WorldWideScience

Sample records for bacterial two-component systems

  1. Stochastic study of information transmission and population stability in a generic bacterial two-component system

    CERN Document Server

    Mapder, Tarunendu; Banik, Suman K

    2016-01-01

    Studies on the role of fluctuations in signal propagation and on gene regulation in monoclonal bacterial population have been extensively pursued based on the machinery of two-component system. The bacterial two-component system shows noise utilisation through its inherent plasticity. The fluctuations propagation takes place using the phosphotransfer module and the feedback mechanism during gene regulation. To delicately observe the noisy kinetics the generic cascade needs stochastic investigation at the mRNA and protein levels. To this end, we propose a theoretical framework to investigate the noisy signal transduction in a generic two-component system. The model shows reliability in information transmission through quantification of several statistical measures. We further extend our analysis to observe the protein distribution in a population of cells. Through numerical simulation, we identify the regime of the kinetic parameter set that generates a stability switch in the steady state distribution of prot...

  2. Two-component system YvqEC-dependent bacterial resistance against vancomycin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Hu, Yimin; Fan, Qingyun; Wang, Xun; He, Jin

    2015-08-01

    YvqEC is one of the two-component signal transduction systems that may respond to cell envelope stress and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvqE and a response regulator YvqC. In this study, we separately constructed a single gene mutant ΔyvqE and a double gene mutant ΔyvqEC in Bacillus thuringiensis BMB171 through a homing endonucleases I-SceI mediated markerless gene deletion method. We found that the deletion of either yvqE or yvqEC weakened the resistance of B. thuringiensis against vancomycin. We also identified nine operons that may be involved in the cellular metabolism regulated by YvqC. This study not only enriches our understanding of bacterial resistance mechanisms against vancomycin, but also helps investigate the functions of YvqEC.

  3. Engineering bacterial two-component system PmrA/PmrB to sense lanthanide ions.

    Science.gov (United States)

    Liang, Haihua; Deng, Xin; Bosscher, Mike; Ji, Quanjiang; Jensen, Mark P; He, Chuan

    2013-02-13

    The Salmonella PmrA/PmrB two-component system uses an iron(III)-binding motif on the cell surface to sense the environmental or host ferric level and regulate PmrA-controlled gene expression. We replaced the iron(III)-binding motif with a lanthanide-binding peptide sequence that is known to selectively recognize trivalent lanthanide ions. The newly engineered two-component system (PmrA/PmrB) can effectively sense lanthanide ion and regulate gene expression in E. coli . This work not only provides the first known lanthanide-based sensing and response in live cells but also demonstrates that the PmrA/PmrB system is a suitable template for future synthetic biology efforts to construct bacteria that can sense and respond to other metal ions in remediation or sequestration.

  4. The two-component signal transduction system YvcPQ regulates the bacterial resistance to bacitracin in Bacillus thuringiensis.

    Science.gov (United States)

    Zhang, Shumeng; Li, Xinfeng; Wang, Xun; Li, Zhou; He, Jin

    2016-10-01

    YvcPQ is one of the two-component signal transduction systems that respond to specific stimuli and enable cells to adjust multiple cellular functions. It consists of a histidine kinase YvcQ and a response regulator YvcP. In this study, through searching the consensus sequence recognized by YvcP, we found four YvcP-binding motifs in the promoter regions of genes yvcR (BMB171_C4100), BMB171_C4385, kapD (BMB171_C4525) and BMB171_C4835 in Bacillus thuringiensis BMB171 which is a representative of Bacillus cereus group, and confirmed that these genes are regulated by YvcP. We compared the sequence of yvcPQ and its downstream genes in genus Bacillus, and found two different kinds of yvc locus, one was the yvcPQ-RS in B. subtilis species and the other was the yvcPQ-R-S1S2 in B. cereus group. Furthermore, we found that YvcP activates the transcription of yvcS1S2 (downstream of yvcR) to promote bacterial resistance to bacitracin and deletion of either yvcPQ operon or yvcS1S2 operon renders the bacterial cells more sensitive to bacitracin. This study enriched our understanding of both the YvcPQ's function and the mechanism of bacterial resistance to bacitracin.

  5. Development and validation of a high-throughput cell-based screen to identify activators of a bacterial two-component signal transduction system.

    Science.gov (United States)

    van Rensburg, Julia J; Fortney, Kate R; Chen, Lan; Krieger, Andrew J; Lima, Bruno P; Wolfe, Alan J; Katz, Barry P; Zhang, Zhong-Yin; Spinola, Stanley M

    2015-07-01

    CpxRA is a two-component signal transduction system (2CSTS) found in many drug-resistant Gram-negative bacteria. In response to periplasmic stress, CpxA autophosphorylates and donates a phosphoryl group to its cognate response regulator, CpxR. Phosphorylated CpxR (CpxR-P) upregulates genes involved in membrane repair and downregulates multiple genes that encode virulence factors, which are trafficked across the cell membrane. Mutants that constitutively activate CpxRA in Salmonella enterica serovar Typhimurium and Haemophilus ducreyi are avirulent in mice and humans, respectively. Thus, the activation of CpxRA has high potential as a novel antimicrobial/antivirulence strategy. Using a series of Escherichia coli strains containing a CpxR-P-responsive lacZ reporter and deletions in genes encoding CpxRA system components, we developed and validated a novel cell-based high-throughput screen (HTS) for CpxRA activators. A screen of 36,000 compounds yielded one hit compound that increased reporter activity in wild-type cells. This is the first report of a compound that activates, rather than inhibits, a 2CSTS. The activity profile of the compound against CpxRA pathway mutants in the presence of glucose suggested that the compound inhibits CpxA phosphatase activity. We confirmed that the compound induced the accumulation of CpxR-P in treated cells. Although the hit compound contained a nitro group, a derivative lacking this group retained activity in serum and had lower cytotoxicity than that of the initial hit. This HTS is amenable for the screening of larger libraries to find compounds that activate CpxRA by other mechanisms, and it could be adapted to find activators of other two-component systems.

  6. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression

    OpenAIRE

    Puthiyaveetil, Sujith; Allen, John F.

    2009-01-01

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles—chloroplasts and mitochondria. Until recently, it was thought that two-component systems i...

  7. A small protein that mediates the activation of a two-component system by another two-component system

    OpenAIRE

    Kox, Linda F.F.; Wösten, Marc M. S. M.; Groisman, Eduardo A.

    2000-01-01

    The PmrA–PmrB two-component system of Salmonella enterica controls resistance to the peptide antibiotic polymyxin B and to several antimicrobial proteins from human neutrophils. Transcription of PmrA-activated genes is induced by high iron, but can also be promoted by growth in low magnesium in a process that requires another two-component system, PhoP–PhoQ. Here, we define the genetic basis for the interaction between the PhoP–PhoQ and PmrA–PmrB systems. We have identified pmrD as a PhoP-act...

  8. Interaction Analysis of a Two-Component System Using Nanodiscs.

    Directory of Open Access Journals (Sweden)

    Patrick Hörnschemeyer

    Full Text Available Two-component systems are the major means by which bacteria couple adaptation to environmental changes. All utilize a phosphorylation cascade from a histidine kinase to a response regulator, and some also employ an accessory protein. The system-wide signaling fidelity of two-component systems is based on preferential binding between the signaling proteins. However, information on the interaction kinetics between membrane embedded histidine kinase and its partner proteins is lacking. Here, we report the first analysis of the interactions between the full-length membrane-bound histidine kinase CpxA, which was reconstituted in nanodiscs, and its cognate response regulator CpxR and accessory protein CpxP. Using surface plasmon resonance spectroscopy in combination with interaction map analysis, the affinity of membrane-embedded CpxA for CpxR was quantified, and found to increase by tenfold in the presence of ATP, suggesting that a considerable portion of phosphorylated CpxR might be stably associated with CpxA in vivo. Using microscale thermophoresis, the affinity between CpxA in nanodiscs and CpxP was determined to be substantially lower than that between CpxA and CpxR. Taken together, the quantitative interaction data extend our understanding of the signal transduction mechanism used by two-component systems.

  9. Comparative analysis of wolbachia genomes reveals streamlining and divergence of minimalist two-component systems.

    Science.gov (United States)

    Christensen, Steen; Serbus, Laura Renee

    2015-03-24

    Two-component regulatory systems are commonly used by bacteria to coordinate intracellular responses with environmental cues. These systems are composed of functional protein pairs consisting of a sensor histidine kinase and cognate response regulator. In contrast to the well-studied Caulobacter crescentus system, which carries dozens of these pairs, the streamlined bacterial endosymbiont Wolbachia pipientis encodes only two pairs: CckA/CtrA and PleC/PleD. Here, we used bioinformatic tools to compare characterized two-component system relays from C. crescentus, the related Anaplasmataceae species Anaplasma phagocytophilum and Ehrlichia chaffeensis, and 12 sequenced Wolbachia strains. We found the core protein pairs and a subset of interacting partners to be highly conserved within Wolbachia and these other Anaplasmataceae. Genes involved in two-component signaling were positioned differently within the various Wolbachia genomes, whereas the local context of each gene was conserved. Unlike Anaplasma and Ehrlichia, Wolbachia two-component genes were more consistently found clustered with metabolic genes. The domain architecture and key functional residues standard for two-component system proteins were well-conserved in Wolbachia, although residues that specify cognate pairing diverged substantially from other Anaplasmataceae. These findings indicate that Wolbachia two-component signaling pairs share considerable functional overlap with other α-proteobacterial systems, whereas their divergence suggests the potential for regulatory differences and cross-talk.

  10. Two-component systems and toxinogenesis regulation in Clostridium botulinum.

    Science.gov (United States)

    Connan, Chloé; Popoff, Michel R

    2015-05-01

    Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.

  11. Efficient two-component relativistic method for large systems

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Hiromi [Department of Chemitsry and Biochemistry, School of Advanced Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555 (Japan); CREST, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520 (Japan)

    2015-12-31

    This paper reviews a series of theoretical studies to develop efficient two-component (2c) relativistic method for large systems by the author’s group. The basic theory is the infinite-order Douglas-Kroll-Hess (IODKH) method for many-electron Dirac-Coulomb Hamiltonian. The local unitary transformation (LUT) scheme can effectively produce the 2c relativistic Hamiltonian, and the divide-and-conquer (DC) method can achieve linear-scaling of Hartree-Fock and electron correlation methods. The frozen core potential (FCP) theoretically connects model potential calculations with the all-electron ones. The accompanying coordinate expansion with a transfer recurrence relation (ACE-TRR) scheme accelerates the computations of electron repulsion integrals with high angular momenta and long contractions.

  12. Two component systems: physiological effect of a third component.

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    Full Text Available Signal transduction systems mediate the response and adaptation of organisms to environmental changes. In prokaryotes, this signal transduction is often done through Two Component Systems (TCS. These TCS are phosphotransfer protein cascades, and in their prototypical form they are composed by a kinase that senses the environmental signals (SK and by a response regulator (RR that regulates the cellular response. This basic motif can be modified by the addition of a third protein that interacts either with the SK or the RR in a way that could change the dynamic response of the TCS module. In this work we aim at understanding the effect of such an additional protein (which we call "third component" on the functional properties of a prototypical TCS. To do so we build mathematical models of TCS with alternative designs for their interaction with that third component. These mathematical models are analyzed in order to identify the differences in dynamic behavior inherent to each design, with respect to functionally relevant properties such as sensitivity to changes in either the parameter values or the molecular concentrations, temporal responsiveness, possibility of multiple steady states, or stochastic fluctuations in the system. The differences are then correlated to the physiological requirements that impinge on the functioning of the TCS. This analysis sheds light on both, the dynamic behavior of synthetically designed TCS, and the conditions under which natural selection might favor each of the designs. We find that a third component that modulates SK activity increases the parameter space where a bistable response of the TCS module to signals is possible, if SK is monofunctional, but decreases it when the SK is bifunctional. The presence of a third component that modulates RR activity decreases the parameter space where a bistable response of the TCS module to signals is possible.

  13. A novel two-component system involved in secretion stress response in Streptomyces lividans.

    Directory of Open Access Journals (Sweden)

    Sonia Gullón

    Full Text Available BACKGROUND: Misfolded proteins accumulating outside the bacterial cytoplasmic membrane can interfere with the secretory machinery, hence the existence of quality factors to eliminate these misfolded proteins is of capital importance in bacteria that are efficient producers of secretory proteins. These bacteria normally use a specific two-component system to respond to the stress produced by the accumulation of the misfolded proteins, by activating the expression of HtrA-like proteases to specifically eliminate the incorrectly folded proteins. METHODOLOGY/PRINCIPAL FINDINGS: Overproduction of alpha-amylase in S. lividans causing secretion stress permitted the identification of a two-component system (SCO4156-SCO4155 that regulates three HtrA-like proteases which appear to be involved in secretion stress response. Mutants in each of the genes forming part of the two-genes operon that encodes the sensor and regulator protein components accumulated misfolded proteins outside the cell, strongly suggesting the involvement of this two-component system in the S. lividans secretion stress response. CONCLUSIONS/SIGNIFICANCE: To our knowledge this is the first time that a specific secretion stress response two-component system is found to control the expression of three HtrA-like protease genes in S. lividans, a bacterium that has been repeatedly used as a host for the synthesis of homologous and heterologous secretory proteins of industrial application.

  14. Dissecting the specificity of protein-protein interaction in bacterial two-component signaling: orphans and crosstalks.

    Directory of Open Access Journals (Sweden)

    Andrea Procaccini

    Full Text Available Predictive understanding of the myriads of signal transduction pathways in a cell is an outstanding challenge of systems biology. Such pathways are primarily mediated by specific but transient protein-protein interactions, which are difficult to study experimentally. In this study, we dissect the specificity of protein-protein interactions governing two-component signaling (TCS systems ubiquitously used in bacteria. Exploiting the large number of sequenced bacterial genomes and an operon structure which packages many pairs of interacting TCS proteins together, we developed a computational approach to extract a molecular interaction code capturing the preferences of a small but critical number of directly interacting residue pairs. This code is found to reflect physical interaction mechanisms, with the strongest signal coming from charged amino acids. It is used to predict the specificity of TCS interaction: Our results compare favorably to most available experimental results, including the prediction of 7 (out of 8 known interaction partners of orphan signaling proteins in Caulobacter crescentus. Surveying among the available bacterial genomes, our results suggest 15∼25% of the TCS proteins could participate in out-of-operon "crosstalks". Additionally, we predict clusters of crosstalking candidates, expanding from the anecdotally known examples in model organisms. The tools and results presented here can be used to guide experimental studies towards a system-level understanding of two-component signaling.

  15. The Fractional Virial Potential Energy in Two-Component Systems

    Directory of Open Access Journals (Sweden)

    Caimmi, R.

    2008-12-01

    Full Text Available Two-component systems are conceived as macrogases, and the related equation of state is expressed using the virial theorem for subsystems, under the restriction of homeoidally striated density profiles. Explicit calculations are performed for a useful reference case and a few cases of astrophysical interest, both with and without truncation radius. Shallower density profiles are found to yield an equation of state, $phi=phi(y,m$, characterized (for assigned values of the fractional mass, $m=M_j/ M_i$ by the occurrence of two extremum points, a minimum and a maximum, as found in an earlier attempt. Steeper density profiles produce a similar equation of state, which implies that a special value of $m$ is related to a critical curve where the above mentioned extremum points reduce to a single horizontal inflexion point, and curves below the critical one show no extremum points. The similarity of the isofractional mass curves to van der Waals' isothermal curves, suggests the possibility of a phase transition in a bell-shaped region of the $({sf O}yphi$ plane, where the fractional truncation radius along a selected direction is $y=R_j/R_i$, and the fractional virial potential energy is $phi=(E_{ji}_mathrm{vir}/(E_{ij}_mathrm{vir}$. Further investigation is devoted to mass distributions described by Hernquist (1990 density profiles, for which an additional relation can be used to represent a sample of $N=16$ elliptical galaxies (EGs on the $({sf O}yphi$ plane. Even if the evolution of elliptical galaxies and their hosting dark matter (DM haloes, in the light of the model, has been characterized by equal fractional mass, $m$, and equal scaled truncation radius, or concentration, $Xi_u=R_u/r_u^dagger$, $u=i,j$, still it cannot be considered as strictly homologous, due to different values of fractional truncation radii, $y$, or fractional scaling radii, $y^dagger=r_j^dagger/r_i^dagger$, deduced from sample objects.

  16. Complement-mediated opsonization of invasive group A Streptococcus pyogenes strain AP53 is regulated by the bacterial two-component cluster of virulence responder/sensor (CovRS) system.

    Science.gov (United States)

    Agrahari, Garima; Liang, Zhong; Mayfield, Jeffrey A; Balsara, Rashna D; Ploplis, Victoria A; Castellino, Francis J

    2013-09-20

    Group A Streptococcus pyogenes (GAS) strain AP53 is a primary isolate from a patient with necrotizing fasciitis. These AP53 cells contain an inactivating mutation in the sensor component of the cluster of virulence (cov) responder (R)/sensor (S) two-component gene regulatory system (covRS), which enhances the virulence of the primary strain, AP53/covR(+)S(-). However, specific mechanisms by which the covRS system regulates the survival of GAS in humans are incomplete. Here, we show a key role for covRS in the regulation of opsonophagocytosis of AP53 by human neutrophils. AP53/covR(+)S(-) cells displayed potent binding of host complement inhibitors of C3 convertase, viz. Factor H (FH) and C4-binding protein (C4BP), which concomitantly led to minimal C3b deposition on AP53 cells, further showing that these plasma protein inhibitors are active on GAS cells. This resulted in weak killing of the bacteria by human neutrophils and a corresponding high death rate of mice after injection of these cells. After targeted allelic alteration of covS(-) to wild-type covS (covS(+)), a dramatic loss of FH and C4BP binding to the AP53/covR(+)S(+) cells was observed. This resulted in elevated C3b deposition on AP53/covR(+)S(+) cells, a high level of opsonophagocytosis by human neutrophils, and a very low death rate of mice infected with AP53/covR(+)S(+). We show that covRS is a critical transcriptional regulator of genes directing AP53 killing by neutrophils and regulates the levels of the receptors for FH and C4BP, which we identify as the products of the fba and enn genes, respectively.

  17. The Campylobacter jejuni CprRS two-component regulatory system regulates aspects of the cell envelope

    Science.gov (United States)

    As a leading cause of foodborne bacterial gastroenteritis, Campylobacter jejuni is a significant human pathogen. C. jejuni lives commensally in the gastrointestinal tract of animals, but tolerates variable environments during transit to a susceptible host. A two-component regulatory system, CprRS, w...

  18. Initial data problems for the two-component Camassa-Holm system

    Directory of Open Access Journals (Sweden)

    Xiaohuan Wang

    2014-06-01

    Full Text Available This article concerns the study of some properties of the two-component Camassa-Holm system. By constructing two sequences of solutions of the two-component Camassa-Holm system, we prove that the solution map of the Cauchy problem of the two-component Camassa-Holm system is not uniformly continuous in $H^s(\\mathbb{R}$, $s>5/2$.

  19. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    Directory of Open Access Journals (Sweden)

    Jing Yu

    2014-01-01

    Full Text Available Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and r-matrix are also given in this paper.

  20. Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System

    OpenAIRE

    Jing Yu; Jingwei Han

    2014-01-01

    Starting from a matrix Lie superalgebra, two-component super AKNS system is constructed. By making use of monononlinearization technique of Lax pairs, we find that the obtained two-component super AKNS system is a finite-dimensional integrable super Hamiltonian system. And its Lax representation and $r$ -matrix are also given in this paper.

  1. The sae locus of Staphylococcus aureus encodes a two-component regulatory system.

    Science.gov (United States)

    Giraudo, A T; Calzolari, A; Cataldi, A A; Bogni, C; Nagel, R

    1999-08-01

    Sae is a regulatory locus that activates the production of several exoproteins in Staphylococcus aureus. A 3.4-kb fragment of a S. aureus genomic library, screened with a probe adjacent to the transposon insertion of a sae::Tn551 mutant, was cloned into a bifunctional vector. This fragment was shown to carry the sae locus by restoration of exoprotein production in sae mutants. The sae locus was mapped to the SmaI-D fragment of the staphylococcal chromosome by pulse-field electrophoresis. Sequence analysis of the cloned fragment revealed the presence of two genes, designated saeR and saeS, encoding a response regulator and a histidine protein kinase, respectively, with high homology to other bacterial two-component regulatory systems.

  2. Phosphate sink containing two-component signaling systems as tunable threshold devices.

    Directory of Open Access Journals (Sweden)

    Munia Amin

    2014-10-01

    Full Text Available Synthetic biology aims to design de novo biological systems and reengineer existing ones. These efforts have mostly focused on transcriptional circuits, with reengineering of signaling circuits hampered by limited understanding of their systems dynamics and experimental challenges. Bacterial two-component signaling systems offer a rich diversity of sensory systems that are built around a core phosphotransfer reaction between histidine kinases and their output response regulator proteins, and thus are a good target for reengineering through synthetic biology. Here, we explore the signal-response relationship arising from a specific motif found in two-component signaling. In this motif, a single histidine kinase (HK phosphotransfers reversibly to two separate output response regulator (RR proteins. We show that, under the experimentally observed parameters from bacteria and yeast, this motif not only allows rapid signal termination, whereby one of the RRs acts as a phosphate sink towards the other RR (i.e. the output RR, but also implements a sigmoidal signal-response relationship. We identify two mathematical conditions on system parameters that are necessary for sigmoidal signal-response relationships and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We find that the level of sigmoidality in this system can be experimentally controlled by the presence of the sink RR, and also through an auxiliary protein that is shown to bind to the HK (yielding Hill coefficients of above 7. These findings show that the one HK-two RR motif allows bacteria and yeast to implement tunable switch-like signal processing and provides an ideal basis for developing threshold devices for synthetic biology applications.

  3. Two-component systems in microbial communities: approaches and resources for generating and analyzing metagenomic data sets.

    Science.gov (United States)

    Podar, Mircea

    2007-01-01

    Two-component signal transduction represents the main mechanism by which bacterial cells interact with their environment. The functional diversity of two-component systems and their relative importance in the different taxonomic groups and ecotypes of bacteria has become evident with the availability of several hundred genomic sequences. The vast majority of bacteria, including many high rank taxonomic units, while being components of complex microbial communities remain uncultured (i.e., have not been isolated or grown in the laboratory). Environmental genomic data from such communities are becoming available, and in addition to its profound impact on microbial ecology it will propel molecular biological disciplines beyond the traditional model organisms. This chapter describes the general approaches used in generating environmental genomic data and how that data can be used to advance the study of two component-systems and signal transduction in general.

  4. Methods of producing epoxides from alkenes using a two-component catalyst system

    Science.gov (United States)

    Kung, Mayfair C.; Kung, Harold H.; Jiang, Jian

    2013-07-09

    Methods for the epoxidation of alkenes are provided. The methods include the steps of exposing the alkene to a two-component catalyst system in an aqueous solution in the presence of carbon monoxide and molecular oxygen under conditions in which the alkene is epoxidized. The two-component catalyst system comprises a first catalyst that generates peroxides or peroxy intermediates during oxidation of CO with molecular oxygen and a second catalyst that catalyzes the epoxidation of the alkene using the peroxides or peroxy intermediates. A catalyst system composed of particles of suspended gold and titanium silicalite is one example of a suitable two-component catalyst system.

  5. Phylogenetic Classification Of Bartonella Species By Comparing The Two-Component System Response Regulator Feup Sequences

    Directory of Open Access Journals (Sweden)

    Mhamad Abou-Hamdan

    2015-08-01

    Full Text Available Abstract The bacterial genus Bartonella is classified in the alpha-2 Proteobacteria on the basis of 16S rDNA sequence comparison. The Bartonella two-component system feuPQ is found in nearly all bacterial species. We investigated the usefulness of the response regulator feuP gene sequence in the classification of 18 well characterized Bartonella species. Phylogenetic relationships were inferred using parsimony neighbour-joining and maximum-likelihood methods. Reliable classifications of most of the studied species were obtained. Bartonella were divided into two supported clades containing two supported clusters each. These results were similar to our previous data obtained with groEL ftsZ and ribC genes sequences. The wide range of feuP DNA sequence similarity 78.6 to 96.5 among Bartonella species makes it a promising candidate for multi-locus sequence typing MLST of clinical isolates. This is the first report proving the usefulness of feuP sequences in bartonellae classification at the species level.

  6. Variational derivation of two-component Camassa-Holm shallow water system

    CERN Document Server

    Ionescu-Kruse, Delia

    2012-01-01

    By a variational approach in the Lagrangian formalism, we derive the nonlinear integrable two-component Camassa-Holm system (1). We show that the two-component Camassa-Holm system (1) with the plus sign arises as an approximation to the Euler equations of hydrodynamics for propagation of irrotational shallow water waves over a flat bed. The Lagrangian used in the variational derivation is not a metric.

  7. The Evolution of Two-Component Systems in Bacteria RevealsDifferent Strategies for Niche Adaptation

    Energy Technology Data Exchange (ETDEWEB)

    Alm, Eric; Huang, Katherine; Arkin, Adam

    2006-09-13

    Two-component systems including histidine protein kinasesrepresent the primary signal transduction paradigm in prokaryoticorganisms. To understand how these systems adapt to allow organisms todetect niche-specific signals, we analyzed the phylogenetic distributionof nearly 5000 histidine protein kinases from 207 sequenced prokaryoticgenomes. We found that many genomes carry a large repertoire of recentlyevolved signaling genes, which may reflect selective pressure to adapt tonew environmental conditions. Both lineage-specific gene family expansionand horizontal gene transfer play major roles in the introduction of newhistidine kinases into genomes; however, there are differences in howthese two evolutionary forces act. Genes imported via horizontal transferare more likely to retain their original functionality as inferred from asimilar complement of signaling domains, while gene family expansionaccompanied by domain shuffling appears to be a major source of novelgenetic diversity. Family expansion is the dominantsource of newhistidine kinase genes in the genomes most enriched in signalingproteins, and detailed analysis reveals that divergence in domainstructure and changes in expression patterns are hallmarks of recentexpansions. Finally, while these two modes of gene acquisition arewidespread across bacterial taxa, there are clear species-specificpreferences for which mode is used.

  8. Two-Component Signal Transduction Systems in the Cyanobacterium Synechocystis sp. PCC 6803

    Institute of Scientific and Technical Information of China (English)

    LIU Xingguo; HUANG Wei; WU Qingyu

    2006-01-01

    Two-component systems are signal transduction systems which enable bacteria to regulate cellular functions in response to changing environmental conditions. The unicellular Synechocystis sp. PCC 6803 has become a model organism for a range of biochemical and molecular biology studies aiming at investigating environmental stress response. The publication of the complete genome sequence of the cyanobacterium Synechocystis sp. PCC 6803 provided a tremendous stimulus for research in this field, and at least 80 open reading frames were identified as members of the two-component signal transduction systems in this single species of cyanobacteria. To date, functional roles have been determined for only a limited number of such proteins. This review summarizes our current knowledge about the two-component signal transduction systems in Synechocystis sp. PCC 6803 and describes recent achievements in elucidating the functional roles of these systems.

  9. Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis.

    Directory of Open Access Journals (Sweden)

    Jeffrey M Skerker

    2005-10-01

    Full Text Available Two-component signal transduction systems, comprised of histidine kinases and their response regulator substrates, are the predominant means by which bacteria sense and respond to extracellular signals. These systems allow cells to adapt to prevailing conditions by modifying cellular physiology, including initiating programs of gene expression, catalyzing reactions, or modifying protein-protein interactions. These signaling pathways have also been demonstrated to play a role in coordinating bacterial cell cycle progression and development. Here we report a system-level investigation of two-component pathways in the model organism Caulobacter crescentus. First, by a comprehensive deletion analysis we show that at least 39 of the 106 two-component genes are required for cell cycle progression, growth, or morphogenesis. These include nine genes essential for growth or viability of the organism. We then use a systematic biochemical approach, called phosphotransfer profiling, to map the connectivity of histidine kinases and response regulators. Combining these genetic and biochemical approaches, we identify a new, highly conserved essential signaling pathway from the histidine kinase CenK to the response regulator CenR, which plays a critical role in controlling cell envelope biogenesis and structure. Depletion of either cenK or cenR leads to an unusual, severe blebbing of cell envelope material, whereas constitutive activation of the pathway compromises cell envelope integrity, resulting in cell lysis and death. We propose that the CenK-CenR pathway may be a suitable target for new antibiotic development, given previous successes in targeting the bacterial cell wall. Finally, the ability of our in vitro phosphotransfer profiling method to identify signaling pathways that operate in vivo takes advantage of an observation that histidine kinases are endowed with a global kinetic preference for their cognate response regulators. We propose that this

  10. Global dissipative solutions for the two-component Camassa-Holm shallow water system

    Directory of Open Access Journals (Sweden)

    Yujuan Wang

    2015-01-01

    Full Text Available This article presents a continuous semigroup of globally defined weak dissipative solutions for the two-component Camassa-Holm system. Such solutions are established by using a new approach based on characteristics a set of new variables overcoming the difficulties inherent in multi-component systems.

  11. The Qualitative Analysis of a Solution of a Series Maintenance System with Two Components

    Institute of Scientific and Technical Information of China (English)

    GUOWei-hua; YANGMing-zeng

    2003-01-01

    In this paper, firstly we study the series maintenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operators theory. Then we prove that 0 is the eigenvalue of the system's host operators, and finally we study the eigenvector of the eigenvalue 0.

  12. A novel two-component system found in Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Morth, J. P.; Gosmann, S.; Nowak, E.;

    2005-01-01

    We report the identification of a novel two-component system in Mycobacterium tuberculosis. We show that the putative histidine kinase with the genomic locus tag Rv3220c is able to self-phosphorylate in the presence of Mg2+/ATP and subsequently transfer the phosphoryl group to a novel response...

  13. Geometric Integrability of Two-Component Camassa-Holm and Hunter-Saxton Systems

    Institute of Scientific and Technical Information of China (English)

    SONG Juu-Feng; QU Chang-Zheng

    2011-01-01

    It is shown that the two-component Camassa-Holm and Hunter-Saxton systems are geometrically integrable, namely they describe pseudo-spherical surfaces. As a consequence, their infinite number o, conservation laws are directly constructed. In addition, a class of nonlocal symmetries depending on the pseudo-potentials are obtained.

  14. Characterization of an archaeal two-component system that regulates methanogenesis in Methanosaeta harundinacea.

    Directory of Open Access Journals (Sweden)

    Jie Li

    Full Text Available Two-component signal transduction systems (TCSs are a major mechanism used by bacteria in response to environmental changes. Although many sequenced archaeal genomes encode TCSs, they remain poorly understood. Previously, we reported that a methanogenic archaeon, Methanosaeta harundinacea, encodes FilI, which synthesizes carboxyl-acyl homoserine lactones, to regulate transitions of cellular morphology and carbon metabolic fluxes. Here, we report that filI, the cotranscribed filR2, and the adjacent filR1 constitute an archaeal TCS. FilI possesses a cytoplasmic kinase domain (histidine kinase A and histidine kinase-like ATPase and its cognate response regulator. FilR1 carries a receiver (REC domain coupled with an ArsR-related domain with potential DNA-binding ability, while FilR2 carries only a REC domain. In a phosphorelay assay, FilI was autophosphorylated and specifically transferred the phosphoryl group to FilR1 and FilR2, confirming that the three formed a cognate TCS. Through chromatin immunoprecipitation-quantitative polymerase chain reaction (ChIP-qPCR using an anti-FilR1 antibody, FilR1 was shown to form in vivo associations with its own promoter and the promoter of the filI-filR2 operon, demonstrating a regulatory pattern common among TCSs. ChIP-qPCR also detected FilR1 associations with key genes involved in acetoclastic methanogenesis, acs4 and acs1. Electrophoretic mobility shift assays confirmed the in vitro tight binding of FilR1 to its own promoter and those of filI-filR2, acs4, and mtrABC. This also proves the DNA-binding ability of the ArsR-related domain, which is found primarily in Archaea. The archaeal promoters of acs4, filI, acs1, and mtrABC also initiated FilR1-modulated expression in an Escherichia coli lux reporter system, suggesting that FilR1 can up-regulate both archaeal and bacterial transcription. In conclusion, this work identifies an archaeal FilI/FilRs TCS that regulates the methanogenesis of M. harundinacea.

  15. The CpxRA two-component system is essential for Citrobacter rodentium virulence.

    Science.gov (United States)

    Thomassin, Jenny-Lee; Giannakopoulou, Natalia; Zhu, Lei; Gross, Jeremy; Salmon, Kristiana; Leclerc, Jean-Mathieu; Daigle, France; Le Moual, Hervé; Gruenheid, Samantha

    2015-05-01

    Citrobacter rodentium is a murine intestinal pathogen used as a model for the foodborne human pathogens enterohemorrhagic Escherichia coli and enteropathogenic E. coli. During infection, these pathogens use two-component signal transduction systems to detect and adapt to changing environmental conditions. In E. coli, the CpxRA two-component signal transduction system responds to envelope stress by modulating the expression of a myriad of genes. Quantitative real-time PCR showed that cpxRA was expressed in the colon of C57BL/6J mice infected with C. rodentium. To determine whether CpxRA plays a role during C. rodentium infection, a cpxRA deletion strain was generated and found to have a colonization defect during infection. This defect was independent of an altered growth rate or a defective type III secretion system, and single-copy chromosomal complementation of cpxRA restored virulence. The C. rodentium strains were then tested in C3H/HeJ mice, a lethal intestinal infection model. Mice infected with the ΔcpxRA strain survived infection, whereas mice infected with the wild-type or complemented strains succumbed to infection. Furthermore, we found that the cpxRA expression level was higher during early infection than at a later time point. Taken together, these data demonstrate that the CpxRA two-component signal transduction system is essential for the in vivo virulence of C. rodentium. In addition, these data suggest that fine-tuned cpxRA expression is important for infection. This is the first study that identifies a C. rodentium two-component transduction system required for pathogenesis. This study further indicates that CpxRA is an interesting target for therapeutics against enteric pathogens.

  16. Bioinformatics analysis of two-component regulatory systems in Staphylococcus epidermidis

    Institute of Scientific and Technical Information of China (English)

    QIN Zhiqiang; ZHONG Yang; ZHANG Jian; HE Youyu; WU Yang; JIANG Juan; CHEN Jiemin; LUO Xiaomin; QU Di

    2004-01-01

    Sixteen pairs of two-component regulatory systems are identified in the genome of Staphylococcus epidermidis ATCC12228 strain, which is newly sequenced by our laboratory for Medical Molecular Virology and Chinese National Human Genome Center at Shanghai, by using bioinformatics analysis. Comparative analysis of the twocomponent regulatory systems in S. epidermidis and that of S.aureus and Bacillus subtilis shows that these systems may regulate some important biological functions, e.g. growth,biofilm formation, and expression of virulence factors in S.epidermidis. Two conserved domains, i.e. HATPase_c and REC domains, are found in all 16 pairs of two-component proteins.Homologous modelling analysis indicates that there are 4similar HATPase_c domain structures of histidine kinases and 13 similar REC domain structures of response regulators,and there is one AMP-PNP binding pocket in the HATPase_c domain and three active aspartate residues in the REC domain. Preliminary experiment reveals that the bioinformatics analysis of the conserved domain structures in the two-component regulatory systems in S. epidermidis may provide useful information for discovery of potential drug target.

  17. Periodic and Solitary Wave Solutions of Two Component Zakharov-Yajima-Oikawa System, Using Madelung's Approach

    Directory of Open Access Journals (Sweden)

    Anca Visinescu

    2011-04-01

    Full Text Available Using the multiple scales method, the interaction between two bright and one dark solitons is studied. Provided that a long wave-short wave resonance condition is satisfied, the two-component Zakharov-Yajima-Oikawa (ZYO completely integrable system is obtained. By using a Madelung fluid description, the one-soliton solutions of the corresponding ZYO system are determined. Furthermore, a discussion on the interaction between one bright and two dark solitons is presented. In particular, this problem is reduced to solve a one-component ZYO system in the resonance conditions.

  18. Analysis of the activity and regulon of the two-component regulatory system encoded by Cjj1484 and Cjj1483 of Campylobacter jejuni

    Science.gov (United States)

    Campylobacter jejuni is a leading cause of bacterial diarrheal disease throughout the world and a frequent commensal in the intestinal tract of poultry and many other animals. For maintaining optimal growth and ability to colonize various hosts, C. jejuni depends upon two-component regulatory system...

