophage TP901-1. By use of the integrative elements (attP and orf1) expressed by the temperate lactococcal bacteriophage TP901-1, a system for obtaining stable chromosomal single-copy transcriptional fusions in L. lactis...

  2. Nε-(carboxymethyl)lysine and Nε-(carboxyethyl)lysine in tea and the factors affecting their formation.

    Science.gov (United States)

    Jiao, Ye; He, Jialiang; Li, Fengli; Tao, Guanjun; Zhang, Shuang; Zhang, Shikang; Qin, Fang; Zeng, Maomao; Chen, Jie

    2017-10-01

    The levels of N ε -(carboxymethyl)lysine (CML) and N ε -(carboxyethyl)lysine (CEL) in 99 tea samples from 14 geographic regions, including 44 green, 7 oolong, 41 black, and 7 dark teas were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The CML and CEL contents varied from 11.0 to 1701μg/g tea and 4.6 to 133μg/g tea, respectively. Dark tea presented the highest levels of CML and CEL, whereas green and oolong teas presented the lowest levels. Five kinds of catechins in the tea were also analyzed, and spearman's correlation coefficients showed that all the catechins negatively correlated with CML and CEL. The results suggested that withering, fermentation and pile fermentation may facilitate the formation of CML and CEL. Catechins might inhibit the formation of CML and CEL, but their inhibitory effects may be affected by tea processing. The results of this study are useful for the production of healthier tea. Copyright © 2017. Published by Elsevier Ltd.

  3. Bacteriophages againstSerratiaas Fish Spoilage Control Technology.

    Science.gov (United States)

    Hernández, Igor

    2017-01-01

    Bacteria of the genus Serratia , mainly S. proteamaculans and S. fonticola , are important spoilage agents in Atlantic horse mackerel ( Trachurus trachurus ). In order to evaluate whether bacteriophages against Serratia could delay the spoilage process, 11 viral strains active against this genus were isolated from food and best candidate was applied to fresh mackerel filets. All the phages belong to the Siphoviridae and Podoviridae families and were active at multiplicity of infection (MOI) levels below 1:1 in Long & Hammer broth. The ability of phage AZT6 to control Serratia populations in real food was tested in Atlantic horse mackerel extract and applied to fresh mackerel filets. Treatment with high phage concentration (MOI 350:1, initial Serratia population 3.9 ± 0.3 Log cfu/g) can reduce the Serratia populations up to 90% during fish storage (a maximum of 6 days) at low temperatures (6°C). Bacterial inhibition was dependent on the bacteriophage dosage, and MOI of 10:1 or lower did not significantly affect the Serratia populations.

  4. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy

    Science.gov (United States)

    Castillo, Daniel

    2018-01-01

    A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis) in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review. PMID:29495270

  5. Isolation and Characterization of a Bacteriophage Preying an Antifungal Bacterium

    Directory of Open Access Journals (Sweden)

    Aryan Rahimi-Midani

    2016-12-01

    Full Text Available Several Bacillus species were isolated from rice field soils, and 16S rRNA gene sequence analysis showed that Bacillus cereus was the most abundant. A strain named BC1 showed antifungal activity against Rhizoctonia solani. Bacteriophages infecting strain BC1 were isolated from the same soil sample. The isolated phage PK16 had an icosahedral head of 100 ± 5 nm and tail of 200 ± 5 nm, indicating that it belonged to the family Myoviridae. Analysis of the complete linear dsDNA genome revealed a 158,127-bp genome with G + C content of 39.9% comprising 235 open reading frames as well as 19 tRNA genes (including 1 pseudogene. Blastp analysis showed that the proteins encoded by the PK16 genome had the closest hits to proteins of seven different bacteriophages. A neighbor-joining phylogenetic tree based on the major capsid protein showed a robust clustering of phage PK16 with phage JBP901 and BCP8-2 isolated from Korean fermented food.

  6. Bacteriophage Interactions with Marine Pathogenic Vibrios: Implications for Phage Therapy

    Directory of Open Access Journals (Sweden)

    Panos G. Kalatzis

    2018-02-01

    Full Text Available A global distribution in marine, brackish, and freshwater ecosystems, in combination with high abundances and biomass, make vibrios key players in aquatic environments, as well as important pathogens for humans and marine animals. Incidents of Vibrio-associated diseases (vibriosis in marine aquaculture are being increasingly reported on a global scale, due to the fast growth of the industry over the past few decades years. The administration of antibiotics has been the most commonly applied therapy used to control vibriosis outbreaks, giving rise to concerns about development and spreading of antibiotic-resistant bacteria in the environment. Hence, the idea of using lytic bacteriophages as therapeutic agents against bacterial diseases has been revived during the last years. Bacteriophage therapy constitutes a promising alternative not only for treatment, but also for prevention of vibriosis in aquaculture. However, several scientific and technological challenges still need further investigation before reliable, reproducible treatments with commercial potential are available for the aquaculture industry. The potential and the challenges of phage-based alternatives to antibiotic treatment of vibriosis are addressed in this review.

  7. Sequence and comparative analysis of Leuconostoc dairy bacteriophages.

    Science.gov (United States)

    Kot, Witold; Hansen, Lars H; Neve, Horst; Hammer, Karin; Jacobsen, Susanne; Pedersen, Per D; Sørensen, Søren J; Heller, Knut J; Vogensen, Finn K

    2014-04-17

    Bacteriophages attacking Leuconostoc species may significantly influence the quality of the final product. There is however limited knowledge of this group of phages in the literature. We have determined the complete genome sequences of nine Leuconostoc bacteriophages virulent to either Leuconostoc mesenteroides or Leuconostoc pseudomesenteroides strains. The phages have dsDNA genomes with sizes ranging from 25.7 to 28.4 kb. Comparative genomics analysis helped classify the 9 phages into two classes, which correlates with the host species. High percentage of similarity within the classes on both nucleotide and protein levels was observed. Genome comparison also revealed very high conservation of the overall genomic organization between the classes. The genes were organized in functional modules responsible for replication, packaging, head and tail morphogenesis, cell lysis and regulation and modification, respectively. No lysogeny modules were detected. To our knowledge this report provides the first comparative genomic work done on Leuconostoc dairy phages. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Alteration of bacteriophage attachment capacity by near-uv irradiation

    International Nuclear Information System (INIS)

    Hartman, P.S.; Eisenstark, A.

    1982-01-01

    Near-uv (NUV) (300 to 400 nm) and far-uv (FUV) (254 nm) radiations damage bacteriophage by different mechanisms. Host cell reactivation, Weigle reactivation, and multiplicity reactivation were observed upon FUV, but not upon NUV irradiation. Also, the number of his + recombinants increased with P22 bacteriophage transduction in Salmonella typhimurium after FUV, but not after NUV irradiation. This loss of reactivation and recombination after NUV irradiation was not necessarily due to host incapability to repair phage damage. Instead, the phage genome failed to enter the host cell after NUV irradiation. In the case of NUV-irradiated T7 phage, this was determined by genetic crosses with amber mutants, which demonstrated that either ''all'' or ''none'' of a T7 genome entered the Escherichia coli cell after NUV treatment. Further studies with radioactively labeled phage indicated that irradiated phage failed to adsorb to host cells. This damage by NUV was compared with the protein-DNA cross-link observed previously, when phage particles were irradiated with NUV in the presence of H 2 O 2 . H 2 O 2 (in nonlethal concentration) acts synergistically with NUV so that equivalent phage inactivation is achieved by much lower irradiation doses

  9. LAAT-1 is the lysosomal lysine/arginine transporter that maintains amino acid homeostasis.

    Science.gov (United States)

    Liu, Bin; Du, Hongwei; Rutkowski, Rachael; Gartner, Anton; Wang, Xiaochen

    2012-07-20

    Defective catabolite export from lysosomes results in lysosomal storage diseases in humans. Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid transporters are poorly characterized at the molecular level. Here, we identified the Caenorhabditis elegans lysosomal lysine/arginine transporter LAAT-1. Loss of laat-1 caused accumulation of lysine and arginine in enlarged, degradation-defective lysosomes. In mutants of ctns-1 (C. elegans homolog of CTNS), LAAT-1 was required to reduce lysosomal cystine levels and suppress lysosome enlargement by cysteamine, a drug that alleviates cystinosis by converting cystine to a lysine analog. LAAT-1 also maintained availability of cytosolic lysine/arginine during embryogenesis. Thus, LAAT-1 is the lysosomal lysine/arginine transporter, which suggests a molecular explanation for how cysteamine alleviates a lysosomal storage disease.

  10. Extensive Lysine Methylation in Hyperthermophilic Crenarchaea: Potential Implications for Protein Stability and Recombinant Enzymes

    Directory of Open Access Journals (Sweden)

    Catherine H. Botting

    2010-01-01

    Full Text Available In eukarya and bacteria, lysine methylation is relatively rare and is catalysed by sequence-specific lysine methyltransferases that typically have only a single-protein target. Using RNA polymerase purified from the thermophilic crenarchaeum Sulfolobus solfataricus, we identified 21 methyllysines distributed across 9 subunits of the enzyme. The modified lysines were predominantly in α-helices and showed no conserved sequence context. A limited survey of the Thermoproteus tenax proteome revealed widespread modification with 52 methyllysines in 30 different proteins. These observations suggest the presence of an unusual lysine methyltransferase with relaxed specificity in the crenarchaea. Since lysine methylation is known to enhance protein thermostability, this may be an adaptation to a thermophilic lifestyle. The implications of this modification for studies and applications of recombinant crenarchaeal enzymes are discussed.

  11. Arginine requirement and apparent absence of a lysine-arginine antagonist in fingerling channel catfish.

    Science.gov (United States)

    Robinson, E H; Wilson, R P; Poe, W E

    1981-01-01

    A series of growth studies, utilizing casein-gelatin based diets supplemented with crystalline amino acids, were conducted to determine the arginine requirement for fingerling channel catfish (Ictalurus punctatus) and to evaluate the effects of excessive levels of dietary lysine and arginine. Weight gain and feed efficiency data indicate the arginine requirement to be 1.03 +/- 0.07% and 1.00 +/- 0.06% of the dry diet, respectively. Based on growth this corresponds to 4.29% of the dietary protein. There was no evidence of an arginine-lysine antagonism when excess lysine was fed in diets adequate or marginal in arginine. Similarly, growth and feed efficiency data suggest the lack of an antagonism when excess arginine is added to diets marginal in lysine. Apparently channel catfish are not as sensitive to disproportionate lysine and arginine levels as are other animals.

  12. Antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni.

    Directory of Open Access Journals (Sweden)

    Rohana P Dassanayake

    Full Text Available Bovine NK-lysins, which are functionally and structurally similar to human granulysin and porcine NK-lysin, are predominantly found in the granules of cytotoxic T-lymphocytes and NK-cells. Although antimicrobial activity of bovine NK-lysin has been assessed for several bacterial pathogens, not all the important bacterial pathogens that are involved in the bovine respiratory disease complex have been studied. Therefore the objective of the present study was to evaluate the antimicrobial activity of bovine NK-lysin-derived peptides on bovine respiratory pathogen Histophilus somni. Four, 30-mer peptides corresponding to the functional region of NK-lysin helices 2 and 3 were synthesized and assessed for antibacterial activity on four bovine pneumonic H. somni isolates. Although there were some differences in the efficiency of bactericidal activity among the NK-lysin peptides at lower concentrations (2-5 μM, all four peptides effectively killed most H. somni isolates at higher concentrations (10-30 μM as determined by a bacterial killing assay. Confocal microscopic and flow cytometric analysis of Live/Dead Baclight stained H. somni (which were preincubated with NK-lysin peptides were consistent with the killing assay findings and suggest NK-lysin peptides are bactericidal for H. somni. Among the four peptides, NK2A-derived peptide consistently showed the highest antimicrobial activity against all four H. somni isolates. Electron microscopic examination of H. somni following incubation with NK-lysin revealed extensive cell membrane damage, protrusions of outer membranes, and cytoplasmic content leakage. Taken together, the findings from this study clearly demonstrate the antimicrobial activity of all four bovine NK-lysin-derived peptides against bovine H. somni isolates.

  13. Comparative genomics and phylogenomic analyses of lysine riboswitch distributions in bacteria.

    Directory of Open Access Journals (Sweden)

    Sumit Mukherjee

    Full Text Available Riboswitches are cis-regulatory elements that regulate the expression of genes involved in biosynthesis or transport of a ligand that binds to them. Among the nearly 40 classes of riboswitches discovered so far, three are known to regulate the concentration of biologically encoded amino acids glycine, lysine, and glutamine. While some comparative genomics studies of riboswitches focusing on their gross distribution across different bacterial taxa have been carried out recently, systematic functional annotation and analysis of lysine riboswitches and the genes they regulate are still lacking. We analyzed 2785 complete bacterial genome sequences to systematically identify 468 lysine riboswitches (not counting hits from multiple strains of the same species and obtain a detailed phylogenomic map of gene-specific lysine riboswitch distribution across diverse prokaryotic phyla. We find that lysine riboswitches are most abundant in Firmicutes and Gammaproteobacteria where they are found upstream to both biosynthesis and/or transporter genes. They are relatively rare in all other prokaryotic phyla where if present they are primarily found upstream to operons containing many lysine biosynthesis genes. The genome-wide study of the genetic organisation of the lysine riboswitches show considerable variation both within and across different Firmicute orders. Correlating the location of a riboswitch with its genomic context and its phylogenetic relationship with other evolutionarily related riboswitch carrying species, enables identification and annotation of many lysine biosynthesis, transporter and catabolic genes. It also reveals previously unknown patterns of lysine riboswitch distribution and gene/operon regulation and allows us to draw inferences about the possible point of origin of lysine riboswitches. Additionally, evidence of horizontal transfer of riboswitches was found between Firmicutes and Actinobacteria. Our analysis provides a useful resource

  14. The Global Acetylome of the Human Pathogen Vibrio cholerae V52 Reveals Lysine Acetylation of Major Transcriptional Regulators

    DEFF Research Database (Denmark)

    Jers, Carsten; Ravikumar, Vaishnavi; Lezyk, Mateusz Jakub

    2018-01-01

    Protein lysine acetylation is recognized as an important reversible post translational modification in all domains of life. While its primary roles appear to reside in metabolic processes, lysine acetylation has also been implicated in regulating pathogenesis in bacteria. Several global lysine ac...

  15. Immunomodulation by chicken NK-Lysin-derived peptide, cNK-2 on chicken macrophages and monocytes

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin) is a homologue of human granulysin. Human granulysin is found in the cytolytic granules located in human natural killer and cytotoxic T lymphocytes. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core a-helical region of cNK-ly...

  16. Immunomodulation by chicken NK-lysin-derived peptide, c-NK2 on chicken macrophages and monocytes

    Science.gov (United States)

    Chicken NK-lysin (cNK-lysin) is a homologue of human granulysin. Human granulysin is found in the cytolytic granules located in human natural killer and cytotoxic T lymphocytes. We previously demonstrated that cNK-lysin and cNK-2, a synthetic peptide incorporating the core a-helical region of cNK-ly...

  17. The phage lytic proteins from the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 display multiple active catalytic domains and do not trigger staphylococcal resistance.

    Directory of Open Access Journals (Sweden)

    Lorena Rodríguez-Rubio

    Full Text Available The increase in antibiotic resistance world-wide revitalized the interest in the use of phage lysins to combat pathogenic bacteria. In this work, we analyzed the specific cleavage sites on the staphylococcal peptidoglycan produced by three phage lytic proteins. The investigated cell wall lytic enzymes were the endolysin LysH5 derived from the S. aureus bacteriophage vB_SauS-phi-IPLA88 (phi-IPLA88 and two fusion proteins between lysostaphin and the virion-associated peptidoglycan hydrolase HydH5 (HydH5SH3b and HydH5Lyso. We determined that all catalytic domains present in these proteins were active. Additionally, we tested for the emergence of resistant Staphylococcus aureus to any of the three phage lytic proteins constructs. Resistant S. aureus could not be identified after 10 cycles of bacterial exposure to phage lytic proteins either in liquid or plate cultures. However, a quick increase in lysostaphin resistance (up to 1000-fold in liquid culture was observed. The lack of resistant development supports the use of phage lytic proteins as future therapeutics to treat staphylococcal infections.

  18. Aztreonam lysine for inhalation: new formulation of an old antibiotic.

    Science.gov (United States)

    Zeitler, Kristen; Salvas, Brian; Stevens, Vanessa; Brown, Jack

    2012-01-15

    The pharmacology, safety, efficacy, pharmacokinetics, pharmacodynamics, current place in therapy, and potential future therapeutic uses of inhaled aztreonam are reviewed. Inhaled aztreonam, a newly formulated lysine salt of the original monobactam antibiotic, is approved for the treatment of respiratory symptoms in patients with cystic fibrosis (CF) who are colonized with Pseudomonas aeruginosa. Its spectrum of activity is limited to susceptible gram-negative organisms, including P. aeruginosa. Lyophilized aztreonam lysine is diluted with 0.17% sodium chloride and administered using the Altera nebulizer system, which produces appropriate-sized particles for proper deposition in the lungs to achieve high sputum and low systemic concentrations. Mean sputum drug concentrations are highest 10 minutes after dose administration, and plasma concentrations peak one hour after inhalation. Aztreonam is excreted via active tubular secretion and glomerular filtration. Caution is advised in patients with renal or hepatic impairment, breastfeeding women, and patients age 65 years or older. Like the older i.v. formulation, inhaled aztreonam displays time-dependent killing. Phase III clinical trials have shown improvements in respiratory symptoms, decreased P. aeruginosa sputum density, prolonged time intervals between antibiotic treatments, and efficacy without the development of resistance in the face of repeated exposures. This formulation is available only from select specialty pharmacies and should only be used with the Altera nebulizer system. Inhaled aztreonam has shown efficacy and safety in patients seven years of age or older with CF who have P. aeruginosa airway infections. This product may complement existing therapies and offers the advantage of a new inhaled formulation to aid in treatment regimens.

  19. Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1.

    Science.gov (United States)

    Lim, Jeong-A; Shin, Hakdong; Lee, Dong Hwan; Han, Sang-Wook; Lee, Ju-Hoon; Ryu, Sangryeol; Heu, Sunggi

    2014-08-01

    PM1, a novel virulent bacteriophage that infects Pectobacterium carotovorum subsp. carotovorum, was isolated. Its morphological features were examined by electron microscopy, which indicated that this phage belongs to the family Myoviridae. It has a 55,098-bp genome, including a 2,665-bp terminal repeat. A total of 63 open reading frames (ORFs) were predicted, but only 20 ORFs possessed homology with functional proteins. There is one tRNA coding region, and the GC-content of the genome is 44.9 %. Most ORFs in bacteriophage PM1 showed high homology to enterobacteria phage ΦEcoM-GJ1 and Erwinia phage νB EamM-Y2. Like these bacteriophages, PM1 encodes an RNA polymerase, which is a hallmark of T7-like phages. There is no integrase or repressor, suggesting that PM1 is a virulent bacteriophage.

  20. [The challenge of controlling foodborne diseases: bacteriophages as a new biotechnological tool].

    Science.gov (United States)

    Jorquera, Denisse; Galarce, Nicolás; Borie, Consuelo

    2015-12-01

    Foodborne diseases are an increasing public health issue, in which bacterial pathogens have a transcendental role. To face this situation, the food industry has implemented several control strategies, using in the last decade some biotechnological tools, such as direct application of bacteriophages on food, to effectively control bacterial pathogens. Their bactericidal and safe properties to humans and animals have been widely described in the literature, being nowadays some bacteriophage-based products commercially available. Despite this, there are so many factors that can interfere in their biocontrol effectiveness on food, therefore is essential to consider these factors before their application. Thus, the optimal bacterial reduction will be achieved, which would produce a safer food. This review discusses some factors to consider in the use of bacteriophages as biocontrol agents of foodborne pathogens, including historical background, taxonomy and biological description of bacteriophages, and also advantages, disadvantages, and considerations of food applications.

  1. Improved bacteriophage genome data is necessary for integrating viral and bacterial ecology.

    Science.gov (United States)

    Bibby, Kyle

    2014-02-01

    The recent rise in "omics"-enabled approaches has lead to improved understanding in many areas of microbial ecology. However, despite the importance that viruses play in a broad microbial ecology context, viral ecology remains largely not integrated into high-throughput microbial ecology studies. A fundamental hindrance to the integration of viral ecology into omics-enabled microbial ecology studies is the lack of suitable reference bacteriophage genomes in reference databases-currently, only 0.001% of bacteriophage diversity is represented in genome sequence databases. This commentary serves to highlight this issue and to promote bacteriophage genome sequencing as a valuable scientific undertaking to both better understand bacteriophage diversity and move towards a more holistic view of microbial ecology.

  2. Activity of Bacteriophages in Removing Biofilms of Pseudomonas aeruginosa Isolates from Chronic Rhinosinusitis Patients

    NARCIS (Netherlands)

    Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John

    2017-01-01

    Introduction:Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death.

  3. BRED: a simple and powerful tool for constructing mutant and recombinant bacteriophage genomes.

    Directory of Open Access Journals (Sweden)

    Laura J Marinelli

    Full Text Available Advances in DNA sequencing technology have facilitated the determination of hundreds of complete genome sequences both for bacteria and their bacteriophages. Some of these bacteria have well-developed and facile genetic systems for constructing mutants to determine gene function, and recombineering is a particularly effective tool. However, generally applicable methods for constructing defined mutants of bacteriophages are poorly developed, in part because of the inability to use selectable markers such as drug resistance genes during viral lytic growth. Here we describe a method for simple and effective directed mutagenesis of bacteriophage genomes using Bacteriophage Recombineering of Electroporated DNA (BRED, in which a highly efficient recombineering system is utilized directly on electroporated phage DNA; no selection is required and mutants can be readily detected by PCR. We describe the use of BRED to construct unmarked gene deletions, in-frame internal deletions, base substitutions, precise gene replacements, and the addition of gene tags.

  4. Molecular studies on bacteriophage endolysins and their potential to control gram-negative bacteria

    OpenAIRE

    Oliveira, Hugo Alexandre Mendes

    2014-01-01

    Thesis for PhD degree in Chemical and Biological Engineeering Bacteriophages are viruses that specifically infect bacterial hosts to reproduce. At the end of the infection cycle, progeny virions are confronted with a rigid cell wall that impedes their release into the environment. Consequently, bacteriophages encode hydrolytic enzymes, called endolysins, to digest the peptidoglycan and cause bacteriolysis. In contrast to their extensively studied counterparts, active against Gram-positi...

  5. Defective lysis of streptomycin-resistant escherichia coli cells infected with bacteriophage f2.

    OpenAIRE

    De Mars Cody, J; Conway, T W

    1981-01-01

    A lysis defect was found to account for the failure of a streptomycin-resistant strain of Escherichia coli to form plaques when infected with the male-specific bacteriophage f2. The lysis defect was associated with the mutation to streptomycin resistance. Large amounts of apparently normal bacteriophage accumulated in these cells. Cell-free extracts from both the parental and mutant strains synthesized a potential lysis protein in considerable amounts in response to formaldehyde-treated f2 RN...

  6. In vivo recombineering of bacteriophage λ by PCR fragments and single-strand oligonucleotides

    International Nuclear Information System (INIS)

    Oppenheim, Amos B.; Rattray, Alison J.; Bubunenko, Mikhail; Thomason, Lynn C.; Court, Donald L.

    2004-01-01

    We demonstrate that the bacteriophage λ Red functions efficiently recombine linear DNA or single-strand oligonucleotides (ss-oligos) into bacteriophage λ to create specific changes in the viral genome. Point mutations, deletions, and gene replacements have been created. While recombineering with oligonucleotides, we encountered other mutations accompanying the desired point mutational change. DNA sequence analysis suggests that these unwanted mutations are mainly frameshift deletions introduced during oligonucleotide synthesis

  7. Excision repair and patch size in UV-irradiated bacteriophage T4

    International Nuclear Information System (INIS)

    Yarosh, D.B.; Rosenstein, B.S.; Setlow, R.B.

    1981-01-01

    We determined the average size of excision repair patches in repair of UV lesions in bacteriophage T4 by measuring the photolysis of bromodeoxyuridine incorporated during repair. The average patch was small, approximately four nucleotides long. In control experiments with the denV1 excision-deficient mutant, we encountered an artifact, a protein(s) which remained bound to phenol-extracted DNA and prevented nicking by the UV-specific endonucleases of Micrococcus luteus and bacteriophage T4

  8. Isolation of bacteriophages from air using vacuum filtration technique: an improved and novel method.

    Science.gov (United States)

    Magare, B; Nair, A; Khairnar, K

    2017-10-01

    Development of a simple and economical air sampler for isolation and enrichment of bacteriophages from air samples. A vacuum filtration unit with simple modifications was used for isolation of bacteriophages from air sampled in the lavatory. Air was sampled at the rate of 62 l min -1 by bubbling into Mcllvaine buffer for 30 min, which was used as bacteriophage solution for enrichment and plaque assessment against individual hosts. Alternatively, the aforementioned phage solution was enriched using a host consortium before plaque assessment. Phages were isolated in the range of 1-12 PFU per ml by the first method, whereas enrichment with host consortium gave phages around 10- to 1000-folds higher in number. Combining with established enrichment method, an improvement of about 10 times in phage isolation efficiency was attained. The method is very useful for studying the natural bacteriophages of air, requiring only a basic microbiological laboratory setup making it simple and economical. This study brings out a simple, economical air sampler for assessing air bacteriophages that can be employed by any microbial laboratory. Although various methods are available for studying bacteriophages in water and soil, very limited are available for air. To the best of our knowledge, the method developed in this study is unique in its design and concept for studying bacteriophages in air. The sampler is sterilizable by autoclaving and maintains a healthy rate of airflow provided by conventional vacuum pumps. The use of a nonspecific 'trapping solution' allows for the qualitative and quantitative study of air bacteriophages. © 2017 The Society for Applied Microbiology.

