WorldWideScience

Sample records for bacterially produced metabolite

  1. Halophilic and halotolerant actinomycetes from a marine saltern of Goa, India producing anti-bacterial metabolites.

    Science.gov (United States)

    Ballav, Shuvankar; Kerkar, Savita; Thomas, Sabu; Augustine, Nimmy

    2015-03-01

    Marine salterns are estuarine ecosystems in Goa, receiving inputs from riverine and marine waters. The Salinity fluctuates between 0 and 300 psu which makes it a conducive niche for salt tolerant and salt loving Actinomycetales. Halotolerant and halophilic Actinomycetales producing anti-bacterial metabolites were studied from crystallizer pond sediments of Ribandar saltern, Goa. Three media viz. Starch casein, R2A and Inorganic salt starch agar at four different salinities (35, 50, 75 and 100 psu) were used for isolation. R2A agar at 35 psu was the most preferred by hypersaline actinomycetes. The dominant group was halotolerant Streptomyces spp. others being rare actinomycetes viz. Nocardiopsis, Micromonospora and Kocuria spp. More than 50% of the isolates showed anti-bacterial activity against one or more of the fifteen human pathogens tested. Eight strains from 4 genera showed consistent anti-bacterial activity and studied in detail. Most halotolerant isolates grew from 0 to 75 psu, with optimum antibiotic production at 35 psu whereas halophiles grew at 20 to 100 psu with optimum antibiotic production at 35 psu. Four Streptomyces strains showed multiple inhibition against test organisms while four rare actinomycetes were specific in their inhibitory activity. This is the first report of a halophilic Kocuria sp., Nocardiopsis sp., and halotolerant Micromonospora sp. producing anti-bacterial compound(s) against Staphylococcus aureus, Staphylococcus citreus, and Vibrio cholerae, respectively. Sequential extraction with varying polarity of organic solvents showed that the extracts inhibited different test pathogens. These results suggest that halophilic and halotolerant actinomycetes from marine salterns are a potential source of anti-bacterial compounds. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. The bacterially produced metabolite violacein is associated with survival of amphibians infected with a lethal fungus.

    Science.gov (United States)

    Becker, Matthew H; Brucker, Robert M; Schwantes, Christian R; Harris, Reid N; Minbiole, Kevin P C

    2009-11-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 microM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria.

  3. Biodegradation of endosulfan isomers and its metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii.

    Science.gov (United States)

    Odukkathil, Greeshma; Vasudevan, Namasivayam

    2015-01-01

    The main objective of the investigation was to study the biodegradation of endosulfan isomers and its major metabolite endosulfate by two biosurfactant producing bacterial strains of Bordetella petrii. The significance of the study is to evaluate the capability of biosurfactant producing bacterial strains in enhancing the bioavailability of endosulfan. Sixty bacterial strains were isolated from the endosulfan degrading bacterial consortium and were screened for endosulfan degradation and biosurfactant production. Among those, two strains Bordetella petrii I GV 34 (Gene bank Accession No KJ02262) and Bordetella petrii II GV 36 (Gene bank Accession No KJ022625) were capable of degrading endosulfan with simultaneous biosurfactant production. Bordetella petrii I degraded 89% of α and 84% of β isomers of endosulfan whereas Bordetella petrii II degraded 82% of both the isomers. Both the strains were able to reduce the surface tension up to 19.6% and 21.4% with a minimum observed surface tension of 45 Dynes/cm and 44 Dynes/cm, respectively. The study revealed that the strains have the potential to enhance the degradation endosulfan residues in contaminated sites and water by biosurfactant production.

  4. The Bacterially Produced Metabolite Violacein Is Associated with Survival of Amphibians Infected with a Lethal Fungus ▿

    Science.gov (United States)

    Becker, Matthew H.; Brucker, Robert M.; Schwantes, Christian R.; Harris, Reid N.; Minbiole, Kevin P. C.

    2009-01-01

    The disease chytridiomycosis, which is caused by the chytrid fungus Batrachochytrium dendrobatidis, is associated with recent declines in amphibian populations. Susceptibility to this disease varies among amphibian populations and species, and resistance appears to be attributable in part to the presence of antifungal microbial species associated with the skin of amphibians. The betaproteobacterium Janthinobacterium lividum has been isolated from the skins of several amphibian species and produces the antifungal metabolite violacein, which inhibits B. dendrobatidis. In this study, we added J. lividum to red-backed salamanders (Plethodon cinereus) to obtain an increased range of violacein concentrations on the skin. Adding J. lividum to the skin of the salamander increased the concentration of violacein on the skin, which was strongly associated with survival after experimental exposure to B. dendrobatidis. As expected from previous work, some individuals that did not receive J. lividum and were exposed to B. dendrobatidis survived. These individuals had concentrations of bacterially produced violacein on their skins that were predicted to kill B. dendrobatidis. Our study suggests that a threshold violacein concentration of about 18 μM on a salamander's skin prevents mortality and morbidity caused by B. dendrobatidis. In addition, we show that over one-half of individuals in nature support antifungal bacteria that produce violacein, which suggests that there is a mutualism between violacein-producing bacteria and P. cinereus and that adding J. lividum is effective for protecting individuals that lack violacein-producing skin bacteria. PMID:19717627

  5. Mining Bacterial Genomes for Secondary Metabolite Gene Clusters.

    Science.gov (United States)

    Adamek, Martina; Spohn, Marius; Stegmann, Evi; Ziemert, Nadine

    2017-01-01

    With the emergence of bacterial resistance against frequently used antibiotics, novel antibacterial compounds are urgently needed. Traditional bioactivity-guided drug discovery strategies involve laborious screening efforts and display high rediscovery rates. With the progress in next generation sequencing methods and the knowledge that the majority of antibiotics in clinical use are produced as secondary metabolites by bacteria, mining bacterial genomes for secondary metabolites with antimicrobial activity is a promising approach, which can guide a more time and cost-effective identification of novel compounds. However, what sounds easy to accomplish, comes with several challenges. To date, several tools for the prediction of secondary metabolite gene clusters are available, some of which are based on the detection of signature genes, while others are searching for specific patterns in gene content or regulation.Apart from the mere identification of gene clusters, several other factors such as determining cluster boundaries and assessing the novelty of the detected cluster are important. For this purpose, comparison of the predicted secondary metabolite genes with different cluster and compound databases is necessary. Furthermore, it is advisable to classify detected clusters into gene cluster families. So far, there is no standardized procedure for genome mining; however, different approaches to overcome all of these challenges exist and are addressed in this chapter. We give practical guidance on the workflow for secondary metabolite gene cluster identification, which includes the determination of gene cluster boundaries, addresses problems occurring with the use of draft genomes, and gives an outlook on the different methods for gene cluster classification. Based on comprehensible examples a protocol is set, which should enable the readers to mine their own genome data for interesting secondary metabolites.

  6. Marine sequestration of carbon in bacterial metabolites.

    Science.gov (United States)

    Lechtenfeld, Oliver J; Hertkorn, Norbert; Shen, Yuan; Witt, Matthias; Benner, Ronald

    2015-03-31

    Linking microbial metabolomics and carbon sequestration in the ocean via refractory organic molecules has been hampered by the chemical complexity of dissolved organic matter (DOM). Here, using bioassay experiments and ultra-high resolution metabolic profiling, we demonstrate that marine bacteria rapidly utilize simple organic molecules and produce exometabolites of remarkable molecular and structural diversity. Bacterial DOM is similar in chemical composition and structural complexity to naturally occurring DOM in sea water. An appreciable fraction of bacterial DOM has molecular and structural properties that are consistent with those of refractory molecules in the ocean, indicating a dominant role for bacteria in shaping the refractory nature of marine DOM. The rapid production of chemically complex and persistent molecules from simple biochemicals demonstrates a positive feedback between primary production and refractory DOM formation. It appears that carbon sequestration in diverse and structurally complex dissolved molecules that persist in the environment is largely driven by bacteria.

  7. The Ecological Role of Volatile and Soluble Secondary Metabolites Produced by Soil Bacteria.

    Science.gov (United States)

    Tyc, Olaf; Song, Chunxu; Dickschat, Jeroen S; Vos, Michiel; Garbeva, Paolina

    2016-12-27

    The rich diversity of secondary metabolites produced by soil bacteria has been appreciated for over a century, and advances in chemical analysis and genome sequencing continue to greatly advance our understanding of this biochemical complexity. However, we are just at the beginning of understanding the physicochemical properties of bacterial metabolites, the factors that govern their production and ecological roles. Interspecific interactions and competitor sensing are among the main biotic factors affecting the production of bacterial secondary metabolites. Many soil bacteria produce both volatile and soluble compounds. In contrast to soluble compounds, volatile organic compounds can diffuse easily through air- and gas-filled pores in the soil and likely play an important role in long-distance microbial interactions. In this review we provide an overview of the most important soluble and volatile classes of secondary metabolites produced by soil bacteria, their ecological roles, and their possible synergistic effects.

  8. Bacterial dynamics and metabolite changes in solid-state acetic acid fermentation of Shanxi aged vinegar.

    Science.gov (United States)

    Li, Sha; Li, Pan; Liu, Xiong; Luo, Lixin; Lin, Weifeng

    2016-05-01

    Solid-state acetic acid fermentation (AAF), a natural or semi-controlled fermentation process driven by reproducible microbial communities, is an important technique to produce traditional Chinese cereal vinegars. Highly complex microbial communities and metabolites are involved in traditional Chinese solid-state AAF, but the association between microbiota and metabolites during this process are still poorly understood. In this study, we performed amplicon 16S rRNA gene sequencing on the Illumina MiSeq platform, PCR-denaturing gradient gel electrophoresis, and metabolite analysis to trace the bacterial dynamics and metabolite changes under AAF process. A succession of bacterial assemblages was observed during the AAF process. Lactobacillales dominated all the stages. However, Acetobacter species in Rhodospirillales were considerably accelerated during AAF until the end of fermentation. Quantitative PCR results indicated that the biomass of total bacteria showed a "system microbe self-domestication" process in the first 3 days, and then peaked at the seventh day before gradually decreasing until the end of AAF. Moreover, a total of 88 metabolites, including 8 organic acids, 16 free amino acids, and 66 aroma compounds were detected during AAF. Principal component analysis and cluster analyses revealed the high correlation between the dynamics of bacterial community and metabolites.

  9. The Maternal Diet, Gut Bacteria, and Bacterial Metabolites during Pregnancy Influence Offspring Asthma

    Science.gov (United States)

    Gray, Lawrence E. K.; O’Hely, Martin; Ranganathan, Sarath; Sly, Peter David; Vuillermin, Peter

    2017-01-01

    This review focuses on the current evidence that maternal dietary and gut bacterial exposures during pregnancy influence the developing fetal immune system and subsequent offspring asthma. Part 1 addresses exposure to a farm environment, antibiotics, and prebiotic and probiotic supplementation that together indicate the importance of bacterial experience in immune programming and offspring asthma. Part 2 outlines proposed mechanisms to explain these associations including bacterial exposure of the fetoplacental unit; immunoglobulin-related transplacental transport of gut bacterial components; cytokine signaling producing fetomaternal immune alignment; and immune programming via metabolites produced by gut bacteria. Part 3 focuses on the interplay between diet, gut bacteria, and bacterial metabolites. Maternal diet influences fecal bacterial composition, with dietary microbiota-accessible carbohydrates (MACs) selecting short-chain fatty acid (SCFA)-producing bacteria. Current evidence from mouse models indicates an association between increased maternal dietary MACs, SCFA exposure during pregnancy, and reduced offspring asthma that is, at least in part, mediated by the induction of regulatory T lymphocytes in the fetal lung. Part 4 discusses considerations for future studies investigating maternal diet-by-microbiome determinants of offspring asthma including the challenge of measuring dietary MAC intake; limitations of the existing measures of the gut microbiome composition and metabolic activity; measures of SCFA exposure; and the complexities of childhood respiratory health assessment. PMID:28408909

  10. Phytotoxic metabolites produced by Botryosphaeriaceae involved in grapevine trunk diseases

    OpenAIRE

    Basso, Sara; Andolfi, Anna; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Deidda, Antonio; Serra, Salvatorica; Cimmino, Alessio; Evidente, Antonio

    2013-01-01

    Fungi belonging to the Botryosphaeriaceae family are well known as cosmopolitan pathogens, saprophytes and endophytes and occur on a wide range of hosts including grapevine. More recently, a new species of Lasiodiplodia was isolated from declining grapevines in Sardinia (Italy). This still undescribed species showed to produce in liquid culture several phytotoxic secondary metabolites. In this communication the chemical and biological characterization of these bioactive secondary metabolit...

  11. Biotechnologically produced secondary plant metabolites for cancer treatment and prevention.

    Science.gov (United States)

    Korkina, Liudmila; Kostyuk, Vladimir

    2012-01-01

    Secondary metabolites of higher plants exert numerous effects on tumorigenesis, on tumor cells in vitro, tumors in experimental animals in vivo, interact with anti-cancer drugs, thus affecting positively or negatively their efficacy, and protect normal tissues of the host organism against adverse effects of anti-cancer therapies. The industrial development of pharmaceutical and nutraceutical products based on secondary plant metabolites is limited due to the following: (i) limited availability of their natural sources, (ii) concern about rare extinguishing plants, (iii) unavoidable contamination of plant extracts with environmental pollutants, (iv) seasonal variations in plant harvesting, (v) poor standardization of the final product due to variable conditions for plant growth, and (vi) difficulties of secondary metabolite extraction from the parts of grown plant. There is now steadily growing interest in the biotechnological approach to produce secondary metabolites using plant cell or plant tissue cultures. In the present review, biosynthesis of secondary metabolites and their role(s) in plant physiology will be briefly discussed; the biotechnological approach to active substances production in the plant cell and plant tissue cultures will be described; examples and mechanisms of cancer preventive and anti-cancer action of some biotechnologically produced plant metabolites will be provided; and future perspectives for biotechnologically produced plant-derived substances in the combined protocols for cancer treatment will be suggested.

  12. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Directory of Open Access Journals (Sweden)

    Schrey Silvia D

    2012-08-01

    Full Text Available Abstract Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum. The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol and siderophores (e.g. ferulic acid, desferroxiamines. Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites.

  13. Production of fungal and bacterial growth modulating secondary metabolites is widespread among mycorrhiza-associated streptomycetes

    Science.gov (United States)

    2012-01-01

    Background Studies on mycorrhiza associated bacteria suggest that bacterial-fungal interactions play important roles during mycorrhiza formation and affect plant health. We surveyed Streptomyces Actinobacteria, known as antibiotic producers and antagonists of fungi, from Norway spruce mycorrhizas with predominantly Piloderma species as the fungal partner. Results Fifteen Streptomyces isolates exhibited substantial variation in inhibition of tested mycorrhizal and plant pathogenic fungi (Amanita muscaria, Fusarium oxysporum, Hebeloma cylindrosporum, Heterobasidion abietinum, Heterobasidion annosum, Laccaria bicolor, Piloderma croceum). The growth of the mycorrhiza-forming fungus Laccaria bicolor was stimulated by some of the streptomycetes, and Piloderma croceum was only moderately affected. Bacteria responded to the streptomycetes differently than the fungi. For instance the strain Streptomyces sp. AcM11, which inhibited most tested fungi, was less inhibitory to bacteria than other tested streptomycetes. The determined patterns of Streptomyces-microbe interactions were associated with distinct patterns of secondary metabolite production. Notably, potentially novel metabolites were produced by strains that were less antagonistic to fungi. Most of the identified metabolites were antibiotics (e.g. cycloheximide, actiphenol) and siderophores (e.g. ferulic acid, desferroxiamines). Plant disease resistance was activated by a single streptomycete strain only. Conclusions Mycorrhiza associated streptomycetes appear to have an important role in inhibiting the growth of fungi and bacteria. Additionally, our study indicates that the Streptomyces strains, which are not general antagonists of fungi, may produce still un-described metabolites. PMID:22852578

  14. Chemical communication in the gut: Effects of microbiota-generated metabolites on gastrointestinal bacterial pathogens.

    Science.gov (United States)

    Vogt, Stefanie L; Peña-Díaz, Jorge; Finlay, B Brett

    2015-08-01

    Gastrointestinal pathogens must overcome many obstacles in order to successfully colonize a host, not the least of which is the presence of the gut microbiota, the trillions of commensal microorganisms inhabiting mammals' digestive tracts, and their products. It is well established that a healthy gut microbiota provides its host with protection from numerous pathogens, including Salmonella species, Clostridium difficile, diarrheagenic Escherichia coli, and Vibrio cholerae. Conversely, pathogenic bacteria have evolved mechanisms to establish an infection and thrive in the face of fierce competition from the microbiota for space and nutrients. Here, we review the evidence that gut microbiota-generated metabolites play a key role in determining the outcome of infection by bacterial pathogens. By consuming and transforming dietary and host-produced metabolites, as well as secreting primary and secondary metabolites of their own, the microbiota define the chemical environment of the gut and often determine specific host responses. Although most gut microbiota-produced metabolites are currently uncharacterized, several well-studied molecules made or modified by the microbiota are known to affect the growth and virulence of pathogens, including short-chain fatty acids, succinate, mucin O-glycans, molecular hydrogen, secondary bile acids, and the AI-2 quorum sensing autoinducer. We also discuss challenges and possible approaches to further study of the chemical interplay between microbiota and gastrointestinal pathogens.

  15. Fecal bacterial community changes associated with isoflavone metabolites in postmenopausal women after soy bar consumption.

    Directory of Open Access Journals (Sweden)

    Cindy H Nakatsu

    Full Text Available Soy isoflavones and their metabolism by intestinal microbiota have gained attention because of potential health benefits, such as the alleviation of estrogen/hormone-related conditions in postmenopausal women, associated with some of these compounds. However, overall changes in gut bacterial community structure and composition in response to addition of soy isoflavones to diets and their association with excreted isoflavone metabolites in postmenopausal women has not been studied. The aim of this study was to determine fecal bacterial community changes in 17 postmenopausal women after a week of diet supplementation with soy bars containing isoflavones, and to determine correlations between microbial community changes and excreted isoflavone metabolites. Using DGGE profiles of PCR amplified 16S rRNA genes (V3 region to compare microbial communities in fecal samples collected one week before and one week during soy supplementation revealed significant differences (ANOSIM p<0.03 before and after soy supplementation in all subjects. However, between subjects comparisons showed high inter-individual variation that resulted in clustering of profiles by subjects. Urinary excretion of isoflavone (daidzein metabolites indicated four subjects were equol producers and all subjects produced O-desmethylangolensin (ODMA. Comparison of relative proportions of 16S rRNA genes from 454 pyrosequencing of the last fecal samples of each treatment session revealed significant increases in average proportions of Bifidobacterium after soy consumption, and Bifidobacterium and Eubacterium were significantly greater in equol vs non-S-(-equol producers. This is the first in vivo study using pyrosequencing to characterize significant differences in fecal community structure and composition in postmenopausal women after a week of soy diet-supplementation, and relate these changes to differences in soy isoflavones and isoflavone metabolites.Clinicaltrials.gov NCT00244907.

  16. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Maria Shuja

    2016-02-01

    Full Text Available Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Grampositive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO42.4H2O solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO42.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111 were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  17. Reexamining intra and extracellular metabolites produced by Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maria Shuja; Nazia Jamil

    2016-01-01

    Objective: To isolate, screen and analyze bacteria from different areas of Pakistan for the production of antimicrobial compounds, zinc solubilization and bioplastic production. Methods: Isolation and purification was proceeding with streak plate method. Antagonistic assay was completed with well diffusion and thin-layer chromatography. In vivo analysis of bioplastic was analyzed with Nile blue fluorescence under UV and Sudan staining. Results: A total of 18 bacterial strains purified from soil samples while 148 strains form stock cultures were used. Out of 166 only 94 showed antimicrobial activity against each of Gram-positive and Gram-negative; cocci and rods. In case of heavy metal (ZnO and Zn3(PO4)2.4H2O) solubilization, 54 strains solubilized ZnO and 23 strains solubilized Zn3(PO4)2.4H2O, while 127 strains grown on polyhydroxyalkanoate detection meedia supplemented with Nile blue medium showed bioplastic production by producing fluorescence under UV light. Four bacterial strains (coded as 100, 101, 104 and 111) were selected for further characterization. Induction time assay showed that strains 101, 104, and 111 showed inhibitory activity after 4 h of incubation while strain 100 showed after 8 h. All four strains were tolerable to the maximum concentration of ZnO. Amplified products of both 16S rRNA and PhaC gene fragments of strain 111 were sequenced and submitted to GenBank as accession numbers EU781525 and EU781526. Conclusions: Bacterial strain Pseudomonas aeruginosa-111 has potential to utilize as biofertilize and bioplastic producer.

  18. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications

    Directory of Open Access Journals (Sweden)

    Manik Prabhu Narsing Rao

    2017-06-01

    Full Text Available The demand for natural colors is increasing day by day due to harmful effects of some synthetic dyes. Bacterial and fungal pigments provide a readily available alternative source of naturally derived pigments. In contrast to other natural pigments, they have enormous advantages including rapid growth, easy processing, and independence of weather conditions. Apart from colorant, bacterial and fungal pigments possess many biological properties such as antioxidant, antimicrobial and anticancer activity. This review outlines different types of pigments. It lists some bacterial and fungal pigments and current bacterial and fungal pigment status and challenges. It also focuses on possible fungal and bacterial pigment applications.

  19. Detection of mastitis pathogens by analysis of volatile bacterial metabolites

    NARCIS (Netherlands)

    Hettinga, K.A.; Valenberg, van H.J.F.; Lam, T.J.G.M.; Hooijdonk, van A.C.M.

    2008-01-01

    The ability to detect mastitis pathogens based on their volatile metabolites was studied. Milk samples from cows with clinical mastitis, caused by Staphylococcus aureus, coagulase-negative staphylococci, Streptococcus uberis, Streptococcus dysgalactiae, and Escherichia coli were collected. In

  20. Isolation, Identiifcation, and Herbicidal Activity of Metabolites Produced by Pseudomonas aeruginosa CB-4

    Institute of Scientific and Technical Information of China (English)

    YANG Juan; CAO Hong-zhe; WANG Wei; ZHANG Li-hui; DONG Jin-gao

    2014-01-01

    CB-4, a bacterial strain with highly effective herbicidal activity, was isolated from infected corn leaves. Through morphology, physiological and biochemical tests, and 16S ribosomal DNA gene sequencing methods, CB-4 was identiifed as Pseudomonas aeruginosa. We conducted activity-evaluation experiments in the laboratory to assess the herbicidal potential of metabolites produced by strain CB-4. Crude extracts of strain CB-4 have high inhibition activity on Digitaria sanguinalis. In general, the root and shoot growth parameters of D. sanguinalis were signiifcantly reduced by metabolites of strain CB-4. The IC50 of the culture ifltrate extracts for the radicula and coleoptile of D. sanguinalis were 0.299 and 0.210 mg mL-1, respectively. Component 2 of the herbicidal activity of the crude toxin from strain CB-4 was successfully puriifed for the ifrst time by using high-speed counter current chromatography with a two-phase solvent system composed of petroleum ether-ethyl acetate-methanol-water (4:5:4:5, v/v) and high-performance liquid chromatography. We concluded that the metabolites of strain CB-4 have the potential to be developed as a microbe-based herbicide.

  1. The gut microbiota, bacterial metabolites and colorectal cancer.

    Science.gov (United States)

    Louis, Petra; Hold, Georgina L; Flint, Harry J

    2014-10-01

    Accumulating evidence suggests that the human intestinal microbiota contributes to the aetiology of colorectal cancer (CRC), not only via the pro-carcinogenic activities of specific pathogens but also via the influence of the wider microbial community, particularly its metabolome. Recent data have shown that the short-chain fatty acids acetate, propionate and butyrate function in the suppression of inflammation and cancer, whereas other microbial metabolites, such as secondary bile acids, promote carcinogenesis. In this Review, we discuss the relationship between diet, microbial metabolism and CRC and argue that the cumulative effects of microbial metabolites should be considered in order to better predict and prevent cancer progression.

  2. Cabanillasin, a new antifungal metabolite, produced by entomopathogenic Xenorhabdus cabanillasii JM26.

    Science.gov (United States)

    Houard, Jessica; Aumelas, André; Noël, Thierry; Pages, Sylvie; Givaudan, Alain; Fitton-Ouhabi, Valérie; Villain-Guillot, Philippe; Gualtieri, Maxime

    2013-10-01

    Since the early 1980s, fungi have emerged as a major cause of human disease. Fungal infections are associated with high levels of morbidity and mortality, and are now recognized as an important public health problem. Gram-negative bacterial strains of genus Xenorhabdus are known to form symbiotic associations with soil-dwelling nematodes of the Steinernematidae family. We describe here the discovery of a new antifungal metabolite, cabanillasin, produced by Xenorhabdus cabanillasii. We purified this molecule by cation-exchange chromatography and reverse-phase chromatography. We then determined the chemical structure of cabanillasin by homo- and heteronuclear NMR and MS-MS. Cabanillasin was found to be active against yeasts and filamentous fungi involved in opportunistic infections.

  3. [Bioactive secondary metabolites produced by plants of the genus Physalis].

    Science.gov (United States)

    Agata, Karolina; Kusiak, Joanna; Stępień, Bartłomiej; Bergier, Katarzyna; Kuźniak, Elżbieta

    2010-12-30

    Plants from the genus Physalis L. (family Solanaceae), native to warm and subtropical regions of Central and South America, are particularly rich in secondary metabolites, e.g.: withanolides, physalins, calystegines, tropane and nortropane alkaloids. Due to the high biological activities of these compounds, in the tropics Physalis plants have been used for centuries as medicinal herbs in the treatment of urinary and skin diseases, gonorrhea, ulcers, sores and as a vermicidal drug. This review describes the main categories of secondary metabolites, their distribution, chemistry, biosynthesis as well as biological activities. Particular attention is given to their potent anticancer activities.

  4. Influence of glucose and stirring in the fermentation process in order to produce anti- Candida metabolites produced by Streptomyces sp.

    Directory of Open Access Journals (Sweden)

    Silvia Katrine Silva Escher

    Full Text Available ABSTRACT This study evaluated the influence of glucose and stirring in the fermentation process in order to produce anti-Candida metabolites produced by Streptomyces sp. MPO4 isolated from Amazon soil. The anti-Candida metabolites production was registered after 24 h of fermentation in stirred ISP2 medium, having antifungal inhibition halos between 12.3 mm and 25.3 mm, yielding higher production of anti-Candida agents after 96 h. Stirring was a determining factor for the production of anti-Candida secondary metabolites, since the absence of glucose reflected in the late production of the antifungal starting from Streptomyces sp.

  5. Caenorhabditis elegans employs innate and learned aversion in response to bacterial toxic metabolites tambjamine and violacein

    Science.gov (United States)

    Ballestriero, Francesco; Nappi, Jadranka; Zampi, Giuseppina; Bazzicalupo, Paolo; Di Schiavi, Elia; Egan, Suhelen

    2016-01-01

    Bacteriovorus eukaryotes such as nematodes are one of the major natural predators of bacteria. In their defense bacteria have evolved a number of strategies to avoid predation, including the production of deterrent or toxic metabolites, however little is known regarding the response of predators towards such bacterial defenses. Here we use the nematode C. elegans as a model to study a predators’ behavioral response towards two toxic bacterial metabolites, tambjamine YP1 and violacein. We found that C. elegans displays an innate avoidance behavior towards tambjamine YP1, however requires previous exposure to violacein before learning to avoid this metabolite. The learned avoidance of violacein is specific, reversible, is mediated via the nematode olfactory apparatus (aversive olfactory learning) and is reduced in the absence of the neurotransmitter serotonin. These multiple strategies to evade bacterial toxic metabolites represent a valuable behavioral adaptation allowing bacteriovorus predators to distinguish between good and bad food sources, thus contributing to the understanding of microbial predator-prey interactions. PMID:27384057

  6. Fungal endophytes - secret producers of bioactive plant metabolites.

    Science.gov (United States)

    Aly, A H; Debbab, A; Proksch, P

    2013-07-01

    The potential of endophytic fungi as promising sources of bioactive natural products continues to attract broad attention. Endophytic fungi are defined as fungi that live asymptomatically within the tissues of higher plants. This overview will highlight the uniqueness of endophytic fungi as alternative sources of pharmaceutically valuable compounds originally isolated from higher plants, e.g. paclitaxel, camptothecin and podophyllotoxin. In addition, it will shed light on the fungal biosynthesis of plant associated metabolites as well as new approaches developed to improve the production of commercially important plant derived compounds with the involvement of endophytic fungi.

  7. Bioactive Secondary Metabolites Produced by the Fungal Endophytes of Conifers.

    Science.gov (United States)

    Stierle, Andrea A; Stierle, Donald B

    2015-10-01

    This is a review of bioactive secondary metabolites isolated from conifer-associated endophytic fungi from 1990-2014. This includes compounds with antimicrobial, anti-inflammatory, anti-proliferative and cytotoxic activity towards human cancer cell lines, and activity against either plant pathogens or plant insect pests. Compounds that were originally reported without associated activity were included if other studies ascribed activity to these compounds. Compounds were not included if they were exclusively phytotoxic or if they were isolated from active extracts but were not determined to be the active component of that extract.

  8. Bioactive Secondary Metabolites Produced by the Oak Pathogen Diplodia corticola.

    Science.gov (United States)

    Masi, Marco; Maddau, Lucia; Linaldeddu, Benedetto Teodoro; Cimmino, Alessio; D'Amico, Wanda; Scanu, Bruno; Evidente, Marco; Tuzi, Angela; Evidente, Antonio

    2016-01-13

    Three new lactones and a new fatty acid ester, named sapinofuranones C and D, diplopyrone B, and diplobifuranylone C, respectively, were isolated from Diplodia corticola, together with sphaeropsidins A and C, diplopyrone, diplobifuranylones A and B, diplofuranone A, and the (S,S)-enantiomer of sapinofuranone B. Sapinofuranones C and D, diplopyrone B, and diplobifuranylone C were characterized as (5S)-5-((1,S-1,6-dihydroxyhexa-2,4-dienyl)-dihydrofuran-2-one, 4,5-dihydroxy-deca-6,8-dienoic acid methyl ester, (5S)-5-hydroxy-6-(penta-1,3-dienyl)-5,6-dihydro-pyran-2-one, and 5'-((1R)-1-hydroxyethyl)-2',5'-dihydro-2H-[2,2']bifuranyl-5-one by spectroscopic and chemical methods, respectively. The relative configuration of sapinofuranone C was assigned by X-ray diffraction analysis, whereas its absolute configuration was determined by applying the advanced Mosher's method to its 11-O-p-bromobenzoyl derivative. The same method was used to assign the absolute configuration to C-5 of diplopyrone B and to that of the hydroxyethyl of the side chain of diplobifuranylone C, respectively. The metabolites isolated were tested at 1 mg/mL on leaves of cork oak, grapevine cv. 'Cannonau', and tomato using the leaf puncture assay. They were also tested on tomato cuttings at 0.2, 0.1, and 0.05 mg/mL. Each compound was tested for zootoxic activity on Artemia salina L. larvae. The efficacy of sapinofuranone C and diplopyrone B on three plant pathogens, namely, Athelia rolfsii, Fusarium avenaceum, and Phytophthora nicotianae was also evaluated. In all phytotoxic assays only diplopyrone B was found to be active. It also showed strong inhibition on the vegetative growth of A. rolfsii and P. nicotianae. All metabolites were inactive in the assay performed for the zootoxic activity (A. salina) even at the highest concentration used (200 μg/mL). Diplopyrone B showed a promising antioomycete activity for the control of Phytophthora spp. also taking into account the absence of zootoxic activity.

  9. Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites.

    Science.gov (United States)

    Bharagava, Ram Naresh; Chandra, Ram

    2010-09-01

    This study deals the biodegradation of the major color containing compounds extracted from distillery wastewater (DWW) by an aerobic bacterial consortium comprising Bacillus licheniformis (DQ79010), Bacillus sp. (DQ779011) and Alcaligenes sp. (DQ779012) and characterization of metabolic products. The degradation of color containing compounds by bacteria was studied by using the different carbon and nitrogen sources at different environmental conditions. Results revealed that the bacterial consortium was efficient for 70% color removal in presence of glucose (1.0%) and peptone (0.1%) at pH 7.0 and temperature 37 degrees C. The HPLC analysis of control and bacterial degraded samples has shown the reduction in peak area as well as shifting of peaks compared to control indicating the bacterial degradation as well as transformation of color containing compounds from DWW. The comparative LC-MS-MS and other spectrophotometric analysis has shown the presence of dihydroxyconiferyl alcohol, 2, 2'-bifuran-5-carboxylic acid, 2-nitroacetophenone, p-chloroanisol, 2, 3-dimethyl-pyrazine, 2-methylhexane, methylbenzene, 2, 3-dihydro-5-methylfuran, 3-pyrroline, and acetic acid in control samples that were biodegraded and biotransformed into 2-nitroacetophenone, p-chloroanisol, 2, 2'-bifuran, indole, 2-methylhexane, and 2, 3-dihydro-5-methylfuran by bacterial consortium. In this study, it was observed that most of the compounds detected in control samples were diminished from the bacterial degraded samples and compounds 2, 2'-bifuran and indole with molecular weight 134 and 117 were produced as new metabolites during the bacterial degradation of color containing compounds from DWW.

  10. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.

    Science.gov (United States)

    Cimmino, Alessio; Cinelli, Tamara; Masi, Marco; Reveglia, Pierluigi; da Silva, Marcondes Araujo; Mugnai, Laura; Michereff, Sami J; Surico, Giuseppe; Evidente, Antonio

    2017-02-15

    Phytotoxic metabolites produced in liquid culture by six species of Lasiodiplodia isolated in Brazil and causing Botryosphaeria dieback of grapevine were chemically identified. As ascertained by LC/MS, L. brasiliense, L. crassispora, L. jatrophicola, and L. pseudotheobromae produced jasmonic acid, and L. brasiliense synthesized, besides jasmonic acid, also (3R,4S)-4-hydroxymellein. L. euphorbicola and L. hormozganensis produced some low molecular weight lipophilic toxins. Specifically, L. euphorbicola produced (-)-mellein, (3R,4R)-(-)- and (3R,4S)-(-)-4-hydroxymellein, and tyrosol, and L. hormozganensis synthesized tyrosol and p-hydroxybenzoic acid. This is the first report on the production of the above cited metabolites from L. euphorbicola and L. hormozganensis. The phytotoxic activity of the metabolites produced is also discussed and related to the symptoms these pathogens cause in the grapevine host plants.

  11. Metabolites inhibiting germination of Orobanche ramosa seeds produced by Myrothecium verrucaria and Fusarium compactum.

    Science.gov (United States)

    Andolfi, Anna; Boari, Angela; Evidente, Antonio; Vurro, Maurizio

    2005-03-09

    Myrothecium verrucaria and Fusarium compactum were isolated from diseased Orobanche ramosa plants collected in southern Italy to find potential biocontrol agents of this parasitic weed. Both fungi grown in liquid culture produced metabolites that inhibited the germination of O. ramosa seeds at 1-10 muM. Eight metabolites were isolated from M. verrucaria culture extracts. The main metabolite was identified as verrucarin E, a disubstituted pyrrole not belonging to the trichothecene group. Seven compounds were identified by spectroscopic methods as macrocyclic trichothecenes, namely, verrucarins A, B, M, and L acetate, roridin A, isotrichoverrin B, and trichoverrol B. The main metabolite produced by F. compactum was neosoloaniol monoacetate, a trichothecene. All the trichothecenes proved to be potent inhibitors of O. ramosa seed germination and possess strong zootoxic activity when assayed on Artemia salina brine shrimps. Verrucarin E is inactive on both seed germination and zootoxic assay.

  12. Riboselector: riboswitch-based synthetic selection device to expedite evolution of metabolite-producing microorganisms.

    Science.gov (United States)

    Jang, Sungho; Yang, Jina; Seo, Sang Woo; Jung, Gyoo Yeol

    2015-01-01

    Many successful metabolic engineering projects have utilized evolutionary approaches, which consist of generating phenotypic diversity and screening for desired phenotype. Since conventional screening methods suffer from low throughput and limited target metabolites, a universal high-throughput screening platform for selection of improved strains should be developed to facilitate evolution of metabolite high producer. Recently, riboswitches have received attention as attractive sensor-actuator hybrids that can control gene expression in response to intracellular metabolite concentration. Our group developed a riboswitch-based selection device called "Riboselector" which can give a growth advantage to metabolite-overproducing strains by modulating expression of a selectable marker gene. We applied the device to expedite evolution of lysine producing Escherichia coli, and the selected strain showed a dramatic improvement of lysine production compared to its parental strain. Moreover, a tryptophan-responsive Riboselector was also developed using synthetic tryptophan aptamer. In this chapter, we provide a step-by-step overview of developing synthetic RNA devices comprising a riboswitch and a selection module that specifically sense inconspicuous metabolites and enrich high producer strains out of library.

  13. Effects of Temperature on Bacterial Communities and Metabolites during Fermentation of Myeolchi-Aekjeot, a Traditional Korean Fermented Anchovy Sauce

    Science.gov (United States)

    Chun, Byung Hee; Jeon, Che Ok

    2016-01-01

    Myeolchi-aekjeot (MA) in Korea is produced outdoors without temperature controls, which is a major obstacle to produce commercial MA products with uniform quality. To investigate the effects of temperature on MA fermentation, pH, bacterial abundance and community, and metabolites were monitored during fermentation at 15°C, 20°C, 25°C, and 30°C. Initial pH values were approximately 6.0, and pH values increased after approximately 42 days, with faster increases at higher temperatures. Bacterial abundances increased rapidly in all MA samples after quick initial decreases during early fermentation and then they again steadily decreased after reaching their maxima, which were significantly greater at higher temperatures. Bacterial community analysis revealed that Proteobacteria and Tenericutes were predominant in all initial MA samples, but they were rapidly displaced by Firmicutes as fermentation progressed. Photobacterium and Mycoplasma belonging to Proteobacteria and Tenericutes, respectively, which may include potentially pathogenic strains, were dominant in initial MA, but decreased with the growth of Chromohalobacter, which occurred faster at higher temperatures––they were dominant until 273 and 100 days at 15°C and 20°C, respectively, but not detected after 30 days at 25°C and 30°C. Chromohalobacter also decreased with the appearance of subsequent genera belonging to Firmicutes in all MA samples. Tetragenococcus, halophilic lactic acid bacteria, appeared predominantly at 20°C, 25°C, and 30°C; they were most abundant at 30°C, but not detected at 15°C. Alkalibacillus and Lentibacillus appeared as dominant genera with the decrease of Tetragenococcus at 25°C and 30°C, but only Lentibacillus was dominant at 15°C and 20°C. Metabolite analysis showed that amino acids related to tastes were major metabolites and their concentrations were relatively higher at high temperatures. This study suggests that high temperatures (approximately 30°C) may be

  14. Secondary metabolites produced by marine streptomyces as antibiofilm and quorum-sensing inhibitor of uropathogen Proteus mirabilis.

    Science.gov (United States)

    Younis, Khansa Mohammed; Usup, Gires; Ahmad, Asmat

    2016-03-01

    Quorum-sensing regulates bacterial biofilm formation and virulence factors, thereby making it an interesting target for attenuating pathogens. In this study, we investigated anti-biofilm and anti-quorum-sensing compounds from secondary metabolites of halophiles marine streptomyces against urinary catheter biofilm forming Proteus mirabilis without effect on growth viability. A total of 40 actinomycetes were isolated from samples collected from different places in Iraq including marine sediments and soil samples. Fifteen isolates identified as streptomyces and their supernatant screened as anti-quorum-sensing by inhibiting quorum-sensing regulated prodigiosin biosynthesis of Serratia marcescens strain Smj-11 as a reporter strain. Isolate Sediment Lake Iraq (sdLi) showed potential anti-quorum-sensing activity. Out of 35 clinical isolates obtained from Urinary catheter used by patient at the Universiti Kebangsaan Malaysia Medical Center, 22 isolates were characterized and identified as Proteus mirabilis. Isolate Urinary Catheter B4 (UCB4) showed the highest biofilm formation with highest resistance to used antibiotic and was chosen for further studies. Ethyl acetate secondary metabolites extract was produced from sdLi isolate. First, we determined the Minimum Inhibitory Concentration (MIC) of sdLi crude extract against UCB4 isolate, and all further experiments used concentrations below the MIC. Tests of subinhibitory concentrations of sdLi crude extract showed good inhibition against UCB4 isolate biofilm formation on urinary catheter and cover glass using Scanning electron microscopy and light microscopy respectively. The influence of sub-MIC of sdLi crude extract was also found to attenuate the quorum sensing (QS)-dependent factors such as hemolysin activity, urease activity, pH value, and motility of UCB4 isolate. Evidence is presented that these nontoxic secondary metabolites may act as antagonists of bacterial quorum sensing by competing with quorum-sensing signals

  15. A common bacterial metabolite elicits prion-based bypass of glucose repression

    Science.gov (United States)

    Garcia, David M; Dietrich, David; Clardy, Jon; Jarosz, Daniel F

    2016-01-01

    Robust preference for fermentative glucose metabolism has motivated domestication of the budding yeast Saccharomyces cerevisiae. This program can be circumvented by a protein-based genetic element, the [GAR+] prion, permitting simultaneous metabolism of glucose and other carbon sources. Diverse bacteria can elicit yeast cells to acquire [GAR+], although the molecular details of this interaction remain unknown. Here we identify the common bacterial metabolite lactic acid as a strong [GAR+] inducer. Transient exposure to lactic acid caused yeast cells to heritably circumvent glucose repression. This trait had the defining genetic properties of [GAR+], and did not require utilization of lactic acid as a carbon source. Lactic acid also induced [GAR+]-like epigenetic states in fungi that diverged from S. cerevisiae ~200 million years ago, and in which glucose repression evolved independently. To our knowledge, this is the first study to uncover a bacterial metabolite with the capacity to potently induce a prion. DOI: http://dx.doi.org/10.7554/eLife.17978.001 PMID:27906649

  16. Metabolite profiles of rice cultivars containing bacterial blight-resistant genes are distinctive from susceptible rice

    Institute of Scientific and Technical Information of China (English)

    Jiao Wu; Haichuan Yu; Haofu Dai; Wenli Mei; Xin Huang; Shuifang Zhu; Ming Peng

    2012-01-01

    The metabolic changes of bacterial blight-resistant line C418/Xa23 generated by molecular marker-assisted selection (n =12),transgenic variety C418-Xa21 generated by using the Agrobacterium-mediated system (n =12),and progenitor cultivar C418 (n =12) were monitored using gas chromatography/mass spectrometry.The validation,discrimination,and establishment of correlative relationships between metabolite signals were performed by cluster analysis,principal component analysis,and partial least squares-discriminant analysis.Significant and unintended changes were observed in 154 components in C418/Xa23 and 48 components in C418-Xa21 compared with C418 (P < 0.05,Fold change > 2.0).The most significant decreases detected (P< 0.001) in both C418/Xa23 and C418-Xa21 were in three amino acids: glycine,tyrosine,and alanine,and four identified metabolites: malic acid,ferulic acid,succinic acid,and glycerol.Linoleic acid was increased specifically in C418/Xa23 which was derived from traditional breeding.This line,possessing a distinctive metabolite profile as a positive control,shows more differences vs.the parental than the transgenic line.Only succinic acid that falls outside the boundaries of natural variability between the two non-transgenic varieties C418 and C418/Xa23 should be further investigated with respect to safety or nutritional impact.

  17. Plant secondary metabolite-induced shifts in bacterial community structure and degradative ability in contaminated soil.

    Science.gov (United States)

    Uhlik, Ondrej; Musilova, Lucie; Ridl, Jakub; Hroudova, Miluse; Vlcek, Cestmir; Koubek, Jiri; Holeckova, Marcela; Mackova, Martina; Macek, Tomas

    2013-10-01

    The aim of the study was to investigate how selected natural compounds (naringin, caffeic acid, and limonene) induce shifts in both bacterial community structure and degradative activity in long-term polychlorinated biphenyl (PCB)-contaminated soil and how these changes correlate with changes in chlorobiphenyl degradation capacity. In order to address this issue, we have integrated analytical methods of determining PCB degradation with pyrosequencing of 16S rRNA gene tag-encoded amplicons and DNA-stable isotope probing (SIP). Our model system was set in laboratory microcosms with PCB-contaminated soil, which was enriched for 8 weeks with the suspensions of flavonoid naringin, terpene limonene, and phenolic caffeic acid. Our results show that application of selected plant secondary metabolites resulted in bacterial community structure far different from the control one (no natural compound amendment). The community in soil treated with caffeic acid is almost solely represented by Proteobacteria, Acidobacteria, and Verrucomicrobia (together over 99 %). Treatment with naringin resulted in an enrichment of Firmicutes to the exclusion of Acidobacteria and Verrucomicrobia. SIP was applied in order to identify populations actively participating in 4-chlorobiphenyl catabolism. We observed that naringin and limonene in soil foster mainly populations of Hydrogenophaga spp., caffeic acid Burkholderia spp. and Pseudoxanthomonas spp. None of these populations were detected among 4-chlorobiphenyl utilizers in non-amended soil. Similarly, the degradation of individual PCB congeners was influenced by the addition of different plant compounds. Residual content of PCBs was lowest after treating the soil with naringin. Addition of caffeic acid resulted in comparable decrease of total PCBs with non-amended soil; however, higher substituted congeners were more degraded after caffeic acid treatment compared to all other treatments. Finally, it appears that plant secondary metabolites

  18. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    DEFF Research Database (Denmark)

    Giubergia, Sonia; Phippen, Christopher; Nielsen, Kristian Fog;

    2017-01-01

    Members of the Vibrionaceae family are often associated with chitin-containing organisms, and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affects the transcriptome and metabolome of two bioactive Vibrionaceae strains, V....... We observed a strong increase in production of secondary metabolites, suggesting an ecological role for these molecules during chitin colonization in the marine environment....... and that their secondary metabolites likely play a crucial role during chitin colonization. IMPORTANCE The bacterial family Vibrionaceae (vibrios) is considered a major player in the degradation of chitin, the most abundant polymer in the marine environment; however, the majority of studies on the topic have focused......, Vibrio coralliilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused upregulation of genes related to chitin metabolism and of genes...

  19. Frequency of Bacterial Frequency of Bacterial Contamination in Traditional Ice Cream Produced in Arak, Iran (2011

    Directory of Open Access Journals (Sweden)

    Rezaei, M. (MSc

    2014-05-01

    Full Text Available Background and Objective: Ice cream is a suitable environment for microbial growth due to its chemical structure, ingredients, and its increased supply and demand. In the absence of hygienic considerations, it can cause poisoning. This study aimed to determine bacterial contamination in traditional ice cream produced in Arak city in 2011. Material and Methods: The samples (n= 30 were randomly obtained from different parts of Arak in, 2011. The Samples were shipped in cold conditions and total count of microorganisms test was performed according to Iranian national standards. Results: In 16.66%, the microbial contamination was below the limit of microbial load (5×104, and in 83.3% the contamination was more than allowed level. Conclusion: This study highlights the dire situation for bacterial contamination of traditional ice cream in Arak city. Keywords: Arak, Ice Cream, Microbial Contamination

  20. The fungus Cunninghamella elegans can produce human and equine metabolites of selective androgen receptor modulators (SARMs).

    Science.gov (United States)

    Rydevik, Axel; Thevis, Mario; Krug, Oliver; Bondesson, Ulf; Hedeland, Mikael

    2013-05-01

    1. Selective androgen receptor modulators (SARMs) are a group of substances that have potential to be used as doping agents in sports. Being a relatively new group not available on the open market means that no reference materials are commercially available for the main metabolites. In the presented study, the in vitro metabolism of SARMs by the fungus Cunninghamella elegans has been investigated with the purpose of finding out if it can produce relevant human and equine metabolites. 2. Three different SARMs, S1, S4 and S24, were incubated for 5 days with C. elegans. The samples were analysed both with and without sample pretreatment using ultra performance liquid chromatography coupled to high resolution mass spectrometry. 3. All the important phase I and some phase II metabolites from human and horse were formed by the fungus. They were formed through reactions such as hydroxylation, deacetylation, O-dephenylation, nitro-reduction, acetylation and sulfonation. 4. The study showed that the fungus produced relevant metabolites of the SARMs and thus can be used to mimic mammalian metabolism. Furthermore, it has the potential to be used for future production of reference material.

  1. Metabolites produced by probiotic Lactobacilli rapidly increase glucose uptake by Caco-2 cells

    Directory of Open Access Journals (Sweden)

    Buddington Randal K

    2010-01-01

    Full Text Available Abstract Background Although probiotic bacteria and their metabolites alter enterocyte gene expression, rapid, non-genomic responses have not been examined. The present study measured accumulation of tracer (2 μM glucose by Caco-2 cells after exposure for 10 min or less to a chemically defined medium (CDM with different monosaccharides before and after anaerobic culture of probiotic Lactobacilli. Results Growth of L. acidophilus was supported by CDM with 110 mM glucose, fructose, and mannose, but not with arabinose, ribose, and xylose or the sugar-free CDM. Glucose accumulation was reduced when Caco-2 cells were exposed for 10 min to sterile CDM with glucose (by 92%, mannose (by 90%, fructose (by 55%, and ribose (by 16%, but not with arabinose and xylose. Exposure of Caco-2 cells for 10 min to bacteria-free supernatants prepared after exponential (48 h and stationary (72 h growth phases of L. acidophilus cultured in CDM with 110 mM fructose increased glucose accumulation by 83% and 45%, respectively; exposure to a suspension of the bacteria had no effect. The increase in glucose accumulation was diminished by heat-denaturing the supernatant, indicating the response of Caco-2 cells is triggered by as yet unknown heat labile bacterial metabolites, not by a reduction in CDM components that decrease glucose uptake. Supernatants prepared after anaerobic culture of L. gasseri, L. amylovorus, L. gallinarum, and L. johnsonii in the CDM with fructose increased glucose accumulation by 83%, 32%, 27%, and 14%, respectively. Conclusion The rapid, non-genomic upregulation of SGLT1 by bacterial metabolites is a heretofore unrecognized interaction between probiotics and the intestinal epithelium.

  2. Effects of bacterial inoculants on the indigenous microbiome and secondary metabolites of chamomile plants

    Directory of Open Access Journals (Sweden)

    Ruth eSchmidt

    2014-02-01

    Full Text Available Plant-associated bacteria fulfil important functions for plant growth and health of their host. However, our knowledge about the impact of bacterial treatments on the host’s microbiome and physiology is limited. The present study was conducted to assess the impact of bacterial inoculants on the microbiome of chamomile plants Chamomilla recutita (L. Rauschert grown in a field under organic management in Egypt. Chamomile seedlings were inoculated with three indigenous Gram-positive strains (Streptomyces subrutilus Wbn2-11, Bacillus subtilis Co1-6, Paenibacillus polymyxa Mc5Re-14 from Egypt and three European Gram-negative strains (Pseudomonas fluorescens L13-6-12, Stenotrophomonas rhizophila P69, Serratia plymuthica 3Re4-18 already known for their beneficial plant-microbe interaction. Molecular fingerprints of 16S rRNA gene as well as real-time PCR analyses did not show statistically significant differences for all applied bacterial antagonists compared to the control. In contrast, a pyrosequencing analysis of the 16S rRNA gene libraries revealed significant differences in the community structure of bacteria between the treatments. These differences could be clearly shown by a shift within the community structure and corresponding beta-diversity indices. Moreover, B. subtilis Co1-6 and P. polymyxa Mc5Re-14 showed an enhancement of the bioactive secondary metabolite apigenin-7-O-glucoside. This indicates a possible new function of bacterial inoculants: to interact with the plant microbiome as well as with the plant metabolome.

  3. The effects of metabolite molecules produced by drinking water-isolated bacteria on their single and multispecies biofilms.

    Science.gov (United States)

    Simões, Lúcia Chaves; Simões, Manuel; Vieira, Maria João

    2011-08-01

    The elucidation of the mechanisms by which diverse species survive and interact in drinking water (DW) biofilm communities may allow the identification of new biofilm control strategies. The purpose of the present study was to investigate the effects of metabolite molecules produced by bacteria isolated from DW on biofilm formation. Six opportunistic bacteria, viz. Acinetobacter calcoaceticus, Burkholderia cepacia, Methylobacterium sp., Mycobacterium mucogenicum, Sphingomonas capsulata and Staphylococcus sp. isolated from a drinking water distribution systems (DWDS) were used to form single and multispecies biofilms in the presence and absence of crude cell-free supernatants produced by the partner bacteria. Biofilms were characterized in terms of mass and metabolic activity. Additionally, several physiological aspects regulating interspecies interactions (sessile growth rates, antimicrobial activity of cell-free supernatants, and production of iron chelators) were studied to identify bacterial species with biocontrol potential in DWDS. Biofilms of Methylobacterium sp. had the highest growth rate and M. mucogenicum biofilms the lowest. Only B. cepacia was able to produce extracellular iron-chelating molecules. A. calcoaceticus, B. cepacia, Methylobacterium sp. and M. mucogenicum biofilms were strongly inhibited by crude cell-free supernatants from the other bacteria. The crude cell-free supernatants of M. mucogenicum and S. capsulata demonstrated a high potential for inhibiting the growth of counterpart biofilms. Multispecies biofilm formation was strongly inhibited in the absence of A. calcoaceticus. Only crude cell-free supernatants produced by B. cepacia and A. calcoaceticus had no inhibitory effects on multispecies biofilm formation, while metabolite molecules of M. mucogenicum showed the most significant biocontrol potential.

  4. Radiation-induced mutagenesis of antifungal metabolite producing bacillus sp. HKA-17

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young Keun; Senthilkumar, M. [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2009-09-15

    Bacillus sp. Strain HKA-17, isolated from the surface sterilized root nodule of Glycine max, inhibited several fungal plant pathogens. It produced a diffusible extracellular antifungal metabolite that was extracted with n-butanol. The crude extract was purified through Superdex{sup TM} 75 10/300 GL FPLC column. FT-IR spectrum of the FPLC purified-antifungal metabolite confirmed the presence of peptide and glycosidic bonds in its structure. Gamma induced mutagenesis of HKA-17 was carried out at an LD{sub 99} dose (8.46 kGy) to generate a mutant library. By screening the mutant library through a duel plate assay with Alternaria alternata, we selected one mutant with enhanced biocontrol activity (HKA-17e1) and two defective mutants (HKA-17d1 and HKA-17d2). Overproducing mutant recorded the largest inhibition zone (16.25 {+-} 0.86 mm) compared to any other mutant clone as well as wild type, and could be used as a potential biocontrol agent for plant disease suppression. The effect of HKA-17 antifungal metabolite on hyphal morphology was clearly demonstrated through scanning electron microscopy. The crude extract of defective mutant HKA-17 d1 did not induce any changes in hyphal morphology of A. alternata. However, antifungal metabolites of HKA-17 induced abnormal hyphal structures such as hyphal shrivelling, the bulging and swelling of intercalary cells, fragmentation, and cell lysis.

  5. Grains colonised by moulds: fungal identification and headspace analysis of produced volatile metabolites

    Directory of Open Access Journals (Sweden)

    Maria Paola Tampieri

    2010-01-01

    Full Text Available The aim of this work was to verify if the headspace analysis of fungal volatile compounds produced by some species of Fusarium can be used as a marker of mould presence on maize. Eight samples of maize (four yellow maize from North Italy and four white maize from Hungary, naturally contaminated by Fusarium and positive for the presence of fumonisins, were analyzed to detect moisture content, Aw, volatile metabolites and an enumeration of viable moulds was performed by means of a colony count technique. Headspace samples were analysed using a gas-chromatograph equipped with a capillary column TR-WAX to detect volatile metabolites of moulds. Furthermore macro and microscopic examination of the colonies was performed in order to distinguish, according to their morphology, the genera of the prevalent present moulds. Prevalent mould of eight samples was Fusarium, but other fungi, like Aspergillus, Penicillum and Mucoraceae, were observed. The metabolites produced by F.graminearum and F. moniliforme were Isobutyl-acetate, 3-Methyl-1-butanol and, only at 8 days, 3-Octanone. The incubation time can affect off flavour production in consequence of the presence of other moulds. Further studies on maize samples under different conditions are needed in order to establish the presence of moulds using the count technique and through the identification of volatile compounds.

  6. Analysis of Fusarium avenaceum Metabolites Produced during Wet Apple Core Rot

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Phipps, Richard Kerry; Nielsen, Kristian Fog

    2009-01-01

    Wet apple core rot (wACR) is a well-known disease of susceptible apple cultivars such as Gloster, Jona Gold, and Fuji. Investigations in apple orchards in Slovenia identified Fusarium avenaceum, a known producer of several mycotoxins, as the predominant causal agent of this disease. A LC-MS/MS me......Wet apple core rot (wACR) is a well-known disease of susceptible apple cultivars such as Gloster, Jona Gold, and Fuji. Investigations in apple orchards in Slovenia identified Fusarium avenaceum, a known producer of several mycotoxins, as the predominant causal agent of this disease. A LC......-MS/MS method was developed for the simultaneous detection of thirteen F. avenaceum metabolites including moniliformin, acuminatopyrone, chrysogine, chlamydosporol, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), aurofusarin, and enniatins A, A1, B, B1, B2, and B3 from artificially...... and naturally infected apples. Levels of moniliformin, antibiotic Y, aurofusarin, and enniatins A, A1, B, and B1 were quantitatively examined in artificially inoculated and naturally infected apples, whereas the remaining metabolites were qualitatively detected. Metabolite production was examined...

  7. Isolation of Human Intestinal Bacteria Capable of Producing the Bioactive Metabolite Isourolithin A from Ellagic Acid

    Directory of Open Access Journals (Sweden)

    María V. Selma

    2017-08-01

    Full Text Available Urolithins are intestinal microbial metabolites produced from ellagitannin- and ellagic acid-containing foods such as walnuts, strawberries, and pomegranates. These metabolites, better absorbed than their precursors, can contribute significantly to the beneficial properties attributed to the polyphenols ellagitannins and ellagic acid (EA. However, both the ability of producing the final metabolites in this catabolism (urolithins A, B and isourolithin A and the health benefits associated with ellagitannin consumption differ considerably among individuals depending on their gut microbiota composition. Three human urolithin metabotypes have been previously described, i.e., metabotype 0 (urolithin non-producers, metabotype A (production of urolithin A as unique final urolithin and metabotype B (urolithin B and/or isourolithin A are produced besides urolithin A. Although production of some intermediary urolithins has been recently attributed to intestinal species from Eggerthellaceae family named Gordonibacter urolithinfaciens and Gordonibacter pamelaeae, the identification of the microorganisms responsible for the complete transformation of EA into the final urolithins, especially those related to metabotype B, are still unknown. In the present research we illustrate the isolation of urolithin-producing strains from human feces of a healthy adult and their ability to transform EA into different urolithin metabolites, including isourolithin A. The isolates belong to a new genus from Eggerthellaceae family. EA transformation and urolithin production arisen during the stationary phase of the growth of the bacteria under anaerobic conditions. The HPLC-DAD-MS analyses demonstrated the sequential appearance of 3,8,9,10-tetrahydroxy-urolithin (urolithin M6, 3,8,9-trihydroxy-urolithin (urolithin C and 3,9-dihydroxy-urolithin (isourolithin A while 3,8-dihydroxy-urolithin (urolithin A and 3-hydroxy-urolithin (urolithin B were not detected. For the first time

  8. Monitoring of microbial metabolites and bacterial diversity in beef stored under different packaging conditions.

    Science.gov (United States)

    Ercolini, Danilo; Ferrocino, Ilario; Nasi, Antonella; Ndagijimana, Maurice; Vernocchi, Pamela; La Storia, Antonietta; Laghi, Luca; Mauriello, Gianluigi; Guerzoni, M Elisabetta; Villani, Francesco

    2011-10-01

    Beef chops were stored at 4°C under different conditions: in air (A), modified-atmosphere packaging (MAP), vacuum packaging (V), or bacteriocin-activated antimicrobial packaging (AV). After 0 to 45 days of storage, analyses were performed to determine loads of spoilage microorganisms, microbial metabolites (by solid-phase microextraction [SPME]-gas chromatography [GC]-mass spectrometry [MS] and proton nuclear magnetic resonance [(1)H NMR]), and microbial diversity (by PCR-denaturing gradient gel electrophoresis [DGGE] and pyrosequencing). The microbiological shelf life of meat increased with increasing selectivity of storage conditions. Culture-independent analysis by pyrosequencing of DNA extracted directly from meat showed that Brochothrix thermosphacta dominated during the early stages of storage in A and MAP, while Pseudomonas spp. took over during further storage in A. Many different bacteria, several of which are usually associated with soil rather than meat, were identified in V and AV; however, lactic acid bacteria (LAB) dominated during the late phases of storage, and Carnobacterium divergens was the most frequent microorganism in AV. Among the volatile metabolites, butanoic acid was associated with the growth of LAB under V and AV storage conditions, while acetoin was related to the other spoilage microbial groups and storage conditions. (1)H NMR analysis showed that storage in air was associated with decreases in lactate, glycogen, IMP, and ADP levels and with selective increases in levels of 3-methylindole, betaine, creatine, and other amino acids. The meat microbiota is significantly affected by storage conditions, and its changes during storage determine complex shifts in the metabolites produced, with a potential impact on meat quality.

  9. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica

    Directory of Open Access Journals (Sweden)

    Pietro Tedesco

    2016-04-01

    Full Text Available Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc. Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL and unreported antimicrobial activity against Bcc strains.

  10. Antimicrobial Activity of Monoramnholipids Produced by Bacterial Strains Isolated from the Ross Sea (Antarctica) †

    Science.gov (United States)

    Tedesco, Pietro; Maida, Isabel; Palma Esposito, Fortunato; Tortorella, Emiliana; Subko, Karolina; Ezeofor, Chidinma Christiana; Zhang, Ying; Tabudravu, Jioji; Jaspars, Marcel; Fani, Renato; de Pascale, Donatella

    2016-01-01

    Microorganisms living in extreme environments represent a huge reservoir of novel antimicrobial compounds and possibly of novel chemical families. Antarctica is one of the most extraordinary places on Earth and exhibits many distinctive features. Antarctic microorganisms are well known producers of valuable secondary metabolites. Specifically, several Antarctic strains have been reported to inhibit opportunistic human pathogens strains belonging to Burkholderia cepacia complex (Bcc). Herein, we applied a biodiscovery pipeline for the identification of anti-Bcc compounds. Antarctic sub-sea sediments were collected from the Ross Sea, and used to isolate 25 microorganisms, which were phylogenetically affiliated to three bacterial genera (Psychrobacter, Arthrobacter, and Pseudomonas) via sequencing and analysis of 16S rRNA genes. They were then subjected to a primary cell-based screening to determine their bioactivity against Bcc strains. Positive isolates were used to produce crude extracts from microbial spent culture media, to perform the secondary screening. Strain Pseudomonas BNT1 was then selected for bioassay-guided purification employing SPE and HPLC. Finally, LC-MS and NMR structurally resolved the purified bioactive compounds. With this strategy, we achieved the isolation of three rhamnolipids, two of which were new, endowed with high (MIC < 1 μg/mL) and unreported antimicrobial activity against Bcc strains. PMID:27128927

  11. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    Science.gov (United States)

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  12. Pentylindole/Pentylindazole Synthetic Cannabinoids and Their 5-Fluoro Analogs Produce Different Primary Metabolites: Metabolite Profiling for AB-PINACA and 5F-AB-PINACA.

    Science.gov (United States)

    Wohlfarth, Ariane; Castaneto, Marisol S; Zhu, Mingshe; Pang, Shaokun; Scheidweiler, Karl B; Kronstrand, Robert; Huestis, Marilyn A

    2015-05-01

    Whereas non-fluoropentylindole/indazole synthetic cannabinoids appear to be metabolized preferably at the pentyl chain though without clear preference for one specific position, their 5-fluoro analogs' major metabolites usually are 5-hydroxypentyl and pentanoic acid metabolites. We determined metabolic stability and metabolites of N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-pentyl-1H-indazole-3-carboxamide (AB-PINACA) and 5-fluoro-AB-PINACA (5F-AB-PINACA), two new synthetic cannabinoids, and investigated if results were similar. In silico prediction was performed with MetaSite (Molecular Discovery). For metabolic stability, 1 μmol/L of each compound was incubated with human liver microsomes for up to 1 h, and for metabolite profiling, 10 μmol/L was incubated with pooled human hepatocytes for up to 3 h. Also, authentic urine specimens from AB-PINACA cases were hydrolyzed and extracted. All samples were analyzed by liquid chromatography high-resolution mass spectrometry on a TripleTOF 5600+ (AB SCIEX) with gradient elution (0.1% formic acid in water and acetonitrile). High-resolution full-scan mass spectrometry (MS) and information-dependent acquisition MS/MS data were analyzed with MetabolitePilot (AB SCIEX) using different data processing algorithms. Both drugs had intermediate clearance. We identified 23 AB-PINACA metabolites, generated by carboxamide hydrolysis, hydroxylation, ketone formation, carboxylation, epoxide formation with subsequent hydrolysis, or reaction combinations. We identified 18 5F-AB-PINACA metabolites, generated by the same biotransformations and oxidative defluorination producing 5-hydroxypentyl and pentanoic acid metabolites shared with AB-PINACA. Authentic urine specimens documented presence of these metabolites. AB-PINACA and 5F-AB-PINACA produced suggested metabolite patterns. AB-PINACA was predominantly hydrolyzed to AB-PINACA carboxylic acid, carbonyl-AB-PINACA, and hydroxypentyl AB-PINACA, likely in 4-position. The most intense 5F

  13. Construction and application of riboswitch-based sensors that detect metabolites within bacterial cells.

    Science.gov (United States)

    Fowler, Casey C; Li, Yingfu

    2014-01-01

    A riboswitch is an RNA element that detects the level of a specific metabolite within the cell and regulates the expression of co-transcribed genes. By fusing a riboswitch to a reporter protein in a carefully designed and tested construct, this ability can be exploited to create an intracellular sensor that detects the level of a particular small molecule within live bacterial cells. There is a great deal of flexibility in the design of such a sensor and factors such as the molecule to be detected and the downstream experiments in which the sensor will be applied should guide the specific blueprint of the final construct. The completed sensor plasmid needs to be rigorously tested with appropriate controls to ensure that its dynamic range, signal strength, sensitivity and specificity are suitable for its intended applications. In this chapter, methods for the design, assessment and use of riboswitch sensors are provided along with those for one example application for which riboswitch sensors are ideally suited.

  14. Bacterial populations and metabolites in the feces of free roaming and captive grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Boyce, Mark S; Stenhouse, Gordon B; Gänzle, Michael

    2009-12-01

    Gut physiology, host phylogeny, and diet determine the composition of the intestinal microbiota. Grizzly bears (Ursus arctos horribilis) belong to the Order Carnivora, yet feed on an omnivorous diet. The role of intestinal microflora in grizzly bear digestion has not been investigated. Microbiota and microbial activity were analysed from the feces of wild and captive grizzly bears. Bacterial composition was determined using culture-dependent and culture-independent methods. The feces of wild and captive grizzly bears contained log 9.1 +/- 0.5 and log 9.2 +/- 0.3 gene copies x g(-1), respectively. Facultative anaerobes Enterobacteriaceae and enterococci were dominant in wild bear feces. Among the strict anaerobes, the Bacteroides-Prevotella-Porphyromonas group was most prominent. Enterobacteriaceae were predominant in the feces of captive grizzly bears, at log 8.9 +/- 0.5 gene copies x g(-1). Strict anaerobes of the Bacteroides-Prevotella-Porphyromonas group and the Clostridium coccoides cluster were present at log 6.7 +/- 0.9 and log 6.8 +/- 0.8 gene copies x g(-1), respectively. The presence of lactate and short-chain fatty acids (SCFAs) verified microbial activity. Total SCFA content and composition was affected by diet. SCFA composition in the feces of captive grizzly bears resembled the SCFA composition of prey-consuming wild animals. A consistent data set was obtained that associated fecal microbiota and metabolites with the distinctive gut physiology and diet of grizzly bears.