  19. Dissecting the regulon of the two-component system CvsSR: Identifying new virulence genes in Pseudomonas syringae pv. tomato DC3000

    Science.gov (United States)

    Recognition of environmental changes and regulation of genes that allow for adaption to those changes is essential for survival of bacteria. Two-component systems (TCSs) allow bacteria to sense and adapt to their environment. We previously identified the TCS CvsSR in the bacterial plant pathogen Pse...

  20. On the inspection policy of a two-component parallel system with failure interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zequeira, Romulo I. [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: romulo.zequeira@utt.fr; Berenguer, Christophe [ISTIT, Equipe Modelisation et Surete des Systemes, Universite de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes Cedex (France)]. E-mail: christophe.berenguer@utt.fr

    2005-04-01

    In this paper we study a two-component standby system which can successfully operate upon a demand if at least one component is not failed. We assume that failures can be detected only by periodic inspections. We consider that the failure of one component can modify the (conditional) failure probability of the component still alive with probability p and do not interact with probability 1-p. For that failure interaction scheme we obtain the system reliability function for the case of staggered inspections. We compare staggered and non-staggered inspections through numerical examples considering constant hazard rates.

  1. Design principles in two component systems and his-asp phosphorelays

    OpenAIRE

    Salvadó López, Baldiri

    2016-01-01

    L’objectiu d’aquesta tesi és trobar principis generals que permetin relacionar l’estructura i les propietats funcionals dels circuits moleculars de transducció de senyals two-component systems (TCS) i his-asp phosphorelays (PR). La tesi s’inicia revisant els mètodes usats per a l’estudi de principis de disseny en sistemes moleculars i alguns dels resultats obtinguts fins ara, i discutint la importància de l’estudi dels principis de disseny. A continuació, explorem els proteomes seqüenc...

  2. The Two-Component Virial Theorem and the Physical Properties of Stellar Systems.

    Science.gov (United States)

    Dantas; Ribeiro; Capelato; de Carvalho RR

    2000-01-01

    Motivated by present indirect evidence that galaxies are surrounded by dark matter halos, we investigate whether their physical properties can be described by a formulation of the virial theorem that explicitly takes into account the gravitational potential term representing the interaction of the dark halo with the baryonic or luminous component. Our analysis shows that the application of such a "two-component virial theorem" not only accounts for the scaling relations displayed by, in particular, elliptical galaxies, but also for the observed properties of all virialized stellar systems, ranging from globular clusters to galaxy clusters.

  3. Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections.

    Directory of Open Access Journals (Sweden)

    Hoonsik Cho

    2015-07-01

    Full Text Available Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS, a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality.

  4. Calprotectin Increases the Activity of the SaeRS Two Component System and Murine Mortality during Staphylococcus aureus Infections.

    Science.gov (United States)

    Cho, Hoonsik; Jeong, Do-Won; Liu, Qian; Yeo, Won-Sik; Vogl, Thomas; Skaar, Eric P; Chazin, Walter J; Bae, Taeok

    2015-07-01

    Calprotectin, the most abundant cytoplasmic protein in neutrophils, suppresses the growth of Staphylococcus aureus by sequestering the nutrient metal ions Zn and Mn. Here we show that calprotectin can also enhance the activity of the SaeRS two component system (TCS), a signaling system essential for production of over 20 virulence factors in S. aureus. The activity of the SaeRS TCS is repressed by certain divalent ions found in blood or neutrophil granules; however, the Zn bound-form of calprotectin relieves this repression. During staphylococcal encounter with murine neutrophils or staphylococcal infection of the murine peritoneal cavity, calprotectin increases the activity of the SaeRS TCS as well as the production of proinflammatory cytokines such as IL-1β and TNF-α, resulting in higher murine mortality. These results suggest that, under certain conditions, calprotectin can be exploited by S. aureus to increase bacterial virulence and host mortality.

  5. Two-Component Signal Transduction System SaeRS Positively Regulates Staphylococcus epidermidis Glucose Metabolism

    Directory of Open Access Journals (Sweden)

    Qiang Lou

    2014-01-01

    Full Text Available Staphylococcus epidermidis, which is a causative pathogen of nosocomial infection, expresses its virulent traits such as biofilm and autolysis regulated by two-component signal transduction system SaeRS. In this study, we performed a proteomic analysis of differences in expression between the S. epidermidis 1457 wild-type and saeRS mutant to identify candidates regulated by saeRS using two-dimensional gel electrophoresis (2-DE combined with matrix-assisted laser desorption/lonization mass spectrometry (MALDI-TOF-MS. Of 55 identified proteins that significantly differed in expression between the two strains, 15 were upregulated and 40 were downregulated. The downregulated proteins included enzymes related to glycolysis and TCA cycle, suggesting that glucose is not properly utilized in S. epidermidis when saeRS was deleted. The study will be helpful for treatment of S. epidermidis infection from the viewpoint of metabolic modulation dependent on two-component signal transduction system SaeRS.

  6. Characterization of the yehUT two-component regulatory system of Salmonella enterica Serovar Typhi and Typhimurium.

    Science.gov (United States)

    Wong, Vanessa K; Pickard, Derek J; Barquist, Lars; Sivaraman, Karthikeyan; Page, Andrew J; Hart, Peter J; Arends, Mark J; Holt, Kathryn E; Kane, Leanne; Mottram, Lynda F; Ellison, Louise; Bautista, Ruben; McGee, Chris J; Kay, Sally J; Wileman, Thomas M; Kenney, Linda J; MacLennan, Calman A; Kingsley, Robert A; Dougan, Gordon

    2013-01-01

    Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.

  7. Global solutions for the two-component Camassa-Holm system

    CERN Document Server

    Grunert, K; Raynaud, X

    2011-01-01

    We prove existence of a global conservative solution of the Cauchy problem for the two-component Camassa-Holm (2CH) system on the line, allowing for nonvanishing and distinct asymptotics at plus and minus infinity. The solution is proven to be smooth as long as the density is bounded away from zero. Furthermore, we show that by taking the limit of vanishing density in the 2CH system, we obtain the global conservative solution of the (scalar) Camassa-Holm equation, which provides a novel way to define and obtain these solutions. Finally, it is shown that while solutions of the 2CH system have infinite speed of propagation, singularities travel with finite speed.

  8. Addition Formulae of Discrete KP, q-KP and Two-Component BKP Systems

    Science.gov (United States)

    Gao, Xu; Li, Chuan-Zhong; He, Jing-Song

    2016-04-01

    In this paper, we construct the addition formulae for several integrable hierarchies, including the discrete KP, the q-deformed KP, the two-component BKP and the D type Drinfeld-Sokolov hierarchies. With the help of the Hirota bilinear equations and τ functions of different kinds of KP hierarchies, we prove that these addition formulae are equivalent to these hierarchies. These studies show that the addition formula in the research of the integrable systems has good universality. Supported by the Zhejiang Provincial Natural Science Foundation under Grant No. LY15A010004, the National Natural Science Foundation of China under Grant Nos. 11201251, 11571192 and the Natural Science Foundation of Ningbo under Grant No. 2015A610157. Jingsong He is supported by the National Natural Science Foundation of China under Grant No. 11271210, K.C. Wong Magna Fund in Ningbo University

  9. WalRK two component system of Bacillus anthracis responds to temperature and antibiotic stress.

    Science.gov (United States)

    Dhiman, Alisha; Gopalani, Monisha; Bhatnagar, Rakesh

    2015-04-17

    WalRK Two Component System (TCS) of Bacillus anthracis forms a functional TCS. This report elaborates upon the WalRK genomic architecture, promoter structure, promoter activity and expression under various stress conditions in B. anthracis. 5' RACE located the WalRK functional promoter within 317 bp region upstream of WalR. Reporter gene assays demonstrated maximal promoter activity during early growth phases indicating utility in exponential stages of growth. qRT-PCR showed upregulation of WalRK transcripts during temperature and antibiotic stress. However, WalR overexpression did not affect the tested antibiotic MIC values in B. anthracis. Collectively, these results confirm that WalRK responds to cell envelope stress in B. anthracis.

  10. The SaeRS Two-Component System of Staphylococcus aureus

    Science.gov (United States)

    Liu, Qian; Yeo, Won-Sik; Bae, Taeok

    2016-01-01

    In the Gram-positive pathogenic bacterium Staphylococcus aureus, the SaeRS two-component system (TCS) plays a major role in controlling the production of over 20 virulence factors including hemolysins, leukocidins, superantigens, surface proteins, and proteases. The SaeRS TCS is composed of the sensor histidine kinase SaeS, response regulator SaeR, and two auxiliary proteins SaeP and SaeQ. Since its discovery in 1994, the sae locus has been studied extensively, and its contributions to staphylococcal virulence and pathogenesis have been well documented and understood; however, the molecular mechanism by which the SaeRS TCS receives and processes cognate signals is not. In this article, therefore, we review the literature focusing on the signaling mechanism and its interaction with other global regulators. PMID:27706107

  11. A Two-Component Regulatory System Impacts Extracellular Membrane-Derived Vesicle Production in Group A Streptococcus

    Directory of Open Access Journals (Sweden)

    Ulrike Resch

    2016-11-01

    Full Text Available Export of macromolecules via extracellular membrane-derived vesicles (MVs plays an important role in the biology of Gram-negative bacteria. Gram-positive bacteria have also recently been reported to produce MVs; however, the composition and mechanisms governing vesiculogenesis in Gram-positive bacteria remain undefined. Here, we describe MV production in the Gram-positive human pathogen group A streptococcus (GAS, the etiological agent of necrotizing fasciitis and streptococcal toxic shock syndrome. M1 serotype GAS isolates in culture exhibit MV structures both on the cell wall surface and in the near vicinity of bacterial cells. A comprehensive analysis of MV proteins identified both virulence-associated protein substrates of the general secretory pathway in addition to “anchorless surface proteins.” Characteristic differences in the contents, distributions, and fatty acid compositions of specific lipids between MVs and GAS cell membrane were also observed. Furthermore, deep RNA sequencing of vesicular RNAs revealed that GAS MVs contained differentially abundant RNA species relative to bacterial cellular RNA. MV production by GAS strains varied in a manner dependent on an intact two-component system, CovRS, with MV production negatively regulated by the system. Modulation of MV production through CovRS was found to be independent of both GAS cysteine protease SpeB and capsule biosynthesis. Our data provide an explanation for GAS secretion of macromolecules, including RNAs, lipids, and proteins, and illustrate a regulatory mechanism coordinating this secretory response.

  12. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline;

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity...

  13. Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall.

    Science.gov (United States)

    Connan, Chloé; Brüggemann, Holger; Brueggemann, Holger; Mazuet, Christelle; Raffestin, Stéphanie; Cayet, Nadège; Popoff, Michel R

    2012-01-01

    Clostridium botulinum synthesizes a potent neurotoxin (BoNT) which associates with non-toxic proteins (ANTPs) to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs) and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes) have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.

  14. Two-component systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall.

    Directory of Open Access Journals (Sweden)

    Chloé Connan

    Full Text Available Clostridium botulinum synthesizes a potent neurotoxin (BoNT which associates with non-toxic proteins (ANTPs to form complexes of various sizes. The bont and antp genes are clustered in two operons. In C. botulinum type A, bont/A and antp genes are expressed during the end of the exponential growth phase and the beginning of the stationary phase under the control of an alternative sigma factor encoded by botR/A, which is located between the two operons. In the genome of C. botulinum type A strain Hall, 30 gene pairs predicted to encode two-component systems (TCSs and 9 orphan regulatory genes have been identified. Therefore, 34 Hall isogenic antisense strains on predicted regulatory genes (29 TCSs and 5 orphan regulatory genes have been obtained by a mRNA antisense procedure. Two TCS isogenic antisense strains showed more rapid growth kinetics and reduced BoNT/A production than the control strain, as well as increased bacterial lysis and impairment of the bacterial cell wall structure. Three other TCS isogenic antisense strains induced a low level of BoNT/A and ANTP production. Interestingly, reduced expression of bont/A and antp genes was shown to be independent of botR/A. These results indicate that BoNT/A synthesis is under the control of a complex network of regulation including directly at least three TCSs.

  15. P2CS: a two-component system resource for prokaryotic signal transduction research

    Directory of Open Access Journals (Sweden)

    Méjean Vincent

    2009-07-01

    Full Text Available Abstract Background With the escalation of high throughput prokaryotic genome sequencing, there is an ever-increasing need for databases that characterise, catalogue and present data relating to particular gene sets and genomes/metagenomes. Two-component system (TCS signal transduction pathways are the dominant mechanisms by which micro-organisms sense and respond to external as well as internal environmental changes. These systems respond to a wide range of stimuli by triggering diverse physiological adjustments, including alterations in gene expression, enzymatic reactions, or protein-protein interactions. Description We present P2CS (Prokaryotic 2-Component Systems, an integrated and comprehensive database of TCS signal transduction proteins, which contains a compilation of the TCS genes within 755 completely sequenced prokaryotic genomes and 39 metagenomes. P2CS provides detailed annotation of each TCS gene including family classification, sequence features, functional domains, as well as genomic context visualization. To bypass the generic problem of gene underestimation during genome annotation, we also constituted and searched an ORFeome, which improves the recovery of TCS proteins compared to searches on the equivalent proteomes. Conclusion P2CS has been developed for computational analysis of the modular TCSs of prokaryotic genomes and metagenomes. It provides a complete overview of information on TCSs, including predicted candidate proteins and probable proteins, which need further curation/validation. The database can be browsed and queried with a user-friendly web interface at http://www.p2cs.org/.

  16. Photoisomerization-induced morphology and transparency transition in an azobenzene based two-component organogel system.

    Science.gov (United States)

    Cao, Xinhua; Liu, Xue; Chen, Liming; Mao, Yueyuan; Lan, Haichuang; Yi, Tao

    2015-11-15

    A two-component gel containing long chain alkylated gallic acid (GA) and photochromic phenazopyridine (PAP) was prepared. The gel was thoroughly characterized by UV-visible and IR spectra, SEM and POM images, XRD diffraction and dynamic oscillatory measurements. The structure and transparency of the two-component gel can be reversibly changed by alternative UV light irradiation and warming in the palm of the hand. This kind of soft material has potential application in upscale surface functional materials.

  17. A hybrid two-component system protein from Azospirillum brasilense Sp7 was involved in chemotaxis.

    Science.gov (United States)

    Cui, Yanhua; Tu, Ran; Wu, Lixian; Hong, Yuanyuan; Chen, Sanfeng

    2011-09-20

    We here report the sequence and functional analysis of org35 of Azospirillum brasilense Sp7, which was originally identified to be able to interact with NifA in yeast-two-hybrid system. The org35 encodes a hybrid two-component system protein, including N-terminal PAS domains, a histidine kinase (HPK) domain and a response regulator (RR) domain in C-terminal. To determine the function of the Org35, a deletion-insertion mutant in PAS domain [named Sp7353] and a complemental strain Sp7353C were constructed. The mutant had reduced chemotaxis ability compared to that of wild-type, and the complemental strain was similar to the wild-type strain. These data suggested that the A. brasilense org35 played a key role in chemotaxis. Variants containing different domains of the org35 were expressed, and the functions of these domains were studied in vitro. Phosphorylation assays in vitro demonstrated that the HPK domain of Org35 possessed the autokinase activity and that the phosphorylated HPK was able to transfer phosphate groups to the RR domain. The result indicated Org35 was a phosphorylation-communicating protein.

  18. A two component system is involved in acid adaptation of Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Cui, Yanhua; Liu, Wei; Qu, Xiaojun; Chen, Zhangting; Zhang, Xu; Liu, Tong; Zhang, Lanwei

    2012-05-20

    The Gram-positive bacterium Lactobacillus delbrueckii subsp. bulgaricus is of vital importance to the food industry, especially to the dairy industry. Two component systems (TCSs) are one of the most important mechanisms for environmental sensing and signal transduction in the majority of Gram-positive and Gram-negative bacteria. A typical TCS consists of a histidine protein kinase (HPK) and a cytoplasmic response regulator (RR). To investigate the functions of TCSs during acid adaptation in L. bulgaricus, we used quantitative PCR to reveal how TCSs expression changes during acid adaptation. Two TCSs (JN675228/JN675229 and JN675230/JN675231) and two HPKs (JN675236 and JN675240) were induced during acid adaptation. These TCSs were speculated to be related with the acid adaptation ability of L. bulgaricus. The mutants of JN675228/JN675229 were constructed in order to investigate the functions of JN675228/JN675229. The mutants showed reduced acid adaptation compared to that of wild type, and the complemented strains were similar to the wild-type strain. These observations suggested that JN675228 and JN675229 were involved in acid adaptation in L. bulgaricus. The interaction between JN675228 and JN675229 was identified by means of yeast two-hybrid system. The results indicated there is interaction between JN675228 and JN675229.

  19. Transcriptome analysis of the Brucella abortus BvrR/BvrS two-component regulatory system.

    Directory of Open Access Journals (Sweden)

    Cristina Viadas

    Full Text Available BACKGROUND: The two-component BvrR/BvrS system is essential for Brucella abortus virulence. It was shown previously that its dysfunction alters the expression of some major outer membrane proteins and the pattern of lipid A acylation. To determine the genes regulated by BvrR/BvrS, we performed a whole-genome microarray analysis using B. abortus RNA obtained from wild type and bvrR mutant cells grown in the same conditions. METHODOLOGY/PRINCIPAL FINDINGS: A total of 127 differentially expressed genes were found: 83 were over expressed and 44 were less expressed in the bvrR mutant. Two operons, the phosphotransferase system and the maltose transport system, were down-regulated. Several genes involved in cell envelope or outer membrane biogenesis were differentially expressed: genes for outer membrane proteins (omp25a, omp25d, lipoproteins, LPS and fatty acid biosynthesis, stress response proteins, chaperones, flagellar genes, and twelve genes encoding ABC transport systems. Ten genes related with carbon metabolism (pckA and fumB among others were up-regulated in the bvrR mutant, and denitrification genes (nirK, norC and nosZ were also regulated. Notably, seven transcriptional regulators were affected, including VjbR, ExoR and OmpR that were less expressed in the bvrR mutant. Finally, the expression of eleven genes which have been previously related with Brucella virulence was also altered. CONCLUSIONS/SIGNIFICANCE: All these data corroborate the impact of BvrR/BvrS on cell envelope modulation, confirm that this system controls the carbon and nitrogen metabolism, and suggest a cross-talk among some regulators to adjust the Brucella physiology to the shift expected to occur during the transit from the extracellular to the intracellular niche.

  20. Comparative Analysis of Two-component Signal Transduction System in Two Streptomycete Genomes

    Institute of Scientific and Technical Information of China (English)

    Wu WEI; Yixue LI; Weihua WANG; Zhiwei CAO; Hong YU; Xiaojing WANG; Jing ZHAO; Hao TAN; Hao XU; Weihong JIANG

    2007-01-01

    Species of the genus Streptomyces are major bacteria responsible for producing most natural antibiotics. Streptomyces coelicolor A3(2) and Streptomyces avermitilis were sequenced in 2002 and 2003,respectively. Two-component signal transduction systems (TCSs), consisting of a histidine sensor kinase (SK) and a cognate response regulator (RR), form the most common mechanism of transmembrane signal transduction in prokaryotes. TCSs in S. coelicolor A3(2) have been analyzed in detail. Here, we identify and classify the SK and RR of S. avermitilis and compare the TCSs with those of S. coelicolor A3(2) by computational approaches. Phylogenetic analysis of the cognate SK-RR pairs of the two species indicated that the cognate SK-RR pairs fall into four classes according to the distribution of their orthologs in other organisms. In addition to the cognate SK-RR pairs, some potential partners of non-cognate SK-RR were found, including those of unpaired SK and orphan RR and the cross-talk between different components in either strain. Our study provides new clues for further exploration of the molecular regulation mechanism of streptomycetes with industrial importance.

  1. Functional characterization of WalRK: A two-component signal transduction system from Bacillus anthracis

    Directory of Open Access Journals (Sweden)

    Alisha Dhiman

    2014-01-01

    Full Text Available Two-component signal transduction systems (TCS, consisting of a sensor histidine protein kinase and its cognate response regulator, are an important mode of environmental sensing in bacteria. Additionally, they have been found to regulate virulence determinants in several pathogens. Bacillus anthracis, the causative agent of anthrax and a bioterrorism agent, harbours 41 pairs of TCS. However, their role in its pathogenicity has remained largely unexplored. Here, we show that WalRK of B. anthracis forms a functional TCS which exhibits some species-specific functions. Biochemical studies showed that domain variants of WalK, the histidine kinase, exhibit classical properties of autophosphorylation and phosphotransfer to its cognate response regulator WalR. Interestingly, these domain variants also show phosphatase activity towards phosphorylated WalR, thereby making WalK a bifunctional histidine kinase/phosphatase. An in silico regulon determination approach, using a consensus binding sequence from Bacillus subtilis, provided a list of 30 genes that could form a putative WalR regulon in B. anthracis. Further, electrophoretic mobility shift assay was used to show direct binding of purified WalR to the upstream regions of three putative regulon candidates, an S-layer protein EA1, a cell division ABC transporter FtsE and a sporulation histidine kinase KinB3. Our work lends insight into the species-specific functions and mode of action of B. anthracis WalRK.

  2. The KdpD/KdpE two-component system: integrating K⁺ homeostasis and virulence.

    Science.gov (United States)

    Freeman, Zoë N; Dorus, Steve; Waterfield, Nicholas R

    2013-03-01

    The two-component system (TCS) KdpD/KdpE, extensively studied for its regulatory role in potassium (K(+)) transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K(+) in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K(+) pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i) KdpD/KdpE production is correlated with enhanced virulence and survival, (ii) KdpE regulates a range of virulence loci through direct promoter binding, and (iii) KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk) provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K(+) regulation.

  3. The KdpD/KdpE two-component system: integrating K⁺ homeostasis and virulence.

    Directory of Open Access Journals (Sweden)

    Zoë N Freeman

    2013-03-01

    Full Text Available The two-component system (TCS KdpD/KdpE, extensively studied for its regulatory role in potassium (K(+ transport, has more recently been identified as an adaptive regulator involved in the virulence and intracellular survival of pathogenic bacteria, including Staphylococcus aureus, entero-haemorrhagic Escherichia coli, Salmonella typhimurium, Yersinia pestis, Francisella species, Photorhabdus asymbiotica, and mycobacteria. Key homeostasis requirements monitored by KdpD/KdpE and other TCSs such as PhoP/PhoQ are critical to survival in the stressful conditions encountered by pathogens during host interactions. It follows these TCSs may therefore acquire adaptive roles in response to selective pressures associated with adopting a pathogenic lifestyle. Given the central role of K(+ in virulence, we propose that KdpD/KdpE, as a regulator of a high-affinity K(+ pump, has evolved virulence-related regulatory functions. In support of this hypothesis, we review the role of KdpD/KdpE in bacterial infection and summarize evidence that (i KdpD/KdpE production is correlated with enhanced virulence and survival, (ii KdpE regulates a range of virulence loci through direct promoter binding, and (iii KdpD/KdpE regulation responds to virulence-related conditions including phagocytosis, exposure to microbicides, quorum sensing signals, and host hormones. Furthermore, antimicrobial stress, osmotic stress, and oxidative stress are associated with KdpD/KdpE activity, and the system's accessory components (which allow TCS fine-tuning or crosstalk provide links to stress response pathways. KdpD/KdpE therefore appears to be an important adaptive TCS employed during host infection, promoting bacterial virulence and survival through mechanisms both related to and distinct from its conserved role in K(+ regulation.

  4. Promoter Escape with Bacterial Two-component σ Factor Suggests Retention of σ Region Two in the Elongation Complex.

    Science.gov (United States)

    Sengupta, Shreya; Prajapati, Ranjit Kumar; Mukhopadhyay, Jayanta

    2015-11-20

    The transition from the formation of the RNA polymerase (RNAP)-promoter open complex step to the productive elongation complex step involves "promoter escape" of RNAP. From the structure of RNAP, a promoter escape model has been proposed that suggests that the interactions between σR4 and RNAP and σR4 and DNA are destabilized upon transition to elongation. This accounts for the reduced affinity of σ to RNAP and stochastic release of σ. However, as the loss of interaction of σR4 with RNAP results in the release of intact σ, assessing this interaction remains challenging to be experimentally verified. Here we study the promoter escape model using a two-component σ factor YvrI and YvrHa from Bacillus subtilis that independently contributes to the functions of σR4 and σR2 in a RNAP-promoter complex. Our results show that YvrI, which mimics σR4, is released gradually as transcription elongation proceeds, whereas YvrHa, which mimics σR2 is retained throughout the elongation complexes. Thus our result validates the proposed model for promoter escape and also suggests that promoter escape involves little or no change in the interaction of σR2 with RNAP.

  5. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  6. Analysis of the virulence-associated RevSR two-component signal transduction system of Clostridium perfringens.

    Science.gov (United States)

    Cheung, Jackie K; Wisniewski, Jessica A; Adams, Vicki M; Quinsey, Noelene S; Rood, Julian I

    2016-09-01

    Clostridium perfringens is a Gram-positive, anaerobic, spore-forming bacterium that causes human gas gangrene (clostridial myonecrosis) and food poisoning. Early studies showed that virulence was regulated by the VirSR two-component signal transduction system. However, our identification of the RevR orphan response regulator indicated that more than one system was involved in controlling virulence. To further characterize this virulence-associated regulator, gel mobility shift experiments, coupled with DNase I footprinting, were used to identify the RevR DNA binding sequence. Bioinformatics analysis suggested that an orphan sensor histidine kinase, CPE1757 (renamed RevS), was the cognate sensor of RevR. Interaction between RevS and RevR was demonstrated by use of a bacterial two-hybrid system and validated by protein-protein interaction studies using biolayer interferometry. To assess the involvement of RevS in virulence regulation, the revS gene was inactivated by Targetron insertion. When isogenic wild-type, revS and complemented revS strains were tested in a mouse myonecrosis model, the revS mutant was found to be attenuated in virulence, which was similar to the attenuation observed previously with the revR mutant. However, transcriptional analysis of selected RevR-regulated genes in the revS mutant revealed a different pattern of expression to a revR mutant, suggesting that the RevSR system is more complex than originally thought. Taken together, the results have led to the identification and characterization of the two essential parts of a new regulatory network that is involved in the regulation of virulence in C. perfringens.

  7. Connecting two-component regulatory systems by a protein that protects a response regulator from dephosphorylation by its cognate sensor

    OpenAIRE

    Kato, Akinori; Groisman, Eduardo A.

    2004-01-01

    A fundamental question in signal transduction is how an organism integrates multiple signals into a cellular response. Here we report the mechanism by which the Salmonella PmrA/PmrB two-component system responds to the signal controlling the PhoP/PhoQ two-component system. We establish that the PhoP-activated PmrD protein binds to the phosphorylated form of the response regulator PmrA, preventing both its intrinsic dephosphorylation and that promoted by its cognate sensor kinase PmrB. This re...

  8. A Two-Component Regulatory System Integrates Redox State and Population Density Sensing in Pseudomonas putida▿ †

    OpenAIRE

    Fernández-Piñar, Regina; Ramos, Juan Luis; Rodríguez-Herva, José Juan; Espinosa-Urgel, Manuel

    2008-01-01

    A two-component system formed by a sensor histidine kinase and a response regulator has been identified as an element participating in cell density signal transduction in Pseudomonas putida KT2440. It is a homolog of the Pseudomonas aeruginosa RoxS/RoxR system, which in turn belongs to the RegA/RegB family, described in photosynthetic bacteria as a key regulatory element. In KT2440, the two components are encoded by PP_0887 (roxS) and PP_0888 (roxR), which are transcribed in a single unit. Ch...

  9. The Staphylococcus aureus ArlRS two-component system is a novel regulator of agglutination and pathogenesis.

    Science.gov (United States)

    Walker, Jennifer N; Crosby, Heidi A; Spaulding, Adam R; Salgado-Pabón, Wilmara; Malone, Cheryl L; Rosenthal, Carolyn B; Schlievert, Patrick M; Boyd, Jeffrey M; Horswill, Alexander R

    2013-01-01

    Staphylococcus aureus is a prominent bacterial pathogen that is known to agglutinate in the presence of human plasma to form stable clumps. There is increasing evidence that agglutination aids S. aureus pathogenesis, but the mechanisms of this process remain to be fully elucidated. To better define this process, we developed both tube based and flow cytometry methods to monitor clumping in the presence of extracellular matrix proteins. We discovered that the ArlRS two-component system regulates the agglutination mechanism during exposure to human plasma or fibrinogen. Using divergent S. aureus strains, we demonstrated that arlRS mutants are unable to agglutinate, and this phenotype can be complemented. We found that the ebh gene, encoding the Giant Staphylococcal Surface Protein (GSSP), was up-regulated in an arlRS mutant. By introducing an ebh complete deletion into an arlRS mutant, agglutination was restored. To assess whether GSSP is the primary effector, a constitutive promoter was inserted upstream of the ebh gene on the chromosome in a wildtype strain, which prevented clump formation and demonstrated that GSSP has a negative impact on the agglutination mechanism. Due to the parallels of agglutination with infective endocarditis development, we assessed the phenotype of an arlRS mutant in a rabbit combined model of sepsis and endocarditis. In this model the arlRS mutant displayed a large defect in vegetation formation and pathogenesis, and this phenotype was partially restored by removing GSSP. Altogether, we have discovered that the ArlRS system controls a novel mechanism through which S. aureus regulates agglutination and pathogenesis.

  10. Two-component system cross-regulation integrates Bacillus anthracis response to heme and cell envelope stress.

    Directory of Open Access Journals (Sweden)

    Laura A Mike

    2014-03-01

    Full Text Available Two-component signaling systems (TCSs are one of the mechanisms that bacteria employ to sense and adapt to changes in the environment. A prototypical TCS functions as a phosphorelay from a membrane-bound sensor histidine kinase (HK to a cytoplasmic response regulator (RR that controls target gene expression. Despite significant homology in the signaling domains of HKs and RRs, TCSs are thought to typically function as linear systems with little to no cross-talk between non-cognate HK-RR pairs. Here we have identified several cell envelope acting compounds that stimulate a previously uncharacterized Bacillus anthracis TCS. Furthermore, this TCS cross-signals with the heme sensing TCS HssRS; therefore, we have named it HssRS interfacing TCS (HitRS. HssRS reciprocates cross-talk to HitRS, suggesting a link between heme toxicity and cell envelope stress. The signaling between HssRS and HitRS occurs in the parental B. anthracis strain; therefore, we classify HssRS-HitRS interactions as cross-regulation. Cross-talk between HssRS and HitRS occurs at both HK-RR and post-RR signaling junctions. Finally, HitRS also regulates a previously unstudied ABC transporter implicating this transporter in the response to cell envelope stress. This chemical biology approach to probing TCS signaling provides a new model for understanding how bacterial signaling networks are integrated to enable adaptation to complex environments such as those encountered during colonization of the vertebrate host.

  11. The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Energy Technology Data Exchange (ETDEWEB)

    Kohlmann, Martin, E-mail: kohlmann@ifam.uni-hannover.de [Institute for Applied Mathematics, University of Hannover, D-30167 Hannover (Germany)

    2011-06-03

    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its {mu}-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff(S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2{mu}HS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).

  12. The curvature of semidirect product groups associated with two-component Hunter-Saxton systems

    Science.gov (United States)

    Kohlmann, Martin

    2011-06-01

    In this paper, we study two-component versions of the periodic Hunter-Saxton equation and its μ-variant. Considering both equations as a geodesic flow on the semidirect product of the circle diffeomorphism group Diff( S) with a space of scalar functions on S we show that both equations are locally well posed. The main result of this paper is that the sectional curvature associated with the 2HS is constant and positive and that 2µHS allows for a large subspace of positive sectional curvature. The issues of this paper are related to some of the results for 2CH and 2DP presented in Escher et al (2011 J. Geom. Phys. 61 436-52).

  13. Cloning of a two-component signal transduction system of Xanthomonas campestris pv. phaseoli var. fuscans strain BXPF65

    DEFF Research Database (Denmark)

    Chan, JWYF; Maynard, Scott; Goodwin, PH

    1998-01-01

    A putative two-component signal transduction system was amplified and cloned from the plant pathogenic bacterium Xanthomonas campestris pv. phaseoli var. fuscans isolate BXPF65. The 620 bp amplified fragment was sequenced and analyzed with the BLAST Enhanced Alignment Utility (BEAUTY). BEAUTY ana...

  14. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis

    NARCIS (Netherlands)

    Been, M.W.H.J. de; Francke, C.; Moezelaar, R.; Abee, T.; Siezen, R.J.

    2006-01-01

    Members of the Bacillus cereus group are ubiquitously present in the environment and can adapt to a wide range of environmental fluctuations. In bacteria, these adaptive responses are generally mediated by two-component signal transduction systems (TCSs), which consist of a histidine kinase (HK) and

  15. The multi-step phosphorelay mechanism of unorthodox two-component systems in E. coli realizes ultrasensitivity to stimuli while maintaining robustness to noises.

    Science.gov (United States)

    Kim, Jeong-Rae; Cho, Kwang-Hyun

    2006-12-01

    E. coli has two-component systems composed of histidine kinase proteins and response regulator proteins. For a given extracellular stimulus, a histidine kinase senses the stimulus, autophosphorylates and then passes the phosphates to the cognate response regulators. The histidine kinase in an orthodox two-component system has only one histidine domain where the autophosphorylation occurs, but a histidine kinase in some unusual two-component systems (unorthodox two-component systems) has two histidine domains and one aspartate domain. So, the unorthodox two-component systems have more complex phosphorelay mechanisms than orthodox two-component systems. In general, the two-component systems are required to promptly respond to external stimuli for survival of E. coli. In this respect, the complex multi-step phosphorelay mechanism seems to be disadvantageous, but there are several unorthodox two-component systems in E. coli. In this paper, we investigate the reason why such unorthodox two-component systems are present in E. coli. For this purpose, we have developed simplified mathematical models of both orthodox and unorthodox two-component systems and analyzed their dynamical characteristics through extensive computer simulations. We have finally revealed that the unorthodox two-component systems realize ultrasensitive responses to external stimuli and also more robust responses to noises than the orthodox two-component systems.

  16. Vortices with scalar condensates in two-component Ginzburg-Landau systems

    CERN Document Server

    Forgacs, Peter

    2016-01-01

    In a class of two-component Ginzburg-Landau models (TCGL) with a U(1)$\\times$U(1) symmetric potential, vortices with a condensate at their core may have significantly lower energies than the Abrikosov-Nielsen-Olesen (ANO) ones. On the example of liquid metallic hydrogen (LMH) above the critical temperature for protons we show that the ANO vortices become unstable against core-condensation, while condensate-core (CC) vortices are stable. For LMH the ratio of the masses of the two types of condensates, $M=m_2/m_1$ is large, and then as a consequence the energy per flux quantum of the vortices, $E_n/n$ becomes a non-monotonous function of the number of flux quanta, $n$. This leads to yet another manifestation of neither type 1 nor type 2, (type 1.5) superconductivity: superconducting and normal domains coexist while various "giant" vortices form. We note that LMH provides a particularly clean example of type 1.5 state as the interband coupling between electronic and protonic Cooper-pairs is forbidden.

  17. Salmonella enterica serovar Typhimurium BaeSR two-component system positively regulates sodA in response to ciprofloxacin.

    Science.gov (United States)

    Guerrero, P; Collao, B; Álvarez, R; Salinas, H; Morales, E H; Calderón, I L; Saavedra, C P; Gil, F

    2013-10-01

    In response to antibiotics, bacteria activate regulatory systems that control the expression of genes that participate in detoxifying these compounds, like multidrug efflux systems. We previously demonstrated that the BaeSR two-component system from Salmonella enterica serovar Typhimurium (S. Typhimurium) participates in the detection of ciprofloxacin, a bactericidal antibiotic, and in the positive regulation of mdtA, an efflux pump implicated in antibiotic resistance. In the present work, we provide further evidence for a role of the S. Typhimurium BaeSR two-component system in response to ciprofloxacin treatment and show that it regulates sodA expression. We demonstrate that, in the absence of BaeSR, the transcript levels of sodA and the activity of its gene product are lower. Using electrophoretic mobility shift assays and transcriptional fusions, we demonstrate that BaeR regulates sodA by a direct interaction with the promoter region.