  9. [Inhibition by chitosan of productive infection of T-series bacteriophages in the Escherichia coli culture].

    Science.gov (United States)

    Kochkina, Z M; Pospeshny, G; Chirkov, S N

    1995-01-01

    The possibility of the use of chitosan aminopolysaccharide (poly-D-glucosamine) and its two salts--acetate and hydrochloride--to prevent phase infection of the Escherichia coli culture, strain B1, was studied. It was shown that chitosan inhibited productive infection caused by the bacteriophages T2 and T7, the efficiency of inhibition of both bacteriophages depending directly on the final concentration of chitosan in a medium. Neither chitosan nor its salts significantly prevented the growth of the bacterial culture.

  10. Genetic diversity among five T4-like bacteriophages.

    Science.gov (United States)

    Nolan, James M; Petrov, Vasiliy; Bertrand, Claire; Krisch, Henry M; Karam, Jim D

    2006-05-23

    Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR) and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs) that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4-like phages harbour a wealth of genetic material that has

  11. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  12. Fluorometric determination of chemically available lysine: adaptation, validation and application to different milk products.

    Science.gov (United States)

    Ferrer, E; Alegría, A; Farré, Rosaura; Abellán, P; Romero, F

    2003-12-01

    A spectrophotometric method based on the reaction between available lysine and ortho-phthaldialdehyde (OPA) was adapted and validated for fluorometric determination of the chemically available lysine contents in milk matrices (UHT and conventional in-bottle sterilized cow milk, milk-based infant formulas and infant formula ingredients). The values of the analytical parameters show its usefulness as a routine method (linearity, r = 0.9992; detection limit, 0.0066 mg/mL assay; accuracy, 99-108%; precision, intra-day 2.1-5.9% and inter-day 3.5 10.2%). No statistically significant differences (p available lysine contents in UHT and sterilized milk marketed in Spain, to study the evolution of chemically available lysine during the shelf-life of UHT milks, and finally the quality of name- and store-brand UHT milks was also compared. No statistically significant differences (p available lysine contents of the same type of UHT or sterilized milk or between store- and name-brand UHT milks. Statistically significant differences (p available lysine contents in UHT and sterilized milk. Losses of chemically available lysine ranging from 2.7 to 29% were obtained during the shelf-life of UHT milk.

  13. Functional and Evolutionary Relationship between Arginine Biosynthesis and Prokaryotic Lysine Biosynthesis through α-Aminoadipate

    Science.gov (United States)

    Miyazaki, Junichi; Kobashi, Nobuyuki; Nishiyama, Makoto; Yamane, Hisakazu

    2001-01-01

    Our previous studies revealed that lysine is synthesized through α-aminoadipate in an extremely thermophilic bacterium, Thermus thermophilus HB27. Sequence analysis of a gene cluster involved in the lysine biosynthesis of this microorganism suggested that the conversion from α-aminoadipate to lysine proceeds in a way similar to that of arginine biosynthesis. In the present study, we cloned an argD homolog of T. thermophilus HB27 which was not included in the previously cloned lysine biosynthetic gene cluster and determined the nucleotide sequence. A knockout of the argD-like gene, now termed lysJ, in T. thermophilus HB27 showed that this gene is essential for lysine biosynthesis in this bacterium. The lysJ gene was cloned into a plasmid and overexpressed in Escherichia coli, and the LysJ protein was purified to homogeneity. When the catalytic activity of LysJ was analyzed in a reverse reaction in the putative pathway, LysJ was found to transfer the ɛ-amino group of N2-acetyllysine, a putative intermediate in lysine biosynthesis, to 2-oxoglutarate. When N2-acetylornithine, a substrate for arginine biosynthesis, was used as the substrate for the reaction, LysJ transferred the δ-amino group of N2-acetylornithine to 2-oxoglutarate 16 times more efficiently than when N2-acetyllysine was the amino donor. All these results suggest that lysine biosynthesis in T. thermophilus HB27 is functionally and evolutionarily related to arginine biosynthesis. PMID:11489859

  14. Lysine biosynthesis in microbes: relevance as drug target and prospects for β-lactam antibiotics production.

    Science.gov (United States)

    Fazius, Felicitas; Zaehle, Christoph; Brock, Matthias

    2013-05-01

    Plants as well as pro- and eukaryotic microorganisms are able to synthesise lysine via de novo synthesis. While plants and bacteria, with some exceptions, rely on variations of the meso-diaminopimelate pathway for lysine biosynthesis, fungi exclusively use the α-aminoadipate pathway. Although bacteria and fungi are, in principle, both suitable as lysine producers, current industrial fermentations rely on the use of bacteria. In contrast, fungi are important producers of β-lactam antibiotics such as penicillins or cephalosporins. The synthesis of these antibiotics strictly depends on α-aminoadipate deriving from lysine biosynthesis. Interestingly, despite the resulting industrial importance of the fungal α-aminoadipate pathway, biochemical reactions leading to α-aminoadipate formation have only been studied on a limited number of fungal species. In this respect, just recently an essential isomerisation reaction required for the formation of α-aminoadipate has been elucidated in detail. This review summarises biochemical pathways leading to lysine production, discusses the suitability of interrupting lysine biosynthesis as target for new antibacterial and antifungal compounds and emphasises on biochemical reactions involved in the formation of α-aminoadipate in fungi as an essential intermediate for both, lysine and β-lactam antibiotics production.

  15. Aflatoxin B1-lysine adduct in dried blood spot samples of animals and humans.

    Science.gov (United States)

    Xue, Kathy S; Cai, Wenjie; Tang, Lili; Wang, Jia-Sheng

    2016-12-01

    Dried blood spots (DBS) were proposed as potentially viable method for exposure assessment of environmental toxicants in infant and young children. For this study, we validated an experimental protocol to quantify AFB 1 -lysine adduct in DBS samples of AFB 1 -treated F344 rats, as well as samples from human field study. Significant dose-response relationships in AFB 1 -lysine adduct formation were found in DBS samples of rats treated with single- and repeated-dose AFB 1 . AFB 1 -lysine levels in DBS samples were highly correlated with corresponding serum sample levels. The Person coefficients were 0.997 for the single-dose exposure, and 0.996 for the repeated-dose exposure. Levels of AFB 1 -lysine adduct had also good agreement between DBS and serum samples as shown by Bland-Altman plot analysis. For human field study samples (n = 36), a Pearson correlation coefficient of 0.784 was found between AFB 1 -lysine adduct levels of DBS and corresponding serum samples. Bland-Altman plots showed the distribution of the log differences between DBS and serum AFB 1 -lysine levels are within 95% confidence intervals. These results showed AFB 1 -lysine adduct levels in DBS cards and serum samples from animals and human samples are comparable, and the DBS technique and analytical protocol is a good means to assess AFB 1 exposure in infant and children populations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. [Determination of Azospirillum Brasilense Cells With Bacteriophages via Electrooptical Analysis of Microbial Suspensions].

    Science.gov (United States)

    Gulii, O I; Karavayeva, O A; Pavlii, S A; Sokolov, O I; Bunin, V D; Ignatov, O V

    2015-01-01

    The dependence-of changes in the electrooptical properties of Azospirillum brasilense cell suspension Sp7 during interaction with bacteriophage ΦAb-Sp7 on the number and time of interactions was studied. Incubation of cells with bacteriophage significantly changed the electrooptical signal within one minute. The selective effect of bacteriophage ΦAb on 18 strains of bacteria of the genus Azospirillum was studied: A. amazonense Ami4, A. brasilense Sp7, Cd, Sp107, Sp245, Jm6B2, Brl4, KR77, S17, S27, SR55, SR75, A. halopraeferans Au4, A. irakense KBC1, K A3, A. lipoferum Sp59b, SR65 and RG20a. We determined the limit of reliable determination of microbial cells infected with bacteriophage: - 10(4) cells/mL. The presence of foreign cell cultures of E. coli B-878 and E. coli XL-1 did not complicate the detection of A brasilense Sp7 cells with the use of bacteriophage ΦAb-Sp7. The results demonstrated that bacteriophage (ΦAb-Sp7 can be used for the detection of Azospirillum microbial cells via t electrooptical analysis of cell suspensions.

  17. Bacteriophage-based therapy in cystic fibrosis-associated Pseudomonas aeruginosa infections: rationale and current status

    Science.gov (United States)

    Hraiech, Sami; Brégeon, Fabienne; Rolain, Jean-Marc

    2015-01-01

    Pulmonary infections involving Pseudomonas aeruginosa are among the leading causes of the deterioration of the respiratory status of cystic fibrosis (CF) patients. The emergence of multidrug-resistant strains in such populations, favored by iterative antibiotic cures, has led to the urgent need for new therapies. Among them, bacteriophage-based therapies deserve a focus. One century of empiric use in the ex-USSR countries suggests that bacteriophages may have beneficial effects against a large range of bacterial infections. Interest in bacteriophages has recently renewed in Western countries, and the in vitro data available suggest that bacteriophage-based therapy may be of significant interest for the treatment of pulmonary infections in CF patients. Although the clinical data concerning this specific population are relatively scarce, the beginning of the first large randomized study evaluating bacteriophage-based therapy in burn infections suggests that the time has come to assess the effectiveness of this new therapy in CF P. aeruginosa pneumonia. Consequently, the aim of this review is, after a brief history, to summarize the evidence concerning bacteriophage efficacy against P. aeruginosa and, more specifically, the in vitro studies, animal models, and clinical trials targeting CF. PMID:26213462

  18. Isolation of Dickeya dadantii strains from potato disease and biocontrol by their bacteriophages.

    Science.gov (United States)

    Soleimani-Delfan, Abbas; Etemadifar, Zahra; Emtiazi, Giti; Bouzari, Majid

    2015-01-01

    One of the most economically important bacterial pathogens of plants and plant products is Dickeya dadantii. This bacterium causes soft rot disease in tubers and other parts of the potato and other plants of the Solanaceae family. The application of restricted host range bacteriophages as biocontrol agents has recently gained widespread interest. This study purposed to isolate the infectious agent of the potato and evaluate its biocontrol by bacteriophages. Two phytopathogenic strains were isolated from infected potatoes, identified based on biochemical and 16S rRNA gene sequencing, and submitted to GenBank as D. dadantii strain pis3 (accession no. HQ423668) and D. dadantii strain sip4 (accession no. HQ423669). Their bacteriophages were isolated from Caspian Sea water by enriching the water filtrate with D. dadantii strains as hosts using spot or overlay methods. On the basis of morphotypes, the isolated bacteriophages were identified as members of the Myoviridae and Siphoviridae families and could inhibit the growth of antibiotic resistant D. dadantii strains in culture medium. Moreover, in Dickeya infected plants treated with bacteriophage, no disease progression was detected. No significant difference was seen between phage-treated and control plants. Thus, isolated bacteriophages can be suggested for the biocontrol of plant disease caused by Dickeya strains.

  19. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    Science.gov (United States)

    Sváb, Domonkos; Falgenhauer, Linda; Rohde, Manfred; Szabó, Judit; Chakraborty, Trinad; Tóth, István

    2018-01-01

    During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), and enteroinvasive (EIEC) pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR) E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria. PMID:29487585

  20. Isolation, characterization, and application of bacteriophages for Salmonella spp. biocontrol in pigs.

    Science.gov (United States)

    Albino, Luiz A A; Rostagno, Marcos H; Húngaro, Humberto M; Mendonça, Regina C S

    2014-08-01

    Foodborne illness due to Salmonella-contaminated pork products is an important public health problem, causing significant economic losses worldwide. The use of bacteriophages is a potential intervention tool that has attracted interest for the control of foodborne pathogens. The objective of this study was to detect the presence of Salmonella in commercial pig farms and to isolate specific autochthonous bacteriophages against Salmonella Typhimurium, to characterize them and to evaluate their lytic capacity against Salmonella Typhimurium in vivo and in vitro. Salmonella was isolated on 50% (4/8) of the farms, with serotype Typhimurium being the most prevalent, detected in 48.2% of samples (13/27). The isolated Salmonella Typhimurium bacteriophages belong to the Podoviridae family, were active against serotypes Abony, Enteritidis, Typhi, and Typhimurium, but not against serotypes Arizonae, Cholerasuis, Gallinarum, and Pullorum. In in vitro tests, bacteriophage at 10(7) PFU/mL and 10(9) PFU/mL significantly reduced (pbacteriophages, Salmonella was identified in 93.3% (28/30) of the fecal samples from the pigs inoculated with 10(6) CFU/mL, and only in 56.6% (17/30) after the treatment consisting of oral administration of the pool of the bacteriophages after the fasting period, simulating a common preslaughter practice. These results indicate that the pool of bacteriophages administered was capable of reducing the colonization of Salmonella in pigs.

  1. Bacteriophages as indicators of human and animal faecal contamination in raw and treated wastewaters from Tunisia.

    Science.gov (United States)

    Yahya, M; Hmaied, F; Jebri, S; Jofre, J; Hamdi, M

    2015-05-01

    We aimed at quantifying bacteriophages in raw and treated wastewaters of human and animal origin in Tunisia to assess their usefulness for tracking the origin of faecal pollution and in the follow-up of effectiveness of water treatments process. The concentrations of bacteriophages in wastewater samples were determined by double layer agar technique. Somatic coliphages and F-specific RNA bacteriophages were present in all types of samples in high concentrations. The values of Escherichia coli were variable depending on geographical location. On the other hand, bacteriophages infecting strain GA17 were detected preferably when human faecal contamination was occurred. Bacteriophages appear as a feasible and widely applicable manner to detect faecal contamination in Tunisia. On the other hand, phages infecting GA17 could be good markers for tracking the origin of faecal pollution in the area studied. The reuse of treated wastewaters can be a solution to meet the needs of water in the geographical area of study. Bacteriophages seem to predict differently the presence of faecal contamination in water than bacterial indicators. Consequently, they can be a valuable additional tool to improve water resources management for minimizing health risks. © 2015 The Society for Applied Microbiology.

  2. A simple and novel modification of comet assay for determination of bacteriophage mediated bacterial cell lysis.

    Science.gov (United States)

    Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman

    2014-07-01

    The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Access to bacteriophage therapy: discouraging experiences from the human cell and tissue legal framework.

    Science.gov (United States)

    Verbeken, G; Huys, I; De Vos, D; De Coninck, A; Roseeuw, D; Kets, E; Vanderkelen, A; Draye, J P; Rose, T; Jennes, S; Ceulemans, C; Pirnay, J P

    2016-02-01

    Cultures of human epithelial cells (keratinocytes) are used as an additional surgical tool to treat critically burnt patients. Initially, the production environment of keratinocyte grafts was regulated exclusively by national regulations. In 2004, the European Tissues and Cells Directive 2004/23/EC (transposed into Belgian Law) imposed requirements that resulted in increased production costs and no significant increase in quality and/or safety. In 2007, Europe published Regulation (EC) No. 1394/2007 on Advanced Therapy Medicinal Products. Overnight, cultured keratinocytes became (arguably) 'Advanced' Therapy Medicinal Products to be produced as human medicinal products. The practical impact of these amendments was (and still is) considerable. A similar development appears imminent in bacteriophage therapy. Bacteriophages are bacterial viruses that can be used for tackling the problem of bacterial resistance development to antibiotics. Therapeutic natural bacteriophages have been in clinical use for almost 100 years. Regulators today are framing the (re-)introduction of (natural) bacteriophage therapy into 'modern western' medicine as biological medicinal products, also subject to stringent regulatory medicinal products requirements. In this paper, we look back on a century of bacteriophage therapy to make the case that therapeutic natural bacteriophages should not be classified under the medicinal product regulatory frames as they exist today. It is our call to authorities to not repeat the mistake of the past. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Identification and Characterization of T5-Like Bacteriophages Representing Two Novel Subgroups from Food Products

    Directory of Open Access Journals (Sweden)

    Domonkos Sváb

    2018-02-01

    Full Text Available During recent years, interest in the use of bacteriophages as biocontrol agents against foodborne pathogens has increased, particularly for members of the family Enterobacteriaceae, with pathogenic Escherichia coli, Shigella, and Salmonella strains among them. Here, we report the isolation and characterisation of 12 novel T5-like bacteriophages from confiscated food samples. All bacterophages effectively lysed E. coli K-12 strains and were able to infect pathogenic E. coli strains representing enterohaemorrhagic (EHEC, enteropathogenic (EPEC, enterotoxigenic (ETEC, and enteroinvasive (EIEC pathotypes, Shigella dysenteriae, S. sonnei strains, as well as multidrug-resistant (MDR E. coli and multiple strains representing different Salmonella enterica serovars. All the bacteriophages exhibited Siphoviridae morphology. Whole genome sequencing of the novel T5-like bacteriophages showed that they represent two distinct groups, with the genome-based grouping correlating to the different host spectra. As these bacteriophages are of food origin, their stability and lack of any virulence genes, as well as their broad and mutually complementary host spectrum makes these new T5-like bacteriophages valuable candidates for use as biocontrol agents against foodborne pathogenic enterobacteria.

  5. Effect of heat damage in an autoclave on the reactive lysine contents of soy products and corn distillers dried grains with solubles. Use of the results to check on lysine damage in common qualities of these ingredients.

    Science.gov (United States)

    Fontaine, Johannes; Zimmer, Ulrike; Moughan, Paul J; Rutherfurd, Shane M

    2007-12-26

    The suitability of the homoarginine reaction for determining the reactive lysine in soy products and corn distillers dried grain with solubles (DDGS) was tested. For this purpose, some batches were subjected to deliberate heat damage for up to 30 min in an autoclave with 135 degrees C hot steam, and the samples were analyzed for total lysine and reactive lysine. In addition, 84 samples of common soy and 80 samples of corn DDGS were tested for their content of total and reactive lysine, and the contents were compared with those of the autoclave tests. For soy products conclusive results were obtained. In the case of heat treatment, both total lysine and reactive lysine decrease, but the latter is clearly a more sensitive indicator of lysine damage. Most normal products are quite similar, with toasting-induced damage to reactive lysine of ca. 15% compared to untoasted beans. The cause of the constantly occurring residual lysine after guanidination and the poorer reaction balance in the case of damage were explained. For common DDGS samples, however, less favorable results were obtained. Reactive and total lysine decreased almost in parallel due to heat damage, showing a great gap between them. Results showed indeed that variation of total and reactive lysine in DDGS is high, proving that its production conditions are not yet optimal for a feed ingredient.

  6. Bacteriophage-nanocomposites: an easy and reproducible method for the construction, handling, storage and transport of conjugates for deployment of bacteriophages active against Pseudomonas aeruginosa.

    Science.gov (United States)

    Cooper, Ian R; Illsley, Matthew; Korobeinyk, Alina V; Whitby, Raymond L D

    2015-04-01

    The purpose of this work was proof of concept to develop a novel, cost effective protocol for the binding of bacteriophages to a surface without loss of function, after storage in various media. The technology platform involved covalently bonding bacteriophage 13 (a Pseudomonas aeruginosa bacteriophage) to two magnetised multiwalled carbon nanotube scaffolds using a series of buffers; bacteriophage-nanotube (B-N) conjugates were efficacious after storage at 20 °C for six weeks. B-N conjugates were added to human cell culture in vitro for 9 days without causing necrosis and apoptosis. B-N conjugates were frozen (-20 °C) in cell culture media for several weeks, after which recovery from the human cell culture medium was possible using a simple magnetic separation technique. The retention of viral infective potential was demonstrated by subsequent spread plating onto lawns of susceptible P. aeruginosa. Analysis of the human cell culture medium revealed the production of interleukins by the human fibroblasts upon exposure to the bacteriophage. One day after exposure, IL-8 levels transitorily increased between 60 and 100 pg/mL, but this level was not found on any subsequent days, suggesting an initial but not long lasting response. This paper outlines the development of a method to deliver antimicrobial activity to a surface that is small enough to be combined with other materials. To our knowledge at time of publication, this is the first report of magnetically coupled bacteriophages specific to human pathogens which can be recovered from test systems, and could represent a novel means to conditionally deploy antibacterial agents into living eukaryotic systems without the risks of some antibiotic therapies. Copyright © 2015. Published by Elsevier B.V.

  7. Bacteriophages-potential for application in wastewater treatment processes

    International Nuclear Information System (INIS)

    Withey, S.; Cartmell, E.; Avery, L.M.; Stephenson, T.

    2005-01-01

    Bacteriophages are viruses that infect and lyse bacteria. Interest in the ability of phages to control bacterial populations has extended from medical applications into the fields of agriculture, aquaculture and the food industry. Here, the potential application of phage techniques in wastewater treatment systems to improve effluent and sludge emissions into the environment is discussed. Phage-mediated bacterial mortality has the potential to influence treatment performance by controlling the abundance of key functional groups. Phage treatments have the potential to control environmental wastewater process problems such as: foaming in activated sludge plants; sludge dewaterability and digestibility; pathogenic bacteria; and to reduce competition between nuisance bacteria and functionally important microbial populations. Successful application of phage therapy to wastewater treatment does though require a fuller understanding of wastewater microbial community dynamics and interactions. Strategies to counter host specificity and host cell resistance must also be developed, as should safety considerations regarding pathogen emergence through transduction

  8. The oxygen effect in bacteriophages irradiated in different media. 1

    International Nuclear Information System (INIS)

    Korystov, Yu.N.; Veksler, F.B.

    1983-01-01

    The oxygen effect (OE) on bacteriophage T4 in a salt solution was studied. It is shown that the sign and magnitude of OE depend on the conditions of the postirradiation incubation of the phage in irradiated medium. The direct OE is due to postirradiation lesion of the phage by hydrogen peroxide which is formed in greater amounts after irradiation in oxygen than in anoxia. The addition of catalase is shown to eliminate the postirradiation inactivation of the phage. In this case an opposite OE is observed. The mechanism of this effect is a scavenge of hydrogen atoms which damage the phage by oxygen. In the presence of catalase the OE depends also on pH of the solution. It is suggested that the hydroxyl radical arising from the reaction of H 2 O 2 with Fe 2+ is responsible for the damaging effect of H 2 O 2 . (author)

  9. Taxonomic investigations of bacteriophage sensitive bacteria isolated from marine waters

    Science.gov (United States)

    Moebus, K.; Nattkemper, H.

    1983-12-01

    Based on 28 criteria the taxonomy of 366 phage sensitive bacterial strains isolated from marine waters (Atlantic between European continental shelf and Sargasso Sea, Bay of Biscay, North Sea near Helgoland) was investigated. Seventy-eight phage-intensity strains derived from the same Atlantic Ocean regions as the sensitive ones were tested for comparison. While in the latter considerable diversity was observed, the results obtained with the phage-sensitive bacteria are characterized by stupendous uniformity. 362 of the 366 strains are assigned to the family Vibrionaceae, some 280 of which belong to the genus Vibrio. As discussed, this taxonomic uniformity among the phage-sensitive bacteria is assumed to be an artifact mainly caused by the type of enrichment culture employed for the isolation of all but a few bacteriophage strains used and, to a lesser degree, by characteristics of the bacterial populations encountered.

  10. Capstan Friction Model for DNA Ejection from Bacteriophages

    Science.gov (United States)

    Ghosal, Sandip

    2012-12-01

    Bacteriophages infect cells by attaching to the outer membrane and injecting their DNA into the cell. The phage DNA is then transcribed by the cell’s transcription machinery. A number of physical mechanisms by which DNA can be translocated from the phage capsid into the cell have been identified. A fast ejection driven by the elastic and electrostatic potential energy of the compacted DNA within the viral capsid appears to be used by most phages, at least to initiate infection. In recent in vitro experiments, the speed of DNA translocation from a λ phage capsid has been measured as a function of ejected length over the entire duration of the event. Here, a mechanical model is proposed that is able to explain the observed dependence of exit velocity on ejected length, and that is also consistent with the accepted picture of the geometric arrangement of DNA within the viral capsid.

  11. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  12. A quorum-sensing-induced bacteriophage defense mechanism

    DEFF Research Database (Denmark)

    Høyland-Kroghsbo, Nina Molin; Mærkedahl, Rasmus Baadsgaard; Svenningsen, Sine

    2013-01-01

    hypothesize that some bacteria have additionally evolved the abilities to estimate the risk of phage infection and to adjust their strategies accordingly. One risk parameter is the density of the bacterial population. Hence, quorum sensing, i.e., the ability to regulate gene expression according to population...... of uninfected survivor cells after a potent attack by virulent phages. Notably, this mechanism may apply to a broader range of phages, as AHLs also reduce the risk of ¿ phage infection through a different receptor. IMPORTANCE To enable the successful manipulation of bacterial populations, a comprehensive...... understanding of the factors that naturally shape microbial communities is required. One of the key factors in this context is the interactions between bacteria and the most abundant biological entities on Earth, namely, the bacteriophages that prey on bacteria. This proof-of-principle study shows that quorum...