  15. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    DEFF Research Database (Denmark)

    Jančič, Sašo; Frisvad, Jens Christian; Kocev, Dragi

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts...... of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known...... higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A...

  16. Cyclobotryoxide, a phytotoxic metabolite produced by the plurivorous pathogen Neofusicoccum australe.

    Science.gov (United States)

    Andolfi, Anna; Maddau, Lucia; Cimmino, Alessio; Linaldeddu, Benedetto T; Franceschini, Antonio; Serra, Salvatorica; Basso, Sara; Melck, Dominique; Evidente, Antonio

    2012-10-26

    Two isolates of Neofusicoccum australe belonging to ITS haplotypes H4 and H1 and associated with grapevine cordon dieback and branch dieback of Phoenicean juniper, respectively, have been shown to produce in vitro structurally different secondary metabolites. From the strain BOT48 of N. australe (haplotype H4) a new cyclohexenone oxide, namely, cyclobotryoxide, was isolated together with 3-methylcatechol and tyrosol. Cyclobotryoxide was characterized as (1S,5R,6S)-5-hydroxy-3-methoxy-4-methyl-7-oxabicyclo[4.1.0]hept-3-en-2-one by spectroscopic, optical, and chemical methods. The strain BL24 (haplotype H1) produced tyrosol along with botryosphaerone D and (3S,4S)-3,4,8-trihydroxy-6-methoxy-3,4-dihydro-1(2H)-naphthalenone. The metabolites obtained from both strains were tested at four concentrations on leaves of grapevine cv. Cannonau, holm oak, and cork oak by the leaf puncture assay. Cyclobotryoxide proved to be the most phytotoxic compound. Tyrosol and cyclobotryoxide were also tested on detached grapevine leaves at concentrations of 0.25 and 0.5 mg/mL. Only cyclobotryoxide was found to be active in this bioassay.

  17. On-farm successes and challenges of producing bacterial wilt-free ...

    African Journals Online (AJOL)

    On-farm successes and challenges of producing bacterial wilt-free tubers in seed ... remained key limitations in the management of potato bacterial wilt in Kenya. ... varieties Tigoni and Roslin Tana produced 2.54 and 2.36 times more tubers ...

  18. Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy

    DEFF Research Database (Denmark)

    Pedersen, Annette L.; Winding, Anne; Altenburger, Andreas

    2011-01-01

    Different features can protect bacteria against protozoan grazing, for example large size, rapid movement, and production of secondary metabolites. Most papers dealing with these matters focus on bacteria. Here, we describe protozoan features that affect their ability to grow on secondary...... with membrane-bound metabolites. Interestingly, protozoan response seemed to correlate with high-level protozoan taxonomy, and amoeboid taxa tolerated a broader range of Pseudomonas strains than did the non-amoeboid taxa. This stresses the importance of studying both protozoan and bacterial characteristics...

  19. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae), the vector of yellow and dengue fevers and Zika virus

    Science.gov (United States)

    Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites including Amaryllidaceae alkaloids belonging to different chemical subgroups, including anthracenes, azoxymethoxytetrahydropy...

  20. Melatonin and other tryptophan metabolites produced by yeasts: implications in cardiovascular and neurodegenerative diseases

    Directory of Open Access Journals (Sweden)

    Ruth eHornedo-Ortega

    2016-01-01

    Full Text Available Yeast metabolism produces compounds derived from tryptophan, which are found in fermented beverages, such as wine and beer. Melatonin and serotonin, in particular, may play a significant role due to their bioactivity in humans. Indeed, the former is a neurohormone related to circadiam rhythms, which also has a putative protective effect against degenerative diseases. Serotonin, on the other hand, is a neurotransmitter itself, in addition to being a precursor of melatonin synthesis. This paper summarizes data reported on fermented beverages, to evaluate dietary intake. Additionally, the article reviews observed effects of yeast amino acid metabolites on the prevention of neurodegenerative diseases (Alzheimer’s and Parkinson’s and angiogenesis, focusing on evidence of the molecular mechanism involved and identification of molecular targets

  1. Plant Bioactive Metabolites and Drugs Produced by Endophytic Fungi of Spermatophyta

    Directory of Open Access Journals (Sweden)

    Rosario Nicoletti

    2015-09-01

    Full Text Available It is known that plant-based ethnomedicine represented the foundation of modern pharmacology and that many pharmaceuticals are derived from compounds occurring in plant extracts. This track still stimulates a worldwide investigational activity aimed at identifying novel bioactive products of plant origin. However, the discovery that endophytic fungi are able to produce many plant-derived drugs has disclosed new horizons for their availability and production on a large scale by the pharmaceutical industry. In fact, following the path traced by the blockbuster drug taxol, an increasing number of valuable compounds originally characterized as secondary metabolites of plant species belonging to the Spermatophyta have been reported as fermentation products of endophytic fungal strains. Aspects concerning sources and bioactive properties of these compounds are reviewed in this paper.

  2. Real time monitoring of population dynamics in concurrent bacterial growth using SIFT-MS quantification of volatile metabolites.

    Science.gov (United States)

    Sovová, Kristýna; Čepl, Jaroslav; Markoš, Anton; Španěl, Patrik

    2013-09-07

    Population dynamics of three different bacterial species, Serratia rubidaea (R), Serratia marcescens (F) and Escherichia coli (Ec), growing in single or mixed populations in liquid media, was monitored by real time headspace quantification of volatile compounds using selected ion flow tube mass spectrometry, SIFT-MS. The three bacterial species interact with each other in a competitive fashion in a way similar to the game "rock-paper-scissors" (R-Ec-F). The concentrations of volatile metabolites (ammonia, ethanol, acetaldehyde, propanol, acetoin, acetone and acetic acid) were measured in the headspace of the individual species and of their mixtures continuously for 24 hour periods. The results demonstrate that dynamics in bacterial cultures can be monitored using SIFT-MS in real time.

  3. Environmental monitoring and assessment of antibacterial metabolite producing actinobacteria screened from marine sediments in south coastal regions of Karnataka, India.

    Science.gov (United States)

    Skariyachan, Sinosh; Garka, Shruthi; Puttaswamy, Sushmitha; Shanbhogue, Shobitha; Devaraju, Raksha; Narayanappa, Rajeswari

    2017-06-01

    Assessment of the therapeutic potential of secondary metabolite producing microorganisms from the marine coastal areas imparts scope and application in the field of environmental monitoring. The present study aims to screen metabolites with antibacterial potential from actionbacteria associated with marine sediments collected from south coastal regions of Karnataka, India. The actinobacteria were isolated and characterized from marine sediments by standard protocol. The metabolites were extracted, and antibacterial potential was analyzed against eight hospital associated bacteria. The selected metabolites were partially characterized by proximate analysis, SDS-PAGE, and FTIR-spectroscopy. The antibiogram of the test clinical isolates revealed that they were emerged as multidrug-resistant strains (P ≤ 0.05). Among six actinobacteria (IS1-1S6) screened, 100 μl(-1) metabolite from IS1 showed significant antibacterial activities against all the clinical isolates except Pseudomonas aeruginosa. IS2 demonstrated antimicrobial potential towards Proteus mirabilis, Streptococcus pyogenes, and Escherichia coli. The metabolite from IS3 showed activity against Strep. pyogenes and E. coli. The metabolites from IS4, IS5, and IS6 exhibited antimicrobial activities against Ps. aeruginosa (P ≤ 0.05). The two metabolites that depicted highest antibacterial activities against the test strains were suggested to be antimicrobial peptides with low molecular weight. These isolates were characterized and designated as Streptomyces sp. strain mangaluru01 and Streptomyces sp. mangaloreK01 by 16S ribosomal DNA (rDNA) sequencing. This study suggests that south coastal regions of Karnataka, India, are one of the richest sources of antibacterial metabolites producing actinobacteria and monitoring of these regions for therapeutic intervention plays profound role in healthcare management.

  4. [Prolonged cultivation of an anaerobic bacterial community producing hydrogen].

    Science.gov (United States)

    Belokopytov, B F; Ryzhmanova, Ia V; Laurinavichius, K S; Shcherbakova, V A

    2012-01-01

    This paper studies various methods of long-term maintenance of the process of hydrogen evolution during the growth of an aerobic bacterial community on a starch-containing environment. When cultured in separable trip fermentation mode for 72 days, from 0.10 to 0.23 H2/l of medium/day was formed. The regime of regular reseeding lasted more than 100 days, forming an average of 0.81 1 H2/l of medium/day. The advantages and disadvantages of different methods of microbial hydrogen production during a dark starch fermentation process are presented. From the obtained H2 forming microbial communities, we isolated an anaerobic spore-forming bacterium (strain BF). Phylogenetic analysis of the 16S RNA gene sequence of the new strain showed that according to its genotype it belongs to the Clostridium butyricum species.

  5. Effect of GABA, a Bacterial Metabolite, on Pseudomonas fluorescens Surface Properties and Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Marc G. J. Feuilloley

    2013-06-01

    Full Text Available Different bacterial species and, particularly Pseudomonas fluorescens, can produce gamma-aminobutyric acid (GABA and express GABA-binding proteins. In this study, we investigated the effect of GABA on the virulence and biofilm formation activity of different strains of P. fluorescens. Exposure of a psychotropic strain of P. fluorescens (MF37 to GABA (10−5 M increased its necrotic-like activity on eukaryotic (glial cells, but reduced its apoptotic effect. Conversely, muscimol and bicuculline, the selective agonist and antagonist of eukaryote GABAA receptors, respectively, were ineffective. P. fluorescens MF37 did not produce biosurfactants, and its caseinase, esterase, amylase, hemolytic activity or pyoverdine productions were unchanged. In contrast, the effect of GABA was associated to rearrangements of the lipopolysaccharide (LPS structure, particularly in the lipid A region. The surface hydrophobicity of MF37 was marginally modified, and GABA reduced its biofilm formation activity on PVC, but not on glass, although the initial adhesion was increased. Five other P. fluorescens strains were studied, and only one, MFP05, a strain isolated from human skin, showed structural differences of biofilm maturation after exposure to GABA. These results reveal that GABA can regulate the LPS structure and cytotoxicity of P. fluorescens, but that this property is specific to some strains.

  6. Isolation and characterization of bioactive metabolites producing marine Streptomyces parvulus strain sankarensis-A10

    Directory of Open Access Journals (Sweden)

    Mobeen Shaik

    2017-06-01

    Full Text Available The significance and frequency of marine microorganisms as producers of bioactive metabolites-a natural source of drug discovery had varied significantly during the last decades, making marine ecosystem a huge treasure trove of novel isolates and novel compounds. Among the twelve actinomycetes isolated from marine sediment sample (Lat. 17°41′962″N, Long. 83°19′633″E, amylase, protease, lipase and cellulase activities were exhibited by 8,7,4,3 isolates respectively. Five isolates exhibited l-asparaginase activity, while 5, 6, 2 isolates exhibited antibacterial, antifungal and antimicrobial activities respectively. One isolate VMS-A10 efficiently producing alpha-amylase (25.53 ± 0.50 U/mL, protease (19.26 ± 0.25 U/mL, lipase (36.25 ± 0.10 U/mL, cellulase (14.43 ± 0.513 U/mL, l-asparaginase (0.125 ± 0.004 U/mL, antimicrobial metabolites against B. subtilis (503.33 ± 5.77 U/mL, S. aureus (536.66 ± 5.77 U/mL, E. coli (533.33 ± 5.77 U/mL, P. aeruginosa (500.00 ± 10.0 U/mL, MRSA (538.33 ± 5.77 U/mL, C. albicans (353.33 ± 11.54 U/mL and A. niger (443.33 ± 15.27 U/mL was selected, identified on the basis of morphological, cultural, physiological, and biochemical properties together with 16S rDNA sequence, designated as Streptomyces parvulus strain sankarensis-A10 and sequencing product (1490 bp was deposited in the GenBank database under accession number KT906299, Culture Deposit No: NCIM-5601. Isolation and characterization of each potential actinobacteria having immense industrial and therapeutic value on an unprecedented scale from marine sediments of Visakhapatnam coast will have a burgeoning effect.

  7. CLUSEAN: a computer-based framework for the automated analysis of bacterial secondary metabolite biosynthetic gene clusters.

    Science.gov (United States)

    Weber, T; Rausch, C; Lopez, P; Hoof, I; Gaykova, V; Huson, D H; Wohlleben, W

    2009-03-10

    Bacterial secondary metabolites are an important source of antimicrobial and cytostatic drugs. These molecules are often synthesized in a stepwise fashion by multimodular megaenzymes that are encoded in clusters of genes encoding enzymes for precursor supply and modification. In this work,we present an open source software pipeline, CLUSEAN (CLUster SEquence ANalyzer) that helps to annotate and analyze such gene clusters. CLUSEAN integrates standard analysis tools, like BLAST and HMMer, with specific tools for the identification of the functional domains and motifs in nonribosomal peptide synthetases (NRPS)/type I polyketide synthases (PKS) and the prediction of specificities of NRPS.

  8. Rhizobacteria able to produce phytotoxic metabolites Rizobactérias produtoras de substâncias fitotóxicas

    Directory of Open Access Journals (Sweden)

    Daniel D.C. Carvalho

    2007-12-01

    Full Text Available To contribute for the development of environmental friendly methods for weed control, a selection of rhizobacteria able to produce phytotoxic substances was carried out. Initially, 35 strains previously isolated from plants in the south of Minas Gerais State (Brazil were grown in tryptic soy broth. After removal of bacterial cells, the resulting liquids were freeze-dried and extracted with methanol/ethyl acetate (1:1. The extracts were concentrated under vacuum and dissolved in water to be submitted to a lettuce (Lactuca sativa L. seed assay. Metabolites produced by five strains reduced the number of normal seedlings to values statistically bellow the one observed for the negative control, being the most expressive results obtained with Bacillus cereus Frankland and Frankland, isolated from Ricinus communis L., which was able to cause rotted rootlets to 82.4% of seedlings. The bacterium metabolites also avoided germination of 52% Brachiaria decumbens Stapf seeds and the remaining 48% resulted in abnormal seedlings. Metabolites from B. cereus were submitted to a purification process guided by the lettuce seed assay. As a consequence, one substance causing rotted rootlets to all lettuce seedlings during the seed assay at 0.057 g/L was isolated and will be identified in future studies.Com vistas a contribuir para o desenvolvimento de métodos não agressivos ao meio ambiente, para o controle de plantas invasoras, buscou-se selecionar rizobactérias produtoras de substâncias fitotóxicas. Inicialmente, 35 culturas previamente isoladas de plantas da região sul do Estado de Minas Gerais (Brasil foram cultivadas em caldo soja tripticaseína. Após remoção das células bacterianas, os líquidos resultantes foram liofilizados e extraídos com metanol/acetato de etila (1:1. Os extratos foram concentrados sob vácuo e submetidos a testes com sementes de alface (Lactuca sativa L.. Os metabólitos produzidos por cinco isolados bacterianos reduziram o n

  9. Volatile metabolites produced from agro-industrial wastes by Na-alginate entrapped Kluyveromyces marxianus

    Directory of Open Access Journals (Sweden)

    Onur Güneşer

    Full Text Available Abstract The aim of this study was to evaluate the effects of alginate entrapment on fermentation metabolites of Kluyveromyces marxianus grown in agrowastes that served as the liquid culture media. K. marxianus cells entrapped in Na-alginate were prepared using the traditional liquid-droplet-forming method. Whey and pomaces from processed tomatoes, peppers, and grapes were used as the culture media. The changes in the concentrations of sugar, alcohol, organic acids, and flavor compounds were analyzed using gas chromatography-mass spectrometry (GC-MS and high pressure liquid chromatography (HPLC. Both free and entrapped, K. marxianus were used individually to metabolize sugars, organic acids, alcohols, and flavor compounds in the tomato, pepper, grape, and acid whey based media. Marked changes in the fermentation behaviors of entrapped and free K. marxianus were observed in each culture. A 1.45-log increase was observed in the cell numbers of free K. marxianus during fermentation. On the contrary, the cell numbers of entrapped K. marxianus remained the same. Both free and entrapped K. marxianus brought about the fermentation of sugars such as glucose, fructose, and lactose in the agrowaste cultures. The highest volume of ethanol was produced by K. marxianus in the whey based media. The concentrations of flavor compounds such as ethyl acetate, isoamyl alcohol, isoamyl acetate, 2-phenylethyl isobutyrate, phenylethyl acetate, and phenylethyl alcohol were higher in fermented agrowaste based media compared to the control.

  10. Living between two worlds: two-phase culture systems for producing plant secondary metabolites.

    Science.gov (United States)

    Malik, Sonia; Hossein Mirjalili, Mohammad; Fett-Neto, Arthur Germano; Mazzafera, Paulo; Bonfill, Mercedes

    2013-03-01

    The two-phase culture system is an important in vitro strategy to increase the production of secondary metabolites (SMs) by providing an enhanced release of these compounds from plant cells. Whereas the first phase supports cell growth, the second phase provides an additional site or acts as a metabolic sink for the accumulation of SMs and also reduces feedback inhibition. This review is focused on several aspects of the two-phase culture system and aims to show the diverse possibilities of employing this technique for the in vitro production of SMs from plant cells. Depending on the material used in the secondary phase, two-phase culture systems can be broadly categorised as liquid-liquid or liquid-solid. The choice of material for the second phase depends on the type of compound to be recovered and the compatibility with the other phase. Different factors affecting the efficiency of two-phase culture systems include the choice of material for the secondary phase, its concentration, volume, and time of addition. Factors such as cell elicitation, immobilization, and permeabilization, have been suggested as important strategies to make the two-phase culture system practically reliable on a commercial scale. Since there are many possibilities for designing a two-phase system, more detailed studies are needed to broaden the range of secondary phases compatible with the various plant species producing SMs with potential applications, mainly in the food and pharmacology industries.

  11. Anti-rheumatoid Activity of Secondary Metabolites Produced by Endophytic Chaetomium globosum

    Directory of Open Access Journals (Sweden)

    Ahmed M. Abdel-Azeem

    2016-09-01

    Full Text Available AbstractThe aim of the present study was to investigate the anti-rheumatoid activity of secondary metabolites produced by endophytic mycobiota in Egypt. A total of 27 endophytic fungi were isolated from 10 dominant medicinal plant host species in Wadi Tala, Saint Katherine Protectorate, arid Sinai, Egypt. Of those taxa, seven isolates of Chaetomium globosum (CG1 – CG7, being the most frequent taxon, were recovered from seven different host plants and screened for production of active anti-inflammatory metabolites. Isolates were cultivated on half – strength potato dextrose broth for 21 days at 28ºC on a rotatory shaker at 180 rpm, and extracted in ethyl acetate and methanol, respectively. The probable inhibitory effects of both extracts against an adjuvant induced arthritis (AIA rat model were examined and compared with the effects of methotrexate as a standard disease-modifying anti-rheumatoid drug. Disease activity and mobility scoring of AIA, histopathology and transmission electron microscopy (TEM were used to evaluate probable inhibitory roles. A significant reduction (P < 0.05 in the severity of arthritis was observed in both the methanolic extract of CG6 (MCG6 and methotrexate (MTX treatment groups six days after treatment commenced. The average arthritis score of the MCG6 treatment group was (10.7 ± 0.82 compared to (13.8 ± 0.98 in the positive control group. The mobility score of the MCG6 treatment group (1.50 ± 0.55 was significantly lower than that of the positive control group (3.33 ± 0.82. In contrast, the ethyl acetate extract of CG6 (EACG6 treatment group showed no improvements in arthritis and mobility scores in AIA model rats. Histopathology and TEM findings confirmed the observation. Isolate CG6 was subjected to sequencing for confirmation of phenotypic identification. The internal transcribed spacer (ITS 1 – 5.8s – ITS2 rDNA sequences obtained were compared with those deposited in the GenBank Database and

  12. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333.

    Science.gov (United States)

    Kavitha, Alapati; Prabhakar, Peddikotla; Vijayalakshmi, Muvva; Venkateswarlu, Yenamandra

    2010-06-01

    An Actinobacterium strain isolated from laterite soils of the Guntur region was identified as Streptomyces sp. TK-VL_333 by 16S rRNA analysis. Cultural, morphological and physiological characteristics of the strain were recorded. The secondary metabolites produced by the strain cultured on galactose-tyrosine broth were extracted and concentrated followed by defatting of the crude extract with cyclohexane to afford polar and non-polar residues. Purification of the two residues by column chromatography led to isolation of five polar and one non-polar fraction. Bioactivity- guided fractions were rechromatographed on a silica gel column to obtain four compounds, namely 1H-indole-3-carboxylic acid, 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one and acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester from three active polar fractions and 8-methyl decanoic acid from one non-polar fraction. The structure of the compounds was elucidated on the basis of FT-IR, mass and NMR spectroscopy. The antimicrobial activity of the bioactive compounds produced by the strain was tested against the bacteria and fungi and expressed in terms of minimum inhibitory concentration. Antifungal activity of indole-3-carboxylic acid was further evaluated under in vitro and in vivo conditions. This is the first report of 2,3-dihydroxy-5-(hydroxymethyl) benzaldehyde, 4-(4-hydroxyphenoxy) butan-2-one, acetic acid-2-hydroxy-6-(3-oxo-butyl)-phenyl ester and 8-methyl decanoic acid from the genus Streptomyces.

  13. Analysis of Fusarium avenaceum Metabolites Produced during Wet Apple Core Rot

    DEFF Research Database (Denmark)

    Sørensen, Jens Laurids; Phipps, Richard Kerry; Nielsen, Kristian Fog

    2009-01-01

    and naturally infected apples. Levels of moniliformin, antibiotic Y, aurofusarin, and enniatins A, A1, B, and B1 were quantitatively examined in artificially inoculated and naturally infected apples, whereas the remaining metabolites were qualitatively detected. Metabolite production was examined...... in artificially inoculated apples after 3, 7, 14, and 21 days of incubation. Most metabolites were detected after 3 or 7 days and reached significantly high levels within 14 or 21 days. The highest levels of moniliformin, antibiotic Y, aurofusarin, and the combined sum of enniatins A, A1, B, and B1 were 7.3, 5...

  14. Methods of producing protoporphyrin IX and bacterial mutants therefor

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jizhong; Qiu, Dongru; He, Zhili; Xie, Ming

    2016-03-01

    The presently disclosed inventive concepts are directed in certain embodiments to a method of producing protoporphyrin IX by (1) cultivating a strain of Shewanella bacteria in a culture medium under conditions suitable for growth thereof, and (2) recovering the protoporphyrin IX from the culture medium. The strain of Shewanella bacteria comprises at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX. In certain embodiments of the method, the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or of shew_1140. In other embodiments, the presently disclosed inventive concepts are directed to mutant strains of Shewanella bacteria having at least one mutant hemH gene which is incapable of normal expression, thereby causing an accumulation of protoporphyrin IX during cultivation of the bacteria. In certain embodiments the strain of Shewanella bacteria is a strain of S. loihica, and more specifically may be S. loihica PV-4. In certain embodiments, the mutant hemH gene of the strain of Shewanella bacteria may be a mutant of shew_2229 and/or shew_1140.

  15. Hemolysin, Protease, and EPS Producing Pathogenic Aeromonas hydrophila Strain An4 Shows Antibacterial Activity against Marine Bacterial Fish Pathogens

    Directory of Open Access Journals (Sweden)

    Anju Pandey

    2010-01-01

    Full Text Available A pathogenic Aeromonas hydrophila strain An4 was isolated from marine catfish and characterized with reference to its proteolytic and hemolytic activity along with SDS-PAGE profile (sodium dodecyl sulphate-Polyacrylamide gel electrophoresis of ECPs (extracellular proteins showing hemolysin (approximately 50 kDa. Agar well diffusion assay using crude cell extract of the bacterial isolate clearly demonstrated antibacterial activity against indicator pathogenic bacteria, Staphylococcus arlettae strain An1, Acinetobacter sp. strain An2, Vibrio parahaemolyticus strain An3, and Alteromonas aurentia SE3 showing inhibitory zone >10 mm well comparable to common antibiotics. Further GC-MS analysis of crude cell extract revealed several metabolites, namely, phenolics, pyrrolo-pyrazines, pyrrolo-pyridine, and butylated hydroxytoluene (well-known antimicrobials. Characterization of EPS using FTIR indicated presence of several protein-related amine and amide groups along with peaks corresponding to carboxylic and phenyl rings which may be attributed to its virulent and antibacterial properties, respectively. Besides hemolysin, EPS, and protease, Aeromonas hydrophila strain An4 also produced several antibacterial metabolites.

  16. Growth on Chitin Impacts the Transcriptome and Metabolite Profiles of Antibiotic-Producing Vibrio coralliilyticus S2052 and Photobacterium galatheae S2753

    Science.gov (United States)

    Phippen, Christopher; Nielsen, Kristian Fog

    2017-01-01

    ABSTRACT Members of the Vibrionaceae family are often associated with chitin-containing organisms, and they are thought to play a major role in chitin degradation. The purpose of the present study was to determine how chitin affects the transcriptome and metabolome of two bioactive Vibrionaceae strains, Vibrio coralliilyticus and Photobacterium galatheae. We focused on chitin degradation genes and secondary metabolites based on the assumption that these molecules in nature confer an advantage to the producer. Growth on chitin caused upregulation of genes related to chitin metabolism and of genes potentially involved in host colonization and/or infection. The expression of genes involved in secondary metabolism was also significantly affected by growth on chitin, in one case being 34-fold upregulated. This was reflected in the metabolome, where the antibiotics andrimid and holomycin were produced in larger amounts on chitin. Other polyketide synthase/ nonribosomal peptide synthetase (PKS-NRPS) clusters in P. galatheae were also strongly upregulated on chitin. Collectively, this suggests that both V. coralliilyticus and P. galatheae have a specific lifestyle for growth on chitin and that their secondary metabolites likely play a crucial role during chitin colonization. IMPORTANCE The bacterial family Vibrionaceae (vibrios) is considered a major player in the degradation of chitin, the most abundant polymer in the marine environment; however, the majority of studies on the topic have focused on a small number of Vibrio species. In this study, we analyzed the genomes of two vibrios to assess their genetic potential for the degradation of chitin. We then used transcriptomics and metabolomics to demonstrate that chitin strongly affects these vibrios at both the transcriptional and metabolic levels. We observed a strong increase in production of secondary metabolites, suggesting an ecological role for these molecules during chitin colonization in the marine environment

  17. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids.

    Science.gov (United States)

    Farrow, Scott C; Hagel, Jillian M; Facchini, Peter J

    2012-05-01

    Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.

  18. Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus.

    Science.gov (United States)

    Castro, Cristina; Zuluaga, Robin; Álvarez, Catalina; Putaux, Jean-Luc; Caro, Gloria; Rojas, Orlando J; Mondragon, Iñaki; Gañán, Piedad

    2012-08-01

    A bacterial strain isolated from the fermentation of Colombian homemade vinegar, Gluconacetobacter medellensis, was investigated as a new source of bacterial cellulose (BC). The BC produced from substrate media consisting of various carbon sources at different pH and incubation times was quantified. Hestrin-Schramm (HS) medium modified with glucose led to the highest BC yields followed by sucrose and fructose. Interestingly, the microorganisms are highly tolerant to low pH: an optimum yield of 4.5 g/L was achieved at pH 3.5, which is generally too low for other bacterial species to function. The cellulose microfibrils produced by the new strain were characterized by scanning and transmission electron microscopy, infrared spectroscopy X-ray diffraction and elemental analysis. The morphological, structural and chemical characteristics of the cellulose produced are similar to those expected for BC.

  19. Effects of bacterial communities on biofuel-producing microalgae: stimulation, inhibition and harvesting.

    Science.gov (United States)

    Wang, Hui; Hill, Russell T; Zheng, Tianling; Hu, Xiaoke; Wang, Bin

    2016-01-01

    Despite the great interest in microalgae as a potential source of biofuel to substitute for fossil fuels, little information is available on the effects of bacterial symbionts in mass algal cultivation systems. The bacterial communities associated with microalgae are a crucial factor in the process of microalgal biomass and lipid production and may stimulate or inhibit growth of biofuel-producing microalgae. In addition, we discuss here the potential use of bacteria to harvest biofuel-producing microalgae. We propose that aggregation of microalgae by bacteria to achieve >90% reductions in volume followed by centrifugation could be an economic approach for harvesting of biofuel-producing microalgae. Our aims in this review are to promote understanding of the effects of bacterial communities on microalgae and draw attention to the importance of this topic in the microalgal biofuel field.

  20. 3′-NADP and 3′-NAADP, Two Metabolites Formed by the Bacterial Type III Effector AvrRxo1*♦

    Science.gov (United States)

    Schuebel, Felix; Rocker, Andrea; Edelmann, Daniel; Schessner, Julia; Brieke, Clara; Meinhart, Anton

    2016-01-01

    An arsenal of effector proteins is injected by bacterial pathogens into the host cell or its vicinity to increase virulence. The commonly used top-down approaches inferring the toxic mechanism of individual effector proteins from the host's phenotype are often impeded by multiple targets of different effectors as well as by their pleiotropic effects. Here we describe our bottom-up approach, showing that the bacterial type III effector AvrRxo1 of plant pathogens is an authentic phosphotransferase that produces two novel metabolites by phosphorylating nicotinamide/nicotinic acid adenine dinucleotide at the adenosine 3′-hydroxyl group. Both products of AvrRxo1, 3′-NADP and 3′-nicotinic acid adenine dinucleotide phosphate (3′-NAADP), are substantially different from the ubiquitous co-enzyme 2′-NADP and the calcium mobilizer 2′-NAADP. Interestingly, 3′-NADP and 3′-NAADP have previously been used as inhibitors or signaling molecules but were regarded as “artificial” compounds so far. Our findings now necessitate a shift in thinking about the biological importance of 3′-phosphorylated NAD derivatives. PMID:27621317

  1. Identification of urolithin a as a metabolite produced by human colon microflora from ellagic acid and related compounds.

    Science.gov (United States)

    Cerdá, Begoña; Periago, Paula; Espín, Juan Carlos; Tomás-Barberán, Francisco A

    2005-07-13

    Dietary ellagic acid and related polyphenols are metabolized in humans to dibenzopyran-6-one derivatives, and the microbial origin of these metabolites has been suggested. However, this has not been demonstrated so far. Fecal samples donated by six volunteers were incubated under anaerobic conditions, and aliquots were used to evaluate the fecal metabolism of ellagic acid, the ellagitannin punicalagin, and an ellagitannin rich extract from walnuts. The isoflavone daidzein was also incubated with the same fecal samples to follow the production of the microbial metabolites previously reported (dihydrogenistein, O-demethylangolensin, and equol) as a positive control of the system and to evaluate similarities between isoflavone and ellagic acid fecal flora metabolism. After fermentation the metabolite "urolithin A" (3,8-dihydroxy-6H-dibenzo[b,d]pyran-6-one) was produced from ellagic acid, punicalagin, and the ellagitannin extract in all the fecal cultures from different volunteers, but with very different production rates and concentrations. This large variability in the concentration of metabolite and kinetics of metabolite production is consistent with the large variability found in the excretion of these metabolites in urine in vivo after human consumption of ellagitannins, and with differences in the composition of the fecal microflora. No correlation between isoflavone and ellagic acid metabolism by fecal microflora was observed. The present study confirms the microbial origin of the recently reported in vivo generated hydroxy-6H-dibenzo[b,d]pyran-6-one derivatives in humans and is a further step in the study of the bioavailability and metabolism of ellagic acid and ellagitannins.

  2. Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures.

    Science.gov (United States)

    Pasteran, Fernando; Tijet, Nathalie; Melano, Roberto G; Corso, Alejandra

    2015-12-01

    We compared carbapenemase detection among 266 Gram-negative bacilli (161 carbapenemase producers) using the Carba NP tests issued by the CLSI (CNPt-CLSI) and a novel protocol (CNPt-direct) designed for carbapenemase detection direct from bacterial cultures (instead of bacterial extracts required by the CLSI tests). The specificities were comparable (100%), but the CNPt-direct was more sensitive (98% versus 84%). The CNPt-direct was easier to perform due to the direct use of colonies and offered a more robust detection of carbapenemase producers. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo

    2017-01-01

    , have been screened for, and thus detected in buildings. In this study, we used a liquid chromatography-high resolution mass spectrometry approach to screen both artificially and naturally infected building materials for all the Chaetomium metabolites described in the literature. Pure agar cultures were...

  4. Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.

    Science.gov (United States)

    Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan

    2016-06-22

    Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.

  5. Gibberellins producing Bacillus methylotrophicus KE2 supports plant growth and enhances nutritional metabolites and food values of lettuce.

    Science.gov (United States)

    Radhakrishnan, Ramalingam; Lee, In-Jung

    2016-12-01

    The nutritional quality of green leafy vegetables can be enhanced by application of plant beneficial micro-organisms. The present study was aimed to increase the food values of lettuce leaves by bacterial treatment. We isolated bacterial strain KE2 from Kimchi food and identified as Bacillus methylotrophicus by phylogenetic analysis. The beneficial effect of B. methylotrophicus KE2 on plants was confirmed by increasing the percentage of seed germination of Lactuca sativa L., Cucumis melo L., Glycine max L. and Brassica juncea L. It might be the secretion of array of gibberellins (GA1, GA3, GA7, GA8, GA9, GA12, GA19, GA20, GA24, GA34 and GA53) and indole-acetic acid from B. methylotrophicus KE2. The mechanism of plant growth promotion via their secreted metabolites was confirmed by a significant increase of GA deficient mutant rice plant growth. Moreover, the bacterial association was favor to enhance shoot length, shoot fresh weight and leaf width of lettuce. The higher concentration of protein, amino acids (Asp, Thr, Ser, Glu, Gly, Ala, Leu, Tyr and His), gama-aminobutric acid and fructose was found in bacterial culture (KE2) applied plants. The macro and micro minerals such as K, Mg, Na, P, Fe, Zn and N were also detected as significantly higher quantities in bacteria treated plants than untreated control plants. In addition, the carotenoids and chlorophyll a were also increased in lettuce at bacterial inoculation. The results of this study suggest that B. methylotrophicus KE2 application to soil helps to increase the plant growth and food values of lettuce. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  6. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co...... experimentally investigated inhibition of marine bacteria by furanones, initially testing the effects of crude extract of D. pulchra (about 50 % of which is furanones) on the growth of 144 strains of bacteria isolated from the surfaces of D. pulchra, nearby rocks, or a co-occurring alga (Sasgassum vestitum......, suggesting that swarming may be ecologically important in these systems. Overall, we found that the effects of furanones on bacteria varied among (1) furanones, (2) bacterial phenotypes, (3) different isolates and (4) different sources of isolation (e.g. rocks or algae). This differential inhibition...

  7. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra

    DEFF Research Database (Denmark)

    Maximilien, Ria; de Nys, Rocky; Holmström, Carola

    1998-01-01

    We investigated the effects of halogenated furanones from the red alga Delisea pulchra on colonisation of surfaces by marine bacteria. Bacterial abundance on the surface of D. pulchra, assessed using scanning electron microscopy (SEM), was significantly lower than on the surfaces of 3 co...... experimentally investigated inhibition of marine bacteria by furanones, initially testing the effects of crude extract of D. pulchra (about 50 % of which is furanones) on the growth of 144 strains of bacteria isolated from the surfaces of D. pulchra, nearby rocks, or a co-occurring alga (Sasgassum vestitum....... pulchra, in contrast to the pattern for growth inhibition. We also tested individual furanones against swimming and swarming of the same 6 bacterial isolates (3 from rocks, 3 from D. pulchra) used in the attachment assays. At least some furanones inhibited swarming or swimming at non...

  8. Bacterial Canker (Clavibacter michiganensis subsp. michiganensis) of tomato in commercial seed produced in Indonesia

    NARCIS (Netherlands)

    Anwar, A.; Zouwen, van der P.S.; Ilyas, S.; Wolf, van der J.M.

    2004-01-01

    In 2002, Clavibacter michiganensis subsp. michiganensis (Smith) Davis, the causal organism of bacterial canker of tomato (Lycopersicon esculentum), was isolated from two of six commercial asymptomatic tomato seed lots produced on Java in Indonesia. C. michiganensis subsp. michiganensis has not been

  9. Biochemical diversity of the bacterial strains and their biopolymer producing capabilities in wastewater sludge.

    Science.gov (United States)

    More, T T; Yan, S; John, R P; Tyagi, R D; Surampalli, R Y

    2012-10-01

    The biochemical characterization of 13 extracellular polymeric substances (EPS) producing bacterial strains were carried out by BIOLOG. The bacterial strains were cultured in sterilized sludge for EPS production. Flocculation and dewatering capabilities of produced EPS (broth, crude slime and capsular) were examined using kaolin suspension combined with calcium (150 mg of Ca(2+)/L of kaolin suspension). BIOLOG revealed that there were 9 Bacillus, 2 Serratia and 2 Yersinia species. Most of these bacterial strains had the capability to utilize wide spectrum of carbon and nitrogen sources. EPS concentration of more than 1g/L was produced by most of the bacterial strains. Concentration of EPS produced by different Bacillus strains was higher than that of Serratia and Yersinia. Broth EPS revealed flocculation activity more than 75% for Bacillus sp.7, Bacillus sp.4 and Bacillus sp.6, respectively. Flocculation activity higher than 75% was attained using very low concentrations of broth EPS (1.12-2.70 mg EPS/g SS).

  10. New bioactive metabolites produced by Phomopsis cassiae, an endophytic fungus in Cassia spectabilis

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Geraldo H.; Teles, Helder L.; Trevisan, Henrique C.; Bolzani, Vanderlan da S.; Araujo, Angela R. [UNESP, Araraquara, SP (Brazil). Inst. de Quimica]. E-mail: araujoar@iq.unesp.br; Young, Maria C.M. [Instituto de Botanica, Sao Paulo, SP (Brazil). Secao de Fisiologia e Bioquimica de Plantas; Pfenning, Ludwig H. [Universidade Federal de Lavras, MG (Brazil). Dept. de Fitopatologia; Eberlin, Marcos N.; Haddad, Renato [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica; Costa-Neto, Claudio M. [Sao Paulo Univ., Ribeirao Preto, SP (Brazil). Faculdade de Medicina. Dept. de Bioquimica e Imunologia

    2005-11-15

    Two new metabolites, ethyl 2,4-dihydroxy-5,6-dimethylbenzoate (1) and phomopsilactone (2) were isolated from Phomopsis cassiae, an endophytic fungus in Cassia spectabilis. Their structures were elucidated by 1D and 2D NMR, MS and IR spectral data. Compounds 1 and 2 displayed strong antifungal activity against the phytopatogenic fungi Cladosporium cladosporioides and C. sphaerospermum, as well as cytotoxicity against human cervical tumor cell line (HeLa), in in vitro assays. (author)

  11. Characterization and Optimization of Biosynthesis of Bioactive Secondary Metabolites Produced by Streptomyces sp. 8812.

    Science.gov (United States)

    Rajnisz, Aleksandra; Guśpiel, Adam; Postek, Magdalena; Ziemska, Joanna; Laskowska, Anna; Rabczenko, Daniel; Solecka, Jolanta

    2016-01-01

    The nutritional requirements and environmental conditions for a submerged culture of Streptomyces sp. 8812 were determined. Batch and fed-batch Streptomyces sp. 8812 fermentations were conducted to obtain high activity of secondary metabolites. In the study several factors were examined for their influence on the biosynthesis of the active metabolites-7-hydroxy-6-oxo-2,3,4,6-tetrahydroisoquinoline-3-carboxy acid (C10H9NO4) and N-acetyl-3,4-dihydroxy-L-phenylalanine (C11H13NO5): changes in medium composition, pH of production medium, various growth phases of seed culture, amino acid supplementation and addition of anion exchange resin to the submerged culture. Biological activities of secondary metabolites were examined with the use of DD-carboxypeptidase 64-575 and horseradish peroxidase. Streptomyces sp. 8812 mycelium was evaluated under fluorescent microscopy and respiratory activity of the strain was analyzed. Moreover, the enzymatic profiles of the strain with the use of Api ZYM test were analyzed and genetic analysis made. Phylogenetic analysis of Streptomyces sp. 8812 revealed that its closest relative is Streptomyces capoamus JCM 4734 (98%), whereas sequence analysis for 16S rRNA gene using NCBI BLAST algorithm showed 100% homology between these two strains. Biosynthetic processes, mycelium growth and enzyme inhibitory activities of these two strains were also compared.

  12. Determination of IGF-1-Producing CHO-K1 Growth Phases Using GCMS-Based Global Metabolite Analysis

    Directory of Open Access Journals (Sweden)

    S. E. M. SABERI

    2011-12-01

    Full Text Available Mammalian cell lines, in particular CHO-K1 is vital for the multibillion dollar biotechnology industry. The majority of large scale bioprocessing of commercially valuable protein biopharmaceuticals is produced using this type of cell. An ideal mammalian cell system as host for biologics production should retain efficient use of energy sources in order to boost productivity at minimum cost. Various analyses such as cell counting and monitoring of specific biochemical responses are used to provide data to enable bioprocess control in order to achieve the ideal system. Our study aimed to see whether global metabolite analysis using Gas Chromatography Mass Spectrometry (GCMS would be a potential alternative approach in providing data for bioprocess control. In this study, we analyzed metabolites of CHO-K1 cells at different growth phases using GCMS. CHO-K1 cells producing insulin like growth factor-I (IGF1 were obtained from ATCC. Cells were grown in T-flask and incubated at 37°C/ 5% CO2 until 70-80% confluent in RPMI 1640 media. Samples (cells and spent/conditioned media were taken at designated intervals for routine cell counting (Trypan Blue dye exclusion method; glucose, glutamine and lactate determination (YSI 2700; IGF-1 production (ELISA kit R&D Sstems, Inc; and global metabolite analysis (GCMS. Conditioned media from each time point were spun down before subjecting into GCMS. Data from GCMS was then transferred to SIMCA P+12.0 for chemometric evaluation using Principal Component Analysis (PCA. The first component, PC1 results was able to explain 36% of the variation of the data with clear separation between exponential phase and other phases (initial and death phase. This suggests that GCMS-based global metabolite analysis has the ability to capture cell growth behaviour and offered insights of factors that may influence the biological system.ABSTRAK: Produk yang berupa sel kekal mamalia, terutamnya CHO-K1 adalah penting dan menguntungkan

  13. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2)

    NARCIS (Netherlands)

    D'Alia, Davide; Eggle, D.; Nieselt, K.; Hu, W.-S.; Breitling, R.; Takano, E.

    2011-01-01

    Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, gamma-butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor,

  14. Urolithins, ellagic acid-derived metabolites produced by human colonic microflora, exhibit estrogenic and antiestrogenic activities.

    Science.gov (United States)

    Larrosa, Mar; González-Sarrías, Antonio; García-Conesa, María Teresa; Tomás-Barberán, Francisco A; Espín, Juan Carlos

    2006-03-08

    Urolithins A and B (hydroxy-6H-dibenzo[b,d]pyran-6-one derivatives) are colonic microflora metabolites recently proposed as biomarkers of human exposure to dietary ellagic acid derivatives. Molecular models suggest that urolithins could display estrogenic and/or antiestrogenic activity. To this purpose, both urolithins and other known phytoestrogens (genistein, daidzein, resveratrol, and enterolactone) were assayed to evaluate the capacity to induce cell proliferation on the estrogen-sensitive human breast cancer MCF-7 cells as well as the ability to bind to alpha- and beta-estrogen receptors. Both urolithins A and B showed estrogenic activity in a dose-dependent manner even at high concentrations (40 microM), without antiproliferative or toxic effects, whereas the other phytoestrogens inhibited cell proliferation at high concentrations. Overall, urolithins showed weaker estrogenic activity than the other phytoestrogens. However, both urolithins displayed slightly higher antiestrogenic activity (antagonized the growth promotion effect of 17-beta-estradiol in a dose-dependent manner) than the other phytoestrogens. The IC(50) values for the ERalpha and ERbeta binding assays were 0.4 and 0.75 microM for urolithin A; 20 and 11 microM for urolithin B; 3 and 0.02 for genistein; and 2.3 and 1 for daidzein, respectively; no binding was detected for resveratrol and enterolactone. Urolithins A and B entered into MCF-7 cells and were metabolized to yield mainly urolithin-sulfate derivatives. These results, together with previous studies regarding absorption and metabolism of dietary ellagitannins and ellagic acid in humans, suggest that the gut microflora metabolites urolithins are potential endocrine-disrupting molecules, which could resemble other described "enterophytoestrogens" (microflora-derived metabolites with estrogenic/antiestrogenic activity). Further research is warranted to evaluate the possible role of ellagitannins and ellagic acid as dietary "pro-phytoestrogens".

  15. Molluscan biological and chemical diversity: secondary metabolites and medicinal resources produced by marine molluscs.

    Science.gov (United States)

    Benkendorff, Kirsten

    2010-11-01

    The phylum Mollusca represents an enormous diversity of species with eight distinct classes. This review provides a taxonomic breakdown of the published research on marine molluscan natural products and the medicinal products currently derived from molluscs, in order to identify priority targets and strategies for future research. Some marine gastropods and bivalves have been of great interest to natural products chemists, yielding a diversity of chemical classes and several drug leads currently in clinical trials. Molluscs also feature prominently in a broad range of traditional natural medicines, although the active ingredients in the taxa involved are typically unknown. Overall secondary metabolites have only been investigated from a tiny proportion (gastropods, the opisthobranchs (a subgroup of Heterobranchia), which are primarily comprised of soft-bodied marine molluscs. Conversely, most molluscan medicines are derived from shelled gastropods and bivalves. The complete disregard for several minor classes of molluscs is unjustified based on their evolutionary history and unique life styles, which may have led to novel pathways for secondary metabolism. The Polyplacophora, in particular, have been identified as worthy of future investigation given their use in traditional South African medicines and their abundance in littoral ecosystems. As bioactive compounds are not always constitutively expressed in molluscs, future research should be targeted towards biosynthetic organs and inducible defence reactions for specific medicinal applications. Given the lack of an acquired immune system, the use of bioactive secondary metabolites is likely to be ubiquitous throughout the Mollusca and broadening the search field may uncover interesting novel chemistry.

  16. Glutathione conjugation of busulfan produces a hydroxyl radical-trapping dehydroalanine metabolite.

    Science.gov (United States)

    Peer, Cody J; Younis, Islam R; Leonard, Stephen S; Gannett, Peter M; Minarchick, Valerie C; Kenyon, Allison J; Rojanasakul, Yon; Callery, Patrick S

    2012-12-01

    The Phase 2 drug metabolism of busulfan yields a glutathione conjugate that undergoes a β-elimination reaction. The elimination product is an electrophilic metabolite that is a dehydroalanine-containing tripeptide, γ-glutamyldehydroalanylglycine (EdAG). In the process, glutathione lacks thiol-related redox properties and gains a radical scavenging dehydroalanine group. EdAG scavenged hydroxyl radical generated in the Fenton reaction in a concentration-dependent manner was monitored by electron paramagnetic resonance (EPR) spectroscopy. The apparent rate of hydroxyl radical scavenging was in the same range as published values for known antioxidants, including N-acyl dehydroalanines. A captodatively stabilized carbon-centered radical intermediate was spin trapped in the reaction of EdAG with hydroxyl radical. The proposed structure of a stable product in the Fenton reaction with EdAG was consistent with that of a γ-glutamylserylglycyl dimer. Observation of the hydroxyl trapping properties of EdAG suggests that the busulfan metabolite EdAG may contribute to or mitigate redox-related cytotoxicity associated with the therapeutic use of busulfan, and reaffirms indicators that support a role in free radical biology for dehydroalanine-containing peptides and proteins.

  17. Bacterial Growth on Photochemically Transformed Leachates from Aquatic and Terrestrial Primary Producers

    DEFF Research Database (Denmark)

    Anesio, A.M.; Nielsen, Jon Theil; Granéli, W.

    2000-01-01

    utilization was reduced by radiation of the leachates from aquatic macrophytes. In a separate experiment, the stable C and N isotope composition of bacteria grown on irradiated and non-irradiated DOM was estimated. Bacterial growth on UV-irradiated DOM was enriched in 13C relative to the bacteria in the non......-irradiated treatments; this result may be explained by selective assimilation of photochemically produced, isotopically enriched labile compounds....

  18. Early-life exercise may promote lasting brain and metabolic health through gut bacterial metabolites.

    Science.gov (United States)

    Mika, Agnieszka; Fleshner, Monika

    2016-02-01

    The 100 trillion microorganisms residing within our intestines contribute roughly 5 million additional genes to our genetic gestalt, thus posing the potential to influence many aspects of our physiology. Microbial colonization of the gut shortly after birth is vital for the proper development of immune, neural and metabolic systems, while sustaining a balanced, diverse gut flora populated with beneficial bacteria is necessary for maintaining optimal function of these systems. Although symbiotic host-microbial interactions are important throughout the lifespan, these interactions can have greater and longer lasting impacts during certain critical developmental periods. A better understanding of these sensitive periods is necessary to improve the impact and effectiveness of health-promoting interventions that target the microbial ecosystem. We have recently reported that exercise initiated in early life increases gut bacterial species involved in promoting psychological and metabolic health. In this review, we emphasize the ability of exercise during this developmentally receptive time to promote optimal brain and metabolic function across the lifespan through microbial signals.

  19. [Therapeutic potential of secondary metabolites produced in the hairy roots cultures].

    Science.gov (United States)

    Kowalczyk, Tomasz; Łucka, Marta; Szemraj, Janusz; Sakowicz, Tomasz

    2015-05-04

    Plants have always been a source of many valuable substances for humans. Growing advancement of methods of modern biotechnology, combined with genetic engineering techniques, gradually increase the variety of compounds obtained, the number of plant species used and the production efficiency. Consequently, there is an undebatable interest in biotechnological production of such compounds, especially those pharmacologically active, that can be used in treatment of neoplastic, viral, and many other types of diseases. Most of these compounds represent a diverse group of secondary metabolites. One of the effective ways of obtaining such molecules is the utilization of hairy roots cultures. The advantages of such systems make them an attractive method of obtaining important plant-derived compounds, creating an interesting alternative to other methods, including the cell suspension cultures or expensive chemical syntheses.

  20. Phyto-oestrogens and their metabolites in milk produced on two pastures with different botanical compositions

    DEFF Research Database (Denmark)

    Adler, S. A.; Purup, S.; Hansen-Møller, J.

    2014-01-01

    Phyto-oestrogens are a group of secondary plant metabolites that may bind to oestrogen receptors and exert oestrogenic or anti-oestrogenic effects in humans and can protect against cancer diseases. When ingested by dairy cows, phyto-oestrogens can be metabolised and transferred to the milk...... deviation); body weight 599 (45.1). kg, stage of lactation 73 (15.0) d in milk, milk yield 29.9 (2.90) kg/d at the start of the experiment] were divided into two groups and grazed either a short-term pasture (SP) or a long-term pasture (LP). The SP was representative of organically managed leys in Norway...

  1. Gene probes for the detection of 6-deoxyhexose metabolism in secondary metabolite-producing streptomycetes.

    Science.gov (United States)

    Stockmann, M; Piepersberg, W

    1992-01-01

    DNA probes were designed from the streptomycin production genes strDELM of Streptomyces griseus involved in the biosynthesis of the 6-deoxyhexose (6DOH) dihydrostreptose which could detect the genomic fragments coding for 6DOH formation in other actinomycetes strains. In about 70% of the 43 strains tested at least one signal could be detected with strD-, strE- or strLM-specific probes. Evidence is presented that the hybridizing genes are mostly clustered and probably engaged in the formation of secondary metabolites. Because of the wide-spread use of 6DOH constituents in natural products these probes should allow to detect a vast array of different secondary metabolic gene clusters in actinomycetes.

  2. Phyto-oestrogens and their metabolites in milk produced on two pastures with different botanical compositions

    DEFF Research Database (Denmark)

    Adler, S. A.; Purup, S.; Hansen-Møller, J.;

    2014-01-01

    Phyto-oestrogens are a group of secondary plant metabolites that may bind to oestrogen receptors and exert oestrogenic or anti-oestrogenic effects in humans and can protect against cancer diseases. When ingested by dairy cows, phyto-oestrogens can be metabolised and transferred to the milk....... The objective of this study was to assess the effects of grazing a recently established pasture containing red clover (Trifolium pratense L.) and an older pasture containing a variety of sown and unsown plant species on milk concentrations of phyto-oestrogens. Sixteen Norwegian Red dairy cows [mean (standard...... deviation); body weight 599 (45.1). kg, stage of lactation 73 (15.0) d in milk, milk yield 29.9 (2.90) kg/d at the start of the experiment] were divided into two groups and grazed either a short-term pasture (SP) or a long-term pasture (LP). The SP was representative of organically managed leys in Norway...

  3. Isolation of Biosurfactant–Producing Bacteria with Antimicrobial Activity against Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Siripun Sarin

    2011-01-01

    Full Text Available The aims of this research were to study biosurfactant producing bacteria isolated from soil and to determine their property and efficiency as biosurfactants in order to inhibit bacterial pathogens. The result showed that there were 8 bacterial isolates out of 136 isolates of the total biosurfactant producing bacteria screened that exhibited the diameter of clear zone more than 1.5 cm. in the oil spreading test. The highest potential of emulsifying activity (%EA24 of 54.4 and the maximum additive concentration, (%MAC of 24.2 was obtained from the fermentation broth of the G7 isolate which the G7 isolate was later identified as Pseudomonas fluorescens. Escherichia coli, Staphylococcus aureus and Psuedomonas aeruginosa were the tested bacterial pathogens that were most sensitive to the acid precipitated biosurfactant obtained from P. fluorescens G7 with the lowest minimum inhibitory concentration (MIC of 41.6 mg/ml and minimum bactericidal concentration (MBC of 41.6 mg/ml compared with the acid precipitated bisurfactants of the other isolates used in the antimicrobial activity test. The type of the separated crude biosurfactant produced by P. fluorescens G7 analyzed later by using the rhamose test, TLC and FT-IR techniques was rhamnolipid.

  4. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates

    Science.gov (United States)

    Kali, Arunava; Bhuvaneshwar, Devaraj; Charles, Pravin M. V.; Seetha, Kunigal Srinivasaiah

    2016-01-01

    Introduction: The role of natural bioactive substances in treating infections has been rediscovered as bacterial resistance become common to most of the antibiotics. Curcumin is a bioactive substance from turmeric. Owing to antimicrobial properties, its prospect as an antibacterial agent is currently under focus. Materials and Methods: We have evaluated the in vitro synergy of curcumin with antibiotics against sixty biofilm producing bacterial isolates. Congo red agar method was used to identify the biofilm producing isolates. Curcumin minimum inhibitory concentration (MIC) was determined by agar dilution method. Its antibiotic synergy was identified by the increase in disc diffusion zone size on Mueller-Hinton agar with 32 mg/L curcumin. Results: The mean MICs of curcumin against Gram-positive and Gram-negative isolates were 126.9 mg/L and 117.4 mg/L, respectively. Maximum synergy was observed with ciprofloxacin among Gram-positive and amikacin, gentamicin, and cefepime among Gram-negative isolates. Conclusions: Curcumin per se as well as in combination with other antibiotics has a demonstrable antibacterial action against biofilm producing bacterial isolates. It may have a beneficial role in supplementing antibiotic therapy. PMID:27330262

  5. Diverse bacterial PKS sequences derived from okadaic acid-producing dinoflagellates.

    Science.gov (United States)

    Perez, Roberto; Liu, Li; Lopez, Jose; An, Tianying; Rein, Kathleen S

    2008-05-22

    Okadaic acid (OA) and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS) genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  6. Effect of different in vitro culture extracts of black pepper (Piper nigrum L.) on toxic metabolites-producing strains.

    Science.gov (United States)

    Ahmad, Nisar; Abbasi, Bilal Haider; Fazal, Hina

    2016-03-01

    In the present study, the effect of different in vitro cultures (callus, in vitro shoots) and commercially available peppercorn extract was investigated for its activity against toxic metabolite-producing strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Bacillus subtilis, Bacillus cereus, Staphylococcus aureus, and Candida albicans). These in vitro cultures were extracted with ethanol, hexane, and chloroform, and the antipathogenic activity was determined by well-diffusion method. Hexane extract of callus showed 22 mm zone of inhibition against B. cereus, 23 mm against S. aureus, while regenerated shoots and seeds have shown 24.3 and 26 mm zones of inhibition. The ethanolic extracts of regenerated Piper shoots have shown 25 mm activity against S. aureus, 21 mm against B. cereus, and 16 mm in the case of C. albicans in comparison with standard antibiotics. Peppercorn extracts in chloroform and ethanol had shown activities against B. cereus (23.6 mm) and B. subtilis (23.5 mm). During in vitro organogenesis and morphogenesis, cells and tissues produced a comparable phytochemicals profile like mother plant. Morphogenesis is critically controlled by the application of exogenous plant-growth regulators. Such addition alters the hormonal transduction pathways, and cells under in vitro conditions regenerate tissues, which are dependant on the physiological state of cells, and finally enhance the production of secondary metabolites. To the best of our knowledge, this is the first report to compare the antimicrobial potential of in vitro regenerated tissues and peppercorn with standard antibiotics. In conclusion, most of the extracts showed pronounced activities against all the pathogenic microbes. This is a preliminary work, and the minimum inhibitory concentration values needs to be further explored. Regenerated tissues of P. nigrum are a good source of biologically active metabolites for antimicrobial activities, and callus culture presented itself as

  7. Metabolites from the Fungal Endophyte Aspergillus austroafricanus in Axenic Culture and in Fungal-Bacterial Mixed Cultures.

    Science.gov (United States)

    Ebrahim, Weaam; El-Neketi, Mona; Lewald, Laura-Isabell; Orfali, Raha S; Lin, Wenhan; Rehberg, Nidja; Kalscheuer, Rainer; Daletos, Georgios; Proksch, Peter

    2016-04-22

    The endophytic fungus Aspergillus austroafricanus isolated from leaves of the aquatic plant Eichhornia crassipes was fermented axenically on solid rice medium as well as in mixed cultures with Bacillus subtilis or with Streptomyces lividans. Chromatographic analysis of EtOAc extract of axenic cultures afforded two new metabolites, namely, the xanthone dimer austradixanthone (1) and the sesquiterpene (+)-austrosene (2), along with five known compounds (3-7). Austradixanthone (1) represents the first highly oxygenated heterodimeric xanthone derivative. When A. austroafricanus was grown in mixed cultures with B. subtilis or with S. lividans, several diphenyl ethers (8-11) including the new austramide (8) were induced up to 29-fold. The structures of new compounds were unambiguously elucidated using 1D- and 2D-NMR spectroscopy, HRESIMS, and chemical derivatization. Compound 7 exhibited weak cytotoxicity against the murine lymphoma L5178Y cell line (EC50 is 12.6 μM). In addition, compounds 9 and 10, which were enhanced in mixed fungal/bacterial cultures, proved to be active against Staphylococcus aureus (ATCC 700699) with minimal inhibitory concentrations (MICs) of 25 μM each (6.6 μg/mL), whereas compound 11 revealed moderate antibacterial activity against B. subtilis 168 trpC2 with an MIC value of 34.8 μM (8 μg/mL).

  8. Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest.

    Science.gov (United States)

    Xiao, Mei; Zhang, Ye; Chen, Xue; Lee, Eun-Jeong; Barber, Carla J S; Chakrabarty, Romit; Desgagné-Penix, Isabel; Haslam, Tegan M; Kim, Yeon-Bok; Liu, Enwu; MacNevin, Gillian; Masada-Atsumi, Sayaka; Reed, Darwin W; Stout, Jake M; Zerbe, Philipp; Zhang, Yansheng; Bohlmann, Joerg; Covello, Patrick S; De Luca, Vincenzo; Page, Jonathan E; Ro, Dae-Kyun; Martin, Vincent J J; Facchini, Peter J; Sensen, Christoph W

    2013-07-10

    Plants produce a vast array of specialized metabolites, many of which are used as pharmaceuticals, flavors, fragrances, and other high-value fine chemicals. However, most of these compounds occur in non-model plants for which genomic sequence information is not yet available. The production of a large amount of nucleotide sequence data using next-generation technologies is now relatively fast and cost-effective, especially when using the latest Roche-454 and Illumina sequencers with enhanced base-calling accuracy. To investigate specialized metabolite biosynthesis in non-model plants we have established a data-mining framework, employing next-generation sequencing and computational algorithms, to construct and analyze the transcriptomes of 75 non-model plants that produce compounds of interest for biotechnological applications. After sequence assembly an extensive annotation approach was applied to assign functional information to over 800,000 putative transcripts. The annotation is based on direct searches against public databases, including RefSeq and InterPro. Gene Ontology (GO), Enzyme Commission (EC) annotations and associated Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway maps are also collected. As a proof-of-concept, the selection of biosynthetic gene candidates associated with six specialized metabolic pathways is described. A web-based BLAST server has been established to allow public access to assembled transcriptome databases for all 75 plant species of the PhytoMetaSyn Project (www.phytometasyn.ca). Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  9. A Host-Produced Autoinducer-2 Mimic Activates Bacterial Quorum Sensing.

    Science.gov (United States)

    Ismail, Anisa S; Valastyan, Julie S; Bassler, Bonnie L

    2016-04-13

    Host-microbial symbioses are vital to health; nonetheless, little is known about the role crosskingdom signaling plays in these relationships. In a process called quorum sensing, bacteria communicate with one another using extracellular signal molecules called autoinducers. One autoinducer, AI-2, is proposed to promote interspecies bacterial communication, including in the mammalian gut. We show that mammalian epithelia produce an AI-2 mimic activity in response to bacteria or tight-junction disruption. This AI-2 mimic is detected by the bacterial AI-2 receptor, LuxP/LsrB, and can activate quorum-sensing-controlled gene expression, including in the enteric pathogen Salmonella typhimurium. AI-2 mimic activity is induced when epithelia are directly or indirectly exposed to bacteria, suggesting that a secreted bacterial component(s) stimulates its production. Mutagenesis revealed genes required for bacteria to both detect and stimulate production of the AI-2 mimic. These findings uncover a potential role for the mammalian AI-2 mimic in fostering crosskingdom signaling and host-bacterial symbioses.

  10. Effects of produced water on soil characteristics, plant biomass, and secondary metabolites

    Science.gov (United States)

    The Powder River Basin in Wyoming and Montana contains the United States’ largest coal reserve. The area produces large amounts of natural gas through extraction from water-saturated coalbeds. Determining the impacts of coalbed natural gas-produced efflux water on crops is important when considering...

  11. Hypoxia and Inactivity Related Physiological Changes (Constipation, Inflammation) Are Not Reflected at the Level of Gut Metabolites and Butyrate Producing Microbial Community: The PlanHab Study.

    Science.gov (United States)

    Šket, Robert; Treichel, Nicole; Debevec, Tadej; Eiken, Ola; Mekjavic, Igor; Schloter, Michael; Vital, Marius; Chandler, Jenna; Tiedje, James M; Murovec, Boštjan; Prevoršek, Zala; Stres, Blaž

    2017-01-01

    We explored the assembly of intestinal microbiota in healthy male participants during the run-in (5 day) and experimental phases [21-day normoxic bed rest (NBR), hypoxic bedrest (HBR)], and hypoxic ambulation (HAmb) in a strictly controlled laboratory environment, balanced fluid, and dietary intakes, controlled circadian rhythm, microbial ambiental burden, and 24/7 medical surveillance. The fraction of inspired O2 (FiO2) and partial pressure of inspired O2 (PiO2) were 0.209 and 133.1 ± 0.3 mmHg for NBR and 0.141 ± 0.004 and 90.0 ± 0.4 mmHg for both hypoxic variants (HBR and HAmb; ~4,000 m simulated altitude), respectively. A number of parameters linked to intestinal transit spanning Bristol Stool Scale, defecation rates, zonulin, α1-antitrypsin, eosinophil derived neurotoxin, bile acids, reducing sugars, short chain fatty acids, total soluble organic carbon, water content, diet composition, and food intake were measured (167 variables). The abundance, structure, and diversity of butyrate producing microbial community were assessed using the two primary bacterial butyrate synthesis pathways, butyryl-CoA: acetate CoA-transferase (but) and butyrate kinase (buk) genes. Inactivity negatively affected fecal consistency and in combination with hypoxia aggravated the state of gut inflammation (p < 0.05). In contrast, gut permeability, various metabolic markers, the structure, diversity, and abundance of butyrate producing microbial community were not significantly affected. Rearrangements in the butyrate producing microbial community structure were explained by experimental setup (13.4%), experimentally structured metabolites (12.8%), and gut metabolite-immunological markers (11.9%), with 61.9% remaining unexplained. Many of the measured parameters were found to be correlated and were hence omitted from further analyses. The observed progressive increase in two immunological intestinal markers suggested that the transition from healthy physiological state toward the

  12. Phylogenetic Investigation of Endophytic Fusarium Strain Producing Antimicrobial Metabolite Isolated From Himalayan Yew Bark

    Directory of Open Access Journals (Sweden)

    Tayung, K.

    2011-01-01

    Full Text Available An endophytic fungus, Fusarium sp. was isolated from yew bark of eastern Himalaya. Ethyl acetate extract from its fermentation broth displayed considerable antimicrobial activity against three Gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis and Staphylococcus epidermidis, three Gram-negative bacteria (Klebsiella pneumoniae, Escherichia coli and Shigella flexneri and two pathogenic fungi (Candida albicans and Candida tropicalis. The metabolite showed highest inhibition zone against K. pneumoniae (27 mm and lowest against C. albicans (10 mm. Based on BLAST search analysis of ITS rDNA sequence, the fungus was identified as Fusarium solani (Mart. Sacc. Phylogenetic trees were generated by four different methods. Phylogenetic tree generated by UPGMA method was used to establish possible phylogenetic relationships of the fungus with other F. solani isolates those exist as endophytes, pathogens and saprotrophs taken from database. The generated tree showed that all F. solani strains have a common endophytic ancestry which gave rise to six clades that radiate into four evolutionary lineages. The possible phylogenetic relationships of F. solani that exist in different lifestyle have been discussed in each clade.

  13. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior

    Science.gov (United States)

    Fischer, Caleb N; Trautman, Eric P; Crawford, Jason M; Stabb, Eric V; Handelsman, Jo; Broderick, Nichole A

    2017-01-01

    Animals host multi-species microbial communities (microbiomes) whose properties may result from inter-species interactions; however, current understanding of host-microbiome interactions derives mostly from studies in which elucidation of microbe-microbe interactions is difficult. In exploring how Drosophila melanogaster acquires its microbiome, we found that a microbial community influences Drosophila olfactory and egg-laying behaviors differently than individual members. Drosophila prefers a Saccharomyces-Acetobacter co-culture to the same microorganisms grown individually and then mixed, a response mainly due to the conserved olfactory receptor, Or42b. Acetobacter metabolism of Saccharomyces-derived ethanol was necessary, and acetate and its metabolic derivatives were sufficient, for co-culture preference. Preference correlated with three emergent co-culture properties: ethanol catabolism, a distinct volatile profile, and yeast population decline. Egg-laying preference provided a context-dependent fitness benefit to larvae. We describe a molecular mechanism by which a microbial community affects animal behavior. Our results support a model whereby emergent metabolites signal a beneficial multispecies microbiome. DOI: http://dx.doi.org/10.7554/eLife.18855.001 PMID:28068220

  14. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth.

    Science.gov (United States)

    Xie, Xueshu; Backman, Daniel; Lebedev, Albert T; Artaev, Viatcheslav B; Jiang, Liying; Ilag, Leopold L; Zubarev, Roman A

    2015-09-28

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capable of adaptation. Consequently, after bacterial adaptation to a mixture of the two most abundant abiotic amino acids, glycine and racemized alanine, dried and reconstituted MU soup was found to support bacterial growth and even accelerate it compared to a simple mixture of the two amino acids. Therefore, primordial Miller-Urey soup was perfectly suitable as a growth media for early life forms.