  18. Searching for Potential Drug Targets in Two-component and Phosphorelay Signal-transduction Systems using Three-dimensional Cluster Analysis

    Institute of Scientific and Technical Information of China (English)

    Xiao-Hui CAI; Qing ZHANG; Shuo-Yong SHI; Da-Fu DING

    2005-01-01

    Two-component and phosphorelay signal transduction systems are central components in the virulence and antimicrobial resistance responses of a number of bacterial and fungal pathogens; in some cases, these systems are essential for bacterial growth and viability. Herein, we analyze in detail the conserved surface residue clusters in the phosphotransferase domain of histidine kinases and the regulatory domain of response regulators by using complex structure-based three-dimensional cluster analysis. We also investigatethe protein-protein interactions that these residue clusters participate in. The Spo0B-SpoOF complex structure was used as the reference structure, and the multiple aligned sequences of phosphotransferases and response regulators were paired correspondingly. The results show that a contiguous conserved residue cluster is formed around the active site, which crosses the interface of histidine kinases and response regulators. The conserved residue clusters of phosphotransferase and the regulatory domains are directly involved in the functional implementation of two-component signal transduction systems and are good targets for the development of novel antimicrobial agents.

  19. Two-Component Systems of Mycobacterium tuberculosis—Structure-Based Approaches

    DEFF Research Database (Denmark)

    Tucker, Paul; Nowak, Elzbieta; Morth, Jens Preben

    2007-01-01

    Mycobacterium tuberculosis contains few two‐component systems compared to many other bacteria, possibly because it has more serine/threonine signaling pathways. Even so, these two‐component systems appear to play an important role in early intracellular survival of the pathogen as well...

  20. The Escherichia coli BarA-UvrY two-component system is a virulence determinant in the urinary tract

    Directory of Open Access Journals (Sweden)

    Georgellis Dimitris

    2006-03-01

    Full Text Available Abstract Background The Salmonella enterica BarA-SirA, the Erwinia carotovora ExpS-ExpA, the Vibrio cholerae BarA-VarA and the Pseudomonas spp GacS-GacA all belong to the same orthologous family of two-component systems as the Escherichia coli BarA-UvrY. In the first four species it has been demonstrated that disruption of this two-component system leads to a clear reduction in virulence of the bacteria. Our aim was to determine if the Escherichia coli BarA-UvrY two-component system is connected with virulence using a monkey cystitis model. Results Cystitis was generated in Macaque fascularis monkeys by infecting the bladder with a 1:1 mixture of the uropathogenic Escherichia coli isolate DS17 and a derivative where the uvrY gene had been disrupted with a kanamycin resistance gene. Urine was collected through bladder punctuation at subsequent time intervals and the relative amount of uvrY mutant was determined. This showed that inactivation of the UvrY response regulator leads to a reduced fitness. In similar competitions in culture flasks with Luria Broth (LB the uvrY mutant rather had a higher fitness than the wild type. When the competitions were done in flasks with human urine the uvrY mutant initially had a lower fitness. This was followed by a fluctuation in the level of mutant in the long-term culture, with a pattern that was specific for the individual urines that were tested. Addition of LB to the different urine competition cultures however clearly led to a consistently higher fitness of the uvrY mutant. Conclusion This paper demonstrates that the BarA-UvrY two-component system is a determinant for virulence in a monkey cystitis model. The observed competition profiles strengthen our previous hypothesis that disruption of the BarA-UvrY two-component system impairs the ability of the bacteria to switch between different carbon sources. The urine in the bladder contains several different carbon sources and its composition changes over

  1. Reciprocal regulation as a source of ultrasensitivity in two-component systems with a bifunctional sensor kinase.

    Directory of Open Access Journals (Sweden)

    Ronny Straube

    2014-05-01

    Full Text Available Two-component signal transduction systems, where the phosphorylation state of a regulator protein is modulated by a sensor kinase, are common in bacteria and other microbes. In many of these systems, the sensor kinase is bifunctional catalyzing both, the phosphorylation and the dephosphorylation of the regulator protein in response to input signals. Previous studies have shown that systems with a bifunctional enzyme can adjust the phosphorylation level of the regulator protein independently of the total protein concentrations--a property known as concentration robustness. Here, I argue that two-component systems with a bifunctional enzyme may also exhibit ultrasensitivity if the input signal reciprocally affects multiple activities of the sensor kinase. To this end, I consider the case where an allosteric effector inhibits autophosphorylation and, concomitantly, activates the enzyme's phosphatase activity, as observed experimentally in the PhoQ/PhoP and NRII/NRI systems. A theoretical analysis reveals two operating regimes under steady state conditions depending on the effector affinity: If the affinity is low the system produces a graded response with respect to input signals and exhibits stimulus-dependent concentration robustness--consistent with previous experiments. In contrast, a high-affinity effector may generate ultrasensitivity by a similar mechanism as phosphorylation-dephosphorylation cycles with distinct converter enzymes. The occurrence of ultrasensitivity requires saturation of the sensor kinase's phosphatase activity, but is restricted to low effector concentrations, which suggests that this mode of operation might be employed for the detection and amplification of low abundant input signals. Interestingly, the same mechanism also applies to covalent modification cycles with a bifunctional converter enzyme, which suggests that reciprocal regulation, as a mechanism to generate ultrasensitivity, is not restricted to two-component

  2. The PprA-PprB two-component system activates CupE, the first non-archetypal Pseudomonas aeruginosa chaperone-usher pathway system assembling fimbriae.

    Science.gov (United States)

    Giraud, Caroline; Bernard, Christophe S; Calderon, Virginie; Yang, Liang; Filloux, Alain; Molin, Søren; Fichant, Gwennaele; Bordi, Christophe; de Bentzmann, Sophie

    2011-03-01

    The opportunistic pathogen Pseudomonas aeruginosa has redundant molecular systems that contribute to its pathogenicity. Those assembling fimbrial structures promote complex organized community lifestyle. We characterized a new 5.8 kb genetic locus, cupE, that includes the conserved usher- and chaperone-encoding genes. This locus, widely conserved in different bacterial species, contains four additional genes encoding non-archetypal fimbrial subunits. We first evidenced that the cupE gene cluster was specifically expressed in biofilm conditions and was responsible for fibre assembly containing at least CupE1 protein, at the bacterial cell surface. These fimbriae not only played a significant role in the early stages (microcolony and macrocolony formation) but also in shaping 3D mushrooms during P. aeruginosa biofilm development. Using wide-genome transposon mutagenesis, we identified the PprAB two-component system (TCS) as a regulator of cupE expression, and further demonstrated the involvement of the PprAB TCS in direct CupE fimbrial assembly activation. Thus, this TCS represents a new regulatory element controlling the transition between planktonic and community lifestyles in P. aeruginosa.

  3. Fermionization of two-component few-fermion systems in a one-dimensional harmonic trap

    DEFF Research Database (Denmark)

    J. Lindgren, E.; Rotureau, J.; Forssén, C.;

    2014-01-01

    The nature of strongly interacting Fermi gases and magnetism is one of the most important and studied topics in condensed-matter physics. Still, there are many open questions. A central issue is under what circumstances strong short-range repulsive interactions are enough to drive magnetic...... correlations. Recent progress in the field of cold atomic gases allows to address this question in very clean systems where both particle numbers, interactions and dimensionality can be tuned. Here we study fermionic few-body systems in a one dimensional harmonic trap using a new rapidly converging effective......-interaction technique, plus a novel analytical approach. This allows us to calculate the properties of a single spin-down atom interacting with a number of spin-up particles, a case of much recent experimental interest. Our findings indicate that, in the strongly interacting limit, spin-up and spin-down particles want...

  4. Lignin Structure and Aggregation Behavior in a Two-Component Ionic Liquid Solvent System

    Directory of Open Access Journals (Sweden)

    Susanne Bylin

    2014-08-01

    Full Text Available Ionic liquids are of potential interest in the processing of lignocellulosic biomass. In this study, the ionic liquid co-solvent system of 1-methylimidazole (MIM and 1-ethyl-3-methyl-imidazolium acetate (EMIMAc was used to solvate LignoBoost lignin fractionated from black liquor obtained from a kraft paper mill. Lignin ethanol-precipitated (LEP and ethanol-soluble (LES fractions were characterized via gel permeation chromatography (GPC and 13C- and 31P-nuclear magnetic resonance spectroscopy (NMR to determine structural characteristics and their relationship to polymer solubility in the system. Polymer integrity and solubility were optimal at ~20% lignin loading (w/w. Results showed that LEPs were generally of higher apparent molecular weight (Mw and enriched with condensed/aliphatic ether linkages and aliphatic hydroxyls. The LESs had a lower apparent Mw and were enriched with carboxylic and phenolic groups. This newly gained knowledge on lignin fractionation and aggregation in the present solvent system provides future opportunities for tuning fractionation/extraction to suit a specific biomass-derived product, e.g., carbon fibers.

  5. Serotype- and strain- dependent contribution of the sensor kinase CovS of the CovRS two-component system to Streptococcus pyogenes pathogenesis

    Directory of Open Access Journals (Sweden)

    Podbielski Andreas

    2010-02-01

    Full Text Available Abstract Background The Streptococcus pyogenes (group A streptococci, GAS two-component signal transduction system CovRS has been described to be important for pathogenesis of this exclusively human bacterial species. If this system acts uniquely in all serotypes is currently unclear. Presence of serotype- or strain-dependent regulatory circuits and polarity is an emerging scheme in Streptococcus pyogenes pathogenesis. Thus, the contribution of the sensor kinase (CovS of the global regulatory two-component signal transduction system CovRS on pathogenesis of several M serotypes was investigated. Results CovS mutation uniformly repressed capsule expression and hampered keratinocyte adherence in all tested serotypes. However, a serotype- and even strain-dependent contribution on survival in whole human blood and biofilm formation was noted, respectively. Conclusions These data provide new information on the action of the CovS sensor kinase and revealed that its activity on capsule expression and keratinocyte adherence is uniform across serotypes, whereas the influence on biofilm formation and blood survival is serotype or even strain dependent. This adds the CovRS system to a growing list of serotype-specific acting regulatory loci in S. pyogenes.

  6. SELF-SIMILAR SOLUTIONS AND BLOW-UP PHENOMENA FOR A TWO-COMPONENT SHALLOW WATER SYSTEM

    Institute of Scientific and Technical Information of China (English)

    Shouming ZHOU; Chunlai MU; Liangchen WANG

    2013-01-01

    In this article,we consider a two-component nonlinear shallow water system,which includes the famous 2-component Camassa-Holm and Degasperis-Procesi equations as special cases.The local well-posedess for this equations is established.Some sufficient conditions for blow-up of the solutions in finite time are given.Moreover,by separation method,the self-similar solutions for the nonlinear shallow water equations are obtained,and which local or global behavior can be determined by the corresponding Emden equation.

  7. Regulatory Role of the MisR/S Two-Component System in Hemoglobin Utilization in Neisseria meningitidis▿ †

    OpenAIRE

    2009-01-01

    Outer membrane iron receptors are some of the major surface entities that are critical for meningococcal pathogenesis. The gene encoding the meningococcal hemoglobin receptor, HmbR, is both independently transcribed and transcriptionally linked to the upstream gene hemO, which encodes a heme oxygenase. The MisR/S two-component system was previously determined to regulate hmbR transcription, and its hemO and hmbR regulatory mechanisms were characterized further here. The expression of hemO and...

  8. Stochastic kinetic model of two component system signalling reveals all-or-none, graded and mixed mode stochastic switching responses.

    Science.gov (United States)

    Kierzek, Andrzej M; Zhou, Lu; Wanner, Barry L

    2010-03-01

    Two-component systems (TCSs) are prevalent signal transduction systems in bacteria that control innumerable adaptive responses to environmental cues and host-pathogen interactions. We constructed a detailed stochastic kinetic model of two component signalling based on published data. Our model has been validated with flow cytometry data and used to examine reporter gene expression in response to extracellular signal strength. The model shows that, depending on the actual kinetic parameters, TCSs exhibit all-or-none, graded or mixed mode responses. In accordance with other studies, positively autoregulated TCSs exhibit all-or-none responses. Unexpectedly, our model revealed that TCSs lacking a positive feedback loop exhibit not only graded but also mixed mode responses, in which variation of the signal strength alters the level of gene expression in induced cells while the regulated gene continues to be expressed at the basal level in a substantial fraction of cells. The graded response of the TCS changes to mixed mode response by an increase of the translation initiation rate of the histidine kinase. Thus, a TCS is an evolvable design pattern capable of implementing deterministic regulation and stochastic switches associated with both graded and threshold responses. This has implications for understanding the emergence of population diversity in pathogenic bacteria and the design of genetic circuits in synthetic biology applications. The model is available in systems biology markup language (SBML) and systems biology graphical notation (SBGN) formats and can be used as a component of large-scale biochemical reaction network models.

  9. Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli.

    Science.gov (United States)

    Eguchi, Yoko; Oshima, Taku; Mori, Hirotada; Aono, Rikizo; Yamamoto, Kaneyoshi; Ishihama, Akira; Utsumi, Ryutaro

    2003-10-01

    A constitutively active mutant of histidine kinase sensor EvgS was found to confer multi-drug resistance (MDR) to an acrA-deficient Escherichia coli, indicating the relationship between the two-component system EvgAS and the expression of the MDR system. The observed MDR also depended on an outer-membrane channel, TolC. Microarray and S1 mapping assays indicated that, in the presence of this constitutive mutant EvgS, the level of transcription increased for some MDR genes, including the drug efflux genes emrKY, yhiUV, acrAB, mdfA and tolC. Transcription in vitro of emrK increased by the addition of phosphorylated EvgA. Transcription activation of tolC by the activated EvgS was, however, dependent on both EvgAS and PhoPQ (Mg(2+)-responsive two-component system), in agreement with the presence of the binding site (PhoP box) for the regulator PhoP in the tolC promoter region. Transcription in vitro of yhiUV also appears to require an as-yet-unidentified additional transcriptional factor besides EvgA. Taken together we propose that the expression of the MDR system is under a complex regulatory network, including the phosphorylated EvgA serving as the master regulator.

  10. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    Science.gov (United States)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline; Jensen, Peter Ruhdal; Mijakovic, Ivan

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward “on/off” response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system. PMID:21304896

  11. Bacillus subtilis two-component system sensory kinase DegS is regulated by serine phosphorylation in its input domain.

    Directory of Open Access Journals (Sweden)

    Carsten Jers

    Full Text Available Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity. The phosphorylation state of the response regulator DegU also does not confer a straightforward "on/off" response; it is fine-tuned and at different levels triggers different sub-regulons. Here we describe serine phosphorylation of the DegS sensing domain, which stimulates its kinase activity. We demonstrate that DegS phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp and non-phosphorylatable (Ser76Ala mutants of DegS. In a number of physiological assays focused on different processes regulated by DegU, DegS S76D phosphomimetic mutant behaved like a strain with intermediate levels of DegU phosphorylation, whereas DegS S76A behaved like a strain with lower levels of DegU phophorylation. These findings suggest a link between DegS phosphorylation at serine 76 and the level of DegU phosphorylation, establishing this post-translational modification as an additional trigger for this two-component system.

  12. Novel two-component regulatory systems play a role in biofilm formation of Lactobacillus reuteri rodent isolate 100-23.

    Science.gov (United States)

    Su, Marcia Shu-Wei; Gänzle, Michael G

    2014-04-01

    This study characterized the two-component regulatory systems encoded by bfrKRT and cemAKR, and assessed their influence on biofilm formation by Lactobacillus reuteri 100-23. A method for deletion of multiple genes was employed to disrupt the genetic loci of two-component systems. The operons bfrKRT and cemAKR showed complementary organization. Genes bfrKRT encode a histidine kinase, a response regulator and an ATP-binding cassette-type transporter with a bacteriocin-processing peptidase domain, respectively. Genes cemAKR code for a signal peptide, a histidine kinase and a response regulator, respectively. Deletion of single or multiple genes in the operons bfrKRT and cemAKR did not affect cell morphology, growth or the sensitivity to various stressors. However, gene disruption affected biofilm formation; this effect was dependent on the carbon source. Deletion of bfrK or cemA increased sucrose-dependent biofilm formation in vitro. Glucose-dependent biofilm formation was particularly increased by deletion of cemK. The expression of cemK and cemR was altered by deletion of bfrK, indicating cross-talk between these two regulatory systems. These results may contribute to our understanding of the genetic factors related to the biofilm formation and competitiveness of L. reuteri in intestinal ecosystems.

  13. Identification and characterization of the two-component NtrY/NtrX regulatory system in Azospirillum brasilense

    Directory of Open Access Journals (Sweden)

    M.L. Ishida

    2002-06-01

    Full Text Available Two Azospirillum brasilense open reading frames (ORFs exhibited homology with the two-component NtrY/NtrX regulatory system from Azorhizobium caulinodans. These A. brasilense ORFs, located downstream to the nifR3ntrBC operon, were isolated, sequenced and characterized. The present study suggests that ORF1 and ORF2 correspond to the A. brasilense ntrY and ntrX genes, respectively. The amino acid sequences of A. brasilense NtrY and NtrX proteins showed high similarity to sensor/kinase and regulatory proteins, respectively. Analysis of lacZ transcriptional fusions by the ß-galactosidase assay in Escherichia coli ntrC mutants showed that the NtrY/NtrX proteins failed to activate transcription of the nifA promoter of A. brasilense. The ntrYX operon complemented a nifR3ntrBC deletion mutant of A. brasilense for nitrate-dependent growth, suggesting a possible cross-talk between the NtrY/X and NtrB/C sensor/regulator pairs. Our data support the existence of another two-component regulatory system in A. brasilense, the NtrY/NtrX system, probably involved in the regulation of nitrate assimilation.

  14. Analysis of the BarA/UvrY two-component system in Shewanella oneidensis MR-1.

    Directory of Open Access Journals (Sweden)

    Lucas Binnenkade

    Full Text Available The BarA/UvrY two-component system is well conserved in species of the γ-proteobacteria and regulates numerous processes predominantly by controlling the expression of a subset of noncoding small RNAs. In this study, we identified and characterized the BarA/UvrY two-component system in the gammaproteobacterium Shewanella oneidensis MR-1. Functional interaction of sensor kinase BarA and the cognate response regulator UvrY was indicated by in vitro phosphotransfer studies. The expression of two predicted small regulatory RNAs (sRNAs, CsrB1 and CsrB2, was dependent on UvrY. Transcriptomic analysis by microarrays revealed that UvrY is a global regulator and directly or indirectly affects transcript levels of more than 200 genes in S. oneidensis. Among these are genes encoding key enzymes of central carbon metabolism such as ackA, aceAB, and pflAB. As predicted of a signal transduction pathway that controls aspects of central metabolism, mutants lacking UvrY reach a significantly higher OD than the wild type during aerobic growth on N-acetylglucosamine (NAG while under anaerobic conditions the mutant grew more slowly. A shorter lag phase occurred with lactate as carbon source. In contrast, significant growth phenotypes were absent in complex medium. Based on these studies we hypothesize that, in S. oneidensis MR-1, the global BarA/UvrY/Csr regulatory pathway is involved in central carbon metabolism processes.

  15. Two-Component Regulatory Systems – implication in the quorum sensing mechanisms and bacteriocin production in lactic acid bacteria

    Directory of Open Access Journals (Sweden)

    Lia–Mara Ditu

    2014-08-01

    Full Text Available For lactic acid bacteria, the mechanisms of quorum sensing and response are mediated by peptides or pheromones that interfere with the synthesis of antimicrobial peptides (AMP called bacteriocins, when these molecules reach a certain critical level of concentration. Generally, the synthesis and activity of pheromones is adjusted by means of a two-component regulatory system. The observation that some microorganisms, in particular lactic acid bacteria, produce bacteriocins according to the cell density, has led to the discovery of the involvement of QS mechanisms in the synthesis of these peptides. Bacteriocins synthesis is inducible, the process requiring the extracellular accumulation of peptides that functions as chemical messengers activators of bacteriocins synthesis. This minireview presents the molecular architecture and functions of two-component regulatory systems and ABC transporters implicated in the synthesis and secretion of nisin, one of the most studied bacteriocin. The elucidation of the intimate mechanisms of bacteriocins synthesis is equally of biotechnological and medical importance, opening interesting perspectives for the development of improved technologies for the production of bacteriocins with good yields, and also, for increasing the beneficial anti-infective roles of probiotic bacteria when administered in vivo.

  16. Structural features of the two-component system LisR/LisK suggests multiple responses for the adaptation and survival of Listeria monocytogenes

    Directory of Open Access Journals (Sweden)

    Nelson Enrique Arenas Suarez

    2013-08-01

    Full Text Available Here, we characterized the structure of the two-component regulatory system, LisR/LisK, in Listeria monocytogenes. To predict the structure of both proteins and the relationship between them, we employed several bioinformatic tools and databases. Based on our results, LisK protein is embedded in the cell membrane and its modular composition (HAMP, histidine kinase and ATPase domains is associated with its autophosphorylation (His-266. A stimulus-response likely determines the sequential signal propagation from the bacterial cell surface to its cytoplasmic components. According to our results, LisR is a cytoplasmic protein with a receptor domain (homologous to CheY that comprises a phosphoacceptor residue (Asp-52 and a DNA-binding domain, which may allow the transmission of a specific transcriptional response. LisR/LisK has been experimentally characterized both biochemically andfunctionally in other Bacilli pathophysiology; our structure-function approach may facilitate the design of suitable inhibitors.

  17. Characterization of a two-component regulatory system from Acinetobacter baumannii that controls biofilm formation and cellular morphology.

    Science.gov (United States)

    Tomaras, Andrew P; Flagler, Michael J; Dorsey, Caleb W; Gaddy, Jennifer A; Actis, Luis A

    2008-11-01

    Acinetobacter baumannii forms biofilms on abiotic surfaces, a phenotype that may explain its ability to survive in nosocomial environments and to cause device-related infections in compromised patients. The biofilm proficiency of the 19606 type strain depends on the production of pili, cell-surface appendages assembled via the CsuAB-A-B-C-D-E chaperone-usher secretion system. The screening of a bank of isogenic insertion derivatives led to the identification of a biofilm-deficient derivative in which a transposon insertion disrupted a gene predicted to encode the response regulator of a two-component regulatory system. This gene, which was named bfmR, is required for the expression of the Csu pili chaperone-usher assembly system. This coding region is followed by an ORF encoding a putative sensor kinase that was named bfmS, which plays a less relevant role in biofilm formation when cells are cultured in rich medium. Further examination showed that the bfmR mutant was capable of attaching to abiotic surfaces, although to levels significantly lower than those of the parental strain, when it was cultured in a chemically defined minimal medium. Additionally, the morphology of planktonic cells of this mutant, when grown in minimal medium, was drastically affected, while adherent mutant cells were indistinguishable in shape and size from the parental strain. Together, these results indicate that BfmR is part of a two-component regulatory system that plays an important role in the morphology of A. baumannii 19606 cells and their ability to form biofilms on abiotic surfaces.

  18. The Role of the Two-Component System BaeSR in Disposing Chemicals through Regulating Transporter Systems in Acinetobacter baumannii.

    Directory of Open Access Journals (Sweden)

    Ming-Feng Lin

    Full Text Available Bacterial two-component regulatory systems (TCSs facilitate changes in gene expression in response to environmental stimuli. TCS BaeR regulons influence tigecycline susceptibility in Acinetobacter baumannii through positively regulating the pump genes adeA and adeB. In this study, we demonstrate that an additional two transport systems, AdeIJK and MacAB-TolC, are also regulated by BaeSR. In the wild type and clinical tigecycline-resistant A. baumannii strains, gene expression of AdeIJK and MacAB-TolC increased after tigecycline induction, implicating their importance to tigecycline resistance in addition to AdeABC. Phenotypic microarray results showed that A. baumannii is vulnerable to certain chemicals, especially tannic acid, after deleting baeR, which was confirmed using the spot assay. The wild-type strain of A. baumannii also exhibited 1.6-fold and 4.4-fold increase in gene expression of adeJ and macB in the medium with 100 μg/mL tannic acid, but the increase was fully inhibited by baeR deletion. An electrophoretic motility shift assay based on an interaction between His-BaeR and the adeA, adeI and macA promoter regions did not demonstrate direct binding. In conclusion, A. baumannii can use the TCS BaeSR in disposing chemicals, such as tannic acid and tigecycline, through regulating the efflux pumps.

  19. Activation of the Campylobacter jejuni FlgSR two-component system is linked to the flagellar export apparatus.

    Science.gov (United States)

    Joslin, Stephanie N; Hendrixson, David R

    2009-04-01

    Activation of sigma(54)-dependent gene expression essential for formation of flagella in Campylobacter jejuni requires the components of the inner membrane-localized flagellar export apparatus and the FlgSR two-component regulatory system. In this study, we characterized the FlgS sensor kinase and how activation of the protein is linked to the flagellar export apparatus. We found that FlgS is localized to the C. jejuni cytoplasm and that His141 of FlgS is essential for autophosphorylation, phosphorelay to the cognate FlgR response regulator, motility, and expression of sigma(54)-dependent flagellar genes. Mutants with incomplete flagellar export apparatuses produced wild-type levels of FlgS and FlgR, but they were defective for signaling through the FlgSR system. By using genetic approaches, we found that FlgSR activity is linked to and downstream of the flagellar export apparatus in a regulatory cascade that terminates in expression of sigma(54)-dependent flagellar genes. By analyzing defined flhB and fliI mutants of C. jejuni that form flagellar export apparatuses that are secretion incompetent, we determined that formation of the apparatus is required to contribute to the signal sensed by FlgS to terminate in activation of expression of sigma(54)-dependent flagellar genes. Considering that the flagellar export apparatuses of Escherichia coli and Salmonella species influence sigma(28)-dependent flagellar gene expression, our work expands the signaling activity of the apparatuses to include sigma(54)-dependent pathways of C. jejuni and possibly other motile bacteria. This study indicates that these apparatuses have broader functions beyond flagellar protein secretion, including activation of essential two-component regulatory systems required for expression of sigma(54)-dependent flagellar genes.

  20. Structure of the response regulator ChrA in the haem-sensing two-component system of Corynebacterium diphtheriae.

    Science.gov (United States)

    Doi, Akihiro; Nakamura, Hiro; Shiro, Yoshitsugu; Sugimoto, Hiroshi

    2015-08-01

    ChrA is a response regulator (RR) in the two-component system involved in regulating the degradation and transport of haem (Fe-porphyrin) in the pathogen Corynebacterium diphtheriae. Here, the crystal structure of full-length ChrA is described at a resolution of 1.8 Å. ChrA consists of an N-terminal regulatory domain, a long linker region and a C-terminal DNA-binding domain. A structural comparison of ChrA with other RRs revealed substantial differences in the relative orientation of the two domains and the conformation of the linker region. The structural flexibility of the linker could be an important feature in rearrangement of the domain orientation to create a dimerization interface to bind DNA during haem-sensing signal transduction.

  1. Investigation of Self-Assembly of Two-Component Organogel System Based on Trigonal Acids and Aminobenzothiazole Derivatives

    Directory of Open Access Journals (Sweden)

    Youbo Di

    2013-01-01

    Full Text Available We reported here the gelation behaviors of two-component organogel system based on different acids and aminobenzothiazole derivatives in various organic solvents. Their gelation behaviors in 20 solvents were tested as new organic gelators. It was shown that the molecular skeletons and substituted groups in these compounds played a crucial role in the gelation behavior of the mixtures. Only the binary mixture of 2-aminobenzothiazole and trigonal 1,3,5-benzenetricarboxylic acid with aromatic core could form organogels in ethanol and acetone. Morphological observations reveal that the microstructures of both xerogels showed similar wrinkle-shaped domains composed of sheet-like aggregates with many holes. Spectral studies reveal the hydrogen bonding interaction between the amide of the gelator and lamellar-like structure of the aggregates in both gels. The present investigation is a perspective to provide new clues for the design of new nanomaterials and functional textile materials with special microstructures.

  2. Two-Component Signal Transduction Systems of Desulfovibrio Vulgaris: Structural and Phylogenetic Analysis and Deduction of Putative Cognate Pairs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Weiwen; Culley, David E.; Wu, Gang; Brockman, Fred J.

    2006-01-20

    ABSTRACT-Two-component signal transduction systems (TCSTS) composed of sensory histidine kinases (HK) and response regulators (RR), constitute a key element of the mechanism by which bacteria sense and respond to changes in environments. A large number of TCSTSs including 59 putative HKs and 55 RRs were identified from the Desulfovibrio vulgaris genome, indicating their important roles in regulation of cellular metabolism. In this study, the structural and phylogenetic analysis of all putative TCSTSs in D. vulgaris was performed. The results showed D. vulgaris contained an unexpectedly large number of hybrid-type HKs, implying that multiple-step phosphorelay may be a common signal transduction mechanism in D. vulgaris. Most TCSTS components of D. vulgaris were found clustered into several subfamilies previously recognized in other bacteria and extensive co-evolution between D. vulgaris HKs and RRs was observed, suggesting that the concordance of HKs and RRs in cognate phylogenetic groups could be indicative of cognate TCSTSs...

  3. A novel two-component system PdeK/PdeR regulates c-di-GMP turnover and virulence of Xanthomonas oryzae pv. oryzae.

    Science.gov (United States)

    Yang, Fenghuan; Tian, Fang; Sun, Lei; Chen, Huamin; Wu, Maosen; Yang, Ching-Hong; He, Chenyang

    2012-10-01

    Two-component systems (TCS) consisting of histidine kinases (HK) and response regulators (RR) play essential roles in bacteria to sense environmental signals and regulate cell functions. One type of RR is involved in metabolism of cyclic diguanylate (c-di-GMP), a ubiquitous bacterial second messenger. Although genomic studies predicted a large number of them existing in different bacteria, only a few have been studied. In this work, we characterized a novel TCS consisting of PdeK(PXO_01018)/PdeR(PXO_ 01019) from Xanthomonas oryzae pv. oryzae, which causes the bacterial leaf blight of rice. PdeR (containing GGDEF, EAL, and REC domains) was shown to have phosphodiesterase (PDE) activity in vitro by colorimetric assays and high-performance liquid chromatography analysis. The PDE activity of full-length PdeR needs to be triggered by HK PdeK. Deletion of pdeK or pdeR in X. oryzae pv. oryzae PXO99(A) had attenuated its virulence on rice. ΔpdeK and ΔpdeR secreted less exopolysaccharide than the wild type but there were no changes in terms of motility or extracellular cellulase activity, suggesting the activity of PdeK/PdeR might be specific.

  4. Systems level analysis of two-component signal transduction systems in Erwinia amylovora: Role in virulence, regulation of amylovoran biosynthesis and swarming motility

    Directory of Open Access Journals (Sweden)

    Sundin George W

    2009-05-01

    Full Text Available Abstract Background Two-component signal transduction systems (TCSTs, consisting of a histidine kinase (HK and a response regulator (RR, represent a major paradigm for signal transduction in prokaryotes. TCSTs play critical roles in sensing and responding to environmental conditions, and in bacterial pathogenesis. Most TCSTs in Erwinia amylovora have either not been identified or have not yet been studied. Results We used a systems approach to identify TCST and related signal transduction genes in the genome of E. amylovora. Comparative genomic analysis of TCSTs indicated that E. amylovora TCSTs were closely related to those of Erwinia tasmaniensis, a saprophytic enterobacterium isolated from apple flowers, and to other enterobacteria. Forty-six TCST genes in E. amylovora including 17 sensor kinases, three hybrid kinases, 20 DNA- or ligand-binding RRs, four RRs with enzymatic output domain (EAL-GGDEF proteins, and two kinases were characterized in this study. A systematic TCST gene-knockout experiment was conducted, generating a total of 59 single-, double-, and triple-mutants. Virulence assays revealed that five of these mutants were non-pathogenic on immature pear fruits. Results from phenotypic characterization and gene expression experiments indicated that several groups of TCST systems in E. amylovora control amylovoran biosynthesis, one of two major virulence factors in E. amylovora. Both negative and positive regulators of amylovoran biosynthesis were identified, indicating a complex network may control this important feature of pathogenesis. Positive (non-motile, EnvZ/OmpR, negative (hypermotile, GrrS/GrrA, and intermediate regulators for swarming motility in E. amylovora were also identified. Conclusion Our results demonstrated that TCSTs in E. amylovora played major roles in virulence on immature pear fruit and in regulating amylovoran biosynthesis and swarming motility. This suggested presence of regulatory networks governing

  5. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    Directory of Open Access Journals (Sweden)

    Yu Fangyou

    2010-11-01

    Full Text Available Abstract Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated. Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria.

  6. The Eukaryotic-Like Ser/Thr Kinase PrkC Regulates the Essential WalRK Two-Component System in Bacillus subtilis.

    Directory of Open Access Journals (Sweden)

    Elizabeth A Libby

    2015-06-01

    Full Text Available Most bacteria contain both eukaryotic-like Ser/Thr kinases (eSTKs and eukaryotic-like Ser/Thr phosphatases (eSTPs. Their role in bacterial physiology is not currently well understood in large part because the conditions where the eSTKs are active are generally not known. However, all sequenced Gram-positive bacteria have a highly conserved eSTK with extracellular PASTA repeats that bind cell wall derived muropeptides. Here, we report that in the Gram-positive bacterium Bacillus subtilis, the PASTA-containing eSTK PrkC and its cognate eSTP PrpC converge with the essential WalRK two-component system to regulate WalR regulon genes involved in cell wall metabolism. By continuously monitoring gene expression throughout growth, we consistently find a large PrkC-dependent effect on expression of several different WalR regulon genes in early stationary phase, including both those that are activated by WalR (yocH as well as those that are repressed (iseA, pdaC. We demonstrate that PrkC phosphorylates WalR in vitro and in vivo on a single Thr residue located in the receiver domain. Although the phosphorylated region of the receiver domain is highly conserved among several B. subtilis response regulators, PrkC displays specificity for WalR in vitro. Consistently, strains expressing a nonphosphorylatable WalR point mutant strongly reduce both PrkC dependent activation and repression of yocH, iseA, and pdaC. This suggests a model where the eSTK PrkC regulates the essential WalRK two-component signaling system by direct phosphorylation of WalR Thr101, resulting in the regulation of WalR regulon genes involved in cell wall metabolism in stationary phase. As both the eSTK PrkC and the essential WalRK two-component system are highly conserved in Gram-positive bacteria, these results may be applicable to further understanding the role of eSTKs in Gram-positive physiology and cell wall metabolism.

  7. Identification of a U/Zn/Cu responsive global regulatory two-component system in Caulobacter crescentus.

    Science.gov (United States)

    Park, Dan M; Overton, K Wesley; Liou, Megan J; Jiao, Yongqin

    2016-12-30

    Despite the well-known toxicity of uranium (U) to bacteria, little is known about how cells sense and respond to U. The recent finding of a U-specific stress response in Caulobacter crescentus has provided a foundation for studying the mechanisms of U- perception in bacteria. To gain insight into this process, we used a forward genetic screen to identify the regulatory components governing expression of the urcA promoter (PurcA ) that is strongly induced by U. This approach unearthed a previously uncharacterized two-component system, named UzcRS, which is responsible for U-dependent activation of PurcA . UzcRS is also highly responsive to zinc and copper, revealing a broader specificity than previously thought. Using ChIP-seq, we found that UzcR binds extensively throughout the genome in a metal-dependent manner and recognizes a noncanonical DNA-binding site. Coupling the genome-wide occupancy data with RNA-seq analysis revealed that UzcR is a global regulator of transcription, predominately activating genes encoding proteins that are localized to the cell envelope; these include metallopeptidases, multidrug-resistant efflux (MDR) pumps, TonB-dependent receptors and many proteins of unknown function. Collectively, our data suggest that UzcRS couples the perception of U, Zn and Cu with a novel extracytoplasmic stress response.

  8. The Role of CzcRS Two-Component Systems in the Heavy Metal Resistance of Pseudomonas putida X4

    Directory of Open Access Journals (Sweden)

    Pulin Liu

    2015-07-01

    Full Text Available The role of different czcRS genes in metal resistance and the cross-link between czcRS and czcCBA in Pseudomonas putida X4 were studied to advance understanding of the mechanisms by which P. putida copes with metal stress. Similar to P. putida KT2440, two complete czcRS1 and czcRS2 two-component systems, as well as a czcR3 without the corresponding sensing component were amplified in P. putida X4. The histidine kinase genes czcS1 and czcS2 were inactivated and fused to lacZ by homologous recombination. The lacZ fusion assay revealed that Cd2+ and Zn2+ caused a decrease in the transcription of czcRS1, whereas Cd2+ treatment enhanced the transcription of czcRS2. The mutation of different czcRSs showed that all czcRSs are necessary to facilitate full metal resistance in P. putida X4. A putative gene just downstream of czcR3 is related to metal ion resistance, and its transcription was activated by Zn2+. Data from quantitative real-time polymerase chain reaction (qRT-PCR strongly suggested that czcRSs regulate the expression of czcCBA, and a cross-link exists between different czcRSs.