  13. Targeting glioblastoma via intranasal administration of Ff bacteriophages.

    Science.gov (United States)

    Dor-On, Eyal; Solomon, Beka

    2015-01-01

    Bacteriophages (phages) are ubiquitous viruses that control the growth and diversity of bacteria. Although they have no tropism to mammalian cells, accumulated evidence suggests that phages are not neutral to the mammalian macro-host and can promote immunomodulatory and anti-tumorigenic activities. Here we demonstrate that Ff phages that do not display any proteins or peptides could inhibit the growth of subcutaneous glioblastoma tumors in mice and that this activity is mediated in part by lipopolysaccharide molecules attached to their virion. Using the intranasal route, a non-invasive approach to deliver therapeutics directly to the CNS, we further show that phages rapidly accumulate in the brains of mice and could attenuate progression of orthotopic glioblastoma. Taken together, this study provides new insight into phages non-bacterial activities and demonstrates the feasibility of delivering Ff phages intranasally to treat brain malignancies.

  14. Order reduction for a model of marine bacteriophage evolution

    Science.gov (United States)

    Pagliarini, Silvia; Korobeinikov, Andrei

    2017-02-01

    A typical mechanistic model of viral evolution necessary includes several time scales which can differ by orders of magnitude. Such a diversity of time scales makes analysis of these models difficult. Reducing the order of a model is highly desirable when handling such a model. A typical approach applied to such slow-fast (or singularly perturbed) systems is the time scales separation technique. Constructing the so-called quasi-steady-state approximation is the usual first step in applying the technique. While this technique is commonly applied, in some cases its straightforward application can lead to unsatisfactory results. In this paper we construct the quasi-steady-state approximation for a model of evolution of marine bacteriophages based on the Beretta-Kuang model. We show that for this particular model the quasi-steady-state approximation is able to produce only qualitative but not quantitative fit.

  15. Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.

    Science.gov (United States)

    Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico

    2015-05-01

    Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.

  16. Controlling the Morphology of Organic Crystals with Filamentous Bacteriophages.

    Science.gov (United States)

    Cho, Whirang; Liu, Xiaomeng; Forrest, James; Fowler, Jeffrey D; Furst, Eric M

    2015-07-29

    The preparation of thiamethoxam (TMX) organic crystals with high morphological uniformity was achieved by controlled aggregation-driven crystallization of primitive TMX crystals and phage using the filamentous M13 bacteriophage. The development of a regular, micrometer-sized, tetragonal-bipyramidal crystal structure was dependent on the amount of phage present. The phage appears to affect the supersaturation driving force for crystallization. The phage adsorption isotherm to TMX was well-fitted by the Satake-Yang model, which suggests a cooperative binding between neighboring phages as well as a binding of phage with the TMX crystal surface. This study shows the potential of phage additives to control the morphology and morphological uniformity of organic crystals.

  17. Isolation and characterization of bacteriophages with therapeutic potential

    DEFF Research Database (Denmark)

    Villarroel, Julia

    The concerning spread of antibiotic resistant bacteria has directed the spotlight upon bacteriophages, in short phages, as potential candidates for therapeutic purposes. Far for being a novelty, phage therapy has been widely used in the 20s and 30s in western countries until the discovery...... of antibiotics, which, coupled with a lack of knowledge of phage biology at that time, let to the replacement of phage therapy by antibiotics. On the other side of the planet, the Georgian Eliava Institute has been using phages for treating bacterial diseases since short after phage discovery a century ago...... communities directly from the environment through metagenomics, allows for genomic characterisation of these cocktail. Furthermore, metagenomics analyses may lead to the discovery of novel phages with therapeutic potential, opening up a promising new horizon for phage therapy. This thesis is divided into five...

  18. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  19. Review: elimination of bacteriophages in whey and whey products

    Science.gov (United States)

    Atamer, Zeynep; Samtlebe, Meike; Neve, Horst; J. Heller, Knut; Hinrichs, Joerg

    2013-01-01

    As the cheese market faces strong international competition, the optimization of production processes becomes more important for the economic success of dairy companies. In dairy productions, whey from former cheese batches is frequently re-used to increase the yield, to improve the texture and to increase the nutrient value of the final product. Recycling of whey cream and particulated whey proteins is also routinely performed. Most bacteriophages, however, survive pasteurization and may re-enter the cheese manufacturing process. There is a risk that phages multiply to high numbers during the production. Contamination of whey samples with bacteriophages may cause problems in cheese factories because whey separation often leads to aerosol-borne phages and thus contamination of the factory environment. Furthermore, whey cream or whey proteins used for recycling into cheese matrices may contain thermo-resistant phages. Drained cheese whey can be contaminated with phages as high as 109 phages mL-1. When whey batches are concentrated, phage titers can increase significantly by a factor of 10 hindering a complete elimination of phages. To eliminate the risk of fermentation failure during recycling of whey, whey treatments assuring an efficient reduction of phages are indispensable. This review focuses on inactivation of phages in whey by thermal treatment, ultraviolet (UV) light irradiation, and membrane filtration. Inactivation by heat is the most common procedure. However, application of heat for inactivation of thermo-resistant phages in whey is restricted due to negative effects on the functional properties of native whey proteins. Therefore an alternative strategy applying combined treatments should be favored – rather than heating the dairy product at extreme temperature/time combinations. By using membrane filtration or UV treatment in combination with thermal treatment, phage numbers in whey can be reduced sufficiently to prevent subsequent phage accumulations

  20. Vibrio vulnificus bacteriophage SSP002 as a possible biocontrol agent.

    Science.gov (United States)

    Lee, Hyun Sung; Choi, Slae; Shin, Hakdong; Lee, Ju-Hoon; Choi, Sang Ho

    2014-01-01

    A novel Vibrio vulnificus-infecting bacteriophage, SSP002, belonging to the Siphoviridae family, was isolated from the coastal area of the Yellow Sea of South Korea. Host range analysis revealed that the growth inhibition of phage SSP002 is relatively specific to V. vulnificus strains from both clinical and environmental samples. In addition, a one-step growth curve analysis and a bacteriophage stability test revealed a latent period of 65 min, a burst size of 23 ± 2 PFU, as well as broad temperature (20°C to 60°C) and pH stability (pH 3 to 12) ranges. A Tn5 random transposon mutation of V. vulnificus and partial DNA sequencing of the inserted Tn5 regions revealed that the flhA, flhB, fliF, and fleQ mutants are resistant to SSP002 phage infection, suggesting that the flagellum may be the host receptor for infection. The subsequent construction of specific gene-inactivated mutants (flhA, flhB, fliF, and fleQ) and complementation experiments substantiated this. Previously, the genome of phage SSP002 was completely sequenced and analyzed. Comparative genomic analysis of phage SSP002 and Vibrio parahaemolyticus phage vB_VpaS_MAR10 showed differences among their tail-related genes, supporting different host ranges at the species level, even though their genome sequences are highly similar. An additional mouse survival test showed that the administration of phage SSP002 at a multiplicity of infection of 1,000 significantly protects mice from infection by V. vulnificus for up to 2 months, suggesting that this phage may be a good candidate for the development of biocontrol agents against V. vulnificus infection.

  1. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  2. Mobilization of Genomic Islands of Staphylococcus aureus by Temperate Bacteriophage

    Science.gov (United States)

    Moon, Bo Youn; Park, Joo Youn; Robinson, D. Ashley; Thomas, Jonathan C.; Park, Yong Ho; Thornton, Justin A.; Seo, Keun Seok

    2016-01-01

    The virulence of Staphylococcus aureus, in both human and animal hosts, is largely influenced by the acquisition of mobile genetic elements (MGEs). Most S. aureus strains carry a variety of MGEs, including three genomic islands (νSaα, νSaβ, νSaγ) that are diverse in virulence gene content but conserved within strain lineages. Although the mobilization of pathogenicity islands, phages and plasmids has been well studied, the mobilization of genomic islands is poorly understood. We previously demonstrated the mobilization of νSaβ by the adjacent temperate bacteriophage ϕSaBov from strain RF122. In this study, we demonstrate that ϕSaBov mediates the mobilization of νSaα and νSaγ, which are located remotely from ϕSaBov, mostly to recipient strains belonging to ST151. Phage DNA sequence analysis revealed that chromosomal DNA excision events from RF122 were highly specific to MGEs, suggesting sequence-specific DNA excision and packaging events rather than generalized transduction by a temperate phage. Disruption of the int gene in ϕSaBov did not affect phage DNA excision, packaging, and integration events. However, disruption of the terL gene completely abolished phage DNA packing events, suggesting that the primary function of temperate phage in the transfer of genomic islands is to allow for phage DNA packaging by TerL and that transducing phage particles are the actual vehicle for transfer. These results extend our understanding of the important role of bacteriophage in the horizontal transfer and evolution of genomic islands in S. aureus. PMID:26953931

  3. Isolation and Characterization of Lytic Properties of Bacteriophages Specific for M. haemolytica Strains.

    Science.gov (United States)

    Urban-Chmiel, Renata; Wernicki, Andrzej; Stęgierska, Diana; Dec, Marta; Dudzic, Anna; Puchalski, Andrzej

    2015-01-01

    The objective of this study was isolation and morphological characterization of temperate bacteriophages obtained from M. haemolytica strains and evaluation of their lytic properties in vitro against M. haemolytica isolated from the respiratory tract of calves. The material for the study consisted of the reference strain M. haemolytica serotype 1 (ATCC®) BAA-410™, reference serotypes A1, A2, A5, A6, A7, A9 and A11, and wild-type isolates of M. haemolytica. Bacteriophages were induced from an overnight bacterial starter culture of all examined M. haemolytica strains treated with mitomycin C. The lytic properties and host ranges were determined by plaque assays. The morphology of the bacteriophages was examined in negative-stained smears with 5% uranyl acetate solution using a transmission electron microscope. The genetic analysis of the bacteriophages was followed by restriction analysis of bacteriophage DNA. This was followed by analysis of genetic material by polymerase chain reaction (PCR). Eight bacteriophages were obtained, like typical of the families Myoviridae, Siphoviridae and Podoviridae. Most of the bacteriophages exhibited lytic properties against the M. haemolytica strains. Restriction analysis revealed similarities to the P2-like phage obtained from the strain M. haemolytica BAA-410. The most similar profiles were observed in the case of bacteriophages φA1 and φA5. All of the bacteriophages obtained were characterized by the presence of additional fragments in the restriction profiles with respect to the P2-like reference phage. In the analysis of PCR products for the P2-like reference phage phi-MhaA1-PHL101 (DQ426904) and the phages of the M. haemolytica serotypes, a 734-bp phage PCR product was obtained. The primers were programmed in Primer-Blast software using the structure of the sequence DQ426904 of reference phage PHL101. The results obtained indicate the need for further research aimed at isolating and characterizing bacteriophages

  4. The Effectiveness of Bacteriophages against Methicillin-Resistant Staphylococcus aureus ST398 Nasal Colonization in Pigs.

    Science.gov (United States)

    Verstappen, Koen M; Tulinski, Pawel; Duim, Birgitta; Fluit, Ad C; Carney, Jennifer; van Nes, Arie; Wagenaar, Jaap A

    2016-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is an important colonizer in animals and an opportunistic pathogen in humans. In humans, MRSA can cause infections that might be difficult to treat because of antimicrobial resistance. The use of bacteriophages has been suggested as a potential approach for the control of MRSA colonization to minimize the-often occupational-exposure of humans. The aim of this study was to assess the efficacy of bacteriophage treatment on porcine nasal colonization with MRSA in vitro, in vivo, and ex vivo. The effectiveness of a bacteriophage combination of phage K*710 and P68 was assessed in vitro by incubating them with MRSA V0608892/1 (ST398) measuring the OD600 hourly. To study the in vivo effect, bacteriophages were administered in a gel developed for human application, which contain 109 plaque-forming units (pfu)/mL (K and P68 in a 19.25:1 ratio) for 5 days to piglets (N = 8) that were experimentally colonized with the MRSA strain. Eight piglets experimentally colonized were used as a negative control. The MRSA strain was also used to colonize porcine nasal mucosa explants and bacteriophages were applied to assess the ex vivo efficacy of treatment. Bacteriophages were effective in vitro. In vivo, sixteen piglets were colonized with MRSA but the number of CFU recovered after the application of the bacteriophages in 8 piglets was not reduced compared to the control animals (approx. 105 CFU/swab). In the ex vivo model, 108 CFU were used to establish colonization with MRSA; a reduction of colonization was not observed after application of bacteriophages. However, application of mupirocin both in vivo and ex vivo resulted in a near eradication of MRSA. i) The MRSA strain was killed in the presence of the bacteriophages phage K*710 and P68 in vitro. ii) Bacteriophages did not reduce porcine nasal colonization in vivo or ex vivo. Physiological in vivo and ex vivo conditions may explain these observations. Efficacy in the ex vivo

  5. Evaluation of Anti- Bacteriophage as Feed Additives to Prevent (SE in Broiler

    Directory of Open Access Journals (Sweden)

    K. H. Kim

    2013-03-01

    Full Text Available This experiment was conducted to evaluate anti-Salmonella enteritidis (anti-SE bacteriophage as feed additives to prevent Salmonella enteritidis in broilers. The experimental diets were formulated for 2 phases feeding trial, and 3 different levels (0.05, 0.1 and 0.2% of anti-SE bacteriophage were supplemented in basal diet. The basal diet was regarded as the control treatment. A total of 320 1-d-old male broilers (Ross 308 were allotted by randomized complete block (RCB design in 8 replicates with 10 chicks per pen. All birds were raised on rice hull bedding in ambient controlled environment and free access to feed and water. There were no significant differences in body weight gain, feed intake and feed conversion ratio (FCR at terminal period among treatments (p>0.05. Relative weights of liver, spleen, abdominal fat and tissue muscle of breast obtained from each anti-SE bacteriophage treatment were similar to control, with a slightly higher value in anti-SE bacteriophage 0.2%. In addition, a numerical difference of glutamic-oxaloacetic transaminase (GOT, glutamic-pyruvic transaminase (GPT and LDL cholesterol level was observed in the 0.2% anti-SE bacteriophage application even though blood profiles were not significantly affected by supplemented levels of anti-SE bacteriophage (p>0.05. In the result of a 14 d record after Salmonella enteritidis challenge of 160 birds from 4 previous treatments, mortality was linearly decreased with increasing anti-SE bacteriophage level (p<0.05, and Salmonella enteritidis concentration in the cecum was decreased with increasing levels of anti-SE bacteriophage (p<0.05. Based on the results of this study, it is considered that supplementation of 0.2% anti-SE bacteriophage may not cause any negative effect on growth, meat production, and it reduces mortality after Salmonella enteritidis challenge. These results imply to a possible use of anti-SE bacteriophage as an alternative feed additive instead of antibiotics

  6. Genomic and proteomic characterization of SuMu, a Mu-like bacteriophage infecting Haemophilus parasuis

    Science.gov (United States)

    2012-01-01

    Background Haemophilus parasuis, the causative agent of Glässer’s disease, is prevalent in swine herds and clinical signs associated with this disease are meningitis, polyserositis, polyarthritis, and bacterial pneumonia. Six to eight week old pigs in segregated early weaning herds are particularly susceptible to the disease. Insufficient colostral antibody at weaning or the mixing of pigs with heterologous virulent H. parasuis strains from other farm sources in the nursery or grower-finisher stage are considered to be factors for the outbreak of Glässer’s disease. Previously, a Mu-like bacteriophage portal gene was detected in a virulent swine isolate of H. parasuis by nested polymerase chain reaction. Mu-like bacteriophages are related phyologenetically to enterobacteriophage Mu and are thought to carry virulence genes or to induce host expression of virulence genes. This study characterizes the Mu-like bacteriophage, named SuMu, isolated from a virulent H. parasuis isolate. Results Characterization was done by genomic comparison to enterobacteriophage Mu and proteomic identification of various homologs by mass spectrometry. This is the first report of isolation and characterization of this bacteriophage from the Myoviridae family, a double-stranded DNA bacteriophage with a contractile tail, from a virulent field isolate of H. parasuis. The genome size of bacteriophage SuMu was 37,151 bp. DNA sequencing revealed fifty five open reading frames, including twenty five homologs to Mu-like bacteriophage proteins: Nlp, phage transposase-C-terminal, COG2842, Gam-like protein, gp16, Mor, peptidoglycan recognition protein, gp29, gp30, gpG, gp32, gp34, gp36, gp37, gpL, phage tail tube protein, DNA circulation protein, gpP, gp45, gp46, gp47, COG3778, tail fiber protein gp37-C terminal, tail fiber assembly protein, and Com. The last open reading frame was homologous to IS1414. The G + C content of bacteriophage SuMu was 41.87% while its H. parasuis host genome

  7. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity

    Science.gov (United States)

    Sartor, Gregory C.; Powell, Samuel K.; Brothers, Shaun P.

    2015-01-01

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic “reader” proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. SIGNIFICANCE STATEMENT Proteins involved in the “readout” of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and

  8. Epigenetic Readers of Lysine Acetylation Regulate Cocaine-Induced Plasticity.

    Science.gov (United States)

    Sartor, Gregory C; Powell, Samuel K; Brothers, Shaun P; Wahlestedt, Claes

    2015-11-11

    Epigenetic processes that regulate histone acetylation play an essential role in behavioral and molecular responses to cocaine. To date, however, only a small fraction of the mechanisms involved in the addiction-associated acetylome have been investigated. Members of the bromodomain and extraterminal (BET) family of epigenetic "reader" proteins (BRD2, BRD3, BRD4, and BRDT) bind acetylated histones and serve as a scaffold for the recruitment of macromolecular complexes to modify chromatin accessibility and transcriptional activity. The role of BET proteins in cocaine-induced plasticity, however, remains elusive. Here, we used behavioral, pharmacological, and molecular techniques to examine the involvement of BET bromodomains in cocaine reward. Of the BET proteins, BRD4, but not BRD2 or BRD3, was significantly elevated in the nucleus accumbens (NAc) of mice and rats following repeated cocaine injections and self-administration. Systemic and intra-accumbal inhibition of BRD4 with the BET inhibitor, JQ1, attenuated the rewarding effects of cocaine in a conditioned place preference procedure but did not affect conditioned place aversion, nor did JQ1 alone induce conditioned aversion or preference. Investigating the underlying mechanisms, we found that repeated cocaine injections enhanced the binding of BRD4, but not BRD3, to the promoter region of Bdnf in the NAc, whereas systemic injection of JQ1 attenuated cocaine-induced expression of Bdnf in the NAc. JQ1 and siRNA-mediated knockdown of BRD4 in vitro also reduced expression of Bdnf. These findings indicate that disrupting the interaction between BET proteins and their acetylated lysine substrates may provide a new therapeutic avenue for the treatment of drug addiction. Proteins involved in the "readout" of lysine acetylation marks, referred to as BET bromodomain proteins (including BRD2, BRD3, BRD4, and BRDT), have been shown to be key regulators of chromatin dynamics and disease, and BET inhibitors are currently

  9. Synthesis and Phase Behavior of Poly(N-isopropylacrylamide-b- Poly(L-Lysine Hydrochloride and Poly(N-Isopropylacrylamide- co-Acrylamide-b-Poly(L-Lysine Hydrochloride

    Directory of Open Access Journals (Sweden)

    Milica Spasojević

    2014-07-01

    Full Text Available The synthesis of poly(N-isopropylacrylamide-b-poly(L-lysine and poly(N- isopropylacrylamide-co-acrylamide-b-poly(L-lysine copolymers was accomplished by combining atom transfer radical polymerization (ATRP and ring opening polymerization (ROP. For this purpose, a di-functional initiator with protected amino group was successfully synthetized. The ATRP of N-isopropylacrylamide yielded narrowly dispersed polymers with consistent high yields (~80%. Lower yields (~50% were observed when narrowly dispersed random copolymers of N-isopropylacrylamide and acrylamide where synthesized. Amino-terminated poly(N-isopropylacrylamide and poly(N-isopropylacrylamide- co-acrylamide were successfully used as macroinitiators for ROP of N6-carbobenzoxy-L- lysine N-carboxyanhydride. The thermal behavior of the homopolymers and copolymers in aqueous solutions was studied by turbidimetry, dynamic light scattering (DLS and proton nuclear magnetic resonance spectroscopy (1H-NMR.

  10. Removal of MS2, Qβ and GA bacteriophages during drinking water treatment at pilot scale.

    Science.gov (United States)

    Boudaud, Nicolas; Machinal, Claire; David, Fabienne; Fréval-Le Bourdonnec, Armelle; Jossent, Jérôme; Bakanga, Fanny; Arnal, Charlotte; Jaffrezic, Marie Pierre; Oberti, Sandrine; Gantzer, Christophe

    2012-05-15

    The removal of MS2, Qβ and GA, F-specific RNA bacteriophages, potential surrogates for pathogenic waterborne viruses, was investigated during a conventional drinking water treatment at pilot scale by using river water, artificially and independently spiked with these bacteriophages. The objective of this work is to develop a standard system for assessing the effectiveness of drinking water plants with respect to the removal of MS2, Qβ and GA bacteriophages by a conventional pre-treatment process (coagulation-flocculation-settling-sand filtration) followed or not by an ultrafiltration (UF) membrane (complete treatment process). The specific performances of three UF membranes alone were assessed by using (i) pre-treated water and (ii) 0.1 mM sterile phosphate buffer solution (PBS), spiked with bacteriophages. These UF membranes tested in this work were designed for drinking water treatment market and were also selected for research purpose. The hypothesis serving as base for this study was that the interfacial properties for these three bacteriophages, in terms of electrostatic charge and the degree of hydrophobicity, could induce variations in the removal performances achieved by drinking water treatments. The comparison of the results showed a similar behaviour for both MS2 and Qβ surrogates whereas it was particularly atypical for the GA surrogate. The infectious character of MS2 and Qβ bacteriophages was mostly removed after clarification followed by sand filtration processes (more than a 4.8-log reduction) while genomic copies were removed at more than a 4.0-log after the complete treatment process. On the contrary, GA bacteriophage was only slightly removed by clarification followed by sand filtration, with less than 1.7-log and 1.2-log reduction, respectively. After the complete treatment process achieved, GA bacteriophage was removed with less than 2.2-log and 1.6-log reduction, respectively. The effectiveness of the three UF membranes tested in terms of

  11. Buried lysine, but not arginine, titrates and alters transmembrane helix tilt.

    Science.gov (United States)

    Gleason, Nicholas J; Vostrikov, Vitaly V; Greathouse, Denise V; Koeppe, Roger E

    2013-01-29

    The ionization states of individual amino acid residues of membrane proteins are difficult to decipher or assign directly in the lipid-bilayer membrane environment. We address this issue for lysines and arginines in designed transmembrane helices. For lysines (but not arginines) at two locations within dioleoyl-phosphatidylcholine bilayer membranes, we measure pK(a) values below 7.0. We find that buried charged lysine, in fashion similar to arginine, will modulate helix orientation to maximize its own access to the aqueous interface or, if occluded by aromatic rings, may cause a transmembrane helix to exit the lipid bilayer. Interestingly, the influence of neutral lysine (vis-à-vis leucine) upon helix orientation also depends upon its aqueous access. Our results suggest that changes in the ionization states of particular residues will regulate membrane protein function and furthermore illustrate the subtle complexity of ionization behavior with respect to the detailed lipid and protein environment.

  12. Lysine Glutarylation Is a Protein Posttranslational Modification Regulated by SIRT5

    DEFF Research Database (Denmark)

    Tan, Minjia; Peng, Chao; Anderson, Kristin A.

    2014-01-01

    We report the identification and characterization of a five-carbon protein posttranslational modification (PTM) called lysine glutarylation (Kglu). This protein modification was detected by immunoblot and mass spectrometry (MS), and then comprehensively validated by chemical and biochemical metho...

  13. Global profiling of lysine reactivity and ligandability in the human proteome

    Science.gov (United States)

    Hacker, Stephan M.; Backus, Keriann M.; Lazear, Michael R.; Forli, Stefano; Correia, Bruno E.; Cravatt, Benjamin F.

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  14. Global profiling of lysine reactivity and ligandability in the human proteome.

    Science.gov (United States)

    Hacker, Stephan M; Backus, Keriann M; Lazear, Michael R; Forli, Stefano; Correia, Bruno E; Cravatt, Benjamin F

    2017-12-01

    Nucleophilic amino acids make important contributions to protein function, including performing key roles in catalysis and serving as sites for post-translational modification. Electrophilic groups that target amino-acid nucleophiles have been used to create covalent ligands and drugs, but have, so far, been mainly limited to cysteine and serine. Here, we report a chemical proteomic platform for the global and quantitative analysis of lysine residues in native biological systems. We have quantified, in total, more than 9,000 lysines in human cell proteomes and have identified several hundred residues with heightened reactivity that are enriched at protein functional sites and can frequently be targeted by electrophilic small molecules. We have also discovered lysine-reactive fragment electrophiles that inhibit enzymes by active site and allosteric mechanisms, as well as disrupt protein-protein interactions in transcriptional regulatory complexes, emphasizing the broad potential and diverse functional consequences of liganding lysine residues throughout the human proteome.

  15. Adaptive synergy between catechol and lysine promotes wet adhesion by surface salt displacement

    Science.gov (United States)

    Maier, Greg P.; Rapp, Michael V.; Waite, J. Herbert; Israelachvili, Jacob N.; Butler, Alison

    2015-08-01

    In physiological fluids and seawater, adhesion of synthetic polymers to solid surfaces is severely limited by high salt, pH, and hydration, yet these conditions have not deterred the evolution of effective adhesion by mussels. Mussel foot proteins provide insights about adhesive adaptations: Notably, the abundance and proximity of catecholic Dopa (3,4-dihydroxyphenylalanine) and lysine residues hint at a synergistic interplay in adhesion. Certain siderophores—bacterial iron chelators—consist of paired catechol and lysine functionalities, thereby providing a convenient experimental platform to explore molecular synergies in bioadhesion. These siderophores and synthetic analogs exhibit robust adhesion energies (Ead ≥-15 millijoules per square meter) to mica in saline pH 3.5 to 7.5 and resist oxidation. The adjacent catechol-lysine placement provides a “one-two punch,” whereby lysine evicts hydrated cations from the mineral surface, allowing catechol binding to underlying oxides.