  15. Fungal Antagonism Assessment of Predatory Species and Producers Metabolites and Their Effectiveness on Haemonchus contortus Infective Larvae

    Directory of Open Access Journals (Sweden)

    Manoel Eduardo Silva

    2015-01-01

    Full Text Available The objective of this study was to assess antagonism of nematophagous fungi and species producers metabolites and their effectiveness on Haemonchus contortus infective larvae (L3. Assay A assesses the synergistic, additive, or antagonistic effect on the production of spores of fungal isolates of the species Duddingtonia flagrans, Clonostachys rosea, Trichoderma esau, and Arthrobotrys musiformis; Assay B evaluates in vitro the effect of intercropping of these isolates grown in 2% water-agar (2% WA on L3 of H. contortus. D. flagrans (Assay A produced 5.3 × 106 spores and associated with T. esau, A. musiformis, or C. rosea reduced its production by 60.37, 45.28, and 49.05%, respectively. T. esau produced 7.9 × 107 conidia and associated with D. flagrans, A. musiformis, or C. rosea reduced its production by 39.24, 82.27, and 96.96%, respectively. A. musiformis produced 7.3 × 109 spores and associated with D. flagrans, T. esau, or C. rosea reduced its production by 99.98, 99.99, and 99.98%, respectively. C. rosea produced 7.3 × 108 conidia and associated with D. flagrans, T. esau, or A. musiformis reduced its production by 95.20, 96.84, and 93.56%, respectively. These results show evidence of antagonism in the production of spores between predators fungi.

  16. Fungal Antagonism Assessment of Predatory Species and Producers Metabolites and Their Effectiveness on Haemonchus contortus Infective Larvae.

    Science.gov (United States)

    Silva, Manoel Eduardo; Braga, Fabio Ribeiro; de Gives, Pedro Mendoza; Millán-Orozco, Jair; Uriostegui, Miguel Angel Mercado; Marcelino, Liliana Aguilar; Soares, Filippe Elias de Freitas; Araújo, Andréia Luiza; Vargas, Thainá Souza; Aguiar, Anderson Rocha; Senna, Thiago; Rodrigues, Maria Gorete; Froes, Frederico Vieira; de Araújo, Jackson Victor

    2015-01-01

    The objective of this study was to assess antagonism of nematophagous fungi and species producers metabolites and their effectiveness on Haemonchus contortus infective larvae (L3). Assay A assesses the synergistic, additive, or antagonistic effect on the production of spores of fungal isolates of the species Duddingtonia flagrans, Clonostachys rosea, Trichoderma esau, and Arthrobotrys musiformis; Assay B evaluates in vitro the effect of intercropping of these isolates grown in 2% water-agar (2% WA) on L3 of H. contortus. D. flagrans (Assay A) produced 5.3 × 10(6) spores and associated with T. esau, A. musiformis, or C. rosea reduced its production by 60.37, 45.28, and 49.05%, respectively. T. esau produced 7.9 × 10(7) conidia and associated with D. flagrans, A. musiformis, or C. rosea reduced its production by 39.24, 82.27, and 96.96%, respectively. A. musiformis produced 7.3 × 10(9) spores and associated with D. flagrans, T. esau, or C. rosea reduced its production by 99.98, 99.99, and 99.98%, respectively. C. rosea produced 7.3 × 10(8) conidia and associated with D. flagrans, T. esau, or A. musiformis reduced its production by 95.20, 96.84, and 93.56%, respectively. These results show evidence of antagonism in the production of spores between predators fungi.

  17. Screening the thermophilic and hyperthermophilic bacterial population of three Iranian hot-springs to detect the thermostable α- amylase producing strain

    Directory of Open Access Journals (Sweden)

    A Sajjadian

    2010-06-01

    Full Text Available Background: Screening is a routine procedure for isolation of microorganisms which are able to produce special metabolites. Purified thermostable α-amylase from bacterial sources is widely used in different industries. In this study we analyzed samples collected from three different hot springs in Iran to detect any strains capable of producing thermostable α-amylase."nMaterials and Methods: Hot water samples from Larijan (67°C, pH 6.5, Mahallat (46°C, pH 7, and Meshkinshahr (82°C, pH 6, were cultivated in screening starch agar plates and incubated at 65°C for 24 hours. Thereafter, the plates were stained with Gram's iodine solution."nResults and Discussion: The bacterial colonies from the Meshkinshahr hot-spring produced the largest haloforming zone. Based on the phenotypic tests, the strain was identified as Bacillus sp. The culture condition was optimized for biosynthesis of α-amylase. The enzyme was produced at maximum level when it was incubated at 70 °C in the presence of soluble starch (1% at pH 6. The addition of calcium (10 mM and peptone (1% to the mineral medium, shortened the lag period and improved the growth and α-amylase synthesis. The addition of glucose (1% to the culture greatly diminished the syntheses of α -amylase. Importantly, the enzyme extract retained 100% activity when incubated for 45 minutes at 100°C."nConclusion: The Meshkinshahr hot-spring is rich in the Bacillus spp thermostable α-amylase producing strain of the thermophilic bacterial population. Iranian hot-springs like Meshkinshahr, have large microbial storages and can be used as sources of different biological products like enzymes. The enzyme which was produced with Bacillus sp. could hydrolyse polymers like starch and was used at laboratory scale successfully.

  18. Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis.

    Science.gov (United States)

    Lee, Changyeol; Kim, Soonok; Li, Wei; Bang, Sunghee; Lee, Hanna; Lee, Hyun-Jung; Noh, Eun-Young; Park, Jung-Eun; Bang, Woo Young; Shim, Sang Hee

    2017-03-29

    Endophytes, important plant-associated mycobionts, have attracted a great deal of attention because of their bioactive secondary metabolites. Even though halophytes have been reported to overcome salt stress via associations with their endophytes, few studies have investigated the metabolites produced by the endophytes from halophytes. In this study, a dark septate endophytic fungal strain (JS0464), identified as Gaeumannomyces sp. by ITS sequencing, was isolated from the rhizome of a halophyte, Phragmites communis, in Suncheon bay, South Korea. This strain was cultured on a large scale and extracted with ethyl acetate. Chemical investigations of extracts of JS0464 led to the isolation of two glycosylated dialkylresorcinol derivatives (1-2), an anthraquinone derivative (3) and eight known compounds (4-11), which were identified by spectroscopic analyses incorporating one-dimensional/2D NMR and MS. Nine compounds showed significant nitric oxide reduction activity in lipopolysaccharide-stimulated microglia BV-2 cells, seven of which did not impair cell viability. The results suggest that endophytes from the halophytes could be potential resources for bioactive natural products.The Journal of Antibiotics advance online publication, 29 March 2017; doi:10.1038/ja.2017.39.

  19. Draft Genome Sequence of Photobacterium halotolerans S2753, Producer of Bioactive Secondary Metabolites

    DEFF Research Database (Denmark)

    Machado, Henrique; Månsson, Maria; Gram, Lone

    2014-01-01

    We report here the whole draft genome sequence of marine isolate Photobacterium halotolerans S2753, which produces the known antibiotic holomycin and also ngercheumicins and solonamides A and B, which interfere with virulence of methicillin-resistant Staphylococcus aureus strains by interacting...... with the quorum-sensing system....

  20. Biogenic amine producing capability of bacterial populations isolated during processing of different types of dry fermented sausages

    Directory of Open Access Journals (Sweden)

    M. Vincenzini

    2010-04-01

    Full Text Available In order to assess the distribution of the biogenic amine (BA producing capability within the bacterial populations occurring during production of dry fermented sausages, four different types of sausage processing, three with the use of starter cultures and one without, were investigated. All the main bacterial populations involved in the sausage processing showed a diffuse and strain dependent capability to produce BAs. However, quantitative determination of individual BAs produced by the bacterial isolates suggests an important role of enterococci in the accumulation of tyramine, the most abundant biogenic amine found in all investigated sausages.

  1. Proteolysis produced within biofilms of bacterial isolates from raw milk tankers.

    Science.gov (United States)

    Teh, Koon Hoong; Flint, Steve; Palmer, Jon; Andrewes, Paul; Bremer, Phil; Lindsay, Denise

    2012-06-15

    In this study, six bacterial isolates that produced thermo-resistant enzymes isolated from the internal surfaces of raw milk tankers were evaluated for their ability to produce proteolysis within either single culture biofilms or co-culture biofilms. Biofilms were formed in an in vitro model system that simulated the upper internal surface of a raw milk tanker during a typical summer's day of milk collection in New Zealand. The bacterial isolates were further evaluated for their ability to form biofilms at 25, 30 and 37°C. Mutual and competitive effects were observed in some of the co-culture biofilms, with all isolates being able to form biofilms in either single culture or co-culture at the three temperatures. The proteolysis was also evaluated in both biofilms and corresponding planktonic cultures. The proteolysis per cell decreased as the temperature of incubation (20-37°C) increased. Furthermore, mutualistic interactions in terms of proteolysis were observed when cultures were grown as co-culture biofilms. This is the first study to show that proteolytic enzymes can be produced in biofilms on the internal surfaces of raw milk tankers. This has important implications for the cleaning and the temperature control of raw milk transport tankers.

  2. Partial Characteristics of Hydrogen Production by Fermentative Hydrogen-producing Bacterial Strain B49

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing(王相晶); Ren Nanqi; Xiang Wensheng; Lin Ming; Guo Wanqian

    2003-01-01

    To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture*h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H2/g COD and 49.9 ml H2/g COD, respectively.

  3. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments:Bay of Bengal India

    Institute of Scientific and Technical Information of China (English)

    Valan; Arasu; M; Asha; KRT; Duraipandiyan; V; Ignacimuthu; S; Agastian; P

    2012-01-01

    Objective:To isolate and indentify the promising antimicrobial metabolite producing Streptomyces strains from marine sediment samples from Andraprudesh coast of India.Methods:Antagonistic aetinomycetes were isolated by starch casein agar medium and modified nutrient agar medium with 1%glucose used as a base for primary screening.Significant antimicrobial metabolite producing strains were selected and identified by using biochemical and 16S rDNA level.Minimum inhibitory concentrations of the organic extracts were done by using broth micro dilution method.Results:Among the 210 actinomyeetes,64.3%exhibited activity against Gram positive bacteria,48.5%showed activity towards Cram negative bacteria,38.8%exhibited both Cram positive and negative bacteria and 80.85%isolates revealed significant antifungal activity.However,five isolates AP-5,AP-18,AP-41 and AP-70 showed significant antimicrobial activity.The analysis of cell wall hydrolysates showed the presence of LL-diaminopimelic acid and glycine in all the isolates.Sequencing analysis indicated that the isolates shared 98.5%-99.8%sequence identity to the 16S rDNA gene sequences of the Streptomyces taxons.The antimicrobial substances were extracted using hexane and ethyl acetate from spent medium in which strains were cultivated at 30X for five days.The antimicrobial activity was assessed using broth micro dilution technique.Each of the culture extracts from these five strains showed a typical polyenelike property.The lowest minimum inhibitory concentrations of ethyl acetate extracts against Escherichia coli and Cumularia lunula were 67.5 and 125.0μg/mL,respectively.Conclusions:It can be concluded that hexane and ethyl acetate soluble extracellular products of novel isolates are effective against pathogenic bacteria and fungi.

  4. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments:Bay of Bengal India

    Institute of Scientific and Technical Information of China (English)

    Valan Arasu M; Asha KRT; Duraipandiyan V; Ignacimuthu S; Agastian P

    2012-01-01

    To isolate and indentify the promising antimicrobial metabolite producingStreptomyces strains from marine sediment samples from Andrapradesh coast of India. Methods:Antagonistic actinomycetes were isolated by starch casein agar medium and modified nutrient agar medium with 1% glucose used as a base for primary screening. Significant antimicrobial metabolite producing strains were selected and identified by using biochemical and 16S rDNA level. Minimum inhibitory concentrations of the organic extracts were done by using broth micro dilution method. Results: Among the 210 actinomycetes, 64.3% exhibited activity against Gram positive bacteria, 48.5 % showed activity towards Gram negative bacteria, 38.8% exhibited both Gram positive and negative bacteria and 80.85 % isolates revealed significant antifungal activity. However, five isolates AP-5, AP-18, AP-41 and AP-70 showed significant antimicrobial activity. The analysis of cell wall hydrolysates showed the presence of LL-diaminopimelic acid and glycine in all the isolates. Sequencing analysis indicated that the isolates shared 98.5%-99.8%sequence identity to the 16S rDNA gene sequences of the Streptomyces taxons. The antimicrobial substances were extracted using hexane and ethyl acetate from spent medium in which strains were cultivated at 30℃for five days. The antimicrobial activity was assessed using broth micro dilution technique. Each of the culture extracts from these five strains showed a typical polyene-like property. The lowest minimum inhibitory concentrations of ethyl acetate extracts against Escherichia coli and Curvularia lunata were 67.5 and 125.0 μg/mL, respectively. Conclusions: It can be concluded that hexane and ethyl acetate soluble extracellular products of novel isolates are effective against pathogenic bacteria and fungi.

  5. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments: Bay of Bengal, India.

    Science.gov (United States)

    Valan, Arasu M; Asha, K R T; Duraipandiyan, V; Ignacimuthu, S; Agastian, P

    2012-10-01

    To isolate and indentify the promising antimicrobial metabolite producing Streptomyces strains from marine sediment samples from Andrapradesh coast of India. Antagonistic actinomycetes were isolated by starch casein agar medium and modified nutrient agar medium with 1% glucose used as a base for primary screening. Significant antimicrobial metabolite producing strains were selected and identified by using biochemical and 16S rDNA level. Minimum inhibitory concentrations of the organic extracts were done by using broth micro dilution method. Among the 210 actinomycetes, 64.3% exhibited activity against Gram positive bacteria, 48.5 % showed activity towards Gram negative bacteria, 38.8% exhibited both Gram positive and negative bacteria and 80.85 % isolates revealed significant antifungal activity. However, five isolates AP-5, AP-18, AP-41 and AP-70 showed significant antimicrobial activity. The analysis of cell wall hydrolysates showed the presence of LL-diaminopimelic acid and glycine in all the isolates. Sequencing analysis indicated that the isolates shared 98.5%-99.8% sequence identity to the 16S rDNA gene sequences of the Streptomyces taxons. The antimicrobial substances were extracted using hexane and ethyl acetate from spent medium in which strains were cultivated at 30°Cfor five days. The antimicrobial activity was assessed using broth micro dilution technique. Each of the culture extracts from these five strains showed a typical polyene-like property. The lowest minimum inhibitory concentrations of ethyl acetate extracts against Escherichia coli and Curvularia lunata were 67.5 and 125.0 µg/mL, respectively. It can be concluded that hexane and ethyl acetate soluble extracellular products of novel isolates are effective against pathogenic bacteria and fungi.

  6. Isolation and characteristics analysis of a novel high bacterial cellulose producing strain Gluconacetobacter intermedius CIs26.

    Science.gov (United States)

    Yang, Ying; Jia, Jingjing; Xing, Jianrong; Chen, Jianbing; Lu, Shengmin

    2013-02-15

    A strain producing bacterial cellulose (BC) screened from rotten mandarin fruit was identified as Gluconacetobacter intermedius CIs26 by the examination of general taxonomical characteristics and 16S rDNA sequence analysis. Furthermore, Fourier transform infrared (FT-IR) spectrum showed that pellicle produced by strain CIs26 was composed of glucan, and had the same functional group as a typical BC. X-ray diffractometry (XRD) analysis indicated that the BC was type I in structure with crystallinity index of 75%. BC yields of strain CIs26 in Hestrin-Schramn (HS), citrus waste modified HS (CMHS) and citrus waste solution (CWS) mediums were 2.1 g/L, 5.7 g/L, and 7.2 g/L, respectively. It was shown that citrus waste could stimulate BC production of strain CIs26 efficiently. Based on the ability of utilization of citrus waste, this strain appeared to have potential in BC manufacture on an industrial scale.

  7. Diverse Bacterial PKS Sequences Derived From Okadaic Acid-Producing Dinoflagellates

    Directory of Open Access Journals (Sweden)

    Kathleen S. Rein

    2008-05-01

    Full Text Available Okadaic acid (OA and the related dinophysistoxins are isolated from dinoflagellates of the genus Prorocentrum and Dinophysis. Bacteria of the Roseobacter group have been associated with okadaic acid producing dinoflagellates and have been previously implicated in OA production. Analysis of 16S rRNA libraries reveals that Roseobacter are the most abundant bacteria associated with OA producing dinoflagellates of the genus Prorocentrum and are not found in association with non-toxic dinoflagellates. While some polyketide synthase (PKS genes form a highly supported Prorocentrum clade, most appear to be bacterial, but unrelated to Roseobacter or Alpha-Proteobacterial PKSs or those derived from other Alveolates Karenia brevis or Crytosporidium parvum.

  8. Bacterially produced recombinant influenza vaccines based on virus-like particles.

    Directory of Open Access Journals (Sweden)

    Andrea Jegerlehner

    Full Text Available Although current influenza vaccines are effective in general, there is an urgent need for the development of new technologies to improve vaccine production timelines, capacities and immunogenicity. Herein, we describe the development of an influenza vaccine technology which enables recombinant production of highly efficient influenza vaccines in bacterial expression systems. The globular head domain of influenza hemagglutinin, comprising most of the protein's neutralizing epitopes, was expressed in E. coli and covalently conjugated to bacteriophage-derived virus-like particles produced independently in E.coli. Conjugate influenza vaccines produced this way were used to immunize mice and found to elicit immune sera with high antibody titers specific for the native influenza hemagglutinin protein and high hemagglutination-inhibition titers. Moreover vaccination with these vaccines induced full protection against lethal challenges with homologous and highly drifted influenza strains.

  9. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    Science.gov (United States)

    Janek, Daniela; Zipperer, Alexander; Kulik, Andreas; Krismer, Bernhard; Peschel, Andreas

    2016-08-01

    The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84%) was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.

  10. Visualization of sialic acid produced on bacterial cell surfaces by lectin staining.

    Science.gov (United States)

    Kajiwara, Hitomi; Toda, Munetoyo; Mine, Toshiki; Nakada, Hiroshi; Wariishi, Hiroyuki; Yamamoto, Takeshi

    2010-01-01

    Oligosaccharides containing N-acetylneuraminic acid on the cell surface of some pathogenic bacteria are important for host-microbe interactions. N-acetylneuraminic acid (Neu5Ac) plays a major role in the pathogenicity of bacterial pathogens. For example, cell surface sialyloligosaccharide moieties of the human pathogen Haemophilus influenzae are involved in virulence and adhesion to host cells. In this study, we have established a method of visualizing Neu5Ac linked to a glycoconjugate on the bacterial cell surface based on lectin staining. Photobacterium damselae strain JT0160, known to produce a-2,6-sialyltransferase, was revealed to possess Neu5Ac by HPLC. Using the strain, a strong Sambucus sieboldiana lectin-binding signal was detected. The bacteria producing α-2,6-sialyltransferases could be divided into two groups: those with a lot of α-2,6-linked Neu5Ac on the cell surface and those with a little. In the present study, we developed a useful method for evaluating the relationship between Neu5Ac expression on the cell surface and the degree of virulence of marine bacteria.

  11. High Frequency and Diversity of Antimicrobial Activities Produced by Nasal Staphylococcus Strains against Bacterial Competitors.

    Directory of Open Access Journals (Sweden)

    Daniela Janek

    2016-08-01

    Full Text Available The human nasal microbiota is highly variable and dynamic often enclosing major pathogens such as Staphylococcus aureus. The potential roles of bacteriocins or other mechanisms allowing certain bacterial clones to prevail in this nutrient-poor habitat have hardly been studied. Of 89 nasal Staphylococcus isolates, unexpectedly, the vast majority (84% was found to produce antimicrobial substances in particular under habitat-specific stress conditions, such as iron limitation or exposure to hydrogen peroxide. Activity spectra were generally narrow but highly variable with activities against certain nasal members of the Actinobacteria, Proteobacteria, Firmicutes, or several groups of bacteria. Staphylococcus species and many other Firmicutes were insusceptible to most of the compounds. A representative bacteriocin was identified as a nukacin-related peptide whose inactivation reduced the capacity of the producer Staphylococcus epidermidis IVK45 to limit growth of other nasal bacteria. Of note, the bacteriocin genes were found on mobile genetic elements exhibiting signs of extensive horizontal gene transfer and rearrangements. Thus, continuously evolving bacteriocins appear to govern bacterial competition in the human nose and specific bacteriocins may become important agents for eradication of notorious opportunistic pathogens from human microbiota.

  12. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene

    Science.gov (United States)

    Stallforth, Pierre; Brock, Debra A.; Cantley, Alexandra M.; Tian, Xiangjun; Queller, David C.; Strassmann, Joan E.; Clardy, Jon

    2013-01-01

    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria’s host is a “farmer” clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer’s spore production and depresses a nonfarmer’s spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a “domesticated” food source. PMID:23898207

  13. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene.

    Science.gov (United States)

    Stallforth, Pierre; Brock, Debra A; Cantley, Alexandra M; Tian, Xiangjun; Queller, David C; Strassmann, Joan E; Clardy, Jon

    2013-09-03

    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria's host is a "farmer" clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves as a food source. The other strain produces diffusible small molecules: pyrrolnitrin, a known antifungal agent, and a chromene that potently enhances the farmer's spore production and depresses a nonfarmer's spore production. Genome sequence and phylogenetic analyses identify a derived point mutation in the food strain that generates a premature stop codon in a global activator (gacA), encoding the response regulator of a two-component regulatory system. Generation of a knockout mutant of this regulatory gene in the nonfood bacterial strain altered its secondary metabolite profile to match that of the food strain, and also, independently, converted it into a food source. These results suggest that a single mutation in an inedible ancestral strain that served a protective role converted it to a "domesticated" food source.

  14. Screening of marine bacterial producers of polyunsaturated fatty acids and optimisation of production.

    Science.gov (United States)

    Abd El Razak, Ahmed; Ward, Alan C; Glassey, Jarka

    2014-02-01

    Water samples from three different environments including Mid Atlantic Ridge, Red Sea and Mediterranean Sea were screened in order to isolate new polyunsaturated fatty acids (PUFAs) bacterial producers especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Two hundred and fifty-one isolates were screened for PUFA production and among them the highest number of producers was isolated from the Mid-Atlantic Ridge followed by the Red Sea while no producers were found in the Mediterranean Sea samples. The screening strategy included a simple colourimetric method followed by a confirmation via GC/MS. Among the tested producers, an isolate named 66 was found to be a potentially high PUFA producer producing relatively high levels of EPA in particular. A Plackett-Burman statistical design of experiments was applied to screen a wide number of media components identifying glycerol and whey as components of a production medium. The potential low-cost production medium was optimised by applying a response surface methodology to obtain the highest productivity converting industrial by-products into value-added products. The maximum achieved productivity of EPA was 20 mg/g, 45 mg/l, representing 11% of the total fatty acids, which is approximately five times more than the amount produced prior to optimisation. The production medium composition was 10.79 g/l whey and 6.87 g/l glycerol. To our knowledge, this is the first investigation of potential bacteria PUFA producers from Mediterranean and Red Seas providing an evaluation of a colourimetric screening method as means of rapid screening of a large number of isolates.

  15. Antimutagenicity of coriander (Coriandrum sativum) juice on the mutagenesis produced by plant metabolites of aromatic amines.

    Science.gov (United States)

    Cortés-Eslava, Josefina; Gómez-Arroyo, Sandra; Villalobos-Pietrini, Rafael; Espinosa-Aguirre, Jesús Javier

    2004-11-02

    Aromatic amines are metabolically activated into mutagenic compounds by both animal and plant systems. The 4-nitro-o-phenylenediamine (NOP) is a well-known direct-acting mutagen whose mutagenic potential can be enhanced by plant metabolism; m-phenylenediamine (m-PDA) is converted to mutagenic products detected by the Salmonella typhimurium TA98 strain, and 2-aminofluorene (2-AF) is the plant-activated promutagen most extensively studied. Plant cells activate both 2-AF and m-PDA into potent mutagens producing DNA frameshift mutations. Coriander (Coriandrum sativum) is a common plant included in the Mexican diet, usually consumed uncooked. The antimutagenic activity of coriander juice against the mutagenic activity of 4-nitro-o-phenylenediamine, m-phenylenediamine and 2-aminofluorene was investigated using the Ames reversion mutagenicity assay (his- to his+) with the S. typhimurium TA98 strain as indicator organism. The plant cell/microbe coincubation assay was used as the activating system for aromatic transformation and plant extract interaction. Aqueous crude coriander juice significantly decreased the mutagenicity of metabolized aromatic amines (AA) in the following order: 2-AF (92.43%) > m-PDA (87.14%) > NOP (83.21%). The chlorophyll content in vegetable juice was monitored and its concentration showed a positive correlation with the detected antimutagenic effect. Protein content and peroxidase activity were also determined. The concentration of coriander juice (50-1000 microl/coincubation flask) was neither toxic nor mutagenic. The similar shape of the antimutagenic response curves obtained with coriander juice and chlorophyllin (used as a subrogate molecule of chlorophyll) indicated that comparable mechanisms of mutagenic inhibition could be involved. The negative correlation between chlorophyll content and mutagenic response of the promutagenic and direct-acting used amines allows us to deduce that a chemical interaction takes place between the two molecules

  16. Influence of geosmin-producing Streptomyces on the growth and volatile metabolites of yeasts during chinese liquor fermentation.

    Science.gov (United States)

    Du, Hai; Lu, Hu; Xu, Yan

    2015-01-14

    Diverse Streptomyces species act as geosmin producers in the Chinese liquor-making process, causing an earthy, off-odor containment. Through microbiological and metabolite analyses, this paper investigates the influence of several geosmin-producing Streptomyces on the microbial community of a brewing system. The antifungal activity against functional liquor-brewing microbes was assayed by an agar diffusion method. Several Streptomyces, most notably Streptomyces sampsonii QC-2, inhibited the growth of the brewing functional yeasts and molds in pure culture. In a simulated coculture, Streptomyces spp. reduced the flavor compounds (alcohols and esters) contributed by yeasts. Nine components in Streptomyces sampsonii QC-2 broth were detected by ultraperformance liquid chromatography coupled with photo diode array (UPLC–PDA), with characteristic ultraviolet absorptions at 360, 380, and 400 nm. The main products of Streptomyces sampsonii QC-2 were identified by ultraperformance liquid chromatography–quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF–MS/MS), and confirmed by standard mass spectrometry. The antifungal active components were revealed as a series of heptaene macrolide antibiotics.

  17. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp

    Directory of Open Access Journals (Sweden)

    Soares Márcia M.C.N.

    1999-01-01

    Full Text Available One hundred sixty eight bacterial strains, isolated from soil and samples of vegetable in decomposition, were screened for the use of citrus pectin as the sole carbon source. 102 were positive for pectinase depolymerization in assay plates as evidenced by clear hydrolization halos. Among them, 30% presented considerable pectinolytic activity. The cultivation of these strains by submerged and semi-solid fermentation for polygalacturonase production indicated that five strains of Bacillus sp produced high quantities of the enzyme. The physico-chemical characteristics, such as optimum pH of 6.0 - 7.0, optimum temperatures between 45oC and 55oC, stability at temperatures above 40oC and in neutral and alkaline pH, were determined.

  18. Decreased Bacterial Attachment and Protein Adsorption to Coatings Produced by Low Enegy Plasma Polymerization

    DEFF Research Database (Denmark)

    Andersen, T.E.; Kingshott, Peter; Benter, M.

    with a surface less prone to the adsorption of biological matter. In the current study two different hydrophilic nanoscale coatings were produced by low energy plasma polymerization [3] and investigated· f()rl()w ... pr()tein adsorption and bacterial attachment properties. Methods were setup to enable...... and Methods: Coatings: Plasma polymerized poly(vinyl pyrrolidone) (PP-PVP), poly(2-methoxyethyl methacrylate) (PPPMEA) or an inorganic oxide (10) coating were applied onto medical grade silicon rubber sheets (Silopren LSR 2050, Momentive Performance Materials Inc.). Plasma polymerization chamber......-coated crystals were then treated with one of the plasma polymerized coatings. Adsorption of fibrinogen, human serum albumin or immunoglobulin G was measured using a QCM-D instrument [5] (model E4, Q-Sense AB, Vastra Frolunda, Sweden) using a solution of 50llg/1 protein in PBS buffer. Results and Discussion: Our...

  19. Use of the Soft-agar Overlay Technique to Screen for Bacterially Produced Inhibitory Compounds.

    Science.gov (United States)

    Hockett, Kevin L; Baltrus, David A

    2017-01-14

    The soft-agar overlay technique was originally developed over 70 years ago and has been widely used in several areas of microbiological research, including work with bacteriophages and bacteriocins, proteinaceous antibacterial agents. This approach is relatively inexpensive, with minimal resource requirements. This technique consists of spotting supernatant from a donor strain (potentially harboring a toxic compound(s)) onto a solidified soft agar overlay that is seeded with a bacterial test strain (potentially sensitive to the toxic compound(s)). We utilized this technique to screen a library of Pseudomonas syringae strains for intraspecific killing. By combining this approach with a precipitation step and targeted gene deletions, multiple toxic compounds produced by the same strain can be differentiated. The two antagonistic agents commonly recovered using this technique are bacteriophages and bacteriocins. These two agents can be differentiated using two simple additional tests. Performing a serial dilution on a supernatant containing bacteriophage will result in individual plaques becoming less in number with greater dilution, whereas serial dilution of a supernatant containing bacteriocin will result a clearing zone that becomes uniformly more turbid with greater dilution. Additionally, a bacteriophage will produce a clearing zone when spotted onto a fresh soft agar overlay seeded with the same strain, whereas a bacteriocin will not produce a clearing zone when transferred to a fresh soft agar lawn, owing to the dilution of the bacteriocin.

  20. Characterization of Bacterial Mannanase for Hydrolyzing Palm Kernel Cake to Produce Manno-oligosaccharides Prebiotics

    Directory of Open Access Journals (Sweden)

    W. Utami

    2013-12-01

    Full Text Available Palm kernel cake (PKC is a promising source of prebiotics, since it contains high amount of β-mannan which can be further hydrolyzed to manno-oligasaccharides (MOS, a prebiotic. Therefore, this research was carried out to analyze the capability of a bacterial isolate (A2 isolates previously isolated from soils sample from around IPB campus to hydrolyze PKC. Based on 16S-DNA analysis, isolate A2 was identified as Brevibacillus borstelensis. Mannanase of A2 isolate had an optimum condition at 90 oC and pH 7. Mannanase activity of crude extracts using Locust Bean Gum (LBG and PKC as substrates were 0.37U/mL and 0.032U/mL, respectively. However, the most favorable production of oligosaccharides based on the degree of polymerization was obtained after 72-h of incubation with the ratio of substrate:enzyme, 1.2:1, on 1.5% PKC as substrate. The manno-oligosaccharides prebio-tic obtained was found to interfere the growth of both lactic acid bacteria (Lactobacillus casei and pathogenic microflora (Escherichia coli. E. coli apparently could not use this prebiotic as the carbon sources, in contrast to L. casei. Substitution of carbon source in medium with prebiotics reduced the capability of L. casei to produce organic acids. It is concluded that local A2 isolate (B. borstelensis produces mannanase which can be used to produce prebiotics from PKC.

  1. Magnesium improves hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49

    Institute of Scientific and Technical Information of China (English)

    WANG Xiang-jing; REN Nan-qi; XIANG Wen-sheng

    2005-01-01

    Batch experiments were conducted to investigate the effects of magnesium on glucose metabolism, including growth and hydrogen-producing capacity of fermentative hydrogen-producing bacterial strain B49. These abilities were enhanced with an increase in magnesium concentration. At the end of fermentation from 10 g/L ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.1, and the accumulated hydrogen volume hydrogen volume was increased to 2 360. 5 mL H2/L culture, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was increased to 1.3 and polysaccharide was decreased to 2. 5 mg/L. Moreover, the magnesium solution addition to the medium at different fermentation times affected hydrogen-producing ability. However,the later the addition time was postponed, the less the effect was on hydrogen evolution. Further experiments confirmed the enhancement was dependent on magnesium ions and not on the other inorganic ions such as SO42- or Cl-, which constituted the magnesium salts.

  2. Low diversity bacterial community and the trapping activity of metabolites from cultivable bacteria species in the female reproductive system of the Oriental fruit fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae).

    Science.gov (United States)

    Shi, Zhanghong; Wang, Lili; Zhang, Hongyu

    2012-01-01

    Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel), and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 18 operational taxonomic units (OTUs) were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly.

  3. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae)

    Science.gov (United States)

    Shi, Zhanghong; Wang, Lili; Zhang, Hongyu

    2012-01-01

    Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel), and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), 18 operational taxonomic units (OTUs) were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly. PMID:22754363

  4. Identification of an ISR-related metabolite produced by Pseudomonas chlororaphis O6 against the wildfire pathogen pseudomonas syringae pv.tabaci in tobacco.

    Science.gov (United States)

    Park, Myung Ryeol; Kim, Young Cheol; Park, Ju Yeon; Han, Song Hee; Kim, Kil Yong; Lee, Sun Woo; Kim, In Seon

    2008-10-01

    Pseudomonas chlororaphis O6 exhibits induced systemic resistance (ISR) against P. syringae pv. tabaci in tobacco. To identify one of the ISR metabolites, O6 cultures were extracted with organic solvents, and the organic extracts were subjected to column chromatography followed by spectroscopy analyses. The ISR bioassay-guided fractionation was carried out for isolation of the metabolite. Highresolution mass spectrometric analysis of the metabolite found C(9)H(9)O(3)N with an exact mass of 179.0582. LC/MS analysis in positive mode showed an (M+H)(+) peak at m/zeta 180. Nuclear magnetic resonance ((1)H, (13)C) analyses identified all protons and carbons of the metabolite. Based on the spectroscopy data, the metabolite was identified 4-(aminocarbonyl) phenylacetate (4-ACPA). 4-ACPA applied at 68.0 mM exhibited ISR activity at a level similar 1.0 mM salicylic acid. This is the first report to identify an ISR metabolite produced by P. chlororaphis O6 against the wildfire pathogen P. syringae pv. tabaci in tobacco.

  5. Effects of feeding metabolite combinations produced by Lactobacillus plantarum on growth performance, faecal microbial population, small intestine villus height and faecal volatile fatty acids in broilers.

    Science.gov (United States)

    Thanh, N T; Loh, T C; Foo, H L; Hair-Bejo, M; Azhar, B K

    2009-05-01

    1. Four combinations of metabolites produced from strains of Lactobacillus plantarum were used to study the performance of broiler chickens. 2. A total of 432 male Ross broilers were raised from one-day-old to 42 d of age in deep litter pens (12 birds/pen). These birds were divided into 6 groups and fed on different diets: (i) standard maize-soybean-based diet (negative control); (ii) standard maize-soybean-based diet + Neomycin and Oxytetracycline (positive control); (iii) standard maize-soybean-based diet + 0.3% metabolite combination of Lactobacillus plantarum RS5, RI11, RG14 and RG11 strains (com3456); (iv) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RI11 and RG11 (Com246); (v) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RG14 and RG11 (Com256) and (vi) standard maize-soybean-based diet + 0.3% metabolite combination of L. plantarum TL1, RS5, RG14 and RG11 (Com2356). 3. Higher final body weight, weight gain, average daily gain and lower feed conversion ratio were found in all 4 treated groups. 4. The addition of a metabolite combination supplementation also increased faecal lactic acid bacteria population, small intestine villus height and faecal volatile fatty acids and faecal Enterobacteriaceae population.

  6. Potentially harmful secondary metabolites produced by indoor Chaetomium species on artificially and naturally contaminated building materials

    DEFF Research Database (Denmark)

    Dosen, Ina; Nielsen, Kristian Fog; Clausen, Geo;

    2017-01-01

    The presence of the fungal genus Chaetomium and its secondary metabolites in indoor environments is suspected to have a negative impact on human health and wellbeing. About 200 metabolites have been currently described from Chaetomium spp., but only the bioactive compound group, chaetoglobosins, ...

  7. Discovery of secondary metabolites in an extractive liquid-surface immobilization system and its application to high-throughput interfacial screening of antibiotic-producing fungi.

    Science.gov (United States)

    Oda, Shinobu; Kameda, Arisa; Okanan, Masanori; Sakakibara, Yusuke; Ohashi, Shinichi

    2015-11-01

    An extractive liquid-surface immobilization (Ext-LSI) system, which consists of a hydrophobic organic solvent (an upper phase), a fungal cell-ballooned microsphere layer (a middle phase) and a liquid medium (a lower phase), is a unique interfacial cultivation system for fungi. The fungal cells growing at the interface between the organic and aqueous phases efficiently produce hydrophobic metabolites, which are continuously extracted into the organic phase, and/or hydrophilic metabolites that migrate into the aqueous phase without carbon catabolite repression and product and/or feed-back inhibitions. Application of the system to fermentation of Penicillium multicolor IAM 7153 and Trichoderma atroviride AG2755-5NM398 afforded remarkably different profiles of secondary metabolites in the organic phase compared with those in an aqueous phase in traditional submerged cultivation (SmC). Various hydrophobic metabolites exhibiting unique UV-visible spectra were accumulated into the organic phase. The system was applied to a novel interfacial screening system of antibiotic-producing fungi. Compared with the SmC, the interfacial cultivation system exhibited some interesting and important advantages, such as the higher accumulation of hydrophobic secondary metabolites, the lack of requirement for shaking and troublesome solvent extraction, and the small scale of the vessels (medium, 5 ml; dimethylsilicone oil, 1 ml), as well as the significantly different metabolite profiles. The interfacial screening system yielded a high incidence of antimicrobial activity, with 21.9% of the fungi tested exhibiting antifungal activity against Pichia anomala NBRC 10213. This novel interfacial high-throughput screening approach has the potential to discover new biologically active secondary metabolites even from strains previously found to be unproductive.

  8. Diversity and abundance of the bacterial community of the red Macroalga Porphyra umbilicalis: did bacterial farmers produce macroalgae?

    Directory of Open Access Journals (Sweden)

    Lilibeth N Miranda

    Full Text Available Macroalgae harbor microbial communities whose bacterial biodiversity remains largely uncharacterized. The goals of this study were 1 to examine the composition of the bacterial community associated with Porphyra umbilicalis Kützing from Schoodic Point, ME, 2 determine whether there are seasonal trends in species diversity but a core group of bacteria that are always present, and 3 to determine how the microbial community associated with a laboratory strain (P.um.1 established in the presence of antibiotics has changed. P. umbilicalis blades (n = 5, fall 2010; n = 5, winter 2011; n = 2, clonal P.um.1 were analyzed by pyrosequencing over two variable regions of the 16 S rDNA (V5-V6 and V8; 147,880 total reads. The bacterial taxa present were classified at an 80% confidence threshold into eight phyla (Bacteroidetes, Proteobacteria, Planctomycetes, Chloroflexi, Actinobacteria, Deinococcus-Thermus, Firmicutes, and the candidate division TM7. The Bacteroidetes comprised the majority of bacterial sequences on both field and lab blades, but the Proteobacteria (Alphaproteobacteria, Gammaproteobacteria were also abundant. Sphingobacteria (Bacteroidetes and Flavobacteria (Bacteroidetes had inverse abundances on natural versus P.um.1 blades. Bacterial communities were richer and more diverse on blades sampled in fall compared to winter. Significant differences were observed between microbial communities among all three groups of blades examined. Only two OTUs were found on all 12 blades, and only one of these, belonging to the Saprospiraceae (Bacteroidetes, was abundant. Lewinella (as 66 OTUs was found on all field blades and was the most abundant genus. Bacteria from the Bacteroidetes, Proteobacteria and Planctomycetes that are known to digest the galactan sulfates of red algal cell walls were well-represented. Some of these taxa likely provide essential morphogenetic and beneficial nutritive factors to P. umbilicalis and may have had

  9. Antithrombotic and antiallergic activities of daidzein, a metabolite of puerarin and daidzin produced by human intestinal microflora.

    Science.gov (United States)

    Choo, Min-Kyung; Park, Eun-Kyung; Yoon, Hae-Kyung; Kim, Dong-Hyun

    2002-10-01

    To evaluate the antithrombotic activities of puerarin and daidzin from the rhizome of Pueraria lobata, in vitro and ex vivo inhibitory activities of these compounds and their metabolite, daidzein, were measured. These compounds inhibited ADP- and collagen-induced platelet aggregation. Daidzein was the most potent. However, when puerarin and daidzin were intraperitoneally administered, their antiaggregation activities were weaker than when these compounds were administered orally. When in vivo antithrombotic activities of these compounds against collagen and epinephrine were measured, these compounds showed significant protection from death due to pulmonary thrombosis in mice. To evaluate the antiallergic activity of puerarin, daidzin, and daidzein, their inhibitory effects on the release of beta-hexosaminidase from RBL 2H3 cells and on the passive cutaneous anaphylaxis (PCA) reaction in mice were examined. Daidzein exhibited potent inhibitory activity on the beta-hexosaminidase release induced by DNP-BSA and potently inhibited the PCA reaction in rats. Daidzein administered intraperitoneally showed the strongest inhibitory activity and significantly inhibited the PCA reaction at doses of 25 and 50mg/kg with inhibitory activity of 37 and 73%, respectively. The inhibitory activity of intraperitoneally administered daidzein was stronger than those of intraperitoneally and orally administered puerarin and daidzin. Therefore we believe that puerarin and daidzin in the rhizome of Pueraria lobata are prodrugs, which have antiallergic and antithrombotic activities, produced by intestinal microflora.

  10. Mycotoxins and Other Secondary Metabolites Produced in vitro by Penicillium paneum Frisvad and Penicillium roqueforti Thom Isolated from Baled Grass Silage in Ireland

    DEFF Research Database (Denmark)

    O'Brien, Martin; Nielsen, Kristian Fog; O'Kiely, Padraig

    2006-01-01

    Secondary metabolites produced by Penicillium paneum and Penicillium roqueforti from baled grass silage were analyzed. A total of 157 isolates were investigated, comprising 78 P. paneum and 79 P. roqueforti isolates randomly selected from more than 900 colonies cultured from bales. The findings m...

  11. Textile Dye Removal from Wastewater Effluents Using Bioflocculants Produced by Indigenous Bacterial Isolates

    Directory of Open Access Journals (Sweden)

    Balakrishna Pillay

    2012-11-01

    Full Text Available Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.

  12. Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth.

    Science.gov (United States)

    Khan, Abdul Latif; Waqas, Muhammad; Kang, Sang-Mo; Al-Harrasi, Ahmed; Hussain, Javid; Al-Rawahi, Ahmed; Al-Khiziri, Salima; Ullah, Ihsan; Ali, Liaqat; Jung, Hee-Young; Lee, In-Jung

    2014-08-01

    Plant growth promoting endophytic bacteria have been identified as potential growth regulators of crops. Endophytic bacterium, Sphingomonas sp. LK11, was isolated from the leaves of Tephrosia apollinea. The pure culture of Sphingomonas sp. LK11 was subjected to advance chromatographic and spectroscopic techniques to extract and isolate gibberellins (GAs). Deuterated standards of [17, 17-(2)H2]-GA4, [17, 17-(2)H2]-GA9 and [17, 17-(2)H2]-GA20 were used to quantify the bacterial GAs. The analysis of the culture broth of Sphingomonas sp. LK11 revealed the existence of physiologically active gibberellins (GA4: 2.97 ± 0.11 ng/ml) and inactive GA9 (0.98 ± 0.15 ng/ml) and GA20 (2.41 ± 0.23). The endophyte also produced indole acetic acid (11.23 ± 0.93 μM/ml). Tomato plants inoculated with endophytic Sphingomonas sp. LK11 showed significantly increased growth attributes (shoot length, chlorophyll contents, shoot, and root dry weights) compared to the control. This indicated that such phyto-hormones-producing strains could help in increasing crop growth.

  13. Textile dye removal from wastewater effluents using bioflocculants produced by indigenous bacterial isolates.

    Science.gov (United States)

    Buthelezi, Simphiwe P; Olaniran, Ademola O; Pillay, Balakrishna

    2012-11-30

    Bioflocculant-producing bacteria were isolated from activated sludge of a wastewater treatment plant located in Durban, South Africa, and identified using standard biochemical tests as well as the analysis of their 16S rRNA gene sequences. The bioflocculants produced by these organisms were ethanol precipitated, purified using 2% (w/v) cetylpyridinium chloride solution and evaluated for removal of wastewater dyes under different pH, temperature and nutritional conditions. Bioflocculants from these indigenous bacteria were very effective for decolourizing the different dyes tested in this study, with a removal rate of up to 97.04%. The decolourization efficiency was largely influenced by the type of dye, pH, temperature, and flocculant concentration. A pH of 7 was found to be optimum for the removal of both whale and mediblue dyes, while the optimum pH for fawn and mixed dye removal was found to be between 9 and 10. Optimum temperature for whale and mediblue dye removal was 35 °C, and that for fawn and mixed dye varied between 40–45 °C and 35–40 °C, respectively. These bacterial bioflocculants may provide an economical and cleaner alternative to replace or supplement present treatment processes for the removal of dyes from wastewater effluents, since they are biodegradable and easily sustainable.

  14. Screening of bacterial strains producing maltotetraose-forming amylase and the conditions for enzyme production.

    Science.gov (United States)

    Yan, Z; She, X; Li, M; Zhang, S

    1992-01-01

    The authors isolated 1380 bacterial strains from 290 soil samples collected in China and 490 strains were received from other research teams in this institute. By screening 707 strains showed starch-hydrolyzing activity. By further screening and paper chromatographic test, three strains with maltotetraose as the major product were obtained. The maltotetraose was further confirmed by treatment with beta-amylase splitting to maltose and with glucoamylase to glucose. The most promising strain was 537.1, which produced maltotetraose about 90% (w/w) in the starch hydrolysate. While the other two strains produced maltose and maltotriose besides maltotetraose. Strain 537.1 was tentatively identified as Alcaligenes sp. The optimum conditions for enzyme production were as follows: medium composition: 1.5% maltose; 0.5% peptone with initial pH of 7.0-7.5; cultured at 27-28 degrees C for 48 hours on rotary shaker. The culture supernatant of the strain 537.1 can hydrolyze starch and different kinds of cereal flour with a high yield of maltotetraose in the hydrolysate.

  15. [Effect of bacterial endotoxin on migration of gonadotropin-releasing, hormone producing neurons in rat embryogenesis].

    Science.gov (United States)

    Sharova, V S; Izvol'skaia, M S; Voronova, S N; Zakharova, L A

    2011-01-01

    The effect of bacterial lipopolysaccharide endotoxin (LPS), immune system activator, on differentiation and migration of gonadotropin-releasing, hormone producing neurons in rat embryogenesis has been studied. Intraperitoneal introduction of LPS (18 jg/kg) to pregnant rats on the 12th day of pregnancy led to 50% decrease in total number of GRH-neurons in the forebrain of 17-day-old embryos and 17% decrease in 19-day-old embryos. At the same time, the number of GRH-neurons in the nasal area of the head of 17- and 19-day-old embryos increased by 40 and 50%, respectively, whereas it increased by 20% in olfactory bulbs of 17-day-old embryos and did not changed in olfactory bulbs of 19-day-old embryos. Neither the total number of neurons nor their distribution patterns were affected by the introduction of LPS into pregnant rats on the 15th day of pregnancy. Singular localization of GRH-neurons in embryo forebrain was observed after LPS administration, whereas the neurons were located by groups of 3-4 cells in rostral areas. Therefore, at the early stages of pregnancy, LPS was shown to suppress initial stages of differentiation and migration of GRH producing neurons. The effects observed in our study may be mediated by LPS-induced, proinflammatory cytokines.

  16. Electricity producing property and bacterial community structure in microbial fuel cell equipped with membrane electrode assembly.

    Science.gov (United States)

    Rubaba, Owen; Araki, Yoko; Yamamoto, Shuji; Suzuki, Kei; Sakamoto, Hisatoshi; Matsuda, Atsunori; Futamata, Hiroyuki

    2013-07-01

    It is important for practical use of microbial fuel cells (MFCs) to not only develop electrodes and proton exchange membranes but also to understand the bacterial community structure related to electricity generation. Four lactate fed MFCs equipped with different membrane electrode assemblies (MEAs) were constructed with paddy field soil as inoculum. The MEAs significantly affected the electricity-generating properties of the MFCs. MEA-I was made with Nafion 117 solution and the other MEAs were made with different configurations of three kinds of polymers. MFC-I equipped with MEA-I exhibited the highest performance with a stable current density of 55 ± 3 mA m⁻². MFC-III equipped with MEA-III with the highest platinum concentration, exhibited the lowest performance with a stable current density of 1.7 ± 0.1 mA m⁻². SEM observation revealed that there were cracks on MEA-III. These results demonstrated that it is significantly important to prevent oxygen-intrusion for improved MFC performance. By comparing the data of DGGE and phylogenetic analyzes, it was suggested that the dominant bacterial communities of MFC-I were constructed with lactate-fermenters and Fe(III)-reducers, which consisted of bacteria affiliated with the genera of Enterobacter, Dechlorosoma, Pelobacter, Desulfovibrio, Propioniferax, Pelosinus, and Firmicutes. A bacterium sharing 100% similarity to one of the DGGE bands was isolated from MFC-I. The 16S rRNA gene sequence of the isolate shared 98% similarity to gram-positive Propioniferax sp. P7 and it was confirmed that the isolate produced electricity in an MFC. These results suggested that these bacteria are valuable for constructing the electron transfer network in MFC. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios.

    Science.gov (United States)

    Gromek, Samantha M; Suria, Andrea M; Fullmer, Matthew S; Garcia, Jillian L; Gogarten, Johann Peter; Nyholm, Spencer V; Balunas, Marcy J

    2016-01-01

    Female members of many cephalopod species house a bacterial consortium in the accessory nidamental gland (ANG), part of the reproductive system. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens, and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae) of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium.

  18. Liver dendritic cells present bacterial antigens and produce cytokines upon Salmonella encounter.

    Science.gov (United States)

    Johansson, Cecilia; Wick, Mary Jo

    2004-02-15

    The capacity of murine liver dendritic cells (DC) to present bacterial Ags and produce cytokines after encounter with Salmonella was studied. Freshly isolated, nonparenchymal liver CD11c(+) cells had heterogeneous expression of MHC class II and CD11b and a low level of CD40 and CD86 expression. Characterization of liver DC subsets revealed that CD8alpha(-)CD4(-) double negative cells constituted the majority of liver CD11c(+) ( approximately 85%) with few cells expressing CD8alpha or CD4. Flow cytometry analysis of freshly isolated CD11c(+) cells enriched from the liver and cocultured with Salmonella expressing green fluorescent protein (GFP) showed that CD11c(+) MHC class II(high) cells had a greater capacity to internalize Salmonella relative to CD11c(+) MHC class II(low) cells. Moreover, both CD8alpha(-) and CD8alpha(+) liver DC internalized bacteria with similar efficiency after both in vitro and in vivo infection. CD11c(+) cells enriched from the liver could also process Salmonella for peptide presentation on MHC class I and class II to primary, Ag-specific T cells after internalization requiring actin cytoskeletal rearrangements. Flow cytometry analysis of liver CD11c(+) cells infected with Salmonella expressing GFP showed that both CD8alpha(-) and CD8alpha(+) DC produced IL-12p40 and TNF-alpha. The majority of cytokine-positive cells did not contain bacteria (GFP(-)) whereas only a minor fraction of cytokine-positive cells were GFP(+). Furthermore, only approximately 30-50% of liver DC containing bacteria (GFP(+)) produced cytokines. Thus, liver DC can internalize and process Salmonella for peptide presentation to CD4(+) and CD8(+) T cells and elicit proinflammatory cytokine production upon Salmonella encounter, suggesting that DC in the liver may contribute to immunity against hepatotropic bacteria.

  19. Identification of metabolites of fosinopril produced by human and rat liver microsomes with liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Uutela, Päivi; Monto, Matti; Iso-Mustajärvi, Ilona; Madetoja, Mari; Yliperttula, Marjo; Ketola, Raimo A

    2014-03-12

    Metabolic profiles of prodrug fosinopril and pharmacologically active metabolite fosinoprilat were studied using human or rat liver microsomes and S9 fractions. Metabolites were identified by ultra high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) using electrospray ionization in the positive and negative ion mode. They were characterized by accurate MS and MS/MS spectra and based on their different fragmentation pathways. With human liver microsomes fosinopril was metabolized via hydroxylation, glucuronidation, and hydrolysis to fosinoprilat. As expected the main metabolite was fosinoprilat and it was further hydroxylated and glucuronidated. However, these metabolites were not detected after incubation of fosinoprilat with human liver microsomes, indicating that metabolic reactions occur in sequence and fosinopril is hydrolyzed after glucuronidation or hydroxylation. With the developed UHPLC/Q-TOF-MS method once or twice hydroxylated fosinopril metabolites were detected for the first time and different regioisomers were separated. It was observed that the hydrolysis of fosinopril to fosinoprilat was more efficient with rat than with human liver microsomes, and therefore more hydroxylated fosinoprilat metabolites were detected when rat liver microsomes were used. Glucuronidation of fosinopril was not observed with rat liver microsomes.

  20. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil.

    Science.gov (United States)

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-12-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.

  1. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    Institute of Scientific and Technical Information of China (English)

    Robinson David Jebakumar SOLOMON; Amit KUMAR; Velayudhan SATHEEJA SANTHI

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microor-ganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster me-tabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process.

  2. Atrazine biodegradation efficiency, metabolite detection, and trzD gene expression by enrichment bacterial cultures from agricultural soil

    Science.gov (United States)

    Solomon, Robinson David Jebakumar; Kumar, Amit; Satheeja Santhi, Velayudhan

    2013-01-01

    Atrazine is a selective herbicide used in agricultural fields to control the emergence of broadleaf and grassy weeds. The persistence of this herbicide is influenced by the metabolic action of habituated native microorganisms. This study provides information on the occurrence of atrazine mineralizing bacterial strains with faster metabolizing ability. The enrichment cultures were tested for the biodegradation of atrazine by high-performance liquid chromatography (HPLC) and mass spectrometry. Nine cultures JS01.Deg01 to JS09.Deg01 were identified as the degrader of atrazine in the enrichment culture. The three isolates JS04.Deg01, JS07.Deg01, and JS08.Deg01 were identified as efficient atrazine metabolizers. Isolates JS04.Deg01 and JS07.Deg01 produced hydroxyatrazine (HA) N-isopropylammelide and cyanuric acid by dealkylation reaction. The isolate JS08.Deg01 generated deethylatrazine (DEA), deisopropylatrazine (DIA), and cyanuric acid by N-dealkylation in the upper degradation pathway and later it incorporated cyanuric acid in their biomass by the lower degradation pathway. The optimum pH for degrading atrazine by JS08.Deg01 was 7.0 and 16S rDNA phylogenetic typing identified it as Enterobacter cloacae strain JS08.Deg01. The highest atrazine mineralization was observed in case of isolate JS08.Deg01, where an ample amount of trzD mRNA was quantified at 72 h of incubation with atrazine. Atrazine bioremediating isolate E. cloacae strain JS08.Deg01 could be the better environmental remediator of agricultural soils and the crop fields contaminated with atrazine could be the source of the efficient biodegrading microbial strains for the environmental cleanup process. PMID:24302716

  3. Biological effects of paenilamicin, a secondary metabolite antibiotic produced by the honey bee pathogenic bacterium Paenibacillus larvae.

    Science.gov (United States)

    Garcia-Gonzalez, Eva; Müller, Sebastian; Hertlein, Gillian; Heid, Nina; Süssmuth, Roderich D; Genersch, Elke

    2014-10-01

    Paenibacillus larvae is the etiological agent of American Foulbrood (AFB) a world-wide distributed devastating disease of the honey bee brood. Previous comparative genome analysis and more recently, the elucidation of the bacterial genome, provided evidence that this bacterium harbors putative functional nonribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs) and therefore, might produce nonribosomal peptides (NRPs) and polyketides (PKs). Such biosynthesis products have been shown to display a wide-range of biological activities such as antibacterial, antifungal or cytotoxic activity. Herein we present an in silico analysis of the first NRPS/PKS hybrid of P. larvae and we show the involvement of this cluster in the production of a compound named paenilamicin (Pam). For the characterization of its in vitro and in vivo bioactivity, a knock-out mutant strain lacking the production of Pam was constructed and subsequently compared to wild-type species. This led to the identification of Pam by mass spectrometry. Purified Pam-fractions showed not only antibacterial but also antifungal and cytotoxic activities. The latter suggested a direct effect of Pam on honey bee larval death which could, however, not be corroborated in laboratory infection assays. Bee larvae infected with the non-producing Pam strain showed no decrease in larval mortality, but a delay in the onset of larval death. We propose that Pam, although not essential for larval mortality, is a virulence factor of P. larvae influencing the time course of disease. These findings are not only of significance in elucidating and understanding host-pathogen interactions but also within the context of the quest for new compounds with antibiotic activity for drug development.

  4. Complete Genome Sequence of Gluconacetobacter hansenii Strain NQ5 (ATCC 53582), an Efficient Producer of Bacterial Cellulose.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    This study reports the release of the complete nucleotide sequence of Gluconacetobacter hansenii strain NQ5 (ATCC 53582). This strain was isolated by R. Malcolm Brown, Jr. in a sugar mill in North Queensland, Australia, and is an efficient producer of bacterial cellulose. The elucidation of the genome will contribute to the study of the molecular mechanisms necessary for cellulose biosynthesis.

  5. Genomics-guided discovery of secondary metabolites and their regulation in Pseudomonas protegens Pf-5

    Science.gov (United States)

    Pseudomonas protegens strain Pf-5 is a well-characterized rhizosphere bacterium known for its production of a diverse spectrum of secondary metabolites and its capacity to suppress plant diseases caused by soilborne fungal, bacterial and oomycete pathogens. Metabolites produced by Pf-5 include 2,4-...

  6. Electrically conductive bacterial cellulose composite membranes produced by the incorporation of graphite nanoplatelets in pristine bacterial cellulose membranes

    Directory of Open Access Journals (Sweden)

    T. Zhou

    2013-09-01

    Full Text Available Graphite nanoplatelets (GNPs were utilized to improve the electrical conductivity of pristine bacterial cellulose (BC membranes. By physical and chemical methods, flake-shaped GNPs, weaving through the surface layer of web-like cellulose nanofibrils, were indeed fixed or trapped by the adjacent nanofibrils in the BC surface network, for comparison, rod-shaped multi-walled carbon nanotubes (MWCNTs were homogeneously inserted into BC membrane through the pore structures and tunnels within the BC membrane. Strong physical and chemical interaction exists between the BC nanofibrils and the particles of GNP or MWCNT even after 15 h sonication. BC membrane with 8.7 wt% incorporated GNPs reached the maximum electrical conductivity of 4.5 S/cm, while 13.9 wt% MWCNT/BC composite membrane achieved the maximum electrical conductivity of 1.2 S/cm. Compared with one dimensional (1-D MWCNTs, as long as GNPs inserted into BC membranes, the 2-D reinforcement of GNPs was proven to be more effective in improving the electrical conductivity of BC membranes thus not only break the bottleneck of further improvement of the electrical conductivity of BC-based composite membranes but also broaden the applications of BC and GNPs.

  7. Single oral doses of (±) 3,4-methylenedioxymethamphetamine ('Ecstasy') produce lasting serotonergic deficits in non-human primates: relationship to plasma drug and metabolite concentrations.

    Science.gov (United States)

    Mueller, Melanie; Yuan, Jie; McCann, Una D; Hatzidimitriou, George; Ricaurte, George A

    2013-05-01

    Repeated doses of the popular recreational drug methylenedioxymethamphetamine (MDMA, 'Ecstasy') are known to produce neurotoxic effects on brain serotonin (5-HT) neurons but it is widely believed that typical single oral doses of MDMA are free of neurotoxic risk. Experimental and therapeutic trials with MDMA in humans are underway. The mechanisms by which MDMA produces neurotoxic effects are not understood but drug metabolites have been implicated. The aim of the present study was to assess the neurotoxic potential of a range of clinically relevant single oral doses of MDMA in a non-human primate species that metabolizes MDMA in a manner similar to humans, the squirrel monkey. A secondary objective was to explore the relationship between plasma MDMA and metabolite concentrations and lasting serotonergic deficits. Single oral doses of MDMA produced lasting dose-related serotonergic neurochemical deficits in the brains of squirrel monkeys. Notably, even the lowest dose of MDMA tested (5.7 mg/kg, estimated to be equivalent to 1.6 mg/kg in humans) produced significant effects in some brain regions. Plasma levels of MDMA engendered by neurotoxic doses of MDMA were on the order of those found in humans. Serotonergic neurochemical markers were inversely correlated with plasma concentrations of MDMA, but not with those of its major metabolites, 3,4-dihydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine. These results suggest that single oral doses of MDMA in the range of those used by humans pose a neurotoxic risk and implicate the parent compound (MDMA), rather than one of its metabolites, in MDMA-induced 5-HT neural injury.

  8. Vitamin D3 metabolite calcidiol primes human dendritic cells to promote the development of immunomodulatory IL-10-producing T cells

    NARCIS (Netherlands)

    Bakdash, G.; Capel, T.M. van; Mason, L.M.; Kapsenberg, M.L.; Jong, E.C. de

    2014-01-01

    Vitamin D is recognized as a potent immunosuppressive drug. The suppressive effects of vitamin D are attributed to its physiologically active metabolite 1,25 dihydroxy vitamin D3 (calcitriol), which was shown, to prime dendritic cells (DCs) to promote the development of regulatory T (Treg) cells. De

  9. Leisingera sp. JC1, a Bacterial Isolate from Hawaiian Bobtail Squid Eggs, Produces Indigoidine and Differentially Inhibits Vibrios

    Directory of Open Access Journals (Sweden)

    Samantha M. Gromek

    2016-09-01

    Full Text Available Female members of many cephalopod species house a bacterial consortium that is part of their reproductive system, the accessory nidamental gland (ANG. These bacteria are deposited into eggs that are then laid in the environment where they must develop unprotected from predation, pathogens and fouling. In this study, we characterized the genome and secondary metabolite production of Leisingera sp. JC1, a member of the roseobacter clade (Rhodobacteraceae of Alphaproteobacteria isolated from the jelly coat of eggs from the Hawaiian bobtail squid, Euprymna scolopes. Whole genome sequencing and MLSA analysis revealed that Leisingera sp. JC1 falls within a group of roseobacters associated with squid ANGs. Genome and biochemical analyses revealed the potential for and production of a number of secondary metabolites, including siderophores and acyl-homoserine lactones involved with quorum sensing. The complete biosynthetic gene cluster for the pigment indigoidine was detected in the genome and mass spectrometry confirmed the production of this compound. Furthermore, we investigated the production of indigoidine under co-culture conditions with Vibrio fischeri, the light organ symbiont of E. scolopes, and with other vibrios. Finally, both Leisingera sp. JC1 and secondary metabolite extracts of this strain had differential antimicrobial activity against a number of marine vibrios, suggesting that Leisingera sp. JC1 may play a role in host defense against other marine bacteria either in the eggs and/or ANG. These data also suggest that indigoidine may be partially, but not wholly, responsible for the antimicrobial activity of this squid-associated bacterium. □

  10. antiSMASH : rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences

    NARCIS (Netherlands)

    Medema, Marnix H.; Blin, Kai; Cimermancic, Peter; de Jager, Victor; Zakrzewski, Piotr; Fischbach, Michael A.; Weber, Tilmann; Takano, Eriko; Breitling, Rainer

    2011-01-01

    Bacterial and fungal secondary metabolism is a rich source of novel bioactive compounds with potential pharmaceutical applications as antibiotics, anti-tumor drugs or cholesterol-lowering drugs. To find new drug candidates, microbiologists are increasingly relying on sequencing genomes of a wide var

  11. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain.

    Science.gov (United States)

    Florea, Michael; Hagemann, Henrik; Santosa, Gabriella; Abbott, James; Micklem, Chris N; Spencer-Milnes, Xenia; de Arroyo Garcia, Laura; Paschou, Despoina; Lazenbatt, Christopher; Kong, Deze; Chughtai, Haroon; Jensen, Kirsten; Freemont, Paul S; Kitney, Richard; Reeve, Benjamin; Ellis, Tom

    2016-06-14

    Bacterial cellulose is a strong and ultrapure form of cellulose produced naturally by several species of the Acetobacteraceae Its high strength, purity, and biocompatibility make it of great interest to materials science; however, precise control of its biosynthesis has remained a challenge for biotechnology. Here we isolate a strain of Komagataeibacter rhaeticus (K. rhaeticus iGEM) that can produce cellulose at high yields, grow in low-nitrogen conditions, and is highly resistant to toxic chemicals. We achieved external control over its bacterial cellulose production through development of a modular genetic toolkit that enables rational reprogramming of the cell. To further its use as an organism for biotechnology, we sequenced its genome and demonstrate genetic circuits that enable functionalization and patterning of heterologous gene expression within the cellulose matrix. This work lays the foundations for using genetic engineering to produce cellulose-based materials, with numerous applications in basic science, materials engineering, and biotechnology.

  12. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    Science.gov (United States)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2015-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  13. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582

    Science.gov (United States)

    Florea, Michael; Reeve, Benjamin; Abbott, James; Freemont, Paul S.; Ellis, Tom

    2016-03-01

    Bacterial cellulose is a strong, highly pure form of cellulose that is used in a range of applications in industry, consumer goods and medicine. Gluconacetobacter hansenii ATCC 53582 is one of the highest reported bacterial cellulose producing strains and has been used as a model organism in numerous studies of bacterial cellulose production and studies aiming to increased cellulose productivity. Here we present a high-quality draft genome sequence for G. hansenii ATCC 53582 and find that in addition to the previously described cellulose synthase operon, ATCC 53582 contains two additional cellulose synthase operons and several previously undescribed genes associated with cellulose production. In parallel, we also develop optimized protocols and identify plasmid backbones suitable for transformation of ATCC 53582, albeit with low efficiencies. Together, these results provide important information for further studies into cellulose synthesis and for future studies aiming to genetically engineer G. hansenii ATCC 53582 for increased cellulose productivity.

  14. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation.

    Science.gov (United States)

    Twomey, Kate B; Alston, Mark; An, Shi-Qi; O'Connell, Oisin J; McCarthy, Yvonne; Swarbreck, David; Febrer, Melanie; Dow, J Maxwell; Plant, Barry J; Ryan, Robert P

    2013-01-01

    Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.

  15. Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation.

    Directory of Open Access Journals (Sweden)

    Kate B Twomey

    Full Text Available Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.

  16. Low Diversity Bacterial Community and the Trapping Activity of Metabolites from Cultivable Bacteria Species in the Female Reproductive System of the Oriental Fruit Fly, Bactrocera dorsalis Hendel (Diptera: Tephritidae

    Directory of Open Access Journals (Sweden)

    Hongyu Zhang

    2012-05-01

    Full Text Available Our goal was to identify the bacteria inhabiting the reproductive system of the female oriental fruit fly, Bactrocera dorsalis (Hendel, and evaluate the chemotaxis of B. dorsalis to the metabolites produced by the bacteria. Based on 16S rRNA-based polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE, 18 operational taxonomic units (OTUs were assigned to the five bacterial classes Betaproteobacteria, Alphaproteobacteria, Gammaproteobacteria, Bacilli and Actinobacteria. Nine OTUs were assigned to Gammaproteobacteria, which was the most highly represented class. Enterobacteriaceae constituted the dominant family, and within this family, three genera and five species were identified, including Enterobacter sakazakii, Klebsiella oxytoca, Klebsiella pneumoniae, Raoultella terrigena and Enterobacter amnigenus. In this set, the first two species were the dominant components, and the latter three species were the minor ones. Finally, we found that the metabolites produced by R. terrigena, K. oxytoca and K. pneumoniae were attractive to the B. dorsalis adults, and in field studies, B. dorsalis adults were most attracted to K. oxytoca. Collectively, our results suggest that the female reproductive system plays an important role in the transfer of enterobacteria from the gut to fruit. Our data may prompt the development of a female-targeted population control strategy for this fly.