  9. Comparative Expression Analysis of Two-Component System Members in Arabidopsis and Oryza sativa under Abiotic Stress

    Directory of Open Access Journals (Sweden)

    Anupama eSingh

    2015-09-01

    Full Text Available Two component system (TCS is one of the key signal sensing machinery which enables species to sense environmental stimuli. It essentially comprises of three major components, sensory histidine kinase proteins (HKs, histidine phosphotransfer proteins (Hpts and response regulator proteins (RRs. The members of the TCS family have already been identified in Arabidopsis and rice but the knowledge about their functional indulgence during various abiotic stress conditions remains meagre. Current study is an attempt to carry out comprehensive analysis of the expression of TCS members in response to various abiotic stress conditions and in various plant tissues in Arabidopsis and rice using MPSS and publicly available microarray data. The analysis suggests that despite having almost similar number of genes, rice expresses higher number of TCS members during various abiotic stress conditions than Arabidopsis. We found that the TCS machinery is regulated by not only various abiotic stresses, but also by the tissue specificity. Analysis of expression of some representative members of TCS gene family showed their regulation by the diurnal cycle in rice seedlings, thus bringing-in another level of their transcriptional control. Thus, we report a highly complex and tight regulatory network of TCS members, as influenced by the tissue, abiotic stress signal and diurnal rhythm. The insights on the comparative expression analysis presented in this study may provide crucial leads towards dissection of diverse role(s of the various TCS family members in Arabidopsis and rice.

  10. The two-component system CBO2306/CBO2307 is important for cold adaptation of Clostridium botulinum ATCC 3502.

    Science.gov (United States)

    Derman, Yağmur; Isokallio, Marita; Lindström, Miia; Korkeala, Hannu

    2013-10-01

    Clostridium botulinum is a notorious foodborne pathogen. Its ability to adapt to and grow at low temperatures is of interest for food safety. Two-component systems (TCSs) have been reported to be involved in cold-shock and growth at low temperatures. Here we show the importance of TCS CBO2306/CBO2307 in the cold-shock response of C. botulinum ATCC 3502. The relative expression levels of the cbo2306 and cbo2307 were up to 4.4-fold induced in the cold-shocked cultures but negatively regulated in the late-log and stationary growth phase in relation to early logarithmic growth phase in non-shocked cultures. Importance of the CBO2306/CBO2307 in the cold stress was further demonstrated by impaired growth of insertional cbo2306 or cbo2307 knockout mutants in relation to the wild-type strain ATCC 3502. The results suggest that the TCS CBO2306/CBO2307 is important for cold-shock response and adaptation of C. botulinum ATCC 3502 to low temperature.

  11. The YvqE two-component system controls biofilm formation and acid production in Streptococcus pyogenes.

    Science.gov (United States)

    Isaka, Masanori; Tatsuno, Ichiro; Maeyama, Jun-Ichi; Matsui, Hideyuki; Zhang, Yan; Hasegawa, Tadao

    2016-07-01

    In Streptococcus pyogenes, proteins involved in determining virulence are controlled by stand-alone response regulators and by two-component regulatory systems. Previous studies reported that, compared to the parental strain, the yvqE sensor knockout strain showed significantly reduced growth and lower virulence. To determine the function of YvqE, we performed biofilm analysis and pH assays on yvqE mutants, and site-directed mutagenesis of YvqE. The yvqE deletion mutant showed a slower acid production rate, indicating that YvqE regulates acid production from sugar fermentation. The mutant strain, in which the Asp(26) residue in YvqE was replaced with Asn, affected biofilm formation, suggesting that this amino acid senses hydrogen ions produced by fermentative sugar metabolism. Signals received by YvqE were directly or indirectly responsible for inducing pilus expression. This study shows that at low environmental pH, biofilm formation in S. pyogenes is mediated by YvqE and suggests that regulation of pilus expression by environmental acidification could be directly under the control of YvqE.

  12. A hybrid two-component system of Tannerella forsythia affects autoaggregation and post-translational modification of surface proteins.

    Science.gov (United States)

    Niwa, Daisuke; Nishikawa, Kiyoshi; Nakamura, Hiroshi

    2011-05-01

    Tannerella forsythia is a Gram-negative oral anaerobe closely associated with both periodontal and periapical diseases. The ORF TF0022 of strain ATCC 43037 encodes a hybrid two-component system consisting of an N-terminal histidine kinase and a C-terminal response regulator. Disruption of the TF0022 locus enhanced autoaggregation of the broth-cultured cells. Comparative proteome analyses revealed that two S-layer proteins in the TF0022 mutant exhibited decreased apparent masses by denaturing gel electrophoresis, suggesting a deficiency in post-translational modification. Furthermore, the mutant decreased the production of a glycosyltransferase encoded by TF1061 that is located in a putative glycosylation-related gene cluster. Quantitative real-time PCR revealed reduced transcription of TF1061 and the associated genes in the TF0022 mutant. These results indicate that TF0022 upregulates the expression of the glycosylation-related genes and suggest modulation of the autoaggregation of T. forsythia cells by a possible post-translational modification of cell-surface components.

  13. PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2

    Directory of Open Access Journals (Sweden)

    Qinggang Guo

    2010-01-01

    Full Text Available The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant.

  14. PhoR/PhoP two component regulatory system affects biocontrol capability of Bacillus subtilis NCD-2.

    Science.gov (United States)

    Guo, Qinggang; Li, Shezeng; Lu, Xiuyun; Li, Baoqing; Ma, Ping

    2010-04-01

    The Bacillus subtilis strain NCD-2 is an important biocontrol agent against cotton verticillium wilt and cotton sore shin in the field, which are caused by Verticillium dahliae Kleb and Rhizoctonia solani Kuhn, respectively. A mutant of strain NCD-2, designated M216, with decreased antagonism to V. dahliae and R. solani, was selected by mini-Tn10 mutagenesis and in vitro virulence screening. The inserted gene in the mutant was cloned and identified as the phoR gene, which encodes a sensor kinase in the PhoP/PhoR two-component system. Compared to the wild-type strain, the APase activities of the mutant was decreased significantly when cultured in low phosphate medium, but no obvious difference was observed when cultured in high phosphate medium. The mutant also grew more slowly on organic phosphate agar and lost its phosphatidylcholine-solubilizing ability. The suppression of cotton seedling damping-off in vivo and colonization of the rhizosphere of cotton also decreased in the mutant strain when compared with the wild type strain. All of these characteristics could be partially restored by complementation of the phoR gene in the M216 mutant.

  15. Extrusion foaming of thermoplastic cellulose acetate from renewable resources using a two-component physical blowing agent system

    Science.gov (United States)

    Hopmann, Ch.; Windeck, C.; Hendriks, S.; Zepnik, S.; Wodke, T.

    2014-05-01

    Thermoplastic cellulose acetate (CA) is a bio-based polymer with optical, mechanical and thermal properties comparable to those of polystyrene (PS). The substitution of the predominant petrol-based PS in applications like foamed food trays can lead to a more sustainable economic practice. However, CA is also suitable for more durable applications as the biodegradability rate can be controlled by adjusting the degree of substitutions. The extrusion foaming of CA still has to overcome certain challenges. CA is highly hydrophilic and can suffer from hydrolytic degradation if not dried properly. Therefore, the influence of residual moisture on the melt viscosity is rather high. Beyond, the surface quality of foam CA sheets is below those of PS due to the particular foaming behaviour. This paper presents results of a recent study on extrusion foamed CA, using a two-component physical blowing agent system compromising HFO 1234ze as blowing agent and organic solvents as co-propellant. Samples with different co-propellants are processed on a laboratory single screw extruder at IKV. Morphology and surface topography are investigated with respect to the blowing agent composition and the die pressure. In addition, relationships between foam density, foam morphology and the propellants are analysed. The choice of the co-propellant has a significant influence on melt-strength, foaming behaviour and the possible blow-up ratio of the sheet. Furthermore, a positive influence of the co-propellant on the surface quality can be observed. In addition, the focus is laid on the effect of external contact cooling of the foamed sheets after the die exit.

  16. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae

    Directory of Open Access Journals (Sweden)

    González-Candelas Fernando

    2011-02-01

    Full Text Available Abstract Background Two component systems (TCS are signal transduction pathways which typically consist of a sensor histidine kinase (HK and a response regulator (RR. In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB. LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest. Results The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in Lactobacillus helveticus and 17 in Lactobacillus casei. The OmpR/IIIA family was the most prevalent in Lactobacillaceae accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these Lactobacillaceae by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in Lactobacillaceae. Conclusions The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in Lactobacillaceae, although some HGT events cannot be ruled out. This would agree with the genomic analyses of Lactobacillales which show that gene losses have been a major trend in the evolution of this group.

  17. A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites.

    Directory of Open Access Journals (Sweden)

    Wentong Cai

    Full Text Available Two-component signaling systems (TCSs are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC. Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG. These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.

  18. A novel two-component signaling system facilitates uropathogenic Escherichia coli's ability to exploit abundant host metabolites.

    Science.gov (United States)

    Cai, Wentong; Wannemuehler, Yvonne; Dell'anna, Giuseppe; Nicholson, Bryon; Barbieri, Nicolle L; Kariyawasam, Subhashinie; Feng, Yaping; Logue, Catherine M; Nolan, Lisa K; Li, Ganwu

    2013-01-01

    Two-component signaling systems (TCSs) are major mechanisms by which bacteria adapt to environmental conditions. It follows then that TCSs would play important roles in the adaptation of pathogenic bacteria to host environments. However, no pathogen-associated TCS has been identified in uropathogenic Escherichia coli (UPEC). Here, we identified a novel TCS, which we termed KguS/KguR (KguS: α-ketoglutarate utilization sensor; KguR: α-ketoglutarate utilization regulator) in UPEC CFT073, a strain isolated from human pyelonephritis. kguS/kguR was strongly associated with UPEC but was found only rarely among other E. coli including commensal and intestinal pathogenic strains. An in vivo competition assay in a mouse UTI model showed that deletion of kguS/kguR in UPEC CFT073 resulted in a significant reduction in its colonization of the bladders and kidneys of mice, suggesting that KguS/KguR contributed to UPEC fitness in vivo. Comparative proteomics identified the target gene products of KguS/KguR, and sequence analysis showed that TCS KguS/KguR and its targeted-genes, c5032 to c5039, are encoded on a genomic island, which is not present in intestinal pathogenic E. coli. Expression of the target genes was induced by α-ketoglutarate (α-KG). These genes were further shown to be involved in utilization of α-KG as a sole carbon source under anaerobic conditions. KguS/KguR contributed to the regulation of the target genes with the direct regulation by KguR verified using an electrophoretic mobility shift assay. In addition, oxygen deficiency positively modulated expression of kguS/kguR and its target genes. Taken altogether, this study describes the first UPEC-associated TCS that functions in controlling the utilization of α-ketoglutarate in vivo thereby facilitating UPEC adaptation to life inside the urinary tract.

  19. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073.

    Science.gov (United States)

    Palaniyandi, Senthilkumar; Mitra, Arindam; Herren, Christopher D; Lockatell, C Virginia; Johnson, David E; Zhu, Xiaoping; Mukhopadhyay, Suman

    2012-01-01

    Uropathogenic Escherichia coli (UPEC), a member of extraintestinal pathogenic E. coli, cause ∼80% of community-acquired urinary tract infections (UTI) in humans. UPEC initiates its colonization in epithelial cells lining the urinary tract with a complicated life cycle, replicating and persisting in intracellular and extracellular niches. Consequently, UPEC causes cystitis and more severe form of pyelonephritis. To further understand the virulence characteristics of UPEC, we investigated the roles of BarA-UvrY two-component system (TCS) in regulating UPEC virulence. Our results showed that mutation of BarA-UvrY TCS significantly decreased the virulence of UPEC CFT073, as assessed by mouse urinary tract infection, chicken embryo killing assay, and cytotoxicity assay on human kidney and uroepithelial cell lines. Furthermore, mutation of either barA or uvrY gene reduced the production of hemolysin, lipopolysaccharide (LPS), proinflammatory cytokines (TNF-α and IL-6) and chemokine (IL-8). The virulence phenotype was restored similar to that of wild-type by complementation of either barA or uvrY gene in trans. In addition, we discussed a possible link between the BarA-UvrY TCS and CsrA in positively and negatively controlling virulence in UPEC. Overall, this study provides the evidences for BarA-UvrY TCS regulates the virulence of UPEC CFT073 and may point to mechanisms by which virulence regulations are observed in different ways may control the long-term survival of UPEC in the urinary tract.

  20. The CroRS Two-Component Regulatory System Is Required for Intrinsic β-Lactam Resistance in Enterococcus faecalis

    Science.gov (United States)

    Comenge, Yannick; Quintiliani, Richard; Li, Ling; Dubost, Lionnel; Brouard, Jean-Paul; Hugonnet, Jean-Emmanuel; Arthur, Michel

    2003-01-01

    Enterococcus faecalis produces a specific penicillin-binding protein (PBP5) that mediates high-level resistance to the cephalosporin class of β-lactam antibiotics. Deletion of a locus encoding a previously uncharacterized two-component regulatory system of E. faecalis (croRS) led to a 4,000-fold reduction in the MIC of the expanded-spectrum cephalosporin ceftriaxone. The cytoplasmic domain of the sensor kinase (CroS) was purified and shown to catalyze ATP-dependent autophosphorylation followed by transfer of the phosphate to the mated response regulator (CroR). The croR and croS genes were cotranscribed from a promoter (croRp) located in the rrnC-croR intergenic region. A putative seryl-tRNA synthetase gene (serS) located immediately downstream from croS did not appear to be a target of CroRS regulation or to play a role in ceftriaxone resistance. A plasmid-borne croRp-lacZ fusion was trans-activated by the CroRS system in response to the presence of ceftriaxone in the culture medium. The fusion was also induced by representatives of other classes of β-lactam antibiotics and by inhibitors of early and late steps of peptidoglycan synthesis. The croRS null mutant produced PBP5, and expression of an additional copy of pbp5 under the control of a heterologous promoter did not restore ceftriaxone resistance. Deletion of croRS was not associated with any defect in the synthesis of the nucleotide precursor UDP-MurNAc-pentapeptide or of the d-Ala4→l-Ala-l-Ala-Lys3 peptidoglycan cross-bridge. Thus, the croRS mutant was susceptible to ceftriaxone despite the production of PBP5 and the synthesis of wild-type peptidoglycan precursors. These observations constitute the first description of regulatory genes essential for PBP5-mediated β-lactam resistance in enterococci. PMID:14645279

  1. Molecular evolution of the two-component system BvgAS involved in virulence regulation in Bordetella.

    Directory of Open Access Journals (Sweden)

    Julien Herrou

    Full Text Available The whooping cough agent Bordetella pertussis is closely related to Bordetella bronchiseptica, which is responsible for chronic respiratory infections in various mammals and is occasionally found in humans, and to Bordetella parapertussis, one lineage of which causes mild whooping cough in humans and the other ovine respiratory infections. All three species produce similar sets of virulence factors that are co-regulated by the two-component system BvgAS. We characterized the molecular diversity of BvgAS in Bordetella by sequencing the two genes from a large number of diverse isolates. The response regulator BvgA is virtually invariant, indicating strong functional constraints. In contrast, the multi-domain sensor kinase BvgS has evolved into two different types. The pertussis type is found in B. pertussis and in a lineage of essentially human-associated B. bronchiseptica, while the bronchiseptica type is associated with the majority of B. bronchiseptica and both ovine and human B. parapertussis. BvgS is monomorphic in B. pertussis, suggesting optimal adaptation or a recent population bottleneck. The degree of diversity of the bronchiseptica type BvgS is markedly different between domains, indicating distinct evolutionary pressures. Thus, absolute conservation of the putative solute-binding cavities of the two periplasmic Venus Fly Trap (VFT domains suggests that common signals are perceived in all three species, while the external surfaces of these domains vary more extensively. Co-evolution of the surfaces of the two VFT domains in each type and domain swapping experiments indicate that signal transduction in the periplasmic region may be type-specific. The two distinct evolutionary solutions for BvgS confirm that B. pertussis has emerged from a specific B. bronchiseptica lineage. The invariant regions of BvgS point to essential parts for its molecular mechanism, while the variable regions may indicate adaptations to different lifestyles. The

  2. Identification, Functional Characterization and Regulon Prediction of a Novel Two Component System Comprising BAS0540-BAS0541 of Bacillus anthracis

    Science.gov (United States)

    Gopalani, Monisha; Kandari, Divya; Bhatnagar, Rakesh

    2016-01-01

    Two component systems (TCSs) can be envisaged as complex molecular devices that help the bacteria to sense its environment and respond aptly. 41 TCSs are predicted in Bacillus anthracis, a potential bioterrorism agent, of which only four have been studied so far. Thus, the intricate signaling network contributed by TCSs remains largely unmapped in B. anthracis and needs comprehensive exploration. In this study, we functionally characterized one such system composed of BAS0540 (Response regulator) and BAS0541 (Histidine kinase). BAS0540-BAS0541, the closest homolog of CiaRH of Streptococcus in B. anthracis, forms a functional TCS with BAS0541 displaying autophosphorylation and subsequent phosphotransfer to BAS0540. BAS0540 was also found to accept phosphate from physiologically relevant small molecule phosphodonors like acetyl phosphate and carbamoyl phosphate. Results of qRT-PCR and immunoblotting demonstrated that BAS0540 exhibits a constitutive expression throughout the growth of B. anthracis. Regulon prediction for BAS0540 in B. anthracis was done in silico using the consensus DNA binding sequence of CiaR of Streptococcus. The predicted regulon of BAS0540 comprised of 23 genes, which could be classified into 8 functionally diverse categories. None of the proven virulence factors were a part of the predicted regulon, an observation contrasting with the regulon of CiaRH in Streptococci. Electrophoretic mobility shift assay was used to show direct binding of purified BAS0540 to the upstream regions of 5 putative regulon candidates- BAS0540 gene itself; a gene predicted to encode cell division protein FtsA; a self–immunity gene; a RND family transporter gene and a gene encoding stress (heat) responsive protein. A significant enhancement in the DNA binding ability of BAS0540 was observed upon phosphorylation. Overexpression of response regulator BAS0540 in B. anthracis led to a prodigious increase of ~6 folds in the cell length, thereby conferring it a filamentous

  3. An Oxygen-Sensing Two-Component System in the Burkholderia cepacia Complex Regulates Biofilm, Intracellular Invasion, and Pathogenicity

    Science.gov (United States)

    Liao, Tiffany L.; Boisvert, Nicole M.; Priebe, Gregory P.

    2017-01-01

    Burkholderia dolosa is a member of the Burkholderia cepacia complex (BCC), which is a group of bacteria that cause chronic lung infection in patients with cystic fibrosis (CF) and can be associated with outbreaks carrying high morbidity and mortality. While investigating the genomic diversity of B. dolosa strains collected from an outbreak among CF patients, we previously identified fixL as a gene showing signs of strong positive selection. This gene has homology to fixL of the rhizobial FixL/FixJ two-component system. The goals of this study were to determine the functions of FixLJ and their role in virulence in B. dolosa. We generated a fixLJ deletion mutant and complemented controls in B. dolosa strain AU0158. Using a fixK-lacZ reporter we found that FixLJ was activated in low oxygen in multiple BCC species. In a murine pneumonia model, the B. dolosa fixLJ deletion mutant was cleared faster from the lungs and spleen than wild-type B. dolosa strain AU0158 at 7 days post infection. Interestingly, the fixLJ deletion mutant made more biofilm, albeit with altered structure, but was less motile than strain AU0158. Using RNA-seq with in vitro grown bacteria, we found ~11% of the genome was differentially expressed in the fixLJ deletion mutant relative to strain AU0158. Multiple flagella-associated genes were down-regulated in the fixLJ deletion mutant, so we also evaluated virulence of a fliC deletion mutant, which lacks a flagellum. We saw no difference in the ability of the fliC deletion mutant to persist in the murine model relative to strain AU0158, suggesting factors other than flagella caused the phenotype of decreased persistence. We found the fixLJ deletion mutant to be less invasive in human lung epithelial and macrophage-like cells. In conclusion, B. dolosa fixLJ is a global regulator that controls biofilm formation, motility, intracellular invasion/persistence, and virulence. PMID:28046077

  4. A model system for pathogen detection using a two-component bacteriophage/bioluminescent signal amplification assay

    Science.gov (United States)

    Bright, Nathan G.; Carroll, Richard J.; Applegate, Bruce M.

    2004-03-01

    Microbial contamination has become a mounting concern the last decade due to an increased emphasis of minimally processed food products specifically produce, and the recognition of foodborne pathogens such as Campylobacter jejuni, Escherichia coli O157:H7, and Listeria monocytogenes. This research investigates a detection approach utilizing bacteriophage pathogen specificity coupled with a bacterial bioluminescent bioreporter utilizing the quorum sensing molecule from Vibrio fischeri, N-(3-oxohexanoyl)-homoserine lactone (3-oxo-C6-HSL). The 3-oxo-C6-HSL molecules diffuse out of the target cell after infection and induce bioluminescence from a population of 3-oxo-C6-HSL bioreporters (ROLux). E. coli phage M13, a well-characterized bacteriophage, offers a model system testing the use of bacteriophage for pathogen detection through cell-to-cell communication via a LuxR/3-oxo-C6-HSL system. Simulated temperate phage assays tested functionality of the ROLux reporter and production of 3-oxo-C6-HSL by various test strains. These assays showed detection limits of 102cfu after 24 hours in a varietry of detection formats. Assays incorporating the bacteriophage M13-luxI with the ROLux reporter and a known population of target cells were subsequently developed and have shown consistent detection limits of 105cfu target organisms. Measurable light response from high concentrations of target cells was almost immediate, suggesting an enrichment step to further improve detection limits and reduce assay time.

  5. In silico characterization of three two-component systems of Ehrlichia canis and evaluation of a natural plant-derived inhibitor.

    Science.gov (United States)

    Santos, E V; Silva, G; Cardozo, G P; Bitencourt, T A; França, S C; Fachin, A L; Marins, M

    2012-10-04

    Two-component signal transduction systems (TCS) are important elements in the interaction of endobacteria with host cells. They are basically composed of two proteins, an environmental signal sensor and a response regulator, which activate genes involved in a wide range of bacterial responses to their environment. We analyzed three sets of genes corresponding to TCS of Ehrlichia canis, a common tick-borne canine pathogen and the etiologic agent of canine monocytic ehrlichiosis, in order to identify the characteristic domains of the sensor and response regulator components. Analysis of sequence alignments of the corresponding proteins indicated a high degree of similarity to other members of the Anaplasmataceae TCS proteins, demonstrating that they could be useful as universal targets for development of new drugs against these bacteria. We also evaluated by quantitative PCR inhibition of E. canis by (2H)-1,4-benzoxazin-3(4H)-one (BOA), the core compound of the plant phenolic compound DIMBOA, which shows inhibitory action against TCS of the phytopathogen Agrobacterium tumefasciens. This bacterium exerts its pathogenicity by transferring oncogenic DNA (T-DNA) into plant cells; this transfer is mediated through a type-IV secretion system, which is regulated by the VirA/VirG TCS. The process of infection and pathogenesis of E. canis is associated with the secretion of effector proteins into the host cell cytoplasm through a T4SS system, which blocks the cell defense response. We suggest that BOA, and possibly other plant phenolic compounds that are TCS inhibitors, can be exploited in the search for new antiehrlichial drugs to be used alone or as complements in the treatment of canine monocytic ehrlichiosis.

  6. The prrAB Two-Component System Is Essential for Mycobacterium tuberculosis Viability and Is Induced under Nitrogen-Limiting Conditions

    OpenAIRE

    Haydel, Shelley E.; Malhotra, Vandana; Cornelison, Garrett L.; Clark-Curtiss, Josephine E.

    2012-01-01

    The Mycobacterium tuberculosis prrA-prrB (Rv0903c-Rv0902c) two-component regulatory system is expressed during intracellular growth in human macrophages and is required for early intracellular multiplication in murine macrophages, suggesting its importance in establishing infection. To better understand the function of the prrA-prrB two-component system, we defined the transcriptional characteristics of the prrA and prrB genes during exponential and stationary growth and upon exposure to diff...

  7. Origin and evolution of two-component debris discs and an application to the q$^1$ Eridani system

    CERN Document Server

    Schüppler, Christian; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-01-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an "asteroid belt" closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-tempera...

  8. The auxiliary protein complex SaePQ activates the phosphatase activity of sensor kinase SaeS in the SaeRS two-component system of Staphylococcus aureus

    OpenAIRE

    Jeong, Do-Won; Cho, Hoonsik; Jones, Marcus B.; Shatzkes, Kenneth; Sun, Fei; Ji, Quanjiang; Liu, Qian; Scott N Peterson; He, Chuan; Bae, Taeok

    2012-01-01

    In bacterial two-component regulatory systems (TCSs), dephosphorylation of phosphorylated response regulators is essential for resetting the activated systems to the pre-activation state. However, in the SaeRS TCS, a major virulence TCS of Staphylococcus aureus, the mechanism for dephosphorylation of the response regulator SaeR has not been identified. Here we report that two auxiliary proteins from the sae operon, SaeP and SaeQ, form a protein complex with the sensor kinase SaeS and activate...

  9. Phosphorelay of non-orthodox two component systems functions through a bi-molecular mechanism in vivo

    DEFF Research Database (Denmark)

    Jovanovic, Goran; Sheng, Xia; Ale, Angelique;

    2015-01-01

    the functional relevance of the dimerization of a non-orthodox or hybrid histidine kinase along which the phosphorelay takes place has been a subject of debate. We use a combination of molecular and genetic approaches, coupled to mathematical and statistical modelling, to demonstrate that the different possible...... intra- and inter-molecular mechanisms of phosphotransfer are formally non-identifiable in Escherichia coli expressing the ArcB non-orthodox histidine kinase used in anoxic redox control. In order to resolve this issue we further analyse the mathematical model in order to identify discriminatory...... in the histidine kinase. This is the first detailed mechanistic analysis of the molecular processes involved in non-orthodox two-component signalling and our results suggest strongly that dimerization facilitates more discriminatory proof-reading of external signals, via these allosteric reactions, prior to them...

  10. Role of the two component signal transduction system CpxAR in conferring cefepime and chloramphenicol resistance in Klebsiella pneumoniae NTUH-K2044.

    Directory of Open Access Journals (Sweden)

    Vijaya Bharathi Srinivasan

    Full Text Available BACKGROUND: Klebsiella pneumoniae is a gram-negative, non-motile, facultative anaerobe belonging to the Enterobacteriaceae family of the γ-Proteobacteria class in the phylum Proteobacteria. Multidrug resistant K. pneumoniae have caused major therapeutic problems worldwide due to emergence of extended-spectrum β-lactamase producing strains. Two-component systems serve as a basic stimulus-response coupling mechanism to allow organisms to sense and respond to changes in many different environmental conditions including antibiotic stress. PRINCIPAL FINDINGS: In the present study, we investigated the role of an uncharacterized cpxAR operon in bacterial physiology and antimicrobial resistance by generating isogenic mutant (ΔcpxAR deficient in the CpxA/CpxR component derived from the hyper mucoidal K1 strain K. pneumoniae NTUH-K2044. The behaviour of ΔcpxAR was determined under hostile conditions, reproducing stresses encountered in the gastrointestinal environment and deletion resulted in higher sensitivity to bile, osmotic and acid stresses. The ΔcpxAR was more susceptible to β-lactams and chloramphenicol than the wild-type strain, and complementation restored the altered phenotypes. The relative change in expression of acrB, acrD, eefB efflux genes were decreased in cpxAR mutant as evidenced by qRT-PCR. Comparison of outer membrane protein profiles indicated a conspicuous difference in the knock out background. Gel shift assays demonstrated direct binding of CpxR(KP to promoter region of ompC(KP in a concentration dependent manner. CONCLUSIONS AND SIGNIFICANCE: The Cpx envelope stress response system is known to be activated by alterations in pH, membrane composition and misfolded proteins, and this systematic investigation reveals its direct involvement in conferring antimicrobial resistance against clinically significant antibiotics for the very first time. Overall results displayed in this report reflect the pleiotropic role of the Cpx

  11. The development of a two-component force dynamometer and tool control system for dynamic machine tool research

    Science.gov (United States)

    Sutherland, I. A.

    1973-01-01

    The development is presented of a tooling system that makes a controlled sinusoidal oscillation simulating a dynamic chip removal condition. It also measures the machining forces in two mutually perpendicular directions without any cross sensitivity.

  12. Pattern formation in a two-component reaction-diffusion system with delayed processes on a network

    Science.gov (United States)

    Petit, Julien; Asllani, Malbor; Fanelli, Duccio; Lauwens, Ben; Carletti, Timoteo

    2016-11-01

    Reaction-diffusion systems with time-delay defined on complex networks have been studied in the framework of the emergence of Turing instabilities. The use of the Lambert W-function allowed us to get explicit analytic conditions for the onset of patterns as a function of the main involved parameters, the time-delay, the network topology and the diffusion coefficients. Depending on these parameters, the analysis predicts whether the system will evolve towards a stationary Turing pattern or rather to a wave pattern associated to a Hopf bifurcation. The possible outcomes of the linear analysis overcome the respective limitations of the single-species case with delay, and that of the classical activator-inhibitor variant without delay. Numerical results gained from the Mimura-Murray model support the theoretical approach.

  13. The Vibrio cholerae VprA-VprB Two-Component System Controls Virulence Through Endotoxin Modification

    Science.gov (United States)

    2014-12-23

    assay. All animal studies were carried out under protocols approved by the Institutional Animal Care and Use Committee at the University of Texas at... antimicrobial peptides of the innate immune system bind to the membrane of Gram-negative pathogens via conserved, surface-exposed lipopolysaccharide (LPS... antimicrobial peptide polymyxin. However, the regulatory mechanisms of lipid A modification in V. 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE

  14. Differential Target Gene Activation by the Staphylococcus aureus Two-Component System saeRS ▿ †

    OpenAIRE

    Mainiero, Markus; Goerke, Christiane; Geiger, Tobias; Gonser, Christoph; Herbert, Silvia; Wolz, Christiane

    2009-01-01

    The saePQRS system of Staphylococcus aureus controls the expression of major virulence factors and encodes a histidine kinase (SaeS), a response regulator (SaeR), a membrane protein (SaeQ), and a lipoprotein (SaeP). The widely used strain Newman is characterized by a single amino acid change in the sensory domain of SaeS (Pro18 in strain Newman [SaeSP], compared with Leu18 in other strains [SaeSL]). SaeSP determines activation of the class I sae target genes (coa, fnbA, eap, sib, efb, fib, sa...

  15. Unsteady fluid dynamics of several mechanical prosthetic heart valves using a two component laser Doppler anemometer system.

    Science.gov (United States)

    Akutsu, T; Modi, V J

    1997-10-01

    Five typical mechanical heart valves (Starr-Edwards, Björk-Shiley convexo-concave (c-c), Björk-Shiley monostrut, Bicer-Val, and St. Jude Medical) were tested in the mitral position under the pulsatile flow condition. The test program included measurements of velocity and turbulent stresses at 5 downstream locations. The study was carried out using a sophisticated cardiac simulator in conjunction with a highly sensitive 2 component laser Doppler anemometer (LDA) system. The continuous monitoring of parametric time histories revealed useful details about the complex flow and helped to establish the locations and times of the peak parameter values. Based upon the nondimensional presentation of data, the following general conclusions can be made. First, all the 5 valve designs created elevated turbulent stresses during the accelerating and peak flow phases, presenting the possibility of thromboembolism and perhaps hemolysis. Second, the difference in valve configuration seemed to affect the flow characteristics; third, the bileaflet design of the St. Jude valve appeared to create a lower turbulence stress level.

  16. On Mechanics and Thermodynamics of a stellar galaxy in a two-component virial system and the Fundamental Plane

    CERN Document Server

    Secco, L

    2005-01-01

    The paper confirms the existence of a special configuration (among the infinite number of virial states) which a B stellar(Baryonic) component may assume inside a given D dark halo potential well.This satisfies the d'Alembert Principle of virtual works and its typical dimension works as a scale length (tidal radius)induced on the gravitational field of the bright component by the dark one.Its dynamic and thermodynamic properties are here analyzed in connection with the physical reason for the existence of the Fundamental Plane (FP) for ellipticals.The analysis is performed by using 2-component models with two power-law density profiles and two homogeneous cores and compared with some observable scaling relations for pressure supported ellipticals.The virial equilibrium stages of the 2-component system have to occur after a previous violent relaxation phase. If the stellar B component is allowed to cool slowly its virial evolution consists of a sequence of contractions with enough time to rearrange the virial ...

  17. Polymyxin resistance of Pseudomonas aeruginosa phoQ mutants is dependent on additional two-component regulatory systems

    DEFF Research Database (Denmark)

    Gutu, Alina D; Sgambati, Nicole; Strasbourger, Pnina;

    2013-01-01

    systems, ColRS and CprRS. Deletion of the colRS genes, individually or in tandem, abrogated the polymyxin resistance of a ΔphoQ mutant, as did individual or tandem deletion of cprRS. Individual deletion of colR or colS in a ΔphoQ mutant also suppressed 4-amino-L-arabinose addition to lipid A, consistent...... with the known role of this modification in polymyxin resistance. Surprisingly, tandem deletion of colRS or cprRS in the ΔphoQ mutant or individual deletion of cprR or cprS failed to suppress 4-amino-L-arabinose addition to lipid A, indicating that this modification alone is not sufficient for Pho......PQ-mediated polymyxin resistance in P. aeruginosa. Episomal expression of colRS or cprRS in tandem or of cprR individually complemented the Pm resistance phenotype in the ΔphoQ mutant, while episomal expression of colR, colS, or cprS individually did not. Highly polymyxin-resistant phoQ mutants of P. aeruginosa...

  18. On the characterization of dynamic supramolecular systems: a general mathematical association model for linear supramolecular copolymers and application on a complex two-component hydrogen-bonding system.

    Science.gov (United States)

    Odille, Fabrice G J; Jónsson, Stefán; Stjernqvist, Susann; Rydén, Tobias; Wärnmark, Kenneth

    2007-01-01

    A general mathematical model for the characterization of the dynamic (kinetically labile) association of supramolecular assemblies in solution is presented. It is an extension of the equal K (EK) model by the stringent use of linear algebra to allow for the simultaneous presence of an unlimited number of different units in the resulting assemblies. It allows for the analysis of highly complex dynamic equilibrium systems in solution, including both supramolecular homo- and copolymers without the recourse to extensive approximations, in a field in which other analytical methods are difficult. The derived mathematical methodology makes it possible to analyze dynamic systems such as supramolecular copolymers regarding for instance the degree of polymerization, the distribution of a given monomer in different copolymers as well as its position in an aggregate. It is to date the only general means to characterize weak supramolecular systems. The model was fitted to NMR dilution titration data by using the program Matlab, and a detailed algorithm for the optimization of the different parameters has been developed. The methodology is applied to a case study, a hydrogen-bonded supramolecular system, salen 4+porphyrin 5. The system is formally a two-component system but in reality a three-component system. This results in a complex dynamic system in which all monomers are associated to each other by hydrogen bonding with different association constants, resulting in homo- and copolymers 4n5m as well as cyclic structures 6 and 7, in addition to free 4 and 5. The system was analyzed by extensive NMR dilution titrations at variable temperatures. All chemical shifts observed at different temperatures were used in the fitting to obtain the DeltaH degrees and DeltaS degrees values producing the best global fit. From the derived general mathematical expressions, system 4+5 could be characterized with respect to above-mentioned parameters.

  19. The two-component regulatory systems in Pseudomonas aeruginosa%铜绿假单胞菌的双组分系统

    Institute of Scientific and Technical Information of China (English)

    陈利达; 黄彬

    2011-01-01

    双组分系统是存在于原核和少部分真核生物细胞中的信号转导系统,主要由组氨酸蛋白激酶和反应调节蛋白组成,通过感应外界环境信号、信号输入、磷酸基团传递、信号输出等环节调节基因表达,使细胞能更加适应环境变化.铜绿假单胞菌为条件致病菌,其双组分系统构成多样、功能复杂且参与介导耐药性产生,因此铜绿假单胞菌的双组分系统日益引起人们关注.本文对铜绿假单胞菌双组分系统的组成、信号转导机制、种类、研究方法及其临床意义进行了综述.%Two-component regulatory system exists in both Prokaryotes and eukaryotes, which is mainly composed with HPK and RR. By means of the signal input, phosphorylation, and output, it can regulate the adaptability of cells to the environment. As a major opportunistic pathogen, Pseudomonas aeruginosa is one of the main pathogens of nosocomial infection. Its drug-resistant strains increase year by year, the two-component system of which involved in the generation of drug resistance. Since the two-component system is essentially different from the system in human cells in signal transduc-tion, finding a new antibiotic target has great potential.