  16. Use of a bacteriophage cocktail to control Salmonella in food and the food industry.

    Science.gov (United States)

    Spricigo, Denis Augusto; Bardina, Carlota; Cortés, Pilar; Llagostera, Montserrat

    2013-07-15

    The use of lytic bacteriophages for the biocontrol of food-borne pathogens in food and in the food industry is gaining increasing acceptance. In this study, the effectiveness of a bacteriophage cocktail composed of three different lytic bacteriophages (UAB_Phi 20, UAB_Phi78, and UAB_Phi87) was determined in four different food matrices (pig skin, chicken breasts, fresh eggs, and packaged lettuce) experimentally contaminated with Salmonella enterica serovar Typhimurium and S. enterica serovar Enteritidis. A significant bacterial reduction (>4 and 2 log/cm(2) for S. Typhimurium and S. Enteritidis, respectively; p≤0.005) was obtained in pig skin sprayed with the bacteriophage cocktail and then incubated at 33 °C for 6h. Significant decreases in the concentration of S. Typhimurium and S. Enteritidis were also measured in chicken breasts dipped for 5 min in a solution containing the bacteriophage cocktail and then refrigerated at 4 °C for 7 days (2.2 and 0.9 log10 cfu/g, respectively; p≤0.0001) as well as in lettuce similarly treated for 60 min at room temperature (3.9 and 2.2 log10 cfu/g, respectively; p≤0.005). However, only a minor reduction of the bacterial concentration (0.9 log10 cfu/cm(2) of S. Enteritidis and S. Typhimurium; p≤0.005) was achieved in fresh eggs sprayed with the bacteriophage cocktail and then incubated at 25 °C for 2 h. These results show the potential effectiveness of this bacteriophage cocktail as a biocontrol agent of Salmonella in several food matrices under conditions similar to those used in their production. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Science.gov (United States)

    Pallavali, Roja Rani; Degati, Vijaya Lakshmi; Lomada, Dakshayani; Reddy, Madhava C; Durbaka, Vijaya Raghava Prasad

    2017-01-01

    Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS), Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100%) were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence, our results suggest

  18. Attenuation and colloidal mobilization of bacteriophages in natural sediments under anoxic as compared to oxic conditions.

    Science.gov (United States)

    Klitzke, Sondra; Schroeder, Jendrik; Selinka, Hans-Christoph; Szewzyk, Regine; Chorus, Ingrid

    2015-06-15

    Redox conditions are known to affect the fate of viruses in porous media. Several studies report the relevance of colloid-facilitated virus transport in the subsurface, but detailed studies on the effect of anoxic conditions on virus retention in natural sediments are still missing. Therefore, we investigated the fate of viruses in natural flood plain sediments with different sesquioxide contents under anoxic conditions by considering sorption to the solid phase, sorption to mobilized colloids, and inactivation in the aqueous phase. Batch experiments were conducted under oxic and anoxic conditions at pH values between 5.1 and 7.6, using bacteriophages MS2 and PhiX174 as model viruses. In addition to free and colloid-associated bacteriophages, dissolved and colloidal concentrations of Fe, Al and organic C as well as dissolved Ca were determined. Results showed that regardless of redox conditions, bacteriophages did not adsorb to mobilized colloids, even under favourable charge conditions. Under anoxic conditions, attenuation of bacteriophages was dominated by sorption over inactivation, with MS2 showing a higher degree of sorption than PhiX174. Inactivation in water was low under anoxic conditions for both bacteriophages with about one log10 decrease in concentration during 16 h. Increased Fe/Al concentrations and a low organic carbon content of the sediment led to enhanced bacteriophage removal under anoxic conditions. However, even in the presence of sufficient Fe/A-(hydr)oxides on the solid phase, bacteriophage sorption was low. We presume that organic matter may limit the potential retention of sesquioxides in anoxic sediments and should thus be considered for the risk assessment of virus breakthrough in the subsurface. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Isolation and in vitro evaluation of bacteriophages against MDR-bacterial isolates from septic wound infections.

    Directory of Open Access Journals (Sweden)

    Roja Rani Pallavali

    Full Text Available Multi-drug resistance has become a major problem for the treatment of pathogenic bacterial infections. The use of bacteriophages is an attractive approach to overcome the problem of drug resistance in several pathogens that cause fatal diseases. Our study aimed to isolate multi drug resistant bacteria from patients with septic wounds and then isolate and apply bacteriophages in vitro as alternative therapeutic agents. Pus samples were aseptically collected from Rajiv Gandhi Institute of Medical Science (RIMS, Kadapa, A.P., and samples were analyzed by gram staining, evaluating morphological characteristics, and biochemical methods. MDR-bacterial strains were collected using the Kirby-Bauer disk diffusion method against a variety of antibiotics. Bacteriophages were collected and tested in vitro for lytic activity against MDR-bacterial isolates. Analysis of the pus swab samples revealed that the most of the isolates detected had Pseudomonas aeruginosa as the predominant bacterium, followed by Staphylococcus aureus, Klebsiella pneumoniae and Escherichia coli. Our results suggested that gram-negative bacteria were more predominant than gram-positive bacteria in septic wounds; most of these isolates were resistant to ampicillin, amoxicillin, penicillin, vancomycin and tetracycline. All the gram-positive isolates (100% were multi-drug resistant, whereas 86% of the gram-negative isolates had a drug resistant nature. Further bacteriophages isolated from sewage demonstrated perfect lytic activity against the multi-drug resistant bacteria causing septic wounds. In vitro analysis of the isolated bacteriophages demonstrated perfect lysis against the corresponding MDR-bacteria, and these isolated phages may be promising as a first choice for prophylaxis against wound sepsis, Moreover, phage therapy does not enhance multi-drug resistance in bacteria and could work simultaneously on a wide variety of MDR-bacteria when used in a bacteriophage cocktail. Hence

  20. Studies with /sup 15/N-Lysine in colostomized hens. 4. Incorporation of lysine /sup 15/N into various amino acids of yolk and egg white

    Energy Technology Data Exchange (ETDEWEB)

    Gruhn, K.; Henning, A. (Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Tierproduktion und Veterinaermedizin)

    1984-01-01

    Each of 3 colostomized laying hens received per os 0.2% L-lysine with 48 atom-% /sup 15/N excess (/sup 15/N') labelled in ..cap alpha..-position in addition to a pelleted laying hen ration of 120 g over a period of 4 days. On the following 4 days they received equal amounts of unlabelled lysine. The eggs laid during the 8 days of the experiment were separated into the egg white, the yolk and the eggshell, and the total and heavy nitrogen in the individual fractions were determined. Above that, 17 amino acids and their atom-%/sup 15/N' were determined in the 19 samples of the white and yolk of egg. Of the total /sup 15/N' from the lysine fed in the 4 days, 10.1% were found in the yolk, 10.5% in the egg white and 1.1% in the eggshells of the eggs laid during the 8 days of the experiment. 85% of the total amino acid /sup 15/N' of the yolk and 86% of the egg white detected to be lysine /sup 15/N'. The /sup 15/N' amount of the other 16 amino acids was mainly concentrated in the two acid and basic amino acids. Approximately 50% of the non-lysine /sup 15/N' in the egg are contained in aspartic acid, glutamic acid, histidine and arginine. A very low incorporation of the labelled lysine only could be detected in the aromatic and sulphur-containing amino acids from both the yolk and the egg white 43% of the /sup 15/N' was detected in the 10 essential and semi-essential (except lysine) and 57% in the 6 non-essential amino acids of the yolk and 52% and 48% resp. of the egg white. One can summarise that the incorporation of /sup 15/N' into the egg shows the same development as that of the labelled amino acids of the wheat protein and that 15% of the lysine /sup 15/N' could be detected in the 16 other amino acids.

  1. L-lysine epsilon-aminotransferase involved in cephamycin C synthesis in Streptomyces lactamdurans.

    OpenAIRE

    Kern, B A; Hendlin, D; Inamine, E

    1980-01-01

    In Streptomyces lactamdurans, the precursor of the alpha-aminoadipoyl side-chain of cephamycin C is L-lysine. In this regard, streptomycetes differ strikingly from the fungi, which produce alpha-aminoadipic acid during the synthesis, rather than the breakdown, of L-lysine. Studies using a cell-free system showed that an aminoadipic acid. The product of this reaction was trapped and subsequently purified by ion-exchange chromatography. Thin-layer chromatography, spectrophotometry, and amino ac...

  2. Levels of lysine and methionine+cystine for growing New Zealand White rabbits

    Directory of Open Access Journals (Sweden)

    Ana Carolina Monteiro-Motta

    2013-12-01

    Full Text Available Two experiments were carried out to evaluate, respectively, nitrogen balance (NB and the productive performance of 31-to-50-day-old rabbits subjected to different levels of lysine and methionine+cystine (met+cys. Seventy-five animals were randomly distributed in 5 × 3 blocks (five levels of lysine: 5.5, 6.5, 7.5, 8.5 and 9.5 g/kg combined with three levels of met+cys: 5.0, 6.0 and 7.0 g/kg, with 15 treatments and five replications for the NB assay. The assay lasted 14 days: 10 days for acclimatization and four days for feces and urine collection. Increasing met+cys levels had a quadratic effect on the nitrogen excreted in urine (NU: the lowest excretion was found at the dietary level of 5.9 g/kg met+cys. Increasing lysine levels also affected NU and nitrogen retained daily (NR: the lowest NU was obtained at the dietary level of 7.28 g/kg lysine, and maximum NR was found at 7.24 g/kg lysine. Increases in met+cys levels in the diets affected neither performance nor carcass characteristics of rabbits up to 50 days of age. On the other hand, body weight at 50 days, daily weight gain and feed conversion of rabbits slaughtered at 50 days had a quadratic effect as the lysine levels increased. The best results were found at 7.5, 7.38 and 7.36 g/kg lysine. Lysine and met+cys levels of 7.4 and 5.0 g/kg in the diet are recommended for 31-to-50-day-old rabbits.

  3. LAAT-1 is the Lysosomal Lysine/Arginine Transporter that Maintains Amino Acid Homeostasis

    OpenAIRE

    Liu, Bin; Du, Hongwei; Rutkowski, Rachael; Gartner, Anton; Wang, Xiaochen

    2012-01-01

    Defective catabolite export from lysosomes results in lysosomal storage diseases in humans. Mutations in the cystine transporter gene CTNS cause cystinosis, but other lysosomal amino acid transporters are poorly characterized at the molecular level. Here we identified the C. elegans lysosomal lysine/arginine transporter, LAAT-1. Loss of laat-1 caused accumulation of lysine and arginine in enlarged, degradation-defective lysosomes. In mutants of ctns-1 (C. elegans homolog of CTNS), LAAT-1 was ...

  4. Available lysine and digestible amino acid contents of proteinaceous foods of India.

    Science.gov (United States)

    Rutherfurd, Shane M; Bains, Kiran; Moughan, Paul J

    2012-08-01

    Cereals and legumes are staple foods in India and are limiting in lysine and sulphur amino acids, respectively. Available lysine loss, due to Maillard-type reactions that may occur during food preparation, exacerbates the problem of lysine deficiency particularly in cereals. Consequently, determining the contents of digestible essential amino acids, particularly lysine, is important. True ileal digestibilities of most amino acids (including total and reactive lysine) were determined for ten food ingredients and eleven foods commonly consumed in India. Semi-synthetic diets each containing either an ingredient or the prepared food as the sole protein source were formulated to contain 100 g kg(-1) protein (75 g kg(-1) for rice-based diets) and fed to growing rats. Titanium dioxide was included as an indigestible marker. Digesta were collected and the amino acid content (including reactive lysine) of diets and ileal digesta determined. Available (digestible reactive) lysine content ranged from 1·9-15·4 g kg(-1) and 1·8-12·7 g kg(-1) across the ingredients and prepared foods respectively. True ileal amino acid digestibility varied widely both across ingredients and prepared foods for each amino acid (on average 60-92 %) and across amino acids within each ingredient and prepared food (overall digestibility 31-96 %). Amino acid digestibility was low for many of the ingredients and prepared foods and consequently digestibility must be considered when assessing the protein quality of poorer quality foods. Given commonly encountered daily energy intakes for members of the Indian population, it is estimated that lysine is limiting for adults in many Indian diets.

  5. Relation of arginine-lysine antagonism to herpes simplex growth in tissue culture.

    Science.gov (United States)

    Griffith, R S; DeLong, D C; Nelson, J D

    1981-01-01

    In the studies conducted, arginine deficiency suppressed herpes simplex virus replication in tissue culture. Lysine, an analog of arginine, as an antimetabolite, antagonized the viral growth-promoting action of arginine. The in vitro data may be the basis for the observation that patients prone to herpetic lesions and other related viral infections, particularly during periods of stress, should abstain from arginine excess and may also require supplemental lysine in their diet.

  6. A phenomenological model to represent the kinetics of growth by Corynebacterium glutamicum for lysine production.

    Science.gov (United States)

    Gayen, Kalyan; Venkatesh, K V

    2007-05-01

    Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.

  7. Systematic Analysis of the Functions of Lysine Acetylation in the Regulation of Tat Activity.

    Directory of Open Access Journals (Sweden)

    Minghao He

    Full Text Available The Tat protein of HIV-1 has several well-known properties, such as nucleocytoplasmic trafficking, transactivation of transcription, interaction with tubulin, regulation of mitotic progression, and induction of apoptosis. Previous studies have identified a couple of lysine residues in Tat that are essential for its functions. In order to analyze the functions of all the lysine residues in Tat, we mutated them individually to alanine, glutamine, and arginine. Through systematic analysis of the lysine mutants, we discovered several previously unidentified characteristics of Tat. We found that lysine acetylation could modulate the subcellular localization of Tat, in addition to the regulation of its transactivation activity. Our data also revealed that lysine mutations had distinct effects on microtubule assembly and Tat binding to bromodomain proteins. By correlation analysis, we further found that the effects of Tat on apoptosis and mitotic progression were not entirely attributed to its effect on microtubule assembly. Our findings suggest that Tat may regulate diverse cellular activities through binding to different proteins and that the acetylation of distinct lysine residues in Tat may modulate its interaction with various partners.

  8. METHODS FOR DETERMINATION REACTIVE LYSINE IN HEAT-TREATED FOODS AND FEEDS

    Directory of Open Access Journals (Sweden)

    Matej Brestenský

    2014-08-01

    Full Text Available Lysine is an essential amino acid, which is limited in foods of plant origin, especially in cereals. The heat-treatment of products containing proteins and reducing sugars results in formation of Maillard reactions during which the cross-linkages among epsilon amino groups (ε-NH2 and reducing sugars are created. Thus the protein-carbohydrate complex is formed. This complex contains an unreactive (unavailable lysine, which is bound to reducing sugars and is not available in body. Hereby, the nutritive value of feeds and foods decreases. When a standard analytical method for analyses of amino acids is used, in products containing protein-carbohydrate complexes, it is not possible to analyze the content of reactive (available and unreactive (unavailable lysine, but only the content of total lysine. Therefore, when the standard amino acid analysis is used, the content of lysine in heat-treated feeds and foods is overestimated. In order to avoid this, some methods for determination of reactive lysine were developed. Among the best known, the homoarginine and furosine methods are included. Using these methods, in evaluation of nutritive value of feeds and foods, is of great importance because they allow to determine the extent of proteins, which were damaged during the heat treatment and thus we obtain information on objective nutritional protein quality of the product.

  9. Flux through the tetrahydrodipicolinate succinylase pathway is dispensable for L-lysine production in Corynebacterium glutamicum.

    Science.gov (United States)

    Shaw-Reid, C A; McCormick, M M; Sinskey, A J; Stephanopoulos, G

    1999-03-01

    The N-succinyl-LL-diaminopimelate desuccinylase gene (dapE) in the four-step succinylase branch of the L-lysine biosynthetic pathway of Corynebacterium glutamicum was disrupted via marker-exchange mutagenesis to create a mutant strain that uses only the one-step meso-diaminopimelate dehydrogenase branch to overproduce lysine. This mutant strain grew and utilized glucose from minimal medium at the same rate as the parental strain. In addition, the dapE- strain produced lysine at the same rate as its parent strain. Transformation of the parental and dapE- strains with the amplified meso-diaminopimelate dehydrogenase gene (ddh) on a plasmid did not affect lysine production in either strain, despite an eightfold amplification of the activity of the enzyme. These results indicate that the four-step succinylase pathway is dispensable for lysine overproduction in shake-flask culture. In addition, the one-step meso-diaminopimelate dehydrogenase pathway does not limit lysine flux in Corynebacterium under these conditions.

  10. The Construction and Expression of Lysine-Rich Gene in the Mammary Gland of Transgenic Mice

    Science.gov (United States)

    Ma, Xin; Zhang, Peng; Song, Guangqi; Chen, Yue; Wang, Zhongwei; Yin, Yupeng; Kong, Delong; Zhang, Sheng; Zhao, Zhihui; Ouyang, Hongsheng

    2012-01-01

    Lysine is the limiting amino acid in cereal grains, which represent a major source of human food and animal feed worldwide, and is considered the most important of the essential amino acids. In this study, β-casein, αS2-casein, and lactotransferrin cDNA clone fragments encoding lysine-rich peptides were fused together to generate a lysine-rich (LR) gene and the mammary gland-specific expression vector pBC1-LR-NEOr was constructed. Transgenic mice were generated by pronuclear microinjection of the linearized expression vectors harboring the LR transgene. The transgenic mice and their offspring were examined using multiplex polymerase chain reaction (PCR), Southern blotting, reverse transcriptase–PCR, in situ hybridization, and Western blotting techniques. Our results showed that the LR gene was successfully integrated into the mouse genome and was transmitted stably. The specific LR gene expression was restricted to the mammary gland, active alveoli of the transgenic female mice during lactation. The lysine level of the two transgenic lines was significantly higher than that of nontransgenic controls (ptransgenic pups was enhanced by directly feeding them the LR protein-enriched transgenic milk. Our results demonstrated that lysine-rich gene was successfully constructed and expressed in mammary gland of transgenic mice. This study will provide a better understanding of how mammary gland expression systems that increase the lysine content of milk can be applied to other mammals, such as cows. PMID:22577831

  11. Global profiling of lysine acetylation in human histoplasmosis pathogen Histoplasma capsulatum.

    Science.gov (United States)

    Xie, Longxiang; Fang, Wenjie; Deng, Wanyan; Yu, Zhaoxiao; Li, Juan; Chen, Min; Liao, Wanqing; Xie, Jianping; Pan, Weihua

    2016-04-01

    Histoplasma capsulatum is the causative agent of human histoplasmosis, which can cause respiratory and systemic mycosis in immune-compromised individuals. Lysine acetylation, a protein posttranslational protein modification, is widespread in both eukaryotes and prokaryotes. Although increasing evidence suggests that lysine acetylation may play critical roles in fungus physiology, very little is known about its extent and function in H. capsulatum. To comprehensively profile protein lysine acetylation in H. capsulatum, we performed a global acetylome analysis through peptide prefractionation, antibody enrichment, and LC-MS/MS analysis, identifying 775 acetylation sites on 456 acetylated proteins; and functionally analysis showing their involvement in different biological processes. We defined six types of acetylation site motifs, and the results imply that lysine residue of polypeptide with tyrosine at the -1 and +1 positions, histidine at the +1 position, and phenylalanine (F) at the +1 and +2 position is a preferred substrate of lysine acetyltransferase. Moreover, some virulence factors candidates including calmodulin and DnaK are acetylated. In conclusion, our data set may serve as an important resource for the elucidation of associations between functional protein lysine acetylation and virulence in H. capsulatum. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Global proteomic analysis of lysine acetylation in zebrafish (Danio rerio) embryos.

    Science.gov (United States)

    Kwon, Oh Kwang; Kim, Sunjoo; Lee, Sangkyu

    2016-12-01

    Lysine acetylation is an important post-translational modification (PTM). Since the development of MS-based proteomics technology, important roles of lysine acetylation beyond histones have focused on chromatin remodeling during the cell cycle and regulation of nuclear transport, metabolism, and translation. Zebrafish (Danio rerio) is a widely used vertebrate model in genetics and biologic studies. Although studies in several mammalian species have been performed, the mechanism of lysine acetylation in D. rerio embryos is incompletely understood. Here, we investigated the global acetylome in D. rerio embryos by using an MS-based proteomics approach. We identified 351 acetylated peptides and 377 nonredundant acetylation sites on 189 lysine-acetylated proteins in 5-day postfertilization (hpf) embryos of D. rerio. Among lysine-acetylated peptides, 40.2% indicated three motifs: (ac)KxxxK, (ac)KxxxxK, and Lx(ac)K. Of 190 acetylated proteins, 81 (42.6%) were mainly distributed in the cytoplasm. Gene ontology enrichment and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that lysine acetylation in D. rerio was enriched in metabolic pathways. Additionally, 17 of 30 acetylated ribosomal proteins were evolutionarily conserved between zebrafish and humans. Our results indicate that acetyllysine might have regulatory effects on ribosomal proteins involved in protein biosynthesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Acetylome analysis reveals the involvement of lysine acetylation in biosynthesis of antibiotics in Bacillus amyloliquefaciens.

    Science.gov (United States)

    Liu, Lin; Wang, Guangyuan; Song, Limin; Lv, Binna; Liang, Wenxing

    2016-01-29

    Lysine acetylation is a major post-translational modification that plays an important regulatory role in almost every aspects in both eukaryotes and prokaryotes. Bacillus amyloliquefaciens, a Gram-positive bacterium, is very effective for the control of plant pathogens. However, very little is known about the function of lysine acetylation in this organism. Here, we conducted the first lysine acetylome in B. amyloliquefaciens through a combination of highly sensitive immune-affinity purification and high-resolution LC-MS/MS. Overall, we identified 3268 lysine acetylation sites in 1254 proteins, which account for 32.9% of the total proteins in this bacterium. Till date, this is the highest ratio of acetylated proteins that have been identified in bacteria. Acetylated proteins are associated with a variety of biological processes and a large fraction of these proteins are involved in metabolism. Interestingly, for the first time, we found that about 71.1% (27/38) and 78.6% (22/28) of all the proteins tightly related to the synthesis of three types of pepketides and five families of lipopeptides were acetylated, respectively. These findings suggest that lysine acetylation plays a critical role in the regulation of antibiotics biosynthesis. These data serves as an important resource for further elucidation of the physiological role of lysine acetylation in B. amyloliquefaciens.

  14. l-Lysine Catabolism Is Controlled by l-Arginine and ArgR in Pseudomonas aeruginosa PAO1▿

    Science.gov (United States)

    Chou, Han Ting; Hegazy, Mohamed; Lu, Chung-Dar

    2010-01-01

    In comparison to other pseudomonads, Pseudomonas aeruginosa grows poorly in l-lysine as a sole source of nutrient. In this study, the ldcA gene (lysine decarboxylase A; PA1818), previously identified as a member of the ArgR regulon of l-arginine metabolism, was found essential for l-lysine catabolism in this organism. LdcA was purified to homogeneity from a recombinant strain of Escherichia coli, and the results of enzyme characterization revealed that this pyridoxal-5-phosphate-dependent decarboxylase takes l-lysine, but not l-arginine, as a substrate. At an optimal pH of 8.5, cooperative substrate activation by l-lysine was depicted from kinetics studies, with calculated Km and Vmax values of 0.73 mM and 2.2 μmole/mg/min, respectively. Contrarily, the ldcA promoter was induced by exogenous l-arginine but not by l-lysine in the wild-type strain PAO1, and the binding of ArgR to this promoter region was demonstrated by electromobility shift assays. This peculiar arginine control on lysine utilization was also noted from uptake experiments in which incorporation of radioactively labeled l-lysine was enhanced in cells grown in the presence of l-arginine but not l-lysine. Rapid growth on l-lysine was detected in a mutant devoid of the main arginine catabolic pathway and with a higher basal level of the intracellular l-arginine pool and hence elevated ArgR-responsive regulons, including ldcA. Growth on l-lysine as a nitrogen source can also be enhanced when the aruH gene encoding an arginine/lysine:pyruvate transaminase was expressed constitutively from plasmids; however, no growth of the ldcA mutant on l-lysine suggests a minor role of this transaminase in l-lysine catabolism. In summary, this study reveals a tight connection of lysine catabolism to the arginine regulatory network, and the lack of lysine-responsive control on lysine uptake and decarboxylation provides an explanation of l-lysine as a poor nutrient for P. aeruginosa. PMID:20833801

  15. L-lysine catabolism is controlled by L-arginine and ArgR in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Chou, Han Ting; Hegazy, Mohamed; Lu, Chung-Dar

    2010-11-01

    In comparison to other pseudomonads, Pseudomonas aeruginosa grows poorly in L-lysine as a sole source of nutrient. In this study, the ldcA gene (lysine decarboxylase A; PA1818), previously identified as a member of the ArgR regulon of L-arginine metabolism, was found essential for L-lysine catabolism in this organism. LdcA was purified to homogeneity from a recombinant strain of Escherichia coli, and the results of enzyme characterization revealed that this pyridoxal-5-phosphate-dependent decarboxylase takes L-lysine, but not L-arginine, as a substrate. At an optimal pH of 8.5, cooperative substrate activation by L-lysine was depicted from kinetics studies, with calculated K(m) and V(max) values of 0.73 mM and 2.2 μmole/mg/min, respectively. Contrarily, the ldcA promoter was induced by exogenous L-arginine but not by L-lysine in the wild-type strain PAO1, and the binding of ArgR to this promoter region was demonstrated by electromobility shift assays. This peculiar arginine control on lysine utilization was also noted from uptake experiments in which incorporation of radioactively labeled L-lysine was enhanced in cells grown in the presence of L-arginine but not L-lysine. Rapid growth on L-lysine was detected in a mutant devoid of the main arginine catabolic pathway and with a higher basal level of the intracellular L-arginine pool and hence elevated ArgR-responsive regulons, including ldcA. Growth on L-lysine as a nitrogen source can also be enhanced when the aruH gene encoding an arginine/lysine:pyruvate transaminase was expressed constitutively from plasmids; however, no growth of the ldcA mutant on L-lysine suggests a minor role of this transaminase in L-lysine catabolism. In summary, this study reveals a tight connection of lysine catabolism to the arginine regulatory network, and the lack of lysine-responsive control on lysine uptake and decarboxylation provides an explanation of L-lysine as a poor nutrient for P. aeruginosa.