  17. Bacterial diversity and composition in major fresh produce growing soils affected by physiochemical properties and geographic locations

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Jincai [Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021 (China); USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507 (United States); Ibekwe, A. Mark, E-mail: Mark.Ibekwe@ars.usda.gov [USDA-ARS U. S. Salinity Laboratory, Riverside, CA 92507 (United States); Yang, Ching-Hong [Department of Biological Sciences, University of Wisconsin, Milwaukee, WI 53211 (United States); Crowley, David E. [Department of Environmental Sciences, University of California, Riverside, CA 92521 (United States)

    2016-09-01

    Microbial diversity of agricultural soils has been well documented, but information on leafy green producing soils is limited. In this study, we investigated microbial diversity and community structures in 32 (16 organic, 16 conventionally managed soils) from California (CA) and Arizona (AZ) using pyrosequencing, and identified factors affecting bacterial composition. Results of detrended correspondence analysis (DCA) and dissimilarity analysis showed that bacterial community structures of conventionally managed soils were similar to that of organically managed soils; while the bacterial community structures in soils from Salinas, California were different (P < 0.05) from those in soils from Yuma, Arizona and Imperial Valley, California. Canonical correspondence analysis (CCA) and artificial neural network (ANN) analysis of bacterial community structures and soil variables showed that electrical conductivity (EC), clay content, water-holding capacity (WHC), pH, total nitrogen (TN), and organic carbon (OC) significantly (P < 0.05) correlated with microbial communities. CCA based variation partitioning analysis (VPA) showed that soil physical properties (clay, EC, and WHC), soil chemical variables (pH, TN, and OC) and sampling location explained 16.3%, 12.5%, and 50.9%, respectively, of total variations in bacterial community structure, leaving 13% of the total variation unexplained. Our current study showed that bacterial community composition and diversity in major fresh produce growing soils from California and Arizona is a function of soil physiochemical characteristics and geographic distances of sampling sites. - Highlights: • Geographic distance was the most significant factor affecting microbial composition. • Physical and chemical properties significantly impacted microbial communities. • Higher numbers of OTUs were observed in organic soils than in convention soils.

  18. Functional characterization of IgA-targeted bacterial taxa from malnourished Malawian children that produce diet-dependent enteropathy

    Science.gov (United States)

    Kau, Andrew L.; Planer, Joseph D.; Liu, Jie; Rao, Sindhuja; Yatsunenko, Tanya; Trehan, Indi; Manary, Mark J.; Liu, Ta-Chiang; Stappenbeck, Thaddeus S.; Maleta, Kenneth M.; Ashorn, Per; Dewey, Kathryn G.; Houpt, Eric R.; Hsieh, Chyi-Song; Gordon, Jeffrey I.

    2015-01-01

    To gain insights into the interrelationships among childhood undernutrition, the gut microbiota, and gut mucosal immune/barrier function, we purified bacterial strains targeted by IgA from the fecal microbiota of two cohorts of Malawian infants and children. IgA responses to several bacterial taxa, including Enterobacteriaceae, correlated with anthropometric measurements of nutritional status in longitudinal studies. The relationship between IgA responses and growth was further explained by enteropathogen burden. Gnotobiotic mouse recipients of an IgA+-bacterial consortium purified from the gut microbiota of undernourished children exhibited a diet-dependent enteropathy characterized by rapid disruption of the small intestinal and colonic epithelial barrier, weight loss and sepsis that could be prevented by administering two IgA-targeted bacterial species from a healthy microbiota. Dissection of a culture collection of 11 IgA-targeted strains from an undernourished donor, sufficient to transmit these phenotypes, disclosed that Enterobacteriaceae interacted with other consortium members to produce enteropathy. These findings indicate that bacterial targets of IgA responses have etiologic, diagnostic, and therapeutic implications for childhood undernutrition. PMID:25717097

  19. Novel bacterial isolate from Permian groundwater, capable of aggregating potential biofuel-producing microalga Nannochloropsis oceanica IMET1.

    Science.gov (United States)

    Wang, Hui; Laughinghouse, Haywood D; Anderson, Matthew A; Chen, Feng; Willliams, Ernest; Place, Allen R; Zmora, Odi; Zohar, Yonathan; Zheng, Tianling; Hill, Russell T

    2012-03-01

    Increasing petroleum costs and climate change have resulted in microalgae receiving attention as potential biofuel producers. Little information is available on the diversity and functions of bacterial communities associated with biofuel-producing algae. A potential biofuel-producing microalgal strain, Nannochloropsis oceanica IMET1, was grown in Permian groundwater. Changes in the bacterial community structure at three temperatures were monitored by two culture-independent methods, and culturable bacteria were characterized. After 9 days of incubation, N. oceanica IMET1 began to aggregate and precipitate in cultures grown at 30°C, whereas cells remained uniformly distributed at 15°C and 25°C. The bacterial communities in cultures at 30°C changed markedly. Some bacteria isolated only at 30°C were tested for their potential for aggregating microalgae. A novel bacterium designated HW001 showed a remarkable ability to aggregate N. oceanica IMET1, causing microalgal cells to aggregate after 3 days of incubation, while the total lipid content of the microalgal cells was not affected. Direct interaction of HW001 and N. oceanica is necessary for aggregation. HW001 can also aggregate the microalgae N. oceanica CT-1, Tetraselmis suecica, and T. chuii as well as the cyanobacterium Synechococcus WH8007. 16S rRNA gene sequence comparisons indicated the great novelty of this strain, which exhibited only 89% sequence similarity with any previously cultured bacteria. Specific primers targeted to HW001 revealed that the strain originated from the Permian groundwater. This study of the bacterial communities associated with potential biofuel-producing microalgae addresses a little-investigated area of microalgal biofuel research and provides a novel approach to harvest biofuel-producing microalgae by using the novel bacterium strain HW001.

  20. Short-term effect of dietary yeast nucleotide supplementation on small intestinal enzyme activities, bacterial populations and metabolites and ileal nutrient digestibilities in newly weaned pigs.

    Science.gov (United States)

    Sauer, N; Eklund, M; Roth, S; Rink, F; Jezierny, D; Bauer, E; Mosenthin, R

    2012-08-01

    In previous studies, dietary nucleotides have been shown to improve performance in single-stomached animals by promoting the renewal of small intestine epithelial cells and by influencing the activity and composition of the microbial community in the digestive tract. The present experiment was carried out with 12 barrows weaned at the age of 18 days and fitted with a simple T-cannula at the distal ileum. To determine short-term effects of dietary yeast nucleotides, the piglets received a grain-soybean meal-based basal diet with or without supplementation of 1 g/kg of a dried yeast product containing free nucleotides. Dietary supplementation with yeast did not affect bacterial numbers in the ileum as well as ileal concentrations of individual short-chain fatty acids (SCFA), total SCFA and total lactic acid (p > 0.05). Moreover, there was no effect of supplemental yeast nucleotides on ileal α-amylase, leucine amino peptidase, maltase and lactase activities (p > 0.05), as well as on ileal dry matter, crude protein and crude fibre digestibilities (p > 0.05). In conclusion, short-term supplementation with dietary yeast nucleotides did not affect microbial metabolite concentrations, bacterial numbers and enzyme activities in the ileal digesta as well as ileal nutrient digestibilities of newly weaned pigs.

  1. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies.

    Science.gov (United States)

    Phugare, Swapnil S; Kalyani, Dayanand C; Patil, Asmita V; Jadhav, Jyoti P

    2011-02-15

    The present study aims to evaluate Red HE3B degrading potential of developed microbial consortium SDS using two bacterial cultures viz. Providencia sp. SDS (PS) and Pseudomonas aeuroginosa strain BCH (PA) originally isolated from dye contaminated soil. Consortium was found to be much faster for decolorization and degradation of Red HE3B compared to the individual bacterial strain. The intensive metabolic activity of these strains led to 100% decolorization of Red HE3B (50 mg l(-1)) with in 1h. Significant induction of various dye decolorizing enzymes viz. veratryl alcohol oxidase, laccase, azoreductase and DCIP reductase compared to control, point out towards their involvement in overall decolorization and degradation process. Analytical studies like HPLC, FTIR and GC-MS were used to scrutinize the biodegradation process. Toxicological studies before and after microbial treatment was studied with respect to cytotoxicity, genotoxicity, oxidative stress, antioxidant enzyme status, protein oxidation and lipid peroxidation analysis using root cells of Allium cepa. Toxicity analysis with A. cepa signifies that dye Red HE3B exerts oxidative stress and subsequently toxic effect on the root cells where as biodegradation metabolites of the dye are relatively less toxic in nature. Phytotoxicity studies also indicated that microbial treatment favors detoxification of Red HE3B.

  2. TRPA1 channels mediate acute neurogenic inflammation and pain produced by bacterial endotoxins

    Science.gov (United States)

    Meseguer, Victor; Alpizar, Yeranddy A.; Luis, Enoch; Tajada, Sendoa; Denlinger, Bristol; Fajardo, Otto; Manenschijn, Jan-Albert; Fernández-Peña, Carlos; Talavera, Arturo; Kichko, Tatiana; Navia, Belén; Sánchez, Alicia; Señarís, Rosa; Reeh, Peter; Pérez-García, María Teresa; López-López, José Ramón; Voets, Thomas; Belmonte, Carlos; Talavera, Karel; Viana, Félix

    2014-01-01

    Gram-negative bacterial infections are accompanied by inflammation and somatic or visceral pain. These symptoms are generally attributed to sensitization of nociceptors by inflammatory mediators released by immune cells. Nociceptor sensitization during inflammation occurs through activation of the Toll-like receptor 4 (TLR4) signalling pathway by lipopolysaccharide (LPS), a toxic by-product of bacterial lysis. Here we show that LPS exerts fast, membrane delimited, excitatory actions via TRPA1, a transient receptor potential cation channel that is critical for transducing environmental irritant stimuli into nociceptor activity. Moreover, we find that pain and acute vascular reactions, including neurogenic inflammation (CGRP release) caused by LPS are primarily dependent on TRPA1 channel activation in nociceptive sensory neurons, and develop independently of TLR4 activation. The identification of TRPA1 as a molecular determinant of direct LPS effects on nociceptors offers new insights into the pathogenesis of pain and neurovascular responses during bacterial infections and opens novel avenues for their treatment.

  3. Chemical Screening Method for the Rapid Identification of Microbial Sources of Marine Invertebrate-Associated Metabolites

    Directory of Open Access Journals (Sweden)

    Russell G. Kerr

    2011-03-01

    Full Text Available Marine invertebrates have proven to be a rich source of secondary metabolites. The growing recognition that marine microorganisms associated with invertebrate hosts are involved in the biosynthesis of secondary metabolites offers new alternatives for the discovery and development of marine natural products. However, the discovery of microorganisms producing secondary metabolites previously attributed to an invertebrate host poses a significant challenge. This study describes an efficient chemical screening method utilizing a 96-well plate-based bacterial cultivation strategy to identify and isolate microbial producers of marine invertebrate-associated metabolites.

  4. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides

    DEFF Research Database (Denmark)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon

    2015-01-01

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces v...... together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism....

  5. Effects of Iron on Hydrogen-producing Capacity,Hydrogenase and NADH-fd Reductase Activities of a Fermentative Hydrogen-producing Bacterial Strain B49

    Institute of Scientific and Technical Information of China (English)

    Wang Xiangjing(王相晶); Ren Nanqi; Xiang Wensheng

    2004-01-01

    Iron plays an important role in hydrogen production, cell growth, hydrogenase and NADH-fd reductase activities of hydrogen-producing bacterial strain B49 (AF481148 in EMBL). At the end of fermentation from 10 g/L glucose, for the culture containing 10 mg/L FeSO4*7H2O the cell growth in terms of optical density (OD) at 600nm was 1.13, the ratio of ethanol amount (mg/L) to acetate amount (mg/L) was 1.55, and the accumulated hydrogen volume was 1816.3 ml H2/L culture; whereas for the culture of 80 mg/L FeSO4*7H2O OD600nm was increased to 1.34, the accumulated hydrogen volume was increased to 2360.5 ml H2/L culture, and the ratio of ethanol amount (mg/L) to acetate amount (mg/L) decreased to 1.31. Moreover, the iron addition to the medium at different fermentation time could affect hydrogen-producing ability. However, the later the addition time of FeSO4*7H2O was postponed, the less the effect on hydrogen evolution was. In the course of fermentation, the specific activities of hydrogenase and NADH-fd reductase of hydrogen-producing bacterial strain B49 decreased with the consumption of iron.

  6. Autoinducer-2-like activity on vegetable produce and its potential involvement in bacterial biofilm formation on tomatoes.

    Science.gov (United States)

    Lu, Lingeng; Hume, Michael E; Pillai, Suresh D

    2005-01-01

    Quorum sensing employing autoinducer molecules is a strategy used by bacterial populations to coordinately modulate their response to environmental stresses and host defense mechanisms. The objectives of this study were to determine the levels of autoinducer-2 (AI-2)-like activity on selected vegetable produce and determine whether AI-2-like molecules can promote E. coli O157:H7 biofilm formation on tomatoes. Twelve different fruit and vegetable produce samples were screened for AI-2-like activity using autoinducer sensing V. harveyi biosensor strains. All samples except strawberries showed AI-2 activity albeit at varying levels, with eggplant having the highest levels. Tomatoes, when stored at 4 degrees C for 9 days, showed increasing levels of heterotrophic bacterial populations as compared to AI-2-like activity levels, which fluctuated. Rinses from Roma tomato surfaces that were stored at refrigeration temperature for up to 9 days caused a significant increase (1.8-3.6-fold as compared to the negative controls) in biofilm formation by luxS mutant (non AI-2 producing) generic E. coli and E. coli O157:H7 strains using a micro-titer plate-based biofilm assay. These results suggest that AI-2-like activity, which is present on the surfaces of tomatoes, has the potential to enhance the production of bacterial biofilms.

  7. No Evidence for a Culturable Bacterial Tetrodotoxin Producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae and Stylochoplana sp. (Platyhelminthes: Polycladida

    Directory of Open Access Journals (Sweden)

    Lauren R. Salvitti

    2015-01-01

    Full Text Available Tetrodotoxin (TTX is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia and Stylochoplana sp. (Platyhelminthes. Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography—mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0, suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely.

  8. No evidence for a culturable bacterial tetrodotoxin producer in Pleurobranchaea maculata (Gastropoda: Pleurobranchidae) and Stylochoplana sp. (Platyhelminthes: Polycladida).

    Science.gov (United States)

    Salvitti, Lauren R; Wood, Susanna A; McNabb, Paul; Cary, Stephen Craig

    2015-01-28

    Tetrodotoxin (TTX) is a potent neurotoxin found in the tissues of many taxonomically diverse organisms. Its origin has been the topic of much debate, with suggestions including endogenous production, acquisition through diet, and symbiotic bacterial synthesis. Bacterial production of TTX has been reported in isolates from marine biota, but at lower than expected concentrations. In this study, 102 strains were isolated from Pleurobranchaea maculata (Opisthobranchia) and Stylochoplana sp. (Platyhelminthes). Tetrodotoxin production was tested utilizing a recently developed sensitive method to detect the C9 base of TTX via liquid chromatography-mass spectrometry. Bacterial strains were characterized by sequencing a region of the 16S ribosomal RNA gene. To account for the possibility that TTX is produced by a consortium of bacteria, a series of experiments using marine broth spiked with various P. maculata tissues were undertaken. Sixteen unique strains from P. maculata and one from Stylochoplana sp. were isolated, representing eight different genera; Pseudomonadales, Actinomycetales, Oceanospirillales, Thiotrichales, Rhodobacterales, Sphingomonadales, Bacillales, and Vibrionales. Molecular fingerprinting of bacterial communities from broth experiments showed little change over the first four days. No C9 base or TTX was detected in isolates or broth experiments (past day 0), suggesting a culturable microbial source of TTX in P. maculata and Stylochoplana sp. is unlikely.

  9. Contributions of caspase-8 and -9 to liver injury from CYP2E1-produced metabolites of halogenated hydrocarbons.

    Science.gov (United States)

    Ijiri, Yoshio; Kato, Ryuji; Sadamatsu, Maiko; Takano, Mina; Yasuda, Yuki; Tanaka, Fumiaki; Oishi, Chiyo; Imano, Hideki; Okada, Yoshikatsu; Tanaka, Kazuhiko; Hayashi, Tetsuya

    2017-01-12

    1. Drug-induced liver injury is difficult to predict at the pre-clinical stage. This study aimed to clarify the roles of caspase-8 and -9 in CYP2E1 metabolite-induced liver injury in both rats and cell cultures in vitro treated with carbon tetrachloride (CCl4), halothane or sevoflurane. The human hepatocarcinoma functional liver cell line was maintained in 3-dimensional culture alone or in co-culture with human acute monocytic leukemia cells. 2. In vivo, laboratory indices of liver dysfunction and histology were normal after administration of sevoflurane. CCl4 treatment increased blood AST/ALT levels, liver caspase-3 and -9 activities and liver malondialdehyde, accompanied by centrilobular hepatocyte necrosis. Halothane increased AST/ALT levels, caspase-3 and -8 activities (but not malondialdehyde) concomitant with widespread hepatotoxicity. In vitro, CCl4 treatment increased caspase-9 activity and decreased both mitochondrial membrane potential (MMP) and cell viability. In co-culture, halothane increased caspase-8 activity and decreased MMP and cellular viability. There were no toxic responses in CYP2E1 knockdown in monoculture and co-culture. 3. CYP2E1-inducing compounds play a pivotal role in halogenated hydrocarbon toxicity. 4. Changes in hepatocyte caspase-8 and -9 activities could be novel biomarkers of metabolites causing DILI, and in pre-clinical development of new pharmaceuticals can predict nascent DILI in the clinical stage.

  10. Electrochemical gating of tricarboxylic acid cycle in electricity-producing bacterial cells of Shewanella.

    Directory of Open Access Journals (Sweden)

    Shoichi Matsuda

    Full Text Available Energy-conversion systems mediated by bacterial metabolism have recently attracted much attention, and therefore, demands for tuning of bacterial metabolism are increasing. It is widely recognized that intracellular redox atmosphere which is generally tuned by dissolved oxygen concentration or by appropriate selection of an electron acceptor for respiration is one of the important factors determining the bacterial metabolism. In general, electrochemical approaches are valuable for regulation of redox-active objects. However, the intracellular redox conditions are extremely difficult to control electrochemically because of the presence of insulative phospholipid bilayer membranes. In the present work, the limitation can be overcome by use of the bacterial genus Shewanella, which consists of species that are able to respire via cytochromes abundantly expressed in their outer-membrane with solid-state electron acceptors, including anodes. The electrochemical characterization and the gene expression analysis revealed that the activity of tricarboxylic acid (TCA cycle in Shewanella cells can be reversibly gated simply by changing the anode potential. Importantly, our present results for Shewanella cells cultured in an electrochemical system under poised potential conditions showed the opposite relationship between the current and electron acceptor energy level, and indicate that this unique behavior originates from deactivation of the TCA cycle in the (over-oxidative region. Our result obtained in this study is the first demonstration of the electrochemical gating of TCA cycle of living cells. And we believe that our findings will contribute to a deeper understanding of redox-dependent regulation systems in living cells, in which the intracellular redox atmosphere is a critical factor determining the regulation of various metabolic and genetic processes.

  11. Biodegradation of Leonardite by an alkali-producing bacterial community and characterization of the degraded products.

    Science.gov (United States)

    Gao, Tong-Guo; Jiang, Feng; Yang, Jin-Shui; Li, Bao-Zhen; Yuan, Hong-Li

    2012-03-01

    In this study, three bacterial communities were obtained from 12 Leonardite samples with the aim of identifying a clean, effective, and economic technique for the dissolution of Leonardite, a type of low-grade coal, in the production of humic acid (HA). The biodegradation ability and characteristics of the degraded products of the most effective bacterial community (MCSL-2), which degraded 50% of the Leonardite within 21 days, were further investigated. Analyses of elemental composition, (13)C NMR, and Fourier transform infrared revealed that the contents of C, O, and aliphatic carbon were similar in biodegraded humic acid (bHA) and chemically (alkali) extracted humic acid (cHA). However, the N and carboxyl carbon contents of bHA was higher than that of cHA. Furthermore, a positive correlation was identified between the degradation efficiency and the increasing pH of the culture medium, while increases of manganese peroxidase and esterase activities were also observed. These data demonstrated that both alkali production and enzyme reactions were involved in Leonardite solubilization by MCSL-2, although the former mechanism predominated. No fungus was observed by microscopy. Only four bacterial phylotypes were recognized, and Bacillus licheniformis-related bacteria were identified as the main group in MCSL-2 by analysis of amplified 16S rRNA genes, thus demonstrating that Leonardite degradation ability has a limited distribution in bacteria. Hormone-like bioactivities of bHA were also detected. In this study, a bacterial community capable of Leonardite degradation was identified and the products characterized. These data implicate the use of such bacteria for the exploitation of Leonardite as a biofertilizer.

  12. Effects of the bacteriocin PsVP-10 produced by Pseudomonas sp. on sensitive bacterial strains.

    Science.gov (United States)

    Padilla, Carlos; Lobos, Olga; Brevis, Pedro; Abaca, Paulina; Hubert, Elizabeth

    2002-01-01

    The bacteriocin PsVP-10 is a 2.6 Kda peptide which was isolated and purified from Pseudomonas sp. This bacteriocin possesses lethal activity over Enterococcus faecalis, Salmonella typhimurium and Shigella flexneri. The experimental assays showed that the bacteriocin is able to be adsorbed by all cells of these bacterial species and also by their isolated cell walls. It was observed that the resistant mutants and their respective cell walls are unable to adsorb the bacteriocin. Assays performed with spheroplasts obtained from sensitive bacterial species and their resistant mutants show a rapid lethal effect of the bacteriocin PsVP-10. This results indicated furthermore, it is also shown that the optimal pH and temperature for the adsorption were 7.2 and 37 degrees C, respectively. The study carried out with organic solvents like methanol, ethanol, isopropanol and the detergents sodium dodecyl sulfate and triton X-100 showed a moderate inhibition of the bacteriocin lethal action for the Gram negative cells. The enzymes lysozime, protease XIV and trypsine type III-S did not present any effect over the adsorption capacity of the bacteriocin with any of the bacterial species studied.

  13. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells.

    Science.gov (United States)

    Ruas-Madiedo, P; Medrano, M; Salazar, N; De Los Reyes-Gavilán, C G; Pérez, P F; Abraham, A G

    2010-12-01

    To evaluate the capability of the exopolysaccharides (EPS) produced by lactobacilli and bifidobacteria from human and dairy origin to antagonize the cytotoxic effect of bacterial toxins. The cytotoxicity of Bacillus cereus extracellular factors on Caco-2 colonocytes in the presence/absence of the EPS was determined by measuring the integrity of the tissue monolayer and the damage to the cell membrane (extracellular lactate dehydrogenase activity). Additionally, the protective effect of EPS against the haemolytic activity of the streptolysin-O was evaluated on rabbit erythrocytes. The EPS produced by Bifidobacterium animalis ssp. lactis A1 and IPLA-R1, Bifidobacterium longum NB667 and Lactobacillus rhamnosus GG were able to counteract the toxic effect of bacterial toxins on the eukaryotic cells at 1mg ml(-1) EPS concentration. The EPS A1 was the most effective in counteracting the effect of B. cereus toxins on colonocytes, even at lower doses (0·5mg ml(-1) ), whereas EPS NB667 elicited the highest haemolysis reduction on erythrocytes. The production of EPS by lactobacilli and bifidobacteria could antagonize the toxicity of bacterial pathogens, this effect being EPS and biological marker dependent. This work allows gaining insight about the mechanisms that probiotics could exert to improve the host health. © 2010 The Authors. Journal of Applied Microbiology © 2010 The Society for Applied Microbiology.

  14. An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa L.f

    Energy Technology Data Exchange (ETDEWEB)

    Koolen, Hector Henrique Ferreira; Soares, Elzalina Ribeiro; Silva, Felipe Moura Araujo da; Almeida, Richardson Alves de; Souza, Afonso Duarte Leao de, E-mail: hectorkoolen@gmail.com [Departamento de Quimica, Universidade Federal do Amazonas, Manaus - AM (Brazil); Medeiros, Livia Soman de; Rodrigues Filho, Edson [Departamento de Quimica, Universidade Federal de Sao Carlos, Sao Carlos - SP (Brazil); Souza, Antonia Queiroz Lima de [Escola Superior de Ciencias da Saude, Universidade do Estado do Amazonas, Manaus - AM (Brazil)

    2012-07-01

    The alkaloid glandicoline B (1) and six other compounds: ergosterol (2), brassicasterol (3), ergosterol peroxide (4), cerevisterol (5), mannitol (6) and 1-O-{alpha}-D-glucopyranoside (7) were isolated from Penicillium sp. strain PBR.2.2.2, a fungus from Mauritia flexuosa roots. The structures of the isolated metabolites were established by spectral analysis. MeOH extract of the fungal mycelium at 500 {mu}g mL{sup -1} exhibited antimicrobial activity against Staphylococcus aureus and the compound 1 at 100 {mu}g mL{sup -1} was active against S. aureus, Micrococcus luteus and Escherichia coli. The relationship between the bioactive properties of the fungus PBR.2.2.2 and those achieved for glandicoline B, as well the potential of this substance as bacteriide is discussed. (author)

  15. An antimicrobial alkaloid and other metabolites produced by Penicillium sp. An endophytic fungus isolated from Mauritia flexuosa L. f.

    Directory of Open Access Journals (Sweden)

    Hector Henrique Ferreira Koolen

    2012-01-01

    Full Text Available The alkaloid glandicoline B (1 and six other compounds: ergosterol (2, brassicasterol (3, ergosterol peroxide (4, cerevisterol (5, mannitol (6 and 1-O-α-D-glucopyranoside (7 were isolated from Penicillium sp. strain PBR.2.2.2, a fungus from Mauritia flexuosa roots. The structures of the isolated metabolites were established by spectral analysis. MeOH extract of the fungal mycelium at 500 µg mL-1 exhibited antimicrobial activity against Staphylococcus aureus and the compound 1 at 100 µg mL-1 was active against S. aureus, Micrococcus luteus and Escherichia coli. The relationship between the bioactive properties of the fungus PBR.2.2.2 and those achieved for glandicoline B, as well the potential of this substance as bactericide is discussed.

  16. Novel bacterial metabolite merochlorin A demonstrates in vitro activity against multi-drug resistant methicillin-resistant Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    George Sakoulas

    Full Text Available BACKGROUND: We evaluated the in vitro activity of a merochlorin A, a novel compound with a unique carbon skeleton, against a spectrum of clinically relevant bacterial pathogens and against previously characterized clinical and laboratory Staphylococcus aureus isolates with resistance to numerous antibiotics. METHODS: Merochlorin A was isolated and purified from a marine-derived actinomycete strain CNH189. Susceptibility testing for merochlorin A was performed against previously characterized human pathogens using broth microdilution and agar dilution methods. Cytotoxicity was assayed in tissue culture assays at 24 and 72 hours against human HeLa and mouse sarcoma L929 cell lines. RESULTS: The structure of as new antibiotic, merochlorin A, was assigned by comprehensive spectroscopic analysis. Merochlorin A demonstrated in vitro activity against Gram-positive bacteria, including Clostridium dificile, but not against Gram negative bacteria. In S. aureus, susceptibility was not affected by ribosomal mutations conferring linezolid resistance, mutations in dlt or mprF conferring resistance to daptomycin, accessory gene regulator knockout mutations, or the development of the vancomycin-intermediate resistant phenotype. Merochlorin A demonstrated rapid bactericidal activity against MRSA. Activity was lost in the presence of 20% serum. CONCLUSIONS: The unique meroterpenoid, merochlorin A demonstrated excellent in vitro activity against S. aureus and C. dificile and did not show cross-resistance to contemporary antibiotics against Gram positive organisms. The activity was, however, markedly reduced in 20% human serum. Future directions for this compound may include evaluation for topical use, coating biomedical devices, or the pursuit of chemically modified derivatives of this compound that retain activity in the presence of serum.

  17. Adsorption and oxidation of SO₂in a fixed-bed reactor using activated carbon produced from oxytetracycline bacterial residue and impregnated with copper.

    Science.gov (United States)

    Zhou, Baohua; Yu, Lei; Song, Hanning; Li, Yaqi; Zhang, Peng; Guo, Bin; Duan, Erhong

    2015-02-01

    The SO₂removal ability (including adsorption and oxidation ability) of activated carbon produced from oxytetracycline bacterial residue and impregnated with copper was investigated. The activated carbon produced from oxytetracycline bacterial residue and modified with copper was characterized by x-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. The effects of the catalysts, SO₂concentration, weight hourly space velocity, and temperature on the SO₂adsorption and oxidation activity were evaluated. Activated carbon produced from oxytetracycline bacterial residue and used as catalyst supports for copper oxide catalysts provided high catalytic activity for the adsorbing and oxidizing of SO₂from flue gases.

  18. The enteric bacterial metabolite propionic acid alters brain and plasma phospholipid molecular species: further development of a rodent model of autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Thomas Raymond H

    2012-07-01

    Full Text Available Abstract Gastrointestinal symptoms and altered blood phospholipid profiles have been reported in patients with autism spectrum disorders (ASD. Most of the phospholipid analyses have been conducted on the fatty acid composition of isolated phospholipid classes following hydrolysis. A paucity of information exists on how the intact phospholipid molecular species are altered in ASD. We applied ESI/MS to determine how brain and blood intact phospholipid species were altered during the induction of ASD-like behaviors in rats following intraventricular infusions with the enteric bacterial metabolite propionic acid. Animals were infused daily for 8 days, locomotor activity assessed, and animals killed during the induced behaviors. Propionic acid infusions increased locomotor activity. Lipid analysis revealed treatment altered 21 brain and 30 blood phospholipid molecular species. Notable alterations were observed in the composition of brain SM, diacyl mono and polyunsaturated PC, PI, PS, PE, and plasmalogen PC and PE molecular species. These alterations suggest that the propionic acid rat model is a useful tool to study aberrations in lipid metabolism known to affect membrane fluidity, peroxisomal function, gap junction coupling capacity, signaling, and neuroinflammation, all of which may be associated with the pathogenesis of ASD.

  19. A survey of bacterial, fungal and plant metabolites against Aedes aegypti (Diptera: Culicidae, the vector of yellow and dengue fevers and Zika virus

    Directory of Open Access Journals (Sweden)

    Masi Marco

    2017-06-01

    Full Text Available Aedes aegypti L. is the major vector of the arboviruses responsible for dengue fever, one of the most devastating human diseases. Some bacterial, fungal and plant metabolites belonging to different chemical subgroups, including Amaryllidaceae alkaloids, anthracenes, azoxymethoxytetrahydropyrans, cytochalasans, 2,5-diketopiperazines, isochromanones, naphthoquinones, organic small acids and their methyl esters, sterols and terpenes including sesquiterpenes and diterpenes, were tested for their larvicidal and adulticidal activity against Ae. aegypti. Out of 23 compounds tested, gliotoxin exhibited mosquitocidal activity in both bioassays with an LC50 value of 0.0257 ± 0.001 µg/µL against 1st instar Ae. aegypti and LD50 value of 2.79 ± 0.1197 µg/mosquito against adult female Ae. aegypti. 2-Methoxy-1,4-naphthoquinone and cytochalasin A showed LC50 values of 0.0851 ± 0.0012 µg/µL and 0.0854 ± 0.0019 µg/µL, respectively, against Ae. aegypti larvae. In adult bioassays, fusaric acid (LD50= 0.8349 ± 0.0118 µg/mosquito, 3-nitropropionic acid (LD50 = 1.6641 ± 0.0494 µg/mosquito and α-costic acid (LD50 = 2.547 ± 0.0835 µg/mosquito exhibited adulticidal activity. Results from the current study confirm that compounds belonging to cytochalsin, diketopiperazine, naphthoquinone and low molecular weight organic acid groups are active and may stimulate further SAR investigations.

  20. Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis.

    Science.gov (United States)

    Djavaheri, Mohammad; Mercado-Blanco, Jesús; Versluis, C; Meyer, J-M; Loon, L C; Bakker, Peter A H M

    2012-09-01

    The plant growth-promoting rhizobacterium Pseudomonas fluorescens WCS374r produces several iron-regulated metabolites, including the fluorescent siderophore pseudobactin (Psb374), salicylic acid (SA), and pseudomonine (Psm), a siderophore that contains a SA moiety. After purification of Psb374 from culture supernatant of WCS374r, its structure was determined following isoelectrofocusing and tandem mass spectrometry, and found to be identical to the fluorescent siderophore produced by P. fluorescens ATCC 13525. To study the role of SA and Psm production in colonization of Arabidopsis thaliana roots and in induced systemic resistance (ISR) against Pseudomonas syringae pv. tomato (Pst) by strain WCS374r, mutants disrupted in the production of these metabolites were obtained by homologous recombination. These mutants were further subjected to transposon Tn5 mutagenesis to generate mutants also deficient in Psb374 production. The mutants behaved similar to the wild type in both their Arabidopsis rhizosphere-colonizing capacity and their ability to elicit ISR against Pst. We conclude that Psb374, SA, and Psm production by P. fluorescens WCS374r are not required for eliciting ISR in Arabidopsis.

  1. Behavior of Freezable Bound Water in the Bacterial Cellulose Produced by Acetobacter xylinum: An Approach Using Thermoporosimetry

    OpenAIRE

    Kaewnopparat, Sanae; Sansernluk, Kamonlawat; Faroongsarng, Damrongsak

    2008-01-01

    The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 ± 0.2°C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore...

  2. Preclinical test: bacterial reverse mutation test for {sup 18}F-fluorocholine produced in CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Bruno M.; Bispo, Ana Carolina A.; Campos, Danielle C.; Silva, Juliana B., E-mail: bmm@cdtn.br, E-mail: acab@cdtn.br, E-mail: dcc@cdtn.br, E-mail: silvajb@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    The choline labeled with fluorine-18 (18FCH) is being considered as a great importance radiopharmaceutical due to its effective detection of many type of malignant neoplasm. The research related to {sup 18}F-fluorocholine synthesis in CDTN was initiated in 2010. In order to obtain clinical research approval, as well as to register {sup 18}FCH for marketing, safety and efficacy preclinical testing are required. The present work evaluated the {sup 18}FCH genotoxic potential through the bacterial reverse mutation test (Ames test) using Salmonella typhimurium TA-98, TA-100, TA-1535 and TA-1537 strains and Escherichia coli WP2 uvrA strain. The reverse mutation test in bacteria for fluorcolina was conducted in two stages. Initially the method was applied to 'cold' fluorocholine molecule (19FCH). Subsequently, the decayed product of {sup 18}FCH synthesis was evaluated. The first step was performed in order to examine the FCH molecule mutagenicity. The second was carried out to determine the mutagenic potential of final product. All strains were tested in triplicate for each exposure concentration, in the presence and absence of metabolic activation (S-9 mix - 10%). There were no statistically significant increases in revertant colonies rate for any strains tested after their exposure to decayed {sup 18}FCH or {sup 19}FCH. The number of revertant colonies in positive controls was significantly higher than that observed in significant increases in revertant colonies rate for any strains tested after their exposure to decayed {sup 18}FCH or {sup 19}FCH. The number of revertant colonies in positive controls was significantly higher than that observed in negative controls. Based on results of this assay, {sup 18}FCH and {sup 19}FCH, at tested doses, were found to be non-mutagenic in bacterial reverse mutation test. (author)

  3. Development of a Selective Medium for the Fungal Pathogen Fusarium graminearum Using Toxoflavin Produced by the Bacterial Pathogen Burkholderia glumae

    Directory of Open Access Journals (Sweden)

    Boknam Jung

    2013-12-01

    Full Text Available The ascomycete fungus Fusarium graminearum is a major causal agent for Fusarium head blight in cereals and produces mycotoxins such as trichothecenes and zearalenone. Isolation of the fungal strains from air or cereals can be hampered by various other airborne fungal pathogens and saprophytic fungi. In this study, we developed a selective medium specific to F. graminearum using toxoflavin produced by the bacterial pathogen Burkholderia glumae. F. graminearum was resistant to toxoflavin, while other fungi were sensitive to this toxin. Supplementing toxoflavin into medium enhanced the isolation of F. graminearum from rice grains by suppressing the growth of saprophytic fungal species. In addition, a medium with or without toxoflavin exposed to wheat fields for 1 h had 84% or 25%, respectively, of colonies identified as F. graminearum. This selection medium provides an efficient tool for isolating F. graminearum, and can be adopted by research groups working on genetics and disease forecasting.

  4. Establishing a role for bacterial cellulose in environmental interactions: lessons learned from diverse biofilm-producing Proteobacteria

    Directory of Open Access Journals (Sweden)

    Richard Vincent Augimeri

    2015-11-01

    Full Text Available Bacterial cellulose (BC serves as a molecular glue to facilitate intra- and inter-domain interactions in nature. Biosynthesis of BC-containing biofilms occurs in a variety of Proteobacteria that inhabit diverse ecological niches. The enzymatic and regulatory systems responsible for the polymerization, exportation and regulation of BC are equally as diverse. Though the magnitude and environmental consequences of BC production are species-specific, the common role of BC containing biofilms is to establish close contact with a preferred host to facilitate efficient host-bacteria interactions. Universally, BC aids in attachment, adherence, and subsequent colonization of a substrate. Bi-directional interactions influence host physiology, bacterial physiology and regulation of BC biosynthesis, primarily through modulation of intracellular bis-(3’→5’-cyclic diguanylate (c-di-GMP levels. Depending on the circumstance, BC producers exhibit a pathogenic or symbiotic relationship with plant, animal or fungal hosts. Rhizobiaceae species colonize plant roots, Pseudomonadaceae inhabit the phyllosphere, Acetobacteriaceae associate with sugar-loving insects and inhabit the carposphere, Enterobacteriaceae use fresh produce as vehicles to infect animal hosts, and Vibrionaceae, particularly Aliivibrio fischeri, colonize the light organ of squid. This review will highlight the diversity of the biosynthesis and regulation of BC in nature by discussing various examples of Proteobacteria that use BC-containing biofilms to facilitate host-bacteria interactions. Through discussion of current data we will establish new directions for the elucidation of BC biosynthesis, regulation and ecophysiological roles.

  5. Resistance to ketolide antibiotics by coordinated expression of rRNA methyltransferases in a bacterial producer of natural ketolides.

    Science.gov (United States)

    Almutairi, Mashal M; Park, Sung Ryeol; Rose, Simon; Hansen, Douglas A; Vázquez-Laslop, Nora; Douthwaite, Stephen; Sherman, David H; Mankin, Alexander S

    2015-10-20

    Ketolides are promising new antimicrobials effective against a broad range of Gram-positive pathogens, in part because of the low propensity of these drugs to trigger the expression of resistance genes. A natural ketolide pikromycin and a related compound methymycin are produced by Streptomyces venezuelae strain ATCC 15439. The producer avoids the inhibitory effects of its own antibiotics by expressing two paralogous rRNA methylase genes pikR1 and pikR2 with seemingly redundant functions. We show here that the PikR1 and PikR2 enzymes mono- and dimethylate, respectively, the N6 amino group in 23S rRNA nucleotide A2058. PikR1 monomethylase is constitutively expressed; it confers low resistance at low fitness cost and is required for ketolide-induced activation of pikR2 to attain high-level resistance. The regulatory mechanism controlling pikR2 expression has been evolutionary optimized for preferential activation by ketolide antibiotics. The resistance genes and the induction mechanism remain fully functional when transferred to heterologous bacterial hosts. The anticipated wide use of ketolide antibiotics could promote horizontal transfer of these highly efficient resistance genes to pathogens. Taken together, these findings emphasized the need for surveillance of pikR1/pikR2-based bacterial resistance and the preemptive development of drugs that can remain effective against the ketolide-specific resistance mechanism.

  6. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-01-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut. PMID:26394008

  7. Lactobacillus rhamnosus GG-supplemented formula expands butyrate-producing bacterial strains in food allergic infants.

    Science.gov (United States)

    Berni Canani, Roberto; Sangwan, Naseer; Stefka, Andrew T; Nocerino, Rita; Paparo, Lorella; Aitoro, Rosita; Calignano, Antonio; Khan, Aly A; Gilbert, Jack A; Nagler, Cathryn R

    2016-03-01

    Dietary intervention with extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG (EHCF+LGG) accelerates tolerance acquisition in infants with cow's milk allergy (CMA). We examined whether this effect is attributable, at least in part, to an influence on the gut microbiota. Fecal samples from healthy controls (n=20) and from CMA infants (n=19) before and after treatment with EHCF with (n=12) and without (n=7) supplementation with LGG were compared by 16S rRNA-based operational taxonomic unit clustering and oligotyping. Differential feature selection and generalized linear model fitting revealed that the CMA infants have a diverse gut microbial community structure dominated by Lachnospiraceae (20.5±9.7%) and Ruminococcaceae (16.2±9.1%). Blautia, Roseburia and Coprococcus were significantly enriched following treatment with EHCF and LGG, but only one genus, Oscillospira, was significantly different between infants that became tolerant and those that remained allergic. However, most tolerant infants showed a significant increase in fecal butyrate levels, and those taxa that were significantly enriched in these samples, Blautia and Roseburia, exhibited specific strain-level demarcations between tolerant and allergic infants. Our data suggest that EHCF+LGG promotes tolerance in infants with CMA, in part, by influencing the strain-level bacterial community structure of the infant gut.

  8. Antibiotic resistance in bacterial pathogens from retail raw meats and food-producing animals in Japan.

    Science.gov (United States)

    Hiroi, Midori; Kawamori, Fumihiko; Harada, Tetsuya; Sano, Yono; Miwa, Norinaga; Sugiyama, Kanji; Hara-Kudo, Yukiko; Masuda, Takashi

    2012-10-01

    To determine the prevalence and antimicrobial susceptibility profiles of Campylobacter, Salmonella, Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and vancomycin-resistant enterococci (VRE) in food-producing animals and retail raw meats in Japan, raw meat samples as well as food-producing animal feces, cutaneous swabs, and nasal swabs collected from 2004 to 2006 were analyzed. Isolation rates of Campylobacter jejuni and Campylobacter coli, Salmonella, and S. aureus were 34.6% (363 of 1,050), 2.7% (28 of 1,050), and 32.8% (238 of 725), respectively. MRSA was isolated from 3% (9 of 300) of meat samples. No VRE were isolated in this study. Antibiotic resistance in C. coli was higher than that in C. jejuni. Three C. jejuni isolates from a patient with diarrhea in a hospital of Shizuoka Prefecture and two chicken samples that exhibited resistance to ciprofloxacin had identical pulsed-field gel electrophoresis patterns, suggesting that ciprofloxacin-resistant C. jejuni could have been distributed in meat. S. aureus isolates showed the highest level of resistance to ampicillin and tetracycline. Resistance to tetracycline in S. aureus isolates from beef was lower than that seen in isolates from chicken and pork (P food-producing animals and retail domestic meats in Japan, although Campylobacter isolates resistant to fluoroquinolone and erythromycin were detected. The occurrence of antimicrobial-resistant pathogens should be monitored continuously to improve the management of the risks associated with antimicrobial drug resistance transferred from food-producing animals to humans.

  9. Variable genetic architectures produce virtually identical molecules in bacterial symbionts of fungus-growing ants.

    Science.gov (United States)

    Sit, Clarissa S; Ruzzini, Antonio C; Van Arnam, Ethan B; Ramadhar, Timothy R; Currie, Cameron R; Clardy, Jon

    2015-10-27

    Small molecules produced by Actinobacteria have played a prominent role in both drug discovery and organic chemistry. As part of a larger study of the actinobacterial symbionts of fungus-growing ants, we discovered a small family of three previously unreported piperazic acid-containing cyclic depsipeptides, gerumycins A-C. The gerumycins are slightly smaller versions of dentigerumycin, a cyclic depsipeptide that selectively inhibits a common fungal pathogen, Escovopsis. We had previously identified this molecule from a Pseudonocardia associated with Apterostigma dentigerum, and now we report the molecule from an associate of the more highly derived ant Trachymyrmex cornetzi. The three previously unidentified compounds, gerumycins A-C, have essentially identical structures and were produced by two different symbiotic Pseudonocardia spp. from ants in the genus Apterostigma found in both Panama and Costa Rica. To understand the similarities and differences in the biosynthetic pathways that produced these closely related molecules, the genomes of the three producing Pseudonocardia were sequenced and the biosynthetic gene clusters identified. This analysis revealed that dramatically different biosynthetic architectures, including genomic islands, a plasmid, and the use of spatially separated genetic loci, can lead to molecules with virtually identical core structures. A plausible evolutionary model that unifies these disparate architectures is presented.

  10. Isolation and Characterization of Rhamnolipid-Producing Bacterial Strains from a Biodiesel Facility

    Science.gov (United States)

    Novel strains of rhamnolipid-producing bacteria were isolated from soils at a biodiesel facility on the basis of their ability to grow on glycerol as a sole carbon source. Strains were identified as Acinetobacter calcoaceticus, Enterobacter asburiae, E. hormaecheii, Pantoea stewartii and Pseudomona...

  11. Genome sequencing and systems biology analysis of a lipase-producing bacterial strain.

    Science.gov (United States)

    Li, N; Li, D D; Zhang, Y Z; Yuan, Y Z; Geng, H; Xiong, L; Liu, D L

    2016-03-18

    Lipase-producing bacteria are naturally-occurring, industrially-relevant microorganisms that produce lipases, which can be used to synthesize biodiesel from waste oils. The efficiency of lipase expression varies between various microbial strains. Therefore, strains that can produce lipases with high efficiency must be screened, and the conditions of lipase metabolism and optimization of the production process in a given environment must be thoroughly studied. A high efficiency lipase-producing strain was isolated from the sediments of Jinsha River, identified by 16S rRNA sequence analysis as Serratia marcescens, and designated as HS-L5. A schematic diagram of the genome sequence was constructed by high-throughput genome sequencing. A series of genes related to lipid degradation were identified by functional gene annotation through sequence homology analysis. A genome-scale metabolic model of HS-ML5 was constructed using systems biology techniques. The model consisted of 1722 genes and 1567 metabolic reactions. The topological graph of the genome-scale metabolic model was compared to that of conventional metabolic pathways using a visualization software and KEGG database. The basic components and boundaries of the tributyrin degradation subnetwork were determined, and its flux balance analyzed using Matlab and COBRA Toolbox to simulate the effects of different conditions on the catalytic efficiency of lipases produced by HS-ML5. We proved that the catalytic activity of microbial lipases was closely related to the carbon metabolic pathway. As production and catalytic efficiency of lipases varied greatly with the environment, the catalytic efficiency and environmental adaptability of microbial lipases can be improved by proper control of the production conditions.

  12. [Construction and evaluation of an engineered bacterial strain for producing lipopeptide under anoxic conditions].

    Science.gov (United States)

    Liang, Xiao-long; Zhao, Feng; Shi, Rong-jiu; Ban, Yun-he; Zhou, Ji-dong; Han, Si-qin; Zhang, Ying

    2015-08-01

    Biosurfactant-facilitated oil recovery is one of the most important aspects of microbial enhanced oil recovery (MEOR). However, the biosurfactant production by biosurfactant-producing microorganisms, most of which are aerobes, is severely suppressed due to the in-situ anoxic conditions within oil reservoirs. In this research, we successfully engineered a strain JD-3, which could grow rapidly and produce lipopeptide under anoxic conditions, by protoplast confusion using a Bacillus amyloliquefaciens strain BQ-2 which produces biosurfactant aerobically, and a facultative anaerobic Pseudomonas stutzeri strain DQ-1 as parent strains. The alignment of 16S rDNA sequence (99% similarity) and comparisons of cell colony morphology showed that fusant JD-3 was closer to the parental strain B. amyloliquefaciens BQ-2. The surface tension of culture broth of fusant JD-3, after 36-hour cultivation under anaerobic conditions, decreased from initially 63.0 to 32.5 mN · m(-1). The results of thin layer chromatography and infrared spectrum analysis demonstrated that the biosurfactant produced by JD-3 was lipopeptide. The surface-active lipopeptide had a low critical micelle concentration (CMC) of 90 mg · L(-1) and presented a good ability to emulsify various hydrocarbons such as crude oil, liquid paraffin, and kerosene. Strain JD-3 could utilize peptone as nitrogen source and sucrose, glucose, glycerin or other common organics as carbon sources for anaerobic lipopeptide synthesis. The subculture of fusant JD-3 showed a stable lipopeptide-producing ability even after ten serial passages. All these results indicated that fusant JD-3 holds a great potential to microbially enhance oil recovery under anoxic conditions.

  13. Pseudomonas chlororaphis Produces Two Distinct R-Tailocins That Contribute to Bacterial Competition in Biofilms and on Roots.

    Science.gov (United States)

    Dorosky, Robert J; Yu, Jun Myoung; Pierson, Leland S; Pierson, Elizabeth A

    2017-08-01

    R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere.IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial

  14. Primordial soup was edible: abiotically produced Miller-Urey mixture supports bacterial growth

    OpenAIRE

    Xueshu Xie; Daniel Backman; Albert T. Lebedev; Viatcheslav B. Artaev; Liying Jiang; Leopold L. Ilag; Zubarev, Roman A.

    2015-01-01

    Sixty years after the seminal Miller-Urey experiment that abiotically produced a mixture of racemized amino acids, we provide a definite proof that this primordial soup, when properly cooked, was edible for primitive organisms. Direct admixture of even small amounts of Miller-Urey mixture strongly inhibits E. coli bacteria growth due to the toxicity of abundant components, such as cyanides. However, these toxic compounds are both volatile and extremely reactive, while bacteria are highly capa...

  15. Contamination of knives and graters by bacterial foodborne pathogens during slicing and grating of produce.

    Science.gov (United States)

    Erickson, Marilyn C; Liao, Jean; Cannon, Jennifer L; Ortega, Ynes R

    2015-12-01

    Poor hygiene and improper food preparation practices in consumers' homes have previously been demonstrated as contributing to foodborne diseases. To address potential cross-contamination by kitchen utensils in the home, a series of studies was conducted to determine the extent to which the use of a knife or grater on fresh produce would lead to the utensil's contamination with Escherichia coli O157:H7 or Salmonella enterica. When shredding inoculated carrots (ca. 5.3 log CFU/carrot), all graters became contaminated and the number of E. coli O157:H7 present on the utensil was significantly greater than Salmonella (p cucumbers, and cantaloupes, the average prevalence of knife contamination by the two pathogens was 43%, 17%, 15%, 7%, and 3%, respectively. No significant increase in the incidence or level of contamination occurred on the utensils when residues were present (p > 0.05); however, subsequent contamination of 7 produce items processed with the contaminated utensils did occur. These results highlight the necessity of proper sanitization of these utensils when used in preparation of raw produce.

  16. The identification of 2,4-diacetylphloroglucinol as an antifungal metabolite produced by cutaneous bacteria of the salamander Plethodon cinereus.

    Science.gov (United States)

    Brucker, Robert M; Baylor, Cambria M; Walters, Robert L; Lauer, Antje; Harris, Reid N; Minbiole, Kevin P C

    2008-01-01

    Beneficial bacteria that live on salamander skins have the ability to inhibit pathogenic fungi. Our study aimed to identify the specific chemical agent(s) of this process and asked if any of the antifungal compounds known to operate in analogous plant-bacteria-fungi systems were present. Crude extracts of bacteria isolated from salamander skin were exposed to HPLC, UV-Vis, GC-MS, and HR-MS analyses. These investigations show that 2,4-diacetylphloroglucinol is produced by the bacteria isolate Lysobacter gummosus (AB161361), which was found on the red-backed salamander, Plethodon cinereus. Furthermore, exposure of the amphibian fungal pathogen, Batrachochytrium dendrobatidis (isolate JEL 215), to different concentrations of 2,4-diacetylphloroglucinol resulted in an IC50 value of 8.73 microM, comparable to crude extract concentrations. This study is the first to show that an epibiotic bacterium on an amphibian species produces a chemical that inhibits pathogenic fungi.

  17. Isolation and characterization of an efficient bacterial cellulose producer strain in agitated culture: Gluconacetobacter hansenii P2A.

    Science.gov (United States)

    Aydın, Yasar Andelib; Aksoy, Nuran Deveci

    2014-02-01

    In this study, typical niches of acetic acid bacteria were screened for isolation of cellulose producer strains. Hestrin Schramm broth was used as enrichment and production media. Only nine out of 329 isolates formed thick biofilms on liquid surface and were identified as potential cellulose producers. Physiological and biochemical tests proved that all cellulose producers belonged to Gluconacetobacter genus. Most productive and mutation-resistant strain was subjected to 16S rRNA sequence analysis and identified as Gluconacetobacter hansenii P2A due to 99.8 % sequence similarity. X-ray diffraction analysis proved that the biofilm conformed to Cellulose I crystal structure, rich in Iα mass fraction. Static cultivation of G. hansenii P2A in HS medium resulted with 1.89 ± 0.08 g/l of bacterial cellulose production corresponding to 12.0 ± 0.3 % yield in terms of substrate consumption. Shaking and agitation at 120 rpm aided in enhancement of the amount and yield of produced cellulose. Productivity and yield reached up to 3.25 ± 0.11 g/l and 17.20 ± 0.14 % in agitated culture while a slight decrease from 78.7 % to 77.3 % was observed in the crystallinity index.

  18. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2)

    OpenAIRE

    D'Alia, Davide; Eggle, Daniela; Nieselt, Kay; Hu, Wei‐Shou; Breitling, Rainer; Takano, Eriko

    2011-01-01

    Summary Streptomycetes have high biotechnological relevance as producers of diverse metabolites widely used in medical and agricultural applications. The biosynthesis of these metabolites is controlled by signalling molecules, γ‐butyrolactones, that act as bacterial hormones. In Streptomyces coelicolor, a group of signalling molecules called SCBs (S. coelicolorbutanolides) regulates production of the pigmented antibiotics coelicolor polyketide (CPK), actinorhodin and undecylprodigiosin. The γ...

  19. Biological Role of Paenilarvins, Iturin-Like Lipopeptide Secondary Metabolites Produced by the Honey Bee Pathogen Paenibacillus larvae

    Science.gov (United States)

    Gensel, Sebastian; Garcia-Gonzalez, Eva; Ebeling, Julia; Skobalj, Ranko; Kuthning, Anja; Süssmuth, Roderich D.

    2016-01-01

    The Gram-positive bacterium Paenibacillus larvae (P. larvae) is the causative agent of a deadly honey bee brood disease called American Foulbrood (AFB). AFB is a notifiable epizootic in most countries and, hence, P. larvae is of considerable relevance for veterinarians and apiculturists alike. Over the last decade, much progress has been made in the understanding of the (patho)biology of P. larvae. Recently, several non-ribosomally produced peptides (NRP) and peptide/polyketide (NRP/PK) hybrids produced by P. larvae were identified. Among these NRPs were iturin-like lipopeptides, the paenilarvins A-C. Iturins are known to exhibit strong anti-fungal activity; for some iturins, cytotoxic activity towards mammalian erythrocytes and human cancer cell lines are described. We here present our results on the analysis of the natural function of the paenilarvins during pathogenesis of P. larvae infections. We demonstrated production of paenilarvins in infected larvae. However, we could neither demonstrate cytotoxicity of paenilarvins towards cultured insect cells nor towards larvae in feeding assays. Accordingly, exposure bioassays performed with larvae infected by wild-type P. larvae and a knockout mutant of P. larvae lacking production of paenilarvins did not substantiate a role for the paenilarvins as virulence factor. Further experiments are necessary to analyze the relevance of the paenilarvins’ anti-fungal activity for P. larvae infections in the presence of fungal competitors in the larval midgut or cadaver. PMID:27760211

  20. Isolation, structure elucidation and biological activity of metabolites from Sch-642305-producing endophytic fungus Phomopsis sp. CMU-LMA.

    Science.gov (United States)

    Adelin, Emilie; Servy, Claudine; Cortial, Sylvie; Lévaique, Hélène; Martin, Marie-Thérèse; Retailleau, Pascal; Le Goff, Géraldine; Bussaban, Boonsom; Lumyong, Saisamorn; Ouazzani, Jamal

    2011-12-01

    Eight polyketide compounds were isolated from the cultivation broth of Phomopsis sp. CMU-LMA. We have recently described LMA-P1, a bicyclic 10-membered macrolide, obtained as a bioconversion derivative of Sch-642305, the major compound isolated in this study. Benquinol is the ethyl ester derivative of the 13-dihydroxytetradeca-2,4,8-trienoic acid produced by Valsa ambiens. This compound is concomitantly produced with the 6,13-dihydroxytetradeca-2,4,8-trienoic acid (DHTTA) previously isolated from Mycosphaerellarubella. The absolute configuration of the new compound, (2R,3R,4S,5R)-3-hydroxy-2,4-dimethyl-5-[(S,Z)-3-methylpentenyl]-tetrahydro-pyranone LMA-P2 was confirmed by X-ray crystallography. The δ-lactone 2,3-dihydroxytetradecan-5-olide (DHTO) was previously isolated from Seiridium unicorne. This compound may form through the cyclization of the methyl-2,3,5-trihydroxytridecanoate LMA-P3, a new linear polyketide isolated in this study. Benquoine, a new 14-membered lactone generated from the cyclization of benquinol, is proposed as the key precursor for the biosynthesis of Sch-642305. Antimicrobial activity and cancer cell viability inhibition by the new compounds were investigated. Benquoine exhibits antimicrobial activity against Gram positive bacteria, and cytotoxicity against HCT-116 cancer cell line.

  1. Study on Screening and Cultivation Conditions of Xylanase-Producing Alkalophilic Bacterial

    Institute of Scientific and Technical Information of China (English)

    Han Xiao-fang; Zheng Lian-shuang; Xie Yi-min

    2004-01-01

    An xylanase producting alkalophilic Bacillus NT-9 was obtaind by the screening method of transparent zone on the selective medium, and the effects of carbon source and nitrogen source on xylanase production were studied. The medium composed of xylose 1.5%, (NH4)2SO4 0.25%, K2HPO4 0.1%, MgSO4·7H2O 0.02%, with the initial pH of 10, was suggested to be optimal for the enzyme production in this study. When cultivatied at 37 ℃ for 72 h, the enzyme activity elaborated by the strain may reach as high as 10.5 U/mL. The xylanase produced by Bacillus NT-9 was a constituent enzyme.

  2. Optimization of biohydrogen yield produced by bacterial consortia using residual glycerin from biodiesel production.

    Science.gov (United States)

    Faber, Mariana de Oliveira; Ferreira-Leitão, Viridiana Santana

    2016-11-01

    The aims of this study were to simplify the fermentation medium and to optimize the conditions of dark fermentation of residual glycerin to produce biohydrogen. It was possible to remove all micronutrients of fermentation medium and improve biohydrogen production by applying residual glycerin as feedstock. After statistical analysis of the following parameters pH, glycerin concentration and volatile suspended solids, the values of 5.5; 0.5g.L(-1) and 8.7g.L(-1), respectively, were defined as optimum condition for this process. It generated 2.44molH2/molglycerin, an expressive result when compared to previous results reported in literature and considering that theoretical yield of H2 from glycerol in dark fermentation process is 3molH2/molglycerol. This study allowed the improvement of yield and productivity by 68% and 67%, respectively.

  3. Characterization of novel extracellular protease produced by marine bacterial isolate from the Indian Ocean

    Directory of Open Access Journals (Sweden)

    Rachana Fulzele

    2011-12-01

    Full Text Available Out of the vast pool of enzymes, proteolytic enzymes from microorganisms are the most widely used in different industries such as detergent, food, peptide production etc. Several marine microorganisms are known to produce proteases with commercially desirable characteristics. We have isolated nine different cultures from marine samples of the Indian Ocean. All of them were i motile ii rod shaped iii non spore forming iv catalase and amylase positive v able to grow in presence of 10 % NaCl. They produced acid from glucose, fructose and maltose and grew optimally at 30 0C temperature and pH 7.0-8.0. None of them could grow above 45 0C and below 15 0C. Only one of them (MBRI 7 exhibited extracellular protease activity on skim milk agar plates. Based on 16S rDNA sequencing, it belonged to the genus Marinobacter (98% sequence similarity, 1201 bp. The cell free extract was used to study effects of temperature and pH on protease activity. The optimum temperature and pH for activity were found to be 40 0C and 7.0 respectively. The crude enzyme was stable at temperature range of 30-80 0C and pH 5.0-9.0. It retained 60 % activity at 80 0C after 4 h and more than 70 % activity at 70 0C after 1 h. D value was found to be 342 minutes and 78 minutes for 40 0C and 80 0C respectively. Interestingly the enzyme remained 50 % active at pH 9.0 after 1 h. Comparison with other proteases from different microbial sources indicated that the neutral protease from the halotolerant marine isolate MBRI 7 is a novel enzyme with high thermostability.

  4. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator.

    Science.gov (United States)

    Corral-Lugo, Andrés; Daddaoua, Abdelali; Ortega, Alvaro; Espinosa-Urgel, Manuel; Krell, Tino

    2016-01-05

    Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.

  5. Superoxide anions produced by Streptococcus pyogenes group A-stimulated keratinocytes are responsible for cellular necrosis and bacterial growth inhibition.

    Science.gov (United States)

    Regnier, Elodie; Grange, Philippe A; Ollagnier, Guillaume; Crickx, Etienne; Elie, Laetitia; Chouzenoux, Sandrine; Weill, Bernard; Plainvert, Céline; Poyart, Claire; Batteux, Frédéric; Dupin, Nicolas

    2016-02-01

    Gram-positive Streptococcus pyogenes (group A Streptococcus or GAS) is a major skin pathogen and interacts with keratinocytes in cutaneous tissues. GAS can cause diverse suppurative and inflammatory infections, such as cellulitis, a common acute bacterial dermo-hypodermitis with a high morbidity. Bacterial isolation yields from the lesions are low despite the strong local inflammation observed, raising numerous questions about the pathogenesis of the infection. Using an in vitro model of GAS-infected keratinocytes, we show that the major ROS produced is the superoxide anion ([Formula: see text]), and that its production is time- and dose-dependent. Using specific modulators of ROS production, we show that [Formula: see text] is mainly synthesized by the cytoplasmic NADPH oxidase. Superoxide anion production leads to keratinocyte necrosis but incomplete inhibition of GAS growth, suggesting that GAS may be partially resistant to the oxidative burst. In conclusion, GAS-stimulated keratinocytes are able to develop an innate immune response based on the production of ROS. This local immune response limits GAS development and induces keratinocyte cell death, resulting in the skin lesions observed in patients with cellulitis.

  6. Oxidative stability and sensory quality of meat from broiler chickens fed a bacterial meal produced on natural gas.

    Science.gov (United States)

    Øverland, M; Borge, G I; Vogt, G; Schøyen, H F; Skrede, A

    2011-01-01

    Bacterial meal (BPM) produced from bacteria grown on natural gas is a feed source containing approximately 70% CP and 10% lipids with predominantly C16:0 and C16:1 fatty acids. The effect of increasing dietary levels (0, 40, 80, or 120 g/kg) of BPM on fatty acid composition, the profile of volatiles by dynamic headspace gas chromatography-mass spectrometry, and sensory quality of frozen-stored broiler chicken thigh meat was examined. Increasing levels of BPM increased (linear, P Dynamic headspace gas chromatography-mass spectrometry was a more sensitive method in detecting early lipid oxidation compared with TBA reactive substances and sensory quality analyses in broiler thigh meat.

  7. Effect of PGR producing bacterial strains isolated from vermisources on germination and growth of Vigna unguiculata (L. Walp.

    Directory of Open Access Journals (Sweden)

    Anandharaj Marimuthu

    2014-12-01

    Full Text Available Nineteen bacterial strains were isolated from vermisources andscreened for Indole-3-acetic acid (IAA production among themonly nine strains produce IAA and they were identified asStreptococcus spp., Micrococcus spp., Klebsiella spp., Bacillus spp., Enterobacter spp., Escherichia spp., Alcaligenes spp., Erwinia spp., and Pseudomonas spp. Among all other strains Bacillus sp. showed the higher IAA production hence selected for further molecular analysis and confirmed as Bacillus cereus. The B. cereus was grown in nutrient broth supplemented with different concentrations (1, 2, 3, 4 and 5mg/ml of tryptophan for seven days at pH 7 and at 37ºC. Crude IAA was used for in vitro phytostimulatory studies using Vigna unguiculata (L. Walp. The plant growth parameters were analyzed at different day intervals (5, 10 and 15 days. Supplementation of 5 ml crude IAA (2mg/ml of tryptophan dynamically enhances the plant growth parameters after 15 days.

  8. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.

    Science.gov (United States)

    Ge, Han-Jing; Du, Shuang-Kui; Lin, De-Hui; Zhang, Jun-Na; Xiang, Jin-Le; Li, Zhi-Xi

    2011-12-01

    Strain M(438), deposited as CGMCC3917 and isolated from inoculums of bacterial cellulose (BC) producing strain screened in homemade vinegar and then induced by high hydrostatic pressure treatment (HHP), has strong ability to produce BC more than three times as that of its initial strain. It is the highest yield BC-producing strain ever reported. In this paper, M(438) was identidied as Gluconacetobacter hansenii subsp. nov. on the basis of the results obtained by examining it phylogenetically, phenotypically, and physiologically-biochemically. Furthermore, the genetic diversity of strain M(438) and its initial strain was examined by amplified fragment length polymorphism. The results indicated that strain M(438) was a deletion mutant induced by HHP, and the only deleted sequence showed 99% identity with 24,917-24,723 bp in the genome sequence of Ga. hansenii ATCC23769, and the complement gene sequence was at 24,699-25,019 bp with local tag GXY_15142, which codes small multidrug resistance (SMR) protein. It can be inferred that SMR might be related to inhibiting BC production to a certain extent.

  9. Bioactive Metabolites Produced by Pseudonocardia endophytica VUK-10 from Mangrove Sediments: Isolation, Chemical Structure Determination and Bioactivity.

    Science.gov (United States)

    Mangamuri, Usha Kiranmayi; Vijayalakshmi, Muvva; Poda, Sudhakar; Manavathi, Bramanandam; Bhujangarao, Ch; Venkateswarlu, Y

    2015-05-01

    Chemical investigation of the actinobacterial isolate Pseudonocardia endophytica VUK-10 has led to the segregation of two known bioactive compounds, namely 4-(2-acetamidoethyl) phenyl acetate and 4-((1, 4-dioxooctahydropyrrolo [1, 2-a] pyrazin-3-yl) methyl) phenyl acetate. The strain was isolated from a sediment sample of the Nizampatnam mangrove ecosystem, south coastal Andhra Pradesh, India. The chemical structure of the active compounds was established on the basis of spectroscopic analysis, including (1)H NMR and (13)C NMR spectroscopies, FTIR, and EIMS. The antimicrobial and cytotoxic activities of the bioactive compounds produced by the strain were tested against opportunistic and pathogenic bacteria and fungi and on MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. The compounds exhibited antimicrobial activities against gram-positive and gram-negative bacteria and fungi and also showed potent cytotoxic activity against MDA-MB-231, OAW, HeLa, and MCF-7 cell lines. This is the first example for this class of bioactive compounds isolated from Pseudonocardia of mangrove origin.

  10. Volatile Metabolites

    Directory of Open Access Journals (Sweden)

    Daryl D. Rowan

    2011-11-01

    Full Text Available Volatile organic compounds (volatiles comprise a chemically diverse class of low molecular weight organic compounds having an appreciable vapor pressure under ambient conditions. Volatiles produced by plants attract pollinators and seed dispersers, and provide defense against pests and pathogens. For insects, volatiles may act as pheromones directing social behavior or as cues for finding hosts or prey. For humans, volatiles are important as flavorants and as possible disease biomarkers. The marine environment is also a major source of halogenated and sulfur-containing volatiles which participate in the global cycling of these elements. While volatile analysis commonly measures a rather restricted set of analytes, the diverse and extreme physical properties of volatiles provide unique analytical challenges. Volatiles constitute only a small proportion of the total number of metabolites produced by living organisms, however, because of their roles as signaling molecules (semiochemicals both within and between organisms, accurately measuring and determining the roles of these compounds is crucial to an integrated understanding of living systems. This review summarizes recent developments in volatile research from a metabolomics perspective with a focus on the role of recent technical innovation in developing new areas of volatile research and expanding the range of ecological interactions which may be mediated by volatile organic metabolites.