  20. Closing the loop: The PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD

    OpenAIRE

    Kato, Akinori; Latifi, Tammy; Groisman, Eduardo A.

    2003-01-01

    A fundamental question in biology is how an organism integrates multiple signals to mediate an appropriate cellular response. The PmrA/PmrB two-component system of Salmonella enterica can be activated independently by Fe3+, which is sensed by the PmrB protein, and in low Mg2+, which is sensed by the PhoQ protein. The low-Mg2+ activation requires pmrD, a PhoP/PhoQ-activated gene that activates the response regulator PmrA at a posttranscriptional level. We now report that pmrD expression is neg...

  1. The PmrA/PmrB Two-Component System of Legionella pneumophila Is a Global Regulator Required for Intracellular Replication within Macrophages and Protozoa▿ †

    OpenAIRE

    Al-khodor, Souhaila; Kalachikov, Sergey; Morozova, Irina; Price, Christopher T.; Abu Kwaik, Yousef

    2008-01-01

    To examine the role of the PmrA/PmrB two-component system (TCS) of Legionella pneumophila in global gene regulation and in intracellular infection, we constructed pmrA and pmrB isogenic mutants by allelic exchange. Genome-wide microarray gene expression analyses of the pmrA and pmrB mutants at both the exponential and the postexponential phases have shown that the PmrA/PmrB TCS has a global effect on the expression of 279 genes classified into nine groups of genes encoding eukaryotic-like pro...

  2. Identification of the phosphorylation site of the histidine kinase of E. coli AtoS-AtoC two-component system

    OpenAIRE

    Filippou, P.S.; Kasemian, L. D.; Panagiotidis, C A; Kyriakidis, D A

    2008-01-01

    Abstract Journal URL: http://www3.interscience.wiley.com/journal/119877016/tocgroup The sensor histidine kinase AtoS together with AtoC/Az constitute a two-component signal transduction system (TCS) in E. coli, involved in the regulation of the atoDAEB operon. Upon activation by acetoacetate, AtoS autophosphorylates and subsequently phosphorylates AtoC which is essential for the transcriptional regulation of the atoDAEB operon, the products of which are involved in the catabolism of sho...

  3. Control of CydB and GltA1 expression by the SenX3 RegX3 two component regulatory system of Mycobacterium tuberculosis.

    Directory of Open Access Journals (Sweden)

    Gretta Roberts

    Full Text Available Two component regulatory systems are used widely by bacteria to coordinate changes in global gene expression profiles in response to environmental signals. The SenX3-RegX3 two component system of Mycobacterium tuberculosis has previously been shown to play a role in virulence and phosphate-responsive control of gene expression. We demonstrate that expression of SenX3-RegX3 is controlled in response to growth conditions, although the absolute changes are small. Global gene expression profiling of a RegX3 deletion strain and wild-type strain in different culture conditions (static, microaerobic, anaerobic, as well as in an over-expressing strain identified a number of genes with changed expression patterns. Among those were genes previously identified as differentially regulated in aerobic culture, including ald (encoding alanine dehydrogenase cyd,encoding a subunit of the cytochrome D ubiquinol oxidase, and gltA1, encoding a citrate synthase. Promoter activity in the upstream regions of both cydB and gltA1 was altered in the RegX3 deletion strain. DNA-binding assays confirmed that RegX3 binds to the promoter regions of ald, cydB and gltA1 in a phosphorylation-dependent manner. Taken together these data suggest a direct role for the SenX-RegX3 system in modulating expression of aerobic respiration, in addition to its role during phosphate limitation.

  4. A subfamily of putative cytokinin receptors is revealed by an analysis of the evolution of the two-component signaling system of plants.

    Science.gov (United States)

    Gruhn, Nijuscha; Halawa, Mhyeddeen; Snel, Berend; Seidl, Michael F; Heyl, Alexander

    2014-05-01

    The two-component signaling system--the major signaling pathway of bacteria--is found among higher eukaryotes only in plants, where it regulates diverse processes, such as the signaling of the phytohormone cytokinin. Cytokinin is perceived by a hybrid histidine (His) kinase receptor, and the signal is transduced by a multistep phosphorelay system of His phosphotransfer proteins and different classes of response regulators (RRs). To shed light on the origin and evolution of the two-component signaling system members in plants, we conducted a comprehensive domain-based phylogenetic study across the relevant kingdoms, including Charophyceae algae, the group of green algae giving rise to land plants. Surprisingly, we identified a subfamily of cytokinin receptors with members only from the early diverging land plants Marchantia polymorpha and Physcomitrella patens and then experimentally characterized two members of this subfamily. His phosphotransfer proteins of Charophyceae seemed to be more closely related to land plants than to other groups of green algae. Farther down the signaling pathway, the type-B RRs were found across all plant clades, but many members lack either the canonical Asp residue or the DNA binding domain. In contrast, the type-A RRs seemed to be limited to land plants. Finally, the analysis provided hints that one additional group of RRs, the type-C RRs, might be degenerated receptors and thus, of a different evolutionary origin than bona fide RRs.

  5. The Two-Component System CprRS Senses Cationic Peptides and Triggers Adaptive Resistance in Pseudomonas aeruginosa Independently of ParRS

    DEFF Research Database (Denmark)

    Fernandez, Luca; Jenssen, Håvard; Bains, Manjeet

    2012-01-01

    dependency on the CprRS and ParRS systems in a concentration-dependent manner. It was further demonstrated that, following exposure to inducing antimicrobial peptides, cprRS mutants did not become adaptively resistant to polymyxins as was observed for wild-type cells. Our microarray studies demonstrated...... that the CprRS system controlled a quite modest regulon, indicating that it was quite specific to adaptive peptide resistance. These findings provide greater insight into the complex regulation of LPS modification in Pseudomonas aeruginosa, which involves the participation of at least 4 two-component systems.......Cationic antimicrobial peptides pass across the outer membrane by interacting with negatively charged lipopolysaccharide (LPS), leading to outer membrane permeabilization in a process termed self-promoted uptake. Resistance can be mediated by the addition of positively charged arabinosamine through...

  6. A connecter-like factor, CacA, links RssB/RpoS and the CpxR/CpxA two-component system in Salmonella

    Directory of Open Access Journals (Sweden)

    Kato Akinori

    2012-10-01

    Full Text Available Abstract Background Bacteria integrate numerous environmental stimuli when generating cellular responses. Increasing numbers of examples describe how one two-component system (TCS responds to signals detected by the sensor of another TCS. However, the molecular mechanisms underlying this phenomenon remain poorly defined. Results Here, we report a connector-like factor that affects the activity of the CpxR/CpxA two-component system in Salmonella enterica serovar Typhimurium. We isolated a clone that induced the expression of a cpxP-lac gene fusion from a high-copy-number plasmid pool of random Salmonella genomic fragments. A 63-amino acid protein, CacA, was responsible for the CpxA/CpxR-dependent activation of the cpxP gene. The CpxR-activated genes cpxP and spy exhibited approximately 30% and 50% reductions in transcription, respectively, in a clean cacA deletion mutant strain in comparison to wild-type. From 33 response regulator (RR deletion mutants, we identified that the RssB regulator represses cacA transcription. Substitution mutations in a conserved -10 region harboring the RNA polymerase recognition sequence, which is well conserved with a known RpoS -10 region consensus sequence, rendered the cacA promoter RpoS-independent. The CacA-mediated induction of cpxP transcription was affected in a trxA deletion mutant, which encodes thioredoxin 1, suggesting a role for cysteine thiol-disulfide exchange(s in CacA-dependent Cpx activation. Conclusions We identified CacA as an activator of the CpxR/CpxA system in the plasmid clone. We propose that CacA may integrate the regulatory status of RssB/RpoS into the CpxR/CpxA system. Future investigations are necessary to thoroughly elucidate how CacA activates the CpxR/CpxA system.

  7. Contributions of Two-Component Regulatory Systems, Alternative σ Factors, and Negative Regulators to Listeria monocytogenes Cold Adaptation and Cold Growth

    Science.gov (United States)

    Chan, Yvonne C.; Hu, Yuewei; Chaturongakul, Soraya; Files, Kali D.; Bowen, Barbara M.; Boor, Kathryn J.; Wiedmann, Martin

    2011-01-01

    The ability of Listeria monocytogenes to grow at refrigeration temperatures is critical for transmission of this foodborne pathogen. We evaluated the contributions of different transcriptional regulators and two-component regulatory systems to L. monocytogenes cold adaptation and cold growth. L. monocytogenes parent strain 10403S and selected isogenic null mutants in genes encoding four alternative σ factors (sigB, sigH, sigC, and sigL), two regulators of σB (rsbT and rsbV), two negative regulators (ctsR and hrcA), and 15 two-component response regulators were grown in brain heart infusion broth at 4°C with (i) a high-concentration starting inoculum (108 CFU/ml), (ii) a low-concentration starting inoculum (102 CFU/ml), and (iii) a high-concentration starting inoculum of cold-adapted cells. With a starting inoculum of 108 CFU/ml, null mutants in genes encoding selected alternative σ factors (ΔsigH, ΔsigC, and ΔsigL), a negative regulator (ΔctsR), regulators of σB (ΔrsbT and ΔrsbV), and selected two-component response regulators (ΔlisR, Δlmo1172, and Δlmo1060) had significantly reduced growth (P < 0.05) compared with the parent strain after 12 days at 4°C. The growth defect for ΔsigL was limited and was not confirmed by optical density (OD600) measurement data. With a starting inoculum of 102 CFU/ml and after monitoring growth at 4°C over 84 days, only the ΔctsR strain had a consistent but limited growth defect; the other mutant strains had either no growth defects or limited growth defects apparent at only one or two of the nine sampling points evaluated during the 84-day growth period (ΔsigB, ΔsigC, and Δlmo1172). With a 108 CFU/ml starting inoculum of cold-adapted cells, none of the mutant strains that had a growth defect when inoculation was performed with cells pregrown at 37°C had reduced growth as compared with the parent strain after 12 days at 4°C, suggesting a specific defect in the ability of these mutant strains to adapt to 4

  8. The VirS/VirR two-component system regulates the anaerobic cytotoxicity, intestinal pathogenicity, and enterotoxemic lethality of Clostridium perfringens type C isolate CN3685.

    Science.gov (United States)

    Ma, Menglin; Vidal, Jorge; Saputo, Juliann; McClane, Bruce A; Uzal, Francisco

    2011-01-25

    Clostridium perfringens vegetative cells cause both histotoxic infections (e.g., gas gangrene) and diseases originating in the intestines (e.g., hemorrhagic necrotizing enteritis or lethal enterotoxemia). Despite their medical and veterinary importance, the molecular pathogenicity of C. perfringens vegetative cells causing diseases of intestinal origin remains poorly understood. However, C. perfringens beta toxin (CPB) was recently shown to be important when vegetative cells of C. perfringens type C strain CN3685 induce hemorrhagic necrotizing enteritis and lethal enterotoxemia. Additionally, the VirS/VirR two-component regulatory system was found to control CPB production by CN3685 vegetative cells during aerobic infection of cultured enterocyte-like Caco-2 cells. Using an isogenic virR null mutant, the current study now reports that the VirS/VirR system also regulates CN3685 cytotoxicity during infection of Caco-2 cells under anaerobic conditions, as found in the intestines. More importantly, the virR mutant lost the ability to cause hemorrhagic necrotic enteritis in rabbit small intestinal loops. Western blot analyses demonstrated that the VirS/VirR system mediates necrotizing enteritis, at least in part, by controlling in vivo CPB production. In addition, vegetative cells of the isogenic virR null mutant were, relative to wild-type vegetative cells, strongly attenuated in their lethality in a mouse enterotoxemia model. Collectively, these results identify the first regulator of in vivo pathogenicity for C. perfringens vegetative cells causing disease originating in the complex intestinal environment. Since VirS/VirR also mediates histotoxic infections, this two-component regulatory system now assumes a global role in regulating a spectrum of infections caused by C. perfringens vegetative cells.

  9. The LovK-LovR two-component system is a regulator of the general stress pathway in Caulobacter crescentus.

    Science.gov (United States)

    Foreman, Robert; Fiebig, Aretha; Crosson, Sean

    2012-06-01

    A conserved set of regulators control the general stress response in Caulobacter crescentus, including σ(T), its anti-σ factor NepR, the anti-anti-σ factor PhyR, and the transmembrane sensor kinase PhyK. We report that the soluble histidine kinase LovK and the single-domain response regulator LovR also function within the C. crescentus general stress pathway. Our genetic data support a model in which LovK-LovR functions upstream of σ(T) by controlling the phosphorylation state and thus anti-anti-σ activity of PhyR. Transcription of lovK and lovR is independently activated by stress through a mechanism that requires sigT and phyR. Conversely, lovK and lovR function together to repress transcription of the general stress regulon. Concordant with a functional role of the LovK-LovR two-component system as a negative regulator of the general stress pathway, lovK-lovR-null mutants exhibit increased cell survival after osmotic stress, while coordinate overexpression of lovK and lovR attenuates cell survival relative to that of the wild type. Notably, lovK can complement the transcriptional and cell survival defects of a phyK-null mutant when lovR is deleted. Moreover, in this same genetic background, σ(T)-dependent transcription is activated in response to osmotic stress. This result suggests that flavin-binding LOV (light, oxygen, or voltage) histidine kinases are competent to perceive cytoplasmic signals in addition to the environmental signal blue light. We conclude that the PhyK-PhyR and LovK-LovR two-component signaling systems coordinately regulate stress physiology in C. crescentus.

  10. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Gaël Chambonnier

    2016-05-01

    Full Text Available In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming to a sessile (biofilm lifestyle. The two-component system (TCS GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs, RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response.

  11. The Hybrid Histidine Kinase LadS Forms a Multicomponent Signal Transduction System with the GacS/GacA Two-Component System in Pseudomonas aeruginosa

    Science.gov (United States)

    Redelberger, David; Fadel, Firas; Filloux, Alain; Sivaneson, Melissa; de Bentzmann, Sophie; Bordi, Christophe

    2016-01-01

    In response to environmental changes, Pseudomonas aeruginosa is able to switch from a planktonic (free swimming) to a sessile (biofilm) lifestyle. The two-component system (TCS) GacS/GacA activates the production of two small non-coding RNAs, RsmY and RsmZ, but four histidine kinases (HKs), RetS, GacS, LadS and PA1611, are instrumental in this process. RetS hybrid HK blocks GacS unorthodox HK autophosphorylation through the formation of a heterodimer. PA1611 hybrid HK, which is structurally related to GacS, interacts with RetS in P. aeruginosa in a very similar manner to GacS. LadS hybrid HK phenotypically antagonizes the function of RetS by a mechanism that has never been investigated. The four sensors are found in most Pseudomonas species but their characteristics and mode of signaling may differ from one species to another. Here, we demonstrated in P. aeruginosa that LadS controls both rsmY and rsmZ gene expression and that this regulation occurs through the GacS/GacA TCS. We additionally evidenced that in contrast to RetS, LadS signals through GacS/GacA without forming heterodimers, either with GacS or with RetS. Instead, we demonstrated that LadS is involved in a genuine phosphorelay, which requires both transmitter and receiver LadS domains. LadS signaling ultimately requires the alternative histidine-phosphotransfer domain of GacS, which is here used as an Hpt relay by the hybrid kinase. LadS HK thus forms, with the GacS/GacA TCS, a multicomponent signal transduction system with an original phosphorelay cascade, i.e. H1LadS→D1LadS→H2GacS→D2GacA. This highlights an original strategy in which a unique output, i.e. the modulation of sRNA levels, is controlled by a complex multi-sensing network to fine-tune an adapted biofilm and virulence response. PMID:27176226

  12. Enterococcal cytolysin: a novel two component peptide system that serves as a bacterial defense against eukaryotic and prokaryotic cells.

    Science.gov (United States)

    Cox, Christopher R; Coburn, Phillip S; Gilmore, Michael S

    2005-02-01

    The cytolysin is a novel, two-peptide lytic toxin produced by some strains of Enterococcus faecalis. It is toxic in animal models of enterococcal infection, and associated with acutely terminal outcome in human infection. The cytolysin exerts activity against a broad spectrum of cell types including a wide range of gram positive bacteria, eukaryotic cells such as human, bovine and horse erythrocytes, retinal cells, polymorphonuclear leukocytes, and human intestinal epithelial cells. The cytolysin likely originated as a bacteriocin involved with niche control in the complex microbial ecologies associated with eukaryotic hosts. However, additional anti-eukaryotic activities may have been selected for as enterococci adapted to eukaryotic cell predation in water or soil ecologies. Cytolytic activity requires two unique peptides that possess modifications characteristic of the lantibiotic bacteriocins, and these peptides are broadly similar in size to most cationic eukaryotic defensins. Expression of the cytolysin is tightly controlled by a novel mode of gene regulation in which the smaller peptide signals high-level expression of the cytolysin gene cluster. This complex regulation of cytolysin expression may have evolved to balance defense against eukaryotic predators with stealth.

  13. Molecular Mechanisms of Two-Component Signal Transduction.

    Science.gov (United States)

    Zschiedrich, Christopher P; Keidel, Victoria; Szurmant, Hendrik

    2016-09-25

    Two-component systems (TCS) comprising sensor histidine kinases and response regulator proteins are among the most important players in bacterial and archaeal signal transduction and also occur in reduced numbers in some eukaryotic organisms. Given their importance to cellular survival, virulence, and cellular development, these systems are among the most scrutinized bacterial proteins. In the recent years, a flurry of bioinformatics, genetic, biochemical, and structural studies have provided detailed insights into many molecular mechanisms that underlie the detection of signals and the generation of the appropriate response by TCS. Importantly, it has become clear that there is significant diversity in the mechanisms employed by individual systems. This review discusses the current knowledge on common themes and divergences from the paradigm of TCS signaling. An emphasis is on the information gained by a flurry of recent structural and bioinformatics studies.

  14. Role of functionality in two-component signal transduction: A stochastic study

    Science.gov (United States)

    Maity, Alok Kumar; Bandyopadhyay, Arnab; Chaudhury, Pinaki; Banik, Suman K.

    2014-03-01

    We present a stochastic formalism for signal transduction processes in a bacterial two-component system. Using elementary mass action kinetics, the proposed model takes care of signal transduction in terms of a phosphotransfer mechanism between the cognate partners of a two-component system, viz., the sensor kinase and the response regulator. Based on the difference in functionality of the sensor kinase, the noisy phosphotransfer mechanism has been studied for monofunctional and bifunctional two-component systems using the formalism of the linear noise approximation. Steady-state analysis of both models quantifies different physically realizable quantities, e.g., the variance, the Fano factor (variance/mean), and mutual information. The resultant data reveal that both systems reliably transfer information of extracellular environment under low external stimulus and in a high-kinase-and-phosphatase regime. We extend our analysis further by studying the role of the two-component system in downstream gene regulation.

  15. The Two-component System RsrS-RsrR Regulates the Tetrathionate Intermediate Pathway for Thiosulfate Oxidation in Acidithiobacillus caldus

    Directory of Open Access Journals (Sweden)

    Zhaobao Wang

    2016-11-01

    Full Text Available Acidithiobacillus caldus (A. caldus is a common bioleaching bacterium that possesses a sophisticated and highly efficient inorganic sulfur compound metabolism network. Thiosulfate, a central intermediate in the sulfur metabolism network of A. caldus and other sulfur-oxidizing microorganisms, can be metabolized via the tetrathionate intermediate (S4I pathway catalyzed by thiosulfate:quinol oxidoreductase (Tqo or DoxDA and tetrathionate hydrolase (TetH. In A. caldus, there is an additional two-component system called RsrS-RsrR. Since rsrS and rsrR are arranged as an operon with doxDA and tetH in the genome, we suggest that the regulation of the S4I pathway may occur via the RsrS-RsrR system. To examine the regulatory role of the two-component system RsrS-RsrR on the S4I pathway, ΔrsrR and ΔrsrS strains were constructed in A. caldus using a newly developed markerless gene knockout method. Transcriptional analysis of the tetH cluster in the wild type and mutant strains revealed positive regulation of the S4I pathway by the RsrS-RsrR system. A 19bp inverted repeat sequence (IRS, AACACCTGTTACACCTGTT located upstream of the tetH promoter was identified as the binding site for RsrR by using electrophoretic mobility shift assays (EMSAs in vitro and promoter-probe vectors in vivo. In addition, ΔrsrR and ΔrsrS strains cultivated in K2S4O6- medium exhibited significant growth differences when compared with the wild type. Transcriptional analysis indicated that the absence of rsrS or rsrR had different effects on the expression of genes involved in sulfur metabolism and signaling systems. Finally, a model of tetrathionate sensing by RsrS, signal transduction via RsrR, and transcriptional activation of tetH-doxDA was proposed to provide insights towards the understanding of sulfur metabolism in A. caldus. This study also provided a powerful genetic tool for studies in A. caldus.

  16. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Directory of Open Access Journals (Sweden)

    Grace E. Richmond

    2016-04-01

    Full Text Available The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR, causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery.

  17. The Acinetobacter baumannii Two-Component System AdeRS Regulates Genes Required for Multidrug Efflux, Biofilm Formation, and Virulence in a Strain-Specific Manner

    Science.gov (United States)

    Richmond, Grace E.; Evans, Laura P.; Anderson, Michele J.; Wand, Matthew E.; Bonney, Laura C.; Ivens, Alasdair; Chua, Kim Lee; Webber, Mark A.; Sutton, J. Mark; Peterson, Marnie L.

    2016-01-01

    ABSTRACT The opportunistic pathogen Acinetobacter baumannii is able to persist in the environment and is often multidrug resistant (MDR), causing difficulties in the treatment of infections. Here, we show that the two-component system AdeRS, which regulates the production of the AdeABC multidrug resistance efflux pump, is required for the formation of a protective biofilm in an ex vivo porcine mucosal model, which mimics a natural infection of the human epithelium. Interestingly, deletion of adeB impacted only on the ability of strain AYE to form a biofilm on plastic and only on the virulence of strain Singapore 1 for Galleria mellonella. RNA-Seq revealed that loss of AdeRS or AdeB significantly altered the transcriptional landscape, resulting in the changed expression of many genes, notably those associated with antimicrobial resistance and virulence interactions. For example, A. baumannii lacking AdeRS displayed decreased expression of adeABC, pil genes, com genes, and a pgaC-like gene, whereas loss of AdeB resulted in increased expression of pil and com genes and decreased expression of ferric acinetobactin transport system genes. These data define the scope of AdeRS-mediated regulation, show that changes in the production of AdeABC mediate important phenotypes controlled by AdeRS, and suggest that AdeABC is a viable target for antimicrobial drug and antibiofilm discovery. PMID:27094331

  18. Roles of two-component system AfsQ1/Q2 in regulating biosynthesis of the yellow-pigmented coelimycin P2 in Streptomyces coelicolor.

    Science.gov (United States)

    Chen, Shuangshuang; Zheng, Guosong; Zhu, Hong; He, Huiqi; Chen, Lei; Zhang, Weiwen; Jiang, Weihong; Lu, Yinhua

    2016-08-01

    We previously demonstrated that in Streptomyces coelicolor two-component system AfsQ1/Q2 activates the production of the yellow-colored coelimycin P2 (also named as yCPK) on glutamate-supplemented minimal medium, and the response regulator AfsQ1 could specifically bind to the intergenic region between two structural genes, cpkA and cpkD Here, a more in-depth investigation was performed to elucidate the mechanism underlying the role of AfsQ1/Q2 in regulating coelimycin P2 biosynthesis. Deletion of afsQ1/Q2 resulted in markedly decreased expression of the whole coelimycin P2 biosynthetic gene cluster. Electrophoretic mobility shift assays revealed that AfsQ1 bound only to the target site identified previously, but not to any other promoters in the gene cluster. Mutations of AfsQ1-binding motif only resulted in drastically reduced transcription of the cpkA/B/C operon (encoding three type I polyketide synthases) and intriguingly, led to enhanced expression of some coelimcyin P2 genes, particularly accA1 and scF These results suggested the direct role of AfsQ1/Q2 in regulating coelimycin production, which is directly mediated by the structural genes, but not the cluster-situated regulatory genes, and also implied that other unknown mechanisms may be involved in AfsQ1/Q2-mediated regulation of coelimycin P2 biosynthesis.

  19. The Campylobacter jejuni RacRS two-component system activates the glutamate synthesis by directly upregulating γ-glutamyltranspeptidase (GGT

    Directory of Open Access Journals (Sweden)

    Anne-Xander evan der Stel

    2015-06-01

    Full Text Available The highly conserved enzyme γ-glutamyltranspeptidase (GGT plays an important role in metabolism of glutathione and glutamine. Yet, the regulation of ggt transcription in prokaryotes is poorly understood. In the human pathogen Campylobacter jejuni, GGT is important as it contributes to persistent colonization of the gut. Here we show that the GGT activity in C. jejuni is dependent on a functional RacRS (reduced ability to colonize two-component system. Electrophoretic mobility shift and luciferase reporter assays indicate that the response regulator RacR binds to a promoter region ~80 bp upstream of the ggt transcriptional start site, which contains a recently identified RacR DNA binding consensus sequence. RacR needs to be phosphorylated to activate the transcription of the ggt gene, which is the case under low oxygen conditions in presence of alternative electron acceptors. A functional GGT and RacR are needed to allow C. jejuni to grow optimally on glutamine as sole carbon source under RacR inducing conditions. However, when additional carbon sources are present C. jejuni is capable of utilizing glutamine independently of GGT. RacR is the first prokaryotic transcription factor known to directly upregulate both the cytoplasmic (glutamine-2-oxoglutarate aminotransferase (GOGAT as well as the periplasmic (GGT production of glutamate.

  20. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae.

    Science.gov (United States)

    Yamamoto, Shouji; Mitobe, Jiro; Ishikawa, Takahiko; Wai, Sun Nyunt; Ohnishi, Makoto; Watanabe, Haruo; Izumiya, Hidemasa

    2014-01-01

    In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.

  1. Functional characterization of the histidine kinase of the E. coli two-component signal transduction system AtoS-AtoC.

    Science.gov (United States)

    Filippou, Panagiota S; Kasemian, Lucy D; Panagiotidis, Christos A; Kyriakidis, Dimitrios A

    2008-09-01

    The Escherichia coli AtoS-AtoC two-component signal transduction system regulates the expression of the atoDAEB operon genes, whose products are required for short-chain fatty acid catabolism. In this study purified his-tagged wild-type and mutant AtoS proteins were used to prove that these proteins are true sensor kinases. The phosphorylated residue was identified as the histidine-398, which was located in a conserved Eta-box since AtoS carrying a mutation at this site failed to phosphorylate. This inability to phosphorylate was not due to gross structural alterations of AtoS since the H398L mutant retained its capability to bind ATP. Furthermore, the H398L mutant AtoS was competent to catalyze the trans-phosphorylation of an AtoS G-box (G565A) mutant protein which otherwise failed to autophosphorylate due to its inability to bind ATP. The formation of homodimers between the various AtoS proteins was also shown by cross-linking experiments both in vitro and in vivo.

  2. The CLO3403/CLO3404 two-component system of Clostridium botulinum E1 Beluga is important for cold shock response and growth at low temperatures.

    Science.gov (United States)

    Mascher, Gerald; Derman, Yagmur; Kirk, David G; Palonen, Eveliina; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    In order to survive a temperature downshift, bacteria have to sense the changing environment and adjust their metabolism and structure. Two-component signal transduction systems (TCSs) play a central role in sensing and responding to many different environmental stimuli. Although the nonproteolytic (group II) Clostridium botulinum represents a major hazard in chilled foods, the cold adaption mechanisms of group II C. botulinum organisms are not known. Here, we show that the CLO3403/CLO3404 TCS of C. botulinum E1 Beluga is involved in the cold shock response and growth at 12°C. Cold shock induced the expression of the genes encoding the histidine kinase (clo3403) and the response regulator (clo3404) by more than 100-fold after 5 h relative to their expression in a nonshocked culture at the corresponding time point. The involvement of CLO3403/CLO3404 in growth at low temperature was demonstrated by impaired growth of the insertional clo3403 and clo3404 knockout mutants at 12°C compared to the growth of the wild-type culture. Additionally, the inactivation of clo3403 had a negative effect on motility. The growth efficiency at 12°C of the TCS mutants and the motility of the kinase mutants were restored by introducing a plasmid harboring the operon of the CLO3403/CLO3404 TCS. The results suggest that the CLO3403/CLO3404 TCS is important for the cold tolerance of C. botulinum E1 Beluga.

  3. The Myxococcus xanthus Two-Component System CorSR Regulates Expression of a Gene Cluster Involved in Maintaining Copper Tolerance during Growth and Development

    Science.gov (United States)

    Sánchez-Sutil, María Celestina; Pérez, Juana; Gómez-Santos, Nuria; Shimkets, Lawrence J.; Moraleda-Muñoz, Aurelio; Muñoz-Dorado, José

    2013-01-01

    Myxococcus xanthus is a soil-dwelling member of the δ–Proteobacteria that exhibits a complex developmental cycle upon starvation. Development comprises aggregation and differentiation into environmentally resistant myxospores in an environment that includes fluctuations in metal ion concentrations. While copper is essential for M. xanthus cells because several housekeeping enzymes use it as a cofactor, high copper concentrations are toxic. These opposing effects force cells to maintain a tight copper homeostasis. A plethora of paralogous genes involved in copper detoxification, all of which are differentially regulated, have been reported in M. xanthus. The use of in-frame deletion mutants and fusions with the reporter gene lacZ has allowed the identification of a two-component system, CorSR, that modulates the expression of an operon termed curA consisting of nine genes whose expression slowly increases after metal addition, reaching a plateau. Transcriptional regulation of this operon is complex because transcription can be initiated at different promoters and by different types of regulators. These genes confer copper tolerance during growth and development. Copper induces carotenoid production in a ΔcorSR mutant at lower concentrations than with the wild-type strain due to lack of expression of a gene product resembling subunit III of cbb3-type cytochrome c oxidase. This data may explain why copper induces carotenoid biosynthesis at suboptimal rather than optimal growth conditions in wild-type strains. PMID:23874560

  4. Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system.

    Science.gov (United States)

    Petit-Härtlein, Isabelle; Rome, Kevin; de Rosny, Eve; Molton, Florian; Duboc, Carole; Gueguen, Erwan; Rodrigue, Agnès; Covès, Jacques

    2015-12-01

    The ZraSR system belongs to the family of TCSs (two-component signal transduction systems). In Escherichia coli, it was proposed to participate in zinc balance and to protect cytoplasmic zinc overload by sequestering this metal ion into the periplasm. This system controls the expression of the accessory protein ZraP that would be a periplasmic zinc scavenger. ZraPSR is functionally homologous with CpxPAR that integrates signals of envelope perturbation, including misfolded periplasmic proteins. The auxiliary periplasmic regulator CpxP inhibits the Cpx pathway by interacting with CpxA. Upon envelope stress sensing, the inhibitory function of CpxP is relieved, resulting in CpxR activation. Similarly to CpxPAR, ZraPSR probably plays a role in envelope stress response as a zinc-dependent chaperone activity was demonstrated for ZraP in Salmonella. We have purified ZraP from E. coli and shown that it is an octamer containing four interfacial metal-binding sites contributing to dimer stability. These sites are located close to the N-terminus, whereas the C-terminus is involved in polymerization of the protein to form a tetramer of dimers. In vitro, ZraP binds copper with a higher affinity than zinc and displays chaperone properties partially dependent on zinc binding. In vivo, zinc-bound ZraP is a repressor of the expression of the zraPSR operon. However, we have demonstrated that none of the Zra proteins are involved in zinc or copper resistance. We propose an integrated mechanism in which zinc is a marker of envelope stress perturbation and ZraPSR TCS is a sentinel sensing and responding to zinc entry into the periplasm.

  5. Two-component PhoB-PhoR regulatory system and ferric uptake regulator sense phosphate and iron to control virulence genes in type III and VI secretion systems of Edwardsiella tarda.

    Science.gov (United States)

    Chakraborty, Smarajit; Sivaraman, J; Leung, Ka Yin; Mok, Yu-Keung

    2011-11-11

    Inorganic phosphate (P(i)) and iron are essential nutrients that are depleted by vertebrates as a protective mechanism against bacterial infection. This depletion, however, is sensed by some pathogens as a signal to turn on the expression of virulence genes. Here, we show that the PhoB-PhoR two-component system senses changes in P(i) concentration, whereas the ferric uptake regulator (Fur) senses changes in iron concentration in Edwardsiella tarda PPD130/91 to regulate the expression of type III and VI secretion systems (T3SS and T6SS) through an E. tarda secretion regulator, EsrC. In sensing low P(i) concentration, PhoB-PhoR autoregulates and activates the phosphate-specific transport operon, pstSCAB-phoU, by binding directly to the Pho box in the promoters of phoB and pstS. PhoB also binds with EsrC simultaneously on the promoter of an E. tarda virulence protein, evpA, to regulate directly the transcription of genes from T6SS. In addition, PhoB requires and interacts with PhoU to activate esrC and suppress fur indirectly through unidentified regulators. Fur, on the other hand, senses high iron concentration and binds directly to the Fur box in the promoter of evpP to inhibit EsrC binding to the same region. In addition, Fur suppresses transcription of phoB, pstSCAB-phoU, and esrC indirectly via unidentified regulators, suggesting negative cross-talk with the Pho regulon. Physical interactions exist between Fur and PhoU and between Fur and EsrC. Our findings suggest that T3SS and T6SS may carry out distinct roles in the pathogenicity of E. tarda by responding to different environmental factors.

  6. The essential yhcSR two-component signal transduction system directly regulates the lac and opuCABCD operons of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Meiying Yan

    Full Text Available Our previous studies suggested that the essential two-component signal transduction system, YhcSR, regulates the opuCABCD operon at the transcriptional level, and the Pspac-driven opuCABCD partially complements the lethal effects of yhcS antisense RNA expression in Staphylococcus aureus. However, the reason why yhcSR regulon is required for growth is still unclear. In this report, we present that the lac and opuC operons are directly transcriptionally regulated by YhcSR. Using real-time RT-PCR we showed that the down-regulation of yhcSR expression affected the transcription of lacA encoding galactose-6-phosphotase isomerase subunit LacA, and opuCA encoding a subunit of a glycine betaine/carnitine/choline ABC transporter. Promoter-lux reporter fusion studies further confirmed the transcriptional regulation of lac by YhcSR. Gel shift assays revealed that YhcR binds to the promoter regions of the lac and opuC operons. Moreover, the Pspac-driven lacABC expression in trans was able to partially complement the lethal effect of induced yhcS antisense RNA. Likewise, the Pspac-driven opuCABCD expression in trans complemented the growth defect of S. aureus in a high osmotic strength medium during the depletion of YhcSR. Taken together, the above data indicate that the yhcSR system directly regulates the expression of lac and opuC operons, which, in turn, may be partially associated with the essentiality of yhcSR in S. aureus. These results provide a new insight into the biological functions of the yhcSR, a global regulator.

  7. A Two-component NADPH Oxidase (NOX)-like System in Bacteria Is Involved in the Electron Transfer Chain to the Methionine Sulfoxide Reductase MsrP.

    Science.gov (United States)

    Juillan-Binard, Céline; Picciocchi, Antoine; Andrieu, Jean-Pierre; Dupuy, Jerome; Petit-Hartlein, Isabelle; Caux-Thang, Christelle; Vivès, Corinne; Nivière, Vincent; Fieschi, Franck

    2017-02-10

    MsrPQ is a newly identified methionine sulfoxide reductase system found in bacteria, which appears to be specifically involved in the repair of periplasmic proteins oxidized by hypochlorous acid. It involves two proteins: a periplasmic one, MsrP, previously named YedY, carrying out the Msr activity, and MsrQ, an integral b-type heme membrane-spanning protein, which acts as the specific electron donor to MsrP. MsrQ, previously named YedZ, was mainly characterized by bioinformatics as a member of the FRD superfamily of heme-containing membrane proteins, which include the NADPH oxidase proteins (NOX/DUOX). Here we report a detailed biochemical characterization of the MsrQ protein from Escherichia coli We optimized conditions for the overexpression and membrane solubilization of an MsrQ-GFP fusion and set up a purification scheme allowing the production of pure MsrQ. Combining UV-visible spectroscopy, heme quantification, and site-directed mutagenesis of histidine residues, we demonstrated that MsrQ is able to bind two b-type hemes through the histidine residues conserved between the MsrQ and NOX protein families. In addition, we identify the E. coli flavin reductase Fre, which is related to the dehydrogenase domain of eukaryotic NOX enzymes, as an efficient cytosolic electron donor to the MsrQ heme moieties. Cross-linking experiments as well as surface Plasmon resonance showed that Fre interacts with MsrQ to form a specific complex. Taken together, these data support the identification of the first prokaryotic two-component protein system related to the eukaryotic NOX family and involved in the reduction of periplasmic oxidized proteins.