  16. Soil-based systemic delivery and phyllosphere in vivo propagation of bacteriophages: Two possible strategies for improving bacteriophage persistence for plant disease control.

    Science.gov (United States)

    Iriarte, Fanny B; Obradović, Aleksa; Wernsing, Mine H; Jackson, Lee E; Balogh, Botond; Hong, Jason A; Momol, M Timur; Jones, Jeffrey B; Vallad, Gary E

    2012-10-01

    Soil-based root applications and attenuated bacterial strains were evaluated as means to enhance bacteriophage persistence on plants for bacterial disease control. In addition, the systemic nature of phage applied to tomato roots was also evaluated. Several experiments were conducted applying either single phages or phage mixtures specific for Ralstonia solanacearum , Xanthomonas perforans or X. euvesicatoria to soil surrounding tomato plants and measuring the persistence and translocation of the phages over time. In general, all phages persisted in the roots of treated plants and were detected in stems and leaves; although phage level varied and persistence in stems and leaves was at a much lower level compared with persistence in roots. Bacterial wilt control was typically best if the phage or phage mixtures were applied to the soil surrounding tomatoes at the time of inoculation, less effective if applied 3 days before inoculation, and ineffective if applied 3 days after inoculation. The use of an attenuated X. perforans strain was also evaluated to improve the persistence of phage populations on tomato leaf surfaces. In greenhouse and field experiments, foliar applications of an attenuated mutant X. perforans 91-118:∆ OPGH strain prior to phage applications significantly improved phage persistence on tomato foliage compared with untreated tomato foliage. Both the soil-based bacteriophage delivery and the use of attenuated bacterial strains improved bacteriophage persistence on respective root and foliar tissues, with evidence of translocation with soil-based bacteriophage applications. Both strategies could lead to improved control of bacterial pathogens on plants.

  17. Initiation and termination of the bacteriophage phi X174 rolling circle DNA replication in vivo: packaging of plasmid single-stranded DNA into bacteriophage phi X174 coats

    NARCIS (Netherlands)

    van der Ende, A.; Teertstra, R.; Weisbeek, P. J.

    1982-01-01

    The bacteriophage phi X174 viral (+) origin when inserted in a plasmid can interact in vivo with the A protein produced by infecting phi X174 phages. A consequence of this interaction is packaging of single-stranded plasmid DNA into preformed phage coats resulting in infective particles (1). This

  18. Analysis of the complete DNA sequence of the temperate bacteriophage TP901-1: Evolution, structure, and genome organization of lactococcal bacteriophages

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Østergaard, Solvej; Pedersen, Margit

    2001-01-01

    A complete analysis of the entire genome of the temperate lactococcal bacteriophage TP901-1 has been performed and the function of 21 of 56 TP901-1-encoded ORFs has been assigned. This knowledge has been used to propose 10 functional modules each responsible for specific functions during bacterio...

  19. Effect of feeding three lysine to energy diets on growth, body composition and age at puberty in replacement gilts.

    Science.gov (United States)

    Díaz, J A Calderón; Vallet, J L; Boyd, R D; Lents, C A; Prince, T J; DeDecker, A E; Phillips, C E; Foxcroft, G; Stalder, K J

    2017-09-01

    This study evaluated the effect of diets differing in standard ileal digestible (SID) lysine on lysine intake, growth rate, body composition and age at puberty on maternal line gilts. Crossbred Large White×Landrace gilts (n=641) were fed corn-soybean diets differing in SID lysine concentration (%, g SID lysine:Mcal ME); diets were not isocaloric. Gilts received three grower, finisher diet combinations: low (0.68% lysine grower, 0.52% lysine finisher), medium (0.79% lysine grower, 0.60% lysine finisher) or high (0.90% lysine grower, 0.68% lysine finisher). Grower diets were fed from 100 until 142days of age, and finisher diets were fed until they reached 220days of age. Body weight (BW), backfat thickness (BF), and loin depth (LD) were recorded every 28days. From 160-220days of age, gilts were exposed daily to vasectomized boars and observed for behavioral estrus. Gilts fed the low lysine diet had lower average daily gain and BW (Pgilts that displayed natural estrus by 220days of age was low but not different among dietary treatments (low 27.7%, medium 31.0% and high 37.7%, respectively; P=0.1201). Gilts fed the high and medium diets reached puberty 10 and 6days earlier, however, than gilts fed the low lysine diet (Pgilts contracted porcine epidemic diarrhea (PEDv) just as boar exposure was to begin for the first group of gilts. Results from the present study indicate that growth rate and age at puberty can be altered by ad libitum fed diets that differ in SID lysine concentration. Published by Elsevier B.V.

  20. Genomics of Three New Bacteriophages Useful in the Biocontrol of Salmonella

    Science.gov (United States)

    Bardina, Carlota; Colom, Joan; Spricigo, Denis A.; Otero, Jennifer; Sánchez-Osuna, Miquel; Cortés, Pilar; Llagostera, Montserrat

    2016-01-01

    Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87) able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs); 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats (DTR) of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic analysis of large

  1. Genomics of three new bacteriophages useful in the biocontrol of Salmonella

    Directory of Open Access Journals (Sweden)

    Carlota eBardina

    2016-04-01

    Full Text Available Non-typhoid Salmonella is the principal pathogen related to food-borne diseases throughout the world. Widespread antibiotic resistance has adversely affected human health and has encouraged the search for alternative antimicrobial agents. The advances in bacteriophage therapy highlight their use in controlling a broad spectrum of food-borne pathogens. One requirement for the use of bacteriophages as antibacterials is the characterization of their genomes. In this work, complete genome sequencing and molecular analyses were carried out for three new virulent Salmonella-specific bacteriophages (UAB_Phi20, UAB_Phi78, and UAB_Phi87 able to infect a broad range of Salmonella strains. Sequence analysis of the genomes of UAB_Phi20, UAB_Phi78, and UAB_Phi87 bacteriophages did not evidence the presence of known virulence-associated and antibiotic resistance genes, and potential immunoreactive food allergens. The UAB_Phi20 genome comprised 41,809 base pairs with 80 open reading frames (ORFs; 24 of them with assigned function. Genome sequence showed a high homology of UAB_Phi20 with Salmonella bacteriophage P22 and other P22likeviruses genus of the Podoviridae family, including ST64T and ST104. The DNA of UAB_Phi78 contained 44,110 bp including direct terminal repeats of 179 bp and 58 putative ORFs were predicted and 20 were assigned function. This bacteriophage was assigned to the SP6likeviruses genus of the Podoviridae family based on its high similarity not only with SP6 but also with the K1-5, K1E, and K1F bacteriophages, all of which infect Escherichia coli. The UAB_Phi87 genome sequence consisted of 87,669 bp with terminal direct repeats of 608 bp; although 148 ORFs were identified, putative functions could be assigned to only 29 of them. Sequence comparisons revealed the mosaic structure of UAB_Phi87 and its high similarity with bacteriophages Felix O1 and wV8 of E. coli with respect to genetic content and functional organization. Phylogenetic

  2. Biotinylation of environmentally isolated Shiga toxin-producing Escherichia coli (STEC) – specific bacteriophages for biosensor and biocontrol applications

    Science.gov (United States)

    Like common bacteriophages, Shiga toxin-producing Escherichia coli (STEC) bacteriophages are viruses that recognize and bind to specific bacterial host (STEC) for propagation. They co-exist with STEC hosts, which cause epidemic food and waterborne illnesses, but may act as host populations limiting ...

  3. Occurrence of bacteriophages infecting Aeromonas, Enterobacter, and Klebsiella in water and association with contamination sources in Thailand.

    Science.gov (United States)

    Wangkahad, Bencharong; Bosup, Suchada; Mongkolsuk, Skorn; Sirikanchana, Kwanrawee

    2015-06-01

    The co-residence of bacteriophages and their bacterial hosts in humans, animals, and environmental sources directed the use of bacteriophages to track the origins of the pathogenic bacteria that can be found in contaminated water. The objective of this study was to enumerate bacteriophages of Aeromonas caviae (AecaKS148), Enterobacter sp. (EnspKS513), and Klebsiella pneumoniae (KlpnKS648) in water and evaluate their association with contamination sources (human vs. animals). Bacterial host strains were isolated from untreated wastewater in Bangkok, Thailand. A double-layer agar technique was used to detect bacteriophages. All three bacteriophages were detected in polluted canal samples, with likely contamination from human wastewater, whereas none was found in non-polluted river samples. AecaKS148 was found to be associated with human fecal sources, while EnspKS513 and KlpnKS648 seemed to be equally prevalent in both human and animal fecal sources. Both bacteriophages were also present in polluted canals that could receive contamination from other fecal sources or the environment. In conclusion, all three bacteriophages were successfully monitored in Bangkok, Thailand. This study provided an example of bacteriophages for potential use as source identifiers of pathogen contamination. The results from this study will assist in controlling sources of pathogen contamination, especially in developing countries.

  4. Lytic Infection of Lactococcus lactis by Bacteriophages Tuc2009 and c2 Triggers Alternative Transcriptional Host Responses

    NARCIS (Netherlands)

    Ainsworth, S.; Zomer, A.L.; Mahony, J.; Sinderen, D. van

    2013-01-01

    Here we present an entire temporal transcriptional profile of Lactococcus lactis subsp. cremoris UC509.9 undergoing lytic infection with two distinct bacteriophages, Tuc2009 and c2. Furthermore, corresponding high-resolution whole-phage genome tiling arrays of both bacteriophages were performed

  5. Bacteriophages as vehicles for gene delivery into mammalian cells: prospects and problems.

    Science.gov (United States)

    Bakhshinejad, Babak; Sadeghizadeh, Majid

    2014-10-01

    The identification of more efficient gene delivery vehicles (GDVs) is essential to fulfill the expectations of clinical gene therapy. Bacteriophages, due to their excellent safety profile, extreme stability under a variety of harsh environmental conditions and the capability for being genetically manipulated, have drawn a flurry of interest to be applied as a newly arisen category of gene delivery platforms. The incessant evolutionary interaction of bacteriophages with human cells has turned them into a part of our body's natural ecosystem. However, these carriers represent several barriers to gene transduction of mammalian cells. The lack of evolvement of specialized machinery for targeted cellular internalization, endosomal, lysosomal and proteasomal escape, cytoplasmic entry, nuclear localization and intranuclear transcription poses major challenges to the expression of the phage-carried gene. In this review, we describe pros and cons of bacteriophages as GDVs, provide an insight into numerous barriers that bacteriophages face for entry into and subsequent trafficking inside mammalian cells and elaborate on the strategies used to bypass these barriers. Tremendous genetic flexibility of bacteriophages to undergo numerous surface modifications through phage display technology has proven to be a turning point in the uncompromising efforts to surmount the limitations of phage-mediated gene expression. The revelatory outcomes of the studies undertaken within the recent years have been promising for phage-mediated gene delivery to move from concept to reality.

  6. FRNA Bacteriophages as Viral Indicators of Faecal Contamination in Mexican Tropical Aquatic Systems

    Science.gov (United States)

    Diaz-Avalos, Carlos; Lopez-Vidal, Yolanda; Castillo-Rojas, Gonzalo; Mazari-Hiriart, Marisa

    2017-01-01

    A particular challenge to water safety in populous intertropical regions is the lack of reliable faecal indicators to detect microbiological contamination of water, while the numerical relationships of specific viral indicators remain largely unexplored. The aim of this study was to investigate the numerical relationships of FRNA-bacteriophage genotypes, adenovirus 41, and human adenoviruses (HADV) in Mexican surface water systems to assess sewage contamination. We studied the presence of HADV, HADV41 and FRNA bacteriophage genotypes in water samples and quantified by qPCR and RT-qPCR. Virus and water quality indicator variances, as analyzed by principal component analysis and partial least squared regression, followed along the major percentiles of water faecal enterococci. FRNA bacteriophages adequately deciphered viral and point source water contamination. The strongest correlation for HADV was with FRNA bacteriophage type II, in water samples higher than the 50th percentiles of faecal enterococci, thus indicating urban pollution. FRNA bacteriophage genotypes I and III virus indicator performances were assisted by their associations with electrical conductivity and faecal enterococci. In combination, our methods are useful for inferring water quality degradation caused by sewage contamination. The methods used have potential for determining source contamination in water and, specifically, the presence of enteric viruses where clean and contaminated water have mixed. PMID:28114378

  7. Isolation and characterization of bacteriophages specific to hydrogen-sulfide-producing bacteria.

    Science.gov (United States)

    Gong, Chao; Heringa, Spencer; Singh, Randhir; Kim, Jinkyung; Jiang, Xiuping

    2013-01-01

    The objectives of this study were to isolate and characterize bacteriophages specific to hydrogen-sulfide-producing bacteria (SPB) from raw animal materials, and to develop a SPB-specific bacteriophage cocktail for rendering application. Meat, chicken offal, and feather samples collected from local supermarkets and rendering processing plants were used to isolate SPB (n = 142). Bacteriophages (n = 52) specific to SPB were isolated and purified from the above samples using 18 of those isolated SPB strains as hosts. The host ranges of bacteriophages against 5 selected SPB strains (Escherichia coli, Citrobacter freundii, and Hafnia alvei) were determined. Electron microscopy observation of 9 phages selected for the phage cocktail revealed that 6 phages belonged to the family of Siphoviridae and 3 belonged to the Myoviridae family. Restriction enzyme digestion analysis with endonuclease DraI detected 6 distinguished patterns among the 9 phages. Phage treatment prevented the growth of SPB for up to 10 h with multiplicity of infection ratios of 1, 10, 100, and 1000 in tryptic soy broth at 30 °C, and extended the lag phase of SPB growth for 2 h at 22 °C with multiplicities of infection of 10, 100, and 1000. These results suggest that the selected bacteriophage cocktail has a high potential for phage application to control SPB in raw animal materials destined for the rendering process.

  8. Isolation and characterization of bacteriophages for avian pathogenic E. coli strains.

    Science.gov (United States)

    Oliveira, A; Sillankorva, S; Quinta, R; Henriques, A; Sereno, R; Azeredo, J

    2009-06-01

    To isolate and characterize bacteriophages, and to evaluate its lytic performance against avian pathogenic Escherichia coli (APEC) strains with high patterns of antibiotic resistance, in order to select phages for a therapeutic product to treat colibacillosis in chickens. Bacteriophages were isolated from poultry sewage and tested against 148 O-serotyped APEC strains. The morphological characterization of the bacteriophages was made by transmission electronic microscopy (TEM) observations and the genetic comparison between bacteriophages DNA was performed by restriction fragment length polymorphism (RFLP) patterns. Results showed that 70.5% of the tested E. coli strains were sensitive to a combination of three of the five isolated phages, that seemed to be virulent and taxonomically belong to the Caudovirales order. Two of them look like 16-19, T4-like phages (Myoviridae) and the third is a T1-like phage and belongs to Syphoviridae family. All of them are genetically different. It was possible to obtain a combination of three different lytic bacteriophages with broad lytic spectra against the most prevalent O-serotypes of APEC. Data reported in this study, presents an in vitro well studied phage product to be used as antimicrobial agent to treat colibacillosis in poultry industry.

  9. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca.

    Science.gov (United States)

    Brown, Teagan L; Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies.

  10. Bacteriophage immobilized graphene electrodes for impedimetric sensing of bacteria (Staphylococcus arlettae).

    Science.gov (United States)

    Bhardwaj, Neha; Bhardwaj, Sanjeev K; Mehta, Jyotsana; Mohanta, Girish C; Deep, Akash

    2016-07-15

    Bacteriophages are a class of viruses that specifically infect and replicate within a bacterium. They possess inherent affinity and specificity to the particular bacterial cells. This property of bacteriophages makes them an attractive biorecognition element in the field of biosensor development. In this work, we report the use of an immobilized bacteriophage for the development of a highly sensitive electrochemical sensor for Staphylococcus arlettae, bacteria from the pathogenic family of coagulase-negative staphylococci (CNS). The specific bacteriophages were covalently immobilized on the screen-printed graphene electrodes. Thus, the fabricated bacteriophage biosensor displayed quantitative response for the target bacteria (S. arlettae) for a broad detection range (2.0-2.0 × 10(6) cfu). A fast response time (2 min), low limit of detection (2 cfu), specificity, and stability over a prolonged period (3 months) are some of the important highlights of the proposed sensor. The practical utility of the developed sensor has been demonstrated by the analysis of S. arlettae in spiked water and apple juice samples. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Characterization and formulation into solid dosage forms of a novel bacteriophage lytic against Klebsiella oxytoca

    Science.gov (United States)

    Petrovski, Steve; Hoyle, Dannielle; Chan, Hiu Tat; Lock, Peter; Tucci, Joseph

    2017-01-01

    Aim To isolate and characterize bacteriophage lytic for the opportunistic pathogen Klebsiella oxytoca and their formulation into a range of solid dosage forms for in-vitro testing. Methods and results We report the isolation, genomic and functional characterization of a novel bacteriophage lytic for Klebsiella oxytoca, which does not infect the closely related Klebsiella pneumoniae. This bacteriophage was formulated into suppositories and troches and shown to be released and lyse underlying Klebsiella oxytoca bacteria in an in-vitro model. These bacteriophage formulations were stable for at least 49 days at 4°C. Conclusions The successful in-vitro assay of these formulations here suggests that they could potentially be tested in-vivo to determine whether such a therapeutic approach could modulate the gut microbiome, and control Klebsiella oxytoca overgrowth, during antibiotic therapy regimes. Significance and impact of the study This study reports a novel bacteriophage specific for Klebsiella oxytoca which can be formulated into solid dosage forms appropriate for potential delivery in testing as a therapy to modulate gut microbiome during antibiotic therapies. PMID:28817689

  12. Genetically engineered bacteriophage delivers a tumor necrosis factor alpha antagonist coating on neural electrodes

    International Nuclear Information System (INIS)

    Kim, Young Jun; Nam, Chang-Hoon; Jin, Young-Hyun; Stieglitz, Thomas; Salieb-Beugelaar, Georgette B

    2014-01-01

    This paper reports a novel approach for the formation of anti-inflammatory surface coating on a neural electrode. The surface coating is realized using a recombinant f88 filamentous bacteriophage, which displays a short platinum binding motif and a tumor necrosis factor alpha antagonist (TNF-α antagonist) on p3 and p8 proteins, respectively. The recombinant bacteriophages are immobilized on the platinum surface by a simple dip coating process. The selective and stable immobilization of bacteriophages on a platinum electrode is confirmed by quartz crystal microbalance with dissipation monitoring, atomic force microscope and fluorescence microscope. From the in vitro cell viability test, the inflammatory cytokine (TNF-α) induced cell death was prevented by presenting recombinant bacteriophage coating, albeit with no significant cytotoxic effect. It is also observed that the bacteriophage coating does not have critical effects on the electrochemical properties such as impedance and charge storage capacities. Thus, this approach demonstrates a promising anti-apoptotic as well as anti-inflammatory surface coating for neural implant applications. (paper)

  13. Structure and assembly of bacteriophage T4 head

    Directory of Open Access Journals (Sweden)

    Black Lindsay W

    2010-12-01

    Full Text Available Abstract The bacteriophage T4 capsid is an elongated icosahedron, 120 nm long and 86 nm wide, and is built with three essential proteins; gp23*, which forms the hexagonal capsid lattice, gp24*, which forms pentamers at eleven of the twelve vertices, and gp20, which forms the unique dodecameric portal vertex through which DNA enters during packaging and exits during infection. The past twenty years of research has greatly elevated the understanding of phage T4 head assembly and DNA packaging. The atomic structure of gp24 has been determined. A structural model built for gp23 using its similarity to gp24 showed that the phage T4 major capsid protein has the same fold as that found in phage HK97 and several other icosahedral bacteriophages. Folding of gp23 requires the assistance of two chaperones, the E. coli chaperone GroEL and the phage coded gp23-specific chaperone, gp31. The capsid also contains two non-essential outer capsid proteins, Hoc and Soc, which decorate the capsid surface. The structure of Soc shows two capsid binding sites which, through binding to adjacent gp23 subunits, reinforce the capsid structure. Hoc and Soc have been extensively used in bipartite peptide display libraries and to display pathogen antigens including those from HIV, Neisseria meningitides, Bacillus anthracis, and FMDV. The structure of Ip1*, one of the components of the core, has been determined, which provided insights on how IPs protect T4 genome against the E. coli nucleases that degrade hydroxymethylated and glycosylated T4 DNA. Extensive mutagenesis combined with the atomic structures of the DNA packaging/terminase proteins gp16 and gp17 elucidated the ATPase and nuclease functional motifs involved in DNA translocation and headful DNA cutting. Cryo-EM structure of the T4 packaging machine showed a pentameric motor assembled with gp17 subunits on the portal vertex. Single molecule optical tweezers and fluorescence studies showed that the T4 motor packages

  14. Abundance of antibiotic resistance genes in environmental bacteriophages.

    Science.gov (United States)

    Anand, Taruna; Bera, Bidhan Ch; Vaid, Rajesh K; Barua, Sanjay; Riyesh, Thachamvally; Virmani, Nitin; Hussain, Mubarik; Singh, Raj K; Tripathi, Bhupendra N

    2016-12-01

    The ecosystem is continuously exposed to a wide variety of antimicrobials through waste effluents, agricultural run-offs and animal-related and anthropogenic activities, which contribute to the spread of antibiotic resistance genes (ARGs). The contamination of ecosystems with ARGs may create increased opportunities for their transfer to naive microbes and eventually lead to entry into the human food chain. Transduction is a significant mechanism of horizontal gene transfer in natural environments, which has traditionally been underestimated as compared to transformation. We explored the presence of ARGs in environmental bacteriophages in order to recognize their contribution in the spread of ARGs in environmental settings. Bacteriophages were isolated against environmental bacterial isolates, purified and bulk cultured. They were characterized, and detection of ARG and intI genes including blaTEM, blaOXA-2, intI1, intI2, intI3, tetA and tetW was carried out by PCR. This study revealed the presence of various genes [tetA (12.7 %), intI1 (10.9 %), intI2 (10.9 %), intI3 (9.1 %), tetW (9.1 %) and blaOXA-2 (3.6 %)] and blaTEM in a significantly higher proportion (30.9 %). blaSHV, blaOXA-1, tetO, tetB, tetG, tetM and tetS were not detected in any of the phages. Soil phages were the most versatile in terms of ARG carriage. Also, the relative abundance of tetA differed significantly vis-à-vis source. The phages from organized farms showed varied ARGs as compared to the unorganized sector, although blaTEM ARG incidences did not differ significantly. The study reflects on the role of phages in dissemination of ARGs in environmental reservoirs, which may provide an early warning system for future clinically relevant resistance mechanisms.