  11. Exploration and conservation of bacterial genetic resources as bacteriocin producing inhibitory microorganisms to pathogen bacteria in livestock

    Directory of Open Access Journals (Sweden)

    Chotiah S

    2013-06-01

    Full Text Available Exploration and conservation of microorganisms producing bacteriocin was done as the primary study towards the collection of potential bacteria and its application in improving livestock health condition and inhibit food borne pathogens. Diferent kinds of samples such as beef cattle rectal swab, rumen fluids, cow’s milk, chicken gut content, goat’s milk were collected at Bogor cattle slaughter houses, poultry slaughter houses, dairy cattle and goat farms. A total of 452 bacterial isolates consisted of 73 Gram negative bacteria and 379 Gram positive bacteria were isolated from samples collected and screened for bacteriocin activity. Determination of bacteriocin activity with bioassay using agar spot tests were carried out on liquid and semisolid medium assessing 8 kins of indicators of pathogenic bacteria and food borne pathogens. A total of 51 bacteriocin producing strains were collected and some of the strains had high inhibitory zone such as Lactobacillus casei SS14C (26 mm, Enterobacter cloacae SRUT (24mm, Enterococcus faecalis SK39 (21mm and Bifidobacterium dentium SS14T (20mm respectively, to Salmonella typhimurium BCC B0046/ATCC 13311, E. coli O157 hemolytic BCC B2717, Listeria monocytogenes BCC B2767/ATCC 7764 and Escherichia coli VTEC O157 BCC B2687. Evaluation after conservation ex situ to all bacterocin producing strain at 5oC for 1 year in freeze drying ampoules in vacuum and dry condition revealed the decreasing viability starting from log 0.8 CFU/ml for Lactococcus and Leuconostoc to log 2.2. CFU/ml for Streptococcus. Result of the study showed that the bacteriocin producing strains obtained were offered a potential resource for preventing disease of livestock and food borne diseases.

  12. Optimization and validation of a quantitative liquid chromatography-tandem mass spectrometric method covering 295 bacterial and fungal metabolites including all regulated mycotoxins in four model food matrices.

    Science.gov (United States)

    Malachová, Alexandra; Sulyok, Michael; Beltrán, Eduardo; Berthiller, Franz; Krska, Rudolf

    2014-10-01

    An LC-MS/MS "dilute and shoot" method for the determination of 295 fungal and bacterial metabolites was optimized and validated according to the guidelines established in the Directorate General for Health and Consumer Affairs of the European Commission (SANCO) document No. 12495/2011. Four different types of food matrices were chosen for validation: apple puree for infants (high water content), hazelnuts (high fat content), maize (high starch and low fat content) and green pepper (difficult or unique matrix). Method accuracy and precision was evaluated using spiked samples in five replicates at two concentration levels. Method trueness was demonstrated through participation in various proficiency tests. Although the method covers a total number of 331 analytes, validation data were acquired only for 295 analytes, either due to the non-availability of analytical standards or due other reasons described in this paper. Concerning the apparent recovery, the percentage of 295 analytes matching the acceptable recovery range of 70-120% lied down by SANCO varied from 21% in green pepper to 74% in apple puree at the highest spiking level. At the levels close to limit of quantification only 20-58% of the analytes fulfilled this criterion. The extent of matrix effects was strongly dependent on the analyte/matrix combination. In general, the lowest matrix effects were observed in apple puree (59% of analytes were not influenced by enhancement/suppression at all at the highest validation level). The highest matrix effects were observed in green pepper, where only 10% of analytes did not suffer from signal suppression/enhancement. The repeatability of the method was acceptable (RSD≤20) for 97% of all analytes in apple puree and hazelnuts, for 95% in maize and for 89% in green pepper. Concerning the trueness of the method, Z-scores were generally between -2 and 2, despite a broad variety of different matrices. Based on these results it can be concluded that quantitative

  13. Effects of bacterially produced precipitates on the metabolism of sulfate reducing bacteria during the bio-treatment process of copper-containing wastewater

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A large volume of bacterially produced precipitates are generated during the bio-treatment of heavy metal wastewater.The composition of the bacterially produced precipitates and its effects on sulfate reducing bacteria (SRB) in copper-containing waste stream were evaluated in this study.The elemental composition of the microbial precipitate was studied using electrodispersive X-ray spectroscopy (EDX),and it was found that the ratio of S:Cu was 1.12.Combining with the results of copper distribution in the SRB metabolism culture,which was analyzed by the sequential extraction procedure,copper in the precipitates was determined as covellite (CuS).The bacterially produced precipitates caused a decrease of the sulfate reduction rate,and the more precipitates were generated,the lower the sulfate reduction rate was.The particle sizes of bacterially generated covellite were ranging from 0.03 to 2 m by particles size distribution (PSD) analysis,which was smaller than that of the SRB cells.Transmission electron microscopy (TEM) analysis showed that the microbial covellite was deposited on the surface of the cell.The effects of the microbial precipitate on SRB metabolism were found to be weakened by increasing the precipitation time and adding microbial polymeric substances in later experiments.These results provided direct evidence that the SRB activity was inhibited by the bacterially produced covellite,which enveloped the bacterium and thus affected the metabolism of SRB on mass transfer.

  14. Metabolism of sanguinarine in human and in rat: characterization of oxidative metabolites produced by human CYP1A1 and CYP1A2 and rat liver microsomes using liquid chromatography-tandem mass spectrometry.

    Science.gov (United States)

    Deroussent, Alain; Ré, Micheline; Hoellinger, Henri; Cresteil, Thierry

    2010-07-08

    The quaternary benzo[c]phenanthridine alkaloid, sanguinarine (SA), has been detected in the mustard oil contaminated with Argemone mexicana, which produced severe human intoxications during epidemic dropsy in India. Today, SA metabolism in human and in rat has not yet been fully elucidated. The goal of this study is to investigate the oxidative metabolites of SA formed during incubations with rat liver microsomes (RLM) and recombinant human cytochrome P450 (CYP) and to tentatively identify the CYP isoforms involved in SA detoxification. Metabolites were analyzed by liquid chromatography combined with electrospray ionization-tandem mass spectrometry. Up to six metabolites were formed by RLM and their modified structure has been proposed using their mass spectra and mass shifts from SA (m/z 332). The main metabolite M2 (m/z 320) resulted from ring-cleavage of SA followed by demethylation, whereas M4 (m/z 348) is oxidized by CYP in the presence of NADPH. The diol-sanguinarine metabolite M6 (m/z 366) formed by RLM might derive from a putative epoxy-sanguinarine metabolite M5 (m/z 348). M4 and M6 could be detected in rat urine as their respective glucuronides. 5,6-Dihydrosanguinarine is the prominent derivative formed from SA in cells expressing no CYP. Oxidative biotransformation of SA was investigated using eight human CYPs: only CYP1A1 and CYP1A2 displayed activity.

  15. A bacterial symbiont is converted from an inedible producer of beneficial molecules into food by a single mutation in the gacA gene

    OpenAIRE

    2013-01-01

    Stable multipartite mutualistic associations require that all partners benefit. We show that a single mutational step is sufficient to turn a symbiotic bacterium from an inedible but host-beneficial secondary metabolite producer into a host food source. The bacteria’s host is a “farmer” clone of the social amoeba Dictyostelium discoideum that carries and disperses bacteria during its spore stage. Associated with the farmer are two strains of Pseudomonas fluorescens, only one of which serves a...

  16. Heterologous expression of Avermectins biosynthetic gene cluster by construction of a Bacterial Artificial Chromosome library of the producers

    Directory of Open Access Journals (Sweden)

    Qian Deng

    2017-03-01

    Full Text Available Avermectins, a group of polyketide natural products, are widely used as anthelmintics in agriculture. Metabolic engineering and combinatorial biosynthesis were extensively employed to improve Avermectins production and create novel Avermectin derivatives, including Ivermectin and Doramectin. It is labor intensive and time cost to genetically manipulate Avermectins producer Streptomyces avermitilis in vivo. Cloning and heterologous expression of Avermectins biosynthetic gene cluster will make it possible to tailor the cluster in vitro. We constructed a Bacterial Artificial Chromosome (BAC library of S. avermitilis ATCC 31267 with inserted DNA fragments ranged from 100 to 130 Kb. Five recombinant BAC clones which carried the Avermectins biosynthetic gene cluster ave (81 Kb in size were screened out from the library. Then, ave was hetero-expressed in S. lividans. Three Avermectin components, A2a, B1a and A1a were detected from the cell extracts of recombinant strains. It will facilitate the development of Avermectin derivatives by polyketide synthase domain swapping and provide functional element for Avermectins synthetic biology study.

  17. Identification of a New Marine Bacterial Strain SD8 and Optimization of Its Culture Conditions for Producing Alkaline Protease.

    Science.gov (United States)

    Cui, Hongxia; Yang, Muyang; Wang, Liping; Xian, Cory J

    2015-01-01

    While much attention has been given to marine microorganisms for production of enzymes, which in general are relatively more stable and active compared to those from plants and animals, studies on alkaline protease production from marine microorganisms have been very limited. In the present study, the alkaline protease producing marine bacterial strain SD8 isolated from sea muds in the Geziwo Qinhuangdao sea area of China was characterized and its optimal culture conditions were investigated. Strain SD8 was initially classified to belong to genus Pseudomonas by morphological, physiological and biochemical characterizations, and then through 16S rDNA sequence it was identified to be likely Pseudomonas hibiscicola. In addition, the culture mediums, carbon sources and culture conditions of strain SD8 were optimized for maximum production of alkaline protease. Optimum enzyme production (236U/mL when cultured bacteria being at 0.75 mg dry weight/mL fermentation broth) was obtained when the isolate at a 3% inoculum size was grown in LB medium at 20 mL medium/100mL Erlenmeyer flask for 48h culture at 30°C with an initial of pH 7.5. This was the first report of strain Pseudomonas hibiscicola secreting alkaline protease, and the data for its optimal cultural conditions for alkaline protease production has laid a foundation for future exploration for the potential use of SD8 strain for alkaline protease production.

  18. Effects of interactions of auxin-producing bacteria and bacterial-feeding nematodes on regulation of peanut growths.

    Science.gov (United States)

    Xu, Li; Xu, Wensi; Jiang, Ying; Hu, Feng; Li, Huixin

    2015-01-01

    The influences of an IAA (indole-3-acetic acid)-producing bacterium (Bacillus megaterium) and two bacterial-feeding nematodes (Cephalobus sp. or Mesorhabditis sp.) on the growth of peanut (Arachis hypogaea L. cv. Haihua 1) after various durations of time were investigated in natural soils. The addition of bacteria and nematodes and incubation time all significantly affected plant growth, plant root growth, plant nutrient concentrations, soil nutrient concentrations, soil microorganisms and soil auxin concentration. The addition of nematodes caused greater increases in these indices than those of bacteria, while the addition of the combination of bacteria and nematodes caused further increases. After 42-day growth, the increases in soil respiration differed between the additions of two kinds of nematodes because of differences in their life strategies. The effects of the bacteria and nematodes on the nutrient and hormone concentrations were responsible for the increases in plant growth. These results indicate the potential for promoting plant growth via the addition of nematodes and bacteria to soil.

  19. Suppression of bacterial wilt of tomato by bioorganic fertilizer made from the antibacterial compound producing strain Bacillus amyloliquefaciens HR62.

    Science.gov (United States)

    Huang, Jianfeng; Wei, Zhong; Tan, Shiyong; Mei, Xinlan; Shen, Qirong; Xu, Yangchun

    2014-11-05

    Ralstonia solanacearum (Smith) is an important soil-borne pathogen worldwide. We investigated the effects of a new bioorganic fertilizer, BIO62, which was made from organic fertilizer and antagonist Bacillus amyloliquefaciens HR62, on the control of bacterial wilt of tomato in greenhouse condition. The results showed that the application of BIO62 significantly decreased disease incidence by 65% and strongly reduced R. solanacearum populations both in the rhizosphere soil (8.04 log cfu g(-1) dry soil) and crown sections (5.63 log cfu g(-1) fresh plant section) at 28 days after pathogen challenge. Antibacterial compounds produced by HR62 were purified by silica gel, Sephadex LH-20, and HPLC and then identified using HPLC/electrospray ionization mass spectrometry analysis. Macrolactin A and 7-O-malonyl macrolactin A (molecular weights of 402 and 488 Da, respectively), along with surfactin B (molecular weights of 994, 1008, 1022, and 1036 Da), were observed to inhibit the growth of R. solanacearum.

  20. Secreted Bacterial Effectors and Host-Produced Eiger/TNF Drive Death in aSalmonella-Infected Fruit Fly.

    Directory of Open Access Journals (Sweden)

    Stephanie M Brandt

    2004-12-01

    Full Text Available Death by infection is often as much due to the host's reaction as it is to the direct result of microbial action. Here we identify genes in both the host and microbe that are involved in the pathogenesis of infection and disease in Drosophila melanogaster challenged with Salmonella enterica serovartyphimurium (S. typhimurium. We demonstrate that wild-typeS. typhimurium causes a lethal systemic infection when injected into the hemocoel of D. melanogaster. Deletion of the gene encoding the secreted bacterial effect or Salmonella leucine-rich (PslrPchanges an acute and lethal infection to one that is persistent and less deadly. We propose a model in which Salmonella secreted effectors stimulate the fly and thus cause an immune response that is damaging both to the bacteria and, subsequently, to the host. In support of this model, we show that mutations in the fly gene eiger, a TNF homolog, delay the lethality of Salmonella infection. These results suggest that S. typhimurium-infected flies die from a condition that resembles TNF-induced metabolic collapse in vertebrates. This idea provides us with a new model to study shock-like biology in a genetically manipulable host. In addition, it allows us to study the difference in pathways followed by a microbe when producing an acute or persistent infection.

  1. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    Science.gov (United States)

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.

  2. Mechanism of Excretion of a Bacterial Proteinase: Demonstration of Two Proteolytic Enzymes Produced by a Sarcina Strain (Coccus P)

    Energy Technology Data Exchange (ETDEWEB)

    SARNER, NITZA Z; BISSELL, MINA J; GIROLAMO, MARIO Di; GORINI, LUIGI

    1970-06-29

    A Sarcina strain (Coccus P) produces two proteolytic enzymes. One is found only extracellularly, is far more prevalent, and is actively excreted during exponential growth. It is the enzyme responsible for the known strong proteolytic activity of the cultures of this strain. A second protease is, however, produced which remains associated with the intact cells but is released by the protoplasts. The two enzymes appear unrelated in their derivation. Calcium ions play an essential role in preventing autodigestion of the excreted enzyme. Bacterial proteins are found outside the cell boundary as a consequence either of passive processes such as leakage or lysis or of active excretion. Under conditions in which leakage and lysis do not occur, as during exponential growth, the cell boundary is a barrier causing a complete separation of the bulk of the intracellular proteins from the one or very few extracellular proteins, with no trace of either type being detectable on the wrong side of the boundary. Since in bacteria there is no evidence of protein being produced other than internally, the separation into intraand extracellular proteins should occur after peptide chain formation. The question arises as to whether the structure of the cell boundary or that of the excreted proteins themselves determines this separation. Coccus P, a Sarcina closely related to Micrococcus lysodeikticus (3), produces an extracellular proteinase during the exponential phase of growth so that the process appears to be active excretion. The organism grows exponentially in a defined synthetic medium (12) to relatively high cell density (10{sup 9} cells/ml); therefore the mechanism of excretion can be studied over an extended period of time without the difficulties of changing growth rates. Coagulation of reconstituted skim milk provides a simple and sensitive assay for enzyme activity (I 1). The extracellular proteinase has also been purified and partially characterized (6-8). It has been shown

  3. Quantitative polymerase chain reaction (PCR) assays for a bacterial thiaminase I gene and the thiaminase-producing bacterium Paenibacillus thiaminolyticus.

    Science.gov (United States)

    Richter, C.A.; Wright-Osment, Maureen K.; Zajicek, J.L.; Honeyfield, D.C.; Tillitt, D.E.

    2009-01-01

    The thiaminase I enzyme produced by the gram-positive bacterium Paenibacillus thiaminolyticus isolated from the viscera of Lake Michigan alewives Alosa pseudoharengus is currently the only defined source of the thiaminase activity linked to thiamine (vitamin B1) deficiency in early mortality syndrome (EMS) in the larvae of Great Lakes salmonines. Diets of alewife or isolated strains of P. thiaminolyticus mixed in a semipurified diet and fed to lake trout Salvelinus namaycush have been shown to produce EMS in fry. We utilized quantitative polymerase chain reaction (Q-PCR) to aid in studies of the sources of P. thiaminolyticus and thiaminase I. Quantitative PCR assays were established to detect the thiaminase I gene of P. thiaminolyticus, the 16S rRNA gene from most species of bacteria, and the 16S rRNA gene specifically from P. thiaminolyticus and a few closely related taxa. The Q-PCR assays are linear over at least six orders of magnitude and can detect the thiaminase I gene of P. thiaminolyticus from as few as 1,000 P. thiaminolyticus cells/g of sample or the Paenibacillus 16S rRNA gene from as few as 100 P. thiaminolyticus cells/g of sample. The initial results from alewife viscera samples with high thiaminase activity yielded unexpectedly low densities of P. thiaminolyticus cells; Paenibacillus thiaminolyticus was detectable in 2 of 6 alewife viscera tested at densities on the order of 100 cells/g out of 100,000,000 total bacterial cells/g. The low numbers of P. thiaminolyticus detected suggest that alewives contain additional non-P. thiaminolyticus sources of thiaminase activity.

  4. Bioremediation of petroleum based contaminants with biosurfactant produced by a newly isolated petroleum oil degrading bacterial strain

    Directory of Open Access Journals (Sweden)

    Debajit Borah

    2017-03-01

    Full Text Available Petroleum based hydrocarbon degrading and biosurfactant producing bacterial strain was isolated from an automobile engine. The strain was identified as Bacillus cereus DRDU1 on the basis of 16S rDNA sequencing analysis. The strain was found to be efficiently degrading 96% of kerosene making it a potential tool for bioremediation of petroleum based contaminants. Production and optimization of the biosurfactant produced by the isolate were also carried out. Surface hydrophobicity trait of isolate was found to be 60.67 ± 1.53% and foaming percentage of the crude biosurfactant was found to be 31.33 ± 0.58%. The presence of amino acids and sugar moieties in the biosurfactant was confirmed by biochemical tests and were further validated by FTIR (the Fourier transform infrared spectrometric analysis revealing the presence of υOH, υCOO, υCOOH, υCH (stretching, υNH, υCH2, υCH3, and υCH (bending, and υCO (ester in the surfactant. The decrease in contact angle of hydrocarbon oil from (30.67 ± 1.15° to (21.3 ± 1.53° respectively after 3 and 6 days of incubation reveals its potential to emulsify petroleum oil. Further, emulsification index (E24 of biosurfactant against kerosene, crude oil, and used engine oil were determined to be 55.33 ± 1.53%, 29.67 ± 1.53%, and 20 ± 1% respectively which attracts its future application in MEOR (microbial enhanced oil recovery process.

  5. Isolation and Identification of a New Tetrodotoxin-Producing Bacterial Species, Raoultella terrigena, from Hong Kong Marine Puffer Fish Takifugu niphobles

    Directory of Open Access Journals (Sweden)

    Fred Wang-Fat Lee

    2011-11-01

    Full Text Available Puffer fish, Takifugu niphobles, collected from the Hong Kong coastal waters were screened for tetrodotoxin-producing bacteria. A Gram-negative, non-acid-fast, non-sporing and rod shaped bacterial strain (designated as gutB01 was isolated from the intestine of the puffer fish and was shown to produce tetrodotoxin (TTX. Based on the Microbial Identification (MIDI and 16S-23S rDNA internal transcribed spacer (ITS phylogenetic analysis, the strain was identified as Raoultella terrigena. The TTX production ability of the strain was confirmed by mouse bioassay, ELISA and mass spectrometry (MALDI-TOF. Our results reiterate that the TTX found in puffer fish was likely produced by the associated bacteria and TTX are widely produced amongst a diversity of bacterial species.

  6. Isolation and identification of a new tetrodotoxin-producing bacterial species, Raoultella terrigena, from Hong Kong marine puffer fish Takifugu niphobles.

    Science.gov (United States)

    Yu, Vincent Chung-Him; Yu, Peter Hoi-Fu; Ho, Kin-Chung; Lee, Fred Wang-Fat

    2011-01-01

    Puffer fish, Takifugu niphobles, collected from the Hong Kong coastal waters were screened for tetrodotoxin-producing bacteria. A Gram-negative, non-acid-fast, non-sporing and rod shaped bacterial strain (designated as gutB01) was isolated from the intestine of the puffer fish and was shown to produce tetrodotoxin (TTX). Based on the Microbial Identification (MIDI) and 16S-23S rDNA internal transcribed spacer (ITS) phylogenetic analysis, the strain was identified as Raoultella terrigena. The TTX production ability of the strain was confirmed by mouse bioassay, ELISA and mass spectrometry (MALDI-TOF). Our results reiterate that the TTX found in puffer fish was likely produced by the associated bacteria and TTX are widely produced amongst a diversity of bacterial species.

  7. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  8. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    OpenAIRE

    Muriel eAldunate; Daniela eSrbinovski; Anna C Hearps; Latham, Catherine F.; Paul A Ramsland; Raffi eGugasyan; Cone, Richard A.; Gilda eTachedjian

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis...

  9. Incorporation of (14)C-cholesterol in human adrenal corticocarcinoma H295R cell line and online-radiodetection of produced (14)C-steroid hormone metabolites

    DEFF Research Database (Denmark)

    Abdel-Khalik, Jonas; Björklund, Erland; Nielsen, Frederik Knud

    2017-01-01

    of steroid hormones was estimated. Multiple radiolabeled steroid hormones were identified by means of analytical standards and UV (ultraviolet) co-chromatography, though the elucidation of multiple metabolites remains unresolved. Although online radiodetection proved to suffer from suboptimal sensitivity...

  10. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Science.gov (United States)

    Yang, Xiaojian; Brisbin, Jennifer; Yu, Hai; Wang, Qi; Yin, Fugui; Zhang, Yonggang; Sabour, Parviz; Sharif, Shayan; Gong, Joshua

    2014-01-01

    Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB) isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0) and high bile salt (0.3-1.5%) and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7) CFU/chick) or phosphate-buffered saline (PBS) at 1 day of age followed by Salmonella challenge (10(4) CFU/chick) next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1). These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures) were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10) in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in vivo can be one of the strategies for controlling Salmonella infection in chickens.

  11. Behavior of freezable bound water in the bacterial cellulose produced by Acetobacter xylinum: an approach using thermoporosimetry.

    Science.gov (United States)

    Kaewnopparat, Sanae; Sansernluk, Kamonlawat; Faroongsarng, Damrongsak

    2008-01-01

    The aim of the study is to examine thermal behavior of water within reticulated structure of bacterial cellulose (BC) films by sub-ambient differential scanning calorimetry (DSC). BC films with different carbon source, either manitol (BC (a)) or glycerol (BC (b)), were produced by Acetobacter xylinum using Hestrin and Shramm culture medium under static condition at 30 +/- 0.2 degrees C for 3 days. BC samples were characterized by electron scanning microscopy and X-ray diffraction spectroscopy. The pore analysis was done by B.H.J. nitrogen adsorption. The pre-treated with 100% relative humidity, at 30.0 +/- 0.2 degrees C for 7 days samples were subjected to a between 25 and -150 degrees C-cooling-heating cycle of DSC at 5.00 degrees C/min rate. The pre-treated samples were also hydrated by adding 1 mul of water and thermally run with identical conditions. It is observed that cellulose fibrils of BC (a) were thinner and reticulated to form slightly smaller porosity than those of BC (b). They exhibited slightly but non-significantly different crystalline features. The freezable bound water behaved as a water confinement within pores rather than a solvent of polymer which is possible to use thermoporosimetry based on Gibb-Thomson equation to approach pore structure of BC. In comparison with nitrogen adsorption, it was found that thermoporosimetry underestimated the BC porosity, i.e., the mean diameters of 23.0 nm vs. 27.8 nm and 27.9 nm vs. 33.9 nm for BC (a) and BC (b), respectively, by thermoporosimetry vs. B.H.J. nitrogen adsorption. It may be due to large non-freezable water fraction interacting with cellulose, and the validity of pore range based on thermodynamic assumptions of Gibb-Thomson theory.

  12. Characterization of geographically distinct bacterial communities associated with coral mucus produced by Acropora spp. and Porites spp.

    Science.gov (United States)

    McKew, B A; Dumbrell, A J; Daud, S D; Hepburn, L; Thorpe, E; Mogensen, L; Whitby, C

    2012-08-01

    Acropora and Porites corals are important reef builders in the Indo-Pacific and Caribbean. Bacteria associated with mucus produced by Porites spp. and Acropora spp. from Caribbean (Punta Maroma, Mexico) and Indo-Pacific (Hoga and Sampela, Indonesia) reefs were determined. Analysis of pyrosequencing libraries showed that bacterial communities from Caribbean corals were significantly more diverse (H', 3.18 to 4.25) than their Indonesian counterparts (H', 2.54 to 3.25). Dominant taxa were Gammaproteobacteria, Alphaproteobacteria, Firmicutes, and Cyanobacteria, which varied in relative abundance between coral genera and region. Distinct coral host-specific communities were also found; for example, Clostridiales were dominant on Acropora spp. (at Hoga and the Mexican Caribbean) compared to Porites spp. and seawater. Within the Gammproteobacteria, Halomonas spp. dominated sequence libraries from Porites spp. (49%) and Acropora spp. (5.6%) from the Mexican Caribbean, compared to the corresponding Indonesian coral libraries (<2%). Interestingly, with the exception of Porites spp. from the Mexican Caribbean, there was also a ubiquity of Psychrobacter spp., which dominated Acropora and Porites libraries from Indonesia and Acropora libraries from the Caribbean. In conclusion, there was a dominance of Halomonas spp. (associated with Acropora and Porites [Mexican Caribbean]), Firmicutes (associated with Acropora [Mexican Caribbean] and with Acropora and Porites [Hoga]), and Cyanobacteria (associated with Acropora and Porites [Hoga] and Porites [Sampela]). This is also the first report describing geographically distinct Psychrobacter spp. associated with coral mucus. In addition, the predominance of Clostridiales associated with Acropora spp. provided additional evidence for coral host-specific microorganisms.

  13. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar Typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances.

    Science.gov (United States)

    Wang, Rong; Kalchayanand, Norasak; Schmidt, John W; Harhay, Dayna M

    2013-09-01

    Shiga toxin-producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their planktonic counterparts, so these foodborne pathogens in biofilms pose a serious food safety concern. We investigated how the coexistence of E. coli O157:H7 and Salmonella Typhimurium strains would affect bacterial planktonic growth competition and mixed biofilm composition. Furthermore, we also investigated how mixed biofilm formation would affect bacterial resistance to common sanitizers. Salmonella Typhimurium strains were able to outcompete E. coli strains in the planktonic growth phase; however, mixed biofilm development was highly dependent upon companion strain properties in terms of the expression of bacterial extracellular polymeric substances (EPS), including curli fimbriae and exopolysaccharide cellulose. The EPS-producing strains with higher biofilm-forming abilities were able to establish themselves in mixed biofilms more efficiently. In comparison to single-strain biofilms, Salmonella or E. coli strains with negative EPS expression obtained significantly enhanced resistance to sanitization by forming mixed biofilms with an EPS-producing companion strain of the other species. These observations indicate that the bacterial EPS components not only enhance the sanitizer resistance of the EPS-producing strains but also render protections to their companion strains, regardless of species, in mixed biofilms. Our study highlights the potential risk of cross-contamination by multispecies biofilms in food safety and the need for increased attention to proper sanitization practices in food processing facilities.

  14. Selected lactic acid-producing bacterial isolates with the capacity to reduce Salmonella translocation and virulence gene expression in chickens.

    Directory of Open Access Journals (Sweden)

    Xiaojian Yang

    Full Text Available BACKGROUND: Probiotics have been used to control Salmonella colonization/infection in chickens. Yet the mechanisms of probiotic effects are not fully understood. This study has characterized our previously-selected lactic acid-producing bacterial (LAB isolates for controlling Salmonella infection in chickens, particularly the mechanism underlying the control. METHODOLOGY/PRINCIPAL FINDINGS: In vitro studies were conducted to characterize 14 LAB isolates for their tolerance to low pH (2.0 and high bile salt (0.3-1.5% and susceptibility to antibiotics. Three chicken infection trials were subsequently carried out to evaluate four of the isolates for reducing the burden of Salmonella enterica serovar Typhimurium in the broiler cecum. Chicks were gavaged with LAB cultures (10(6-7 CFU/chick or phosphate-buffered saline (PBS at 1 day of age followed by Salmonella challenge (10(4 CFU/chick next day. Samples of cecal digesta, spleen, and liver were examined for Salmonella counts on days 1, 3, or 4 post-challenge. Salmonella in the cecum from Trial 3 was also assessed for the expression of ten virulence genes located in its pathogenicity island-1 (SPI-1. These genes play a role in Salmonella intestinal invasion. Tested LAB isolates (individuals or mixed cultures were unable to lower Salmonella burden in the chicken cecum, but able to attenuate Salmonella infection in the spleen and liver. The LAB treatments also reduced almost all SPI-1 virulence gene expression (9 out of 10 in the chicken cecum, particularly at the low dose. In vitro treatment with the extracellular culture fluid from a LAB culture also down-regulated most SPI-1 virulence gene expression. CONCLUSIONS/SIGNIFICANCE: The possible correlation between attenuation of Salmonella infection in the chicken spleen and liver and reduction of Salmonella SPI-1 virulence gene expression in the chicken cecum by LAB isolates is a new observation. Suppression of Salmonella virulence gene expression in

  15. Development and Validation of a Fast and Optimized Screening Method for Enhanced Production of Secondary Metabolites Using the Marine Scopulariopsis brevicaulis Strain LF580 Producing Anti-Cancer Active Scopularide A and B

    OpenAIRE

    Kramer, Annemarie; Paun, Linda; Imhoff, Johannes F.; Kempken, Frank; Labes, Antje

    2014-01-01

    Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF...

  16. Aspergillus piperis A/5 from plum-distilling waste compost produces a complex of antifungal metabolites active against the phytopathogen Pythium aphanidermatum

    Directory of Open Access Journals (Sweden)

    Jovičić-Petrović Jelena

    2016-01-01

    Full Text Available Adding compost to soil can result in plant disease suppression through the mechanisms of antagonistic action of compost microflora against plant pathogens. The aim of the study was to select effective antagonists of Pythium aphanidermatum from compost, to assess the effect of its extracellular metabolites on the plant pathogen, and to characterize antifungal metabolites. The fungal isolate selected by a confrontation test was identified as Aspergillus piperis A/5 on the basis of morphological features and the internal transcribed spacer (ITS region, β-tubulin and calmodulin partial sequences. Liquid chromatography-mass spectroscopy (LC-MS analysis showed that gluconic and citric acid were the most abundant in the organic culture extract. However, the main antifungal activity was contained in the aqueous phase remaining after the organic solvent extraction. The presence of considerable amounts of proteins in both the crude culture extract as well as the aqueous phase remaining after solvent extraction was confirmed by SDS-PAGE. Isolated Aspergillus piperis A/5 exhibits strong antifungal activity against the phytopathogen Pythium aphanidermatum. It secretes a complex mixture of metabolites consisting of small molecules, including gluconic acid, citric acid and itaconic acid derivatives, but the most potent antifungal activity was associated with proteins resistant to heat and organic solvents. Our findings about the activity and characterization of antagonistic strain metabolites contribute to the understanding of the mechanism of interaction of antifungal metabolites as well as fungal-fungal interaction. The obtained results provide a basis for further application development in agriculture and food processing. [Projekat Ministarstva nauke Republike Srbije, br. TR31080 i br. ON173048, i EU Commission project AREA, br.316004

  17. Panamanian frog species host unique skin bacterial communities

    Directory of Open Access Journals (Sweden)

    Lisa K. Belden

    2015-10-01

    Full Text Available Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd, that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26% were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in

  18. Identification and characterization of an anaerobic ethanol-producing cellulolytic bacterial consortium from Great Basin hot springs with agricultural residues and energy crops.

    Science.gov (United States)

    Zhao, Chao; Deng, Yunjin; Wang, Xingna; Li, Qiuzhe; Huang, Yifan; Liu, Bin

    2014-09-01

    In order to obtain the cellulolytic bacterial consortia, sediments from Great Basin hot springs (Nevada, USA) were sampled and enriched with cellulosic biomass as the sole carbon source. The bacterial composition of the resulting anaerobic ethanol-producing celluloytic bacterial consortium, named SV79, was analyzed. With methods of the full-length 16S rRNA librarybased analysis and denaturing gradient gel electrophoresis, 21 bacteria belonging to eight genera were detected from this consortium. Clones with closest relation to the genera Acetivibrio, Clostridium, Cellulosilyticum, Ruminococcus, and Sporomusa were predominant. The cellulase activities and ethanol productions of consortium SV79 using different agricultural residues (sugarcane bagasse and spent mushroom substrate) and energy crops (Spartina anglica, Miscanthus floridulus, and Pennisetum sinese Roxb) were studied. During cultivation, consortium SV79 produced the maximum filter paper activity (FPase, 9.41 U/ml), carboxymethylcellulase activity (CMCase, 6.35 U/ml), and xylanase activity (4.28 U/ml) with sugarcane bagasse, spent mushroom substrate, and S. anglica, respectively. The ethanol production using M. floridulus as substrate was up to 2.63 mM ethanol/g using gas chromatography analysis. It has high potential to be a new candidate for producing ethanol with cellulosic biomass under anoxic conditions in natural environments.

  19. An HPLC-MS characterization of the changes in sweet orange leaf metabolite profile following infection by the bacterial pathogen Candidatus Liberibacter asiaticus.

    Directory of Open Access Journals (Sweden)

    Faraj M Hijaz

    Full Text Available Huanglongbing (HLB presumably caused by Candidatus Liberibacter asiaticus (CLas threatens the commercial U.S. citrus crop of an annual value of $3 billion. The earliest shift in metabolite profiles of leaves from greenhouse-grown sweet orange trees infected with Clas, and of healthy leaves, was characterized by HPLC-MS concurrently with PCR testing for the presence of Clas bacteria and observation of disease symptoms. Twenty, 8-month-old 'Valencia' and 'Hamlin' trees were grafted with budwood from PCR-positive HLB source trees. Five graft-inoculated trees of each variety and three control trees were sampled biweekly and analyzed by HPLC-MS and PCR. Thirteen weeks after inoculation, Clas was detected in newly growing flushes in 33% and 55% of the inoculated 'Hamlin' and 'Valencia' trees, respectively. Inoculated trees remained asymptomatic in the first 20 weeks, but developed symptoms 30 weeks after grafting. No significant differences in the leaf metabolite profiles were detected in Clas-infected trees 23 weeks after inoculation. However, 27 weeks after inoculation, differences in metabolite profiles between control leaves and those of Clas-infected trees were evident. Affected compounds were identified with authentic standards or structurally classified by their UV and mass spectra. Included among these compounds are flavonoid glycosides, polymethoxylated flavones, and hydroxycinnamates. Four structurally related hydroxycinnamate compounds increased more than 10-fold in leaves from 'Hamlin' and 'Valencia' sweet orange trees in response to Clas infection. Possible roles of these hydroxycinnamates as plant defense compounds against the Clas infection are discussed.

  20. Interactions between amphibians' symbiotic bacteria cause the production of emergent anti-fungal metabolites.

    Science.gov (United States)

    Loudon, Andrew H; Holland, Jessica A; Umile, Thomas P; Burzynski, Elizabeth A; Minbiole, Kevin P C; Harris, Reid N

    2014-01-01

    Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd). Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola) from red-backed salamanders (Plethodon cinereus) and cultured isolates both alone and together to collect their cell-free supernatants (CFS). We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: (1) CFSs of single isolates; (2) combined CFSs of two isolates; and (3) CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection against Bd.

  1. Interactions between amphibians’ symbiotic bacteria cause the production of emergent anti-fungal metabolites

    Directory of Open Access Journals (Sweden)

    Andrew Howard Loudon

    2014-08-01

    Full Text Available Amphibians possess beneficial skin bacteria that protect against the disease chytridiomycosis by producing secondary metabolites that inhibit the pathogen Batrachochytrium dendrobatidis (Bd. Metabolite production may be a mechanism of competition between bacterial species that results in host protection as a by-product. We expect that some co-cultures of bacterial species or strains will result in greater Bd inhibition than mono-cultures. To test this, we cultured four bacterial isolates (Bacillus sp., Janthinobacterium sp., Pseudomonas sp. and Chitinophaga arvensicola from red-backed salamanders (Plethodon cinereus and cultured isolates both alone and together to collect their cell-free supernatants (CFS. We challenged Bd with CFSs from four bacterial species in varying combinations. This resulted in three experimental treatments: 1 CFSs of single isolates; 2 combined CFSs of two isolates; and 3 CFSs from co-cultures. Pair-wise combinations of four bacterial isolates CFSs were assayed against Bd and revealed additive Bd inhibition in 42.2% of trials, synergistic inhibition in 42.2% and no effect in 16.6% of trials. When bacteria isolates were grown in co-cultures, complete Bd inhibition was generally observed, and synergistic inhibition occurred in four out of six trials. A metabolite profile of the most potent co-culture, Bacillus sp. and Chitinophaga arvensicola, was determined with LC-MS and compared with the profiles of each isolate in mono-culture. Emergent metabolites appearing in the co-culture were inhibitory to Bd, and the most potent inhibitor was identified as tryptophol. Thus mono-cultures of bacteria cultured from red-backed salamanders interacted synergistically and additively to inhibit Bd, and such bacteria produced emergent metabolites when cultured together, with even greater pathogen inhibition. Knowledge of how bacterial species interact to inhibit Bd can be used to select probiotics to provide amphibians with protection

  2. Large scale MALDI-TOF MS based taxa identification to identify novel pigment producers in a marine bacterial culture collection.

    Science.gov (United States)

    Stafsnes, Marit H; Dybwad, Marius; Brunsvik, Anders; Bruheim, Per

    2013-03-01

    A challenge in the rational exploitation of microbial culture collections is to avoid superfluous testing of replicas. MALDI-TOF MS has been shown to be an efficient dereplication tool as it can be used to discriminate between bacterial isolates at the species level. A bacterial culture collection of more than 10,000 heterotrophic marine bacterial isolates from sea-water surface layers of the Norwegian Trondheimsfjord and neighbouring coastal areas has been established. A sub-collection of pigmented isolates was earlier screened for novel carotenoids with UVA-Blue light absorbing properties. This was a comprehensive analytical task and it was observed that a significant number of extracts with identical pigment profile were recovered. Hence, this study was undertaken to explore the use of MALDI-TOF MS as a dereplication tool to quickly characterize the bacterial collection. Furthermore, LC-DAD-MS analysis of pigment profiles was performed to check if pigment profile diversity was maintained among isolates kept after the potential MALDI-TOF MS selection step. Four hundred isolates comprising both pigmented and non-pigmented isolates were used for this study. The resulting MALDI-TOF MS dendrogram clearly identified a diversity of different taxa and these were supported by the pigment profile clustering, thus linking the pigment production as species-specific properties. Although one exception was found, it can be concluded that MALDI-TOF MS dereplication is a promising pre-screening tool for more efficient screening of microbial culture collection containing pigments with potential novel properties.

  3. How do marine bacteria produce light, why are they luminescent, and can we employ bacterial bioluminescence in aquatic biotechnology?

    OpenAIRE

    Grzegorz Wêgrzyn; Agata Czy¿

    2002-01-01

    Bioluminescence, the phenomenon of light production by living organisms, occurs in forms of life as various as bacteria, fungi and animals. Nevertheless, light-emitting bacteria are the most abundant and widespread of luminescent organisms. Interestingly, most species of such bacteria live in marine environments. In this article, the biochemical mechanism of bacterial luminescence and its genetic regulation are summarized. Although the biochemistry and genetics of light emission by cel...

  4. Isolation and identification of 1,23-dihydroxyl-24,25,26,27-tetranorvitamin D/sub 3/, a new metabolite of 1,25-dihydroxyvitamin D/sub 3/ produced in rat kidney

    Energy Technology Data Exchange (ETDEWEB)

    Reddy, G.S.; Tserng, K.Y.; Thomas, B.R.; Dayal, R.; Norman, A.W.

    1987-01-13

    A new metabolite of vitamin D/sub 3/ was produced in vitro by perfusing rat kidneys with 1,25-dihydroxyvitamin D/sub 3/ (4 x 10/sup -6/M). It was isolated and purified from the lipid extract of the kidney perfusate by high-performance liquid chromatography. By means of ultraviolet absorption spectrophotometry, mass spectrometry, chemical derivatization, and chemical synthesis, the new metabolite was identified as 1,23-dihydroxy-24,25,26,27-tetranorvitamin D/sub 3/. Along with the new metabolite, three other previously identified metabolites, namely, 1,24,25-trihydroxyvitamin D/sub 3/, 1,25-dihydroxy-24-oxovitamin D/sub 3/, and 1,23,25-trihydroxy-24-oxovitamin D/sub 3/, were also isolated. The new metabolite was also formed when 1,23,25-trihydroxy-24-oxovitamin D/sub 3/ was used as the substrate. Thus, the new metabolite fits into the following metabolic pathway: 1,25-dihydroxyvitamin D/sub 3/ ..-->.. 1,24 (R),25-trihydroxyvitamin D/sub 3/ ..-->.. 1,25-dihydroxy-24-oxovitamin D/sub 3/ ..-->.. 1,23,25-trihydroxy-24-oxovitamin D/sub 3/ ..-->.. 1,23-dihydroxy-24,25,26,27-tetranorvitamin D/sub 3/. Further, they used 1..cap alpha..,25-dihydroxy(1..beta..-/sup 3/H)vitamin D/sub 3/ in the kidney perfusion system and demonstrated 1,23-dihydroxy-24,25,26,27-tetranorvitamin D/sub 3/ as the major further metabolite of 1,25-dihydroxyvitamin D/sub 3/, circulating in the final perfusate when kidneys were perfused with 1,25-dihydroxyvitamin D/sub 3/. The biological activity of 1,23-dihydroxy-24,25,26,27-tetranorvitamin D/sub 3/ (C-23 alcohol) and its metabolic relationship to 1-hydroxy-23-carboxy-24,25,26,27-tetranorvitamin D/sub 3/ are unknown and are presently undergoing investigation.

  5. Metabolomic tools for secondary metabolite discovery from marine microbial symbionts.

    Science.gov (United States)

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Martinez, Ignacio Juarez; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadam; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-06-05

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  6. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

    Directory of Open Access Journals (Sweden)

    Lynsey Macintyre

    2014-06-01

    Full Text Available Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS and nuclear magnetic resonance (NMR spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening.

  7. Metabolism links bacterial biofilms and colon carcinogenesis.

    Science.gov (United States)

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-02

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  8. Metabolism links bacterial biofilms and colon carcinogenesis

    Science.gov (United States)

    Johnson, Caroline H.; Dejea, Christine M.; Edler, David; Hoang, Linh T.; Santidrian, Antonio F.; Felding, Brunhilde H.; Cho, Kevin; Wick, Elizabeth C.; Hechenbleikner, Elizabeth M.; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A.; Pardoll, Drew M.; White, James R.; Patti, Gary J.; Sears, Cynthia L.; Siuzdak, Gary

    2015-01-01

    SUMMARY Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N1, N12-diacetylspermine in both biofilm positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N1, N12-diacetylspermine levels to those seen in biofilm negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome, to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression. PMID:25959674

  9. A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in China.

    Science.gov (United States)

    Wang, Chao; Han, Hongyan; Gu, Xueying; Yu, Zhu; Nishino, Naoki

    2014-01-01

    To evaluate the current practice of corn silage management in China, samples of bunker-made silage were collected from 14 farms within a 500-km radius of Beijing for the analysis of fermentation products and bacterial communities. Mean values for dry matter (DM) content were as low as 250 g/kg in both corn stover (St) and whole crop corn (Wc) silages, and pH values averaged 4.48 and 3.73, respectively. Only three of the 14 silages exhibited a lactic-to-acetic acid ratio > 1.0, indicating that the presence of acetic acid was predominant in fermentation. Although 1,2-propanediol content was marginal in most cases ( 25 g/kg DM. In contrast, 3 St silages had large amounts (> 10 g/kg DM) of butyric acid, and two of the three butyrate silages also had high concentrations of 1-propanol. Denaturing gradient gel electrophoresis analysis demonstrated that the bacterial community appeared similar in 10 out of the 14 silage samples. Bands indicating Lactobacillus buchneri, L. acetotolerans and Acetobacter pasteurianus were found in both the St and Wc silages, accounting for the high acetic acid content found across silage samples. © 2013 Japanese Society of Animal Science.

  10. Metabolism of DMSP, DMS and DMSO by the cultivable bacterial community associated with the DMSP-producing dinoflagellate Scrippsiella trochoidea

    Digital Repository Service at National Institute of Oceanography (India)

    Hatton, A.D.; Shenoy, D.M.; Hart, M.C.; Mogg, A.; Green, D.H.

    ) and dimethylsulfoxide (DMSO). Results demonstrate that of the cultivable bacteria only alpha-Proteobacteria were capable of producing DMS from DMSP. The concentration of DMSP was shown to affect the amount of DMS produced. Lower DMSP concentrations (1.5 mu mol dm sup(-3...

  11. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht

    2010-01-01

    We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites....... In the context of MEOR modeling, a novel approach is partitioning of metabolites between the oil and the water phases. The partitioning is determined by a distribution coefficient. The transfer part of the metabolite to oil phase is equivalent to its "disappearance", so that the total effect from of metabolite...... in the water phase is reduced. The metabolite produced is surfactant reducing oil–water interfacial tension, which results in oil mobilization. The reduction of interfacial tension is implemented through relative permeability curve modifications primarily by lowering residual oil saturation...

  12. Properties of a new gasoline oxygenate blend component: 3-Hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shen Yu.; Wang, Zhen; Liu, Ming Ming; Zhang, Xiao Jun [Multidisciplinary Research Center, Shantou University, Shantou 515063, Guangdong (China); Xu, Yu. [Oilcare Oil Test Laboratory of China National Analytical Center, 6th Floor, Building 34, No. 100, Xian Lie Zhong Road, Guangzhou 510000 (China); Chen, Guo-Qiang [Dept Biological Sciences and Biotechnology, School of Life Science, Tsinghua University, Beijing 100084 (China)

    2010-08-15

    3-Hydroxybutyrate methyl ester (HBME) was prepared from hydrolysis of bacterial poly-3-hydroxybutyrate (PHB) using methanol as an esterification agent in the presence of sulfuric acid. Physicochemical and fuel related properties of HBME were studied for the possibility of using HBME as a gasoline additive. When HBME was blended with 97 gasoline in volume ratios of 5%, 8.5%, 10%, 15% and 20%, respectively, it was found that HBME had similar or better properties as a fuel additive compared with ethanol in terms of oxygen content, dynamic viscosity, flash point and boiling point. The blending of HBME and gasoline showed only little difference compared with the 97 gasoline in terms of octane number (RON) and distillation ranges, especially for the HBME 8.5% and 10% blends, which demonstrated an over 93% combustion heat of gasoline with less than 5% reduction in RON. (author)

  13. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis.

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C; Latham, Catherine F; Ramsland, Paul A; Gugasyan, Raffi; Cone, Richard A; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  14. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Science.gov (United States)

    Aldunate, Muriel; Srbinovski, Daniela; Hearps, Anna C.; Latham, Catherine F.; Ramsland, Paul A.; Gugasyan, Raffi; Cone, Richard A.; Tachedjian, Gilda

    2015-01-01

    Lactic acid and short chain fatty acids (SCFAs) produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV), a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate, and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs) including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV) or dysbiosis (BV), their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs. PMID:26082720

  15. Antimicrobial and immune modulatory effects of lactic acid and short chain fatty acids produced by vaginal microbiota associated with eubiosis and bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Muriel eAldunate

    2015-06-01

    Full Text Available Lactic acid and short chain fatty acids (SCFAs produced by vaginal microbiota have reported antimicrobial and immune modulatory activities indicating their potential as biomarkers of disease and/or disease susceptibility. In asymptomatic women of reproductive-age the vaginal microbiota is comprised of lactic acid-producing bacteria that are primarily responsible for the production of lactic acid present at ~110 mM and acidifying the vaginal milieu to pH ~3.5. In contrast, bacterial vaginosis (BV, a dysbiosis of the vaginal microbiota, is characterized by decreased lactic acid-producing microbiota and increased diverse anaerobic bacteria accompanied by an elevated pH>4.5. BV is also characterized by a dramatic loss of lactic acid and greater concentrations of mixed SCFAs including acetate, propionate, butyrate and succinate. Notably women with lactic acid-producing microbiota have more favorable reproductive and sexual health outcomes compared to women with BV. Regarding the latter, BV is associated with increased susceptibility to sexually transmitted infections (STIs including HIV. In vitro studies demonstrate that lactic acid produced by vaginal microbiota has microbicidal and virucidal activities that may protect against STIs and endogenous opportunistic bacteria as well as immune modulatory properties that require further characterization with regard to their effects on the vaginal mucosa. In contrast, BV-associated SCFAs have far less antimicrobial activity with the potential to contribute to a pro-inflammatory vaginal environment. Here we review the composition of lactic acid and SCFAs in respective states of eubiosis (non-BV or dysbiosis (BV, their effects on susceptibility to bacterial/viral STIs and whether they have inherent microbicidal/virucidal and immune modulatory properties. We also explore their potential as biomarkers for the presence and/or increased susceptibility to STIs.

  16. Characterization of N-acyl homoserine lactones (AHLs) producing bacteria isolated from vacuum-packaged refrigerated turbot (Scophthalmus maximus) and possible influence of exogenous AHLs on bacterial phenotype.

    Science.gov (United States)

    Zhang, Caili; Zhu, Suqin; Jatt, Abdul-Nabi; Zeng, Mingyong

    2016-01-01

    Quorum sensing (QS) is a cell-to-cell communication mechanism through which microbial cells communicate and regulate their wide variety of biological activities. N-acyl homoserine lactones (AHLs) are considered to be the most important QS signaling molecules produced by several Gram-negative bacteria. The present study aimed to screen the AHLs-producing bacteria from spoiled vacuum-packaged refrigerated turbot (Scophthalmus maximus) by biosensor assays, and the profiles of AHLs produced by these bacteria were determined using reversed-phase thin-layer chromatography (RP-TLC) and gas chromatography-mass spectrometry (GC-MS). Effects of exogenous AHLs and QS inhibitor (QSI) on the phenotypes (i.e., extracellular proteolytic activity and biofilm formation) of the AHLs-producing bacteria were also evaluated. Our results demonstrated that eight out of twenty-two isolates were found to produce AHLs. Three of the AHLs-producing isolates were identified as Serratia sp., and the other five were found to belong to the family of Aeromonas. Two isolates (i.e., S. liquefaciens A2 and A. sobria B1) with higher AHLs-producing activities were selected for further studies. Mainly, RP-TLC and GC-MS analysis revealed three AHLs, i.e., 3-oxo-C6-HSL, C8-HSL and C10-HSL were produced by S. liquefaciens A2, while five AHLs, i.e., C4-HSL, C6-HSL, C8-HSL, C10-HSL, and C12-HSL, were produced by A. sobria B1. Moreover, production of AHLs in both bacterial strains were found to be density-dependent, and the AHLs activity reached a maximum level in their middle logarithmic phase and decreased in the stationary phase. The addition of exogenous AHLs and QSI decreased the specific protease activity both of the Serratia A2 and Aeromonas B1. Exogenous AHLs inhibited the biofilm formation of Serratia A2 while it enhanced the biofilm formation in Aeromonas B1. QSI inhibited the specific protease activity and biofilm formation in both bacterial strains.

  17. Feeding of different levels of metabolite combinations produced by Lactobacillus plantarum on growth performance, fecal microflora, volatile fatty acids and villi height in broilers.

    Science.gov (United States)

    Loh, Teck C; Thanh, Nguyen T; Foo, Hooi L; Hair-Bejo, Mohd; Azhar, Bin K

    2010-04-01

    The effects of feeding different dosages of metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456) on the performance of broiler chickens was studied. A total of 504 male Ross broilers were grouped into 7 treatments and offered different diets: (i) standard corn-soybean based diet (negative control); (ii) standard corn-soybean based diet +100 ppm neomycin and oxytetracycline (positive control); (iii) standard corn-soybean based diet + 0.1% metabolite combination of L. plantarum RS5, RI11, RG14 and RG11 strains (Com3456); (iv) standard corn-soybean based diet + 0.2% of Com3456; (v) standard corn-soybean based diet + 0.3% of Com3456 (vi) standard corn-soybean based diet + 0.4% of Com3456 and (vii) standard corn-soybean based diet + 0.5% of Com3456. Supplementation of Com3456 with different dosages improved growth performance, reduced Enterobacteriaceae and increased lactic acid bacteria count, and increased villi height of small intestine and fecal volatile fatty acid concentration. Treatment with 0.4% and 0.2% Com3456 had the best results, especially in terms of growth performance, feed conversion ratio and villi height among other dosages. However, the dosage of 0.2% was recommended due to its lower concentration yielding a similar effect as 0.4% supplementation. These results indicate that 0.2% is an optimum level to be included in the diets of broiler in order to replace antibiotic growth promoters.

  18. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Morphine metabolites

    DEFF Research Database (Denmark)

    Christrup, Lona Louring

    1997-01-01

    , morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G) are the major metabolites of morphine. The metabolism of morphine occurs not only in the liver, but may also take place in the brain and the kidneys. The glucuronides are mainly eliminated via bile and urine. Glucuronides as a rule...

  20. Studies on Siderophore and Pigment Produced by an Adhered Bacterial Strain Halobacillus trueperi MXM-16 from the Mangrove Ecosystem of Goa, India.

    Science.gov (United States)

    Kharangate-Lad, Amrita; Bhosle, Saroj

    2016-12-01

    Mangroves are unique ecosystems in the coastal tropical and subtropical regions of the Earth. The fluctuation in salinity due to tidal action results in a prolific population of adhered halophilic and halotolerant bacteria in this ecosystem. In this study, a pigment producing adhered bacterial strain Halobacillus trueperi MXM-16 was isolated from mangrove plant litter of Goa. This strain was moderately halophilic, Gram positive rod, catalase positive and capable of utilizing sodium benzoate as a source of carbon. H. trueperi MXM-16, produced a siderophore that was hydroxamate in nature. The non-diffusible yellow pigment was a carotenoid and HPLC studies revealed a peak that was indicative of astaxanthin as one of the component. Further studies on the pigment exhibited its ability to chelate iron from the chrome azurol sulphonate medium behaving as an additional mechanism for iron acquisition.

  1. Nitrogen and energy balance in growing mink (Mustela vison) fed different levels of bacterial protein meal produced with natural gas

    DEFF Research Database (Denmark)

    Hellwing, Anne Louise Frydendahl; Tauson, Anne-Helene; Ahlstrøm, Øystein

    2005-01-01

    The objective of this study was to estimate the effect of increasing the dietary content of bacterial protein meal (BPM) on energy and protein metabolism in growing mink kits. Sixteen male mink kits of the standard brown genotype were randomly fed one of four diets: A control (Diet III) and 60......% (Diet IV) of the digested nitrogen (DN) was replaced with BPM. Nitrogen balance and respiration experiments (indirect calorimetry) were carried out when the animals were approximately 9.5, 14.5, 17.5, 23.5 and 28.5 weeks of age. The apparent digestibility of crude protein and energy decreased...... significantly with increasing dietary BPM. The retained nitrogen was 0.45, 0.54, 0.52 and 0.40 g/kg0,75 on Diets I, II, III and IV, respectively, the observed differences between diets being non-significant (p=0.06). Heat production (HE) was between 645 and 665 kJ/kg0.75 on all diets (p=0.78). retained energy...

  2. Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov.

    Science.gov (United States)

    Ambrožič Avguštin, Jerneja; Žgur Bertok, Darja; Kostanjšek, Rok; Avguštin, Gorazd

    2013-04-01

    A bacterial strain designated JA-1, related to Janthinobacterium lividum, was isolated from glacier ice samples from the island Spitsbergen in the Arctic. The strain was tested for phenotypic traits and the most prominent appeared to be the dark red brown to black pigmentation different from the violet pigment of Janthinobacterium, Chromobacterium and Iodobacter. Phylogenetic analysis based on 16S rRNA gene sequences and DNA-DNA hybridization tests showed that strain JA-1 belongs to the genus Janthinobacterium but represents a novel lineage distinct from the two known species of this genus, J. lividum and Janthinobacterium agaricidamnosum. The DNA G + C content of strain JA-1 was determined to be 62.3 mol %. The isolate is a psychrotrophic Gram negative bacterium, rod-shaped with rounded ends, containing intracellular inclusions and one polar flagellum. On the basis of the presented results strain JA-1 is proposed as the type strain of a novel species of the genus Janthinobacterium, for which the name Janthinobacterium svalbardensis sp. nov. is proposed (JA-1(T) = DSM 25734, ZIM B637).

  3. Endocytosis-inducer adhesins produced by enteropathogenic serogroups of Escherichia coli participate on bacterial attachment to infant enterocytes

    Directory of Open Access Journals (Sweden)

    João Ramos Costa Andrade

    1987-03-01

    Full Text Available Enteropathogenic E. coli (EPEC infection of Hep-2 cells preoceeds through bacterial attachment to cell surface and internalization of adhered bacteria. EPEC attachment is a prerequisite for cell infection and is mediated by adhesins that recognize carbohydrate-containing receptors on cell membrane. Such endocytosis-inducer adhesins (EIA also promote EPEC binding to infant enterocytes, suggesting that EIA may have an important role on EPEC gastroenteritis.A infecção de células Hep-2 por E. coli enteropatogênicas (ECEP implica na aderência bacteriana e posterior interiorização dos microrganismos aderidos por um mecanismo de endocitose. A aderência das ECEP é pré-requisito para a infecção e é mediada por adesinas que reconhecem receptores inibidos por certas oses na membrana celular. Tais "adesinas indutoras da endocitose" (AIE também promovem a ligação bacteriana a enterócitos obtidos do intestino delgado de lactente, sugerindo que as AIE possam desempenhar algum papel nas diarréias causadas por ECEP.

  4. Shiga toxin-producing Escherichia coli and rectoanal junction persistence in ruminants: a study of bacterial-epithelial interactions.

    Science.gov (United States)

    Escherichia coli O157:H7 (O157) was the first Shiga toxin-producing E. coli serotype to be associated with bloody diarrhea or hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS) in humans. It has since been implicated in several outbreaks in the U.S. and globally. Non-O157 STEC have not bee...

  5. Diversity and dynamics of bacterial populations during spontaneous sorghum fermentations used to produce ting, a South African food.

    Science.gov (United States)

    Madoroba, Evelyn; Steenkamp, Emma T; Theron, Jacques; Scheirlinck, Ilse; Cloete, T Eugene; Huys, Geert

    2011-05-01

    Ting is a spontaneously fermented sorghum food that is popular for its sour taste and unique flavour. Insight of the microbial diversity and population dynamics during sorghum fermentations is an essential component of the development of starter cultures for commercial production of ting. In this study, bacterial populations associated with spontaneous sorghum fermentations were examined using a culture-independent strategy based on denaturing gradient gel electrophoresis and sequence analysis of V3-16S rRNA gene amplicons, and a culture-dependent strategy using conventional isolation based on culturing followed by 16S rRNA and/or pheS gene sequence analysis. The entire fermentation process was monitored over a 54 h period and two phases were observed with respect to pH evolution and microbial succession. The first phase of the process (0-6h) was characterized by relatively high pH conditions and the presence of Enterococcus mundtii, albeit that this species was only detected with the culture-dependent approach. The second phase of the fermentation process (12-54 h) was characterized by increased acidity and the predominance of a broader range of lactic acid bacteria, including Lactococcus lactis, Lactobacillus fermentum, Lactobacillus plantarum, Lactobacillus rhamnosus, Weissella cibaria, Enterococcus faecalis, and a close relative of Lactobacillus curvatus, as well as some members of the Enterobacteriaceae family. The Lb. curvatus-like species was only detected with PCR-DGGE, while the majority of the other species was only detected using the culture-dependent approach. These findings highlighted the fact that a combination of both approaches was essential in revealing the microbial diversity and dynamics during spontaneous sorghum fermentations.

  6. Effect of varying ratios of produced water and municipal water on soil characteristics, plant biomass, and secondary metabolites of Artemisia annua and Panicum virgatum

    Science.gov (United States)

    Coal-bed natural gas production in the U.S. in 2012 was 1,655 billion cubic feet (bcf). A by-product of this production is co-produced water, which is categorized as a waste product by the Environmental Protection Agency. The effects of varying concentrations of coal-bed methane (produced) water wer...

  7. Structure-function relationships of bacterial and enzymatically produced reuterans and dextran in sourdough bread baking application.

    Science.gov (United States)

    Chen, Xiao Yan; Levy, Clemens; Gänzle, Michael G

    2016-12-19

    Exopolysaccharides from lactic acid bacteria may improve texture and shelf life of bread. The effect of exopolysaccharides on bread quality, however, depends on properties of the EPS and the EPS producing strain. This study investigated structure-function relationships of EPS in baking application. The dextransucrase DsrM and the reuteransucrase GtfA were cloned from Weissella cibaria 10M and Lactobacillus reuteri TMW1.656, respectively, and heterologously expressed in Escherichia coli. Site-directed mutagenesis of GtfA was generates reuterans with different glycosidic bonds. NMR spectrum indicated reuteranPI, reuteranNS and reuteranPINS produced by GtfA-V1024P:V1027I, GtfA-S1135N:A1137S and GtfA-V1024P:V1027I:S1135N:A1137S, respectively, had a higher proportion of α-(1→4) linkages when compared to reuteran. ReuteranNS has the lowest molecular weight as measured by asymmetric flow-field-flow fractionation. The reuteransucrase negative mutant L. reuteri TMW1.656ΔgtfA was generated as EPS-negative derivative of L. reuteri TMW1.656. Cell counts, pH, and organic acid levels of sourdough fermented with L. reuteri TMW1.656 and TMW1.656ΔgtfA were comparable. Reuteran produced by L. reuteri TMW1.656 during growth in sourdough and reuteran produced ex situ by GtfA-ΔN had comparable effects on bread volume and crumb hardness. Enzymatically produced dextran improved volume and texture of wheat bread, and of bread containing 20% rye flour. ReuteranNS but not reuteranPI or reuteran was as efficient as dextran in enhancing wheat bread volume and texture. Overall, reuteran linkage type and molecular weight are determinants of EPS effects on bread quality. This study established a valuable method to elucidate structure-function relationships of glucans in baking applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Cordoba, Argentina.

    Science.gov (United States)

    Peix, Alvaro; Berge, Odile; Rivas, Raúl; Abril, Adriana; Velázquez, Encarna

    2005-05-01

    During a study in the Argentinian region of Chaco (Cordoba), some strains were isolated from the rhizosphere of grasses growing in semi-desertic arid soils. Two of these strains, one isolated from the rhizospheric soil of Chloris ciliata (strain CH01(T)) and the other from Pappophorum caespitosum (strain PA01), were Gram-negative, strictly aerobic rods, which formed yellow round colonies on nutrient agar. They produced a water-insoluble yellow pigment, and a fluorescent pigment was also detected. A polyphasic taxonomic approach was used to characterize the strains. Comparison of the 16S rRNA gene sequences showed a similarity of 99.3 % between them, and phylogenetic analysis revealed that the strains belong to the genus Pseudomonas, within the gamma-subclass of the Proteobacteria. The closest related species is Pseudomonas straminea IAM 1598(T) (similarity of 99.0 % to strain CH01(T) and 98.8 % to strain PA01), clustering in a separate branch with the various methods of tree building used. Strains CH01(T) and PA01 both had a single polar flagellum, like other yellow pigment-producing pseudomonads related to them. Both strains produced catalase and oxidase. Similar to P. straminea, they did not hydrolyse gelatin or casein. The G+C DNA contents determined were 57.5 mol% for CH01(T) and 58.0 mol% for PA01. DNA-DNA hybridization results showed 81 % relatedness between them, and only 40-44 % relatedness with respect to the type strain of P. straminea. These results, together with other phenotypic characteristics, support the conclusion that both isolates belong to the same species, and should be described as representing a novel species within the genus Pseudomonas, for which the name Pseudomonas argentinensis sp. nov. is proposed. The type strain is CH01(T) (=LMG 22563(T) = CECT 7010(T)).

  9. Production of Metabolites

    DEFF Research Database (Denmark)

    2011-01-01

    A recombinant micro-organism such as Saccharomyces cerevisiae which produces and excretes into culture medium a stilbenoid metabolite product when grown under stilbenoid production conditions, which expresses in above native levels a ABC transporter which transports said stilbenoid out of said...... micro-organism cells to the culture medium. The genome of the Saccharomyces cerevisiae produces an auxotrophic phenotype which is compensated by a plasmid which also expresses one or more of said enzymes constituting said metabolic pathway producing said stilbenoid, an expression product of the plasmid...

  10. Effects of dietary combinations of organic acids and medium chain fatty acids on the gastrointestinal microbial ecology and bacterial metabolites in the digestive tract of weaning piglets.

    Science.gov (United States)

    Zentek, J; Ferrara, F; Pieper, R; Tedin, L; Meyer, W; Vahjen, W

    2013-07-01

    Organic short and medium chain fatty acids are used in diets for piglets because they have an impact on the digestive processes and the intestinal microbiota. In this study, 48 pens (2 piglets/pen) were assigned randomly to 4 diets, without additive (control), with organic acids (OA; 0.416% fumaric and 0.328% lactic acid), with medium chain fatty acids (MCFA; 0.15% caprylic and capric acid), and a combination of OA and MCFA, to assess changes in the gastrointestinal microbiota with 12 pens per diet. Eight to nine piglets from each group were euthanized after 4 wk. Organic acids, MCFA, and pH in the digesta were determined and the intestinal microbiota was quantified by real-time PCR. The different diets had no effect on the growth performance. Concentration of added fumaric acid was below the detection limit in the upper small intestine whereas the concentration of lactic acid in the digesta was not affected by the treatments. The added MCFA was recovered in the MCFA treated groups in the stomach, but the concentrations declined in the upper small intestine. Concentration of short chain fatty acids was reduced in the colon digesta in piglets fed diets with OA compared with those fed unsupplemented diets (P = 0.029). The MCFA resulted in a pH reduction of the digesta, likely because of the effect on bacterial acid production. The addition of OA increased cell counts of Bacteroides-Porphyromonas-Prevotella group and clostridial clusters XIVa, I, and IV in the stomach, the clostridial cluster XIVa in the jejunum, and Bacteroides-Porphyromonas-Prevotella in the ileum and reduced counts of Streptococcus spp. in the colon (P < 0.05). The MCFA induced only minor changes in the gastrointestinal microbiota but increased cell counts for the Escherichia-Hafnia-Shigella group in the jejunum and the clostridial cluster XIVa in the colon digesta (P < 0.05). In the colon of piglets fed diets with organic OA, reduced mean cell counts of STb (est-II) positive Escherichia coli were

  11. Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens.