  8. The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence.

    Science.gov (United States)

    Lee, Sang-Won; Jeong, Kyu-Sik; Han, Sang-Wook; Lee, Seung-Eun; Phee, Bong-Kwan; Hahn, Tae-Ryong; Ronald, Pamela

    2008-03-01

    The rice pathogen recognition receptor, XA21, confers resistance to Xanthomonas oryzae pv. oryzae strains producing the type one system-secreted molecule, AvrXA21. X. oryzae pv. oryzae requires a regulatory two-component system (TCS) called RaxRH to regulate expression of eight rax (required for AvrXA21 activity) genes and to sense population cell density. To identify other key components in this critical regulatory circuit, we assayed proteins expressed in a raxR gene knockout strain. This survey led to the identification of the phoP gene encoding a response regulator that is up-regulated in the raxR knockout strain. Next we generated a phoP knockout strain and found it to be impaired in X. oryzae pv. oryzae virulence and no longer able to activate the response regulator HrpG (hypersensitive reaction and pathogenicity G) in response to low levels of Ca2+. The impaired virulence of the phoP knockout strain can be partially complemented by constitutive expression of hrpG, indicating that PhoP controls a key aspect of X. oryzae pv. oryzae virulence through regulation of hrpG. A gene encoding the cognate putative histidine protein kinase, phoQ, was also isolated. Growth curve analysis revealed that AvrXA21 activity is impaired in a phoQ knockout strain as reflected by enhanced growth of this strain in rice lines carrying XA21. These results suggest that the X. oryzae pv. oryzae PhoPQ TCS functions in virulence and in the production of AvrXA21 in partnership with RaxRH.

  9. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Miki Kawada-Matsuo

    Full Text Available Staphylococcus aureus uses two-component systems (TCSs to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE regulated by BraRS and one transporter (VraFG regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.

  10. Two-component signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502.

    Directory of Open Access Journals (Sweden)

    Zhen Zhang

    2013-03-01

    Full Text Available Blocking neurotransmission, botulinum neurotoxin is the most poisonous biological substance known to mankind. Despite its infamy as the scourge of the food industry, the neurotoxin is increasingly used as a pharmaceutical to treat an expanding range of muscle disorders. Whilst neurotoxin expression by the spore-forming bacterium Clostridium botulinum appears tightly regulated, to date only positive regulatory elements, such as the alternative sigma factor BotR, have been implicated in this control. The identification of negative regulators has proven to be elusive. Here, we show that the two-component signal transduction system CBO0787/CBO0786 negatively regulates botulinum neurotoxin expression. Single insertional inactivation of cbo0787 encoding a sensor histidine kinase, or of cbo0786 encoding a response regulator, resulted in significantly elevated neurotoxin gene expression levels and increased neurotoxin production. Recombinant CBO0786 regulator was shown to bind to the conserved -10 site of the core promoters of the ha and ntnh-botA operons, which encode the toxin structural and accessory proteins. Increasing concentration of CBO0786 inhibited BotR-directed transcription from the ha and ntnh-botA promoters, demonstrating direct transcriptional repression of the ha and ntnh-botA operons by CBO0786. Thus, we propose that CBO0786 represses neurotoxin gene expression by blocking BotR-directed transcription from the neurotoxin promoters. This is the first evidence of a negative regulator controlling botulinum neurotoxin production. Understanding the neurotoxin regulatory mechanisms is a major target of the food and pharmaceutical industries alike.

  11. The two-component signal transduction system ArlRS regulates Staphylococcus epidermidis biofilm formation in an ica-dependent manner.

    Directory of Open Access Journals (Sweden)

    Yang Wu

    Full Text Available Due to its ability to form biofilms on medical devices, Staphylococcus epidermidis has emerged as a major pathogen of nosocomial infections. In this study, we investigated the role of the two-component signal transduction system ArlRS in regulating S. epidermidis biofilm formation. An ArlRS-deficient mutant, WW06, was constructed using S. epidermidis strain 1457 as a parental strain. Although the growth curve of WW06 was similar to that of SE1457, the mutant strain was unable to form biofilms in vitro. In a rabbit subcutaneous infection model, sterile disks made of polymeric materials were implanted subcutaneously followed with inoculation of WW06 or SE1457. The viable bacteria cells of WW06 recovered from biofilms on the embedded disks were much lower than that of SE1457. Complementation of arlRS genes expression from plasmid in WW06 restored biofilm-forming phenotype both in vivo and in vitro. WW06 maintained the ability to undergo initial attachment. Transcription levels of several genes involved in biofilm formation, including icaADBC, sigB, and sarA, were decreased in WW06, compared to SE1457; and icaR expression was increased in WW06, detected by real-time reverse-transcription PCR. The biofilm-forming phenotype was restored by overexpressing icaADBC in WW06 but not by overexpressing sigB, indicating that ArlRS regulates biofilm formation through the regulation of icaADBC. Gel shift assay showed that ArlR can bind to the promoter region of the ica operon. In conclusion, ArlRS regulates S. epidermidis biofilm formation in an ica-dependent manner, distinct from its role in S. aureus.

  12. A survey of HK, HPt, and RR domains and their organization in two-component systems and phosphorelay proteins of organisms with fully sequenced genomes

    Directory of Open Access Journals (Sweden)

    Baldiri Salvado

    2015-08-01

    Full Text Available Two Component Systems and Phosphorelays (TCS/PR are environmental signal transduction cascades in prokaryotes and, less frequently, in eukaryotes. The internal domain organization of proteins and the topology of TCS/PR cascades play an important role in shaping the responses of the circuits. It is thus important to maintain updated censuses of TCS/PR proteins in order to identify the various topologies used by nature and enable a systematic study of the dynamics associated with those topologies. To create such a census, we analyzed the proteomes of 7,609 organisms from all domains of life with fully sequenced and annotated genomes. To begin, we survey each proteome searching for proteins containing domains that are associated with internal signal transmission within TCS/PR: Histidine Kinase (HK, Response Regulator (RR and Histidine Phosphotranfer (HPt domains, and analyze how these domains are arranged in the individual proteins. Then, we find all types of operon organization and calculate how much more likely are proteins that contain TCS/PR domains to be coded by neighboring genes than one would expect from the genome background of each organism. Finally, we analyze if the fusion of domains into single TCS/PR proteins is more frequently observed than one might expect from the background of each proteome. We find 50 alternative ways in which the HK, HPt, and RR domains are observed to organize into single proteins. In prokaryotes, TCS/PR coding genes tend to be clustered in operons. 90% of all proteins identified in this study contain just one of the three domains, while 8% of the remaining proteins combine one copy of an HK, a RR, and/or an HPt domain. In eukaryotes, 25% of all TCS/PR proteins have more than one domain. These results might have implications for how signals are internally transmitted within TCS/PR cascades. These implications could explain the selection of the various designs in alternative circumstances.

  13. Three distinct two-component systems are involved in resistance to the class I bacteriocins, Nukacin ISK-1 and nisin A, in Staphylococcus aureus.

    Science.gov (United States)

    Kawada-Matsuo, Miki; Yoshida, Yuuma; Zendo, Takeshi; Nagao, Junichi; Oogai, Yuichi; Nakamura, Yasunori; Sonomoto, Kenji; Nakamura, Norifumi; Komatsuzawa, Hitoshi

    2013-01-01

    Staphylococcus aureus uses two-component systems (TCSs) to adapt to stressful environmental conditions. To colonize a host, S. aureus must resist bacteriocins produced by commensal bacteria. In a comprehensive analysis using individual TCS inactivation mutants, the inactivation of two TCSs, graRS and braRS, significantly increased the susceptibility to the class I bacteriocins, nukacin ISK-1 and nisin A, and inactivation of vraSR slightly increased the susceptibility to nukacin ISK-1. In addition, two ABC transporters (BraAB and VraDE) regulated by BraRS and one transporter (VraFG) regulated by GraRS were associated with resistance to nukacin ISK-1 and nisin A. We investigated the role of these three TCSs of S. aureus in co-culture with S. warneri, which produces nukacin ISK-1, and Lactococcus lactis, which produces nisin A. When co-cultured with S. warneri or L. lactis, the braRS mutant showed a significant decrease in its population compared with the wild-type, whereas the graRS and vraSR mutants showed slight decreases. Expression of vraDE was elevated significantly in S. aureus co-cultured with nisin A/nukacin ISK-1-producing strains. These results suggest that three distinct TCSs are involved in the resistance to nisin A and nukacin ISK-1. Additionally, braRS and its related transporters played a central role in S. aureus survival in co-culture with the strains producing nisin A and nukacin ISK-1.

  14. The cold-induced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in group I Clostridium botulinum ATCC 3502 cold tolerance.

    Science.gov (United States)

    Dahlsten, Elias; Zhang, Zhen; Somervuo, Panu; Minton, Nigel P; Lindström, Miia; Korkeala, Hannu

    2014-01-01

    The two-component system CBO0366/CBO0365 was recently demonstrated to have a role in cold tolerance of group I Clostridium botulinum ATCC 3502. The mechanisms under its control, ultimately resulting in increased sensitivity to low temperature, are unknown. A transcriptomic analysis with DNA microarrays was performed to identify the differences in global gene expression patterns of the wild-type ATCC 3502 and a derivative mutant with insertionally inactivated cbo0365 at 37 and 15°C. Altogether, 150 or 141 chromosomal coding sequences (CDSs) were found to be differently expressed in the cbo0365 mutant at 37 or 15°C, respectively, and thus considered to be under the direct or indirect transcriptional control of the response regulator CBO0365. Of the differentially expressed CDSs, expression of 141 CDSs was similarly affected at both temperatures investigated, suggesting that the putative CBO0365 regulon was practically not affected by temperature. The regulon involved genes related to acetone-butanol-ethanol (ABE) fermentation, motility, arsenic resistance, and phosphate uptake and transport. Deteriorated growth at 17°C was observed for mutants with disrupted ABE fermentation pathway components (crt, bcd, bdh, and ctfA), arsenic detoxifying machinery components (arsC and arsR), or phosphate uptake mechanism components (phoT), suggesting roles for these mechanisms in cold tolerance of group I C. botulinum. Electrophoretic mobility shift assays showed recombinant CBO0365 to bind to the promoter regions of crt, arsR, and phoT, as well as to the promoter region of its own operon, suggesting direct DNA-binding transcriptional activation or repression as a means for CBO0365 in regulating these operons. The results provide insight to the mechanisms group I C. botulinum utilizes in coping with cold.

  15. From high-temperature orientationally disordered mixed crystals to low-temperature complex formation in the two-component system (CH3)3CBr + Cl3CBr.

    Science.gov (United States)

    Barrio, María; Negrier, Philippe; Tamarit, Josep Ll; Mondieig, Denise

    2011-02-24

    The phase diagram of the two-component systems (CH(3))(3)CBr + Cl(3)CBr has been experimentally determined by means of differential scanning calorimetry and X-ray powder diffraction techniques from the low-temperature ordered phases to the liquid state. Before melting, both components have the same orientationally disordered (OD) face-centered cubic (FCC) and rhombohedral (R) phases, and the two-phase equilibria [FCC + L] and [R + FCC] are accounted for by means of the existence of an isomorphic relationship between the OD phases of pure compounds. The thermodynamic assessment of such equilibria enables us to get the excess properties of the involved OD phases and to rationalize the existence of a maximum and a minimum in the [R + FCC] equilibrium on the basis of the contribution of the entropic term in the excess Gibbs energy function. At low temperature, two complexes, (CH(3))(3)CBr:Cl(3)CBr (1:1) and (CH(3))(3)CBr:2Cl(3)CBr (1:2), appear. The structures of 1:1 and 1:2 complexes have been determined to be monoclinic (P2(1)/n, c, Z = 4) and hexagonal (P6(3), Z = 6). Within both "ordered" structures, the Cl(3)CBr entities of the asymmetric unit were found to be disordered so that sites have fractional occupancies of 0.75 and 0.25 for Cl and Br atoms, in the same way that it occurs for the low-temperature monoclinic (C2/c, Z = 32) phase of Cl(3)CBr. Finally, the existence of complexes is connected with the special intermolecular interactions appearing between a methyl group and a halogen, as previously inferred by Calvet et al. [T. Calvet et al. J. Chem. Phys. 1999, 110, 4841].

  16. The ABC transporter HrtAB confers resistance to hemin toxicity and is regulated in a hemin-dependent manner by the ChrAS two-component system in Corynebacterium diphtheriae.

    Science.gov (United States)

    Bibb, Lori A; Schmitt, Michael P

    2010-09-01

    Corynebacterium diphtheriae, the causative agent of the severe respiratory disease diphtheria, utilizes hemin and hemoglobin as iron sources for growth in iron-depleted environments. Because of the toxicity of high levels of hemin and iron, these compounds are often tightly regulated in bacterial systems. In this report, we identify and characterize the C. diphtheriae hrtAB genes, which encode a putative ABC type transporter involved in conferring resistance to the toxic effects of hemin. Deletion of the hrtAB genes in C. diphtheriae produced increased sensitivity to hemin, which was complemented by a plasmid harboring the cloned hrtAB locus. The HrtAB system was not involved in the uptake and use of hemin as an iron source. The hrtAB genes are located on the C. diphtheriae genome upstream from the chrSA operon, which encodes a previously characterized two-component signal transduction system that regulates gene expression in a heme-dependent manner. The hrtB promoter is activated by the ChrAS system in the presence of hemin or hemoglobin, and mutations in the chrSA genes abolish heme-activated expression from the hrtB promoter. It was also observed that transcription from the hrtB promoter is reduced in a dtxR deletion mutant, suggesting that DtxR is required for optimal expression of hrtAB. Previous studies proposed that the ChrS sensor kinase may be responsive to an environmental signal, such as hemin. We show that specific point mutations in the ChrS N-terminal transmembrane domain result in a reduced ability to activate the hrtB promoter in the presence of a heme source, suggesting that this putative sensor region is essential for the detection of a signal produced in response to hemin exposure. This study shows that the HrtAB system is required for protection from hemin toxicity and that expression of the hrtAB genes is regulated by the ChrAS two-component system. This study demonstrates a direct correlation between the detection of heme or a heme

  17. Supramolecular bacterial systems

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found

  18. Post-transcriptional control of the Escherichia coli PhoQ-PhoP two-component system by multiple sRNAs involves a novel pairing region of GcvB.

    Directory of Open Access Journals (Sweden)

    Audrey Coornaert

    Full Text Available PhoQ/PhoP is a central two-component system involved in magnesium homeostasis, pathogenicity, cell envelope composition, and acid resistance in several bacterial species. The small RNA GcvB is identified here as a novel direct regulator of the synthesis of PhoQ/PhoP in Escherichia coli, and this control relies on a novel pairing region of GcvB. After MicA, this is the second Hfq-dependent small RNA that represses expression of the phoPQ operon. Both MicA and GcvB bind phoPQ mRNA in vivo and in vitro around the translation initiation region of phoP. Binding of either small RNA is sufficient to inhibit ribosome binding and induce mRNA degradation. Surprisingly, however, MicA and GcvB have different effects on the levels of the PhoP protein and therefore on the expression of the PhoP regulon. These results highlight the complex connections between small RNAs and transcriptional regulation networks in bacteria.

  19. The two-component system CpxR/A represses the expression of Salmonella virulence genes by affecting the stability of the transcriptional regulator HilD

    Science.gov (United States)

    De la Cruz, Miguel A.; Pérez-Morales, Deyanira; Palacios, Irene J.; Fernández-Mora, Marcos; Calva, Edmundo; Bustamante, Víctor H.

    2015-01-01

    Salmonella enterica can cause intestinal or systemic infections in humans and animals mainly by the presence of pathogenicity islands SPI-1 and SPI-2, containing 39 and 44 genes, respectively. The AraC-like regulator HilD positively controls the expression of the SPI-1 genes, as well as many other Salmonella virulence genes including those located in SPI-2. A previous report indicates that the two-component system CpxR/A regulates the SPI-1 genes: the absence of the sensor kinase CpxA, but not the absence of its cognate response regulator CpxR, reduces their expression. The presence and absence of cell envelope stress activates kinase and phosphatase activities of CpxA, respectively, which in turn controls the level of phosphorylated CpxR (CpxR-P). In this work, we further define the mechanism for the CpxR/A-mediated regulation of SPI-1 genes. The negative effect exerted by the absence of CpxA on the expression of SPI-1 genes was counteracted by the absence of CpxR or by the absence of the two enzymes, AckA and Pta, which render acetyl-phosphate that phosphorylates CpxR. Furthermore, overexpression of the lipoprotein NlpE, which activates CpxA kinase activity on CpxR, or overexpression of CpxR, repressed the expression of SPI-1 genes. Thus, our results provide several lines of evidence strongly supporting that the absence of CpxA leads to the phosphorylation of CpxR via the AckA/Pta enzymes, which represses both the SPI-1 and SPI-2 genes. Additionally, we show that in the absence of the Lon protease, which degrades HilD, the CpxR-P-mediated repression of the SPI-1 genes is mostly lost; moreover, we demonstrate that CpxR-P negatively affects the stability of HilD and thus decreases the expression of HilD-target genes, such as hilD itself and hilA, located in SPI-1. Our data further expand the insight on the different regulatory pathways for gene expression involving CpxR/A and on the complex regulatory network governing virulence in Salmonella. PMID:26300871

  20. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription.

    Science.gov (United States)

    Carpenter, Beth M; West, Abby L; Gancz, Hanan; Servetas, Stephanie L; Pich, Oscar Q; Gilbreath, Jeremy J; Hallinger, Daniel R; Forsyth, Mark H; Merrell, D Scott; Michel, Sarah L J

    2015-01-01

    Helicobacter pylori NikR (HpNikR) is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA ) previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, ΔnikR and ΔarsS single mutants as well as a ΔarsS/nikR double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct "cross-talk" between HpArsRS and HpNikR at

  1. Crosstalk between the HpArsRS two-component system and HpNikR is necessary for maximal activation of urease transcription

    Directory of Open Access Journals (Sweden)

    Beth M Carpenter

    2015-06-01

    Full Text Available Helicobacter pylori NikR (HpNikR is a nickel dependent transcription factor that directly regulates a number of genes in this important gastric pathogen. One key gene that is regulated by HpNikR is ureA, which encodes for the urease enzyme. In vitro DNA binding studies of HpNikR with the ureA promoter (PureA previously identified a recognition site that is required for high affinity protein/DNA binding. As a means to determine the in vivo significance of this recognition site and to identify the key DNA sequence determinants required for ureA transcription, herein, we have translated these in vitro results to analysis directly within H. pylori. Using a series of GFP reporter constructs in which the PureA DNA target was altered, in combination with mutant H. pylori strains deficient in key regulatory proteins, we confirmed the importance of the previously identified HpNikR recognition sequence for HpNikR-dependent ureA transcription. Moreover, we identified a second factor, the HpArsRS two-component system that was required for maximum transcription of ureA. While HpArsRS is known to regulate ureA in response to acid shock, it was previously thought to function independently of HpNikR and to have no role at neutral pH. However, our qPCR analysis of ureA expression in wildtype, nikR and arsS single mutants as well as a nikR/arsS double mutant strain background showed reduced basal level expression of ureA when arsS was absent. Additionally, we determined that both HpNikR and HpArsRS were necessary for maximal expression of ureA under nickel, low pH and combined nickel and low pH stresses. In vitro studies of HpArsR-P with the PureA DNA target using florescence anisotropy confirmed a direct protein/DNA binding interaction. Together, these data support a model in which HpArsRS and HpNikR cooperatively interact to regulate ureA transcription under various environmental conditions. This is the first time that direct ‘cross-talk’ between Hp

  2. The two-component system CpxRA negatively regulates the Locus of Enterocyte Effacement of enterohemorrhagic Escherichia coli involving sigma 32 and Lon protease

    Directory of Open Access Journals (Sweden)

    MIGUEL A. eDE LA CRUZ

    2016-02-01

    Full Text Available Enterohemorrhagic Escherichia coli (EHEC is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE, which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system consisting of a sensor histidine kinase (CpxA and a cytoplasmic response regulator (CpxR. In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32, which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC’s ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators.

  3. Transcriptional profiling of the two-component regulatory system VraSR in Staphylococcus aureus with low-level vancomycin resistance.

    Science.gov (United States)

    Chen, Hongbin; Xiong, Zhujia; Liu, Kuoyue; Li, Shuguang; Wang, Ruobing; Wang, Xiaojuan; Zhang, Yawei; Wang, Hui

    2016-05-01

    The objective of this study was to comprehensively identify the target genes regulated by the two-component regulatory system VraSR in Staphylococcus aureus and to clarify the role of VraSR in low-level vancomycin resistance. Expression of vraS was determined by real-time quantitative reverse transcriptase PCR (qRT-PCR). A clinical heterogeneous vancomycin-intermediate S. aureus (hVISA) strain B6D and a vancomycin-intermediate S. aureus (VISA) strain D7 that was induced from a meticillin-resistant S. aureus strain were selected to construct vraSR null mutants by allelic replacement. The vraSR-complemented strain B6D_c was also constructed by allelic replacement. Genes differentially expressed in the wild-type, vraSR null mutant and complemented strains were detected using RNA-Seq and were validated by qRT-PCR. Compared with vancomycin-susceptible S. aureus strains, expression of vraS was upregulated in all four isogenic hVISA strains. Vancomycin minimum inhibitory concentrations (MICs) in the vraSR null mutants B6D-ΔvraSR and D7-ΔvraSR were significantly lower than in the wild-type strains B6D and D7 and the complemented strain B6D_c. RNA-Seq and qRT-PCR data showed that expression of genes encoding FmtA protein, foldase protein PrsA, capsular polysaccharide biosynthesis glycosyltransferase, TcaA, a putative membrane protein, and six hypothetical proteins was down regulated in both vraSR-null mutants B6D-ΔvraSR and D7-ΔvraSR. Most of these differentially expressed proteins are involved in cell wall biosynthesis, which is associated with vancomycin resistance in S. aureus. In conclusion, VraSR plays an important role in S. aureus strains with low-level vancomycin resistance. PrsA, FmtA, glycosyltransferase and TcaA are regulated directly or indirectly by VraSR.

  4. The Two-Component System CpxRA Negatively Regulates the Locus of Enterocyte Effacement of Enterohemorrhagic Escherichia coli Involving σ32 and Lon protease

    Science.gov (United States)

    De la Cruz, Miguel A.; Morgan, Jason K.; Ares, Miguel A.; Yáñez-Santos, Jorge A.; Riordan, James T.; Girón, Jorge A.

    2016-01-01

    Enterohemorrhagic Escherichia coli (EHEC) is a significant cause of serious human gastrointestinal disease worldwide. EHEC strains contain a pathogenicity island called the locus of enterocyte effacement (LEE), which encodes virulence factors responsible for damaging the gut mucosa. The Cpx envelope stress response of E. coli is controlled by a two-component system (TCS) consisting of a sensor histidine kinase (CpxA) and a cytoplasmic response regulator (CpxR). In this study, we investigated the role of CpxRA in the expression of LEE-encoded virulence factors of EHEC. We found that a mutation in cpxA significantly affected adherence of EHEC to human epithelial cells. Analysis of this mutant revealed the presence of high levels of CpxR which repressed transcription of grlA and ler, the main positive virulence regulators of the LEE, and influenced negatively the production of the type 3 secretion system–associated EspABD translocator proteins. It is known that CpxR activates rpoH (Sigma factor 32), which in turns activates transcription of the lon protease gene. We found that transcription levels of ler and grlA were significantly increased in the lon and cpxA lon mutants suggesting that lon is involved in down-regulating LEE genes. In addition, the Galleria mellonella model of infection was used to analyze the effect of the loss of the cpx and lon genes in EHEC's ability to kill the larvae. We found that the cpxA mutant was significantly deficient at killing the larvae however, the cpxA lon mutant which overexpresses LEE genes in vitro, was unable to kill the larvae, suggesting that virulence in the G. mellonella model is T3SS independent and that CpxA modulates virulence through a yet unknown EHEC-specific factor. Our data provides new insights and broadens our scope into the complex regulatory network of the LEE in which the CpxA sensor kinase plays an important role in a cascade involving both global and virulence regulators. PMID:26904510

  5. Bacterial Histidine Kinases as Novel Antibacterial Drug Targets

    NARCIS (Netherlands)

    Bem, A.E.; Velikova, N.R.; Pellicer, M.T.; Baarlen, van P.; Marina, A.; Wells, J.M.

    2015-01-01

    Bacterial histidine kinases (HKs) are promising targets for novel antibacterials. Bacterial HKs are part of bacterial two-component systems (TCSs), the main signal transduction pathways in bacteria, regulating various processes including virulence, secretion systems and antibiotic resistance. In thi

  6. 两部件串联维修系统解的定性分析%The Qualitative Analysis of a Solution of a Series Maintenance System with Two Components

    Institute of Scientific and Technical Information of China (English)

    郭卫华; 杨明增

    2003-01-01

    In this paper, firstly we study the series maintenance system with two components, obtain its exsistence and uniqueness of a dynamic state nonnegative solution by strongly continuous semigroups of operators theory. Then we prove that 0 is the eigenvalue of the system's host operators, and finally we study the eigenvector of the eigenvalue 0.

  7. A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae.

    Science.gov (United States)

    Guenzi, E; Gasc, A M; Sicard, M A; Hakenbeck, R

    1994-05-01

    Penicillin resistance in Streptococcus pneumoniae has been attributed so far to the production of penicillin-binding protein (PBP) variants with decreased affinities for beta-lactam antibiotics. Cefotaxime-resistant laboratory mutants, selected after several steps on increasing concentrations of this beta-lactam, become deficient in transformation as well. A DNA fragment conferring both cefotaxime resistance and transformation deficiency was isolated and cloned from the mutant C306. The cefotaxime resistance associated with this resistance determinant was not accompanied with apparent changes in PBP properties, and it mapped on the chromosome distinct from the known resistance determinants, genes encoding PBP2x, PBP1a or PBP2b. Determination of a 2265 bp DNA sequence of the resistance determinant revealed two open reading frames, ciaR and ciaH, whose deduced amino acid sequence identified the corresponding proteins as the response regulator and histidine kinase receptor, respectively (members of the two families of bacterial signal-transducing proteins). Two hydrophobic peptide regions divided the histidine kinase CiaH into two putative domains: an N-terminal extracellular sensor part, and an intracellular C-terminal domain with the conserved His-226 residue, the presumed phosphorylation site. The single point mutations responsible for cefotaxime-resistance and transformation deficiency of C306 and of another two independently isolated cefotaxime-resistant mutants were each located in the C-terminal half of CiaH. A small extracellular protein, the competence factor, is required for induction of competence. Neither C306 nor the transformants obtained with the mutated ciaH gene produced competence factor, and exogenous competence factor could not complement the transformation deficiency, indicating that the signal-transducing system cia is involved in early steps of competence regulation.

  8. In vivo study of the two-component signaling network in Escherichia coli

    OpenAIRE

    Sommer, Erik

    2012-01-01

    Microorganisms commonly use ‘two-component’ signaling systems for sensing environmental conditions, with members being present in nearly all bacterial and archaeal genomes in different numbers. Prototypical two-component systems are comprised of a sensory histidine kinase and a response regulator protein that is phosphorylated by the kinase. The regulator typically acts as a transcription factor regulating gene expression. Due to their prevalence in microorganisms, a basic understanding of th...

  9. The Xanthomonas campestris pv. vesicatoria citH gene is expressed early in the infection process of tomato and is positively regulated by the TctDE two-component regulatory system.

    Science.gov (United States)

    Tamir-Ariel, Dafna; Rosenberg, Tally; Burdman, Saul

    2011-01-01

    Xanthomonas campestris pv. vesicatoria (Xcv) is the causal agent of bacterial spot disease of tomato and pepper. Previously, we have reported the adaptation of a recombinase- or resolvase-based in vivo expression technology (RIVET) approach to identify Xcv genes that are specifically induced during its interaction with tomato. Analysis of some of these genes revealed that a citH (citrate transporter) homologous gene contributes to Xcv virulence on tomato. Here, we demonstrate that the citH product indeed facilitates citrate uptake by showing the following: citH is specifically needed for Xcv growth in citrate, but not in other carbon sources; the citH promoter is specifically induced by citrate; and the concentration of citrate from tomato leaf apoplast is considerably reduced following growth of the wild-type and a citH-complemented strain, but not the citH mutant. We also show that, in the Xcv-tomato interaction, the promoter activity of the citH gene is induced as early as 2.5h after Xcv is syringe infiltrated into tomato leaves, and continues to be active for at least 96h after inoculation. We identified an operon containing a two-component regulatory system homologous to tctD/tctE influencing citH expression in Xcv, as well as its heterologous expression in Escherichia coli. The expression of hrp genes does not seem to be affected in the citH mutant, and this mutant cannot be complemented for growth in planta when co-inoculated with the wild-type strain, indicating that citrate uptake in the apoplast is important for the virulence of Xcv.

  10. Two component theory and electron magnetic moment

    NARCIS (Netherlands)

    Veltman, M.J.G.

    1998-01-01

    The two-component formulation of quantum electrodynamics is studied. The relation with the usual Dirac formulation is exhibited, and the Feynman rules for the two-component form of the theory are presented in terms of familiar objects. The transformation from the Dirac theory to the two-component th

  11. Characterization of the mrgRS locus of the opportunistic pathogen Burkholderia pseudomallei: temperature regulates the expression of a two-component signal transduction system

    Directory of Open Access Journals (Sweden)

    Dance David AB

    2006-08-01

    Full Text Available Abstract Background Burkholderia pseudomallei is a saprophyte in tropical environments and an opportunistic human pathogen. This versatility requires a sensing mechanism that allows the bacterium to respond rapidly to altered environmental conditions. We characterized a two-component signal transduction locus from B. pseudomallei 204, mrgR and mrgS, encoding products with extensive homology with response regulators and histidine protein kinases of Escherichia coli, Bordetella pertussis, and Vibrio cholerae. Results The locus was present and expressed in a variety of B. pseudomallei human and environmental isolates but was absent from other Burkholderia species, B. cepacia, B. cocovenenans, B. plantarii, B. thailandensis, B. vandii, and B. vietnamiensis. A 2128 bp sequence, including the full response regulator mrgR, but not the sensor kinase mrgS, was present in the B. mallei genome. Restriction fragment length polymorphism downstream from mrgRS showed two distinct groups were present among B. pseudomallei isolates. Our analysis of the open reading frames in this region of the genome revealed that transposase and bacteriophage activity may help explain this variation. MrgR and MrgS proteins were expressed in B. pseudomallei 204 cultured at different pH, salinity and temperatures and the expression was substantially reduced at 25°C compared with 37°C or 42°C but was mostly unaffected by pH or salinity, although at 25°C and 0.15% NaCl a small increase in MrgR expression was observed at pH 5. MrgR was recognized by antibodies in convalescent sera pooled from melioidosis patients. Conclusion The results suggest that mrgRS regulates an adaptive response to temperature that may be essential for pathogenesis, particularly during the initial phases of infection. B. pseudomallei and B. mallei are very closely related species that differ in their capacity to adapt to changing environmental conditions. Modifications in this region of the genome may

  12. Extended recombinant bacterial ghost system.

    Science.gov (United States)

    Lubitz, W; Witte, A; Eko, F O; Kamal, M; Jechlinger, W; Brand, E; Marchart, J; Haidinger, W; Huter, V; Felnerova, D; Stralis-Alves, N; Lechleitner, S; Melzer, H; Szostak, M P; Resch, S; Mader, H; Kuen, B; Mayr, B; Mayrhofer, P; Geretschläger, R; Haslberger, A; Hensel, A

    1999-08-20

    Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts from a variety of bacteria are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extends the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying foreign epitopes further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts have inherent adjuvant properties, they can be used as adjuvants in combination with subunit vaccines. Subunits or other ligands can also be coupled to matrixes like dextran which are used to fill the internal lumen of ghosts. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in this production. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. The endotoxic component of the outer membrane does not limit the use of ghosts as vaccine candidates but triggers the release of several potent immunoregulatory cytokines. As carriers, there is no limitation in the size of foreign antigens that can be inserted in the membrane and the capacity of all spaces including the membranes, peri

  13. PhoP-PhoR two-component signal transduction systems in pathogenesis of Mycobacterium tuberculosis%PhoPR双组份系统在结核分枝杆菌致病机制中的研究进展

    Institute of Scientific and Technical Information of China (English)

    邬博; 张万江

    2014-01-01

    Two-component signal transduction system (TCS) exists extensively in prokaryotic cell ,which plays a key role of regulation in the growth ,differentiation ,metabolism ,virulence ,persistence ,and pathogenicity .PhoPR two-component signal transduction system ,as one of two-component systems ,is the most basic and the most importantly sensitive to the envi-ronmental changes and makes corresponding certain reaction system adapt to changes in the host microenvironment .Therefore , PhoPR TCS which is an important regulatory system of Mycobacterium tuberculosis (MTB) to adapt to environmental change has been increasing concern ,even PhoPR TCS is becoming the new front-burner issue in the pathogenesis of M TB regulation of research .%双组份信号转导系统(Two-component signal transduction system ,TCS)广泛存在于原核生物细胞内,对细胞生长、分化、代谢、毒力、持留性、致病性等方面的调控发挥着重要作用。PhoPR TCS作为双组份系统中最基本、最重要的感应外界环境变化,并作出相应反应的调控系统,能够调控结核分枝杆菌(Mycobacterium Tuberculosis ,MTB)更好的适应宿主微环境变化。因此PhoPR TCS作为M TB适应环境变化的重要调控系统已愈来愈受关注,关于PhoPR TCS在M TB的致病机制调控方面的研究正在成为新的热点。

  14. Two Component Signal Transduction in Desulfovibrio Species

    Energy Technology Data Exchange (ETDEWEB)

    Luning, Eric; Rajeev, Lara; Ray, Jayashree; Mukhopadhyay, Aindrila

    2010-05-17

    The environmentally relevant Desulfovibrio species are sulfate-reducing bacteria that are of interest in the bioremediation of heavy metal contaminated water. Among these, the genome of D. vulgaris Hildenborough encodes a large number of two component systems consisting of 72 putative response regulators (RR) and 64 putative histidinekinases (HK), the majority of which are uncharacterized. We classified the D. vulgaris Hildenborough RRs based on their output domains and compared the distribution of RRs in other sequenced Desulfovibrio species. We have successfully purified most RRs and several HKs as His-tagged proteins. We performed phospho-transfer experiments to verify relationships between cognate pairs of HK and RR, and we have also mapped a few non-cognate HK-RR pairs. Presented here are our discoveries from the Desulfovibrio RR categorization and results from the in vitro studies using purified His tagged D. vulgaris HKs and RRs.

  15. The Two-Component System CesRK Controls the Transcriptional Induction of Cell Envelope-Related Genes in Listeria monocytogenes in Response to Cell Wall-Acting Antibiotics▿ †

    Science.gov (United States)

    Gottschalk, Sanne; Bygebjerg-Hove, Iver; Bonde, Mette; Nielsen, Pia Kiil; Nguyen, Thanh Ha; Gravesen, Anne; Kallipolitis, Birgitte H.

    2008-01-01

    The two-component system CesRK of Listeria monocytogenes responds to cell wall-acting antibiotics. We show here that CesRK controls the transcription of several cell envelope-related genes. The CesRK-dependent induction of these genes may be viewed as an attempt by L. monocytogenes to protect itself against the damaging effects of cell wall-acting antibiotics. PMID:18456805

  16. The two-component system CesRK controls the transcriptional induction of cell envelope-related genes in Listeria monocytogenes in response to cell wall-acting antibiotics.

    Science.gov (United States)

    Gottschalk, Sanne; Bygebjerg-Hove, Iver; Bonde, Mette; Nielsen, Pia Kiil; Nguyen, Thanh Ha; Gravesen, Anne; Kallipolitis, Birgitte H

    2008-07-01

    The two-component system CesRK of Listeria monocytogenes responds to cell wall-acting antibiotics. We show here that CesRK controls the transcription of several cell envelope-related genes. The CesRK-dependent induction of these genes may be viewed as an attempt by L. monocytogenes to protect itself against the damaging effects of cell wall-acting antibiotics.