  15. Comparison of five bacteriophages as models for viral aerosol studies.

    Science.gov (United States)

    Turgeon, Nathalie; Toulouse, Marie-Josée; Martel, Bruno; Moineau, Sylvain; Duchaine, Caroline

    2014-07-01

    Bacteriophages are perceived to be good models for the study of airborne viruses because they are safe to use, some of them display structural features similar to those of human and animal viruses, and they are relatively easy to produce in large quantities. Yet, only a few studies have investigated them as models. It has previously been demonstrated that aerosolization, environmental conditions, and sampling conditions affect viral infectivity, but viral infectivity is virus dependent. Thus, several virus models are likely needed to study their general behavior in aerosols. The aim of this study was to compare the effects of aerosolization and sampling on the infectivity of five tail-less bacteriophages and two pathogenic viruses: MS2 (a single-stranded RNA [ssRNA] phage of the Leviviridae family), Φ6 (a segmented double-stranded RNA [dsRNA] phage of the Cystoviridae family), ΦX174 (a single-stranded DNA [ssDNA] phage of the Microviridae family), PM2 (a double-stranded DNA [dsDNA] phage of the Corticoviridae family), PR772 (a dsDNA phage of the Tectiviridae family), human influenza A virus H1N1 (an ssRNA virus of the Orthomyxoviridae family), and the poultry virus Newcastle disease virus (NDV; an ssRNA virus of the Paramyxoviridae family). Three nebulizers and two nebulization salt buffers (with or without organic fluid) were tested, as were two aerosol sampling devices, a liquid cyclone (SKC BioSampler) and a dry cyclone (National Institute for Occupational Safety and Health two-stage cyclone bioaerosol sampler). The presence of viruses in collected air samples was detected by culture and quantitative PCR (qPCR). Our results showed that these selected five phages behave differently when aerosolized and sampled. RNA phage MS2 and ssDNA phage ΦX174 were the most resistant to aerosolization and sampling. The presence of organic fluid in the nebulization buffer protected phages PR772 and Φ6 throughout the aerosolization and sampling with dry cyclones. In this

  16. Automated classification of tailed bacteriophages according to their neck organization.

    Science.gov (United States)

    Lopes, Anne; Tavares, Paulo; Petit, Marie-Agnès; Guérois, Raphaël; Zinn-Justin, Sophie

    2014-11-27

    The genetic diversity observed among bacteriophages remains a major obstacle for the identification of homologs and the comparison of their functional modules. In the structural module, although several classes of homologous proteins contributing to the head and tail structure can be detected, proteins of the head-to-tail connection (or neck) are generally more divergent. Yet, molecular analyses of a few tailed phages belonging to different morphological classes suggested that only a limited number of structural solutions are used in order to produce a functional virion. To challenge this hypothesis and analyze proteins diversity at the virion neck, we developed a specific computational strategy to cope with sequence divergence in phage proteins. We searched for homologs of a set of proteins encoded in the structural module using a phage learning database. We show that using a combination of iterative profile-profile comparison and gene context analyses, we can identify a set of head, neck and tail proteins in most tailed bacteriophages of our database. Classification of phages based on neck protein sequences delineates 4 Types corresponding to known morphological subfamilies. Further analysis of the most abundant Type 1 yields 10 Clusters characterized by consistent sets of head, neck and tail proteins. We developed Virfam, a webserver that automatically identifies proteins of the phage head-neck-tail module and assign phages to the most closely related cluster of phages. This server was tested against 624 new phages from the NCBI database. 93% of the tailed and unclassified phages could be assigned to our head-neck-tail based categories, thus highlighting the large representativeness of the identified virion architectures. Types and Clusters delineate consistent subgroups of Caudovirales, which correlate with several virion properties. Our method and webserver have the capacity to automatically classify most tailed phages, detect their structural module, assign a

  17. Novel "Superspreader" Bacteriophages Promote Horizontal Gene Transfer by Transformation.

    Science.gov (United States)

    Keen, Eric C; Bliskovsky, Valery V; Malagon, Francisco; Baker, James D; Prince, Jeffrey S; Klaus, James S; Adhya, Sankar L

    2017-01-17

    Bacteriophages infect an estimated 10 23 to 10 25 bacterial cells each second, many of which carry physiologically relevant plasmids (e.g., those encoding antibiotic resistance). However, even though phage-plasmid interactions occur on a massive scale and have potentially significant evolutionary, ecological, and biomedical implications, plasmid fate upon phage infection and lysis has not been investigated to date. Here we show that a subset of the natural lytic phage population, which we dub "superspreaders," releases substantial amounts of intact, transformable plasmid DNA upon lysis, thereby promoting horizontal gene transfer by transformation. Two novel Escherichia coli phage superspreaders, SUSP1 and SUSP2, liberated four evolutionarily distinct plasmids with equal efficiency, including two close relatives of prominent antibiotic resistance vectors in natural environments. SUSP2 also mediated the extensive lateral transfer of antibiotic resistance in unbiased communities of soil bacteria from Maryland and Wyoming. Furthermore, the addition of SUSP2 to cocultures of kanamycin-resistant E. coli and kanamycin-sensitive Bacillus sp. bacteria resulted in roughly 1,000-fold more kanamycin-resistant Bacillus sp. bacteria than arose in phage-free controls. Unlike many other lytic phages, neither SUSP1 nor SUSP2 encodes homologs to known hydrolytic endonucleases, suggesting a simple potential mechanism underlying the superspreading phenotype. Consistent with this model, the deletion of endonuclease IV and the nucleoid-disrupting protein ndd from coliphage T4, a phage known to extensively degrade chromosomal DNA, significantly increased its ability to promote plasmid transformation. Taken together, our results suggest that phage superspreaders may play key roles in microbial evolution and ecology but should be avoided in phage therapy and other medical applications. Bacteriophages (phages), viruses that infect bacteria, are the planet's most numerous biological

  18. Characterization of Agronomy, Grain Physicochemical Quality, and Nutritional Property of High-Lysine 35R Transgenic Rice with Simultaneous Modification of Lysine Biosynthesis and Catabolism.

    Science.gov (United States)

    Yang, Qingqing; Wu, Hongyu; Li, Qianfeng; Duan, Ruxu; Zhang, Changquan; Sun, Samuel Saiming; Liu, Qiaoquan

    2017-05-31

    Lysine is the first limiting essential amino acid in rice. We previously constructed a series of transgenic rice lines to enhance lysine biosynthesis (35S), down-regulate its catabolism (Ri), or simultaneously achieve both metabolic effects (35R). In this study, nine transgenic lines, three from each group, were selected for both field and animal feeding trials. The results showed that the transgene(s) caused no obvious effects on field performance and main agronomic traits. Mature seeds of transgenic line 35R-17 contained 48-60-fold more free lysine than in wild type and had slightly lower apparent amylose content and softer gel consistency. Moreover, a 35-day feeding experiment showed that the body weight gain, food efficiency, and protein efficiency ratio of rats fed the 35R-17 transgenic rice diet were improved when compared with those fed wild-type rice diet. These data will be useful for further evaluation and potential commercialization of 35R high-lysine transgenic rice.

  19. Amorphous Silica-Promoted Lysine Dimerization: a Thermodynamic Prediction

    Science.gov (United States)

    Kitadai, Norio; Nishiuchi, Kumiko; Nishii, Akari; Fukushi, Keisuke

    2018-03-01

    It has long been suggested that mineral surfaces played a crucial role in the abiotic polymerization of amino acids that preceded the origin of life. Nevertheless, it remains unclear where the prebiotic process took place on the primitive Earth, because the amino acid-mineral interaction and its dependence on environmental conditions have yet to be understood adequately. Here we examined experimentally the adsorption of L-lysine (Lys) and its dimer (LysLys) on amorphous silica over a wide range of pH, ionic strength, adsorbate concentration, and the solid/water ratio, and determined the reaction stoichiometries and the equilibrium constants based on the extended triple-layer model (ETLM). The retrieved ETLM parameters were then used, in combination with the equilibrium constant for the peptide bond formation in bulk water, to calculate the Lys-LysLys equilibrium in the presence of amorphous silica under various aqueous conditions. Results showed that the silica surface favors Lys dimerization, and the influence varies greatly with changing environmental parameters. At slightly alkaline pH (pH 9) in the presence of a dilute NaCl (1 mM), the thermodynamically attainable LysLys from 0.1 mM Lys reached a concentration around 50 times larger than that calculated without silica. Because of the versatility of the ETLM, which has been applied to describe a wide variety of biomolecule-mineral interactions, future experiments with the reported methodology are expected to provide a significant constraint on the plausible geological settings for the condensation of monomers to polymers, and the subsequent chemical evolution of life.

  20. Androgen receptor and histone lysine demethylases in ovine placenta.

    Directory of Open Access Journals (Sweden)

    Ellane R Cleys

    Full Text Available Sex steroid hormones regulate developmental programming in many tissues, including programming gene expression during prenatal development. While estradiol is known to regulate placentation, little is known about the role of testosterone and androgen signaling in placental development despite the fact that testosterone rises in maternal circulation during pregnancy and in placenta-induced pregnancy disorders. We investigated the role of testosterone in placental gene expression, and focused on androgen receptor (AR. Prenatal androgenization decreased global DNA methylation in gestational day 90 placentomes, and increased placental expression of AR as well as genes involved in epigenetic regulation, angiogenesis, and growth. As AR complexes with histone lysine demethylases (KDMs to regulate AR target genes in human cancers, we also investigated if the same mechanism is present in the ovine placenta. AR co-immunoprecipitated with KDM1A and KDM4D in sheep placentomes, and AR-KDM1A complexes were recruited to a half-site for androgen response element (ARE in the promoter region of VEGFA. Androgenized ewes also had increased cotyledonary VEGFA. Finally, in human first trimester placental samples KDM1A and KDM4D immunolocalized to the syncytiotrophoblast, with nuclear KDM1A and KDM4D immunostaining also present in the villous stroma. In conclusion, placental androgen signaling, possibly through AR-KDM complex recruitment to AREs, regulates placental VEGFA expression. AR and KDMs are also present in first trimester human placenta. Androgens appear to be an important regulator of trophoblast differentiation and placental development, and aberrant androgen signaling may contribute to the development of placental disorders.

  1. Characterization of a novel LysM domain from Lactobacillus fermentum bacteriophage endolysin and its use as an anchor to display heterologous proteins on the surfaces of lactic acid bacteria.

    Science.gov (United States)

    Hu, Shumin; Kong, Jian; Kong, Wentao; Guo, Tingting; Ji, Mingjie

    2010-04-01

    The endolysin Lyb5, from Lactobacillus fermentum temperate bacteriophage phiPYB5, showed a broad lytic spectrum against Gram-positive as well as Gram-negative bacteria. Sequence analysis revealed that the C terminus of the endolysin Lyb5 (Ly5C) contained three putative lysin motif (LysM) repeat regions, implying that Ly5C was involved in bacterial cell wall binding. To investigate the potential of Ly5C for surface display, green fluorescent protein (GFP) was fused to Ly5C at its N or C terminus and the resulting fusion proteins were expressed in Escherichia coli. After being mixed with various cells in vitro, GFP was successfully displayed on the surfaces of Lactococcus lactis, Lactobacillus casei, Lb. brevis, Lb. plantarum, Lb. fermentum, Lb. delbrueckii, Lb. helveticus, and Streptococcus thermophilus cells. Increases in the fluorescence intensities of chemically pretreated L. lactis and Lb. casei cells compared to those of nonpretreated cells suggested that the peptidoglycan was the binding ligand for Ly5C. Moreover, the pH and concentration of sodium chloride were optimized to enhance the binding capacity of GFP-Ly5C, and high-intensity fluorescence of cells was observed under optimal conditions. All results suggested that Ly5C was a novel anchor for constructing a surface display system for lactic acid bacteria (LAB). To demonstrate the applicability of the Ly5C-mediated surface display system, beta-galactosidase (beta-Gal) from Paenibacillus sp. strain K1, replacing GFP, was functionally displayed on the surfaces of LAB cells via Ly5C. The success in surface display of GFP and beta-Gal opened up the feasibility of employing the cell wall anchor of bacteriophage endolysin for surface display in LAB.

  2. Membrane filtration immobilization technique-a simple and novel method for primary isolation and enrichment of bacteriophages.

    Science.gov (United States)

    Ghugare, G S; Nair, A; Nimkande, V; Sarode, P; Rangari, P; Khairnar, K

    2017-02-01

    To develop a method for the isolation and enrichment of bacteriophages selectively against specific bacteria coupled with a membrane filtration technique. Rapid isolation and concentration of host-specific bacteriophages was achieved by exposure of the sample suspected to contain bacteriophages to a specific host immobilized on a 0·45 μm membrane in a membrane filtration unit. The principle behind this method is the exploitation of host-specific interaction of bacteriophages with their host and maximizing this interaction using a classic membrane filtration method. This provides a chance for each bacteriophage in the sample to interact with the specific host on the membrane filter fitted with a vacuum pump. Specific bacteriophages of the host are retained on the membrane along with its host cells due to the effect of adsorption and these adsorbed bacteriophages (along with their hosts) on the filter disc are then amplified and enriched in regular nutritive broth tryptose soya broth by incubation. With the help of the plaque assay method, host-specific phages of various bacterial species were isolated, segregated and enriched. The phage concentration method coupled with membrane filtration immobilization of host bacteria was able to isolate and enrich the host-specific bacteriophages by several fold using a lower quantity of an environmental water sample, or other phage suspensions. Enrichment of phages from single plaques was also achieved. The isolation and detection of host-specific bacteriophages from a low density bacteriophage water sample in a single step by the use of a simple and basic microbiological technique can be achieved. Enrichment of phages from low phage titre suspensions is also achieved very effectively. © 2016 The Society for Applied Microbiology.

  3. Evaluation of Digestible lysine levels in diets with high energy density for finishing pigs

    Directory of Open Access Journals (Sweden)

    Janeth Colina R

    2015-05-01

    Full Text Available ABSTRACT Objective. To evaluate the effects of different levels of digestible lysine in diets with high energy density on productive performance and carcass characteristics of finishing pigs. Materials and Methods. Seventy crossbred barrows (initial body weight of 83.36 kg were used and allotted in a randomized block design with five treatments, seven replications and two pigs per experimental unit. Pigs were fed ad libitum with diets containing 3.5 kcal/kg of ME and five levels of digestible lysine (0.46, 0.52, 0.58, 0.64 and 0.70% during four weeks. Final live weight (FLW, daily feed intake (DFI, daily weight gain (DWG, feed conversion (FC, daily lysine intake (DLI, and the amount of lysine per body weight gain (DLI/DWG, were evaluated. At the end of the experiment, blood samples were taken from each pig to determine urea nitrogen concentration (UN in serum and slaughtered to evaluate quantitative and qualitative carcass characteristics. Results. The FLW increased linearly (p<0.05.There were no differences among treatments for DFI, DWG, FC, carcass characteristics and UN. The DLI and DLI/DWG varied significantly (p<0.001 and increased linearly (p<0.001 with each lysine level. Pigs that consumed the limiting diet in lysine (0.46% showed less DLI and DLI/DWG (p<0.001 than pigs fed the other diets. Conclusions. The amount of DLI/DWG increased with the evaluated levels of digestible lysine in diets with high energy density, without effects on productive performance and carcass characteristics of finishing pigs.

  4. Bacteriophages with the Ability to Degrade Uropathogenic Escherichia Coli Biofilms

    Directory of Open Access Journals (Sweden)

    Amee Manges

    2012-04-01

    Full Text Available Escherichia coli-associated urinary tract infections (UTIs are among the most common bacterial infections in humans. UTIs are usually managed with antibiotic therapy, but over the years, antibiotic-resistant strains of uropathogenic E. coli (UPEC have emerged. The formation of biofilms further complicates the treatment of these infections by making them resistant to killing by the host immune system as well as by antibiotics. This has encouraged research into therapy using bacteriophages (phages as a supplement or substitute for antibiotics. In this study we characterized 253 UPEC in terms of their biofilm-forming capabilities, serotype, and antimicrobial resistance. Three phages were then isolated (vB_EcoP_ACG-C91, vB_EcoM_ACG-C40 and vB_EcoS_ACG-M12 which were able to lyse 80.5% of a subset (42 of the UPEC strains able to form biofilms. Correlation was established between phage sensitivity and specific serotypes of the UPEC strains. The phages’ genome sequences were determined and resulted in classification of vB_EcoP_ACG-C91 as a SP6likevirus, vB_EcoM_ACG-C40 as a T4likevirus and vB_EcoS_ACG-M12 as T1likevirus. We assessed the ability of the three phages to eradicate the established biofilm of one of the UPEC strains used in the study. All phages significantly reduced the biofilm within 2–12 h of incubation.

  5. BENEFICIAL FACE OF BACTERIOPHAGES: APPLICATIONS IN FOOD PROCESSING

    Directory of Open Access Journals (Sweden)

    H. V. Raghu

    2012-06-01

    Full Text Available Foods are processed to make them available at all places; consequently, our awareness regarding hygiene measures in food production has also increased dramatically over the last decades. In many countries cases associated with foodborne infectious are increased. However, available techniques are unable to effectively control the problem. Further, exploring novel methods and technologies for ensuring the safety of food with effective quality control approaches are under research. Phages are the natural enemies of bacteria, and are more specific to host renders them ideal candidates for applications designed to increase food safety during the production process. Scientific findings are available showing the possibility to use as biocontrol agents against various pathogens with out interfering with the natural microflora or the cultures in fermented products. Furthermore, phages or phage derived proteins can also be used to detect the presence of unwanted pathogens in food or the production environments, which allows quick and sp ecific identification of viable cells. Bacteriophages are natural, found in various environments including water; foods etc. and are not found significantly influence the human cells.

  6. Factors influencing lysis time stochasticity in bacteriophage λ

    Directory of Open Access Journals (Sweden)

    Dennehy John J

    2011-08-01

    Full Text Available Abstract Background Despite identical genotypes and seemingly uniform environments, stochastic gene expression and other dynamic intracellular processes can produce considerable phenotypic diversity within clonal microbes. One trait that provides a good model to explore the molecular basis of stochastic variation is the timing of host lysis by bacteriophage (phage. Results Individual lysis events of thermally-inducible λ lysogens were observed using a temperature-controlled perfusion chamber mounted on an inverted microscope. Both mean lysis time (MLT and its associated standard deviation (SD were estimated. Using the SD as a measure of lysis time stochasticity, we showed that lysogenic cells in controlled environments varied widely in lysis times, and that the level of lysis time stochasticity depended on allelic variation in the holin sequence, late promoter (pR' activity, and host growth rate. In general, the MLT was positively correlated with the SD. Both lower pR' activities and lower host growth rates resulted in larger SDs. Results from premature lysis, induced by adding KCN at different time points after lysogen induction, showed a negative correlation between the timing of KCN addition and lysis time stochasticity. Conclusions Taken together with results published by others, we conclude that a large fraction of λ lysis time stochasticity is the result of random events following the expression and diffusion of the holin protein. Consequently, factors influencing the timing of reaching critical holin concentrations in the cell membrane, such as holin production rate, strongly influence the mean lysis time and the lysis time stochasticity.

  7. Bacteriophages and Phage-Derived Proteins – Application Approaches

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes – peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases – that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general. PMID:25666799

  8. Bacteriophages and phage-derived proteins--application approaches.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara

    2015-01-01

    Currently, the bacterial resistance, especially to most commonly used antibiotics has proved to be a severe therapeutic problem. Nosocomial and community-acquired infections are usually caused by multidrug resistant strains. Therefore, we are forced to develop an alternative or supportive treatment for successful cure of life-threatening infections. The idea of using natural bacterial pathogens such as bacteriophages is already well known. Many papers have been published proving the high antibacterial efficacy of lytic phages tested in animal models as well as in the clinic. Researchers have also investigated the application of non-lytic phages and temperate phages, with promising results. Moreover, the development of molecular biology and novel generation methods of sequencing has opened up new possibilities in the design of engineered phages and recombinant phage-derived proteins. Encouraging performances were noted especially for phage enzymes involved in the first step of viral infection responsible for bacterial envelope degradation, named depolymerases. There are at least five major groups of such enzymes - peptidoglycan hydrolases, endosialidases, endorhamnosidases, alginate lyases and hyaluronate lyases - that have application potential. There is also much interest in proteins encoded by lysis cassette genes (holins, endolysins, spanins) responsible for progeny release during the phage lytic cycle. In this review, we discuss several issues of phage and phage-derived protein application approaches in therapy, diagnostics and biotechnology in general.

  9. Quorum Regulated Resistance of Vibrio cholerae against Environmental Bacteriophages.

    Science.gov (United States)

    Hoque, M Mozammel; Naser, Iftekhar Bin; Bari, S M Nayeemul; Zhu, Jun; Mekalanos, John J; Faruque, Shah M

    2016-11-28

    Predation by bacteriophages can significantly influence the population structure of bacterial communities. Vibrio cholerae the causative agent of cholera epidemics interacts with numerous phages in the aquatic ecosystem, and in the intestine of cholera patients. Seasonal epidemics of cholera reportedly collapse due to predation of the pathogen by phages. However, it is not clear how sufficient number of the bacteria survive to seed the environment in the subsequent epidemic season. We found that bacterial cell density-dependent gene expression termed "quorum sensing" which is regulated by signal molecules called autoinducers (AIs) can protect V. cholerae against predatory phages. V. cholerae mutant strains carrying inactivated AI synthase genes were significantly more susceptible to multiple phages compared to the parent bacteria. Likewise when mixed cultures of phage and bacteria were supplemented with exogenous autoinducers CAI-1 or AI-2 produced by recombinant strains carrying cloned AI synthase genes, increased survival of V. cholerae and a decrease in phage titer was observed. Mutational analyses suggested that the observed effects of autoinducers are mediated in part through the quorum sensing-dependent production of haemaglutinin protease, and partly through downregulation of phage receptors. These results have implication in developing strategies for phage mediated control of cholera.

  10. Stability of bacteriophages in burn wound care products

    Science.gov (United States)

    Monserez, Riet; van Belleghem, Jonas; Rose, Thomas; Jennes, Serge; De Vos, Daniel; Verbeken, Gilbert; Vaneechoutte, Mario; Pirnay, Jean-Paul

    2017-01-01

    Bacteriophages could be used along with burn wound care products to enhance antimicrobial pressure during treatment. However, some of the components of the topical antimicrobials that are traditionally used for the prevention and treatment of burn wound infection might affect the activity of phages. Therefore, it is imperative to determine the counteraction of therapeutic phage preparations by burn wound care products before application in patients. Five phages, representatives of two morphological families (Myoviridae and Podoviridae) and active against 3 common bacterial burn wound pathogens (Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus aureus) were tested against 13 different products commonly used in the treatment of burn wounds. The inactivation of the phages was quite variable for different phages and different products. Majority of the anti-infective products affected phage activity negatively either immediately or in the course of time, although impact was not always significant. Products with high acidity had the most adverse effect on phages. Our findings demonstrate that during combined treatment the choice of phages and wound care products must be carefully defined in advance. PMID:28750102

  11. Exploring the contribution of bacteriophages to antibiotic resistance.

    Science.gov (United States)

    Lekunberri, Itziar; Subirats, Jèssica; Borrego, Carles M; Balcázar, José Luis

    2017-01-01

    Bacteriophages (phages) are the most abundant and diverse biological entities in our planet. They infect susceptible bacterial hosts into which they either multiply or persist. In the latter case, phages can confer new functions to their hosts as a result of gene transfer, thus contributing to their adaptation (short-term) and evolution (long-term). In this regard, the role of phages on the dissemination of antibiotic resistance genes (ARGs) among bacterial hosts in natural environments has not yet been clearly resolved. Here, we carry out a comprehensive analysis of thirty-three viromes from different habitats to investigate whether phages harbor ARGs. Our results demonstrate that while human-associated viromes do not or rarely carry ARGs, viromes from non-human sources (e.g. pig feces, raw sewage, and freshwater and marine environments) contain a large reservoir of ARGs, thus pointing out that phages could play a part on the spread of antibiotic resistance. Given this, the role of phages should not be underestimated and it should be considered when designing strategies to tackle the global crisis of antibiotic resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. The origin of phospholipids of the enveloped bacteriophage phi6

    International Nuclear Information System (INIS)

    Laurinavicius, Simonas; Kaekelae, Reijo; Bamford, Dennis H.; Somerharju, Pentti

    2004-01-01

    The phospholipid class and molecular species compositions of bacteriophage phi6 and its host Pseudomonas syringae were determined quantitatively using TLC and liquid-chromatography/electrospray ionization mass-spectrometry. In addition, the fatty acid compositions of the phospholipids were analyzed by gas-chromatography/mass-spectrometry. The phage contained significantly more phosphatidylglycerol (PG) and less phosphatidylethanolamine (PE) than the host cytoplasmic (CM) and outer (OM) membranes. In addition, the phospholipid molecular species composition of the viral membrane differed from those of the host membranes, but resembled that of CM more than OM as shown by principal component analysis (PCA). The membrane of phi6 contained more 34:1 and 34:2, and less 32:1 PE and PG molecular species than the host CM or OM. Also, phi6 contained negligible amounts of saturated phospholipid molecular species. These data provide the first biochemical evidence suggesting that phi6 obtains its lipids from the CM. This process is not unselective, but certain phospholipid species are preferentially incorporated in the phage membrane. Common factors leading to similar enrichment of PG in every membrane-containing bacterial virus system studied so far (phi6, PM2, PRD1, PR4, Bam35) are discussed

  13. Characterization of bacteriophage communities and CRISPR profiles from dental plaque.

    Science.gov (United States)

    Naidu, Mayuri; Robles-Sikisaka, Refugio; Abeles, Shira R; Boehm, Tobias K; Pride, David T

    2014-06-30

    Dental plaque is home to a diverse and complex community of bacteria, but has generally been believed to be inhabited by relatively few viruses. We sampled the saliva and dental plaque from 4 healthy human subjects to determine whether plaque was populated by viral communities, and whether there were differences in viral communities specific to subject or sample type. We found that the plaque was inhabited by a community of bacteriophage whose membership was mostly subject-specific. There was a significant proportion of viral homologues shared between plaque and salivary viromes within each subject, suggesting that some oral viruses were present in both sites. We also characterized Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) in oral streptococci, as their profiles provide clues to the viruses that oral bacteria may be able to counteract. While there were some CRISPR spacers specific to each sample type, many more were shared across sites and were highly subject specific. Many CRISPR spacers matched viruses present in plaque, suggesting that the evolution of CRISPR loci may have been specific to plaque-derived viruses. Our findings of subject specificity to both plaque-derived viruses and CRISPR profiles suggest that human viral ecology may be highly personalized.