    Science.gov (United States)

    Rivardo, F; Turner, R J; Allegrone, G; Ceri, H; Martinotti, M G

    2009-06-01

    In this work, two biosurfactant-producing strains, Bacillus subtilis and Bacillus licheniformis, have been characterized. Both strains were able to grow at high salinity conditions and produce biosurfactants up to 10% NaCl. Both extracted-enriched biosurfactants showed good surface tension reduction of water, from 72 to 26-30 mN/m, low critical micelle concentration, and high resistance to pH and salinity. The potential of the two lipopeptide biosurfactants at inhibiting biofilm adhesion of pathogenic bacteria was demonstrated by using the MBEC device. The two biosurfactants showed interesting specific anti-adhesion activity being able to inhibit selectively biofilm formation of two pathogenic strains. In particular, Escherichia coli CFT073 and Staphylococcus aureus ATCC 29213 biofilm formation was decreased of 97% and 90%, respectively. The V9T14 biosurfactant active on the Gram-negative strain was ineffective against the Gram-positive and the opposite for the V19T21. This activity was observed either by coating the polystyrene surface or by adding the biosurfactant to the inoculum. Two fractions from each purified biosurfactant, obtained by flash chromatography, fractions (I) and (II), showed that fraction (II), belonging to fengycin-like family, was responsible for the anti-adhesion activity against biofilm of both strains.

  12. Silencing of ecdysone receptor, insect intestinal mucin and sericotropin genes by bacterially produced double-stranded RNA affects larval growth and development in Plutella xylostella and Helicoverpa armigera.

    Science.gov (United States)

    Israni, B; Rajam, M V

    2017-04-01

    RNA interference mediated gene silencing, which is triggered by double-stranded RNA (dsRNA), has become a important tool for functional genomics studies in various systems, including insects. Bacterially produced dsRNA employs the use of a bacterial strain lacking in RNaseIII activity and harbouring a vector with dual T7 promoter sites, which allow the production of intact dsRNA molecules. Here, we report an assessment of the functional relevance of the ecdysone receptor, insect intestinal mucin and sericotropin genes through silencing by dsRNA in two lepidopteran insect pests, Helicoverpa armigera and Plutella xylostella, both of which cause serious crop losses. Oral feeding of dsRNA led to significant reduction in transcripts of the target insect genes, which caused significant larval mortality with various moulting anomalies and an overall developmental delay. We also found a significant decrease in reproductive potential in female moths, with a drop in egg laying and compromised egg hatching from treated larvae as compared to controls. dsRNA was stable in the insect gut and was efficiently processed into small interfering RNAs (siRNAs), thus accounting for the phenotypes observed in the present work. The study revealed the importance of these genes in core insect processes, which are essential for insect development and survival. © 2016 The Royal Entomological Society.

  13. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    Directory of Open Access Journals (Sweden)

    Jun Liu

    Full Text Available The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3 in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli, Staphylococcus aureus (S. aureus and Streptococcus agalactiae (S. agalactiae that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05. The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3 and 95.4×10(3 CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC in infected glands reached up to 260.4×10(5 and 622.2×10(5 cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  14. Anti-bacterial activity of recombinant human β-defensin-3 secreted in the milk of transgenic goats produced by somatic cell nuclear transfer.

    Science.gov (United States)

    Liu, Jun; Luo, Yan; Ge, Hengtao; Han, Chengquan; Zhang, Hui; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Gao, Mingqing; Zhang, Yong

    2013-01-01

    The present study was conducted to determine whether recombinant human β-defensin-3 (rHBD3) in the milk of transgenic goats has an anti-bacterial activity against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus) and Streptococcus agalactiae (S. agalactiae) that could cause mastitis. A HBD3 mammary-specific expression vector was transfected by electroporation into goat fetal fibroblasts which were used to produce fourteen healthy transgenic goats by somatic cell nuclear transfer. The expression level of rHBD3 in the milk of the six transgenic goats ranged from 98 to 121 µg/ml at 15 days of lactation, and was maintained at 90-111 µg/ml during the following 2 months. Milk samples from transgenic goats showed an obvious inhibitory activity against E. coli, S. aureus and S. agalactiae in vitro. The minimal inhibitory concentrations of rHBD3 in milk against E. coli, S. aureus and S. agalactiae were 9.5-10.5, 21.8-23.0 and 17.3-18.5 µg/mL, respectively, which was similar to those of the HBD3 standard (P>0.05). The in vivo anti-bacterial activities of rHBD3 in milk were examined by intramammary infusion of viable bacterial inoculums. We observed that 9/10 and 8/10 glands of non-transgenic goats infused with S. aureus and E. coli became infected. The mean numbers of viable bacteria went up to 2.9×10(3) and 95.4×10(3) CFU/ml at 48 h after infusion, respectively; the mean somatic cell counts (SCC) in infected glands reached up to 260.4×10(5) and 622.2×10(5) cells/ml, which were significantly higher than the SCC in uninfected goat glands. In contrast, no bacteria was presented in glands of transgenic goats and PBS-infused controls, and the SSC did not significantly change throughout the period. Moreover, the compositions and protein profiles of milk from transgenic and non-transgenic goats were identical. The present study demonstrated that HBD3 were an effective anti-bacterial protein to enhance the mastitis resistance of dairy animals.

  15. Growh performance, nitrogen balance and urinary purine derivatives in growing-furring mink (Mustela vison) fed bacterial protein produced from natural gas

    DEFF Research Database (Denmark)

    Ahlstrøm, Ø.; Tauson, Anne-Helene; Hellwing, Anne Louise Frydendahl

    2006-01-01

    A bacterial protein meal (BPM), containing 70% crude protein and produced on natural gas, was evaluated versus fish meal as protein source for mink in the growing-furring period (June 29-November 26). BPM, rich in nucleic acids, accounted for 0 (control), 20 and 40% of dietary crude protein...... corresponding to 0,4 and 8% of the wet diets, respectively. Each diet was given to 48 animals, 24 males and 24 females. The inclusion of BPM tended to reduce feed intake and body weight gain during the first half of the experimental period, but this was compensated for during the last part of the experiment......, except for males on the 8% BPM diet. Balance experiments carried out with 18 and 28 weeks old males, revealed similar digestibility of main nutrients except for fat that were reduced with BPM inclusion. N-retentions were similar for the dietary groups. Daily excretion of urine was lower with the 8% BPM...

  16. Analysis of the secondary metabolites produced by 4 strains of Monascus%4株红曲霉发酵产生次级代谢产物的分析

    Institute of Scientific and Technical Information of China (English)

    张郡莹; 杨强; 张婵; 刘国荣; 王成涛; 赵吉兴

    2014-01-01

    Objective To study the ability of secondary metabolites of Monascus, and to breed excellent strains. Methods Detection methods ofγ-aminobutyric acid (GABA), monascus pigments, monacolin K and citrinin by colorimetry and HPLC in fermentation were founded, the abilities of secondary metabolites pro-duced by Monascus purpureus, Monascus pilosus, Monascus ruber and Monascus aurantiacus were compared. Results The producing abilities of secondary metabolites among the 4 strains of Monascus were different. The four strains of Monascus could produce monascus pigments, monacolin K and citrinin. The M. pilosus strain J2 had the highest producing ability of monacolin K (8.1 mg/L) and lowest producing ability of citrinin (0.09 mg/L);M. purpureus Y4 had the highest producing ability of monascus pigments producing (380 U/mL), and only M. purpureus Y4 can produceγ-aminobutyric acid (0.2 g/L). Conclusion There are differences in producingγ-aminobutyric acid, monascus pigments, monacolin K and citrinin among different strains.%目的:为研究评价红曲霉产生次级代谢产物能力,选育优良菌株。方法通过建立的发酵液中γ-氨基丁酸(GABA)、红曲色素、monacolin K 和桔霉素的比色法和高压液相色谱检测方法,比较了紫色红曲霉(Monascus purpureus)、丛毛红曲霉(Monascus pilosus)、红色红曲霉(Monascus ruber)、橙色红曲霉(Monascus aurantiacus)的液体发酵产生上述次级代谢产物能力。结果不同红曲霉菌株产生上述4种次级代谢产物的能力是不同的,4种红曲霉均可产生的红曲色素、monacolin K和桔霉素3种次级代谢产物,其中M. pilosus J2的monacolin K产量最高(8.1 mg/L)、桔霉素生成量最低(0.09 mg/L);M. purpureus Y4的红曲色素色价最高,为380 U/mL;仅有紫色红曲霉Y4可代谢产生γ-氨基丁酸,产量约为0.2 g/L。结论不同红曲霉菌株产生γ-氨基丁酸、红曲色素、monacolin K和桔霉素这4种次级代谢产物能力存在较大差异。

  17. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici.

    Science.gov (United States)

    Wang, Yvonne; Ametaj, Burim N; Ambrose, Divakar J; Gänzle, Michael G

    2013-01-29

    Uterine infections in dairy cows lower profitability of dairy operations. Infections of the reproductive tract are related to the overgrowth of pathogenic bacteria during the first three weeks after parturition. However, alterations in the vaginal microbiota composition in the first weeks after parturition remain poorly documented. In this study, bacteria isolated from the vagina of healthy pregnant, and infected postpartum cows were characterised by random amplification of polymorphic DNA (RAPD) analysis and partial 16S ribosomal RNA (rDNA) gene sequencing. Populations of bacilli and lactic acid bacteria of the genera Enterococcus, Lactobacillus, and Pediococcus were present in both healthy and infected cows. Infected cows had a significant increase in the vaginal enteric bacteria population which consisted mainly of Escherichia coli. Three E. coli isolates harboured the gene coding for Shiga-like-toxin (SLT) I or II. Several isolates of the Pediococcus acidilactici were found to produce the bacteriocin pediocin AcH/PA-1. Quantitative PCR analyses of vaginal mucus samples collected from ten metritic cows before and after parturition confirmed the presence of the Lactobacillus group (Lactobacillus spp., Pediococcus spp., Leuconostoc spp., and Weissella spp.); Enterobacteriaceae, E. coli, and bacilli. The presence of the pediocin AcH/PA-1 structural gene and SLT genes were also confirmed with qPCR. In conclusion, overgrowth of pathogenic bacteria, particularly E. coli, after parturition likely contributes to the development of metritis. Our microbiota analysis extends the information related to the composition of commensal bacteria in the bovine female reproductive tract and may facilitate the development of novel intervention strategies for prevention of uterine infections in dairy cows.

  18. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocin-producing Pediococcus acidilactici

    Directory of Open Access Journals (Sweden)

    Wang Yvonne

    2013-01-01

    Full Text Available Abstract Background Uterine infections in dairy cows lower profitability of dairy operations. Infections of the reproductive tract are related to the overgrowth of pathogenic bacteria during the first three weeks after parturition. However, alterations in the vaginal microbiota composition in the first weeks after parturition remain poorly documented. Results In this study, bacteria isolated from the vagina of healthy pregnant, and infected postpartum cows were characterised by random amplification of polymorphic DNA (RAPD analysis and partial 16S ribosomal RNA (rDNA gene sequencing. Populations of bacilli and lactic acid bacteria of the genera Enterococcus, Lactobacillus, and Pediococcus were present in both healthy and infected cows. Infected cows had a significant increase in the vaginal enteric bacteria population which consisted mainly of Escherichia coli. Three E. coli isolates harboured the gene coding for Shiga-like-toxin (SLT I or II. Several isolates of the Pediococcus acidilactici were found to produce the bacteriocin pediocin AcH/PA-1. Quantitative PCR analyses of vaginal mucus samples collected from ten metritic cows before and after parturition confirmed the presence of the Lactobacillus group (Lactobacillus spp., Pediococcus spp., Leuconostoc spp., and Weissella spp.; Enterobacteriaceae, E. coli, and bacilli. The presence of the pediocin AcH/PA-1 structural gene and SLT genes were also confirmed with qPCR. Conclusions In conclusion, overgrowth of pathogenic bacteria, particularly E. coli, after parturition likely contributes to the development of metritis. Our microbiota analysis extends the information related to the composition of commensal bacteria in the bovine female reproductive tract and may facilitate the development of novel intervention strategies for prevention of uterine infections in dairy cows.

  19. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells--possible relevance to autism spectrum disorders.

    Directory of Open Access Journals (Sweden)

    Bistra B Nankova

    Full Text Available Alterations in gut microbiome composition have an emerging role in health and disease including brain function and behavior. Short chain fatty acids (SCFA like propionic (PPA, and butyric acid (BA, which are present in diet and are fermentation products of many gastrointestinal bacteria, are showing increasing importance in host health, but also may be environmental contributors in neurodevelopmental disorders including autism spectrum disorders (ASD. Further to this we have shown SCFA administration to rodents over a variety of routes (intracerebroventricular, subcutaneous, intraperitoneal or developmental time periods can elicit behavioral, electrophysiological, neuropathological and biochemical effects consistent with findings in ASD patients. SCFA are capable of altering host gene expression, partly due to their histone deacetylase inhibitor activity. We have previously shown BA can regulate tyrosine hydroxylase (TH mRNA levels in a PC12 cell model. Since monoamine concentration is known to be elevated in the brain and blood of ASD patients and in many ASD animal models, we hypothesized that SCFA may directly influence brain monoaminergic pathways. When PC12 cells were transiently transfected with plasmids having a luciferase reporter gene under the control of the TH promoter, PPA was found to induce reporter gene activity over a wide concentration range. CREB transcription factor(s was necessary for the transcriptional activation of TH gene by PPA. At lower concentrations PPA also caused accumulation of TH mRNA and protein, indicative of increased cell capacity to produce catecholamines. PPA and BA induced broad alterations in gene expression including neurotransmitter systems, neuronal cell adhesion molecules, inflammation, oxidative stress, lipid metabolism and mitochondrial function, all of which have been implicated in ASD. In conclusion, our data are consistent with a molecular mechanism through which gut related environmental signals

  20. Auxofuran, a Novel Metabolite That Stimulates the Growth of Fly Agaric, Is Produced by the Mycorrhiza Helper Bacterium Streptomyces Strain AcH 505†

    Science.gov (United States)

    Riedlinger, Julia; Schrey, Silvia D.; Tarkka, Mika T.; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-01-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 μM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 μM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce. PMID:16672502

  1. Auxofuran, a novel metabolite that stimulates the growth of fly agaric, is produced by the mycorrhiza helper bacterium Streptomyces strain AcH 505.

    Science.gov (United States)

    Riedlinger, Julia; Schrey, Silvia D; Tarkka, Mika T; Hampp, Rüdiger; Kapur, Manmohan; Fiedler, Hans-Peter

    2006-05-01

    The mycorrhiza helper bacterium Streptomyces strain AcH 505 improves mycelial growth of ectomycorrhizal fungi and formation of ectomycorrhizas between Amanita muscaria and spruce but suppresses the growth of plant-pathogenic fungi, suggesting that it produces both fungal growth-stimulating and -suppressing compounds. The dominant fungal-growth-promoting substance produced by strain AcH 505, auxofuran, was isolated, and its effect on the levels of gene expression of A. muscaria was investigated. Auxofuran and its synthetic analogue 7-dehydroxy-auxofuran were most effective at a concentration of 15 microM, and application of these compounds led to increased lipid metabolism-related gene expression. Cocultivation of strain AcH 505 and A. muscaria stimulated auxofuran production by the streptomycete. The antifungal substances produced by strain AcH 505 were identified as the antibiotics WS-5995 B and C. WS-5995 B completely blocked mycelial growth at a concentration of 60 microM and caused a cell stress-related gene expression response in A. muscaria. Characterization of these compounds provides the foundation for molecular analysis of the fungus-bacterium interaction in the ectomycorrhizal symbiosis between fly agaric and spruce.

  2. Effects of volatile organic compounds produced by Bacillus amyloliquefaciens on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum.

    Science.gov (United States)

    Raza, Waseem; Wang, Jichen; Wu, Yuncheng; Ling, Ning; Wei, Zhong; Huang, Qiwei; Shen, Qirong

    2016-09-01

    The production of volatile organic compounds (VOCs) by microbes is an important characteristic for their selection as biocontrol agents against plant pathogens. In this study, we identified the VOCs produced by the biocontrol strain Bacillus amyloliquefaciens T-5 and evaluated their impact on the growth and virulence traits of tomato bacterial wilt pathogen Ralstonia solanacearum. The results showed that the VOCs of strain T-5 significantly inhibited the growth of R. solanacearum in agar medium and in soil. In addition, VOCs significantly inhibited the motility traits, root colonization, biofilm formation, and production of antioxidant enzymes and exopolysaccharides by R. solanacearum. However, no effect of VOCs on the production of hydrolytic enzymes by R. solanacearum was observed. The strain T-5 produced VOCs, including benzenes, ketones, aldehydes, alkanes, acids, and one furan and naphthalene compound; among those, 13 VOCs showed 1-10 % antibacterial activity against R. solanacearum in their produced amounts by T-5; however, the consortium of all VOCs produced on agar medium, in sterilized soil, and in natural soil showed 75, 62, and 85 % growth inhibition of R. solanacearum, respectively. The real-time PCR analysis further confirmed the results when the expression of different virulence- and metabolism-related genes in R. solanacearum cells was decreased after exposure to the VOCs of strain T-5. The results of this study clearly revealed the significance of VOCs in the control of plant pathogens. This information would help to better comprehend the microbial interactions mediated by VOCs in nature and to develop safer strategies to control plant disease.

  3. 罗布泊来源胀果甘草根际枯草芽孢杆菌GA21次生代谢产物结构与活性初步研究%Preliminary study of structures and bioactivities of the secondary metabolites produced by Bacillus subtilis strain GA21

    Institute of Scientific and Technical Information of China (English)

    靳婧; 旭格拉·哈布丁; 刘少伟; 郭琳; 蒋忠科; 栾迎春; 李展先; 潘臻; 孙承航

    2012-01-01

    目的 分离鉴定枯草芽孢杆菌GA21发酵液中次生代谢产物并对其活性进行初步研究.方法 采用TLC、HPLC等分离手段对次生代谢产物进行分离;通过HR-ESI质谱、1D-NMR和2D-NMR对其结构进行鉴定;以琼脂平板法检测其次生代谢产物对金黄色葡萄球菌、大肠杆菌、稻瘟菌、白色念珠菌的拮抗活性.结果 分离得到两个异香豆素类次生代谢产物:GA21-20和GA21-26;其中GA21-20的化学结构与Amicoumacin B一致,但无抗细菌及真菌活性;GA21-26有抗真菌活性,但无抗细菌活性,分子量为435.20890,分子式为C21H29O7N3,是一新的3,4-二氢异香豆素类抗生素.GA21-26在2.5 μg/纸片对白色念珠菌即可显示抑制活性,在80μg/纸片对水稻稻瘟菌显示抑制活性,表明GA21-26在拮抗医学条件致病真菌方面有潜在用途.结论 枯草芽孢杆菌GA21能产生一系列3,4-二氢异香豆素类抗生素,其次级代谢产物值得进一步研究.%Objective To isolate, purify and identify the secondary metablites from the fermentation broth produced by Bacillus subtilis strain GA21.Methods Different column chromatographies were used to isolate and purify the secondary metabolites. HR-ESI-MS,1D-NMR and 2D-NMR were used to analyze the structure of compounds GA21-20 and GA21-26. Agar plating method was used to analyze the inhibition activity of the secondary metabolites against Staphylococcus aureus, Escherichia coli, Pyricularia oryzae and Candida Albican. TResults GA21-20 and GA21-26 were purified and structurally identified as a group of isocoumarin antibiotics. GA21-20 has the same structure with Amicoumacin B, but does not have anti-bacterial and anti-fungus activity. GA21-26 is a new member of isocoumacin antibiotic with the molecular formula of C21H29O7N3 and molecular weight of 435.2, and has anti-fungus activity. GA21-26 inhibits the growth of plant pathogenic fungi Pyricularia oryzae and Candida Albicans at 80 ug per paper and 2

  4. Biotransformation of arsenite and bacterial aox activity in drinking water produced from surface water of floating houses: Arsenic contamination in Cambodia.

    Science.gov (United States)

    Chang, Jin-Soo

    2015-11-01

    The potential arsenite bioteansformation activity of arsenic was investigated by examining bacterial arsenic arsenite-oxidizing gene such as aoxS, aoxR, aoxA, aoxB, aoxC, and aoxD in high arsenic-contaminated drinking water produced from the surface water of floating houses. There is a biogeochemical cycle of activity involving arsenite oxidase aox system and the ars (arsenic resistance system) gene operon and aoxR leader gene activity in Alcaligenes faecalis SRR-11 and aoxS leader gene activity in Achromobacter xylosoxidans TSL-66. Batch experiments showed that SRR-11 and TSL-66 completely oxidized 1 mM of As (III) to As (V) within 35-40 h. The leaders of aoxS and aoxR are important for gene activity, and their effects in arsenic bioremediation and mobility in natural water has a significant ecological role because it allows arsenite oxidase in bacteria to control the biogeochemical cycle of arsenic-contaminated drinking water produced from surface water of floating houses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  6. Secondary metabolites from marine microorganisms

    Directory of Open Access Journals (Sweden)

    KELECOM ALPHONSE

    2002-01-01

    Full Text Available After 40 years of intensive research, chemistry of marine natural products has become a mature field. Since 1995, there are signals of decreased interest in the search of new metabolites from traditional sources such as macroalgae and octocorals, and the number of annual reports on marine sponges stabilized. On the contrary, metabolites from microorganisms is a rapidly growing field, due, at least in part, to the suspicion that a number of metabolites obtained from algae and invertebrates may be produced by associated microorganisms. Studies are concerned with bacteria and fungi, isolated from seawater, sediments, algae, fish and mainly from marine invertebrates such as sponges, mollusks, tunicates, coelenterates and crustaceans. Although it is still to early to define tendencies, it may be stated that the metabolites from microorganisms are in most cases quite different from those produced by the invertebrate hosts. Nitrogenated metabolites predominate over acetate derivatives, and terpenes are uncommon. Among the latter, sesquiterpenes, diterpenes and carotenes have been isolated; among nitrogenated metabolites, amides, cyclic peptides and indole alkaloids predominate.

  7. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B.

    Directory of Open Access Journals (Sweden)

    Annemarie Kramer

    Full Text Available Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10-15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained.

  8. Development and validation of a fast and optimized screening method for enhanced production of secondary metabolites using the marine Scopulariopsis brevicaulis strain LF580 producing anti-cancer active scopularide A and B.

    Science.gov (United States)

    Kramer, Annemarie; Paun, Linda; Imhoff, Johannes F; Kempken, Frank; Labes, Antje

    2014-01-01

    Natural compounds from marine fungi are an excellent source for the discovery and development of new drug leads. The distinct activity profiles of the two cyclodepsipeptides scopularide A and B against cancer cell lines set their marine producer strain Scopulariopsis brevicaulis LF580 into the focus of the EU project MARINE FUNGI. One of the main goals was the development of a sustainable biotechnological production process for these compounds. The secondary metabolite production of strain LF580 was optimized by random mutagenesis employing UV radiation. For a fast and reliable detection of the intracellular secondary metabolite production level, a miniaturized bioactivity-independent screening method was developed, as the random mutagenesis yielded a large number of mutants to be analysed quantitatively and none of the existing hyphenated bioassay-dependent screening systems could be applied. The method includes decreased cultivation volume, a fast extraction procedure as well as an optimized LC-MS analysis. We show that deviation could be specifically reduced at each step of the process: The measuring deviation during the analysis could be minimized to 5% and technical deviation occurring in the downstream part to 10-15%. Biological variation during the cultivation process still has the major influence on the overall variation. However, the approach led to a 10-fold reduction of time and similar effects on costs and effort compared to standard reference screening methods. The method was applied to screen the UV-mutants library of Scopulariopsis brevicaulis LF580. For validation purposes, the occurring variations in the miniaturized scale were compared to those in the classical Erlenmeyer flask scale. This proof of concept was performed using the wild type strain and 23 randomly selected mutant strains. One specific mutant strain with an enhanced production behavior could be obtained.

  9. The study of organic removal efficiency and halophilic bacterial mixed liquor characteristics in a membrane bioreactor treating hypersaline produced water at varying organic loading rates.

    Science.gov (United States)

    Sharghi, Elham Abdollahzadeh; Bonakdarpour, Babak

    2013-12-01

    In this study the organic pollutant removal performance and the mixed liquor characteristics of a membrane bioreactor (MBR), employing a halophilic bacterial consortium, for the treatment of hypersaline synthetic produced water - at varying organic loading rates (OLR) from 0.3 to 2.6 kg CODm(-3)d(-1) - were considered. The oil and grease (O&G) and COD removal efficiency were 95-99% and 83-93%, respectively with only transient O&G (mainly polycyclic aromatic hydrocarbons) and soluble microbial products accumulation being observed. With increasing OLR, in the range 0.9-2.6 kg COD m(-3)d(-1), as a result of change in both extracellular polymeric substances (EPS) and zeta potential, bioflocculating ability improved but the compressibility of the flocs decreased resulting in the occurrence of EPS bulking at the highest OLR studied. The latter resulted in a change in the rheology of the mixed liquor from Newtonian to non-Newtonian and the occurrence of significant membrane fouling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The role of natural chlorinated hydroquinone metabolites in ligninolytic fungi

    NARCIS (Netherlands)

    Teunissen, P.J.M.

    1999-01-01

    Ligninolytic Basidiomycetes have been reported to produce a wide variety of chloroaromatic compounds as secondary metabolites, which are structurally similar to environmental pollutants. Among these are chlorinated hydroquinone metabolites (CHM), such as 2-chloro-1,4-dimethoxybenzene

  11. Simultaneous Microcystis Algicidal and Microcystin Degrading Capability by a Single Acinetobacter Bacterial Strain.

    Science.gov (United States)

    Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang

    2016-11-01

    Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10(3) to 1 × 10(7) cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.

  12. Microbial secondary metabolites in school buildings inspected for moisture damage in Finland, The Netherlands and Spain.

    Science.gov (United States)

    Peitzsch, Mirko; Sulyok, Michael; Täubel, Martin; Vishwanath, Vinay; Krop, Esmeralda; Borràs-Santos, Alicia; Hyvärinen, Anne; Nevalainen, Aino; Krska, Rudolf; Larsson, Lennart

    2012-08-01

    Secondary metabolites produced by fungi and bacteria are among the potential agents that contribute to adverse health effects observed in occupants of buildings affected by moisture damage, dampness and associated microbial growth. However, few attempts have been made to assess the occurrence of these compounds in relation to moisture damage and dampness in buildings. This study conducted in the context of the HITEA project (Health Effects of Indoor Pollutants: Integrating microbial, toxicological and epidemiological approaches) aimed at providing systematic information on the prevalence of microbial secondary metabolites in a large number of school buildings in three European countries, considering both buildings with and without moisture damage and/or dampness observations. In order to address the multitude and diversity of secondary metabolites a large number of more than 180 analytes was targeted in settled dust and surface swab samples using liquid chromatography/mass spectrometry (LC/MS) based methodology. While 42%, 58% and 44% of all samples collected in Spanish, Dutch and Finnish schools, respectively, were positive for at least one of the metabolites analyzed, frequency of detection for the individual microbial secondary metabolites - with the exceptions of emodin, certain enniatins and physcion - was low, typically in the range of and below 10% of positive samples. In total, 30 different fungal and bacterial secondary metabolites were found in the samples. Some differences in the metabolite profiles were observed between countries and between index and reference school buildings. A major finding in this study was that settled dust derived from moisture damaged, damp schools contained larger numbers of microbial secondary metabolites at higher levels compared to respective dust samples from schools not affected by moisture damage and dampness. This observation was true for schools in each of the three countries, but became statistically significant only

  13. A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria

    KAUST Repository

    Lu, Liang

    2014-10-09

    © 2014 Macmillan Publishers Limited. All rights reserved. Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use.

  14. In vitro antifungal activity of bacteria against Mycosphaerella fijiensis mediated by diffused and volatile metabolites

    Directory of Open Access Journals (Sweden)

    Mileidy Cruz-Martín

    2012-07-01

    Full Text Available Antagonistic microorganisms do not have a unique mode of action. Multiplicity of these is an important feature for selection as biological control agents. Black Sigatoka is considered the foliar disease with most economic impact for the banana industry worldwide. New strategies to control it are required to reduce the use of fungicides. That is why an increasing interest to find biological alternatives, such as the use of antagonistic bacteria, has risen. Assays wer e carr ied ou t to determine whether in v it r o ant if ungal ac ti vity of 20 bacterial str ai ns against My cosphaer ella fijiensis was caused by metabolites diffused into the culture medium or volatile. Results demonstrated that 80.0% of bacterial strains tested showed in vitro antifungal activity by diffused metabolites in the culture medium and 60.0% by producing volatile metabolites. The 55.0% of strains showed both mechanisms. This feature makes these bacteria the best candidate for its selection as biological control agent. Keywords: antagonistic, biocontrol, volatile compounds, diffused metabolites.

  15. Genome sequence of Phaeobacter inhibens type strain (T5T), a secondary metabolite producing representative of the marine Roseobacter clade, and emendation of the species description of Phaeobacter inhibens

    Science.gov (United States)

    Dogs, Marco; Voget, Sonja; Teshima, Hazuki; Petersen, Jörn; Davenport, Karen; Dalingault, Hajnalka; Chen, Amy; Pati, Amrita; Ivanova, Natalia; Goodwin, Lynne A.; Chain, Patrick; Detter, John C.; Standfest, Sonja; Rohde, Manfred; Gronow, Sabine; Kyrpides, Nikos C.; Woyke, Tanja; Simon, Meinhard; Klenk, Hans-Peter; Göker, Markus; Brinkhoff, Thorsten

    2013-01-01

    Strain T5T is the type strain of the species Phaeobacter inhibens Martens et al. 2006, a secondary metabolite producing bacterium affiliated to the Roseobacter clade. Strain T5T was isolated from a water sample taken at the German Wadden Sea, southern North Sea. Here we describe the complete genome sequence and annotation of this bacterium with a special focus on the secondary metabolism and compare it with the genomes of the Phaeobacter inhibens strains DSM 17395 and DSM 24588 (2.10), selected because of the close phylogenetic relationship based on the 16S rRNA gene sequences of these three strains. The genome of strain T5T comprises 4,130,897 bp with 3.923 protein-coding genes and shows high similarities in genetic and genomic characteristics compared to P. inhibens DSM 17395 and DSM 24588 (2.10). Besides the chromosome, strain T5T possesses four plasmids, three of which show a high similarity to the plasmids of the strains DSM 17395 and DSM 24588 (2.10). Analysis of the fourth plasmid suggested horizontal gene transfer. Most of the genes on this plasmid are not present in the strains DSM 17395 and DSM 24588 (2.10) including a nitrous oxide reductase, which allows strain T5T a facultative anaerobic lifestyle. The G+C content was calculated from the genome sequence and differs significantly from the previously published value, thus warranting an emendation of the species description. PMID:24976890

  16. Purification and identification of metabolites produced by Bacillus cereus and B. subtilis active against Meloidogyne exigua, and their in silico interaction with a putative phosphoribosyltransferase fromM. incognita

    Directory of Open Access Journals (Sweden)

    DENILSON F. OLIVEIRA

    2014-06-01

    Full Text Available To contribute to the development of products to controlMeloidogyne exigua, the bacteria Bacillus cereus and B. subtilis were cultivated in liquid medium to produce metabolites active against this plant-parasitic nematode. Fractionation of the crude dichloromethane extracts obtained from the cultures afforded uracil, 9H-purine and dihydrouracil. All compounds were active against M. exigua, the latter being the most efficient. This substance presented a LC50 of 204 µg/mL against the nematode, while a LC50 of 260 µg/mL was observed for the commercial nematicide carbofuran. A search for protein-ligand complexes in which the ligands were structurally similar to dihydrouracil resulted in the selection of phosphoribosyltransferases, the sequences of which were used in an in silico search in the genome of M. incognita for a similar sequence of amino acids. The resulting sequence was modelled and dihydrouracil and 9H-purine were inserted in the active site of this putative phosphoribosyltransferase resulting in protein-ligand complexes that underwent molecular dynamics simulations. Calculation of the binding free-energies of these complexes revealed that the dissociation constant of dihydrouracil and 9H-purine to this protein is around 8.3 x 10-7 and 1.6 x 10-6 M, respectively. Consequently, these substances and the putative phosphoribosyltransferase are promising for the development of new products to control M. exigua.

  17. 放线菌Z802031次级代谢产物放线菌素X2的研究%Actinomycin X2 as a Secondary Metabolite Produced by Actinomycete Z802031

    Institute of Scientific and Technical Information of China (English)

    孙肇暘; 张明明; 秦德华; 杨秀萍

    2011-01-01

    从西藏卡拉山地区土样分离到的一株放线菌Z802031能够产生具有抗菌、抑制肿瘤细胞生长的次级代谢产物.对其产生的抗肿瘤活性物质进行发酵、提取、分离,得到五个组分,经MTT法检测有两个组分具有显著的抗肿瘤活性,并对其中之一进行分离纯化,并获得单体,对该单体进行质谱、核磁共振、红外、紫外等波谱分析、鉴别,结果表明,Z802031菌株发酵液中起到抗菌抗肿瘤作用的主成分之一是放线菌素X2.%Actinomycete Z802031 which isolated from Kala mount in Tibet could produce metabolites of antibacterial and antitumor activity. By fermenting,extracting and severing, five components were separated from the fermentation of Z802031 and two of them have remarkable tumor cell growth inhibiting effect detected by MTT assay. The major one was further isolated and purified as monomer and identified as Actinomycin X2 on the basis of spectroscopic analysis, mainly including MS, NMR, IR and UV.

  18. Metabolites from Alternaria Fungi and Their Bioactivities

    Directory of Open Access Journals (Sweden)

    Ligang Zhou

    2013-05-01

    Full Text Available Alternaria is a cosmopolitan fungal genus widely distributing in soil and organic matter. It includes saprophytic, endophytic and pathogenic species. At least 268 metabolites from Alternaria fungi have been reported in the past few decades. They mainly include nitrogen-containing metabolites, steroids, terpenoids, pyranones, quinones, and phenolics. This review aims to briefly summarize the structurally different metabolites produced by Alternaria fungi, as well as their occurrences, biological activities and functions. Some considerations related to synthesis, biosynthesis, production and applications of the metabolites from Alternaria fungi are also discussed.

  19. The secondary metabolite bioinformatics portal

    DEFF Research Database (Denmark)

    Weber, Tilmann; Kim, Hyun Uk

    2016-01-01

    . In this context, this review gives a summary of tools and databases that currently are available to mine, identify and characterize natural product biosynthesis pathways and their producers based on ‘omics data. A web portal called Secondary Metabolite Bioinformatics Portal (SMBP at http...

  20. Fungal Metabolites for the Control of Biofilm Infections

    Directory of Open Access Journals (Sweden)

    Andréia Bergamo Estrela

    2016-08-01

    Full Text Available Many microbes attach to surfaces and produce a complex matrix of polymers surrounding their cells, forming a biofilm. In biofilms, microbes are much better protected against hostile environments, impairing the action of most antibiotics. A pressing demand exists for novel therapeutic strategies against biofilm infections, which are a grave health wise on mucosal surfaces and medical devices. From fungi, a large number of secondary metabolites with antimicrobial activity have been characterized. This review discusses natural compounds from fungi which are effective against fungal and bacterial biofilms. Some molecules are able to block the cell communication process essential for biofilm formation (known as quorum sensing, others can penetrate and kill cells within the structure. Several targets have been identified, ranging from the inhibition of quorum sensing receptors and virulence factors, to cell wall synthesizing enzymes. Only one group of these fungal metabolites has been optimized and made it to the market, but more preclinical studies are ongoing to expand the biofilm-fighting arsenal. The broad diversity of bioactive compounds from fungi, their activities against various pathogens, and the multi-target trait of some molecules are promising aspects of fungal secondary metabolites. Future screenings for biofilm-controlling compounds will contribute to several novel clinical applications.

  1. Liquid Chromatography-Mass Spectrometry-Based Rapid Secondary-Metabolite Profiling of Marine Pseudoalteromonas sp. M2

    Directory of Open Access Journals (Sweden)

    Woo Jung Kim

    2016-01-01

    Full Text Available The ocean is a rich resource of flora, fauna, and food. A wild-type bacterial strain showing confluent growth on marine agar with antibacterial activity was isolated from marine water, identified using 16S rDNA sequence analysis as Pseudoalteromonas sp., and designated as strain M2. This strain was found to produce various secondary metabolites including quinolone alkaloids. Using high-resolution mass spectrometry (MS and nuclear magnetic resonance (NMR analysis, we identified nine secondary metabolites of 4-hydroxy-2-alkylquinoline (pseudane-III, IV, V, VI, VII, VIII, IX, X, and XI. Additionally, this strain produced two novel, closely related compounds, 2-isopentylqunoline-4-one and 2-(2,3-dimetylbutylqunoline-4-(1H-one, which have not been previously reported from marine bacteria. From the metabolites produced by Pseudoalteromonas sp. M2, 2-(2,3-dimethylbutylquinolin-4-one, pseudane-VI, and pseudane-VII inhibited melanin synthesis in Melan-A cells by 23.0%, 28.2%, and 42.7%, respectively, wherein pseudane-VII showed the highest inhibition at 8 µg/mL. The results of this study suggest that liquid chromatography (LC-MS/MS-based metabolite screening effectively improves the efficiency of novel metabolite discovery. Additionally, these compounds are promising candidates for further bioactivity development.

  2. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Science.gov (United States)

    Blanco, Paula; Hernando-Amado, Sara; Reales-Calderon, Jose Antonio; Corona, Fernando; Lira, Felipe; Alcalde-Rico, Manuel; Bernardini, Alejandra; Sanchez, Maria Blanca; Martinez, Jose Luis

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics. PMID:27681908

  3. Metabolic Signatures of Bacterial Vaginosis

    Science.gov (United States)

    Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.

    2015-01-01

    ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373

  4. Functional Characterization of Bacterial Communities Responsible for Fermentation of Doenjang: A Traditional Korean Fermented Soybean Paste.

    Science.gov (United States)

    Jung, Woo Yong; Jung, Ji Young; Lee, Hyo Jung; Jeon, Che Ok

    2016-01-01

    Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA) and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang.

  5. Functional characterization of bacterial communities responsible for fermentation of doenjang, a traditional Korean fermented soybean paste

    Directory of Open Access Journals (Sweden)

    Woo Yong eJung

    2016-05-01

    Full Text Available Doenjang samples were prepared in triplicate and their microbial abundance, bacterial communities, and metabolites throughout fermentation were analyzed to investigate the functional properties of microorganisms in doenjang. Viable bacterial cells were approximately three orders of magnitude higher than fungal cells, suggesting that bacteria are more responsible for doenjang fermentation. Pyrosequencing and proton nuclear magnetic resonance spectroscopy were applied for the analysis of bacterial communities and metabolites, respectively. Bacterial community analysis based on 16S rRNA gene sequences revealed that doenjang samples included Bacillus, Enterococcus, Lactobacillus, Clostridium, Staphylococcus, Corynebacterium, Oceanobacillus, and Tetragenococcus. These genera were found either in doenjang-meju or solar salts, but not in both, suggesting two separate sources of bacteria. Bacillus and Enterococcus were dominant genera during the fermentation, but their abundances were not associated with metabolite changes, suggesting that they may not be major players in doenjang fermentation. Tetragenococcus was dominant in 108 day-doenjang samples, when lactate, acetate, putrescine, and tyramine increased quickly as glucose and fructose decreased, indicating that Tetragenococcus might be primarily responsible for organic acid and biogenic amine production. Lactobacillus was identified as a dominant group from the 179-day samples, associated with the increase of γ-aminobutyric acid (GABA and the decrease of galactose, indicating a potential role for this genus as a major GABA producer during fermentation. The results of this study clarified the functional properties of major bacterial communities in the doenjang fermentation process, contributing to the production of safe and high-quality doenjang.

  6. Variation in antibiosis ability, against potato pathogens, of bacterial communities recovered from the endo- and exoroots of potato crops produced under conventional versus minimum tillage systems.

    Science.gov (United States)

    Sturz, A V; Peters, R D; Carter, M R; Sanderson, J B; Matheson, B G; Christie, B R

    2005-08-01

    The culturable component of bacterial communities found in the endoroot and associated exoroot (root zone soil) was examined in potatoes (Solanum tuberosum L.) grown under either conventional or minimum tillage systems. Bacterial species--abundance relationships were determined and in vitro antibiosis ability investigated to discover whether tillage practice or bacteria source (endo- or exoroot) influenced bacterial community structure and functional versatility. Antibiosis abilities against Phytophthora erythroseptica Pethyb. (causal agent of pink rot of potatoes), Streptomyces scabies (Thaxt.) Waksm. and Henrici) (causal agent of potato common scab), and Fusarium oxysporum Schlecht. Emend. Snyder and Hansen (causal agent of fusarium potato wilt) were selected as indicators of functional versatility. Bacterial community species richness and diversity indices were significantly greater (P = 0.001) in the exoroot than in the endoroot. While both endo- and exoroot communities possessed antibiosis ability against the phytopathogens tested, a significantly greater proportion (P = 0.0001) of the endoroot population demonstrated antibiosis ability than its exoroot counterpart against P. erythroseptica and F. oxysporum. Tillage regime had no significant influence on species-abundance relationships in the endo- or exoroot but did influence the relative antibiosis ability of bacteria in in vitro challenges against S. scabies, where bacteria sourced from minimum tillage systems were more likely to have antibiosis ability (P = 0.0151). We postulate that the difference in the frequency of isolates with antibiosis ability among endoroot versus exoroot populations points to the adaptation of endophytic bacterial communities that favour plant host defence against pathogens that attack the host systemically.

  7. The bacterial cytoskeleton and its putative role in membrane vesicle formation observed in a Gram-positive bacterium producing starch-degrading enzymes.

    Science.gov (United States)

    Mayer, Frank; Gottschalk, Gerhard

    2003-01-01

    Bacteria may possess various kinds of cytoskeleton. In general, bacterial cytoskeletons may play a role in the control and preservation of the cell shape. Such functions become especially evident when the bacteria do not possess a true wall and are nevertheless elongated (e.g. Mycoplasma spp.) or under extreme cultivation conditions whereby loss of the entire bacterial cell wall takes place. Bacterial cytoskeletons may control and preserve the cell shape only if a number of preconditions are fulfilled. They should be present not only transiently, but permanently, they should be located as a lining close to the inner face of the cytoplasmic membrane, enclosing the entire cytoplasm, and they should comprise structural elements (fibrils) crossing the inner volume of the cell in order to provide the necessary stability for the lining. Complete loss of the cell wall layers had earlier been observed to occur during extensive production of bacterial starch-degrading enzymes in an optimized fermentation process by a Gram-positive bacterium. Even under these conditions, the cells had maintained their elongated shape and full viability. Which of the various kinds of bacterial cytoskeleton might have been responsible for shape preservation? Only one of them, the primary or basic cytoskeleton turns out to fulfil the necessary preconditions listed above. Its structural features now provided a first insight into a possible mechanism of formation of membrane blebs and vesicles as observed in the Gram-positive eubacterium Thermoanaerobacterium thermosulfurogenes EM1, and the putative role of the cytoskeletal web in this process.

  8. Non-peptide metabolites from the genus Bacillus.

    Science.gov (United States)

    Hamdache, Ahlem; Lamarti, Ahmed; Aleu, Josefina; Collado, Isidro G

    2011-04-25

    Bacillus species produce a number of non-peptide metabolites that display a broad spectrum of activity and structurally diverse bioactive chemical structures. Biosynthetic, biological, and structural studies of these metabolites isolated from Bacillus species are reviewed. This contribution also includes a detailed study of the activity of the metabolites described, especially their role in biological control mechanisms.

  9. Mapping of Saccharomyces cerevisiae metabolites in fermenting wheat straight-dough reveals succinic acid as pH-determining factor.

    Science.gov (United States)

    Jayaram, Vinay B; Cuyvers, Sven; Lagrain, Bert; Verstrepen, Kevin J; Delcour, Jan A; Courtin, Christophe M

    2013-01-15

    Fermenting yeast does not merely cause dough leavening, but also contributes to the bread aroma and might alter dough rheology. Here, the yeast carbon metabolism was mapped during bread straight-dough fermentation. The concentration of most metabolites changed quasi linearly as a function of fermentation time. Ethanol and carbon dioxide concentrations reached up to 60 mmol/100g flour. Interestingly, high levels of glycerol (up to 10 mmol/100g flour) and succinic acid (up to 1.6 mmol/100g flour) were produced during dough fermentation. Further tests showed that, contrary to current belief, the pH decrease in fermenting dough is primarily caused by the production of succinic acid by the yeast instead of carbon dioxide dissolution or bacterial organic acids. Together, our results provide a comprehensive overview of metabolite production during dough fermentation and yield insight into the importance of some of these metabolites for dough properties.

  10. Microbial succession and metabolite changes during fermentation of dongchimi, traditional Korean watery kimchi.

    Science.gov (United States)

    Jeong, Sang Hyeon; Jung, Ji Young; Lee, Se Hee; Jin, Hyun Mi; Jeon, Che Ok

    2013-06-03

    Dongchimi, one of the most common types of watery kimchi in Korea, was prepared using radish and its pH values, microbial cell numbers, bacterial communities, and metabolites were monitored periodically to investigate the fermentation process of watery kimchi. The bacterial abundance increased quickly during the early fermentation period and the pH values concurrently decreased rapidly without any initial pH increase. After 15 days of fermentation, the bacterial abundance decreased rapidly with the increase of Saccharomyces abundance and then increased again with a decrease of Saccharomyces abundance after 40 days of fermentation, suggesting that bacteria and Saccharomyces have a direct antagonistic relationship. Finally, after 60 days of fermentation, a decrease in bacterial abundance and the growth of Candida were concurrently observed. Community analysis using pyrosequencing revealed that diverse genera such as Leuconostoc, Lactobacillus, Pseudomonas, Pantoea, and Weissella were present at initial fermentation (day 0), but Leuconostoc became predominant within only three days of fermentation and remained predominant until the end of fermentation (day 100). Metabolite analysis using (1)H NMR showed that the concentrations of free sugars (fructose and glucose) were very low during the early fermentation period, but their concentrations increased rapidly although lactate, mannitol, and acetate were produced. After 30 days of fermentation, quick consumption of free sugars and production of glycerol and ethanol were observed concurrently with the growth of Saccharomyces, levels of which might be considered for use as a potential indicator of dongchimi quality and fermentation time.

  11. Importance of mycorrhization helper bacteria cell density and metabolite localization for the Pinus sylvestris-Lactarius rufus symbiosis.

    Science.gov (United States)

    Aspray, Thomas J; Eirian Jones, E; Whipps, John M; Bending, Gary D

    2006-04-01

    Mycorrhization helper bacteria, Paenibacillus sp. EJP73 and Burkholderia sp. EJP67, were used to study the importance of bacterial inoculum dose and bacterial derived soluble and volatile metabolites localization for enhancing mycorrhiza formation in the Pinus sylvestris-Lactarius rufus symbiosis, using a laboratory based microcosm. EJP73 and EJP67 produced different responses in relation to the inoculum dose; EJP73 significantly enhanced mycorrhiza formation to the same degree at all doses tested (10(5), 10(7), 10(9) and 10(10) CFU mL(-1)), whereas, EJP67 only stimulated mycorrhiza formation within a narrow range of inoculum densities (10(7) and 10(9) CFU mL(-1)). The importance of soluble bacterial metabolites was assessed by applying spent broth derived from exponential and stationary phase bacterial cultures to microcosms. No spent broth enhanced mycorrhiza formation over the control. As EJP73 produced the helper effect over a wide range of inoculum doses, this bacterium was chosen for further study. Physical separation of EJP73 from the fungal and plant symbiosis partners was carried out, in order to determine the contribution of constitutively produced bacterial volatile metabolites to the mycorrhization helper bacteria effect. When EJP73 was physically separated from the symbiosis, it had a significant negative effect on mycorrhiza formation. These results suggest that close proximity, or indeed cell contact, is required for the helper effect. Therefore, fluorescent in situ hybridization in conjunction with cryosectioning was used to determine the localization of EJP73 in mycorrhizal tissue. The cells were found to occur as rows or clusters ( approximately 10 cells) within the mycorrhizal mantle, both at the root tip and along the length of the mycorrhizal short roots.

  12. Pervasive Selection for Cooperative Cross-Feeding in Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Sebastian Germerodt

    2016-06-01

    Full Text Available Bacterial communities are taxonomically highly diverse, yet the mechanisms that maintain this diversity remain poorly understood. We hypothesized that an obligate and mutual exchange of metabolites, as is very common among bacterial cells, could stabilize different genotypes within microbial communities. To test this, we developed a cellular automaton to model interactions among six empirically characterized genotypes that differ in their ability and propensity to produce amino acids. By systematically varying intrinsic (i.e. benefit-to-cost ratio and extrinsic parameters (i.e. metabolite diffusion level, environmental amino acid availability, we show that obligate cross-feeding of essential metabolites is selected for under a broad range of conditions. In spatially structured environments, positive assortment among cross-feeders resulted in the formation of cooperative clusters, which limited exploitation by non-producing auxotrophs, yet allowed them to persist at the clusters' periphery. Strikingly, cross-feeding helped to maintain genotypic diversity within populations, while amino acid supplementation to the environment decoupled obligate interactions and favored auxotrophic cells that saved amino acid production costs over metabolically autonomous prototrophs. Together, our results suggest that spatially structured environments and limited nutrient availabilities should facilitate the evolution of metabolic interactions, which can help to maintain genotypic diversity within natural microbial populations.

  13. Metabolite Profiling of Red Sea Corals

    KAUST Repository

    Ortega, Jovhana Alejandra

    2016-12-01

    Looking at the metabolite profile of an organism provides insights into the metabolomic state of a cell and hence also into pathways employed. Little is known about the metabolites produced by corals and their algal symbionts. In particular, corals from the central Red Sea are understudied, but interesting study objects, as they live in one of the warmest and most saline environments and can provide clues as to the adjustment of corals to environmental change. In this study, we applied gas chromatography – mass spectrometry (GC–MS) metabolite profiling to analyze the metabolic profile of four coral species and their associated symbionts: Fungia granulosa, Acropora hemprichii, Porites lutea, and Pocillopora verrucosa. We identified and quantified 102 compounds among primary and secondary metabolites across all samples. F. granulosa and its symbiont showed a total of 59 metabolites which were similar to the 51 displayed by P. verrucosa. P. lutea and A. hemprichii both harbored 40 compounds in conjunction with their respective isolated algae. Comparing across species, 28 metabolites were exclusively present in algae, while 38 were exclusive to corals. A principal component and cluster analyses revealed that metabolite profiles clustered between corals and algae, but each species harbored a distinct catalog of metabolites. The major classes of compounds were carbohydrates and amino acids. Taken together, this study provides a first description of metabolites of Red Sea corals and their associated symbionts. As expected, the metabolites of coral hosts differ from their algal symbionts, but each host and algal species harbor a unique set of metabolites. This corroborates that host-symbiont species pairs display a fine-tuned complementary metabolism that provide insights into the specific nature of the symbiosis. Our analysis also revealed aquatic pollutants, which suggests that metabolite profiling might be used for monitoring pollution levels and assessing

  14. Unraveling the efficient applications of secondary metabolites of various Trichoderma spp.

    Science.gov (United States)

    Keswani, Chetan; Mishra, Sandhya; Sarma, Birinchi Kumar; Singh, Surya Pratap; Singh, Harikesh Bahadur

    2014-01-01

    Recent shift in trends of agricultural practices from application of synthetic fertilizers and pesticides to organic farming has brought into focus the use of microorganisms that carryout analogous function. Trichoderma spp. is one of the most popular genera of fungi commercially available as a plant growth promoting fungus (PGPF) and biological control agent. Exploitation of the diverse nature of secondary metabolites produced by different species of Trichoderma augments their extensive utility in agriculture and related industries. As a result, Trichoderma has achieved significant success as a powerful biocontrol agent at global level. The endorsement of Trichoderma spp. by scientific community is based on the understanding of its mechanisms of action against a large set of fungal, bacterial and in certain cases viral infections. However, it is still an agnostic view that there could be any single major mode of operation, although it is argued that all mechanisms operate simultaneously in a synchronized fashion. The central idea behind this review article is to emphasize the potentiality of applications of target specific secondary metabolites of Trichoderma for controlling phytopathogens as a substitute of commercially available whole organism formulations. With the aim to this point, we have compiled an inclusive list of secondary metabolites produced by different species of Trichoderma and their applications in diverse areas with the major emphasis on agriculture. Outlining the importance and diverse activities of secondary metabolites of Trichoderma besides its relevance to agriculture would generate greater understanding of their other important and beneficial applications apart from target specific biopesticides.

  15. A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles

    OpenAIRE

    Piel, Jörn

    2002-01-01

    Many drug candidates from marine and terrestrial invertebrates are suspected metabolites of uncultured bacterial symbionts. The antitumor polyketides of the pederin family, isolated from beetles and sponges, are an example. Drug development from such sources is commonly hampered by low yields and the difficulty of sustaining invertebrate cultures. To obtain insight into the true producer and find alternative supplies of these rare drug candidates, the putative pederin biosynthesis genes were ...

  16. Phosphoproteome analysis of streptomyces development reveals extensive protein phosphorylation accompanying bacterial differentiation

    DEFF Research Database (Denmark)

    Manteca, Angel; Ye, Juanying; Sánchez, Jesús

    2011-01-01

    Streptomycetes are bacterial species that undergo a complex developmental cycle that includes programmed cell death (PCD) events and sporulation. They are widely used in biotechnology because they produce most clinically relevant secondary metabolites. Although Streptomyces coelicolor is one...... events were detected during the presporulation and sporulation stages (80%). Most of these phosphorylations were not reported before in Streptomyces, and included sporulation factors, transcriptional regulators, protein kinases and other regulatory proteins. Several of the identified phosphorylated...

  17. Andrastin A and barceloneic acid metabolites, protein farnesyl transferase inhibitors from Penicillium alborcoremium: chemotaxonomic significance and pathological implications

    DEFF Research Database (Denmark)

    Overy, David Patrick; Larsen, Thomas Ostenfeld; Dalsgaard, P.W.

    2005-01-01

    A survey of Penicillium albocoremium was undertaken to identify potential taxonomic metabolite markers. One major and four minor metabolites were consistently produced by the 19 strains surveyed on three different media. Following purification and spectral studies, the metabolites were identified...

  18. [Biologically active metabolites of the marine actinobacteria].

    Science.gov (United States)

    Sobolevskaia, M P; Kuznetsova, T A

    2010-01-01

    This review systematically data on the chemical structure and biological activity of metabolites of obligate and facultative marine actinobacteria, published from 2000 to 2007. We discuss some structural features of the five groups of metabolites related to macrolides and compounds containing lactone, quinone and diketopiperazine residues, cyclic peptides, alkaloids, and compounds of mixed biosynthesis. Survey shows a large chemical diversity of metabolites actinobacteria isolated from marine environment. It is shown that, along with metabolites, identical to previously isolated from terrestrial actinobacteria, marine actinobacteria synthesize unknown compounds not found in other natural sources, including micro organisms. Perhaps the biosynthesis of new chemotypes bioactive compounds in marine actinobacteria is one manifestation of chemical adaptation of microorganisms to environmental conditions at sea. Review stresses the importance of the chemical study of metabolites of marine actinobacteria. These studies are aimed at obtaining new data on marine microorganisms producers of biologically active compounds and chemical structure and biological activity of new low-molecular bioregulators of natural origin.

  19. Astrocytes Produce IL-19 in Response to Bacterial Challenge and are Sensitive to the Immunosuppressive Effects of this IL-10 Family Member

    Science.gov (United States)

    Cooley, Ian D.; Chauhan, Vinita S.; Donneyz, Miguel A.; Marriott, Ian

    2014-01-01

    There is growing appreciation that resident glial cells can initiate and/or regulate inflammation following trauma or infection in the central nervous system (CNS). We have previously demonstrated the ability of microglia and astrocytes to respond to bacterial pathogens or their products by rapid production of inflammatory mediators, followed by the production of the immunosuppressive cytokine interleukin (IL)210. IL-19, another member of the IL-10 family of cytokines, has been studied in the context of a number of inflammatory conditions in the periphery and is known to modulate immune cell activity. In the present study, we demonstrate the constitutive and/or inducible expression of IL-19 and its cognate receptor subunits, IL-19Rα and IL-19Rβ (also known as IL-20R1 and IL-20R2, and IL-20RA and IL-20RB), in mouse brain tissue, and by primary murine and human astrocytes. We also provide evidence for the presence of a novel truncated IL-19Rα transcript variant in mouse brain tissue, but not glial cells, that shows reduced expression following bacterial infection. Importantly, IL-19R functionality in GLIA is indicated by the ability of IL-19 to regulate signaling component expression in these cells. Furthermore, while IL-19 itself had no effect on glial cytokine production, IL-19 treatment of bacterially infected or Toll-like receptor ligand stimulated astrocytes significantly attenuated pro-inflammatory cytokine production. The bacterially induced production of IL-19 by these resident CNS cells, the constitutive expression of its cognate receptor subunits, and the immunomodulatory effects of this cytokine, suggest a novel mechanism by which astrocytes can regulate CNS inflammation. PMID:24677051

  20. 阿维链霉菌中aveD基因插入失活产生的异常组分%Unusual metabolites produced by recombinant Streptomyces avermitilis after insertionai inactivation into aveD gene

    Institute of Scientific and Technical Information of China (English)

    陈红霞; 何建勇; 张怡轩

    2009-01-01

    Objective To construct a Streptomyces avermitilis strain producing only "B" components by the replacement of aveD gene with a resistance cassette. Methods A DNA fragment carrying aveD gene amplified by PCR were interrupted by apt (apramycin resistance gene) inserted to a restriction site of NruI, the constructed recom-binant plasmid pID03 was transferred by conjugation via E. coli ET12567 (pUZ8002) into a wild type strain, and S. avermitilis S-2 obtained a mutant strain AvcD24. Conclusions Analysis of the metabolites of AveD24 by HPLC re-vealed that the disappearance of component "A" with still remaining of component B, as expected. But two unexpected compounds were also identified as being oligomycin A and 5-oxoavermectin 1a by HPLC and LC-MS.%目的 探索阿维链霉菌中aveD基因插入失活后对发酵产物组分的影响.方法采用将抗生素(安普霉素)抗性基因插入到aveD基因的方法,构建了重组质粒pID03;利用接合转移的方法将重组质粒导人到阿维链霉菌S-2(Streptomyces atwraitilis S-2)菌株中,并通过抗性标记筛选双交换的菌株.结果得到了aveD基因插入失活的菌株AveD24.该菌株不再产生4个A组分,只产生4个B组分,同时还产生2个异常的组分,经HPLC和质谱分析,初步确定异常组分D24-1为寡霉素A,另一异常组分D24-2为5-酮avermectin 1a.

  1. Analysis of the metabolites of isorhamnetin 3-O-glucoside produced by human intestinal flora in vitro by applying ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry.

    Science.gov (United States)

    Du, Le-yue; Zhao, Min; Xu, Jun; Qian, Da-wei; Jiang, Shu; Shang, Er-xin; Guo, Jian-ming; Duan, Jin-ao

    2014-03-26

    Isorhamnetin 3-O-glucoside, which is widely contained in many vegetables and rice, is expected to be metabolized by intestinal microbiota after digestion, which brings about the profile of its pharmacological effect. However, little is known about the interactions between this active ingredient and the intestinal flora. In this study, the preculture bacteria and GAM (general anaerobic medium) broth with isorhamnetin 3-O-glucoside were mixed for 48 h of incubation. Ultraperformance liquid chromatography/quadrupole time-of-flight mass spectrometry was used for analysis of the metabolites of isorhamnetin 3-O-glucoside in the corresponding supernatants of fermentation. The parent and five metabolites were found and preliminarily identified on the basis of the chromatograms and characteristics of their protonated ions. Four main metabolic pathways, including deglycosylation, demethoxylation, dehydroxylation, and acetylation, were summarized to explain how the metabolites were converted. Acetylated isorhamnetin 3-O-glucoside and kaempferol 3-O-glucoside were detected only in the sample of Escherichia sp. 12, and quercetin existed only in the sample of Escherichia sp. 4. However, the majority of bacteria could metabolize isorhamnetin 3-O-glucoside to its aglycon isorhamnetin, and then isorhamnetin was degraded to kaempferol. The metabolic pathway and the metabolites of isorhamnetin 3-O-glucoside yielded by different isolated human intestinal bacteria were investigated for the first time. The results probably provided useful information for further in vivo metabolism and active mechanism research on isorhamnetin 3-O-glucoside.

  2. Discovery of novel metabolites from marine actinomycetes.

    Science.gov (United States)

    Lam, Kin S

    2006-06-01

    Recent findings from culture-dependent and culture-independent methods have demonstrated that indigenous marine actinomycetes exist in the oceans and are widely distributed in different marine ecosystems. There is tremendous diversity and novelty among the marine actinomycetes present in marine environments. Progress has been made to isolate novel actinomycetes from samples collected at different marine environments and habitats. These marine actinomycetes produce different types of new secondary metabolites. Many of these metabolites possess biological activities and have the potential to be developed as therapeutic agents. Marine actinomycetes are a prolific but underexploited source for the discovery of novel secondary metabolites.

  3. Effects of Lactobacillus Johnsonii AJ5 Metabolites on Nutrition, Nosema Ceranae Development and Performance of Apis Mellifera L.

    Directory of Open Access Journals (Sweden)

    Piano Fiorella G. De

    2017-06-01

    Full Text Available The European honey bee (Apis mellifera L. is known to be affected by such stress factors as pathogen load, poor nutrition and depressed immunity. Nosema ceranae is one of the main parasites that affect colony populations. The relationship between the stress factors and honey bee-bacteria symbiosis appears as an alternative to enhance bee health. The aim of this study was to evaluate the effect of the oral administration of bacterial metabolites produced by Lactobacillus johnsonii AJ5 on nutritional parameters, the N. ceranae development and the performance of A. mellifera colonies. Laboratory assays were performed and demonstrated that the bacterial metabolites did not have a toxic effect on bees. Field trial showed an increase of colonies population over time. Also, a decreasing trend of fat bodies per bee was detected in all colonies but there were no evident changes on abdomen protein content at the end of the assay. Lastly, N. ceranae prevalence showed a tendency to reduce with the organic acids. Future studies should be performed to increase our knowledge of the physiological effects of bacterial metabolites on the health of bee colonies.

  4. Tailoring specialized metabolite production in streptomyces.

    Science.gov (United States)

    Hiltner, Jana K; Hunter, Iain S; Hoskisson, Paul A

    2015-01-01

    Streptomycetes are prolific producers of a plethora of medically useful metabolites. These compounds are made by complex secondary (specialized) metabolic pathways, which utilize primary metabolic intermediates as building blocks. In this review we discuss the evolution of specialized metabolites and how expansion of gene families in primary metabolism has lead to the evolution of diversity in these specialized metabolic pathways and how developing a better understanding of expanded primary metabolic pathways can help enhance synthetic biology approaches to industrial pathway engineering.

  5. Synthesis of the major metabolites of Tolvaptan

    Institute of Scientific and Technical Information of China (English)

    Wei Li Wan; Jian Bo Wu; Fan Lei; Xiao Long Li; Li Hai; Yong Wu

    2012-01-01

    Tolvaptan is a nonpeptide arginine vasopressin (AVP) V2-receptor antagonist and used in the treatment of heart failure,cirrhosis,syndrome of inappropriate antidiuretic hormone secretion or other high-volume capacity of hyponatremia.The metabolites of tolvaptan are mainly produced by CYP3A4,including two major compounds named DM-4103 and DM-4107.Herein,the chemical synthesis of those two metabolites is described in this article for further study.

  6. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    of choice for optimum detection of blaESBL and/or blaAmpC genes. The preferred method for isolation of ESBL- and/or AmpC-producers is screening on selective agar preceded by selective enrichment in a broth.The establishment of risk factors for occurrence of ESBL/AmpC-producing bacteria is particularly...

  7. Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus.

    Science.gov (United States)

    Brucker, Robert M; Harris, Reid N; Schwantes, Christian R; Gallaher, Thomas N; Flaherty, Devon C; Lam, Brianna A; Minbiole, Kevin P C

    2008-11-01

    Disease has spurred declines in global amphibian populations. In particular, the fungal pathogen Batrachochytrium dendrobatidis has decimated amphibian diversity in some areas unaffected by habitat loss. However, there is little evidence to explain how some amphibian species persist despite infection or even clear the pathogen beyond detection. One hypothesis is that certain bacterial symbionts on the skin of amphibians inhibit the growth of the pathogen. An antifungal strain of Janthinobacterium lividum, isolated from the skin of the red-backed salamander Plethodon cinereus, produces antifungal metabolites at concentrations lethal to B. dendrobatidis. Antifungal metabolites were identified by using reversed phase high performance liquid chromatography, high resolution mass spectrometry, nuclear magnetic resonance, and UV-Vis spectroscopy and tested for efficacy of inhibiting the pathogen. Two metabolites, indole-3-carboxaldehyde and violacein, inhibited the pathogen's growth at relatively low concentrations (68.9 and 1.82 microM, respectively). Analysis of fresh salamander skin confirmed the presence of J. lividum and its metabolites on the skin of host salamanders in concentrations high enough to hinder or kill the pathogen (51 and 207 microM, respectively). These results support the hypothesis that cutaneous, mutualistic bacteria play a role in amphibian resistance to fungal disease. Exploitation of this biological process may provide long-term resistance to B. dendrobatidis for vulnerable amphibians and serve as a model for managing future emerging diseases in wildlife populations.

  8. Production of unusual dispiro metabolites in Pestalotiopsis virgatula endophyte cultures

    DEFF Research Database (Denmark)

    Kesting, Julie Regitze; Olsen, Lars; Stærk, Dan;

    2011-01-01

    The endophytic fungus Pestalotiopsis virgatula, derived from the plant Terminalia chebula and previously found to produce a large excess of a single metabolite when grown in the minimal M1D medium, was induced to produce a variety of unusual metabolites by growing in potato dextrose broth medium...

  9. Volatile organic compounds produced by a soil-isolate, Bacillus subtilis FA26 induce adverse ultra-structural changes to the cells of Clavibacter michiganensis ssp. sepedonicus, the causal agent of bacterial ring rot of potato.

    Science.gov (United States)

    Rajer, Faheem Uddin; Wu, Huijun; Xie, Yongli; Xie, Shanshan; Raza, Waseem; Tahir, Hafiz Abdul Samad; Gao, Xuewen

    2017-04-01

    Rhizobacterial volatile organic compounds (VOCs) play an important role in the suppression of soil-borne phytopathogens. In this study, the VOCs produced by a soil-isolate, Bacillus subtilis FA26, were evaluated in vitro for their antibacterial activity against Clavibacter michiganensis ssp. sepedonicus (Cms), the causal agent of bacterial ring rot of potato. The VOCs emitted by FA26 inhibited the growth of Cms significantly compared with the control. Scanning and transmission electron microscopy analyses revealed distorted colony morphology and a wide range of abnormalities in Cms cells exposed to the VOCs of FA26. Varying the inoculation strategy and inoculum size showed that the production and activity of the antibacterial VOCs of FA26 were dependent on the culture conditions. Headspace solid-phase microextraction/gas chromatography-mass spectrometry analyses revealed that FA26 produced 11 VOCs. Four VOCs (benzaldehyde, nonanal, benzothiazole and acetophenone) were associated with the antibacterial activity against Cms. The results suggested that the VOCs produced by FA26 could control the causal agent of bacterial ring rot of potato. This information will increase our understanding of the microbial interactions mediated by VOCs in nature and aid the development of safer strategies for controlling plant disease.

  10. Atmospheric pressure plasma produced inside a closed package by a dielectric barrier discharge in Ar/CO2 for bacterial inactivation of biological samples

    DEFF Research Database (Denmark)

    Chiper, Alina Silvia; Chen, Weifeng; Mejlholm, Ole

    2011-01-01

    The generation and evaluation of a dielectric barrier discharge produced inside a closed package made of a commercially available packaging film and filled with gas mixtures of Ar/CO2 at atmospheric pressure is reported. The discharge parameters were analysed by electrical measurements and optical...... times higher in the Ar/CO2 plasma compared with an Ar plasma. The efficiency of the produced plasma for the inactivation of bacteria on food inside the closed package was investigated....