  17. Two-component Duality and Strings

    CERN Document Server

    Freund, Peter G O

    2007-01-01

    A phenomenologically successful two-component hadronic duality picture led to Veneziano's amplitude, the fundamental first step to string theory. This picture is briefly recalled and its two components are identified as the open strings (mesons and baryons) and closed strings (Pomeron).

  18. Characterization of Streptococcus thermophilus two-component systems: In silico analysis, functional analysis and expression of response regulator genes in pure or mixed culture with its yogurt partner, Lactobacillus delbrueckii subsp. bulgaricus.

    Science.gov (United States)

    Thevenard, Benoît; Rasoava, Niriaina; Fourcassié, Pascal; Monnet, Véronique; Boyaval, Patrick; Rul, Françoise

    2011-12-02

    The lactic acid bacterium Streptococcus thermophilus (S. thermophilus) is widely used in the dairy industry. As a food bacterium, it has to cope with changing environments such as milk, yogurt, as well as the digestive tract, after the product has been ingested. In bacteria, two-component systems (TCS) are one of the most prevalent mechanisms to sense and respond appropriately to a wide range of signals. They are typically composed of a sensor kinase (HK) that detects a stimulus and a response regulator (RR) which acts as a transcriptional regulator. Our objective was to make an inventory of the TCS present in S. thermophilus LMD-9 and investigate the contribution of each TCS to LMD-9 growth in milk. For that purpose, we performed in silico, transcriptomic as well as functional analysis. The LMD-9 genome presented 6 complete TCS with both HK and RR (TCS 2, 4, 5, 6, 7, and 9) and 2 orphan RRs (RR01 and 08) with truncated HK. Our in silico analysis revealed that for 5 TCS out of the 8, orthologs with known functions were found in other bacterial species whereas for TCS02, 4 and 6 the function of the orthologs are unidentified. Transcriptomic studies (using quantitative PCR) revealed that all S. thermophilus LMD-9 response regulator genes were expressed in milk; they were expressed at different levels and with different profiles during growth. In mixed culture with Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus), the S. thermophilus partner in yogurt, the expression of four S. thermophilus LMD-9 response regulator increased; two of them, rr02 and rr09, increased by a factor of 6. These results indicate that the presence of L. bulgaricus induces regulatory changes in S. thermophilus. We also demonstrated that a response regulator (rr02) can exert its regulatory function on its target genes even when expressed at very low levels. We showed that RR05-an ortholog of Bacillus subtilis YycF or Staphylococcus aureus WalR-was essential for the growth of S

  19. Positively regulated bacterial expression systems.

    Science.gov (United States)

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high-level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC-XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (L-arabinose, L-rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone-related compounds, ε-caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC-XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/P(BAD), RhaR-RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.

  20. An agr-like two-component regulatory system in Lactobacillus plantarum is involved in production of a novel cyclic peptide and regulation of adherence

    NARCIS (Netherlands)

    Sturme, M.H.J.; Nakayama, J.; Molenaar, D.; Murakami, Y.; Kunugi, R.; Fujii, T.; Vaughan, E.E.; Kleerebezem, M.; Vos, de W.M.

    2005-01-01

    We have analyzed a locus on the annotated Lactobacillus plantarum WCFS1 genome that showed homology to the staphylococcal agr quorum-sensing system and designated it lam for Lactobacillus agr-like module. Production of the lamBDCA transcript was shown to be growth phase dependent. Analysis of a resp

  1. Monoclonal antibody heterogeneity analysis and deamidation monitoring with high-performance cation-exchange chromatofocusing using simple, two component buffer systems.

    Science.gov (United States)

    Kang, Xuezhen; Kutzko, Joseph P; Hayes, Michael L; Frey, Douglas D

    2013-03-29

    The use of either a polyampholyte buffer or a simple buffer system for the high-performance cation-exchange chromatofocusing of monoclonal antibodies is demonstrated for the case where the pH gradient is produced entirely inside the column and with no external mixing of buffers. The simple buffer system used was composed of two buffering species, one which becomes adsorbed onto the column packing and one which does not adsorb, together with an adsorbed ion that does not participate in acid-base equilibrium. The method which employs the simple buffer system is capable of producing a gradual pH gradient in the neutral to acidic pH range that can be adjusted by proper selection of the starting and ending pH values for the gradient as well as the buffering species concentration, pKa, and molecular size. By using this approach, variants of representative monoclonal antibodies with isoelectric points of 7.0 or less were separated with high resolution so that the approach can serve as a complementary alternative to isoelectric focusing for characterizing a monoclonal antibody based on differences in the isoelectric points of the variants present. Because the simple buffer system used eliminates the use of polyampholytes, the method is suitable for antibody heterogeneity analysis coupled with mass spectrometry. The method can also be used at the preparative scale to collect highly purified isoelectric variants of an antibody for further study. To illustrate this, a single isoelectric point variant of a monoclonal antibody was collected and used for a stability study under forced deamidation conditions.

  2. Preliminary Crystallographic Studies of the Regulatory Domain of Response Regulator YycF from an Essential Two-Component Signal Transduction System

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H.; Heroux, A; Sequeira, R; Tang, L

    2009-01-01

    YycGF is a crucial signal transduction system for the regulation of cell-wall metabolism in low-G+C Gram-positive bacteria, which include many important human pathogens. The response regulator YycF receives signals from its cognate histidine kinase YycG through a phosphotransfer reaction and elicits responses through regulation of gene expression. The N-terminal regulatory domain of YycF from Bacillus subtilis was overproduced and purified. The protein was crystallized and X-ray data were collected to 1.95 A resolution with a completeness of 97.7% and an overall Rmerge of 7.7%. The crystals belonged to space group P3121, with unit-cell parameters a = b = 59.50, c = 79.06 A.

  3. Normal solution and transport coefficients to the Enskog-Landau kinetic equation for a two-component system of charged hard spheres The Chapman-Enskog method

    CERN Document Server

    Kobryn, A E; Tokarchuk, M V

    1999-01-01

    An Enskog-Landau kinetic equation for a many-component system of charged hard spheres is proposed. It has been obtained from the Liouville equation with modified boundary conditions by the method of nonequilibrium statistical operator. On the basis of this equation the normal solutions and transport coefficients such as bulk kappa and shear eta viscosities, thermal conductivity lambda, mutual diffusion D^{\\alpha\\beta} and thermal diffusion D_T^\\alpha have been obtained for a binary mixture in the first approximation using the Chapman-Enskog method. Numerical calculations of all transport coefficients for mixtures Ar-Kr, Ar-Xe, Kr-Xe with different concentrations of compounds have been evaluated for the cases of absence and presence of long-range Coulomb interactions. The results are compared with those obtained from other theories and experiment.

  4. The bacterial lux reporter system: applications in bacterial localisation studies.

    Science.gov (United States)

    Gahan, Cormac G M

    2012-02-01

    Bacterial production of visible light is a natural phenomenon occurring in marine (Vibrio and Photobacterium) and terrestrial (Photorhabdus) species. The mechanism underpinning light production in these organisms is similar and involves the oxidation of an aldehyde substrate in a reaction catalysed by the bacterial luciferase enzyme. The genes encoding the luciferase and a fatty acid reductase complex which synthesizes the substrate are contained in a single operon (the lux operon). This provides a useful reporter system as cloning the operon into a recipient host bacterium will generate visible light without the requirement to add exogenous substrate. The light can be detected in vivo in the living animal using a sensitive detection system and is therefore ideally suited to bioluminescence imaging protocols. The system has therefore been widely used to track bacteria during infection or colonisation of the host. As bacteria are currently being examined as bactofection vectors for gene delivery, particularly to tumour tissue, the use of bioluminescence imaging offers a powerful means to investigate vector amplification in situ. The implications of this technology for bacterial localization, tumour targeting and gene transfer (bactofection) studies are discussed.

  5. In the Staphylococcus aureus Two-Component System sae, the Response Regulator SaeR Binds to a Direct Repeat Sequence and DNA Binding Requires Phosphorylation by the Sensor Kinase SaeS ▿

    OpenAIRE

    Sun, Fei; Li, Chunling; Jeong, Dowon; Sohn, Changmo; He, Chuan; Bae, Taeok

    2010-01-01

    Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length Sae...

  6. Features of protein-protein interactions in two-component signaling deduced from genomic libraries.

    Science.gov (United States)

    White, Robert A; Szurmant, Hendrik; Hoch, James A; Hwa, Terence

    2007-01-01

    As more and more sequence data become available, new approaches for extracting information from these data become feasible. This chapter reports on one such method that has been applied to elucidate protein-protein interactions in bacterial two-component signaling pathways. The method identifies residues involved in the interaction through an analysis of over 2500 functionally coupled proteins and a precise determination of the substitutional constraints placed on one protein by its signaling mate. Once identified, a simple log-likelihood scoring procedure is applied to these residues to build a predictive tool for assigning signaling mates. The ability to apply this method is based on a proliferation of related domains within multiple organisms. Paralogous evolution through gene duplication and divergence of two-component systems has commonly resulted in tens of closely related interacting pairs within one organism with a roughly one-to-one correspondence between signal and response. This provides us with roughly an order of magnitude more protein pairs than there are unique, fully sequenced bacterial species. Consequently, this chapter serves as both a detailed exposition of the method that has provided more depth to our knowledge of bacterial signaling and a look ahead to what would be possible on a more widespread scale, that is, to protein-protein interactions that have only one example per genome, as the number of genomes increases by a factor of 10.

  7. Two-component Abelian sandpile models.

    Science.gov (United States)

    Alcaraz, F C; Pyatov, P; Rittenberg, V

    2009-04-01

    In one-component Abelian sandpile models, the toppling probabilities are independent quantities. This is not the case in multicomponent models. The condition of associativity of the underlying Abelian algebras imposes nonlinear relations among the toppling probabilities. These relations are derived for the case of two-component quadratic Abelian algebras. We show that Abelian sandpile models with two conservation laws have only trivial avalanches.

  8. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11

    Directory of Open Access Journals (Sweden)

    Riana Cockeran

    2014-01-01

    Full Text Available Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F to cigarette smoke condensate (160 μg/mL for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P<0.014–0.0006 upregulation of the genes encoding the two-component regulatory system 11 (TCS11, consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen.

  9. Exposure of a 23F Serotype Strain of Streptococcus pneumoniae to Cigarette Smoke Condensate Is Associated with Selective Upregulation of Genes Encoding the Two-Component Regulatory System 11 (TCS11)

    Science.gov (United States)

    Herbert, Jenny A.; Mitchell, Timothy J.; Dix-Peek, Thérèse; Dickens, Caroline; Anderson, Ronald; Feldman, Charles

    2014-01-01

    Alterations in whole genome expression profiles following exposure of the pneumococcus (strain 172, serotype 23F) to cigarette smoke condensate (160 μg/mL) for 15 and 60 min have been determined using the TIGR4 DNA microarray chip. Exposure to CSC resulted in the significant (P < 0.014–0.0006) upregulation of the genes encoding the two-component regulatory system 11 (TCS11), consisting of the sensor kinase, hk11, and its cognate response regulator, rr11, in the setting of increased biofilm formation. These effects of cigarette smoke on the pneumococcus may contribute to colonization of the airways by this microbial pathogen. PMID:25013815

  10. Progression on the research of two-component signal transduction system in fungus and its inhibitors%真菌双组分信号转导系统及其抑制剂研究进展

    Institute of Scientific and Technical Information of China (English)

    徐西光; 张子平; 程波

    2011-01-01

    双组分信号转导系统存在于包括真菌在内的大部分低等真核生物、原核生物及一些植物中.真菌双组分信号转导蛋白在细胞新陈代谢、毒力以及致病性等方面具有重要作用,且目前在人类细胞中尚未发现双组分信号转导系统.因此,探明真菌双组分信号转导系统的机制,可为抑制剂的设计和寻找提供多个“靶点”,从而研制出能够抗致病性真菌而不对宿主细胞造成损伤的新型抗真菌药物.本文就近年来真菌双组分信号转导系统及其潜在抑制剂进行综述.%Two-component signal transduction system, which plays an important role in cell metabolism, virulence and pathoge-nicity, has been found in most lower eukaryotes, prokaryotes and some plants, yet not in human cells. Well-understanding of the mechanism may be helpful for inhibitor designing, which has antifungal effect without damage to host cell. Recent literatures about two-component signal transduction system in fungi and potential inhibitors are reviewed.

  11. Bioinformatics analysis of two-component signal transduction systems of Bacillus thuringiensis%苏云金芽孢杆菌双组份信号转导系统的生物信息学分析

    Institute of Scientific and Technical Information of China (English)

    张清仪; 王阶平; 程钢; 刘钟慧; 范文瑾; 何进

    2011-01-01

    苏云金芽孢杆菌(Bacillus thuringiensis)能产生杀虫晶体蛋白等多种活性成分,是目前应用最广泛的微生物杀虫剂.本文采用生物信息学方法,系统分析了由本实验室完成全基因组测序的苏云全芽孢杆菌YBT-1520、CT-43和BMB171 3个菌株的双组分信号转导系统(Two-component signal traducction system,TCS)的分布、结构及功能,并初步构建了部分TCS的调控网络关系图.本研究旨在为深入研究苏云金芽孢杆菌的生长、代谢以及毒力因子的表达与调控,全面了解伴孢晶体的形成机制开辟新的研究方向.%Bacillus thuringiensis (Bt) strains, which can produce insecticidal crystal proteins, were widely used as biological pesticides. In this paper, we comprehensively analyzed the distributions, structures and putative biological functions of two-component transduction systems (TCS) from the genomes of Bt strains YBT-1520, CT-43 and BMB171, which have been sequenced by our laboratory. And more importantly, we constructed a preliminary TCS regulatory networks. This study should open a novel research direction in Bt for the growth, metabolism, regulator of toxic gene expression, as well as the formation mechanism of parasporal crystals.

  12. Development and characterization of two-component albedo based neutron individual monitoring system using thermoluminescent detectors; Desenvolvimento e caracterizacao de um sistema de monitoracao individual de neutrons tipo albedo de duas componentes usando detectores termoluminescentes

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Marcelo Marques

    2008-07-01

    A TLD-albedo based two-component neutron individual monitoring system was developed and characterized in this work. The monitor consists of a black plastic holder, an incident neutron boron loaded shield, a moderator polyethylene body (to increase its response), two pairs of TLD-600 and TLD-700 (one pair to each component) and an adjustable belt. This monitoring system was calibrated in thermal neutron fields and in 70 keV, 144 keV, 565 keV, 1.2 MeV and 5 MeV monoenergetic neutron fields. In addition, it was calibrated in {sup 252C}f(D{sub 2}O), {sup 252}Cf, {sup 241}Am-B, {sup 241}Am-Be and {sup 238}Pu-Be source fields. For the latter, the lower detection levels are, respectively, 0.009 mSv, 0.06 mSv, 0.12 mSv, 0.09 mSv and 0.08 mSv. The participation in an international intercomparison sponsored by IAEA with simulated workplace fields validated the system. The monitoring system was successfully characterized in the ISO 21909 standard and in an IRD - the Brazilian Institute for Radioprotection and Dosimetry - technical regulation draft. Nowadays, the neutron individual system is in use by IRD for whole body individual monitoring of five institutions, which comprehend several activities. (author)

  13. Two-component model of solar plages

    Institute of Scientific and Technical Information of China (English)

    LI; Jianping(李建平); DING; Mingde(丁明德); FANG; Cheng(方成)

    2002-01-01

    By use of the 2-m Mcmath-Pierce telescope at Kitt Peak, the high-quality spectra of a plage with moderate brightness near the center of solar disk were obtained. The data include seven spectral lines, which are Hα, Hβ, CaII H and K lines and the infrared triplet. With the consideration of fine structures of solar plages, a two-component atmospheric model is constructed by keeping the cool component to be the quiet atmosphere. Three cases of the hot component are given for different filling factors where the temperature and density distribution are adjusted in order to reproduce the seven observed spectral profiles. We also briefly discuss the influence of the column density at the base of the corona, m0, and the macro-turbulent velocity on the required filling factor and computed profiles. The two-component model is compared with precious one-component semi-empirical models. The limitation of the model is pointed out and further improvement is indicated.

  14. 隐藏嗜酸菌Acidiphilium cryptum JF-5双组分信号转导系统%Two-component signal transduction system of Acidiphilium cryptum JF-5

    Institute of Scientific and Technical Information of China (English)

    余水静; 彭艳平; 邓扬悟; 郭燕华; 刘荷英

    2013-01-01

      为了探索隐藏嗜酸菌(Acidiphilium cryptum)对多变极端矿山环境条件的感知和反应分子机制,预测和分析了隐藏嗜酸菌JF-5菌株的双组分信号转导系统(Two-component signal transduction system, TCS)的分布、结构及功能。鉴定了9对成对TCSs、2个杂合结构TCSs、3个孤儿组氨酸蛋白激酶(HK)和5个孤儿反应调节蛋白(RR);发现5个TCSs参与隐藏嗜酸菌对重金属响应转录调控;大多数HKs的N-末端具有接受信号的跨膜区、HAMP或PAS等结构域,RRs主要是OmpR亚家族,占总RRs的40%以上;从进化关系上来看,一些处在进化树同一分支上的共同聚簇TCS基因可能具有相同的进化途径。本研究结果可为研究隐藏嗜酸菌在极端环境中适应性分子机制提供新的方向。%In order to explore the molecular mechanism of Acidiphilium cryptum response to extreme conditions in the mine environment, the distributions, structures and putative biological functions of two-component signal transduction systems (TCSs) in A. cryptum JF-5 are predicated and analyzed. And 9 TCSs, 2 hybrid histidine kinases (HK), 3 orphan HKs and 5 orphan response regulator proteins (RR) were identified. Five TCSs were involved in the transcription regulation of A. cryptum response to heavy metal. The most N-terminal regions of HKs were characterized by the presence of transmembrane helices, HAMPs, or PAS domains. More than 40 percent of putative RRs were classified into OmpR subfamily. From the evolutionary relationship, the common clustering TCS genes in the same branch of the evolutionary tree may have the same evolutionary pathway. Our results should open a novel research direction in A. cryptum for molecular mechanism of the adaptation in the extreme environment.

  15. Two-Component Description for Relativistic Fermions

    Institute of Scientific and Technical Information of China (English)

    CHEN Yu-Qi; SANG Wen-Long; YANG Lan-Fei

    2009-01-01

    We propose a two-component form to describe massive relativistic fermions in gauge theories. Relations between the Green's functions in this form and those in the conventional four-component form are derived. It is shown that the S-matrix elements in both forms are exactly the same. The description of the fermion in the new form simplifies significantly the γ-matrix algebra in the four-component form. In particular, in perturbative calculations the propagator of the fermion is a scalar function. As examples, we use this form to reproduce the relativistic spectrum of hydrodron atom, the S-matrix of e+ e-→μ+ μ- and QED one-loop vacuum polarization of photon.

  16. Bacterial ferrous iron transport: the Feo system.

    Science.gov (United States)

    Lau, Cheryl K Y; Krewulak, Karla D; Vogel, Hans J

    2016-03-01

    To maintain iron homeostasis within the cell, bacteria have evolved various types of iron acquisition systems. Ferric iron (Fe(3+)) is the dominant species in an oxygenated environment, while ferrous iron (Fe(2+)) is more abundant under anaerobic conditions or at low pH. For organisms that must combat oxygen limitation for their everyday survival, pathways for the uptake of ferrous iron are essential. Several bacterial ferrous iron transport systems have been described; however, only the Feo system appears to be widely distributed and is exclusively dedicated to the transport of iron. In recent years, many studies have explored the role of the FeoB and FeoA proteins in ferrous iron transport and their contribution toward bacterial virulence. The three-dimensional structures for the Feo proteins have recently been determined and provide insight into the molecular details of the transport system. A highly select group of bacteria also express the FeoC protein from the same operon. This review will provide a comprehensive look at the structural and functional aspects of the Feo system. In addition, bioinformatics analyses of the feo operon and the Feo proteins have been performed to complement our understanding of this ubiquitous bacterial uptake system, providing a new outlook for future studies.

  17. Regulation of bacterial virulence by Csr (Rsm) systems.

    Science.gov (United States)

    Vakulskas, Christopher A; Potts, Anastasia H; Babitzke, Paul; Ahmer, Brian M M; Romeo, Tony

    2015-06-01

    Most bacterial pathogens have the remarkable ability to flourish in the external environment and in specialized host niches. This ability requires their metabolism, physiology, and virulence factors to be responsive to changes in their surroundings. It is no surprise that the underlying genetic circuitry that supports this adaptability is multilayered and exceedingly complex. Studies over the past 2 decades have established that the CsrA/RsmA proteins, global regulators of posttranscriptional gene expression, play important roles in the expression of virulence factors of numerous proteobacterial pathogens. To accomplish these tasks, CsrA binds to the 5' untranslated and/or early coding regions of mRNAs and alters translation, mRNA turnover, and/or transcript elongation. CsrA activity is regulated by noncoding small RNAs (sRNAs) that contain multiple CsrA binding sites, which permit them to sequester multiple CsrA homodimers away from mRNA targets. Environmental cues sensed by two-component signal transduction systems and other regulatory factors govern the expression of the CsrA-binding sRNAs and, ultimately, the effects of CsrA on secretion systems, surface molecules and biofilm formation, quorum sensing, motility, pigmentation, siderophore production, and phagocytic avoidance. This review presents the workings of the Csr system, the paradigm shift that it generated for understanding posttranscriptional regulation, and its roles in virulence networks of animal and plant pathogens.

  18. In the Staphylococcus aureus two-component system sae, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS.

    Science.gov (United States)

    Sun, Fei; Li, Chunling; Jeong, Dowon; Sohn, Changmo; He, Chuan; Bae, Taeok

    2010-04-01

    Staphylococcus aureus uses the SaeRS two-component system to control the expression of many virulence factors such as alpha-hemolysin and coagulase; however, the molecular mechanism of this signaling has not yet been elucidated. Here, using the P1 promoter of the sae operon as a model target DNA, we demonstrated that the unphosphorylated response regulator SaeR does not bind to the P1 promoter DNA, while its C-terminal DNA binding domain alone does. The DNA binding activity of full-length SaeR could be restored by sensor kinase SaeS-induced phosphorylation. Phosphorylated SaeR is more resistant to digestion by trypsin, suggesting conformational changes. DNase I footprinting assays revealed that the SaeR protection region in the P1 promoter contains a direct repeat sequence (GTTAAN(6)GTTAA [where N is any nucleotide]). This sequence is critical to the binding of phosphorylated SaeR. Mutational changes in the repeat sequence greatly reduced both the in vitro binding of SaeR and the in vivo function of the P1 promoter. From these results, we concluded that SaeR recognizes the direct repeat sequence as a binding site and that binding requires phosphorylation by SaeS.

  19. VicRK two-component signal transduction system of Streptococcus mutans%变异链球菌的VicRK双组分信号传导系统

    Institute of Scientific and Technical Information of China (English)

    田媛媛

    2012-01-01

    Streptococcus mutans(S.nuaans), which is considered as the chief pathogen of human caries, possesses the ability to form biofilm via sucrose-dependent adhesion, genesis and endure acids in the biofilm that may ultimately lead to dental caries. VicRK is one of the 13 putative two-component signal transduction systems of S.mutans that modulate the expression of cariogeneisis related virulence factors. This review summarized the mechanism, structural organization, physiological characteristics and the impact on the cariogenesis capabilities of VicRK, as well as the correlation between VicRK and VicX in S.mutans.%变异链球菌是人类龋病的主要病原菌,它通过蔗糖依赖性黏附形成生物膜并在其中产酸耐酸,最终导致龋病.VicRK是变异链球菌13种双组分信号传导系统之一,可调节变异链球菌致龋性毒力相关因子的表达.本文就VicRK的作用机制、结构组成、生理特性,及其对变异链球菌致龋性的影响,VicRK和VicX间的关系等研究进展作一综述.

  20. Two-component signal transduction system and the virulence-related characteristics of Streptococcus mutans%双组分信号传导系统与变异链球菌的致病相关特性

    Institute of Scientific and Technical Information of China (English)

    陈娇

    2011-01-01

    Two-component signal transduction system (TCSTS) plays an important role in the expression of virulence factors of Streptococcus mutans, such as the competence development, the formation of biofilm, the stability of structure, the production of bacteriocin, and the properties of acid production and resistance. It provides many ecological advantages to compete and survive in the dental plaque. This article is a review about the composition of TCSTS of Streptococcus mutans, the effect of TCSTS on the virulence-related characteristics of Streptococcus mutans, and the application significance of TCSTS.%双组分信号传导系统(TCSTS)在变异链球菌感受态形成、生物膜形成、结构稳定、菌素产生、产酸耐酸特性等毒力因子表达方面起着重要的作用,为其在菌斑生物膜中的竞争和生存提供了诸多生态性优势.本文就变异链球菌TCSTS的组成、TCSTS对变异链球菌致病相关特性的影响、TCSTS的应用意义等作一综述.

  1. Using structural information to change the phosphotransfer specificity of a two-component chemotaxis signalling complex.

    Directory of Open Access Journals (Sweden)

    Christian H Bell

    2010-02-01

    Full Text Available Two-component signal transduction pathways comprising histidine protein kinases (HPKs and their response regulators (RRs are widely used to control bacterial responses to environmental challenges. Some bacteria have over 150 different two-component pathways, and the specificity of the phosphotransfer reactions within these systems is tightly controlled to prevent unwanted crosstalk. One of the best understood two-component signalling pathways is the chemotaxis pathway. Here, we present the 1.40 A crystal structure of the histidine-containing phosphotransfer domain of the chemotaxis HPK, CheA(3, in complex with its cognate RR, CheY(6. A methionine finger on CheY(6 that nestles in a hydrophobic pocket in CheA(3 was shown to be important for the interaction and was found to only occur in the cognate RRs of CheA(3, CheY(6, and CheB(2. Site-directed mutagenesis of this methionine in combination with two adjacent residues abolished binding, as shown by surface plasmon resonance studies, and phosphotransfer from CheA(3-P to CheY(6. Introduction of this methionine and an adjacent alanine residue into a range of noncognate CheYs, dramatically changed their specificity, allowing protein interaction and rapid phosphotransfer from CheA(3-P. The structure presented here has allowed us to identify specificity determinants for the CheA-CheY interaction and subsequently to successfully reengineer phosphotransfer signalling. In summary, our results provide valuable insight into how cells mediate specificity in one of the most abundant signalling pathways in biology, two-component signal transduction.

  2. On a periodic two-component Hunter-Saxton equation

    CERN Document Server

    Kohlmann, Martin

    2011-01-01

    We determine the solution of the geodesic equation associated with a periodic two-component Hunter-Saxton system on a semidirect product obtained from the diffeomorphism group of the circle, modulo rigid rotations, and a space of scalar functions. In particular, we compute the time of breakdown of the geodesic flow. As a further goal, we establish a local well-posedness result for the two-component Hunter-Saxton system in the smooth category. The paper gets in line with some recent results for the generalized Hunter-Saxton equation provided by Escher, Wu and Wunsch in [J. Escher, Preprint 2010] and [H. Wu, M. Wunsch, arXiv:1009.1688v1 [math.AP

  3. Tobacco two-component gene NTHK2

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    By using a previously isolated tobacco two- component gene NTHK1 as a probe, we screened a cDNA library and obtained a homologous gene designated NTHK2. Sequencing analysis revealed that NTHK2 encoded a putative ethylene receptor homolog and contained a histidine kinase domain and a receiver domain. In the histidine kinase domain, the histidine at the phosphorylation site was replaced by an asparagine. Southern analysis indicated that NTHK2 was present at low copies in tobacco genome. The expression of NTHK2 was studied using a competitive RT-PCR method. It was found that, in young flower buds, NTHK2 was expressed abundantly, while in other organs or tissues, it was expressed in a low level. When leaf was subjected to wounding (cutting) treatment, NTHK2 expression was increased. When tobacco seedlings were stressed with PEG and heat shock, NTHK2 transcription was also enhanced. Other treatments showed little effects. These results indicated that NTHK2 might be involved in the developmental processes and in plant responses to some environmental stresses.

  4. Regulation of the AbrA1/A2 two-component system in Streptomyces coelicolor and the potential of its deletion strain as a heterologous host for antibiotic production.

    Directory of Open Access Journals (Sweden)

    Sergio Rico

    Full Text Available The Two-Component System (TCS AbrA1/A2 from Streptomyces coelicolor M145 is a negative regulator of antibiotic production and morphological differentiation. In this work we show that it is able to auto-regulate its expression, exerting a positive induction of its own operon promoter, and that its activation is dependent on the presence of iron. The overexpression of the abrA2 response regulator (RR gene in the mutant ΔabrA1/A2 results in a toxic phenotype. The reason is an excess of phosphorylated AbrA2, as shown by phosphoablative and phosphomimetic AbrA2 mutants. Therefore, non-cognate histidine kinases (HKs or small phospho-donors may be responsible for AbrA2 phosphorylation in vivo. The results suggest that in the parent strain S. coelicolor M145 the correct amount of phosphorylated AbrA2 is adjusted through the phosphorylation-dephosphorylation activity rate of the HK AbrA1. Furthermore, the ABC transporter system, which is part of the four-gene operon comprising AbrA1/A2, is necessary to de-repress antibiotic production in the TCS null mutant. Finally, in order to test the possible biotechnological applications of the ΔabrA1/A2 strain, we demonstrate that the production of the antitumoral antibiotic oviedomycin is duplicated in this strain as compared with the production obtained in the wild type, showing that this strain is a good host for heterologous antibiotic production. Thus, this genetically modified strain could be interesting for the biotechnology industry.

  5. The PorX response regulator of the Porphyromonas gingivalis PorXY two-component system does not directly regulate the Type IX secretion genes but binds the PorL subunit.

    Directory of Open Access Journals (Sweden)

    Maxence S Vincent

    2016-08-01

    Full Text Available The Type IX secretion system (T9SS is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion of surface attachment of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY and PorX encode typical two-component system (TCS sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of the porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we showed that PorX does not bind and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  6. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit

    Science.gov (United States)

    Vincent, Maxence S.; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS. PMID:27630829

  7. The PorX Response Regulator of the Porphyromonas gingivalis PorXY Two-Component System Does Not Directly Regulate the Type IX Secretion Genes but Binds the PorL Subunit.

    Science.gov (United States)

    Vincent, Maxence S; Durand, Eric; Cascales, Eric

    2016-01-01

    The Type IX secretion system (T9SS) is a versatile multi-protein complex restricted to bacteria of the Bacteriodetes phylum and responsible for the secretion or cell surface exposition of diverse proteins that participate to S-layer formation, gliding motility or pathogenesis. The T9SS is poorly characterized but a number of proteins involved in the assembly of the secretion apparatus in the oral pathogen Porphyromonas gingivalis have been identified based on genome substractive analyses. Among these proteins, PorY, and PorX encode typical two-component system (TCS) sensor and CheY-like response regulator respectively. Although the porX and porY genes do not localize at the same genetic locus, it has been proposed that PorXY form a bona fide TCS. Deletion of porX in P. gingivalis causes a slight decrease of the expression of a number of other T9SS genes, including sov, porT, porP, porK, porL, porM, porN, and porY. Here, we show that PorX and the soluble cytoplasmic domain of PorY interact. Using electrophoretic mobility shift, DNA-protein co-purification and heterologous host expression assays, we demonstrate that PorX does not bind T9SS gene promoters and does not directly regulate expression of the T9SS genes. Finally, we show that PorX interacts with the cytoplasmic domain of PorL, a component of the T9SS membrane core complex and propose that the CheY-like PorX protein might be involved in the dynamics of the T9SS.

  8. Two component micro injection moulding for moulded interconnect devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    2008-01-01

    Moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their capability of reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...... and a reasonable adhesion between them. • Selective metallization of the two component plastic part (coating one polymer with metal and leaving the other one uncoated) To overcome these two main issues in MID fabrication for micro applications, the current Ph.D. project explores the technical difficulties...

  9. Bacterial Gibberellins Induce Systemic Resistance of Plants

    Directory of Open Access Journals (Sweden)

    I. N. FEKLISTOVA

    2014-06-01

    Full Text Available It is generally agreed today that some rhizosphere bacteria can ensure induced systemic resistance to pathogens. In this paper we tested the ability of gibberellins produced by rhizosphere non-pathogenic bacteria Pseudomonas aurantiaca to induce systemic resistance to alternariosis agent – Alternaria brassicicola – in oilseed rape plants.Oilseed rape (Brássica nápus is one of the most promising oil-bearing croppers. It allows improving the supply of population with vegetable oil, animal and poultry industries with high quality vegetable protein. It is used for biofuel production as well.Gibberellin preparation was isolated from liquid culture of strain Pseudomonas aurantiaca grown in 250 mL of M9 medium (48 h, 28 °C under darkroom conditions. Gibberellins were extracted according procedure described by Tien et al. (1979. Gibberellins concentration in the medium was determined by fluorometric method.Elicitor activity of bacterial metabolites – gibberellins – was analyzed in model system of artificial inoculation of oilseed rape germs with phytopathogenic fungi Alternaria brassicicola. The elicitor action efficiency was evaluated on the 15th day of oilseed rape cultivation based on the percentage of leaf surface covered by necrotic lesions.Gibberellins were shown to induce systemic resistance resulted in decreasing of oil seed plants   vulnerability by 52.7%.It is known that under the unfavorable conditions plants synthesis the reactive oxygen intermediates   which activate destructive processes. One of the first organism reactions to stress action is the change of the lipid peroxidation level. It was shown that treatment of the soil with gibberellins resulted in decreasing of the lipid peroxidation level twofold.Gibberellins were shown to have a similar effect on permeability of cell membranes for free nucleotides. The permeability of cell membranes in leaves decreased 2.8-fold at room temperature. We suggest that gibberellins

  10. Two-Component Wadati-Konno-Ichikawa Equation and Its Symmetry Reductions

    Institute of Scientific and Technical Information of China (English)

    QU Chang-Zheng; YAO Ruo-Xia; LI Zhi-Bin

    2004-01-01

    @@ It is shown that two-component Wadati-Konno-Ichikawa (WKI) equation, i.e. a generalization of the well-known WKI equation, is obtained from the motion of space curves in Euclidean geometry, and it is exactly a system for the graph of the curves when the curve motion is governed by the two-component modified Korteweg-de Vries flow. Group-invariant solutions of the two-component WKI equation which corresponds to an optimal system of its Lie point symmetry groups are obtained, and its similarity reductions to systems of ordinary differential equations are also given.

  11. Budding Transition of Asymmetric Two-component Lipid Domains

    CERN Document Server

    Wolff, Jean; Andelman, David

    2016-01-01

    We propose a model that accounts for the budding transition of asymmetric two-component lipid domains, where the two monolayers (leaflets) have different average compositions controlled by independent chemical potentials. Assuming a coupling between the local curvature and local lipid composition in each of the leaflets, we discuss the morphology and thermodynamic behavior of asymmetric lipid domains. The membrane free-energy contains three contributions: the bending energy, the line tension, and a Landau free-energy for a lateral phase separation. Within a mean-field treatment, we obtain various phase diagrams containing fully budded, dimpled, and flat states as a function of the two leaflet compositions. The global phase behavior is analyzed, and depending on system parameters, the phase diagrams include one-phase, two-phase and three-phase regions. In particular, we predict various phase coexistence regions between different morphologies of domains, which may be observed in multi-component membranes or ves...

  12. How insects overcome two-component plant chemical defence

    DEFF Research Database (Denmark)

    Pentzold, Stefan; Zagrobelny, Mika; Rook, Frederik;

    2014-01-01

    Insect herbivory is often restricted by glucosylated plant chemical defence compounds that are activated by plant β-glucosidases to release toxic aglucones upon plant tissue damage. Such two-component plant defences are widespread in the plant kingdom and examples of these classes of compounds...... are alkaloid, benzoxazinoid, cyanogenic and iridoid glucosides as well as glucosinolates and salicinoids. Conversely, many insects have evolved a diversity of counteradaptations to overcome this type of constitutive chemical defence. Here we discuss that such counter-adaptations occur at different time points......-component chemical defence. These adaptations include host plant choice, non-disruptive feeding guilds and various physiological adaptations as well as metabolic enzymatic strategies of the insect’s digestive system. Furthermore, insect adaptations often act in combination, may exist in both generalists...

  13. Exact two-component relativistic energy band theory and application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Rundong; Zhang, Yong; Xiao, Yunlong; Liu, Wenjian, E-mail: liuwj@pku.edu.cn [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2016-01-28

    An exact two-component (X2C) relativistic density functional theory in terms of atom-centered basis functions is proposed for relativistic calculations of band structures and structural properties of periodic systems containing heavy elements. Due to finite radial extensions of the local basis functions, the periodic calculation is very much the same as a molecular calculation, except only for an Ewald summation for the Coulomb potential of fluctuating periodic monopoles. For comparison, the nonrelativistic and spin-free X2C counterparts are also implemented in parallel. As a first and pilot application, the band gaps, lattice constants, cohesive energies, and bulk moduli of AgX (X = Cl, Br, I) are calculated to compare with other theoretical results.