  14. Disposable amperometric biosensor based on nanostructured bacteriophages for glucose detection

    International Nuclear Information System (INIS)

    Kang, Yu Ri; Kim, Ju Hwan; Kim, Soo Won; Hwang, Kyung Hoon; Nam, Chang Hoon

    2010-01-01

    The selection of electrode material profoundly influences biosensor science and engineering, as it heavily influences biosensor sensitivity. Here we propose a novel electrochemical detection method using a working electrode consisting of bio-nanowires from genetically modified filamentous phages and nanoparticles. fd-tet p8MMM filamentous phages displaying a three-methionine (MMM) peptide on the major coat protein pVIII (designated p8MMM phages) were immobilized on the active area of an electrochemical sensor through physical adsorption and chemical bonding. Bio-nanowires composed of p8MMM phages and silver nanoparticles facilitated sensitive, rapid and selective detection of particular molecules. We explored whether the composite electrode with bio-nanowires was an effective platform to detect the glucose oxidase. The current response of the bio-nanowire sensor was high at various glucose concentrations (0.1 µm–0.1 mM). This method provides a considerable advantage to demonstrate analyte detection over low concentration ranges. Especially, phage-enabled bio-nanowires can serve as receptors with high affinity and specificity for the detection of particular biomolecules and provide a convenient platform for designing site-directed multifunctional scaffolds based on bacteriophages and may serve as a simple method for label-free detection

  15. Diffusion properties of bacteriophages through agarose gel membrane.

    Science.gov (United States)

    Hu, Jun; Miyanaga, Kazuhiko; Tanji, Yasunori

    2010-01-01

    A simple two-chamber diffusion method was developed to study the diffusion properties of bacteriophages (phages). The apparent diffusion coefficients (D(app)) of Myoviridae phage T4 and filamentous phage fNEL were investigated, and the diffusion of the phages was found to be much slower than the diffusion of three antibiotics, ciprofloxacin, penicillin G, and tetracycline. D(app) of T4 and fNEL in water through filter paper were calculated to be 2.8 x 10⁻¹¹ m²/s and 6.8 x 10⁻¹² m²/s, respectively, and D(app) of fNEL through agarose gel membrane, an artificial biofilm, was also calculated to be smaller than that of T4. In addition, D(app) of phages through agarose gel was dependent on agarose concentration due to the similar size of phage and agarose gel mesh. We concluded that D(app) of phages through an artificial biofilm is dependent on both phage morphology and biofilm density, and suggest the use of this method to study diffusion properties through real biofilms. © 2010 American Institute of Chemical Engineers

  16. Classification of Myoviridae bacteriophages using protein sequence similarity

    Directory of Open Access Journals (Sweden)

    Ackermann Hans W

    2009-10-01

    Full Text Available Abstract Background We advocate unifying classical and genomic classification of bacteriophages by integration of proteomic data and physicochemical parameters. Our previous application of this approach to the entirely sequenced members of the Podoviridae fully supported the current phage classification of the International Committee on Taxonomy of Viruses (ICTV. It appears that horizontal gene transfer generally does not totally obliterate evolutionary relationships between phages. Results CoreGenes/CoreExtractor proteome comparison techniques applied to 102 Myoviridae suggest the establishment of three subfamilies (Peduovirinae, Teequatrovirinae, the Spounavirinae and eight new independent genera (Bcep781, BcepMu, FelixO1, HAP1, Bzx1, PB1, phiCD119, and phiKZ-like viruses. The Peduovirinae subfamily, derived from the P2-related phages, is composed of two distinct genera: the "P2-like viruses", and the "HP1-like viruses". At present, the more complex Teequatrovirinae subfamily has two genera, the "T4-like" and "KVP40-like viruses". In the genus "T4-like viruses" proper, four groups sharing >70% proteins are distinguished: T4-type, 44RR-type, RB43-type, and RB49-type viruses. The Spounavirinae contain the "SPO1-"and "Twort-like viruses." Conclusion The hierarchical clustering of these groupings provide biologically significant subdivisions, which are consistent with our previous analysis of the Podoviridae.

  17. Genetical studies with radiation sensitive mutants of bacteriophage T4

    International Nuclear Information System (INIS)

    Boyle, J.M.

    This thesis is concerned with a study of the properties of radiation sensitive mutants of bacteriophage T4. An introduction is presented which reviews the current concepts of radiation repair mechanisms, and their relationship to genetic recombination in bacteria and phage T4. Following the description of materials and methods, the results section is presented in three parts. Part I deals with the isolation and purification of a new radiation sensitive mutant of T4, called y. The properties of y are compared with those of two previously isolated radiation sensitive mutants, v 1 and x. Part II describes the properties of y under three complex radiobiological conditions, namely multiplicity reactivation, depression of viability and the Luria-Latarjet experiment. In Part III, complementation and mapping data are presented, which show that y, x, and v 1 are mutants of separate cistrons and unlinked in mapping experiments. The wild allele in each case is dominant. The sizes of cistrons y, x, and v are 3.2, 6.8, and 1.6% of the total chromosome respectively. The properties of recombinants v 1 x, v 1 y, and xy are described. In the discussion the possible mode of action of y is discussed. (author)

  18. INTRACELLULAR GROWTH OF BACTERIOPHAGE STUDIED BY ROENTGEN IRRADIATION

    Science.gov (United States)

    Latarjet, Raymond

    1948-01-01

    Growing Escherichia coli infected with bacteriophage T2 was x-rayed during the 21 minute latent period which elapses between infection and lysis of the cells. Survival curves of the infected bacteria were determined almost from minute to minute; they disclosed the following facts which are related to the process of phage growth: During the first 7 minutes, the infective virus particle remains in the cell unique and genetically intact. The host cell synthesizes some ultraviolet-absorbing material probably devoted to building future particles. From the 7th to 9th minute the x-ray resistance of the virus particle increases, probably because of some internal change. Then, multiplication starts and is completed at about the 13th minute, when an average of 130 virulent units is present per cell, displaying an x-ray resistance twice as high as that of the extracellular virus particle. From 13 minutes to the end, the new units progressively recover the x-ray sensitivity of the extracellular virus. Nothing can be said about either the rate of multiplication between 9 and 13 minutes, or the nature of the multiplying units, except that they are more radiation-resistant (probably smaller) than the extracellular virus. The first steps of the growth process are favored by an unknown component of the lysate, different from the active particles. Several particles can grow in the same host cell. PMID:18870871

  19. The allosteric switching mechanism in bacteriophage MS2

    Science.gov (United States)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F.

    2016-07-01

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  20. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    Science.gov (United States)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  1. Inhibition of DNA ejection from bacteriophage by Mg+2 counterions

    Science.gov (United States)

    Lee, Sell; Tran, C. V.; Nguyen, T. T.

    2011-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, specifically Mg+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and nonmonotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the minimum amount of DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg+2 multivalent counterions. As Mg+2 concentration increases from zero, the net charge of DNA changes from negative to positive. The optimal inhibition corresponds to the Mg+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. By fitting our theory to available experimental data, the strength of DNA-DNA short range attraction energies, mediated by Mg+2, is found to be -0.004 kBT per nucleotide base. This and other fitted parameters agree well with known values from other experiments and computer simulations. The parameters are also in agreement qualitatively with values for tri- and tetravalent counterions.

  2. Purification of bacteriophage M13 by anion exchange chromatography.

    Science.gov (United States)

    Monjezi, Razieh; Tey, Beng Ti; Sieo, Chin Chin; Tan, Wen Siang

    2010-07-01

    M13 is a non-lytic filamentous bacteriophage (phage). It has been used widely in phage display technology for displaying foreign peptides, and also for studying macromolecule structures and interactions. Traditionally, this phage has been purified by cesium chloride (CsCl) density gradient ultracentrifugation which is highly laborious and time consuming. In the present study, a simple, rapid and efficient method for the purification of M13 based on anion exchange chromatography was established. A pre-packed SepFast Super Q column connected to a fast protein liquid chromatography (FPLC) system was employed to capture released phages in clarified Escherichia coli fermented broth. An average yield of 74% was obtained from a packed bed mode elution using citrate buffer (pH 4), containing 1.5 M NaCl at 1 ml/min flow rate. The purification process was shortened substantially to less than 2 h from 18 h in the conventional ultracentrifugation method. SDS-PAGE revealed that the purity of particles was comparable to that of CsCl gradient density ultracentrifugation method. Plaque forming assay showed that the purified phages were still infectious. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Fluorescent nanodiamond-bacteriophage conjugates maintain host specificity.

    Science.gov (United States)

    Trinh, Jimmy T; Alkahtani, Masfer H; Rampersaud, Isaac; Rampersaud, Arfaan; Scully, Marlan; Young, Ryland F; Hemmer, Philip; Zeng, Lanying

    2018-06-01

    Rapid identification of specific bacterial strains within clinical, environmental, and food samples can facilitate the prevention and treatment of disease. Fluorescent nanodiamonds (FNDs) are being developed as biomarkers in biology and medicine, due to their excellent imaging properties, ability to accept surface modifications, and lack of toxicity. Bacteriophages, the viruses of bacteria, can have exquisite specificity for certain hosts. We propose to exploit the properties of FNDs and phages to develop phages conjugated with FNDs as long-lived fluorescent diagnostic reagents. In this study, we develop a simple procedure to create such fluorescent probes by functionalizing the FNDs and phages with streptavidin and biotin, respectively. We find that the FND-phage conjugates retain the favorable characteristics of the individual components and can discern their proper host within a mixture. This technology may be further explored using different phage/bacteria systems, different FND color centers and alternate chemical labeling schemes for additional means of bacterial identification and new single-cell/virus studies. © 2018 Wiley Periodicals, Inc.

  4. The allosteric switching mechanism in bacteriophage MS2

    Energy Technology Data Exchange (ETDEWEB)

    Perkett, Matthew R.; Mirijanian, Dina T.; Hagan, Michael F., E-mail: hagan@brandeis.edu [Martin Fisher School of Physics, Brandeis University, Waltham, Massachusetts 02474 (United States)

    2016-07-21

    We use all-atom simulations to elucidate the mechanisms underlying conformational switching and allostery within the coat protein of the bacteriophage MS2. Assembly of most icosahedral virus capsids requires that the capsid protein adopts different conformations at precise locations within the capsid. It has been shown that a 19 nucleotide stem loop (TR) from the MS2 genome acts as an allosteric effector, guiding conformational switching of the coat protein during capsid assembly. Since the principal conformational changes occur far from the TR binding site, it is important to understand the molecular mechanism underlying this allosteric communication. To this end, we use all-atom simulations with explicit water combined with a path sampling technique to sample the MS2 coat protein conformational transition, in the presence and absence of TR-binding. The calculations find that TR binding strongly alters the transition free energy profile, leading to a switch in the favored conformation. We discuss changes in molecular interactions responsible for this shift. We then identify networks of amino acids with correlated motions to reveal the mechanism by which effects of TR binding span the protein. We find that TR binding strongly affects residues located at the 5-fold and quasi-sixfold interfaces in the assembled capsid, suggesting a mechanism by which the TR binding could direct formation of the native capsid geometry. The analysis predicts amino acids whose substitution by mutagenesis could alter populations of the conformational substates or their transition rates.

  5. Intranasal treatment with bacteriophage rescues mice from Acinetobacter baumannii-mediated pneumonia.

    Science.gov (United States)

    Wang, Yong; Mi, Zhiqiang; Niu, Wenkai; An, Xiaoping; Yuan, Xin; Liu, Huiying; Li, Puyuan; Liu, Yannan; Feng, Yuzhong; Huang, Yong; Zhang, Xianglilan; Zhang, Zhiyi; Fan, Hang; Peng, Fan; Tong, Yigang; Bai, Changqing

    2016-05-01

    With the emergence of drug-resistant bacteria, finding alternative agents to treat antibiotic-resistant bacterial infections is imperative. A mouse pneumonia model was developed by combining cyclophosphamide pretreatment and Acinetobacter baumannii challenge, and a lytic bacteriophage was evaluated for its therapeutic efficacy in this model by examining the survival rate, bacterial load in the lung and lung pathology. Intranasal instillation with bacteriophage rescued 100% of mice following lethal challenge with A. baumannii. Phage treatment reduced bacterial load in the lung. Microcomputed tomography indicated a reduction in lung inflammation in mice given phage. This research demonstrates that intranasal application of bacteriophage is viable, and could provide complete protection from pneumonia caused by A. baumannii.

  6. Stimulation of Innate and Adaptive Immunity by Using Filamentous Bacteriophage fd Targeted to DEC-205.

    Science.gov (United States)

    D'Apice, Luciana; Costa, Valerio; Sartorius, Rossella; Trovato, Maria; Aprile, Marianna; De Berardinis, Piergiuseppe

    2015-01-01

    The filamentous bacteriophage fd, codisplaying antigenic determinants and a single chain antibody fragment directed against the dendritic cell receptor DEC-205, is a promising vaccine candidate for its safety and its ability to elicit innate and adaptive immune response in absence of adjuvants. By using a system vaccinology approach based on RNA-Sequencing (RNA-Seq) analysis, we describe a relevant gene modulation in dendritic cells pulsed with anti-DEC-205 bacteriophages fd. RNA-Seq data analysis indicates that the bacteriophage fd virions are sensed as a pathogen by dendritic cells; they activate the danger receptors that trigger an innate immune response and thus confer a strong adjuvanticity that is needed to obtain a long-lasting adaptive immune response.

  7. From Bits and Pieces to Whole Phage to Nanomachines: Pathogen Detection Using Bacteriophages.

    Science.gov (United States)

    Anany, H; Chou, Y; Cucic, S; Derda, R; Evoy, S; Griffiths, M W

    2017-02-28

    The innate specificity of bacteriophages toward their hosts makes them excellent candidates for the development of detection assays. They can be used in many ways to detect pathogens, and each has its own advantages and disadvantages. Whole bacteriophages can carry reporter genes to alter the phenotype of the target. Bacteriophages can act as staining agents or the progeny of the infection process can be detected, which further increases the sensitivity of the detection assay. Compared with whole-phage particles, use of phage components as probes offers other advantages: for example, smaller probe size to enhance binding activity, phage structures that can be engineered for better affinity, as well as specificity, binding properties, and robustness. When no natural binding with the target exists, phages can be used as vehicles to identify new protein-ligand interactions necessary for diagnostics. This review comprehensively summarizes many uses of phages as detection tools and points the way toward how phage-based technologies may be improved.

  8. Magic-angle spinning NMR of intact bacteriophages: Insights into the capsid, DNA and their interface

    Science.gov (United States)

    Abramov, Gili; Morag, Omry; Goldbourt, Amir

    2015-04-01

    Bacteriophages are viruses that infect bacteria. They are complex macromolecular assemblies, which are composed of multiple protein subunits that protect genomic material and deliver it to specific hosts. Various biophysical techniques have been used to characterize their structure in order to unravel phage morphogenesis. Yet, most bacteriophages are non-crystalline and have very high molecular weights, in the order of tens of MegaDaltons. Therefore, complete atomic-resolution characterization on such systems that encompass both capsid and DNA is scarce. In this perspective article we demonstrate how magic-angle spinning solid-state NMR has and is used to characterize in detail bacteriophage viruses, including filamentous and icosahedral phage. We discuss the process of sample preparation, spectral assignment of both capsid and DNA and the use of chemical shifts and dipolar couplings to probe the capsid-DNA interface, describe capsid structure and dynamics and extract structural differences between viruses.

  9. Use of encapsulated bacteriophages to enhance farm to fork food safety.

    Science.gov (United States)

    Hussain, Malik A; Liu, Huan; Wang, Qi; Zhong, Fang; Guo, Qian; Balamurugan, Sampathkumar

    2017-09-02

    Bacteriophages have been successfully applied to control the growth of pathogens in foods and to reduce the colonization and shedding of pathogens by food animals. They are set to play a dominant role in food safety in the future. However, many food-processing operations and the microenvironments in food animals' guts inactivate phages and reduce their infectivity. Encapsulation technologies have been used successfully to protect phages against extreme environments, and have been shown to preserve their activity and enable their release in targeted environments. A number of encapsulation technologies have shown potential for use with bacteriophages. This review discusses the current state of knowledge about the use of encapsulation technologies with bacteriophages to control pathogens in foods and food animals.

  10. Phylogenetic diversity of T4-like bacteriophages in Lake Baikal, East Siberia.

    Science.gov (United States)

    Butina, Tatyana Vladimirovna; Belykh, Olga I; Maksimenko, Svetlana Yu; Belikov, Sergey I

    2010-08-01

    Among the tailed phages, the myoviruses, those with contractile tails, are widespread and diverse. An important component of the Myoviridae family is the genus 'T4-like viruses'. The present study was aimed at elucidating the molecular diversity of T4-type bacteriophages in Lake Baikal by partial sequencing of g23 genes of T4-type bacteriophages. Our study revealed that the g23 gene sequences investigated were highly diverse and different from those of T4-like bacteriophages and from g23 clones obtained from different environments. Phylogenetic analysis showed that all g23 fragments from Lake Baikal, except for the one sequence, were more closely related to marine T4 cyanophages and to previously described subgroups of uncultured T4 phages from marine and rice field environments.

  11. Decreased survival of the λ15 bacteriophage induced by UV-365 nanometers in Escherichia coli

    International Nuclear Information System (INIS)

    Luca, M.E.M. de.

    1989-01-01

    The results of our investigation showed a new effect (not yet described in the current literature) of the UV-365 nm, verified when the bacteria E. coli was irradiated with this wavelenght and then infected with bacteriophage irradiated with short UV (254 nm). In these conditions we observed a decrease in the phage survival. This phenomenon was called Decreased Survival of the Bacteriophage (DSB). We were able to show that DSB was only induced in bacteria irradiated with UV-365 nm, proficient in recombination repair and owning 4-thiouridine in their tRNA. For the induction of DSB it is necessary to promote damage in the bacteriophage through UVA and UVB. It seems that DSB and SOS are antagonistic since DSB is able to suppress the mutation induced by SOS. (author)

  12. Research of pathogenic bacteria and bacteriophages in the residuals of wastewater treatment plants

    International Nuclear Information System (INIS)

    Mathlouthi, Soumaya

    2011-01-01

    The aim of this study is to find the pathogenic bacteria Listeria and Salmonella and to detect of bacterial (fecal coliforms) and viral indicators (bacteriophage) of fecal contamination in the residues of three sewage treatment plants in Greater Tunis: Charguia, Jdaida and Wardia. Three types of samples were analyzed: raw sewage, treated wastewater and sludge. The study showed the presence of pathogenic bacteria in some samples with a frequency of 7 pour cent for Listeria and 21 pour cent for Salmonella. However, none of these organisms has been detected in treated water of Jdaida and Chargia reflecting the efficiency of the purification process in these stations. Furthermore, all samples were positive for the presence of fecal coliforms and bacteriophages with important titles: up to 8.23 log10 (CFU/L) for coliforms and 8.36 log10 (pfu/L) for bacteriophages.

  13. Internalization of a polysialic acid-binding Escherichia coli bacteriophage into eukaryotic neuroblastoma cells.

    Science.gov (United States)

    Lehti, Timo A; Pajunen, Maria I; Skog, Maria S; Finne, Jukka

    2017-12-04

    Eukaryotic organisms are continuously exposed to bacteriophages, which are efficient gene transfer agents in bacteria. However, bacteriophages are considered not to pass the eukaryotic cell membrane and enter nonphagocytic cells. Here we report the binding and penetration of Escherichia coli PK1A2 bacteriophage into live eukaryotic neuroblastoma cells in vitro. The phage interacts with cell surface polysialic acid, which shares structural similarity with the bacterial phage receptor. Using fluorescence and electron microscopy, we show that phages are internalized via the endolysosomal route and persist inside the human cells up to one day without affecting cell viability. Phage capsid integrity is lost in lysosomes, and the phage DNA is eventually degraded. We did not detect the entry of phage DNA into the nucleus; however, we speculate that this might occur as a rare event, and propose that this potential mechanism could explain prokaryote-eukaryote gene flow.

  14. Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1.

    Science.gov (United States)

    Lee, Ju-Hoon; Shin, Hakdong; Ji, Samnyu; Malhotra, Shweta; Kumar, Mukesh; Ryu, Sangryeol; Heu, Sunggi

    2012-08-01

    Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not make lysogen after host infection. This is the first report on the complete genome sequence of the P. carotovorum subsp. carotovorum-targeting bacteriophage, and it will enhance our understanding of the interaction between phytopathogens and their targeting bacteriophages.

  15. Intestinal digestive enzyme activity under the influence of different dietary supplements methionine and lysine in the diet of Sparidentex hasta

    OpenAIRE

    Movahedian, R.; Zakeri, M.; Kochanian, P.; Mousavi, S.M.; Taghavi Moghadam, A.

    2016-01-01

    This study was conducted to determine the effects of dietary methionine and lysine supplementation on digestive enzymes activity in juvenile Sobaity, Sparidentex hasta. For this purpose, 180 juvenile fish with an initial average weight of 31.38 ± 1.4 g were distributed randomly in eighteen (300 L) polyethylene tanks. 6 experimental diets were prepared with different levels of methionine and lysine including control diet (without dietary methionine and lysine), Diet 1: 100% methionine; Diet 2:...

  16. Mutation of lysine residues in the nucleotide binding segments of the poliovirus RNA-dependent RNA polymerase.

    OpenAIRE

    Richards, O C; Baker, S; Ehrenfeld, E

    1996-01-01

    The poliovirus 3D RNA-dependent RNA polymerase contains two peptide segments previously shown to cross-link to nucleotide substrates via lysine residues. To determine which lysine residue(s) might be implicated in catalytic function, we engineered mutations to generate proteins with leucine residues substituted individually for each of the lysine residues in the NTP binding regions. These proteins were expressed in Escherichia coli and were examined for their abilities to bind nucleotides and...

  17. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus

    Directory of Open Access Journals (Sweden)

    Magdalena Myga-Nowak

    2016-09-01

    Full Text Available It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses – bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic

  18. Antibacterial Efficacy of Lytic Bacteriophages against Antibiotic-Resistant Klebsiella Species

    Directory of Open Access Journals (Sweden)

    M. Khajeh Karamoddini

    2011-01-01

    Full Text Available Bacterial resistance to antibiotics is a leading and highly prevalent problem in the treatment of infectious diseases. Bacteriophages (phages appear to be effective and safe alternatives for the treatment of resistant infections because of their specificity for bacterial species and lack of infectivity in eukaryotic cells. The present study aimed to isolate bacteriophages against Klebsiella spp. and evaluate their efficacy against antibiotic-resistant species. Seventy-two antibiotic-resistant Klebsiella spp. were isolated from samples of patients who referred to the Ghaem Hospital (Mashhad, Iran. Lytic bacteriophages against Klebsiella spp. were isolated from wastewater of the septic tank of the same hospital. Bactericidal activity of phages against resistant Klebsiella spp. was tested in both liquid (tube method; after 1 and 24 h of incubation and solid (double-layer agar plate method; after 24 h of incubation phases. In each method, three different concentrations of bacteriophages (low: 107 PFU/mL were used. Bacteriophages showed promising bactericidal activity at all assessed concentrations, regardless of the test method and duration of incubation. Overall, bactericidal effects were augmented at higher concentrations. In the tube method, higher activity was observed after 24 h of incubation compared to the 1-h incubation. The bactericidal effects were also higher in the tube method compared to the double-layer agar plate method after 24 h of incubation. The findings of the present study suggest that bacteriophages possess effective bactericidal activity against resistant Klebsiella spp. These bactericidal activities are influenced by phage concentration, duration of incubation, and test method.

  19. Antimicrobial activity of T4 bacteriophage conjugated indium tin oxide surfaces.

    Science.gov (United States)

    Liana, Ayu E; Marquis, Christopher P; Gunawan, Cindy; Justin Gooding, J; Amal, Rose

    2018-03-15

    We report the antimicrobial activity of bare and surface functionalized indium tin oxide (ITO) conjugated with T4 bacteriophage towards E. coli. A ∼ 10 3 -fold reduction (99.9%) in the bacterial concentration was achieved within 2 h exposure of E. coli to the bare as well as the amine, carboxylic and methyl functionalized ITO/T4 surfaces. Despite the known differences in bacteriophage loading of these ITO/T4 systems, the almost identical extent of antimicrobial activity of all of the ITO/T4 systems resulted from the release of a comparable amount of infective T4 from the systems. As anticipated, a single dose of immobilized bacteriophage was sufficient to eliminate further surge of bacterial population. Upon the 2 h eradication of the '1st batch' of E. coli population, all of the ITO/T4 systems, each system with 10 2 -fold more suspended bacteriophage (due to propagation of the phage at the expense of the '1st batch' E. coli death), reduced the '2nd batch' of E. coli concentration by ∼10 4 -fold in just 30 min, suggesting the potential of immobilized bacteriophage systems as solution to the issues of antimicrobial agent depletion. All of the ITO/T4 systems maintained their antimicrobial activity in the presence of model food components. The antimicrobial activity was however, affected by pH; at pH 5 whereby the bacteria's growth was physiologically inhibited, generally no reduction in E. coli concentration was detected. The present work provides an understanding of the mode of antimicrobial activity exhibited by an immobilized bacteriophage based substrate and demonstrates efficacy in the presence of food components. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Bacteriophages to combat foodborne infections caused by food contamination by bacteria of the Campylobacter genus.