  11. Optimization of culture conditions of producing bacterial cellulose utilizing starch wastewater%淀粉废水发酵产细菌纤维素发酵条件的优化

    Institute of Scientific and Technical Information of China (English)

    徐伟; 张妍; 傅徐阳

    2012-01-01

    The culture conditions of Gluconacetobacter xylinus producing bacterial cellulose utilizing corn starch wastewater(adding glucose 20g/L,corn steep liquor 40g/L,ethanol 150mL/L) were investigated through singlefactor and orthogonal tests. The suitable culture conditions were as follows.liquid level was 80mL in 250mL triangle bottle,pH4.0,inoculation volume was 9% (VN),culture temperature was 28℃ ,the the yield of bacterial cellulose reached the peak(4.41g/L) at this time. The bacterial cellulose was verified by FTIR,SEM was used to observe the surface pattern of bacterial cellulose membrane.%以玉米淀粉废水添加葡萄糖20g/L,玉米浆40班,乙醇150mL/L为发酵基质,采用单因素和正交实验设计对葡糖醋杆菌(Gluconacetobacter xylinus)发酵产细菌纤维素条件进行优化。结果表明,最佳发酵条件为:装液量80mL/250mL,pH4.0,接种量9%(V/V),温度28℃;在此条件下得到细菌纤维素产量为4.41g/L。采用傅立叶转换红外光谱FTIR验证产物为细菌纤维素,并由SEM扫描电镜观察纤维素膜表面形貌。

  12. Effect of glutathione L-cystein and L-djenkolic acid in the synthesis and mutagenicity of azide metabolite in Bacillus subtilis ATCC 6633 strain.

    Science.gov (United States)

    Elbetieha, A; Owais, W M; Saadoun, I; Hussein, E

    1999-10-01

    The Bacillus subtilis ATCC 6633 strain synthesizes a mutagenic metabolite from sodium azide and O-acetylserine. Mutagenicity of azide was decreased in growth media containing 10(-4) M glutathione, L-cysteine or L-djenkolic acid whereas dithiothritol (DTT) added at the same concentration did not reduce the mutagenicity of azide. Likewise, glutathione, L-cysteine, L-djenkolic acid, and DTT were found to have no effect in reducing the mutagenicity of the in vitro produced metabolite using bacterial cell-free extract. These results suggest that O-acetyl-serine sulfhydrylase catalyzes the reaction of azide and O-acetylserine to form a mutagenic metabolite, which is ninhydrin positive and migrates in TLC to an Rf value similar to that of azidoalanine in both acidic and basic solvent systems.

  13. EFSA Panel on Biological Hazards (BIOHAZ); Scientific Opinion on the public health risks of bacterial strains producing extended-spectrum β-lactamases and/or AmpC β-lactamases in food and food-producing animals

    OpenAIRE

    Hald, Tine; Baggesen, Dorte Lau

    2011-01-01

    The potential contribution of food-producing animals or foods to public health risks by ESBL and/or AmpC-producing bacteria is related to specific plasmid-mediated ESBL and/or AmpC genes encoded by a number of organisms. The predominant ESBL families encountered are CTX-M, TEM, and SHV; the predominant AmpC-family is CMY. The most common genes associated with this resistance in animals are blaCTX-M-1 (the most commonly identified ESBL), and blaCTX-M-14, followed by blaTEM-52 and blaSHV-12. Am...

  14. Rethinking cycad metabolite research.

    Science.gov (United States)

    Snyder, Laura R; Marler, Thomas E

    2011-01-01

    Cycads are among the most ancient of extant Spermatophytes, and are known for their numerous pharmacologically active compounds. One compound in particular, β-methylamino-L-alanine (BMAA), has been implicated as the cause of amyotrophic lateral sclerosis/Parkinson dementia complex (ALS/PDC) on Guam. Previous studies allege that BMAA is produced exclusively by cyanobacteria, and is transferred to cycads through the symbiotic relationship between these cyanobacteria and the roots of cycads. We recently published data showing that Cycas micronesica seedlings grown without endophytic cyanobacteria do in fact increase in BMAA, invalidating the foundation of the BMAA hypothesis. We use this example to suggest that the frenzy centered on BMAA and other single putative toxins has hindered progress. The long list of cycad-specific compounds may have important roles in signaling or communication, but these possibilities have been neglected during decades of attempts to force single metabolites into a supposed anti-herbivory function. We propose that an unbiased, comprehensive approach may be a more appropriate means of proceeding with cycad biochemistry research.

  15. The Microbiome and Metabolites in Fermented Pu-erh Tea as Revealed by High-Throughput Sequencing and Quantitative Multiplex Metabolite Analysis.

    Science.gov (United States)

    Zhang, Yongjie; Skaar, Ida; Sulyok, Michael; Liu, Xingzhong; Rao, Mingyong; Taylor, John W

    2016-01-01

    Pu-erh is a tea produced in Yunnan, China by microbial fermentation of fresh Camellia sinensis leaves by two processes, the traditional raw fermentation and the faster, ripened fermentation. We characterized fungal and bacterial communities in leaves and both Pu-erhs by high-throughput, rDNA-amplicon sequencing and we characterized the profile of bioactive extrolite mycotoxins in Pu-erh teas by quantitative liquid chromatography-tandem mass spectrometry. We identified 390 fungal and 629 bacterial OTUs from leaves and both Pu-erhs. Major findings are: 1) fungal diversity drops and bacterial diversity rises due to raw or ripened fermentation, 2) fungal and bacterial community composition changes significantly between fresh leaves and both raw and ripened Pu-erh, 3) aging causes significant changes in the microbial community of raw, but not ripened, Pu-erh, and, 4) ripened and well-aged raw Pu-erh have similar microbial communities that are distinct from those of young, raw Ph-erh tea. Twenty-five toxic metabolites, mainly of fungal origin, were detected, with patulin and asperglaucide dominating and at levels supporting the Chinese custom of discarding the first preparation of Pu-erh and using the wet tea to then brew a pot for consumption.

  16. Bacterial Type I Glutamine Synthetase of the Rifamycin SV Producing Actinomycete, Amycolatopsis mediterranei U32, is the Only Enzyme Responsible for Glutamine Synthesis under Physiological Conditions

    Institute of Scientific and Technical Information of China (English)

    Wen-Tao PENG; Jin WANG; Ting WU; Jian-Qiang HUANG; Jui-Shen CHIAO; Guo-Ping ZHAO

    2006-01-01

    The structural gene for glutamine synthetase, glnA, from Amycolatopsis mediterranei U32 was cloned via screening a genomic library using the analog gene from Streptomyces coelicolor. The clone was functionally verified by complementing for glutamine requirement of an Escherichia coli glnA null mutant under the control of a lac promoter. Sequence analysis showed an open reading frame encoding a protein of466 amino acid residues. The deduced amino acid sequence bears significant homologies to other bacterial type I glutamine synthetases, specifically, 71% and 72% identical to the enzymes of S. coelicolor and Mycobacterium tuberculosis, respectively. Disruption of this glnA gene in A. mediterranei U32 led to glutamine auxotrophy with no detectable glutamine synthetase activity in vivo. In contrast, the cloned glnA+ gene can complement for both phenotypes in trans. It thus suggested that in A. mediterranei U32, the glnA gene encoding glutamine synthetase is uniquely responsible for in vivo glutamine synthesis under our laboratory defined physiological conditions.

  17. Complete Genome Sequence of a Gluconacetobacter hansenii ATCC 23769 Isolate, AY201, Producer of Bacterial Cellulose and Important Model Organism for the Study of Cellulose Biosynthesis.

    Science.gov (United States)

    Pfeffer, Sarah; Mehta, Kalpa; Brown, R Malcolm

    2016-08-11

    The cellulose producer and model organism used for the study of cellulose biosynthesis, Gluconacetobacter hansenii AY201, is a variant of G. hansenii ATCC 23769. We report here the complete nucleotide sequence of G. hansenii AY201, information which may be utilized to further the research into understanding the genes necessary for cellulose biosynthesis.

  18. Safety assessment of transgenic Bacillus thuringiensis rice T1c-19 in Sprague-Dawley rats from metabonomics and bacterial profile perspectives.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, YunBo; Yuan, Yanfang; Liu, Pengfei; Cao, Bo; Shi, Hui; Huang, Kunlun

    2012-03-01

    Bacillus thuringiensis rice is facing commercialization as the main food source in the near future. The unintended effects of genetically modified (GM) organisms are the most important barriers to their promotion. We aimed to establish a new in vivo evaluation model for genetically modified foods by using metabonomics and bacterial profile approaches. T1c-19 rice flour or its transgenic parent MH63 was used at 70% wt/wt to produce diets that were fed to rats for ∼ 90 days. Urine metabolite changes were detected using (1)H NMR. Denaturing gradient gel electrophoresis and real-time polymerase chain reaction (RT-PCR) were used to detect the bacterial profiles between the two groups. The metabonomics was analyzed for metabolite changes in rat urine, when compared with the non-GM rice group, where rats were fed a GM rice diet. Several metabolites correlated with rat age and sex but not with GM rice diet. Significant biological differences were not identified between the GM rice diet and the non-GM rice diet. The bacteria related to rat urine metabolites were also discussed. The results from metabonomics and bacterial profile analyses were comparable with the results attained using the traditional method. Because metabonomics and bacterial profiling offer noninvasive, dynamic approaches for monitoring food safety, they provide a novel process for assessing the safety of GM foods.

  19. A panorama of bacterial inulinases: Production, purification, characterization and industrial applications.

    Science.gov (United States)

    Singh, Ram Sarup; Chauhan, Kanika; Kennedy, John F

    2017-03-01

    Inulinases are important hydrolysing enzymes which specifically act on β-2, 1 linkages of inulin to produce fructose or fructooligosaccharides. Fungi, yeasts and bacteria are the potent microbial sources of inulinases. The data on bacterial inulinases is scarce as compared to other microbial sources. Inulinases yield from bacteria is very less as compared to fungal and yeast sources of inulinases. Submerged fermentation (SmF) is the method of choice for the production of inulinases from bacterial sources. Moreover, inulin is a potent substrate for the production of inulinases in SmF. Many bacterial inulinases have been reported to display magnificent environment abiding features and variability in their biophysical and biochemical properties. These properties have attracted intention of many researchers towards exploring adverse ecological niches for more distinctive inulinase producing bacterial strains. Inulinases are substantially important in current biotechnological era due to their numerous industrial applications. High fructose syrup and fructooligosaccharides are two major industrial applications of inulinases. Additionally, there are many reports on the production of various metabolites like citric acid, lactic acid, ethanol, biofuels, butanediol etc. using mixed cultures of inulinase producing organisms with other microorganisms. The present review mainly envisages inulinase producing bacterial sources, inulinase production, purification, characterization and their applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Screening of mercury-resistant and indole-3-acetic acid producing bacterial-consortium for growth promotion of Cicer arietinum L.

    Science.gov (United States)

    Amin, Aatif; Latif, Zakia

    2017-03-01

    Mercury resistant (Hg(R) ) bacteria were screened from industrial effluents and effluents-polluted rhizosphere soils near to districts Kasur and Sheikhupura, Pakistan. Out of 60 isolates, three bacterial strains, Bacillus sp. AZ-1, Bacillus cereus AZ-2, and Enterobacter cloacae AZ-3 showed Hg-resistance as 20 μg ml(-1) of HgCl2 and indole-3-acetic acid (IAA) production as 8-38 μg ml(-1) . Biochemical and molecular characterization of selected bacteria was confirmed by 16S ribotyping. Mercury resistant genes merA, merB, and merE of mer operon in Bacillus spp. were checked by PCR amplification. The merE gene involved in the transportation of elemental mercury (Hg(0) ) via cell membrane was first time cloned into pHLV vector and transformed in C43(DE3) Escherichia coli cells. The recombinant plasmid (pHLMerE) was expressed and purified by nickel (Ni(+2) ) affinity chromatography. Chromatographic techniques viz. thin layer chromatography (TLC), high performance liquid chromatography (HPLC), and Gas chromatography-mass spectrometry (GC-MS) confirmed the presence of Indole-3-acetic acid (IAA) in supernatant of selected bacteria. The strain E. cloacae AZ-3 detoxified 88% of mercury (Hg(+2) ) from industrial effluent (p mercury amended soil with 20 μg ml(-1) HgCl2 resulted 80, 22, 64, 116, 50, 75, 30, and 100% increase as compared to control plants in seed germination, shoot and root length, shoot and root fresh weight, number of pods per plant, number of seeds and weight of seeds, respectively, of chickpea (Cicer arietinum L.) in pot experiments (p < 0.05).

  1. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? - A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21

    OpenAIRE

    Gao, Lifen; Cao, Yinghao; Xia, Zhihui; Jiang, Guanghuai; Liu, Guozhen; Zhang, Weixiong; Zhai, Wenxue

    2013-01-01

    Background The potential impact of genetically modified (GM) plants on human health has attracted much attention worldwide, and the issue remains controversial. This is in sharp contrast to the broad acceptance of plants produced by breeding through Marker Assisted Backcrossing (MAB). Results Focusing on transcriptome variation and perturbation to signaling pathways, we assessed the molecular and biological aspects of substantial equivalence, a general principle for food safety endorsed by th...

  2. Prevalence of Carbapenem Resistant Non-Fermenting Gram Negative Bacterial Infection and Identification of Carbapenemase Producing NFGNB Isolates by Simple Phenotypic Tests.

    Science.gov (United States)

    Esther, Jane; Edwin, Diego; Uma

    2017-03-01

    Non-Fermenting Gram negative bacilli (NFGNB) are emerging multi-drug resistant pathogens causing nosocomial infections. In recent years, carbapenem resistance in NFGNB has increased due to a variety of drug resistance mechanisms, the most common being production of carbapenemases. To detect carbapenemase and metallo-β-lactamase (MBL) production in NFGNBs by four phenotypic tests and to compare the various phenotypic methods for detection of carbapenemase and MBL production in nosocomial NFGNB isolates. It is a cross sectional study carried out in the department of Microbiology, Chennai Medical College Hospital and Research Center, Irungalur, Trichy between January 2015 and December 2015. Out of the 598 NFGNB isolated from all the 5402 heterogenous clinical samples that were processed, 52 (8.7%) NFGNB showed resistance or intermediate sensitivity to meropenem as tested by disc diffusion assay. All the 52 isolates were subjected to four different phenotypic tests for carbapenemase and MBL detection, which included Modified Hodge Test (MHT), Meropenem-EDTA Disc Synergy (EDS) test, Meropenem-EDTA Combined Disc Test (CDT) and Growth on CHROMagar KPC. Among the 52 isolates, 29 (55.77%) were MHT positive and 49 (94.23%) were positive for growth on CHROMEagar KPC which were identified as carbapenemase producers. 44 (84.61%) were EDS positive and 46 (88.46%) were CDT positive which were identified as metallo-β-lactamase producers. The presence of these resistant bugs strongly suggests the need to prevent their further spread by implementation of strict infection control measures and regular surveillance to check their outcome. Growth on CHROMagar KPC is the test that has picked up more number of carbapenem resistant isolates as carbapenemase and metallo-β-lactamase producers among the four tests. It is also cheap and easy to perform, making it the most reliable test for routine screening of carbapenemase and MBL producers in clinical laboratories.

  3. Metabolic engineering of Arabidopsis for butanetriol production using bacterial genes.

    Science.gov (United States)

    Abdel-Ghany, Salah E; Day, Irene; Heuberger, Adam L; Broeckling, Corey D; Reddy, Anireddy S N

    2013-11-01

    1,2,4-butanetriol (butanetriol) is a useful precursor for the synthesis of the energetic material butanetriol trinitrate and several pharmaceutical compounds. Bacterial synthesis of butanetriol from xylose or arabinose takes place in a pathway that requires four enzymes. To produce butanetriol in plants by expressing bacterial enzymes, we cloned native bacterial or codon optimized synthetic genes under different promoters into a binary vector and stably transformed Arabidopsis plants. Transgenic lines expressing introduced genes were analyzed for the production of butanetriol using gas chromatography coupled to mass spectrometry (GC-MS). Soil-grown transgenic plants expressing these genes produced up to 20 µg/g of butanetriol. To test if an exogenous supply of pentose sugar precursors would enhance the butanetriol level, transgenic plants were grown in a medium supplemented with either xylose or arabinose and the amount of butanetriol was quantified. Plants expressing synthetic genes in the arabinose pathway showed up to a forty-fold increase in butanetriol levels after arabinose was added to the medium. Transgenic plants expressing either bacterial or synthetic xylose pathways, or the arabinose pathway showed toxicity symptoms when xylose or arabinose was added to the medium, suggesting that a by-product in the pathway or butanetriol affected plant growth. Furthermore, the metabolite profile of plants expressing arabinose and xylose pathways was altered. Our results demonstrate that bacterial pathways that produce butanetriol can be engineered into plants to produce this chemical. This proof-of-concept study for phytoproduction of butanetriol paves the way to further manipulate metabolic pathways in plants to enhance the level of butanetriol production.

  4. 细菌纤维素膜对木醋杆菌发酵生产广式米醋的影响%Effect of Bacterial Cellulose Pellicle on Gluconacetobacter xylinus Fermentation Producing Guangdong Rice Vinegar

    Institute of Scientific and Technical Information of China (English)

    傅亮; 陈思谦; 易九龙; 吴炳鸿

    2012-01-01

    Isolated from a Guangdong rice vinegar factory, the RF4 Gluconacetobacter xylinus is used to produce rice vinegar by surface fermentation. The effect of intact bacterial cellulose peUicle on total acidity in fermentation, the comparison of ADH enzyme activity in the pellicle and liquor, and the influence of inoculation methods on acidity, viscosity and turbidity are researched. The results show that the morphology of bacterial cellulose pellicle is very im- portant to total acidity produced, and the ADH enzyme activity in the bacterial cellulose pellicle is 2.26 x 10-2U/g, 8 times of that in the liquor. The highest acidity achieved when bacterial cellulose pellicle was inoculated with Glu- conacetobacter xylinus, 12 days accompanying and was taken out during the fermentation, resulting in a high yielding of 4.86g/100mL after by low viscosity and turbidity.%以分离自广式米醋生产车间的木醋杆菌RF4(Gluconacetobacter xylinus)为菌种进行表面发酵。研究了发酵过程中细菌纤维素膜对总酸度的影响,纤维素膜内与发酵液中乙醇脱氢酶活性差异,讨论了3种不同接种培养方式对总酸度、黏度及浑浊度的影响。结果表明,纤维素膜完整性对发酵总酸度有重要影响,纤维素膜内乙醇脱氢酶活性是发酵液中的8倍,达2.26×10-2U/g。含木醋杆菌纤维素膜接种并中途取出的接种培养方式总酸度最高,发酵12天后可达4.86 g/100 mL,且黏度及浑浊度都较低。

  5. Pharmaceutically active secondary metabolites of marine actinobacteria.

    Science.gov (United States)

    Manivasagan, Panchanathan; Venkatesan, Jayachandran; Sivakumar, Kannan; Kim, Se-Kwon

    2014-04-01

    Marine actinobacteria are one of the most efficient groups of secondary metabolite producers and are very important from an industrial point of view. Many representatives of the order Actinomycetales are prolific producers of thousands of biologically active secondary metabolites. Actinobacteria from terrestrial sources have been studied and screened since the 1950s, for many important antibiotics, anticancer, antitumor and immunosuppressive agents. However, frequent rediscovery of the same compounds from the terrestrial actinobacteria has made them less attractive for screening programs in the recent years. At the same time, actinobacteria isolated from the marine environment have currently received considerable attention due to the structural diversity and unique biological activities of their secondary metabolites. They are efficient producers of new secondary metabolites that show a range of biological activities including antibacterial, antifungal, anticancer, antitumor, cytotoxic, cytostatic, anti-inflammatory, anti-parasitic, anti-malaria, antiviral, antioxidant, anti-angiogenesis, etc. In this review, an evaluation is made on the current status of research on marine actinobacteria yielding pharmaceutically active secondary metabolites. Bioactive compounds from marine actinobacteria possess distinct chemical structures that may form the basis for synthesis of new drugs that could be used to combat resistant pathogens. With the increasing advancement in science and technology, there would be a greater demand for new bioactive compounds synthesized by actinobacteria from various marine sources in future. Copyright © 2013 Elsevier GmbH. All rights reserved.

  6. Novel pyrazine metabolites found in polymyxin biosynthesis by Paenibacillus polymyxa

    DEFF Research Database (Denmark)

    Beck, Hans Christian; Hansen, Anne M; Lauritsen, Frants R

    2003-01-01

    A complex mixture of methyl-branched alkyl-substituted pyrazines was found in the growth medium of the polymyxin-producing bacterium Paenibacillus polymyxa, and of these, seven are new natural compounds. A total of 19 pyrazine metabolites were identified. The dominant metabolite was 2...... supplementation. The other pyrazine metabolites, all related pyrazines with either one, two or three alkyl substituents, were identified by means of their mass spectral data and/or co-elution with authentic standards....

  7. Epigenome targeting by probiotic metabolites

    Directory of Open Access Journals (Sweden)

    Licciardi Paul V

    2010-12-01

    Full Text Available Abstract Background The intestinal microbiota plays an important role in immune development and homeostasis. A disturbed microbiota during early infancy is associated with an increased risk of developing inflammatory and allergic diseases later in life. The mechanisms underlying these effects are poorly understood but are likely to involve alterations in microbial production of fermentation-derived metabolites, which have potent immune modulating properties and are required for maintenance of healthy mucosal immune responses. Probiotics are beneficial bacteria that have the capacity to alter the composition of bacterial species in the intestine that can in turn influence the production of fermentation-derived metabolites. Principal among these metabolites are the short-chain fatty acids butyrate and acetate that have potent anti-inflammatory activities important in regulating immune function at the intestinal mucosal surface. Therefore strategies aimed at restoring the microbiota profile may be effective in the prevention or treatment of allergic and inflammatory diseases. Presentation of the hypothesis Probiotic bacteria have diverse effects including altering microbiota composition, regulating epithelial cell barrier function and modulating of immune responses. The precise molecular mechanisms mediating these probiotic effects are not well understood. Short-chain fatty acids such as butyrate are a class of histone deacetylase inhibitors important in the epigenetic control of host cell responses. It is hypothesized that the biological function of probiotics may be a result of epigenetic modifications that may explain the wide range of effects observed. Studies delineating the effects of probiotics on short-chain fatty acid production and the epigenetic actions of short-chain fatty acids will assist in understanding the association between microbiota and allergic or autoimmune disorders. Testing the hypothesis We propose that treatment with

  8. A canonical FtsZ protein in Verrucomicrobium spinosum, a member of the Bacterial phylum Verrucomicrobia that also includes tubulin-producing Prosthecobacter species

    Directory of Open Access Journals (Sweden)

    Staley James T

    2007-03-01

    Full Text Available Abstract Background The origin and evolution of the homologous GTP-binding cytoskeletal proteins FtsZ typical of Bacteria and tubulin characteristic of eukaryotes is a major question in molecular evolutionary biology. Both FtsZ and tubulin are central to key cell biology processes – bacterial septation and cell division in the case of FtsZ and in the case of tubulins the function of microtubules necessary for mitosis and other key cytoskeleton-dependent processes in eukaryotes. The origin of tubulin in particular is of significance to models for eukaryote origins. Most members of domain Bacteria possess FtsZ, but bacteria in genus Prosthecobacter of the phylum Verrucomicrobia form a key exception, possessing tubulin homologs BtubA and BtubB. It is therefore of interest to know whether other members of phylum Verrucomicrobia possess FtsZ or tubulin as their FtsZ-tubulin gene family representative. Results Verrucomicrobium spinosum, a member of Phylum Verrucomicrobia of domain Bacteria, has been found to possess a gene for a protein homologous to the cytoskeletal protein FtsZ. The deduced amino acid sequence has sequence signatures and predicted secondary structure characteristic for FtsZ rather than tubulin, but phylogenetic trees and sequence analysis indicate that it is divergent from all other known FtsZ sequences in members of domain Bacteria. The FtsZ gene of V. spinosum is located within a dcw gene cluster exhibiting gene order conservation known to contribute to the divisome in other Bacteria and comparable to these clusters in other Bacteria, suggesting a similar functional role. Conclusion Verrucomicrobium spinosum has been found to possess a gene for a protein homologous to the cytoskeletal protein FtsZ. The results suggest the functional as well as structural homology of the V. spinosum FtsZ to the FtsZs of other Bacteria implying its involvement in cell septum formation during division. Thus, both bacteria-like FtsZ and eukaryote

  9. Bacterial Vaginosis

    Science.gov (United States)

    ... Form Controls Cancel Submit Search the CDC Bacterial Vaginosis (BV) Note: Javascript is disabled or is not ... STD on Facebook Sexually Transmitted Diseases (STDs) Bacterial Vaginosis – CDC Fact Sheet Language: English (US) Españ ...

  10. Enhanced metabolite generation

    Science.gov (United States)

    Chidambaram, Devicharan [Middle Island, NY

    2012-03-27

    The present invention relates to the enhanced production of metabolites by a process whereby a carbon source is oxidized with a fermentative microbe in a compartment having a portal. An electron acceptor is added to the compartment to assist the microbe in the removal of excess electrons. The electron acceptor accepts electrons from the microbe after oxidation of the carbon source. Other transfers of electrons can take place to enhance the production of the metabolite, such as acids, biofuels or brewed beverages.

  11. Isolation and bacterial expression of a sesquiterpene synthase cDNA clone from peppermint (Mentha x piperita, L.) that produces the aphid alarm pheromone (E)-β-farnesene

    Science.gov (United States)

    Crock, John; Wildung, Mark; Croteau, Rodney

    1997-01-01

    (E)-β-Farnesene is a sesquiterpene semiochemical that is used extensively by both plants and insects for communication. This acyclic olefin is found in the essential oil of peppermint (Mentha x piperita) and can be synthesized from farnesyl diphosphate by a cell-free extract of peppermint secretory gland cells. A cDNA from peppermint encoding (E)-β-farnesene synthase was cloned by random sequencing of an oil gland library and was expressed in Escherichia coli. The corresponding synthase has a deduced size of 63.8 kDa and requires a divalent cation for catalysis (Km for Mg2+ ≈ 150 μM; Km for Mn2+ ≈ 7 μM). The sesquiterpenoids produced by the recombinant enzyme, as determined by radio-GC and GC-MS, are (E)-β-farnesene (85%), (Z)-β-farnesene (8%), and δ-cadinene (5%) with the native C15 substrate farnesyl diphosphate (Km ≈ 0.6 μM; Vrel = 100) and Mg2+ as cofactor, and (E)-β-farnesene (98%) and (Z)-β-farnesene (2%) with Mn2+ as cofactor (Vrel = 80). With the C10 analog, GDP, as substrate (Km = 1.5 μM; Vrel = 3 with Mg2+ as cofactor), the monoterpenes limonene (48%), terpinolene (15%), and myrcene (15%) are produced. PMID:9371761

  12. Effect of free and symbiotic nitrogen fixing bacterial co-inoculation on seed and seedling of soybean seeds produced under deficit water condition

    Directory of Open Access Journals (Sweden)

    Hamed Hadi

    2016-04-01

    Full Text Available Effect of free and symbiotic nitrogen fixing bacteria on seed and seedling produced seeds under deficit irrigation was conducted in laboratory and field experiments in 2006. In laboratory of karaj’s Seed and Plant Research and Certificate Institute an experiment was conducted based on factorial in form of completely randomized design with four replications and in field’s of Islamic Azad University, Varamin Branch were split factorial in form of randomized completely block design with three replications. Treatments included water stress [Irrigation after 50 (Normal irrigation, 100 (Middle stress, 150 (Severe stress mm evaporation from pan class A], Cultivar [Manokin & Williams and SRF×T3 Line] and inoculation [Inoculation with Bradyrhizobium japonicum, Bradyrhizobium japonicum co-inoculated with Azotobacter chroococcum, No seed inoculation]. Results showed that drought stress decreased the uniformity and germination speed and seedling emergence. Bacteria increased leaf dry weight, stem dry weight, leaf area and seedling vigor index but had no effect on emergence. In irrigation levels inoculated treatments had higher seedling length, leaf, stem, seedling dry weight and seedling vigor. Severs stress seeds inoculated with Bradyrhizobium japonicum had higher root dry weight than control. Therefore in seeds which were produced under deficit irrigation conditions, bacteria increased seedlings vigor.

  13. Characterization of a Novel Polymeric Bioflocculant Produced from Bacterial Utilization of n-Hexadecane and Its Application in Removal of Heavy Metals

    Science.gov (United States)

    Pathak, Mihirjyoti; Sarma, Hridip K.; Bhattacharyya, Krishna G.; Subudhi, Sanjukta; Bisht, Varsha; Lal, Banwari; Devi, Arundhuti

    2017-01-01

    A novel polymeric bioflocculant was produced by a bacterium utilizing degradation of n-hexadecane as the energy source. The bioflocculant was produced with a bioflocculating activity of 87.8%. The hydrocarbon degradation was confirmed by gas chromatography-mass spectrometry analysis and was further supported with contact angle measurements for the changes in hydrophobic nature of the culture medium. A specific aerobic degradation pathway followed by the bacterium during the bioflocculant production and hydrocarbon utilization process has been proposed. FT-IR, SEM-EDX, LC/MS, and 1H NMR measurements indicated the presence of carbohydrates and proteins as the major components of the bioflocculant. The bioflocculant was characterized for its carbohydrate monomer constituents and its practical applicability was established for removing the heavy metals (Ni2+, Zn2+, Cd2+, Cu2+, and Pb2+) from aqueous solutions at concentrations of 1–50 mg L-1. The highest activity of the bioflocculant was observed with Ni2+ with 79.29 ± 0.12% bioflocculation efficiency. PMID:28223975

  14. Antarctic bacterial isolates that produce cold-active extracellular proteases at low temperature but are active and stable at high temperature

    Directory of Open Access Journals (Sweden)

    Cecilia Martínez-Rosales

    2011-04-01

    Full Text Available We report the isolation and identification of bacteria that produce extracellular cold-active proteases, obtained from water samples collected near the Uruguayan Antarctic Base on King George Island, South Shetlands. The bacteria belonged to the genera Pseudomonas (growth between 4 and 30 °C and Flavobacterium (growth between 4 and 18 °C. In all cases, extracellular protease production was evident when reaching the stationary phase at 18 and 4 °C but was not detected at 30 °C. The zymogram revealed the secretion of one extracellular protease per isolate, each with different relative electrophoretic mobility. The extracellular proteases produced at 4 °C showed thermal activity and stability at 30 °C. Both activity and stability at a temperature higher that 10 °C have no physiological meaning because the isolates do not experience such temperatures in the Antarctic environment; however, the possible ecological value of cold-active and -stable extracellular proteases is discussed.

  15. Bacterial Vaginosis

    Science.gov (United States)

    ... Issues > Conditions > Sexually Transmitted > Bacterial Vaginosis Health Issues Listen Español Text Size Email Print Share Bacterial Vaginosis Page Content Bacterial vaginosis (BV) is the most common vaginal infection in sexually active teenaged girls . It appears to be caused by ...

  16. The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    The influence of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 in cofermentation with traditional starters on metabolite formation in set yoghurt was evaluated. Microbial activity during fermentation and refrigerated storage was investigated by monitoring bacterial popul

  17. The impact of selected strains of probiotic bacteria on metabolite formation in set yoghurt

    NARCIS (Netherlands)

    Settachaimongkon, S.; Nout, M.J.R.; Antunes Fernandes, E.C.; Hooijdonk, van A.C.M.; Zwietering, M.H.; Smid, E.J.; Valenberg, van H.J.F.

    2014-01-01

    The influence of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 in cofermentation with traditional starters on metabolite formation in set yoghurt was evaluated. Microbial activity during fermentation and refrigerated storage was investigated by monitoring bacterial popul

  18. Diversity, antimicrobial and antioxidant activities of culturable bacterial endophyte communities in Aloe vera.

    Science.gov (United States)

    Akinsanya, Mushafau Adewale; Goh, Joo Kheng; Lim, Siew Ping; Ting, Adeline Su Yien

    2015-12-01

    Twenty-nine culturable bacterial endophytes were isolated from surface-sterilized tissues (root, stem and leaf) of Aloe vera and molecularly characterized to 13 genera: Pseudomonas, Bacillus, Enterobacter, Pantoea, Chryseobacterium, Sphingobacterium, Aeromonas, Providencia, Cedecea, Klebsiella, Cronobacter, Macrococcus and Shigella. The dominant genera include Bacillus (20.7%), Pseudomonas (20.7%) and Enterobacter (13.8%). The crude and ethyl acetate fractions of the metabolites of six isolates, species of Pseudomonas, Bacillus, Chryseobacterium and Shigella, have broad spectral antimicrobial activities against pathogenic Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Salmonella Typhimurium, Proteus vulgaris, Klebsiella pneumoniae, Escherichia coli, Streptococcus pyogenes and Candida albicans, with inhibition zones ranging from 6.0 ± 0.57 to 16.6 ± 0.57 mm. In addition, 80% of the bacterial endophytes produced 1,1-diphenyl-2-picrylhydrazyl (DPPH) with scavenging properties of over 75% when their crude metabolites were compared with ascorbic acid (92%). In conclusion, this study revealed for the first time the endophytic bacteria communities from A. vera (Pseudomonas hibiscicola, Macrococcus caseolyticus, Enterobacter ludwigii, Bacillus anthracis) that produce bioactive compounds with high DPPH scavenging properties (75-88%) and (Bacillus tequilensis, Pseudomonas entomophila, Chryseobacterium indologenes, Bacillus aerophilus) that produce bioactive compounds with antimicrobial activities against bacterial pathogens. Hence, we suggest further investigation and characterization of their bioactive compounds.

  19. Marine-derived myxobacteria of the suborder Nannocystineae: An underexplored source of structurally intriguing and biologically active metabolites

    Science.gov (United States)

    Schäberle, Till F

    2016-01-01

    Summary Myxobacteria are famous for their ability to produce most intriguing secondary metabolites. Till recently, only terrestrial myxobacteria were in the focus of research. In this review, however, we discuss marine-derived myxobacteria, which are particularly interesting due to their relatively recent discovery and due to the fact that their very existence was called into question. The to-date-explored members of these halophilic or halotolerant myxobacteria are all grouped into the suborder Nannocystineae. Few of them were chemically investigated revealing around 11 structural types belonging to the polyketide, non-ribosomal peptide, hybrids thereof or terpenoid class of secondary metabolites. A most unusual structural type is represented by salimabromide from Enhygromyxa salina. In silico analyses were carried out on the available genome sequences of four bacterial members of the Nannocystineae, revealing the biosynthetic potential of these bacteria. PMID:27340488

  20. A Latex Metabolite Benefits Plant Fitness under Root Herbivore Attack

    NARCIS (Netherlands)

    Huber, M.; Epping, Janina; Schulze Gronover, C.; Fricke, Julia; Aziz, Zohra; Brillatz, Théo; Swyers, Michael; Kollner, T.G.; Vogel, H.; Hammerbacher, Almuth; Triebwasser-Freese, Daniella; Robert, Christelle A.M.; Verhoeven, K.J.F.; Preite, V.; Gershenzon, J.; Erb, M.

    2016-01-01

    Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivor

  1. Bacterial Sialidase

    Science.gov (United States)

    2004-01-01

    Data shows that elevated sialidase in bacterial vaginosis patients correlates to premature births in women. Bacterial sialidase also plays a significant role in the unusual colonization of Pseudomonas aeruginosa in cystic fibrosis patients. Crystals of Salmonella sialidase have been reproduced and are used for studying the inhibitor-enzyme complexes. These inhibitors may also be used to inhibit a trans-sialidase of Trypanosome cruzi, a very similar enzyme to bacterial sialidase, therefore preventing T. cruzi infection, the causitive agent of Chagas' disease. The Center for Macromolecular Crystallography suggests that inhibitors of bacterial sialidases can be used as prophylactic drugs to prevent bacterial infections in these critical cases.

  2. Secondary metabolites extracted from marine sponge associated Comamonas testosteroni and Citrobacter freundii as potential antimicrobials against MDR pathogens and hypothetical leads for VP40 matrix protein of Ebola virus: an in vitro and in silico investigation.

    Science.gov (United States)

    Skariyachan, Sinosh; Acharya, Archana B; Subramaniyan, Saumya; Babu, Sumangala; Kulkarni, Shruthi; Narayanappa, Rajeswari

    2016-09-01

    The current study explores therapeutic potential of metabolites extracted from marine sponge (Cliona sp.)-associated bacteria against MDR pathogens and predicts the binding prospective of probable lead molecules against VP40 target of Ebola virus. The metabolite-producing bacteria were characterized by agar overlay assay and as per the protocols in Bergey's manual of determinative bacteriology. The antibacterial activities of extracted metabolites were tested against clinical pathogens by well-diffusion assay. The selected metabolite producers were characterized by 16S rDNA sequencing. Chemical screening and Fourier Transform Infrared (FTIR) analysis for selected compounds were performed. The probable lead molecules present in the metabolites were hypothesized based on proximate analysis, FTIR data, and literature survey. The drug-like properties and binding potential of lead molecules against VP40 target of Ebola virus were hypothesized by computational virtual screening and molecular docking. The current study demonstrated that clear zones around bacterial colonies in agar overlay assay. Antibiotic sensitivity profiling demonstrated that the clinical isolates were multi-drug resistant, however; most of them showed sensitivity to secondary metabolites (MIC-15 μl/well). The proximate and FTIR analysis suggested that probable metabolites belonged to alkaloids with O-H, C-H, C=O, and N-H groups. 16S rDNA characterization of selected metabolite producers demonstrated that 96% and 99% sequence identity to Comamonas testosteroni and Citrobacter freundii, respectively. The docking studies suggested that molecules such as Gymnastatin, Sorbicillactone, Marizomib, and Daryamide can designed as probable lead candidates against VP40 target of Ebola virus.

  3. Biodiversity of aerobic endospore-forming bacterial species occurring in Yanyanku and Ikpiru, fermented seeds of Hibiscus sabdariffa used to produce food condiments in Benin.

    Science.gov (United States)

    Agbobatinkpo, Pélagie B; Thorsen, Line; Nielsen, Dennis S; Azokpota, Paulin; Akissoe, Noèl; Hounhouigan, Joseph D; Jakobsen, Mogens

    2013-05-15

    Yanyanku and Ikpiru made by the fermentation of Malcavene bean (Hibiscus sabdariffa) are used as functional additives for Parkia biglobosa seed fermentations in Benin. A total of 355 aerobic endospore-forming bacteria (AEFB) isolated from Yanyanku and Ikpiru produced in northern and southern Benin were identified using phenotypic and genotypic methods, including GTG5-PCR, M13-PCR, 16S rRNA, gyrA and gyrB gene sequencing. Generally, the same 5-6 species of the genus Bacillus predominated: Bacillus subtilis (17-41% of isolates), Bacillus cereus (8-39%), Bacillus amyloliquefaciens (9-22%), Bacillus licheniformis (3-26%), Bacillus safensis (8-19%) and Bacillus altitudinis (0-19%). Bacillus aryabhattai, Bacillus flexus, and Bacillus circulans (0-2%), and species of the genera Lysinibacillus (0-14%), Paenibacillus (0-13%), Brevibacillus (0-4%), and Aneurinibacillus (0-3%) occurred sporadically. The diarrheal toxin encoding genes cytK-1, cytK-2, hblA, hblC, and hblD were present in 0%, 91% 15%, 34% and 35% of B. cereus isolates, respectively. 9% of them harbored the emetic toxin genetic determinant, cesB. This study is the first to identify the AEFB of Yanyanku and Ikpiru to species level and perform a safety evaluation based on toxin gene detections. We further suggest, that the gyrA gene can be used for differentiating the closely related species Bacillus pumilus and B. safensis.

  4. Transfer, composition and technological characterization of the lactic acid bacterial populations of the wooden vats used to produce traditional stretched cheeses.

    Science.gov (United States)

    Scatassa, Maria Luisa; Gaglio, Raimondo; Macaluso, Giusi; Francesca, Nicola; Randazzo, Walter; Cardamone, Cinzia; Di Grigoli, Antonino; Moschetti, Giancarlo; Settanni, Luca

    2015-12-01

    The biofilms of 12 wooden vats used for the production of the traditional stretched cheeses Caciocavallo Palermitano and PDO Vastedda della valle del Belìce were investigated. Salmonella spp. and Listeria monocytogenes were never detected. Total coliforms were at low numbers with Escherichia coli found only in three vats. Coagulase-positive staphylococci (CPS) were below the enumeration limit, whereas lactic acid bacteria (LAB) dominated the surfaces of all vats. In general, the dominance was showed by coccus LAB. Enterococci were estimated at high numbers, but usually between 1 and 2 Log cycles lower than other LAB. LAB populations were investigated at species and strain level and for their technological properties relevant in cheese production. Eighty-five strains were analysed by a polyphasic genetic approach and allotted into 16 species within the genera Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus. Enterococcus faecium was found in all wooden vats and the species most frequently isolated were Enterococcus faecalis, Lactococcus lactis, Leuconostoc mesenteroides, Pediococcus acidilactici and Streptococcus thermophilus. The study of the quantitative data on acidification rate, autolysis kinetics, diacetyl production, antibacterial compound generation and proteolysis by cluster and principal component analysis led to the identification of some strains with promising dairy characteristics. Interestingly, a consistent percentage of LAB was bacteriocin-like inhibitory substances (BLIS) producer. Thus, the microbial biofilms of the wooden vats analysed in this study might contribute actively to the stability of the final cheeses.

  5. H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts.

    Science.gov (United States)

    Baba, Ryuko; Asakawa, Susumu; Watanabe, Takeshi

    2016-09-29

    The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using RNAs obtained from samples in the initial phase of rice straw decomposition (day 1 with rice straw), methanogenic phase of rice straw decomposition (day 14 with rice straw), and under a non-amended condition (day 14 without rice straw). hydA genes related to Proteobacteria, Firmicutes, Bacteroidetes, Chloroflexi, and Thermotogae were mainly transcribed in paddy soil samples; however, their proportions markedly differed among the libraries. Deltaproteobacteria-related hydA genes were predominantly transcribed on day 1 with rice straw, while various types of hydA genes related to several phyla were transcribed on day 14 with rice straw. Although the diversity of transcribed hydA was significantly higher in the library on day 14 with rice straw than the other two libraries, the composition of hydA transcripts in the library was similar to that in the library on day 14 without rice straw. These results indicate that the composition of active H2 producers and/or H2 metabolic patterns dynamically change during rice straw decomposition in paddy soil.

  6. A small scale study on the effects of oral administration of the β-glucan produced by Aureobasidium pullulans on milk quality and cytokine expressions of Holstein cows, and on bacterial flora in the intestines of Japanese black calves

    Directory of Open Access Journals (Sweden)

    Uchiyama Hirofumi

    2012-06-01

    Full Text Available Abstract Background The β–(1 → 3,(1 → 6-D-glucan extracellularly produced by Aureobasidium pullulans exhibits immunomodulatory activity, and is used for health supplements. To examine the effects of oral administration of the β–(1 → 3,(1 → 6-D-glucan to domestic animals, a small scale study was conducted using Holstein cows and newborn Japanese Black calves. Findings Holstein cows of which somatic cell count was less than 3 x 105/ml were orally administered with or without the β-(1 → 3,(1 → 6-D-glucan-enriched A. pullulans cultured fluid (AP-CF for 3 months, and the properties of milk and serum cytokine expression were monitored. Somatic cell counts were not significantly changed by oral administration of AP-CF, whereas the concentration of solid non fat in the milk tended to increase in the AP-CF administered cows. The results of cytokine expression analysis in the serum using ELISA indicate that the expressions of tumor necrosis factor-α (TNF-α and interleukin (IL-6 in all cows which were orally administered with AP-CF became slightly lower than that of control cows after the two-month treatment. On the other hand, IL-8 expression tended to indicate a moderately higher level in all treated cows after the three-month administration of AP-CF in comparison with that of the control cows. Peripartum Japanese Black beef cows and their newborn calves were orally administered with AP-CF, and bacterial flora in the intestines of the calves were analyzed by T-RFLP (terminal restriction fragment length polymorphism. The results suggest that bacterial flora are tendentiously changed by oral administration of AP-CF. Conclusions Our data indicated the possibility that oral administration of the β–(1 → 3,(1 → 6-D- glucan produced by A. pullulans affects cytokine expressions in the serum of Holstein cows, and influences bacterial flora in the intestines of Japanese Black calves. The findings may be

  7. Using Hairy Roots for Production of Valuable Plant Secondary Metabolites.

    Science.gov (United States)

    Tian, Li

    2015-01-01

    Plants synthesize a wide variety of natural products, which are traditionally termed secondary metabolites and, more recently, coined specialized metabolites. While these chemical compounds are employed by plants for interactions with their environment, humans have long since explored and exploited plant secondary metabolites for medicinal and practical uses. Due to the tissue-specific and low-abundance accumulation of these metabolites, alternative means of production in systems other than intact plants are sought after. To this end, hairy root culture presents an excellent platform for producing valuable secondary metabolites. This chapter will focus on several major groups of secondary metabolites that are manufactured by hairy roots established from different plant species. Additionally, the methods for preservations of hairy roots will also be reviewed.

  8. Genomic Analysis of Secondary Metabolite Production by Pseudomonas fluorescens

    Science.gov (United States)

    Pseudomonas fluorescens is a diverse bacterial species known for its ubiquity in natural habitats and its production of secondary metabolites. The high degree of ecological and metabolic diversity represented in P. fluorescens is reflected in the genomic diversity displayed among strains. Certain st...

  9. The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis.

    Science.gov (United States)

    Zhou, Lian; Huang, Tin-Wei; Wang, Jia-Yuan; Sun, Shuang; Chen, Gongyou; Poplawsky, Alan; He, Ya-Wen

    2013-10-01

    Xanthomonas oryzae pv. oryzae, the causal agent of rice bacterial blight, produces membrane-bound yellow pigments, referred to as xanthomonadins. Xanthomonadins protect the pathogen from photodamage and host-induced perioxidation damage. They are also required for epiphytic survival and successful host plant infection. Here, we show that XanB2 encoded by PXO_3739 plays a key role in xanthomonadin and coenzyme Q8 biosynthesis in X. oryzae pv. oryzae PXO99A. A xanB2 deletion mutant exhibits a pleiotropic phenotype, including xanthomonadin deficiency, producing less exopolysaccharide (EPS), lower viability and H2O2 resistance, and lower virulence. We further demonstrate that X. oryzae pv. oryzae produces 3-hydroxybenzoic acid (3-HBA) and 4-hydroxybenzoic acid (4-HBA) via XanB2. 3-HBA is associated with xanthomonadin biosynthesis while 4-HBA is mainly used as a precursor for coenzyme Q (CoQ)8 biosynthesis. XanB2 is the alternative source of 4-HBA for CoQ8 biosynthesis in PXO99A. These findings suggest that the roles of XanB2 in PXO99A are generally consistent with those in X. campestris pv. campestris. The present study also demonstrated that X. oryzae pv. oryzae PXO99A has evolved several specific features in 3-HBA and 4-HBA signaling. First, our results showed that PXO99A produces less 3-HBA and 4-HBA than X. campestris pv. campestris and this is partially due to a degenerated 4-HBA efflux pump. Second, PXO99A has evolved unique xanthomonadin induction patterns via 3-HBA and 4-HBA. Third, our results showed that 3-HBA or 4-HBA positively regulates the expression of gum cluster to promote EPS production in PXO99A. Taken together, the results of this study indicate that XanB2 is a key metabolic enzyme linking xanthomonadin, CoQ, and EPS biosynthesis, which are collectively essential for X. oryzae pv. oryzae pathogenesis.

  10. Molecular, chemical and biological screening of soil actinomycete isolates in seeking bioactive peptide metabolites

    Directory of Open Access Journals (Sweden)

    Javad Hamedi

    2015-10-01

    Full Text Available Background and Objective: Due to the evolution of multidrug-resistant strains, screening of natural resources, especially actinomycetes, for new therapeutic agents discovery has become the interests of researchers. In this study, molecular, chemical and biological screening of soil actinomycetes was carried out in order to search for peptide-producing actinomycetes.Materials and Methods: 60 actinomycetes were isolated from soils of Iran. The isolates were subjected to molecular screening for detection NRPS (non-ribosomal peptide synthetases gene. Phylogenic identification of NRPS containing isolates was performed. Chemical screening of the crude extracts was performed using chlorine o-dianisidine as peptide detector reagent and bioactivity of peptide producing strains was determined by antimicrobial bioassay. High pressure liquid chromatography- mass spectrometry (HPLC-MS with UV-visible spectroscopy was performed for detection of the metabolite diversity in selected strain.Results: Amplified NRPS adenylation gene (700 bp was detected among 30 strains. Phylogenic identification of these isolates showed presence of rare actinomycetes genera among the isolates and 10 out of 30 strains were subjected to chemical screening. Nocardia sp. UTMC 751 showed antimicrobial activity against bacterial and fungal test pathogens. HPLC-MSand UV-visible spectroscopy results from the crude extract showed that this strain has probably the ability to produce new metabolites.Conclusion: By application of a combined approach, including molecular, chemical and bioactivity analysis, a promising strain of Nocardia sp. UTMC 751 was obtained. This strain had significant activity against Staphylococcus aureus and Pseudomonas aeruginosa. Strain Nocardia sp. UTMC 751 produce five unknown and most probably new metabolites with molecular weights of 274.2, 390.3, 415.3, 598.4 and 772.5. This strain had showed 99% similarity to Nocardia ignorata DSM 44496 T.

  11. High temperature liquid chromatography hyphenated with ESI-MS and ICP-MS detection for the structural characterization and quantification of halogen containing drug metabolites

    Energy Technology Data Exchange (ETDEWEB)

    Vlieger, Jon S.B. de [BioMolecular Analysis Group, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Giezen, Mark J.N. [QPS Netherlands B.V., Petrus Campersingel 123, 9713 AG Groningen (Netherlands); Falck, David [BioMolecular Analysis Group, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Tump, Cornelis; Heuveln, Fred van [QPS Netherlands B.V., Petrus Campersingel 123, 9713 AG Groningen (Netherlands); Giera, Martin; Kool, Jeroen; Lingeman, Henk [BioMolecular Analysis Group, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Wieling, Jaap [QPS Netherlands B.V., Petrus Campersingel 123, 9713 AG Groningen (Netherlands); Honing, Maarten [DSM Resolve, PO Box 18, 6160 MD Geleen (Netherlands); Irth, Hubertus [BioMolecular Analysis Group, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Niessen, Wilfried M.A., E-mail: W.M.A.Niessen@vu.nl [BioMolecular Analysis Group, Faculty of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands)

    2011-07-18

    Highlights: {yields} Hyphenation of high temperature liquid chromatography to ICP-MS and ESI-MS. {yields} Structural characterization of kinase inhibitor metabolites with high resolution MS{sup n} experiments. {yields} Quantification of drug metabolites with ICP-MS based on Iodine detection. {yields} Significant changes in ESI-MS response after small structural changes. - Abstract: In this paper we describe the hyphenation of high temperature liquid chromatography with ICP-MS and ESI-MS for the characterization of halogen containing drug metabolites. The use of temperature gradients up to 200 deg. C enabled the separation of metabolites with low organic modifier content. This specific property allowed the use of detection methods that suffer from (significant) changes in analyte response factors as a function of the organic modifier content such as ICP-MS. Metabolites of two kinase inhibitors (SB-203580-Iodo and MAPK inhibitor VIII) produced by bacterial cytochrome P450 BM3 mutants and human liver microsomes were identified based on high resolution MS{sup n} data. Quantification was done using their normalized and elemental specific response in the ICP-MS. The importance of these kinds of quantification strategies is stressed by the observation that the difference of the position of one oxygen atom in a structure can greatly affect its response in ESI-MS and UV detection.

  12. Microbially produced phytotoxins and plant disease management ...

    African Journals Online (AJOL)

    Microbially produced phytotoxins and plant disease management. ... African Journal of Biotechnology ... Pathogenic fungi and bacteria often damage their host (plants) tissues by producing toxic metabolites, which induced various symptoms ...

  13. IL-17A is produced by Th17, gammadelta T cells and other CD4- lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance.

    Science.gov (United States)

    Schulz, Silke M; Köhler, Gabriele; Holscher, Christoph; Iwakura, Yoichiro; Alber, Gottfried

    2008-09-01

    T(h)17 cells represent a new pro-inflammatory T(h) cell lineage distinct from T(h)1 and T(h)2 cells. T(h)17 cells have been shown to be involved in extracellular bacterial infection but their role in intracellular infection remains unclear. We found antigen-specific IL-17A production during a systemic infection of mice with the facultative intracellular bacterium Salmonella enterica serovar Enteritidis (S. Enteritidis) and examined the function and cellular source of IL-17A during the adaptive immune response to S. Enteritidis. Infected IL-17A-/- mice survived completely after inoculation with the highest infection dose found to be sub-lethal for wild-type (WT) C57BL/6 mice. However, at 20 and 80 days post-infection (d.p.i.), we repeatedly found mildly elevated bacterial burden in spleen and liver of IL-17A-/- mice as compared with WT mice. Overall, IL-17A-/- mice showed reduced clearance of S. Enteritidis. S. Enteritidis-specific IL-17A production was induced in splenocytes and lymph node cells of infected WT mice at both time points, 20 and 80 d.p.i. Classical CD4+ T(h)17 cells developed upon infection with Salmonella. CD4- gammadelta TCR+ and CD4- gammadelta TCR- cells were found to be additional IL-17A-producing cell populations. In infected IL-17A-/- mice, a normal T(h)1 cytokine profile was observed consistent with the overall subtle phenotype. Nevertheless, in the absence of IL-17A, recruitment of neutrophils and delayed-type hypersensitivity (DTH) reactivity was significantly compromised. Our data indicate that IL-17A responses are induced by Salmonella and mildly contribute to protective immunity during S. Enteritidis infection. Thus, IL-17A complements the IL-12/IFN-gamma axis which is essential for protective immunity against salmonellosis in mice and men.

  14. Secondary metabolites from Ganoderma.

    Science.gov (United States)

    Baby, Sabulal; Johnson, Anil John; Govindan, Balaji

    2015-06-01

    Ganoderma is a genus of medicinal mushrooms. This review deals with secondary metabolites isolated from Ganoderma and their biological significance. Phytochemical studies over the last 40years led to the isolation of 431 secondary metabolites from various Ganoderma species. The major secondary compounds isolated are (a) C30 lanostanes (ganoderic acids), (b) C30 lanostanes (aldehydes, alcohols, esters, glycosides, lactones, ketones), (c) C27 lanostanes (lucidenic acids), (d) C27 lanostanes (alcohols, lactones, esters), (e) C24, C25 lanostanes (f) C30 pentacyclic triterpenes, (g) meroterpenoids, (h) farnesyl hydroquinones (meroterpenoids), (i) C15 sesquiterpenoids, (j) steroids, (k) alkaloids, (l) prenyl hydroquinone (m) benzofurans, (n) benzopyran-4-one derivatives and (o) benzenoid derivatives. Ganoderma lucidum is the species extensively studied for its secondary metabolites and biological activities. Ganoderma applanatum, Ganoderma colossum, Ganoderma sinense, Ganoderma cochlear, Ganoderma tsugae, Ganoderma amboinense, Ganoderma orbiforme, Ganoderma resinaceum, Ganoderma hainanense, Ganoderma concinna, Ganoderma pfeifferi, Ganoderma neo-japonicum, Ganoderma tropicum, Ganoderma australe, Ganoderma carnosum, Ganoderma fornicatum, Ganoderma lipsiense (synonym G. applanatum), Ganoderma mastoporum, Ganoderma theaecolum, Ganoderma boninense, Ganoderma capense and Ganoderma annulare are the other Ganoderma species subjected to phytochemical studies. Further phytochemical studies on Ganoderma could lead to the discovery of hitherto unknown biologically active secondary metabolites.

  15. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting

    Directory of Open Access Journals (Sweden)

    Kevin Purves

    2016-01-01

    Full Text Available The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149–2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  16. Using Molecular Networking for Microbial Secondary Metabolite Bioprospecting.

    Science.gov (United States)

    Purves, Kevin; Macintyre, Lynsey; Brennan, Debra; Hreggviðsson, Guðmundur Ó; Kuttner, Eva; Ásgeirsdóttir, Margrét E; Young, Louise C; Green, David H; Edrada-Ebel, Ruangelie; Duncan, Katherine R

    2016-01-08

    The oceans represent an understudied resource for the isolation of bacteria with the potential to produce novel secondary metabolites. In particular, actinomyces are well known to produce chemically diverse metabolites with a wide range of biological activities. This study characterised spore-forming bacteria from both Scottish and Antarctic sediments to assess the influence of isolation location on secondary metabolite production. Due to the selective isolation method used, all 85 isolates belonged to the phyla Firmicutes and Actinobacteria, with the majority of isolates belonging to the genera Bacillus and Streptomyces. Based on morphology, thirty-eight isolates were chosen for chemical investigation. Molecular networking based on chemical profiles (HR-MS/MS) of fermentation extracts was used to compare complex metabolite extracts. The results revealed 40% and 42% of parent ions were produced by Antarctic and Scottish isolated bacteria, respectively, and only 8% of networked metabolites were shared between these locations, implying a high degree of biogeographic influence upon secondary metabolite production. The resulting molecular network contained over 3500 parent ions with a mass range of m/z 149-2558 illustrating the wealth of metabolites produced. Furthermore, seven fermentation extracts showed bioactivity against epithelial colon adenocarcinoma cells, demonstrating the potential for the discovery of novel bioactive compounds from these understudied locations.

  17. Deep Sea Actinomycetes and Their Secondary Metabolites

    Directory of Open Access Journals (Sweden)

    Kui Hong

    2017-05-01

    Full Text Available Deep sea is a unique and extreme environment. It is a hot spot for hunting marine actinomycetes resources and secondary metabolites. The novel deep sea actinomycete species reported from 2006 to 2016 including 21 species under 13 genera with the maximum number from Microbacterium, followed by Dermacoccus, Streptomyces and Verrucosispora, and one novel species for the other 9 genera. Eight genera of actinomycetes were reported to produce secondary metabolites, among which Streptomyces is the richest producer. Most of the compounds produced by the deep sea actinomycetes presented antimicrobial and anti-cancer cell activities. Gene clusters related to biosynthesis of desotamide, heronamide, and lobophorin have been identified from the deep sea derived Streptomyces.

  18. Isolation and Identification of the Metabolites Produced by Endophytic Fungus Chaetomium globosum ZY-22 from Ginkgo biloba%银杏内生菌Chaetomium globosum ZY-22次生代谢产物分离鉴定

    Institute of Scientific and Technical Information of China (English)

    秦建春; 白莉; 李晓明; 张雅梅; 高锦明; Hartmut laatsch

    2009-01-01

    Six metabolites cerebroside B (1),cerebroside C (2),allantoin (3),9(11)-dehyoergosterol peroxide (4) and ergosta-4,6,8,22-tetraen-3-one (5),chaetoglobosin A (6) were isolated by column chromatography from the extract of cultural mycelium of fungus Chaetomium globosum ZY-22,an endophyte in the leaves of Ginkgo biloba.Structures of them were established by spectroscopic methods.Among of them,cerebroside B,cerebroside C,allantoin were firstly obtained from endophytic fungus;The result of brine shrimp bioassay showed the mortality rates of them to Artemia salina are 1.6%,4.2%,7.4%,16.9%,12.8% and 83.6% respectively at the concentration of 10 μg/mL,chaetoglobosin A showed significant toxic effect on brine shrimp.%采用柱层析方法从银杏叶内生真菌Chaetomium globosum ZY-22的培养菌丝体提取物中分离得到脑苷脂B(1)、脑苷脂C(2)、尿囊素(3)、9(11)-去氢麦角甾醇过氧化物(4)以及4,6,8,22-四烯-3-酮-麦角甾烷(5)和球毛壳甲素(6)共6个次生代谢物;经波谱分析确定了6个化合物的结构,其中脑苷脂B、脑苷脂C和尿囊素是首次从内生真菌中得到;海虾致死试验结果显示,化合物1~6在10 μg/mL浓度下对丰年虾的致死率分别为1.6%、4.2%、7.4%、16.9%、12.8%、83.6%、表明球毛壳甲素对海虾表现出很强的毒性作用.

  19. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid; Ali; Khan; Nafees; Bacha; Bashir; Ahmad; Ghosia; Lutfullah; Umar; Farooq; Russell; John; Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites.Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions.The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques,for example,homologous and heterologous expressions.This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites:also the biosynthetic pathways of the bio-organic-molecules were reported.

  20. Fungi as chemical industries and genetic engineering for the production of biologically active secondary metabolites

    Institute of Scientific and Technical Information of China (English)

    Abid Ali Khan; Nafees Bacha; Bashir Ahmad; Ghosia Lutfullah; Umar Farooq; Russell John Cox

    2014-01-01

    Fungi is somewhere in between the micro and macro organisms which is a good source of producing biologically active secondary metabolites. Fungi have been used as tool for producing different types of secondary metabolites by providing different nutrients at different laboratory conditions. The fungi have been engineered for the desired secondary metabolites by using different laboratory techniques, for example, homologous and heterologous expressions. This review reported how the fungi are used as chemical industry for the production of secondary metabolites and how they are engineered in laboratory for the production of desirable metabolites;also the biosynthetic pathways of the bio-organic-molecules were reported.

  1. Understanding and classifying metabolite space and metabolite-likeness.

    Directory of Open Access Journals (Sweden)

    Julio E Peironcely

    Full Text Available While the entirety of 'Chemical Space' is huge (and assumed to contain between 10(63 and 10(200 'small molecules', distinct subsets of this space can nonetheless be defined according to certain structural parameters. An example of such a subspace is the chemical space spanned by endogenous metabolites, defined as 'naturally occurring' products of an organisms' metabolism. In order to understand this part of chemical space in more detail, we analyzed the chemical space populated by human metabolites in two ways. Firstly, in order to understand metabolite space better, we performed Principal Component Analysis (PCA, hierarchical clustering and scaffold analysis of metabolites and non-metabolites in order to analyze which chemical features are characteristic for both classes of compounds. Here we found that heteroatom (both oxygen and nitrogen content, as well as the presence of particular ring systems was able to distinguish both groups of compounds. Secondly, we established which molecular descriptors and classifiers are capable of distinguishing metabolites from non-metabolites, by assigning a 'metabolite-likeness' score. It was found that the combination of MDL Public Keys and Random Forest exhibited best overall classification performance with an AUC value of 99.13%, a specificity of 99.84% and a selectivity of 88.79%. This performance is slightly better than previous classifiers; and interestingly we found that drugs occupy two distinct areas of metabolite-likeness, the one being more 'synthetic' and the other being more 'metabolite-like'. Also, on a truly prospective dataset of 457 compounds, 95.84% correct classification was achieved. Overall, we are confident that we contributed to the tasks of classifying metabolites, as well as to understanding metabolite chemical space better. This knowledge can now be used in the development of new drugs that need to resemble metabolites, and in our work particularly for assessing the metabolite

  2. [Metabolomics analysis of taxadiene producing yeasts].

    Science.gov (United States)

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  3. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  4. Bacterial mutants for enhanced succinate production

    NARCIS (Netherlands)

    Baart, G.J.E.; Beauprez, J.J.R.; Foulquie, M.M.R.; Heijnen, J.J.; Maertens, J.

    2010-01-01

    The present invention relates to a method for obtaining enhanced metabolite production in micro-organisms, and to mutants and/or transformants obtained with said method. More particularly, it relates to bacterial mutants and/or transformants for enhanced succinate production, especially mutants and/

  5. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  6. Hydrogen cyanide-producing rhizobacteria kill subterranean termite Odontotermes obesus (Rambur) by cyanide poisoning under in vitro conditions.

    Science.gov (United States)

    Devi, K Kanchana; Seth, Nidhi; Kothamasi, Shalini; Kothamasi, David

    2007-01-01

    The subterranean termite Odontotermes obesus is an important pest of the Indian subcontinent, causing extensive damage to major agricultural crops and forest plantation trees. Control of termites by strategies employing their parasites has limitations because they have evolved a complex social structure, immune responses, and adaptive behavior toward pathogen-infected individuals. Nonparasitic rhizobacteria that produce harmful metabolites might facilitate the biocontrol of termites. In the present investigation, three different species of hydrogen cyanide-producing rhizobacteria were tested for their potential to kill O. obesus. The three bacterial species were found to be effective in killing the termites under in vitro conditions.

  7. Isolation of an Glycyrrhizic Acid-producing Andophytic Fungus from Licorice and Analysis of Metabolites%一株产甘草酸内生真菌的分离及代谢产物分析

    Institute of Scientific and Technical Information of China (English)

    王红霞; 李雅丽

    2011-01-01

    采用组织块法从采自内蒙古鄂尔多斯市的甘草根部分离纯化内生真菌,经液体发酵培养,抽提发酵粗产物,以甘草酸为标准品采用LC-MS法和HPLC法对这些真菌的代谢产物进行筛选,获得1株产甘草酸的内生菌,通过形态学研究初步确定该菌株为镰孢霉属.%A strain of glycyrrhizic acid-producing endophytic fungi was obtained from the rats of licorice in Erdos city of the Inner Mongolia autonomous region by tissue culture method. Then the purified endophytic fungal strains were fermented. The glycyrrhizic acid in the fungal extract was extract and confirmed by HPLC and LC-MS by comparison with glycyrrhizic acid standard. The strain B12 that was found as the glycyrrhizic acid-producing andophytic fungus was grouped into Fusarium based on the morphological traits.

  8. Hybrid isoprenoid secondary metabolite production in terrestrial and marine actinomycetes.

    Science.gov (United States)

    Gallagher, Kelley A; Fenical, William; Jensen, Paul R

    2010-12-01

    Terpenoids are among the most ubiquitous and diverse secondary metabolites observed in nature. Although actinomycete bacteria are one of the primary sources of microbially derived secondary metabolites, they rarely produce compounds in this biosynthetic class. The terpenoid secondary metabolites that have been discovered from actinomycetes are often in the form of biosynthetic hybrids called hybrid isoprenoids (HIs). HIs include significant structural diversity and biological activity and thus are important targets for natural product discovery. Recent screening of marine actinomycetes has led to the discovery of a new lineage that is enriched in the production of biologically active HI secondary metabolites. These strains represent a promising resource for natural product discovery and provide unique opportunities to study the evolutionary history and ecological functions of an unusual group of secondary metabolites. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Secondary Metabolites from Rubiaceae Species

    Directory of Open Access Journals (Sweden)

    Daiane Martins

    2015-07-01

    Full Text Available This study describes some characteristics of the Rubiaceae family pertaining to the occurrence and distribution of secondary metabolites in the main genera of this family. It reports the review of phytochemical studies addressing all species of Rubiaceae, published between 1990 and 2014. Iridoids, anthraquinones, triterpenes, indole alkaloids as well as other varying alkaloid subclasses, have shown to be the most common. These compounds have been mostly isolated from the genera Uncaria, Psychotria, Hedyotis, Ophiorrhiza and Morinda. The occurrence and distribution of iridoids, alkaloids and anthraquinones point out their chemotaxonomic correlation among tribes and subfamilies. From an evolutionary point of view, Rubioideae is the most ancient subfamily, followed by Ixoroideae and finally Cinchonoideae. The chemical biosynthetic pathway, which is not so specific in Rubioideae, can explain this and large amounts of both iridoids and indole alkaloids are produced. In Ixoroideae, the most active biosysthetic pathway is the one that produces iridoids; while in Cinchonoideae, it produces indole alkaloids together with other alkaloids. The chemical biosynthetic pathway now supports this botanical conclusion.

  10. Bacterial gastroenteritis

    Science.gov (United States)

    ... most common types of bacterial gastroenteritis in a couple of days. The goal is to make you feel better and avoid dehydration. Drinking enough fluids and learning what to eat will help ease symptoms. You ...

  11. Bacterial vaginosis

    National Research Council Canada - National Science Library

    Islam, Aliya; Safdar, Anjum; Malik, Ayesha

    2009-01-01

    To estimate the frequency of bacterial vaginosis in women with preterm labour. Descriptive cross sectional study carried out in department of Obstetrics and Gynaecology, Military Hospital and Army Medical College Laboratory, Rawalpindi...

  12. 2株纤维素降解细菌处理白酒丢糟的应用特性%Application Characteristics of Two Cellulose-degradation Bacterial Strains in Waste Distiller's Grains from Liquor Producing

    Institute of Scientific and Technical Information of China (English)

    游玲; 周黎军; 罗刚; 陈思慧; 王涛

    2014-01-01

    Application features of two bacterial strains (No. G7B-58 and S522B-41) of Bacillus in the fermentation of waste distiller's grains from liquor producing were studied. It's found that the two strains can adapt to the environment of waste distiller's grains, when inoculated in the waste distiller's grains separately, the cellulose of waste distiller's grains reduced by 16.9%and 16.6%, and the protein of waste distiller's grains increased by 35.0%and 39.2%, respectively. In the case of two strains inoculated in the waste distiller's grains together, the cellulose of waste distiller's grains decompose by 21.1%, the protein increased by 41.1%and the acidity reduced by 86%, with significantly reducing of acid, starch and residual sugar at the same time. For the scale of 10 kg waste distiller's grains, inoculated with 2%of the bacterial suspension, and piled up six days was appropriate. The results showed that the strains in the spent grains harmless or Grains fodder production had a good prospect of application. The results showed that the two bacteria strains had a good prospect of application in pollution control of waste distiller's grains and feed industry.%对2株Bacillus属细菌在白酒丢糟中的生长及降解纤维素的情况进行了研究。发现2株菌均可在丢糟中生长良好;分别可使丢糟纤维素降低16.9%及16.6%,蛋白质增加35.0%及39.2%。2株菌等比例混合接种于丢糟(2%接种量,处理10 kg丢糟),堆积6 d后可使丢糟纤维素降解21.1%,蛋白增加41.1%,酸度降低86%;同时丢糟中淀粉、残糖、酸度等指标也有明显降低。结果显示该2株细菌在丢糟饲料生产或丢糟无害化处理方面有很好的应用前景。

  13. Biologically Active Metabolites Synthesized by Microalgae

    Science.gov (United States)

    de Morais, Michele Greque; Vaz, Bruna da Silva; de Morais, Etiele Greque; Costa, Jorge Alberto Vieira

    2015-01-01

    Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences. PMID:26339647

  14. Biologically Active Metabolites Synthesized by Microalgae

    Directory of Open Access Journals (Sweden)

    Michele Greque de Morais

    2015-01-01

    Full Text Available Microalgae are microorganisms that have different morphological, physiological, and genetic traits that confer the ability to produce different biologically active metabolites. Microalgal biotechnology has become a subject of study for various fields, due to the varied bioproducts that can be obtained from these microorganisms. When microalgal cultivation processes are better understood, microalgae can become an environmentally friendly and economically viable source of compounds of interest, because production can be optimized in a controlled culture. The bioactive compounds derived from microalgae have anti-inflammatory, antimicrobial, and antioxidant activities, among others. Furthermore, these microorganisms have the ability to promote health and reduce the risk of the development of degenerative diseases. In this context, the aim of this review is to discuss bioactive metabolites produced by microalgae for possible applications in the life sciences.

  15. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  16. Identity and effects of quorum sensing inhibitors produced by Penicillium species

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bovbjerg; Skindersø, Mette Elena; Bjarnsholt, Thomas

    2005-01-01

    active immune systems, so instead rely on chemical defence mechanisms. It was speculated that some of these secondary metabolites could interfere with bacterial QS communication. During a screening of 100 extracts from 50 Penicillium species, 33 were found to produce QS inhibitory (QSI) compounds. In two...... cases, patulin and penicillic acid were identified as being biologically active QSI compounds. Their effect on QS-controlled gene expression in Ps. aeruginosa was verified by DNA microarray transcriptomics. Similar to previously investigated QSI compounds, patulin was found to enhance biofilm...

  17. Formation of bacterial nanocells

    Science.gov (United States)

    Vainshtein, Mikhail; Kudryashova, Ekaterina; Suzina, Natalia; Ariskina, Elena; Voronkov, Vadim

    1998-07-01

    Existence of nanobacteria received increasing attention both in environmental microbiology/geomicro-biology and in medical microbiology. In order to study a production of nanoforms by typical bacterial cells. Effects of different physical factors were investigated. Treatment of bacterial cultures with microwave radiation, or culturing in field of electric current resulted in formation a few types of nanocells. The number and type of nanoforms were determined with type and dose of the treatment. The produced nanoforms were: i) globules, ii) clusters of the globules--probably produced by liaison, iii) nanocells coated with membrane. The viability of the globules is an object opened for doubts. The nanocells discovered multiplication and growth on solidified nutrient media. The authors suggest that formation of nanocells is a common response of bacteria to stress-actions produced by different agents.

  18. 一株产漆酶细菌的分离鉴定及酶学性质研究%Isolation, identification of a laccase-producing bacterial strain and enzymatic properties of the laccase

    Institute of Scientific and Technical Information of China (English)

    徐腾飞; 卢磊; 赵敏; 汪春蕾; 李德斌; 杨洪一

    2013-01-01

    The aim of this study was to screen laccase-producing bacterial strains and to investigate the enzymatic properties as well as decolorization ability of the laccase. [Methods] Enrichment medium supplemented with copper ions was used to isolate bacterial strains exhibiting laccase activity. The isolated strain was identified by morphology observation, physiological and biochemical tests and 16S rDNA sequence analysis. The enzymatic properties of laccase were investigated with syringaldazine as substrate. Dye decolorization ability of the laccase was tested by determining the change at maximum wavelength of synthetic dyes. [Results] A bacterial strain LS05 with high laccase activity was isolated from forest soil, and was identified as Bacillus amyloliquefaciens. The spore laccase of strain LS05 demonstrated optimum pH and temperature at pH 6.6 and 70 °C, respectively. It also showed high stability, retaining its activity after incubation at 70 ℃ for 10 h or at pH 9.0 for 10 d. Resistance towards SDS and EDTA was found for the spore laccase. The enzyme could efficiently decolorize different synthetic dyes at alkaline conditions. More than 93% of remazol brilliant blue R, reactive black 5 and indigo carmine were decolorized within 1 h. [Conclusion] The spore laccase of Bacillus amyloliquefaciens LS05 was highly stable at high temperature and alkaline pH, which was more advantageous in industrial application than fungal laccase. It showed high potential in treatment of industrial dye effluents.%[目的]分离获得产漆酶的细菌菌株,研究漆酶的酶学性质并应用于染料脱色.[方法]利用含铜的富集培养基筛选产漆酶细菌;通过形态特征、生理生化试验及16SrDNA序列分析等方法进行鉴定;以丁香醛连氮为底物测定漆酶的酶学性质;通过测定染料在最大吸收波长下吸光值的变化评价漆酶对染料的脱色效果.[结果]从森林土壤中筛选到一株漆酶高产菌株LS05,初步

  19. Suggesting a testing strategy for possible endocrine effects of drug metabolites.

    Science.gov (United States)

    Jacobsen, N W; Brooks, B W; Halling-Sørensen, B

    2012-04-01

    Most pharmaceuticals are extensively metabolized by organisms, which results in internal exposure to mixtures of parent compounds and various metabolites. Many of these metabolites are considered non-toxic, but some metabolites retain toxic properties of the parent compound or elicit other undesirable outcomes. Unfortunately, the effects of metabolites are often not considered when endocrine activities of chemicals are evaluated in vitro. In this study two approaches, an "effect-based" and a "compound-by-compound" testing design, were used to determine the effects of metabolites of the antidepressant sertraline on aromatase enzyme activity. In the "effect-based" approach, a mixture of sertraline metabolites, produced by liver microsomes, inhibited aromatase, but was less potent than sertraline. In the "compound-by-compound" testing design, three specific metabolites were evaluated individually and in mixtures. Though two N-desmethylated metabolites were more potent aromatase inhibitors than sertraline, hydroxyl ketone sertraline did not inhibit the enzyme and mixtures of these metabolites and sertraline were less potent than predicted from a concentration addition model. Our findings highlight the importance of considering aromatase inhibition, and potentially other biological activities, of pharmaceutical metabolites produced by liver microsome preparations and then comparing such observations to studies of specific metabolites available for testing in pure form. Subsequently, a five step integrated strategy for screening of the potential endocrine effects of drugs and their metabolites are proposed. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Determination of atrazine and its biodegradation intermediates in bacterial enrichments obtained from Uruguayan water courses

    Directory of Open Access Journals (Sweden)

    Jonathan Da Cunha

    2013-12-01

    Full Text Available Atrazine is an herbicide used to control annual weeds and perennial grasses. Due to the toxicity of atrazine and its metabolites, this herbicide is banned in the European Union. In Uruguay atrazine is the second most frequently imported herbicide. It has been detected in surface water courses, particularly those that provide water for potabilization plants.The main mechanism for atrazine removal in neutral pH environments is the bacterial degradation. The microorganisms can degrade atrazine giving intermediates that vary in persistence and toxicity, or mineralize it giving ammonia and carbondioxide. The separation and detection of atrazine intermediates of biological degradation is important to know the potential of bacterial consortia to be applied in bioremediation processes. In this paper we developed an isocratic method of high performance liquid chromatography (HPLC by ion-pair reversed phase to separate atrazine and metabolites in a synthetic culture medium. This method was useful to detect intermediates of atrazine degradation produced by selected native bacterial consortia. In addition, the method was employed to assess if atrazine adsorbed on activated carbon could be degraded by an active degrading consortium.

  1. Diversity, Bacterial Symbionts and Antibacterial Potential of Gut-Associated Fungi Isolated from the Pantala flavescens Larvae in China.

    Science.gov (United States)

    Shao, Ming-Wei; Lu, Yi-Hui; Miao, Shuang; Zhang, Yun; Chen, Ting-Ting; Zhang, Ying-Lao

    2015-01-01

    The diversity of fungi associated with the gut of Pantala flavescens larvae was investigated using a culture-dependent method and molecular identification based on an analysis of the internally transcribed spacer sequence. In total, 48 fungal isolates were obtained from P. flavescens larvae. Based on phylogenetic analyses, the fungal isolates were grouped in 5 classes and 12 different genera. Fourteen bacterial 16S rDNA sequences derived from total genomic DNA extractions of fungal mycelia were obtained. The majority of the sequences were associated with Proteobacteria (13/14), and one Bacillaceae (1/14) was included. Leclercia sp., Oceanobacillus oncorhynchi and Methylobacterium extorquens, were reported for the first time as bacterial endosymbionts in fungi. High-performance liquid chromatography (HPLC) analysis indicated that bacterial symbionts produced specific metabolites and also exerted an inhibitory effect on fungal metabolites. The biological activity of the fungal culture extracts against the pathogenic bacteria Staphylococcus aureus (ATCC 6538), Bacillus subtilis (ATCC 6633) and Escherichia coli (ATCC 8739) was investigated, and 20 extracts (42%) exhibited antibacterial activity against at least one of the tested bacterial strains. This study is the first report on the diversity and antibacterial activity of symbiotic fungi residing in the gut of P. flavescens larvae, and the results show that these fungi are highly diverse and could be exploited as a potential source of bioactive compounds.

  2. Antiproliferative and hepatoprotective activity of metabolites from Corynebacterium xerosis against Ehrlich Ascites Carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Farhadul Islam; Soby Ghosh; Jahan Ara Khanam

    2014-01-01

    Objective: To find out the effective anticancer drugs from bacterial products, petroleum ether extract of Corynebacterium xerosis.Methods:parameters like tumor weight measurement, tumor cell growth inhibition in mice and survival time of tumor bearing mice, etc. Hepatoprotective effect of the metabolites was determined by observing biochemical, hematological parameters.Results:It has been found that the petroleum ether extract bacterial metabolite significantly Antiproliferative activity of the metabolite has been measured by monitoring the decrease cell growth (78.58%; P<0.01), tumor weight (36.04 %; P<0.01) and increase the life span of tumor bearing mice (69.23%; P<0.01) at dose 100 mg/kg (i.p.) in comparison to those of untreated Ehrlich ascites carcinoma (EAC) bearing mice. The metabolite also alters the depleted hematological parameters like red blood cell, white blood cell, hemoglobin (Hb%), etc. towards normal in tumor bearing mice. Metabolite show no adverse effect on liver functions regarding blood glucose, serum alkaline phosphatases, glutamic pyruvic transaminase, glutamic oxaloacetic transaminase activity and serum billirubin, etc. in normal mice. Histopathological observation of these mice organ does not show any toxic effect on cellular structure. But in the case of EAC bearing untreated mice these hematological and biochemical parameters deteriorate extremely with time whereas petroleum ether extract bacterial metabolite receiving EAC bearing mice nullified the toxicity induced by EAC cells.Conclusion:Study results reveal that metabolite possesses significant antiproliferative and hepatoprotective effect against EAC cells.

  3. Bioactivity and phylogeny of the marine bacterial genus Pseudoalteromonas

    DEFF Research Database (Denmark)

    Vynne, Nikolaj Grønnegaard

    collection, in part because of its production of an intense black pigment in contrast to its phylogenetic placement within the non-pigmented clade. This strain was subsequently shown to represent a new bacterial species named Pseudoalteromonas galatheae. Initial studies revealed the potential production...... for their ability to repeatedly inhibit the fish pathogen Vibrio anguillarum 90-11-287 or Staphylococcus aureus 8325. Based on previous work, a hypothesis that antagonistic Pseudoalteromonas strains primarily were pigmented and surface associated was investigated. This Ph.D. work confirmed that surface......-associated strains were significantly more likely to possess stable antibacterial activity and be pigmented. Pseudoalteromonas strains are known as prolific producers of bioactive secondary metabolites; hence screening the global strain collection for production of novel antibiotics was initiated. Novel quinolone...

  4. Mining into interspecific bacterial interactions

    NARCIS (Netherlands)

    Tyc, Olaf

    2016-01-01

    In terrestrial ecosystems bacteria live in close proximity with many different microbial species and form complex multi-species networks. Within those networks bacteria are constantly interacting with each other and produce a plethora of secondary metabolites like antibiotics, enzymes, volatiles and

  5. 短蛸胃肠道产蛋白酶菌株的筛选及其酶学性质研究%Screening and Enzymatic Property of Protease Producing Bacterial Strains from Octopus Octopus ocellatus

    Institute of Scientific and Technical Information of China (English)

    王玉荣; 曲田丽; 金玉兰

    2014-01-01

    Ten bacterial strains were isolated from octopus Octopus ocellatus by casein medium ,in which 4 strains S-1 ,S-2 ,S-3 and S-8 showed high protease activity .The major physical and chemical characteristics of the proteinases were studied in this article .The protease activity of the fermentation liquid was found to be 1289 U/mL in S-1 ,937 U/mL in S-2 ,1222 U/mL in S-3 ,and 885 U/mL in S-8 . The maximal proteases activity was observed at temperature of 30 ℃ for the strains S-1 ,and S-3 ,and at 50 ℃ for the strains S-2 ,and S-8 ,with the optimum pH of 8 .5 in stain S-1 ,7 .0 in strain S-2 ,8 .0 in S-3 ,and 7 .0 in S-8 .The SDS-PAGE ,substrate casein and active staining confirmed that the main proteases produced by strain S-1 had molecular weights of 149 .6 ,127 .4 and 40 .3 ku ,and the protease molecular mass in strain S-3 showed molecular weights of about 123 .3 ,112 .2 ,71 .6 and 37 .8 ku .The findings suggest that the protease from protease-producing bacterial strains in the octopus was feasible to be isolated due to suitable fermentation condition ,high activity and stability and can be applied to industrial production .%为获得能产生高效蛋白酶的新菌株,应用于洗涤、食品、饲料加工及医药等领域,由短蛸的胃肠道中分离筛选出10种胃肠道菌株,其中4种菌S-1、S-2、S-3和S-8的蛋白酶活性较高,对其产生的蛋白酶进行生化特性的研究。结果显示,这4种菌株发酵产粗酶液的酶活性分别为1289、937、1222、885 U/m L ;S-1和S-3蛋白酶的最佳反应温度为30℃,S-2和S-8为50℃;蛋白酶最佳反应p H值分别为8.5、7.0、8.0和7.0。通过SDS-PAGE测定,并以酪蛋白为底物进行活性染色,发现粗酶溶液活性高的S-1菌株产生的主要蛋白酶分子量分别为149.6、127.4、40.3 ku;S-3菌株产生的主要蛋白酶分子量分别为123.3、112.2、71.6 ku和37.8 ku。研究表明,从短蛸胃肠道中可分离出产

  6. Altering plant-microbe interaction through artificially manipulating bacterial quorum sensing.

    Science.gov (United States)

    Fray, Rupert G

    2002-03-01

    Many bacteria regulate diverse physiological processes in concert with their population size. Bacterial cell-to-cell communication utilizes small diffusible signal molecules, which the bacteria both produce and perceive. The bacteria couple gene expression to cell density by eliciting a response only when the signalling molecules reach a critical threshold (a point at which the population is said to be 'quorate'). The population as a whole is thus able to modify its behaviour as a single unit. Amongst Gram-negative bacteria, the quorum sensing signals most commonly used are N-acylhomoserine lactones (AHLs). It is now apparent that AHLs are used for regulating diverse behaviours in epiphytic, rhizosphere-inhabiting and plant pathogenic bacteria and that plants may produce their own metabolites that interfere with this signalling. Transgenic plants that produce high levels of AHLs or which can degrade bacterial-produced AHLs have been made. These plants have dramatically altered susceptibilities to infection by pathogenic Erwinia species. In addition, such plants will prove useful tools in determining the roles of AHL-regulated density-dependent behaviour in growth promoting, biological control and pathogenic plant-associated bacterial species.

  7. 产细菌纤维素菌株中间葡糖醋杆菌的分离与发酵条件优化%Isolation and Culture Optimization of Bacterial Cellulose Producing Strain Gluconacetobacter intermedius

    Institute of Scientific and Technical Information of China (English)

    苏俊霞; 陆震鸣; 王宗敏; 史劲松; 陆茂林; 许正宏

    2015-01-01

    Five bacterial cellulose (BC) producing strains were isolated from solid -state fermentation cultures of traditional Chinese vinegar,and identified as Gluconacetobacter intermedius based on their physiological and biochemical characteristics as well as 16S rDNA sequence analysis. Strain 1-17 could produce more BC then the others. Furthermore,surface features and chemical structure of BC were analyzed by scanning electron microscopy (SEM) and Fourier transform infrared (FT-IR) spectroscopy,respectively. Effects of temperature,time,carbon sources and initial pH on BC production were tested. The optimal temperature for strain 1-17 was 35 ℃, and the fermentation time was 7 d. Glucose and glycerol were the optimal carbon sources,and the optimal initial pH was 6.0. Both lactate and calcium could promote the synthesis of BC. The yield of BC was improved from (3.90±0.08) g/L to (7.90±0.19) g/L under the optimal conditions.%从中国传统固态发酵食醋醋醅中分离出5株产细菌纤维素(BC)的菌株,经生理生化特征及16S rDNA序列分析,它们均属于中间葡糖醋杆菌(Gluconacetobacter intermedius),其中编号为1-17的菌株初始产量较高。应用扫描电镜技术(SEM)和傅里叶红外光谱技术(FT-IR)分析了BC结构特征。采用单因素研究了温度、培养时间、碳源、初始pH对BC合成的影响。确定菌株1-17最适温度为35℃,发酵时间为7 d,甘油和葡萄糖为最适碳源,最适初始pH为6.0,乳酸根离子和钙离子能够促进BC的合成。通过培养条件优化使得细菌纤维素产量从初始的(3.90±0.08) g/L增加到(7.90±0.19) g/L。

  8. Antimicrobial activities of secondary metabolites and phylogenetic study of sponge endosymbiotic bacteria, Bacillus sp. at Agatti Island, Lakshadweep Archipelago

    Directory of Open Access Journals (Sweden)

    Gopi Mohan

    2016-09-01

    Full Text Available Twenty-one species of sponges were recorded under the class of Demospongiae and Calcareous sponges of which 19 species were new to Agatti reef. A total of 113 Sponge endosymbiotic bacterial strains were isolated from twenty-one species of sponges and screened for antimicrobial activity. Five bacterial strains of sponge endosymbiotic bacteria (SEB namely SEB32, SEB33, SEB36, SEB43 and SEB51 showed antimicrobial activity against virulent marine fish pathogens such as Vibrio alginolyticus, Vibrio vulnificus, Vibrio parahaemolyticus, Aeromonas salmonicida, Flavobacterium sp., Edwardsiella sp., Proteus mirabilis and Citrobacter brackii. The secondary metabolites produced by SEB32 from sponge Dysidea fragilis (Montagu, 1818 [48] was selected with broad range of antibacterial activity and subjected for production, characterization by series of chromatography techniques and spectroscopic methods. Based on the results of FT-IR and mass spectrometry, the active molecule was tentatively predicted as “Pyrrol” and the structure is Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- with molecular formula of C7H10N2O2. The LC50 of active molecule was 31 μg/ml and molecular weight of the metabolites was 154. The potential strain SEB32 was identified by gene sequence (GenBank Accession number JX985748 and identified as Bacillus sp. from GenBank database.

  9. BIOSYNTHESIS OF BACTERIAL CELLULOSE BY МEDUSOMYCES GISEVII

    OpenAIRE

    E. K. Gladysheva; E. A. Skiba

    2015-01-01

    Summary: Bacterial cellulose is an organic material that is synthesized by microorganisms extracellularly. Bacterial cellulose can be used in various industries. Especially, bacterial cellulose has found its application basically in medicine. The production of bacterial cellulose is a complicated and long process. The principal criterion for the process to be successful is bacterial cellulose to be obtained in a higher yield. Russia is lacking an operating facility to produce bacterial cellul...

  10. Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters.

    Science.gov (United States)

    Nützmann, Hans-Wilhelm; Schroeckh, Volker; Brakhage, Axel A

    2012-01-01

    Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields.

  11. Secondary Metabolites from the Marine Sponge Genus Phyllospongia

    Science.gov (United States)

    Zhang, Huawei; Dong, Menglian; Wang, Hong; Crews, Phillip

    2017-01-01

    Phyllospongia, one of the most common marine sponges in tropical and subtropical oceans, has been shown to be a prolific producer of natural products with a broad spectrum of biological activities. This review for the first time provides a comprehensive overview of secondary metabolites produced by Phyllospongia spp. over the 37 years from 1980 to 2016. PMID:28067826

  12. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  13. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  14. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites.

    Science.gov (United States)

    Komatsu, Mamoru; Komatsu, Kyoko; Koiwai, Hanae; Yamada, Yuuki; Kozone, Ikuko; Izumikawa, Miho; Hashimoto, Junko; Takagi, Motoki; Omura, Satoshi; Shin-ya, Kazuo; Cane, David E; Ikeda, Haruo

    2013-07-19

    An industrial microorganism, Streptomyces avermitilis, which is a producer of anthelmintic macrocyclic lactones, avermectins, has been constructed as a versatile model host for heterologous expression of genes encoding secondary metabolite biosynthesis. Twenty of the entire biosynthetic gene clusters for secondary metabolites were successively cloned and introduced into a versatile model host S. avermitilis SUKA17 or 22. Almost all S. avermitilis transformants carrying the entire gene cluster produced metabolites as a result of the expression of biosynthetic gene clusters introduced. A few transformants were unable to produce metabolites, but their production was restored by the expression of biosynthetic genes using an alternative promoter or the expression of a regulatory gene in the gene cluster that controls the expression of biosynthetic genes in the cluster using an alternative promoter. Production of metabolites in some transformants of the versatile host was higher than that of the original producers, and cryptic biosynthetic gene clusters in the original producer were also expressed in a versatile host.

  15. Metabolite production by differnt Ulocladium species

    DEFF Research Database (Denmark)

    Andersen, Birgitte; Hollensted, Morten

    2008-01-01

    Ulocladium, which is phylogenetically related to Alternaria, contains species that are food spoilers and plant pathogens, but also species that have potential as enzyme producers and bio-control agents. Ulocladium spp. are often found on dead vegetation, in soil, air and dust, but also on food...... and feedstuffs and on water-damaged building materials. The aim was to study the morphological and chemical diversity within the genus Ulocladium. Cultures of 52 Ulocladium strains were identified morphologically, and then extracted and analyzed using automated Chemical Image Analysis. Production of individual...... metabolites was correlated to species identity and source of isolation (substratum). Chemical analyses corroborated the morphological identifications and showed the existence of several species species-specific metabolites, of which most were known Compounds. The production of curvularins was specific...

  16. Antimicrobial Activity of Metabolites of Various Strains of Lactobacillus acidophilus

    Directory of Open Access Journals (Sweden)

    Hassan Pyar Ali Hassan

    2011-01-01

    Full Text Available The antimicrobial activity of metabolites of eight strains of Lactobacillus acidophilus (FTDC 2804, FTDC 0785, FTDC 8592, FTDC 1295, FTDC 4793, FTDC 4462, FTDC 0582 and FTDC 2916 against  Staphylococcus aureus (gram positive and Escherichia coli (gram negative, was examined and compared using agar well diffusion method.  Lactobacillus acidophilus was cultivated in two different types of dairy growth medium namely, full cream milk and skim milk. The results showed that the metabolites of all the eight strains had significant antimicrobial effect based on zone of inhibition results when compared to control. There was a statistically significant difference in the zone of inhibition data for Staphylococcus aureus and Escherichia coli among the metabolites of the eight strains cultivated in the two different growth medium. Certain L. acidophilus strains were more effective against  Staphylococcus aureus, while other strains were more effective against  Escherichia coli. On the other hand, the growth medium had no significant influence on the antimicrobial effect of metabolites of seven strains except  L. acidophilus FTDC 4462 against Escherichia coli. As for  Staphylococcus aureus, the growth medium only affected the antimicrobial effect of metabolite of strain  L. acidophilus FTDC 1295, but did not affect the antimicrobial effect of metabolites of the other seven strains. It can be concluded that L. acidophilus cultivated in dairy products produced metabolites with antimicrobial property, which could provide beneficial medicinal values to human.

  17. Development of competitive immunoassays to hydroxyl containing fungicide metabolites.

    Science.gov (United States)

    Gough, Kevin C; Jarvis, Shila; Maddison, Ben C

    2011-01-01

    This paper describes the isolation of monoclonal antibodies and the development of competitive immunoassays to pesticide metabolites of the fungicides imazalil, carbendazim and thiabendazole. The metabolite specific hydroxyl residues were used as the reactive group with which to link the metabolite to the carrier proteins Keyhole Limpet Haemocyanin (KLH) and Bovine Serum Albumin (BSA). In each case immune responses in mice were raised and monoclonal antibodies were produced. Antibodies were developed into competitive ELISAs to the appropriate metabolite. The antibody raised to a metabolite of imazalil was optimised into a competitive ELISA format which had an assay IC50 of 7.5 μg/L and a limit of detection (LOD) of 1.1 μg/L. A single antibody isolated against the metabolite of carbendazim had assay IC50s of 3.2 and 2.7 μg/L for the metabolites of carbendazim and thiabendazole respectively with an LOD of 0.38 μg/L for both. These sensitive immunoassays may have application in the monitoring of human exposure to these fungicide residues either by occupational or non-occupational routes.

  18. Indoor fungi and their ciliostatic metabolites.

    Science.gov (United States)

    Piecková, Elena; Kunová, Zuzana

    2002-01-01

    According to epidemiological studies, it is possible that some secondary metabolites of indoor airborne fungi could be responsible for health troubles which occupants suffer from. In our previous experiments, a model with tracheal rings of 1-day-old chicks in vitro was shown to be a very suitable method to study the ciliostatic chloroform-extractable endo- and/or exometabolites of filamentous fungi. In this study we isolated the filamentous fungi from walls of "mouldy" dwellings and schools (cultivation on dichloran 18% glycerol agar at 25 and 37 degrees C for 10 d) in Slovakia. We studied the ciliostatic effect of the chloroform-extractable endo- and exometabolites of 96 representative isolates (stationary cultivation on the liquid medium with 2% of yeast extract and 10% of sucrose at 25 degrees C for 10 days) on the cilia movement in tracheal organ cultures of 1-day-old chickens in vitro after 24, 48 and 72 hrs (incubation in the minimal essential medium according to Eagle with Earl s salts and 20 microg of extract of metabolites dissolved in dimethylsulfoxide per 1 mL). Strains of Penicillium Link: Fr. sp., Aspergillus versicolor (Vuill.) Tiraboschi, A. flavus Link, Cladosporium sphaerospermum Penzig and C. cladosporioides (Fres.) de Vries were isolated most frequently. Two A. flavus isolates were able to produce aflatoxins B1, B2, G1, G2 in vitro after cultivation on the liquid medium with 20% sucrose and 2% yeast extract. This is the first isolation of aflatoxigenic A. flavus strains from dwellings in Slovakia. All frequently isolated strains produced secondary metabolites with the strongest ciliostatic activity -- their exo- and endometabolites stopped tracheal ciliary movement in chicks till 24 h. There are some toxic fungal metabolites in the indoor air not only with the ability to destroy ciliary movement in the upper airways in vitro but, probably, during long-lasting exposure to cause general intoxication of macroorganism via lung tissue.

  19. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  20. Secondary metabolites: applications on cultural heritage.

    Science.gov (United States)

    Sasso, S; Scrano, L; Bonomo, M G; Salzano, G; Bufo, S A

    2013-01-01

    Biological sciences and related bio-technology play a very important role in research projects concerning protection and preservation of cultural heritage for future generations. In this work secondary metabolites of Burkholderia gladioli pv. agaricicola (Bga) ICMP 11096 strain and crude extract of glycoalkaloids from Solanaceae plants, were tested against a panel of microorganisms isolated from calcarenite stones of two historical bridges located in Potenza and in Campomaggiore (Southern Italy). The isolated bacteria belong to Bacillus cereus and Arthrobacter agilis species, while fungi belong to Aspergillus, Penicillium, Coprinellus, Fusarium, Rhizoctonio and Stemphylium genera. Bga broth (unfiltered) and glycoalkaloids extracts were able to inhibit the growth of all bacterial isolates. Bga culture was active against fungal colonies, while Solanaceae extract exerted bio-activity against Fusarium and Rhizoctonia genera.

  1. Control of endophytic Frankia sporulation by Alnus nodule metabolites.

    Science.gov (United States)

    Hay De-Bettignies, Anne-Emmanuelle; Boubakri, Hasna; Buonomo, Antoine; Rey, Marjolaine; Meiffren, Guillaume; Cotin-Galvan, Laetitia; Comte, Gilles; Herrera-Belaroussi, Aude

    2017-01-10

    A unique case of microbial symbiont capable of dormancy within its living host cells has been reported in actinorhizal symbioses: some Frankia strains, named Sp+, are able to sporulate inside plant cells, contrarily to Sp- strains. The presence of metabolically slowed down bacterial structures in host cells alters our understanding of symbiosis based on reciprocal benefits between both partners, and its impact on the symbiotic processes remains unknown. The present work reports a metabolomic study of Sp+ and Sp- nodules (from Alnus glutinosa), in order to highlight variabilities associated with in-planta sporulation. A total of 21 amino acids (AA), 44 sugars and organic acids (SOA), and 213 secondary metabolites (M) were detected using UV and mass spectrometric-based profiling. Little change was observed in primary metabolites, suggesting that in-planta sporulation would not strongly affect the primary functionalities of the symbiosis. One secondary metabolite (M27) was detected only in Sp+ nodules. It was identified as Gentisic acid 5-O-β-D-xylopyranoside, previously reported as involved in plant defenses against microbial pathogens. This metabolite significantly increased Frankia in-vitro sporulation, unlike another metabolite significantly more abundant in Sp- nodules (M168 = (5R)-1,7-bis-(3,4-) dihydroxyphenyl)-heptane-5-O-β-D-glucopyranoside). All these results suggest that the plant could play an important role in Frankia ability to sporulate in-planta, and allow us to discuss a possible sanction emitted by the host against less cooperative Sp+ symbionts.

  2. Bacterial pyridine hydroxylation is ubiquitous in environment.

    Science.gov (United States)

    Sun, Ji-Quan; Xu, Lian; Tang, Yue-Qin; Chen, Fu-Ming; Zhao, Jing-Jing; Wu, Xiao-Lei

    2014-01-01

    Ten phenol-degrading bacterial strains were isolated from three geographically distant environments. Five of them, identified as Diaphorobacter, Acidovorax, Acinetobacter (two strains), and Corynebacterium, could additionally transform pyridine, through the transcription of phenol hydroxylase genes induced both by phenol and pyridine. HPLC-UV and LC-MS analyses indicated that one metabolite (m/e = 96.07) with the same molecular weight as monohydroxylated pyridine was produced from the five phenol-degrading strains, when pyridine was the sole carbon source. Phenol (50 mg l(-1)) could initially inhibit and later stimulate the pyridine transformation. In addition, heterologous expression of the phenol hydroxylase gene (pheKLMNOP) resulted in the detection of monohydroxylated pyridine, which confirmed the phenol hydroxylase could catalyze pyridine hydroxylation. Phylogeny of the phenol hydroxylase genes revealed that the genes from the five pyridine-hydroxylating strains form a clade with each other and with those catalyzing the hydroxylation of phenol, BTEX (acronym of benzene, toluene, ethylbenzene, and xylene), and trichloroethylene. These results suggest that pyridine transformation via hydroxylation by phenol hydroxylase may be prevalent in environments than expected.

  3. Indoleacetic acid production and plant growth promoting potential of bacterial endophytes isolated from rice (Oryza sativa L.) seeds.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Al-Hosni, Khadija; Kang, Sang-Mo; Seo, Chang-Woo; Lee, In-Jung

    2017-06-01

    Bacterial endophytes from the phyllosphere and rhizosphere have been used to produce bioactive metabolites and to promote plant growth. However, little is known about the endophytes residing in seeds. This study aimed to isolate and identify seed-borne bacterial endophytes from rice and elucidate their potential for phytohormone production and growth enhancement. The isolated endophytes included Micrococcus yunnanensis RWL-2, Micrococcus luteus RWL-3, Enterobacter soli RWL-4, Leclercia adecarboxylata RWL-5, Pantoea dispersa RWL-6, and Staphylococcus epidermidis RWL-7, which were identified using 16S rRNA sequencing and phylogenetic analysis. These strains were analyzed for indoleacetic acid (IAA) production by using GC-MS and IAA was found in the range of 11.50 ± 0.77 μg ml(-1) to 38.80 ± 1.35 μg ml(-1). We also assessed the strains for plant growth promoting potential because these isolates were able to produce IAA in pure culture. Most of the growth attributes of rice plants (shoot and root length, fresh and dry biomass, and chlorophyll content) were significantly increased by bacterial endophytes compared to the controls. These results show that IAA producing bacterial endophytes can improve hostplant growth traits and can be used as bio-fertilizers.

  4. Induced sclerotium formation exposes new bioactive metabolites from Aspergillus sclerotiicarbonarius.

    Science.gov (United States)

    Petersen, Lene M; Frisvad, Jens C; Knudsen, Peter B; Rohlfs, Marko; Gotfredsen, Charlotte H; Larsen, Thomas O

    2015-10-01

    Sclerotia are known to be fungal survival structures, and induction of sclerotia may prompt production of otherwise undiscovered metabolites. Aspergillus sclerotiicarbonarius (IBT 28362) was investigated under sclerotium producing conditions, which revealed a highly altered metabolic profile. Four new compounds were isolated from cultivation under sclerotium formation conditions and their structures elucidated using different analytical techniques (HRMS, UV, 1D and 2D NMR). This included sclerolizine, an alkylated and oxidized pyrrolizine, the new emindole analog emindole SC and two new carbonarins; carbonarins I and J. We have identified the three latter as true sclerotial metabolites. All metabolites were tested for antifungal and antiinsectan activity, and sclerolizine and carbonarin I displayed antifungal activity against Candida albicans, while all four showed antiinsectan activity. These results demonstrate induction of sclerotia as an alternative way of triggering otherwise silent biosynthetic pathways in filamentous fungi for the discovery of novel bioactive secondary metabolites.

  5. Exploration and mining of the bacterial terpenome.

    Science.gov (United States)

    Cane, David E; Ikeda, Haruo

    2012-03-20

    Tens of thousands of terpenoids are present in both terrestrial and marine plants, as well as fungi. In the last 5-10 years, however, it has become evident that terpenes are also produced by numerous bacteria, especially soil-dwelling Gram-positive organisms such as Streptomyces and other Actinomycetes. Although some microbial terpenes, such as geosmin, the degraded sesquiterpene responsible for the smell of moist soil, the characteristic odor of the earth itself, have been known for over 100 years, few terpenoids have been identified by classical structure- or activity-guided screening of bacterial culture extracts. In fact, the majority of cyclic terpenes from bacterial species have only recently been uncovered by the newly developed techniques of "genome mining". In this new paradigm for biochemical discovery, bacterial genome sequences are first analyzed with powerful bioinformatic tools, such as the BLASTP program or Profile Hidden Markov models, to screen for and identify conserved protein sequences harboring a characteristic set of universally conserved functional domains typical of all terpene synthases. Of particular importance is the presence of variants of two universally conserved domains, the aspartate-rich DDXX(D/E) motif and the NSE/DTE triad, (N/D)DXX(S/T)XX(K/R)(D/E). Both domains have been implicated in the binding of the essential divalent cation, typically Mg(2+), that is required for cyclization of the universal acyclic terpene precursors, such as farnesyl and geranyl diphosphate. The low level of overall sequence similarity among terpene synthases, however, has so far precluded any simple correlation of protein sequence with the structure of the cyclized terpene product. The actual biochemical function of a cryptic bacterial (or indeed any) terpene synthase must therefore be determined by direct experiment. Two common approaches are (i) incubation of the expressed recombinant protein with acyclic allylic diphosphate substrates and

  6. Bacterial toxins: friends or foes?

    OpenAIRE

    Schmitt, C K; Meysick, K. C.; O'Brien, A D

    1999-01-01

    Many emerging and reemerging bacterial pathogens synthesize toxins that serve as primary virulence factors. We highlight seven bacterial toxins produced by well-established or newly emergent pathogenic microbes. These toxins, which affect eukaryotic cells by a variety of means, include Staphylococcus aureus alpha-toxin, Shiga toxin, cytotoxic necrotizing factor type 1, Escherichia coli heat-stable toxin, botulinum and tetanus neurotoxins, and S. aureus toxic-shock syndrome toxin. For each, we...

  7. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists.

  8. Genomic and functional features of the biosurfactant producing Bacillus sp. AM13.

    Science.gov (United States)

    Shaligram, Shraddha; Kumbhare, Shreyas V; Dhotre, Dhiraj P; Muddeshwar, Manohar G; Kapley, Atya; Joseph, Neetha; Purohit, Hemant P; Shouche, Yogesh S; Pawar, Shrikant P

    2016-09-01

    Genomic studies provide deeper insights into secondary metabolites produced by diverse bacterial communities, residing in various environmental niches. This study aims to understand the potential of a biosurfactant producing Bacillus sp. AM13, isolated from soil. An integrated approach of genomic and chemical analysis was employed to characterize the antibacterial lipopeptide produced by the strain AM13. Genome analysis revealed that strain AM13 harbors a nonribosomal peptide synthetase (NRPS) cluster; highly similar with known biosynthetic gene clusters from surfactin family: lichenysin (85 %) and surfactin (78 %). These findings were substantiated with supplementary experiments of oil displacement assay and surface tension measurements, confirming the biosurfactant production. Further investigation using LCMS approach exhibited similarity of the biomolecule with biosurfactants of the surfactin family. Our consolidated effort of functional genomics provided chemical as well as genetic leads for understanding the biochemical characteristics of the bioactive compound.

  9. [Actinomycetes from mangrove and their secondary metabolites].

    Science.gov (United States)

    Hong, Kui

    2013-11-04

    Mangroves are woody plants located in tropical and subtropical intertidal coastal regions. Driven by the discovery of novel natural products from marine environment, mangrove is becoming a hot spot for actinomycetes resources collection and secondary metabolites (natural products) identification as well as their biosynthesis mechanism investigation. Salinaspora A produced by a Salinispora strain isolated from Bahamas mangrove environment, is in the first clinical trial. Till the time of writing this paper, 24 genera of 11 families and 8 suborders under the actinomycetale have been reported from mangrove, among which 3 are new genera, and 31 are new species. At the same time, secondary metabolites were identified from the mangrove actinomycetes culture, including alkanoids and quinines, azalomycins, antimycins, bezamides and quinazolines, divergolides, indole derivatives, kandenols, macrocyclic dilactones, and the attractive structures, such as the Streptocarbazoles, the multicyclic indolsesquiterpenes, and xiamycin presented unique structures. Their biosynthetic mechanism has also been investigated. Most of the metabolites were isolated from streptomycetes, with a few from Micromonospora and Saccharopolyspora.

  10. Natural metabolites for parasitic weed management.

    Science.gov (United States)

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  11. Synthesis Of Labeled Metabolites

    Science.gov (United States)

    Martinez, Rodolfo A.; Silks, III, Louis A.; Unkefer, Clifford J.; Atcher, Robert

    2004-03-23

    The present invention is directed to labeled compounds, for example, isotopically enriched mustard gas metabolites including: [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1-[[2-(methylsulfinyl)ethyl]sulfonyl]-2-(methylthio); [1,1',2,2'-.sup.13 C.sub.4 ]ethane, 1,1'-sulfonylbis[2-(methylsulfinyl)]; and, 2,2'-sulfinylbis([1,2-.sup.13 C.sub.2 ]ethanol of the general formula ##STR1## where Q.sup.1 is selected from the group consisting of sulfide (--S--), sulfone (--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), at least one C* is .sup.13 C, X is selected from the group consisting of hydrogen and deuterium, and Z is selected from the group consisting of hydroxide (--OH), and --Q.sup.2 --R where Q.sup.2 is selected from the group consisting of sulfide (--S--), sulfone(--S(O)--), sulfoxide (--S(O.sub.2)--) and oxide (--O--), and R is selected from the group consisting of hydrogen, a C.sub.1 to C.sub.4 lower alkyl, and amino acid moieties, with the proviso that when Z is a hydroxide and Q.sup.1 is a sulfide, then at least one X is deuterium.

  12. Lightweight expanded clay aggregates (LECA), a new up-scaleable matrix for production of microfungal metabolites

    DEFF Research Database (Denmark)

    Nielsen, Kristian Fog; Larsen, Thomas Ostenfeld; Frisvad, Jens Christian

    2004-01-01

    In order to compare the effects of different growth matrices on secondary metabolite production we compared 16 Penicillium species known to produce several families of bioactive compounds. The isolates were grown in rich complex media formulated as semisolid (agar), liquid (still), shake culture...... for production of sporulation-associated metabolites, such as cyclopenins and viridicatins, for quick up-scaling from agar based media, and as an alternative for production of metabolites that are not induced under submerse conditions....

  13. Recent trends in control methods for bacterial wilt diseases caused by Ralstonia solanacearum.

    Science.gov (United States)

    Yuliar; Nion, Yanetri Asi; Toyota, Koki

    2015-01-01

    Previous studies have described the development of control methods against bacterial wilt diseases caused by Ralstonia solanacearum. This review focused on recent advances in control measures, such as biological, physical, chemical, cultural, and integral measures, as well as biocontrol efficacy and suppression mechanisms. Biological control agents (BCAs) have been dominated by bacteria (90%) and fungi (10%). Avirulent strains of R. solanacearum, Pseudomonas spp., Bacillus spp., and Streptomyces spp. are well-known BCAs. New or uncommon BCAs have also been identified such as Acinetobacter sp., Burkholderia sp., and Paenibacillus sp. Inoculation methods for BCAs affect biocontrol efficacy, such as pouring or drenching soil, dipping of roots, and seed coatings. The amendment of different organic matter, such as plant residue, animal waste, and simple organic compounds, have frequently been reported to suppress bacterial wilt diseases. The combined application of BCAs and their substrates was shown to more effectively suppress bacterial wilt in the tomato. Suppression mechanisms are typically attributed to the antibacterial metabolites produced by BCAs or those present in natural products; however, the number of studies related to host resistance to the pathogen is increasing. Enhanced/modified soil microbial communities are also indirectly involved in disease suppression. New promising types of control measures include biological soil disinfection using substrates that release volatile compounds. This review described recent advances in different control measures. We focused on the importance of integrated pest management (IPM) for bacterial wilt diseases.

  14. The expanding roles of c-di-GMP in the biosynthesis of exopolysaccharides and secondary metabolites.

    Science.gov (United States)

    Liang, Zhao-Xun

    2015-05-01

    The cyclic dinucleotide c-di-GMP has emerged in the last decade as a prevalent intracellular messenger that orchestrates the transition between the motile and sessile lifestyles of many bacterial species. The motile-to-sessile transition is often associated with the formation of extracellular matrix-encased biofilm, an organized community of bacterial cells that often contributes to antibiotic resistance and host-pathogen interaction. It is increasingly clear that c-di-GMP controls motility, biofilm formation and bacterial pathogenicity partially through regulating the production of exopolysaccharides (EPS) and small-molecule secondary metabolites. This review summarizes our current understanding of the regulation of EPS biosynthesis by c-di-GMP in a diversity of bacterial species and highlights the emerging role of c-di-GMP in the biosynthesis of small-molecule secondary metabolites.

  15. In vitro evaluation of Pseudomonas bacterial isolates from rice phylloplane for biocontrol of Rhizoctonia solani and plant growth promoting traits.

    Science.gov (United States)

    Akter, Shamima; Kadir, Jugah; Juraimi, Abdul Shukor; Saud, Halimi Mohd

    2016-07-01

    The ability for biocontrol and plant growth promotion of three Pseudomonas bacterial isolates namely Pseudomonas fluorescens (UMB20), Pseudomonas aeruginosa (KMB25) and Pseudomonas asplenii (BMB42) obtained from rice plants was investigated. Fungal growth inhibition by the isolates ranged from 86.85 to 93.15% in volatile and 100% in diffusible metabolites test. Among the isolates, BMB42 showed fungal growth inhibition significantly in the volatile metabolite test. Isolates UMB20 and BMB42 were able to synthesis chitinase with chitinolytic indices of 13.66 and 13.50, respectively. In case of -1,3-glucanase, all the isolates showed activity to produce this enzyme at varied levels and isolate KMB25 showed significantly highest activity (53.53 ppm). Among the three isolates, KMB25 showed positive response to protease production and all of them were negative to pectinase and lipase and positive to the production of siderophore, and HCN, and were able to solubilize tricalcium phosphate. All the three bacterial isolates were capable of forming biofilm at different levels. Above results suggest that phylloplane Pseudomonas bacterial isolates have potential for antifungal activities and plant growth promotion.

  16. Metabolite Space of Rheumatoid Arthritis

    OpenAIRE

    van Wietmarschen, Herman; van der Greef, Jan

    2012-01-01

    Metabolites play numerous roles in the healthy and diseased body, ranging from regulating physiological processes to providing building blocks for the body. Therefore, understanding the role of metabolites is important in elucidating the etiology and pathology of diseases and finding targets for new treatment options. Rheumatoid arthritis is a complex chronic disease for which new disease management strategies are needed. The aim of this review is to bring together and integrate information a...

  17. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Directory of Open Access Journals (Sweden)

    Maren Stella Müller

    Full Text Available Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG, pyrrolnitrin (PRN and hydrogen cyanide (HCN in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks, as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  18. Protozoa Drive the Dynamics of Culturable Biocontrol Bacterial Communities.

    Science.gov (United States)

    Müller, Maren Stella; Scheu, Stefan; Jousset, Alexandre

    2013-01-01

    Some soil bacteria protect plants against soil-borne diseases by producing toxic secondary metabolites. Such beneficial biocontrol bacteria can be used in agricultural systems as alternative to agrochemicals. The broad spectrum toxins responsible for plant protection also inhibit predation by protozoa and nematodes, the main consumers of bacteria in soil. Therefore, predation pressure may favour biocontrol bacteria and contribute to plant health. We analyzed the effect of Acanthamoeba castellanii on semi-natural soil bacterial communities in a microcosm experiment. We determined the frequency of culturable bacteria carrying genes responsible for the production of the antifungal compounds 2,4-diacetylphloroglucinol (DAPG), pyrrolnitrin (PRN) and hydrogen cyanide (HCN) in presence and absence of A. castellanii. We then measured if amoebae affected soil suppressiveness in a bioassay with sugar beet seedlings confronted to the fungal pathogen Rhizoctonia solani. Amoebae increased the frequency of both DAPG and HCN positive bacteria in later plant growth phases (2 and 3 weeks), as well as the average number of biocontrol genes per bacterium. The abundance of DAPG positive bacteria correlated with disease suppression, suggesting that their promotion by amoebae may enhance soil health. However, the net effect of amoebae on soil suppressiveness was neutral to slightly negative, possibly because amoebae slow down the establishment of biocontrol bacteria on the recently emerged seedlings used in the assay. The results indicate that microfaunal predators foster biocontrol bacterial communities. Understanding interactions between biocontrol bacteria and their predators may thus help developing environmentally friendly management practices of agricultural systems.

  19. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential.

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-10-20

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  20. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Science.gov (United States)

    Liu, Lu; Pohnert, Georg; Wei, Dong

    2016-01-01

    Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology. PMID:27775594

  1. Extracellular Metabolites from Industrial Microalgae and Their Biotechnological Potential

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2016-10-01

    Full Text Available Industrial microalgae, as a big family of promising producers of renewable biomass feedstock, have been commercially exploited for functional food, living feed and feed additives, high-value chemicals in nutraceuticals, cosmeceuticals, and chemical reagents. Recently, microalgae have also been considered as a group that might play an important role in biofuel development and environmental protection. Almost all current products of industrial microalgae are derived from their biomass; however, large amounts of spent cell-free media are available from mass cultivation that is mostly unexploited. In this contribution we discuss that these media, which may contain a remarkable diversity of bioactive substances are worthy to be recovered for further use. Obviously, the extracellular metabolites from industrial microalgae have long been neglected in the development of production methods for valuable metabolites. With the advances in the last ten years, more and more structures and properties from extracellular metabolites have been identified, and the potential utilization over wide fields is attracting attention. Some of these extracellular metabolites can be potentially used as drugs, antioxidants, growth regulators or metal chelators. The purpose of this review is to provide an overview of the known extracellular metabolites from industrial microalgae which might be of commercial interest. The attention mainly focuses on the reports of extracellular bioactive metabolites and their potential application in biotechnology.

  2. Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus

    Directory of Open Access Journals (Sweden)

    Adriana A.P. Bracarense

    2014-01-01

    Full Text Available Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 2² full factorial planning (ANOVA and on a 2³ factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC.

  3. Bacterial symbionts: prospects for the sustainable production of invertebrate-derived pharmaceuticals.

    Science.gov (United States)

    Piel, J

    2006-01-01

    Invertebrate animals, such as sponges, tunicates and bryozoans, are among the most important sources of biomedically relevant natural products. However, as these animals generally contain only low quantities of the compounds, further pharmacological development is in most cases difficult. There is increasing evidence that many metabolites, in particular polyketides and nonribosomally synthesized peptides, are not produced by the animals themselves but by associated bacterial symbionts. This symbiont hypothesis currently attracts considerable interest, since it implicates that animal-independent production systems based on bacterial fermentation processes could be created. This review gives an overview about recent developments in the research on natural product symbiosis. Different techniques will be discussed that have been employed to pinpoint the actual producer. Since bacterial symbionts are highly fastidious and have been generally resistant to cultivation attempts, emphasis will be laid on culture-independent strategies, such as cell separation approaches and the cloning of biosynthetic genes. These strategies have provided insights into possible sources of several natural products, e.g. the bryostatins, pederin, the onnamides, swinholide A and theopalauamide. Finally, potential techniques for the generation of renewable supplies of symbiont-derived drug candidates will be discussed. Cultivation approaches and the heterologous expression of cloned biosynthesis genes from uncultured symbionts could in future provide access to several important marine drug candidates, including bryostatin 1, halichondrin or ET-743.

  4. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... in the formation of highly complex sessile communities, referred to as biofilms. Such microbial communities are often highly dynamic and heterogeneous in nature. Microbial biofilms are of great importance in a wide range of natural processes and industrial settings, from the commensal flora of the gastrointestinal...

  5. A member of the cathelicidin family of antimicrobial peptides is produced in the upper airway of the chinchilla and its mRNA expression is altered by common viral and bacterial co-pathogens of otitis media.

    Science.gov (United States)

    McGillivary, Glen; Ray, William C; Bevins, Charles L; Munson, Robert S; Bakaletz, Lauren O

    2007-03-01

    Cationic antimicrobial peptides (AMPs), a component of the innate immune system, play a major role in defense of mucosal surfaces against a wide spectrum of microorganisms such as viral and bacterial co-pathogens of the polymicrobial disease otitis media (OM). To further understand the role of AMPs in OM, we cloned a cDNA encoding a cathelicidin homolog (cCRAMP) from upper respiratory tract (URT) mucosae of the chinchilla, the predominant host used to model experimental OM. Recombinant cCRAMP exhibited alpha-helical secondary structure and killed the three main bacterial pathogens of OM. In situ hybridization showed cCRAMP mRNA production in epithelium of the chinchilla Eustachian tube and RT-PCR was used to amplify cCRAMP mRNA from several other tissues of the chinchilla URT. Quantitative RT-PCR analysis of chinchilla middle ear epithelial cells (CMEEs) incubated with either viral (influenza A virus, adenovirus, or RSV) or bacterial (nontypeable H. influenzae, M. catarrhalis, or S. pneumoniae) pathogens associated with OM demonstrated distinct microbe-specific patterns of altered expression. Collectively, these data showed that viruses and bacteria modulate AMP messages in the URT, which likely contributes to the disease course of OM.

  6. Evaluating Nitrogen-Containing Biosynthetic Products Produced by Saltwater Culturing of Several California Littoral Zone Gram-Negative Bacteria.

    Science.gov (United States)

    Lorig-Roach, Nicholas; Still, Patrick C; Coppage, David; Compton, Jennifer E; Crews, Mitchell S; Navarro, Gabriel; Tenney, Karen; Crews, Phillip

    2017-08-25

    The biosynthetic potential of marine-sediment-derived Gram-negative bacteria is poorly understood. Sampling of California near-shore marine environments afforded isolation of numerous Gram-negative bacteria in the Proteobacteria and Bacteriodetes phyla, which were grown in the laboratory to provide extracts whose metabolites were identified by comparative analyses of LC-mass spectrometry and MS(n) data. Overall, we developed an assemblage of seven bacterial strains grown in five different media types designed to coax out unique secondary metabolite production as a function of varying culture conditions. The changes in metabolite production patterns were tracked using the GNPS MS(2) fragmentation pattern analysis tool. A variety of nitrogen-rich metabolites were visualized from the different strains grown in different media, and strikingly, all of the strains examined produced the same new, proton-atom-deficient compound, 1-methyl-4-methylthio-β-carboline (1), C13H12N2S. Scale-up liquid culture of Achromobacter spanius (order: Burkholderiales; class: Betaproteobacteria) provided material for the final structure elucidation. The methods successfully combined in this work should stimulate future studies of molecules from marine-derived Gram-negative bacteria.

  7. Studies on the Secondary Metabolites Produced by Mixed Cultures of Two Epiphytic Fungi Isolated from a Fruit of Mangrove Avicennia marina%榄钱两株附生真菌混合培养次级代谢产物研究

    Institute of Scientific and Technical Information of China (English)

    朱峰; 胡谷平; 陈忻; 袁毅桦; 黄美珍; 孙恢礼; 向文洲; 林永成

    2009-01-01

    A mixed culture of two epiphytic fungi from a rotten fruit of mangrove Avicennia marina produced two antibacterial secondary metabolites ( A and B). Their structures were elucidated as neo-aspergillic acid (A) and kojic acid (B) by comprehensive spectral methods (mainly by 2D NMR spectral methods). The structure of compound B was further characterized by single crystal X-Ray diffraction analysis. The crystal of compound B belongs to monoclinic system, space group is P2_1/n. The unit cell parameters are: a =0.378 33 (3) nm, b=1.837 58 (14) nm, c =0.848 89 (7) nm, α =90°, β = 96.7520 (10)°,γ=90°, V= 0.586 06 (8) nm~3 and Z=4.Compound A was not obtained when either strains was cultured individually. The results showed that the application of mixed culture technique would be contribute to discover more novel natural products from marine microorganisms.%通过混合培养2株附生于南海榄钱的真菌产生了2个抗菌次级代谢产物(A和B),其结构通过完整的波谱数据(主要是2D NMR数据)分别解析为新曲霉酸(A)和曲酸(B).化合物B的结构进一步通过单晶X-射线衍射分析得到证实.当单独培养这2株真菌时未能得到化合物A.研究结果进一步表明,混合培养技术有助于从海洋微生物中发现更多独特的天然产物.

  8. Bacterial degradation of aminopyrine.

    Science.gov (United States)

    Blecher, H; Blecher, R; Wegst, W; Eberspaecher, J; Lingens, F

    1981-11-01

    1. Four strains of bacteria growing with aminopyrine as sole source of carbon were isolated from soil and were identified as strains of Phenylobacterium immobilis. 2. Strain M13 and strain E, the type species of Phenylobacterium immobilis (DSM 1986), which had been isolated by enrichment with chloridazon (5-amino-4-chloro-2-phenyl-2H-pyridazin-3-one) were used to investigate the bacterial degradation of aminopyrine. 3. Three metabolites were isolated and identified as: 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-2-(2,3-dihydro-2,3-dihydroxy-4,6-cyc lohexadien-1-yl)-3H-pyrazol-3-one, 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-2-(2,3-dihydroxyphenyl)-3H-pyrazol-3 -one and 4-(dimethylamino)-1,2-dihydro-1,5-dimethyl-3H-pyrazol-3-one. 4. An enzyme extract from cells of strain m13 was shown to further metabolize the catechol derivative of aminopyrine, with the formation of 2-pyrone-6-carboxylic acid. 5. Results indicate that the benzene ring of aminopyrine is the principal site of microbial metabolism.

  9. A novel metabolite (1,3-benzenediol, 5-hexyl) production by Exophiala spinifera strain FM through dibenzothiophene desulfurization.

    Science.gov (United States)

    Elmi, Fatemeh; Etemadifar, Zahra; Emtiazi, Giti

    2015-05-01

    Sulfur dioxide which is released from petroleum oil combustion causes pollution over the atmosphere and the soil. Biodesulfurization can be used as a complementary method of hydrodesulfurization, the common method of petroleum desulfurization in refineries. Many studies have been carried out to develop biological desulfurization of dibenzothiophene (DBT) with bacterial biocatalysts. However, fungi are capable to metabolize a wide range of aromatic hydrocarbons through cytochrome P450 and their extracellular enzymes. The aim of the present work was isolation and identification of fungi biocatalysts capable for DBT utilization as sulfur source and production of novel metabolites. DBT consumption and the related produced metabolites were analyzed by HPLC and GC-MS respectively. One of the isolated fungi that could utilize DBT as sole sulfur source was identified by both traditional and molecular experiments and registered in NCBI as Exophiala spinifera FM strain (accession no. KC952672). This strain could desulfurize 99 % of DBT (0.3 mM) as sulfur source by co-metabolism reaction with other carbon sources through the same pathway as 4S and produced 2-hydroxy biphenyl (2-HBP) during 7 days of incubation at 30 °C and 180 rpm shaking. However, the isolate was able to transform 2-HBP to 1,3-benzenediol, 5-hexyl. While biphenyl compounds are toxic to leaving cells, biotransformation of them can reduce their toxicity and the fungi will be more tolerant to the final product. These data are the first report about the desulfurization of DBT comparable to 4S-pathway and production of innovative metabolite by E. spinifera FM strain.

  10. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  11. Construction of a Metagenomic DNA Library of Sponge Symbionts and Screening of Antibacterial Metabolites

    Institute of Scientific and Technical Information of China (English)

    CHEN Juan; ZHU Tianjiao; LI Dehai; CUI Chengbin; FANG Yuchun; LIU Hongbing; LIU Peipei; GU Qianqun; ZHU Weiming

    2006-01-01

    To study the bioactive metabolites produced by sponge-derived uncultured symbionts, a metagenomic DNA library of the symbionts of sponge Gelliodes gracilis was constructed. The average size of DNA inserts in the library was 20 kb. This library was screened for antibiotic activity using paper disc assaying. Two clones displayed the antibacterial activity against Micrococcus tetragenus. The metabolites of these two clones were analyzed through HPLC. The result showed that their metabolites were quite different from those of the host E. coli DH5α and the host containing vector pHZ132. This study may present a new approach to exploring bioactive metabolites of sponge symbionts.

  12. Bioactive secondary metabolites with multiple activities from a fungal endophyte

    NARCIS (Netherlands)

    Bogner, C.W.; Kamdem, R.S.; Stichtermann, G.; Matthäus, C.; Hölscher, D.; Popp, J.; Proksch, P.; Grundler, F.M.; Schouten, A.

    2017-01-01

    In order to replace particularly biohazardous nematocides, there is a strong drive to finding natural product-based alternatives with the aim of containing nematode pests in agriculture. The metabolites produced by the fungal endophyte Fusarium oxysporum 162 when cultivated on rice media were isolat

  13. Polar metabolites of polycyclic aromatic compounds from fungi are potential soil and groundwater contaminants.

    Science.gov (United States)

    Boll, Esther S; Johnsen, Anders R; Christensen, Jan H

    2015-01-01

    This study investigated the sorption to soil of water-soluble metabolites from polycyclic aromatic compounds (PACs). The soil fungus Cunninghamella elegans was used to produce PAC metabolites from two un-substituted PACs (phenanthrene, pyrene), three alkyl-substituted PACs (2-methylnaphthalene, 1-methylphenanthrene, 1-methylpyrene), and one sulfur-containing heterocyclic PAC (dibenzothiophene). Fifty-eight metabolites were tentatively identified; metabolites from the un-substituted PACs were hydroxylated and sulfate conjugated, whereas metabolites from alkyl-substituted PACs were sulfate conjugated and either hydroxylated or oxidized to carboxylic acids at the methyl group. The metabolism of the sulfur-containing heterocyclic PAC resulted in sulfate conjugates. The sorption of the PAC metabolites to three soils was determined using a batch equilibrium method, and partition coefficients (Kd's) were calculated for fourteen representative metabolites. Sulfate conjugated metabolites displayed Kd's below 70 whereas the metabolites with both a sulfate and a carboxylic acid group had Kd's below 2.8. The low Kd's of water-soluble PAC metabolites indicate high mobility in soil and a potential for leaching to surface- and groundwaters.

  14. Development of fungal cell factories for the production of secondary metabolites: Linking genomics and metabolism

    Directory of Open Access Journals (Sweden)

    Jens Christian Nielsen

    2017-03-01

    Full Text Available The genomic era has revolutionized research on secondary metabolites and bioinformatics methods have in recent years revived the antibiotic discovery process after decades with only few new active molecules being identified. New computational tools are driven by genomics and metabolomics analysis, and enables rapid identification of novel secondary metabolites. To translate this increased discovery rate into industrial exploitation, it is necessary to integrate secondary metabolite pathways in the metabolic engineering process. In this review, we will describe the novel advances in discovery of secondary metabolites produced by filamentous fungi, highlight the utilization of genome-scale metabolic models (GEMs in the design of fungal cell factories for the production of secondary metabolites and review strategies for optimizing secondary metabolite production through the construction of high yielding platform cell factories.

  15. Gas chromatographic analysis of urinary tyrosine and phenylalanine metabolites in patients with gastrointestinal disorders

    NARCIS (Netherlands)

    Heiden, C. van der; Wauters, E.A.K.; Ketting, D.

    1971-01-01

    Main urinary bacterial metabolites of phenylalanine (total benzoic and phenylacetic acids) and of tyrosine (total p-hydroxybenzoic acid and p-hydroxyphenylacetic acid) were determined by gas chromatography in controls and patients with cystic ubrosis of the pancreas, coeliac disease, intestinal rese

  16. The Gut Microbiota and their Metabolites : Potential Implications for the Host Epigenome

    NARCIS (Netherlands)

    Mischke, Mona; Plösch, Torsten

    2016-01-01

    The gut microbiota represents a metabolically active biomass of up to 2 kg in adult humans. Microbiota-derived molecules significantly contribute to the host metabolism. Large amounts of bacterial metabolites are taken up by the host and are subsequently utilized by the human body. For instance, sho

  17. Role of secondary metabolites in the interaction between Pseudomonas fluorescens and soil microorganisms under iron-limited conditions.

    Science.gov (United States)

    Deveau, Aurélie; Gross, Harald; Palin, Béatrice; Mehnaz, Samina; Schnepf, Max; Leblond, Pierre; Dorrestein, Pieter C; Aigle, Bertrand

    2016-08-01

    Microorganisms can be versatile in their interactions with each other, being variously beneficial, neutral or antagonistic in their effect. Although this versatility has been observed among many microorganisms and in many environments, little is known regarding the mechanisms leading to these changes in behavior. In the present work, we analyzed the mechanism by which the soil bacterium Pseudomonas fluorescens BBc6R8 shifts from stimulating the growth of the ectomycorrhizal fungus Laccaria bicolor S238N to killing the fungus. We show that among the three secondary metabolites produced by the bacterial strain-the siderophores enantio-pyochelin and pyoverdine, and the biosurfactant viscosin-the siderophores are mainly responsible for the antagonistic activity of the bacterium under iron-limited conditions. While the bacterial strain continues to produce beneficial factors, their effects are overridden by the action of their siderophores. This antagonistic activity of the strain P. fluorescens BBC6R8 in iron-depleted environments is not restricted to its influence on L. bicolor, since it was also seen to inhibit the growth of the actinomycete Streptomyces ambofaciens ATCC23877. We show that the strain P. fluorescens BBc6R8 uses different strategies to acquire iron, depending on certain biotic and abiotic factors. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. A new view of the bacterial cytosol environment.

    Directory of Open Access Journals (Sweden)

    Benjamin P Cossins

    2011-06-01

    Full Text Available The cytosol is the major environment in all bacterial cells. The true physical and dynamical nature of the cytosol solution is not fully understood and here a modeling approach is applied. Using recent and detailed data on metabolite concentrations, we have created a molecular mechanical model of the prokaryotic cytosol environment of Escherichia coli, containing proteins, metabolites and monatomic ions. We use 200 ns molecular dynamics simulations to compute diffusion rates, the extent of contact between molecules and dielectric constants. Large metabolites spend ∼80% of their time in contact with other molecules while small metabolites vary with some only spending 20% of time in contact. Large non-covalently interacting metabolite structures mediated by hydrogen-bonds, ionic and π stacking interactions are common and often associate with proteins. Mg(2+ ions were prominent in NIMS and almost absent free in solution. Κ(+ is generally not involved in NIMSs and populates the solvent fairly uniformly, hence its important role as an osmolyte. In simulations containing ubiquitin, to represent a protein component, metabolite diffusion was reduced owing to long lasting protein-metabolite interactions. Hence, it is likely that with larger proteins metabolites would diffuse even more slowly. The dielectric constant of these simulations was found to differ from that of pure water only through a large contribution from ubiquitin as metabolite and monatomic ion effects cancel. These findings suggest regions of influence specific to particular proteins affecting metabolite diffusion and electrostatics. Also some proteins may have a higher propensity for associations with metabolites owing to their larger electrostatic fields. We hope that future studies may be able to accurately predict how binding interactions differ in the cytosol relative to dilute aqueous solution.

  19. Deletion of the signalling molecule synthase ScbA has pleiotropic effects on secondary metabolite biosynthesis, morphological differentiation and primary metabolism in Streptomyces coelicolor A3(2).

    Science.gov (United States)

    D'Alia, Davide; Eggle, Daniela; Nieselt, Kay; Hu, Wei-Shou; Breitling, Rainer; Takano, Eriko

    2011-03-01