    Science.gov (United States)

    Myga-Nowak, Magdalena; Godela, Agnieszka; Głąb, Tomasz; Lewańska, Monika; Boratyński, Janusz

    2016-09-26

    It is estimated that each year more than 2 million people suffer from diarrheal diseases, resulting from the consumption of contaminated meat. Foodborne infections are most frequently caused by small Gram-negative rods Campylobacter. The hosts of these bacteria are mainly birds wherein they are part of the normal intestinal flora. During the commercial slaughter, there is a likelihood of contamination of carcasses by the bacteria found in the intestinal content. In Europe, up to 90% of poultry flocks can be a reservoir of the pathogen. According to the European Food Safety Authority report from 2015, the number of reported and confirmed cases of human campylobacteriosis exceeds 200 thousands per year, and such trend remains at constant level for several years. The occurrence of growing antibiotic resistance in bacteria forces the limitation of antibiotic use in the animal production. Therefore, the European Union allows only using stringent preventive and hygienic treatment on farms. Achieving Campylobacter free chickens using these methods is possible, but difficult to implement and expensive. Utilization of bacterial viruses - bacteriophages, can be a path to provide the hygienic conditions of poultry production and food processing. Formulations applied in the food protection should contain strictly lytic bacteriophages, be non-pyrogenic and retain long lasting biological activity. Currently, on the market there are available commercial bacteriophage preparations for agricultural use, but neither includes phages against Campylobacter. However, papers on the application of bacteriophages against Campylobacter in chickens and poultry products were published in the last few years. In accordance with the estimates, 2-logarithm reduction of Campylobacter in poultry carcases will contribute to the 30-fold reduction in the incidence of campylobacteriosis in humans. Research on bacteriophages against Campylobacter have cognitive and economic importance. The paper

  1. Survival studies of a temperate and lytic bacteriophage in bovine faeces and slurry.

    Science.gov (United States)

    Nyambe, S; Burgess, C; Whyte, P; Bolton, D

    2016-10-01

    Cattle are the main reservoir of verocytotoxigenic Escherichia coli (VTEC), food-borne pathogens that express verocytotoxins (vtx) encoded by temperate bacteriophage. Bovine faeces and unturned manure heaps can support the survival of VTEC and may propagate and transmit VTEC. This study investigated the survival of a vtx2 bacteriophage, φ24B ::Kan, in bovine faeces and slurry. The survival of an anti-Escherichia coli O157:H7 lytic bacteriophage, e11/2, was examined in the same matrices, as a possible bio-control option for VTEC. Samples were inoculated with φ24B ::Kan and/or e11/2 bacteriophage at a concentration of 7-8 log10  PFU g(-1)  (faeces) or ml(-1) (slurry), stored at 4 and 14°C and examined every 2 days for 36 days. The ability of φ24B ::Kan to transduce E. coli cells was examined. Moreover, E. coli concentrations in the faeces and slurry were monitored throughout the experiment as were the pH and aw (faeces only). Both bacteriophages survived well in faeces and slurry. In addition, φ24B ::Kan was able to form lysogens. φ24B ::Kan and e11/2 phage can survive and remain infective in bovine faeces and slurry for at least 30 days under representative Irish temperatures. Bovine faeces and slurry may act as a reservoir for vtx bacteriophages. The survival of the anti-O157 phage suggests it may be a suitable bio-control option in these matrices. © 2016 The Society for Applied Microbiology.

  2. Cleavage by trypsin and by the proteinase from Armillaria mellea at epsilon-N-formyl-lysine residues.

    Science.gov (United States)

    Barry, F P; Doonan, S; Ross, C A

    1981-01-01

    Kinetic studies were made of the hydrolysis by trypsin of alpha-N-acetylglycyl-L-lysine methyl ester and of its neutral analogue alpha-N-acetylglycyl-epsilon-N-formyl-L-lysine methyl ester. The latter substance is a moderately good substrate for trypsin, and this observation is discussed in terms of the substrate specifically of the enzyme. The actions of trypsin and of the lysine-specific proteinase from Armillaria mellea on both a native and a formylated polypeptide substrate were compared. Both enzymes were found to hydrolyse specifically bonds to epsilon-N-formyl-lysine in the formylated substrate. PMID:6796050

  3. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations

    Directory of Open Access Journals (Sweden)

    Hsin-Yu Lin

    2014-01-01

    Full Text Available Fatty liver disease is the most common pathological condition in the liver. Here, we generated high-fat diet-(HFD- induced nonalcoholic fatty liver disease (NAFLD in mice and tested the effects of docosahexaenoic acid (DHA and lysine during a four-week regular chow (RCfeeding. Our results showed that 1% lysine and the combination of 1% lysine + 1% DHA reduced body weight. Moreover, serum triglyceride levels were reduced by 1% DHA and 1% lysine, whereas serum alanine transaminase activity was reduced by 1% DHA and 1% DHA + 0.5% lysine. Switching to RC reduced hepatic lipid droplet accumulation, which was further reduced by the addition of DHA or lysine. Furthermore, the mRNA expressions of hepatic proinflammatory cytokines were suppressed by DHA and combinations of DHA + lysine, whereas the mRNA for the lipogenic gene, acetyl-CoA carboxylase 1 (ACC1, was suppressed by DHA. In the gonadal adipose tissues, combinations of DHA and lysine inhibited mRNA expression of lipid metabolism-associated genes, including ACC1, fatty acid synthase, lipoprotein lipase, and perilipin. In conclusion, the present study demonstrated that, in conjunction with RC-induced benefits, supplementation with DHA or lysine further ameliorated the high-fat diet-induced NAFLD and provided an alternative strategy to treat, and potentially prevent, NAFLD.

  4. Effect of varying dietary concentrations of lysine on growth performance of the Pearl Grey guinea fowl.

    Science.gov (United States)

    Bhogoju, S; Nahashon, S N; Donkor, J; Kimathi, B; Johnson, D; Khwatenge, C; Bowden-Taylor, T

    2017-05-01

    Lysine is the second limiting essential amino acid in poultry nutrition after methionine. Understanding the lysine requirement of poultry is necessary in guiding formulation of least cost diets that effectively meet the nutritional needs of individual birds. The lysine requirement of the Pearl Grey guinea fowl (PGGF) is not known. Therefore, the objective of this study was to assess the appropriate lysine levels required for optimal growth attributes of the PGGF. In a 12-week study, 512 one-day-old Pearl Grey guinea keets were weighed individually and randomly assigned to electrically heated battery brooders. Each battery contained 12 compartments housing 15 birds each. Eight diets fed to the experimental birds consisted of corn-soybean meal and contained 0.80 to 1.22 digestible lysine in 0.06% increments. Feed and water were provided at free choice and the diets were replicated twice. Experimental diets contained 3,100 Kcal metabolizable energy (ME)/kg diet and 23% crude protein (CP), 3,150 ME Kcal ME/kg diet and 21% CP, and 3,100 ME/kg and 17% CP, at zero to 4, 5 to 10, and 11 to 12 weeks of age (WOA), respectively. Birds were provided water ad libitum and a 23:1 and 8:16-hr (light:dark) regimen at zero to 8 and 9 to 12 WOA, respectively. Birds were weighed weekly, and body weight gain, feed consumption, and feed conversions were determined. Data were analyzed using the General Linear Model (GLM) procedures of SAS (2002) with dietary lysine as treatment effect. Females responded better to diets containing 1.04 and 0.8% lysine from hatch to 4 and 5 to 12 WOA, respectively. Males responded better to diets containing 1.10 and 0.8% lysine at hatch to 4 WOA and 5 to 12 WOA, respectively. Therefore, we recommend that PGGF females and males be fed diets containing 1.04 and 1.10%, respectively, at hatch to 4 WOA and 0.80% lysine at 5 to 12 WOA. The diets should be supplied in phases. © 2016 Poultry Science Association Inc.

  5. Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applications.

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grazyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-12-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application.

  6. Learning from Bacteriophages - Advantages and Limitations of Phage and Phage-Encoded Protein Applications

    Science.gov (United States)

    Drulis-Kawa, Zuzanna; Majkowska-Skrobek, Grażyna; Maciejewska, Barbara; Delattre, Anne-Sophie; Lavigne, Rob

    2012-01-01

    The emergence of bacteria resistance to most of the currently available antibiotics has become a critical therapeutic problem. The bacteria causing both hospital and community-acquired infections are most often multidrug resistant. In view of the alarming level of antibiotic resistance between bacterial species and difficulties with treatment, alternative or supportive antibacterial cure has to be developed. The presented review focuses on the major characteristics of bacteriophages and phage-encoded proteins affecting their usefulness as antimicrobial agents. We discuss several issues such as mode of action, pharmacodynamics, pharmacokinetics, resistance and manufacturing aspects of bacteriophages and phage-encoded proteins application. PMID:23305359

  7. On spherical symmetry modelling of DNA packing within bacteriophage heads according to small angle scattering data

    International Nuclear Information System (INIS)

    Dembo, A.T.; Tikhonychev, V.V.

    1983-01-01

    Spherical symmetry models were used for interpretation of X-ray small angle scattering curves of bacteriophage solutions. These models were built of concentric spherical layers of finite thickness with various scattering densities. The attention was attached to the ripple intensity of DNA packing maximum. In model calculations such parameters as external radius, scattering densities, number of DNA-imitating layers and internal radii were changed. The results show that the fine structure of DNA packing maximum depends on the overall shape and size of the region occupied by DNA inside the bacteriophage head. (author)

  8. Detection of bacteriophage-infected cells of Lactococcus lactis using flow cytometry

    DEFF Research Database (Denmark)

    Michelsen, Ole; Cuesta-Dominguez, Álvaro; Albrektsen, Bjarne

    2007-01-01

    Bacteriophage infection in dairy fermentation constitutes a serious problem worldwide. We have studied bacteriophage infection in Lactococcus lactis by using the flow cytometer. The first effect of the infection of the bacterium is a change from cells in chains toward single cells. We interpret...... describe a new method for detection of phage infection in Lactococcus lactis dairy cultures. The method is based on flow cytometric detection of cells with low-density cell walls. The method allows fast and early detection of phage-infected bacteria, independently of which phage has infected the culture...

  9. Complete genome sequence of Pectobacterium carotovorum subsp. carotovorum bacteriophage My1.

    Science.gov (United States)

    Lee, Dong Hwan; Lee, Ju-Hoon; Shin, Hakdong; Ji, Samnyu; Roh, Eunjung; Jung, Kyusuk; Ryu, Sangryeol; Choi, Jaehyuk; Heu, Sunggi

    2012-10-01

    Pectobacterium carotovorum subsp. carotovorum, a member of the Enterobacteriaceae family, is an important plant-pathogenic bacterium causing significant economic losses worldwide. P. carotovorum subsp. carotovorum bacteriophage My1 was isolated from a soil sample. Its genome was completely sequenced and analyzed for the development of an effective biological control agent. Sequence and morphological analyses revealed that phage My1 is a T5-like bacteriophage and belongs to the family Siphoviridae. To date, there is no report of a Pectobacterium-targeting siphovirus genome sequence. Here, we announce the complete genome sequence of phage My1 and report the results of our analysis.

  10. Expression of the Bovine NK-Lysin Gene Family and Activity against Respiratory Pathogens.

    Directory of Open Access Journals (Sweden)

    Junfeng Chen

    Full Text Available Unlike the genomes of many mammals that have a single NK-lysin gene, the cattle genome contains a family of four genes, one of which is expressed preferentially in the lung. In this study, we compared the expression of the four bovine NK-lysin genes in healthy animals to animals challenged with pathogens known to be associated with bovine respiratory disease (BRD using transcriptome sequencing (RNA-seq. The expression of several NK-lysins, especially NK2C, was elevated in challenged relative to control animals. The effects of synthetic peptides corresponding to functional region helices 2 and 3 of each gene product were tested on both model membranes and bio-membranes. Circular dichroism spectroscopy indicated that these peptides adopted a more helical secondary structure upon binding to an anionic model membrane and liposome leakage assays suggested that these peptides disrupt membranes. Bacterial killing assays further confirmed the antimicrobial effects of these peptides on BRD-associated bacteria, including both Pasteurella multocida and Mannhemia haemolytica and an ultrastructural examination of NK-lysin-treated P. multocida cells by transmission electron microscopy revealed the lysis of target membranes. These studies demonstrate that the expanded bovine NK-lysin gene family is potentially important in host defense against pathogens involved in bovine respiratory disease.

  11. SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids.

    Science.gov (United States)

    López, Yosvany; Dehzangi, Abdollah; Lal, Sunil Pranit; Taherzadeh, Ghazaleh; Michaelson, Jacob; Sattar, Abdul; Tsunoda, Tatsuhiko; Sharma, Alok

    2017-06-15

    Post-Translational Modification (PTM) is a biological reaction which contributes to diversify the proteome. Despite many modifications with important roles in cellular activity, lysine succinylation has recently emerged as an important PTM mark. It alters the chemical structure of lysines, leading to remarkable changes in the structure and function of proteins. In contrast to the huge amount of proteins being sequenced in the post-genome era, the experimental detection of succinylated residues remains expensive, inefficient and time-consuming. Therefore, the development of computational tools for accurately predicting succinylated lysines is an urgent necessity. To date, several approaches have been proposed but their sensitivity has been reportedly poor. In this paper, we propose an approach that utilizes structural features of amino acids to improve lysine succinylation prediction. Succinylated and non-succinylated lysines were first retrieved from 670 proteins and characteristics such as accessible surface area, backbone torsion angles and local structure conformations were incorporated. We used the k-nearest neighbors cleaning treatment for dealing with class imbalance and designed a pruned decision tree for classification. Our predictor, referred to as SucStruct (Succinylation using Structural features), proved to significantly improve performance when compared to previous predictors, with sensitivity, accuracy and Mathew's correlation coefficient equal to 0.7334-0.7946, 0.7444-0.7608 and 0.4884-0.5240, respectively. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Differences in DNA condensation and release by lysine and arginine homopeptides govern their DNA delivery efficiencies.

    Science.gov (United States)

    Mann, Anita; Thakur, Garima; Shukla, Vasundhara; Singh, Anand Kamal; Khanduri, Richa; Naik, Rangeetha; Jiang, Yang; Kalra, Namita; Dwarakanath, B S; Langel, Ulo; Ganguli, Munia

    2011-10-03

    Designing of nanocarriers that can efficiently deliver therapeutic DNA payload and allow its smooth intracellular release for transgene expression is still a major constraint. The optimization of DNA nanocarriers requires thorough understanding of the chemical and structural characteristics of the vector-nucleic acid complexes and its correlation with the cellular entry, intracellular state and transfection efficiency. L-lysine and L-arginine based cationic peptides alone or in conjugation with other vectors are known to be putative DNA delivery agents. Here we have used L-lysine and L-arginine homopeptides of three different lengths and probed their DNA condensation and release properties by using a multitude of biophysical techniques including fluorescence spectroscopy, gel electrophoresis and atomic force microscopy. Our results clearly showed that although both lysine and arginine based homopeptides condense DNA via electrostatic interactions, they follow different pattern of DNA condensation and release in vitro. While lysine homopeptides condense DNA to form both monomolecular and multimolecular complexes and show differential release of DNA in vitro depending on the peptide length, arginine homopeptides predominantly form multimolecular complexes and show complete DNA release for all peptide lengths. The cellular uptake of the complexes and their intracellular state (as observed through flow cytometry and fluorescence microscopy) seem to be controlled by the peptide chemistry. The difference in the transfection efficiency of lysine and arginine homopeptides has been rationalized in light of these observations.

  13. Effect of dietary lysine restriction and arginine supplementation in two patients with pyridoxine-dependent epilepsy.

    Science.gov (United States)

    Yuzyuk, Tatiana; Thomas, Amanda; Viau, Krista; Liu, Aiping; De Biase, Irene; Botto, Lorenzo D; Pasquali, Marzia; Longo, Nicola

    2016-07-01

    Pyridoxine-Dependent Epilepsy (PDE) is a recessive disorder caused by deficiency of α-aminoadipic semialdehyde dehydrogenase in the catabolic pathway of lysine. It is characterized by intractable seizures controlled by the administration of pharmacological doses of vitamin B6. Despite seizure control with pyridoxine, intellectual disability and developmental delays are still observed in some patients with PDE, likely due to the accumulation of toxic intermediates in the lysine catabolic pathway: alpha-aminoadipic semialdehyde (AASA), delta-1-piperideine-6-carboxylate (P6C), and pipecolic acid. Here we evaluate biochemical and clinical parameters in two PDE patients treated with a lysine-restricted diet and arginine supplementation (100-150mg/kg), aimed at reducing the levels of PDE biomarkers. Lysine restriction resulted in decreased accumulation of PDE biomarkers and improved development. Plasma lysine but not plasma arginine, directly correlated with plasma levels of AASA-P6C (p<0.001, r(2)=0.640) and pipecolic acid (p<0.01, r(2)=0.484). In addition, plasma threonine strongly correlated with the levels of AASA-P6C (p<0.0001, r(2)=0.732) and pipecolic acid (p<0.005, r(2)=0.527), suggesting extreme sensitivity of threonine catabolism to pyridoxine availability. Our results further support the use of dietary therapies in combination with pyridoxine for the treatment of PDE. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Arginine residues are more effective than lysine residues in eliciting the cellular uptake of onconase.

    Science.gov (United States)

    Sundlass, Nadia K; Raines, Ronald T

    2011-11-29

    Onconase is an amphibian member of the pancreatic ribonuclease family of enzymes that is in clinical trials for the treatment of cancer. Onconase, which has an abundance of lysine residues, is internalized by cancer cells through endocytosis in a mechanism similar to that of cell-penetrating peptides. Here, we compare the effect of lysine versus arginine residues on the biochemical attributes necessary for Onconase to elicit its cytotoxic activity. In the variant R-Onconase, 10 of the 12 lysine residues in Onconase are replaced with arginine, leaving only the two active-site lysines intact. Cytometric assays quantifying internalization showed a 3-fold increase in the internalization of R-Onconase compared with Onconase. R-Onconase also showed greater affinity for heparin and a 2-fold increase in ribonucleolytic activity. Nonetheless, arginine substitution endowed only a slight increase in toxicity toward human cancer cells. Analysis of denaturation induced with guanidine-HCl showed that R-Onconase has less conformational stability than does the wild-type enzyme; moreover, R-Onconase is more susceptible to proteolytic degradation. These data indicate that arginine residues are more effective than lysine in eliciting cellular internalization but can compromise other aspects of protein structure and function.

  15. [Arginine and lysine as products of basic carboxypeptidase activity associated with fibrinolysis].

    Science.gov (United States)

    Zhloba, A A; Subbotina, T F; Lupan, D S; Bogova, V A; Kusheleva, O A

    2013-01-01

    Blood carboxypeptidases play an important role in the regulation of fibrinolysis. We have proposed here the method for the assay of blood carboxypeptidase activity associated with coagulation/fibrinolysis using the natural substrate fibrin and the detection of basic amino acids arginine and lysine as products in the conditions close to those in vivo. Plasma samples from 15 patients with arterial hypertension were investigated. The coagulation and subsequent fibrinolysis were initiated by addition of standard doses of thrombin and tissue plasminogen activator, respectively. Arginine and lysine concentrations before, during, and after completion of fibrinolysis were determined using HPLC. The parameters of fibrinolysis were evaluated by clot turbidity assay. Fibrinolysis led to a large and significant increase in concentrations of arginine and lysine in the incubation mixture by 101 and 81%, respectively. The duration of fibrinolysis initiation significantly correlated to the degree of increase of these amino acids: r(s) = -0.733 and -0.761 for arginine and lysine, respectively (p arginine generation had two maximums: at the beginning of clot lysis and at his end, whereas the liberation of lysine occurred mainly at the middle of fibrinolysis. Thus, the carboxypeptidase activity associated with fibrinolysis can be considered as a local source of the essential aminoacids.

  16. Differential P1 arginine and lysine recognition in the prototypical proprotein convertase Kex2

    Science.gov (United States)

    Wheatley, Joshua L.; Holyoak, Todd

    2007-01-01

    The high-resolution crystal structure of kexin (Kex2) in complex with a peptidyl-chloromethylketone inhibitor containing a noncognate lysine at the P1 position provides the structural basis for the differential lysine/arginine selectivity that defines the prohormone (proprotein) convertase (PC) family. By comparison with the previous structures of Kex2 and furin, this structure of the acylated enzyme provides a basis for the observed decrease in the acylation rate with substrates containing a lysine at P1 and the absence of an effect on the deacylation rate without involving mobility of the S1 lid. The structure of the complex shows that a secondary subsite in the S1 pocket is present, and that this site recognizes and binds the P1 lysine in a more shallow fashion than arginine. This results in a displacement of the bound peptide away from the S385 nucleophile relative to substrates containing a P1 arginine. It is concluded that this alternate binding site and resultant displacement of the scissile bond in the active site results in the observed decrease in the acylation rate. Studies of the inactivation kinetics of Kex2 by two peptidyl chloromethylketone inhibitors demonstrates that the selectivity between lysine and arginine at the P1 position arises at the acylation step, consistent with what was observed with peptidyl substrates [Rockwell NC, Fuller RS (2001) J Biol Chem 276:38394–38399]. PMID:17426142

  17. Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics.

    Science.gov (United States)

    Yang, Yu-Ying; Yu-Ying, Yang; Grammel, Markus; Markus, Grammel; Hang, Howard C; Howard, Hang C

    2011-09-01

    Proteomic studies have identified a plethora of lysine acetylated proteins in eukaryotes and bacteria. Determining the individual lysine acetyltransferases responsible for each protein acetylation mark is crucial for elucidating the underlying regulatory mechanisms, but has been challenging due to limited biochemical methods. Here, we describe the application of a bioorthogonal chemical proteomics method to profile and identify substrates of individual lysine acetyltransferases. Addition of 4-pentynoyl-coenzyme A, an alkynyl chemical reporter for protein acetylation, to cell extracts, together with purified lysine acetyltransferase p300, enabled the fluorescent profiling and identification of protein substrates via Cu(I)-catalyzed alkyne-azide cycloaddition. We identified several known protein substrates of the acetyltransferase p300 as well as the lysine residues that were modified. Interestingly, several new candidate p300 substrates and their sites of acetylation were also discovered using this approach. Our results demonstrate that bioorthogonal chemical proteomics allows the rapid substrate identification of individual protein acetyltransferases in vitro. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Effect of Selected Plant Extracts and D- and L-Lysine on the Cyanobacterium Microcystis aeruginosa

    Directory of Open Access Journals (Sweden)

    Miquel Lürling

    2014-06-01

    Full Text Available We tested extracts from Fructus mume, Salvia miltiorrhiza and Moringa oleifera as well as L-lysine and D-Lysine as curative measures to rapidly suppress the cyanobacterium Microcystis aeruginosa NIVA-CYA 43. We tested these compounds under similar conditions to facilitate comparisons. We hypothesized that for each compound, relatively low concentrations—i.e., 5–50 mg L−1, would reduce M. aeruginosa biomass. At these low concentrations, only L-lysine caused a decline in M. aeruginosa biomass at ≥4.3 mg L−1. F. mume extract was effective to do so at high concentrations, i.e., at ≥240 mg L−1, but the others were virtually non-effective. Low pH caused by organic acids is a probable explanation for the effect of F. mume extract. No complete wipe-outs of the experimental population were achieved as Photosystem II efficiency showed a recovery after six days. L-lysine may be effective at low concentrations—meaning low material costs. However, the effect of L-lysine seems relatively short-lived. Overall, the results of our study did not support the use of the tested plant extracts and amino-acid as promising candidates for curative application in M. aeruginosa bloom control.

  19. Estimation of Digestible Lysine Requirements of Japanese Quail during the Starter Period

    Directory of Open Access Journals (Sweden)

    M Ashoori

    2013-11-01

    Full Text Available The aim of this study was the estimation of digestible lysine requirements of Japanese quail during the 7-21d period. Graduation level of L-lysine.HCL were added to the basal diet at the expense of corn starch to create different levels of digestible lysine ranged from 0.75 to 1.35% of diet. Growth performance and carcass composition were evaluated during the experiment. The results showed that incremental levels of digestible lysine significantly affected the body weight gain (BWG, feed conversion ratio (FCR, feed intake (FI, breast meat yield (BMY and thigh meat yield (TMY. Either linear broken- line or quadratic broken line model were used to get break points of digestible lysine as a requirement. Based on linear broken line analysis, the break points for FCR and BMY were 0.99 and 1.04 % of diet, respectively. Using the quadratic broken-line model, the estimated Lys requirements for BWG, FCR, and BMY were 1.11, 1.04, and 1.15% of diet, respectively. The results showed that the Lys needs for optimum BMY was higher than BWG and FCR.

  20. Interaction of arginine, lysine, and guanidine with surface residues of lysozyme: implication to protein stability.

    Science.gov (United States)

    Shah, Dhawal; Shaikh, Abdul Rajjak

    2016-01-01

    Additives are widely used to suppress aggregation of therapeutic proteins. However, the molecular mechanisms of effect of additives to stabilize proteins are still unclear. To understand this, we herein perform molecular dynamics simulations of lysozyme in the presence of three commonly used additives: arginine, lysine, and guanidine. These additives have different effects on stability of proteins and have different structures with some similarities; arginine and lysine have aliphatic side chain, while arginine has a guanidinium group. We analyze atomic contact frequencies to study the interactions of the additives with individual residues of lysozyme. Contact coefficient, quantified from contact frequencies, is helpful in analyzing the interactions with the guanidine groups as well as aliphatic side chains of arginine and lysine. Strong preference for contacts to the additives (over water) is seen for the acidic followed by polar and the aromatic residues. Further analysis suggests that the hydration layer around the protein surface is depleted more in the presence of arginine, followed by lysine and guanidine. Molecular dynamics simulations also reveal that the internal dynamics of protein, as indicated by the lifetimes of the hydrogen bonds within the protein, changes depending on the additives. Particularly, we note that the side-chain hydrogen-bonding patterns within the protein differ with the additives, with several side-chain hydrogen bonds missing in the presence of guanidine. These results collectively indicate that the aliphatic chain of arginine and lysine plays a critical role in the stabilization of the protein.