  14. Sub classification and targeted characterization of prophage-encoded two-component cell lysis cassette

    Indian Academy of Sciences (India)

    K V Srividhya; S Krishnaswamy

    2007-08-01

    Bacteriophage induced lysis of host bacterial cell is mediated by a two component cell lysis cassette comprised of holin and lysozyme. Prophages are integrated forms of bacteriophages in bacterial genomes providing a repertoire for bacterial evolution. Analysis using the prophage database (http://bicmku.in:8082) constructed by us showed 47 prophages were associated with putative two component cell lysis genes. These proteins cluster into four different subgroups. In this process, a putative holin (essd) and endolysin (ybcS), encoded by the defective lambdoid prophage DLP12 was found to be similar to two component cell lysis genes in functional bacteriophages like p21 and P1. The holin essd was found to have a characteristic dual start motif with two transmembrane regions and C-terminal charged residues as in class II holins. Expression of a fusion construct of essd in Escherichia coli showed slow growth. However, under appropriate conditions, this protein could be over expressed and purified for structure function studies. The second component of the cell lysis cassette, ybcS, was found to have an N-terminal SAR (Signal Arrest Release) transmembrane domain. The construct of ybcS has been over expressed in E. coli and the purified protein was functional, exhibiting lytic activity against E. coli and Salmonella typhi cell wall substrate. Such targeted sequence-structure-function characterization of proteins encoded by cryptic prophages will help understand the contribution of prophage proteins to bacterial evolution.

  15. Two-component micro injection moulding for hearing aid applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2012-01-01

    Two-component (2k) injection moulding is an important process technique at the present state of technology, and it is growing rapidly in the field of precision micro moulding. Besides combining different material properties in the same product, two-component moulding can eliminate many assembly s...

  16. An Introductory Idea for Teaching Two-Component Phase Diagrams

    Science.gov (United States)

    Peckham, Gavin D.; McNaught, Ian J.

    2011-01-01

    The teaching of two-component phase diagrams has attracted little attention in this "Journal," and it is hoped that this article will make a useful contribution. Current physical chemistry textbooks describe two-component phase diagrams adequately, but do so in a piecemeal fashion one section at a time; first solid-liquid equilibria, then…

  17. Travelling wave solutions for some two-component shallow water models

    Science.gov (United States)

    Dutykh, Denys; Ionescu-Kruse, Delia

    2016-07-01

    In the present study we perform a unified analysis of travelling wave solutions to three different two-component systems which appear in shallow water theory. Namely, we analyze the celebrated Green-Naghdi equations, the integrable two-component Camassa-Holm equations and a new two-component system of Green-Naghdi type. In particular, we are interested in solitary and cnoidal-type solutions, as two most important classes of travelling waves that we encounter in applications. We provide a complete phase-plane analysis of all possible travelling wave solutions which may arise in these models. In particular, we show the existence of new type of solutions.

  18. CRISPR-Cas: From the Bacterial Adaptive Immune System to a Versatile Tool for Genome Engineering.

    Science.gov (United States)

    Kirchner, Marion; Schneider, Sabine

    2015-11-01

    The field of biology has been revolutionized by the recent advancement of an adaptive bacterial immune system as a universal genome engineering tool. Bacteria and archaea use repetitive genomic elements termed clustered regularly interspaced short palindromic repeats (CRISPR) in combination with an RNA-guided nuclease (CRISPR-associated nuclease: Cas) to target and destroy invading DNA. By choosing the appropriate sequence of the guide RNA, this two-component system can be used to efficiently modify, target, and edit genomic loci of interest in plants, insects, fungi, mammalian cells, and whole organisms. This has opened up new frontiers in genome engineering, including the potential to treat or cure human genetic disorders. Now the potential risks as well as the ethical, social, and legal implications of this powerful new technique move into the limelight.

  19. Two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations

    CERN Document Server

    Escher, Joachim; Lenells, Jonatan

    2010-01-01

    We use geometric methods to study two natural two-component generalizations of the periodic Camassa-Holm and Degasperis-Procesi equations. We show that these generalizations can be regarded as geodesic equations on the semidirect product of the diffeomorphism group of the circle $\\Diff(S^1)$ with some space of sufficiently smooth functions on the circle. Our goals are to understand the geometric properties of these two-component systems and to prove local well-posedness in various function spaces. Furthermore, we perform some explicit curvature calculations for the two-component Camassa-Holm equation, giving explicit examples of large subspaces of positive curvature.

  20. Hamiltonian of a homogeneous two-component plasma.

    Science.gov (United States)

    Essén, Hanno; Nordmark, A

    2004-03-01

    The Hamiltonian of one- and two-component plasmas is calculated in the negligible radiation Darwin approximation. Since the Hamiltonian is the phase space energy of the system its form indicates, according to statistical mechanics, the nature of the thermal equilibrium that plasmas strive to attain. The main issue is the length scale of the magnetic interaction energy. In the past a screening length lambda=1/square root of r(e)n], with n number density and r(e) classical electron radius, has been derived. We address the question whether the corresponding longer screening range obtained from the classical proton radius is physically relevant and the answer is affirmative. Starting from the Darwin Lagrangian it is nontrivial to find the Darwin Hamiltonian of a macroscopic system. For a homogeneous system we resolve the difficulty by temporarily approximating the particle number density by a smooth constant density. This leads to Yukawa-type screened vector potential. The nontrivial problem of finding the corresponding, divergence free, Coulomb gauge version is solved.

  1. Dam methylation participates in the regulation of PmrA/PmrB and RcsC/RcsD/RcsB two component regulatory systems in Salmonella enterica serovar Enteritidis.

    Directory of Open Access Journals (Sweden)

    Sebastián Hernán Sarnacki

    Full Text Available The absence of Dam in Salmonella enterica serovar Enteritidis causes a defect in lipopolysaccharide (LPS pattern associated to a reduced expression of wzz gene. Wzz is the chain length regulator of the LPS O-antigen. Here we investigated whether Dam regulates wzz gene expression through its two known regulators, PmrA and RcsB. Thus, the expression of rcsB and pmrA was monitored by quantitative real-time RT-PCR and Western blotting using fusions with 3×FLAG tag in wild type (wt and dam strains of S. Enteritidis. Dam regulated the expression of both rcsB and pmrA genes; nevertheless, the defect in LPS pattern was only related to a diminished expression of RcsB. Interestingly, regulation of wzz in serovar Enteritidis differed from that reported earlier for serovar Typhimurium; RcsB induces wzz expression in both serovars, whereas PmrA induces wzz in S. Typhimurium but represses it in serovar Enteritidis. Moreover, we found that in S. Enteritidis there is an interaction between both wzz regulators: RcsB stimulates the expression of pmrA and PmrA represses the expression of rcsB. Our results would be an example of differential regulation of orthologous genes expression, providing differences in phenotypic traits between closely related bacterial serovars.

  2. Preparation and frictional investigation of the two-components silanes deposited on alumina surface

    Energy Technology Data Exchange (ETDEWEB)

    Kośla, K.; Grobelny, J.; Cichomski, M., E-mail: mcichom@uni.lodz.pl

    2014-09-30

    Highlights: • The two-component silane films on the alumina surface were obtained by a combination of soft lithography and vapor phase deposition method. • The effectiveness of modification procedure was monitored by AFM topography images. • By using gas phase deposition method succeeded in obtaining a good reproduction of pattern. • Silane films with low surface free energy and coefficient of friction values were obtained. • The frictional performance in milli-Newton load range of one- and two-component films was investigated by microtribometry. - Abstract: Functionalization and pattering technique that permits two-component pattern-specific modification of alumina surface with silanes molecules are reported. The method relies on a two-component molecular system that simultaneously decreases coefficient of friction of the alumina surface and provides uniform chemical functionality suitable for further elaboration. Pattern/two-component modification is achieved via gas-phase deposition of the silanes using polydimethylsiloxane stamp. The frictional behaviors of the two-component films of the silane molecules with different chain length covalently absorbed on alumina surfaces, were characterized by the ball-disk (microtribometer) tester. The surfaces of the substrate modified by two-component molecular films were examined by atomic force microscopy (AFM). The measured tribological results showed that the mixing of the fluoroalkylsilane and alkylsilane enhance the lubrication and decrease the friction compared to the one-component thin films.

  3. Kinetics of dimethoate biodegradation in bacterial system

    OpenAIRE

    Manisha DebMandal; Shyamapada Mandal; Nishith Kumar Pal

    2011-01-01

    The present study is an investigation on the kinetics of dimethoate biodegradation and an estimation of residual dimethoate in bacterial culture by spectrophotometry. The methylene chloride extract of the culture medium was used for determination of dimethoate through its reaction with 1 chloro-2, 4 dinitrobenzene to produce methylamine whose absorbance at 505 nm gave an estimation of dimethoate content. The dimethoate standard curve follows Beer’s law at 505 nm with a slope of 0.0129 absorba...

  4. Determinants of bacterial communities in Canadian agroforestry systems.

    Science.gov (United States)

    Banerjee, Samiran; Baah-Acheamfour, Mark; Carlyle, Cameron N; Bissett, Andrew; Richardson, Alan E; Siddique, Tariq; Bork, Edward W; Chang, Scott X

    2016-06-01

    Land-use change is one of the most important factors influencing soil microbial communities, which play a pivotal role in most biogeochemical and ecological processes. Using agroforestry systems as a model, this study examined the effects of land uses and edaphic properties on bacterial communities in three agroforestry types covering a 270 km soil-climate gradient in Alberta, Canada. Our results demonstrate that land-use patterns exert stronger effects on soil bacterial communities than soil zones in these agroforestry systems. Plots with trees in agroforestry systems promoted greater bacterial abundance and to some extent species richness, which was associated with more nutrient-rich soil resources. While Acidobacteria, Actinobacteria and Alphaproteobacteria were the dominant bacterial phyla and subphyla across land uses, Arthrobacter, Acidobacteria_Gp16, Burkholderia, Rhodanobacter and Rhizobium were the keystone taxa in these agroforestry systems. Soil pH and carbon contents emerged as the major determinants of bacterial community characteristics. We found non-random co-occurrence and modular patterns of soil bacterial communities, and these patterns were controlled by edaphic factors and not their taxonomy. Overall, this study highlights the drivers and co-occurrence patterns of soil microbial communities in agroforestry systems.

  5. Transcriptional and proteomic analyses of two-component response regulators in multidrug-resistant Mycobacterium tuberculosis.

    Science.gov (United States)

    Zhou, Lei; Yang, Liu; Zeng, Xianfei; Danzheng, Jiacuo; Zheng, Qing; Liu, Jiayun; Liu, Feng; Xin, Yijuan; Cheng, Xiaodong; Su, Mingquan; Ma, Yueyun; Hao, Xiaoke

    2015-07-01

    Two-component systems (TCSs) have been reported to exhibit a sensing and responding role under drug stress that induces drug resistance in several bacterial species. However, the relationship between TCSs and multidrug resistance in Mycobacterium tuberculosis has not been comprehensively analysed to date. In this study, 90 M. tuberculosis clinical isolates were analysed using 15-loci mycobacterial interspersed repetitive unit (MIRU)-variable number tandem repeat (VNTR) typing and repetitive extragenic palindromic (rep)-PCR-based DNA fingerprinting. The results showed that all of the isolates were of the Beijing lineage, and strains with a drug-susceptible phenotype had not diverged into similar genotype clusters. Expression analysis of 13 response regulators of TCSs using real-time PCR and tandem mass spectrometry (MS/MS) proteomic analysis demonstrated that four response regulator genes (devR, mtrA, regX3 and Rv3143) were significantly upregulated in multidrug-resistant (MDR) strains compared with the laboratory strain H37Rv as well as drug-susceptible and isoniazid-monoresistant strains (PMycobacterium bovis BCG did not alter its sensitivity to the four antitubercular drugs. This suggests that upregulation of devR, which is common in MDR-TB strains, might be induced by drug stress and hypoxic adaptation following the acquisition of multidrug resistance.

  6. Circulation Condition of Two-component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In the report we point out that there exists an intrinsic difference in the internal symmetry of the two components spin-1/2 Bose condensates from that of spinor Bose condensates of the atoms with hyperfine states of nonzero integer-spins,which gives rise to a new topological constrain on the circulation for this two-component spin-1/2 Bose condensates.It is shown that the SU(2) symmetry of the spin-1/2 Bose condensate implies a

  7. Itinerant Ferromagnetism in a Polarized Two-Component Fermi Gas

    DEFF Research Database (Denmark)

    Massignan, Pietro; Yu, Zhenhua; Bruun, Georg

    2013-01-01

    We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles, the repul......We analyze when a repulsively interacting two-component Fermi gas becomes thermodynamically unstable against phase separation. We focus on the strongly polarized limit, where the free energy of the homogeneous mixture can be calculated accurately in terms of well-defined quasiparticles...

  8. Identification and functional assay of the interaction motifs in the partner protein OsNAR2.1 of the two-component system for high-affinity nitrate transport.

    Science.gov (United States)

    Liu, Xiaoqin; Huang, Daimin; Tao, Jinyuan; Miller, Anthony J; Fan, Xiaorong; Xu, Guohua

    2014-10-01

    A partner protein, NAR2, is essential for high-affinity nitrate transport of the NRT2 protein in plants. However, the NAR2 motifs that interact with NRT2s for their plasma membrane (PM) localization and nitrate transporter activity have not been functionally characterized. In this study, OsNAR2.1 mutations with different carbon (C)-terminal deletions and nine different point mutations in the conserved regions of NAR2 homologs in plants were generated to explore the essential motifs involved in the interaction with OsNRT2.3a. Screening using the membrane yeast two-hybrid system and Xenopus oocytes for nitrogen-15 ((15)N) uptake demonstrated that either R100G or D109N point mutations impaired the OsNAR2.1 interaction with OsNRT2.3a. Western blotting and visualization using green fluorescent protein fused to either the N- or C-terminus of OsNAR2.1 indicated that OsNAR2.1 is expressed in both the PM and cytoplasm. The split-yellow fluorescent protein (YFP)/BiFC analyses indicated that OsNRT2.3a was targeted to the PM in the presence of OsNAR2.1, while either R100G or D109N mutation resulted in the loss of OsNRT2.3a-YFP signal in the PM. Based on these results, arginine 100 and aspartic acid 109 of the OsNAR2.1 protein are key amino acids in the interaction with OsNRT2.3a, and their interaction occurs in the PM but not cytoplasm.

  9. Recognition of bacterial plant pathogens: local, systemic and transgenerational immunity.

    Science.gov (United States)

    Henry, Elizabeth; Yadeta, Koste A; Coaker, Gitta

    2013-09-01

    Bacterial pathogens can cause multiple plant diseases and plants rely on their innate immune system to recognize and actively respond to these microbes. The plant innate immune system comprises extracellular pattern recognition receptors that recognize conserved microbial patterns and intracellular nucleotide binding leucine-rich repeat (NLR) proteins that recognize specific bacterial effectors delivered into host cells. Plants lack the adaptive immune branch present in animals, but still afford flexibility to pathogen attack through systemic and transgenerational resistance. Here, we focus on current research in plant immune responses against bacterial pathogens. Recent studies shed light onto the activation and inactivation of pattern recognition receptors and systemic acquired resistance. New research has also uncovered additional layers of complexity surrounding NLR immune receptor activation, cooperation and sub-cellular localizations. Taken together, these recent advances bring us closer to understanding the web of molecular interactions responsible for coordinating defense responses and ultimately resistance.

  10. Differences in two-component signal transduction proteins among the genus Brucella: implications for host preference and pathogenesis

    DEFF Research Database (Denmark)

    Binnewies, Tim Terence; Ussery, David; Lavín, JL

    2010-01-01

    Two-component systems (TCSs) are the predominant bacterial signal transduction mechanisms. Species of the genus Brucella are genetically highly related and differ mainly in mammalian host adaptation and pathogenesis. In this study, TCS proteins encoded in the available genome sequences of Brucella...... species have been identified using bioinformatic methods. All the Brucella species share an identical set of TCS proteins, and the number of TCS proteins in the closely related opportunistic human pathogen Ochrobactrum anthropi was higher than in Brucella species as expected from its lifestyle. O....... anthropi lacks orthologs of the Brucella TCSs NodVW, TceSR and TcfSR, suggesting that these TCS proteins could be necessary for the adaptation of Brucella as an intracellular pathogen. This genomic analysis revealed the presence of a differential distribution of TCS pseudogenes among Brucella species...

  11. Phase separation and dynamics of two-component Bose-Einstein condensates

    DEFF Research Database (Denmark)

    Lee, Kean Loon; Jørgensen, Nils Byg; Liu, I-Kang;

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition...

  12. Entanglement Properties in Two-Component Bose-Einstein Condensate

    Science.gov (United States)

    Jiang, Di-You

    2016-10-01

    We investigate entanglement inseparability and bipartite entanglement of in two-component Bose-Einstein condensate in the presence of the nonlinear interatomic interaction, interspecies interaction. Entanglement inseparability and bipartite entanglement have the similar properties. More entanglement can be generated by adjusting the nonlinear interatomic interaction and control the time interval of the entanglement by adjusting interspecies interaction.

  13. Two component injection moulding: Present and future perspectives

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard

    2009-01-01

    Two component injection moulding has widespread industrial applications. Still the technology is yet to gain its full potential in highly demanding and technically challenging applications areas. The smart use of this technology can open the doors for cost effective and convergent manufacturing...

  14. TWO-COMPONENT JETS AND THE FANAROFF-RILEY DICHOTOMY

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.; Sauty, C.

    2010-01-01

    Transversely stratified jets are observed in many classes of astrophysical objects, ranging from young stellar objects, mu-quasars, to active galactic nuclei and even in gamma-ray bursts. Theoretical arguments support this transverse stratification of jets with two components induced by intrinsic fe

  15. Bacterial biodegradation of neonicotinoid pesticides in soil and water systems.

    Science.gov (United States)

    Hussain, Sarfraz; Hartley, Carol J; Shettigar, Madhura; Pandey, Gunjan

    2016-12-01

    Neonicotinoids are neurotoxic systemic insecticides used in plant protection worldwide. Unfortunately, application of neonicotinoids affects both beneficial and target insects indiscriminately. Being water soluble and persistent, these pesticides are capable of disrupting both food chains and biogeochemical cycles. This review focuses on the biodegradation of neonicotinoids in soil and water systems by the bacterial community. Several bacterial strains have been isolated and identified as capable of transforming neonicotinoids in the presence of an additional carbon source. Environmental parameters have been established for accelerated transformation in some of these strains. Studies have also indicated that enhanced biotransformation of these pesticides can be accomplished by mixed microbial populations under optimised environmental conditions. Substantial research into the identification of neonicotinoid-mineralising bacterial strains and identification of the genes and enzymes responsible for neonicotinoid degradation is still required to complete the understanding of microbial biodegradation pathways, and advance bioremediation efforts.

  16. Dynamics of Two-Component Bose-Einstein Condensates

    Science.gov (United States)

    Baik, Eunsil

    I explored the vortex dynamics in homonuclear species two-component Bose-Einstein condensates (BECs) based on the knowledge of vortex dynamics in one-component BECs. The vortex dynamics in BECs depends on the background fields induced by different external potentials and other vortices. The motion of vortices is numerically computed and the numerical results are compared to the theoretical formulas where possible. In the study of the vortex-vortex interaction dynamics in one-component BECs, a power law relationship between the motion of the vortices and their separation distance is depicted. In addition to that, the relationship between the linear and the angular velocities of the vortices is found to be similar to the relationship between the tangential and the angular velocities of classical fluid vortices. In the case of two-component BEC dynamics, two different cases are studied: one without atomic inter-conversion between the two components and the other with atomic inter-conversion. The stability analysis of the two-component BECs is conducted to identify the stable regions as well as the regions of mixed and separated states. When a vortex is seeded in one component, this vortex induces a hump in the other component at the same location as the vortex, which leads to the vortex-hump dynamics. The vortex-hump-vortex-hump interaction dynamics without atomic inter-conversion depicts a power law relation between the motion of vortex-humps and the separation distance; whereas, the vortex-hump-vortex-hump interaction dynamics with atomic inter-conversion reveals a more complex relation between the motion of vortex-humps and the separation distance.

  17. Modulational instability of two-component Bose-Einstein condensates in an optical lattice

    CERN Document Server

    Jin, G R; Nahm, K; Jin, Guang-Ri; Kim, Chul Koo; Nahm, Kyun

    2004-01-01

    We study modulational instability of two-component Bose-Einstein condensates in a deep optical lattice, which is modelled as a coupled discrete nonlinear Schr\\"{o}dinger equation. The excitation spectrum and the modulational instability condition of the total system are presented analytically. In the long-wavelength limit, our results agree with the homogeneous two-component Bose-Einstein condensates case. The discreteness effects result in the appearance of the modulational instability for the condensates in miscible region. The numerical calculations confirm our analytical results and show that the interspecies coupling can transfer the instability from one component to another.

  18. Discrete kink dynamics in hydrogen-bonded chains: The two-component model

    DEFF Research Database (Denmark)

    Karpan, V.M.; Zolotaryuk, Yaroslav; Christiansen, Peter Leth;

    2004-01-01

    are fixed) and two-component models. The effect of stability switchings, discovered previously for a class of one-component kink-bearing models, is shown to exist in these two-component models as well. However, the presence of the second component, i.e., the softness of the heavy-ion sublattice, brings...... principal differences, like a significant difference in the stability switchings behavior for the kinks and the antikinks. Water-filled carbon nanotubes are briefly discussed as possible realistic systems, where topological discrete (anti)kink states might exist....

  19. Domain Walls and Textured Vortices in a Two-Component Ginzburg-Landau Model

    DEFF Research Database (Denmark)

    Madsen, Søren Peder; Gaididei, Yu. B.; Christiansen, Peter Leth

    2005-01-01

    We look for domain wall and textured vortex solutions in a two-component Ginzburg-Landau model inspired by two-band superconductivity. The two-dimensional two-component model, with equal coherence lengths and no magnetic field, shows some interesting properties. In the absence of a Josephson type...... coupling between the two order parameters a ''textured vortex'' is found by analytical and numerical solution of the Ginzburg-Landau equations. With a Josephson type coupling between the two order parameters we find the system to split up in two domains separated by a domain wall, where the order parameter...

  20. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    Science.gov (United States)

    Li, Chuanzhong; He, Jingsong

    2013-11-01

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  1. Block algebra in two-component BKP and D type Drinfeld-Sokolov hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Li, Chuanzhong, E-mail: lichuanzhong@nbu.edu.cn; He, Jingsong, E-mail: hejingsong@nbu.edu.cn [Department of Mathematics, Ningbo University, Ningbo 315211 (China)

    2013-11-15

    We construct generalized additional symmetries of a two-component BKP hierarchy defined by two pseudo-differential Lax operators. These additional symmetry flows form a Block type algebra with some modified (or additional) terms because of a B type reduction condition of this integrable hierarchy. Further we show that the D type Drinfeld-Sokolov hierarchy, which is a reduction of the two-component BKP hierarchy, possess a complete Block type additional symmetry algebra. That D type Drinfeld-Sokolov hierarchy has a similar algebraic structure as the bigraded Toda hierarchy which is a differential-discrete integrable system.

  2. Ultrasound Assisted Co-aggregation of a Two-component System with Multicolor Emission and Its Response to Aoid%超声促进两组分多彩发光体系分子聚集体的共组装及其对酸的响应行为

    Institute of Scientific and Technical Information of China (English)

    余旭东; 刘倩; 许秀芳; 兰海闯; 曹新华; 陈黎明; 刘斌; 易涛

    2012-01-01

    In this paper, a two-component gel/micro-crystal system including amino acid and imidazole-based derivatives with blue and red emission, respectively, is designed and obtained. The two emission colors are convenient for the study of the co-aggregation of the two molecules via double channel confocal laser scanning microscopy. The two-component system could response to ultrasound with the morphology change from the mixture of club-shaped microcrystals and helical fibers by a thermal process to homogenous fibers exposing to sonication. Further evidence for the co-aggregation of the two compo- nents was obtained from circular dichromism (CD), IR spectra and X-ray powder diffraction. The self-assembly process be- tween the two components was also studied by optimized molecular geometry calculation. Moreover, the co-aggregation obtained by the sonication then heating-cooling process, could not be destroyed by repeated heating-cooling. The gel-sol process could be further repeated for many times, suggesting that the co-aggregated gel was thermal-stable. It can be deduced that sonication weakened the intermolecular interaction between congeneric molecules and promoted the intermolecular hy- drogen bonding between the two components. The results indicate that cooperation of the sonication and thermal processes is an effective way to prohibit phase separation and to promote gelation in the gel/micro-crystal system. Thus, a light harvest system is achieved by co-aggregation of the two components at nanoscale by means of sonication. The emission color of these two-component gels can be tuned by changing the ratio of the two compounds. These gels are sensitive to acid, giving clear spectral variation, accompanied by a gel to sol transition. The morphology of the two-component system is changed from a fiber structure to vesicles without phase separation when responding to acid and metal ions. Moreover, both the gel state and the morphology can be reversed by further addition of

  3. Instabilities on crystal surfaces: The two-component body-centered solid-on-solid model

    NARCIS (Netherlands)

    Carlon, E.; van Beijeren, H.; Mazzeo, G.

    1996-01-01

    The free energy of crystal surfaces that can be described by the two-component body-centered solid-on-solid model has been calculated in a mean-field approximation. The system may model ionic crystals with a bcc lattice structure (for instance CsCl). Crossings between steps are energetically favored

  4. Light Responsive Two-Component Supramolecular Hydrogel: A Sensitive Platform for Humidity Sensors

    KAUST Repository

    Samai, Suman

    2016-02-15

    The supramolecular assembly of anionic azobenzene dicarboxylate and cationic cetyltrimethylammonium bromide (CTAB) formed a stimuli responsive hydrogel with a critical gelation concentration (CGC) of 0.33 wt%. This self-sustainable two-component system was able to repair damage upon light irradiation. Moreover, it was successfully employed in the fabrication of highly sensitive humidity sensors for the first time.

  5. Two-Component Multi-Parameter Time-Frequency Electromagnetics

    Institute of Scientific and Technical Information of China (English)

    HuangZhou; DongWeibin; HeTiezhi

    2003-01-01

    The two-component multi-parameter time-frequency electromagnetic method, used for the development of oilfields,makes use of both the traditional individual conductivity parameters of oil-producing layers and the dispersion information of the conductivity, i.e., the induced polarization parameter. The frequency-domain dispersion data is used to delineate the contacts between oil and water and the time domain dBz/dt component is used to estimate the depths to the un-known reservoirs so as to offer significant data in many aspects for oil exploration and detection.

  6. Interaction potentials and thermodynamic properties of two component semiclassical plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, T. S.; Moldabekov, Zh. A.; Ismagambetova, T. N. [Al-Farabi Kazakh National University, IETP, 71 al-Farabi Av., Almaty 050040 (Kazakhstan); Gabdullin, M. T. [Al-Farabi Kazakh National University, NNLOT, 71 al-Farabi Av., Almaty 050040 (Kazakhstan)

    2014-01-15

    In this paper, the effective interaction potential in two component semiclassical plasma, taking into account the long-range screening and the quantum-mechanical diffraction effects at short distances, is obtained on the basis of dielectric response function method. The structural properties of the semiclassical plasma are considered. The thermodynamic characteristics (the internal energy and the equation of state) are calculated using two methods: the method of effective potentials and the method of micropotentials with screening effect taken into account by the Ornstein-Zernike equation in the HNC approximation.

  7. A polaritonic two-component Bose-Hubbard model

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, M J; Brandao, F G S L; Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Exhibition Road, SW7 2PE (United Kingdom)], E-mail: m.hartmann@imperial.ac.uk

    2008-03-15

    We demonstrate that polaritons in an array of interacting micro-cavities with strong atom-photon coupling can form a two-component Bose-Hubbard model in which both polariton species are protected against spontaneous emission as their atomic part is stored in two ground states of the atoms. The parameters of the effective model can be tuned via the driving strength of external lasers and include attractive and repulsive polariton interactions. We also describe a method to measure the number statistics in one cavity for each polariton species independently.

  8. Targeting bacterial secretion systems: benefits of disarmament in the microcosm.

    Science.gov (United States)

    Baron, Christian; Coombes, Brian

    2007-03-01

    Secretion systems are used by many bacterial pathogens for the delivery of virulence factors to the extracellular space or directly into host cells. They are attractive targets for the development of novel anti-virulence drugs as their inactivation would lead to pathogen attenuation or avirulence, followed by clearance of the bacteria by the immune system. This review will present the state of knowledge on the assembly and function of type II, type III and type IV secretion systems in Gram-negative bacteria focusing on insights provided by structural analyses of several key components. The suitability of transcription factors regulating the expression of secretion system components and of ATPases, lytic transglycosylases and protein assembly factors as drug targets will be discussed. Recent progress using innovative in vivo as well as in vitro screening strategies led to a first set of secretion system inhibitors with potential for further development as anti-infectives. The discovery of such inhibitors offers exciting and innovative opportunities to further develop these anti-virulence drugs into monotherapy or in combination with classical antibiotics. Bacterial growth per se would not be inhibited by such drugs so that the selection for mutations causing resistance could be reduced. Secretion system inhibitors may therefore avoid many of the problems associated with classical antibiotics and may constitute a valuable addition to our arsenal for the treatment of bacterial infections.

  9. Bacterial regrowth in water reclamation and distribution systems revealed by viable bacterial detection assays.

    Science.gov (United States)

    Lin, Yi-wen; Li, Dan; Gu, April Z; Zeng, Si-yu; He, Miao

    2016-02-01

    Microbial regrowth needs to be managed during water reclamation and distribution. The aim of present study was to investigate the removal and regrowth of Escherichia coli (E. coli) and Salmonella in water reclamation and distribution system by using membrane integrity assay (PMA-qPCR), reverse transcriptional activity assay (Q-RT-PCR) and culture-based assay, and also to evaluate the relationships among bacterial regrowth, and environmental factors in the distribution system. The results showed that most of the water reclamation processes potentially induced bacteria into VBNC state. The culturable E. coli and Salmonella regrew 1.8 and 0.7 log10 in distribution system, which included reactivation of bacteria in the viable but non-culturable (VBNC) state and reproduction of culturable bacteria. The regrowth of culturable E. coli and Salmonella in the distribution system mainly depended on the residual chlorine levels, with correlations (R(2)) of -0.598 and -0.660. The abundances of membrane integrity and reverse transcriptional activity bacteria in reclamation effluents had significant correlations with the culturable bacteria at the end point of the distribution system, demonstrating that PMA-qPCR and Q-RT-PCR are sensitive and accurate tools to determine and predict bacterial regrowth in water distribution systems. This study has improved our understanding of microbial removal and regrowth in reclaimed water treatment and distribution systems. And the results also recommended that more processes should be equipped to remove viable bacteria in water reclamation plants for the sake of inhibition microbial regrowth during water distribution and usages.

  10. Bacterial contamination of anesthesia machines’ internal breathing-circuit-systems

    Science.gov (United States)

    Spertini, Verena; Borsoi, Livia; Berger, Jutta; Blacky, Alexander; Dieb-Elschahawi, Magda; Assadian, Ojan

    2011-01-01

    Background: Bacterial contamination of anesthesia breathing machines and their potential hazard for pulmonary infection and cross-infection among anesthetized patients has been an infection control issue since the 1950s. Disposable equipment and bacterial filters have been introduced to minimize this risk. However, the machines’ internal breathing-circuit-system has been considered to be free of micro-organisms without providing adequate data supporting this view. The aim of the study was to investigate if any micro-organisms can be yielded from used internal machines’ breathing-circuit-system. Based on such results objective reprocessing intervals could be defined. Methods: The internal parts of 40 anesthesia machines’ breathing-circuit-system were investigated. Chi-square test and logistic regression analysis were performed. An on-site process observation of the re-processing sequence was conducted. Results: Bacterial growth was found in 17 of 40 machines (43%). No significant difference was ascertained between the contamination and the processing intervals. The most common contaminants retrieved were coagulase negative Staphylococci, aerobe spore forming bacteria and Micrococcus species. In one breathing-circuit-system, Escherichia coli, and in one further Staphylococcus aureus were yielded. Conclusion: Considering the availability of bacterial filters installed on the outlet of the breathing-circuit-systems, the type of bacteria retrieved and the on-site process observation, we conclude that the contamination found is best explained by a lack of adherence to hygienic measures during and after re-processing of the internal breathing-circuit-system. These results support an extension of the re-processing interval of the anesthesia apparatus longer than the manufacturer’s recommendation of one week. However, the importance of adherence to standard hygienic measures during re-processing needs to be emphasized. PMID:22242095

  11. Harnessing CRISPR-Cas systems for bacterial genome editing.

    Science.gov (United States)

    Selle, Kurt; Barrangou, Rodolphe

    2015-04-01

    Manipulation of genomic sequences facilitates the identification and characterization of key genetic determinants in the investigation of biological processes. Genome editing via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) constitutes a next-generation method for programmable and high-throughput functional genomics. CRISPR-Cas systems are readily reprogrammed to induce sequence-specific DNA breaks at target loci, resulting in fixed mutations via host-dependent DNA repair mechanisms. Although bacterial genome editing is a relatively unexplored and underrepresented application of CRISPR-Cas systems, recent studies provide valuable insights for the widespread future implementation of this technology. This review summarizes recent progress in bacterial genome editing and identifies fundamental genetic and phenotypic outcomes of CRISPR targeting in bacteria, in the context of tool development, genome homeostasis, and DNA repair.

  12. Dynamics of two-component membranes surrounded by viscoelastic media.

    Science.gov (United States)

    Komura, Shigeyuki; Yasuda, Kento; Okamoto, Ryuichi

    2015-11-01

    We discuss the dynamics of two-component fluid membranes which are surrounded by viscoelastic media. We assume that membrane-embedded proteins can diffuse laterally and induce a local membrane curvature. The mean squared displacement of a tagged membrane segment is obtained as a generalized Einstein relation. When the elasticity of the surrounding media obeys a power-law behavior in frequency, an anomalous diffusion of the membrane segment is predicted. We also consider the situation where the proteins generate active non-equilibrium forces. The generalized Einstein relation is further modified by an effective temperature that depends on the force dipole energy. The obtained generalized Einstein relations are useful for membrane microrheology experiments.

  13. Recent advances in description of few two-component fermions

    CERN Document Server

    Kartavtsev, O I

    2012-01-01

    Overview of the recent advances in description of the few two-component fermions is presented. The zero-range interaction limit is generally considered to discuss the principal aspects of the few-body dynamics. Significant attention is paid to detailed description of two identical fermions of mass $m$ and a distinct particle of mass $m_1$; two universal $L^P = 1^-$ bound states arise for mass ratio $m/m_1$ increasing up to the critical value $\\mu_c \\approx 13.607$, beyond which the Efimov effect takes place. The topics considered include rigorous treatment of the few-fermion problem in the zero-range interaction limit, low-dimensional results, the four-body energy spectrum, crossover of the energy spectra for $m/m_1$ near the critical value $\\mu_c $, and properties of potential-dependent states. At last, enlisted are the problems, whose solution is in due course.

  14. No electrostatic supersolitons in two-component plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Verheest, Frank, E-mail: frank.verheest@ugent.be [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, B–9000 Gent (Belgium); School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa); Lakhina, Gurbax S., E-mail: lakhina@iigm.iigs.res.in [Indian Institute of Geomagnetism, New Panvel (W), Navi Mumbai (India); Hellberg, Manfred A., E-mail: hellberg@ukzn.ac.za [School of Chemistry and Physics, University of KwaZulu-Natal, Durban 4000 (South Africa)

    2014-06-15

    The concept of acoustic supersolitons was introduced for a very specific plasma with five constituents, and discussed only for a single set of plasma parameters. Supersolitons are characterized by having subsidiary extrema on the sides of a typical bipolar electric field signature, or by association with a root beyond double layers in the fully nonlinear Sagdeev pseudopotential description. It was subsequently found that supersolitons could exist in several plasma models having three constituent species, rather than four or five. In the present paper, it is proved that standard two-component plasma models cannot generate supersolitons, by recalling and extending results already in the literature, and by establishing the necessary properties of a more recent model.

  15. Two-component jet simulations: Combining analytical and numerical approaches

    CERN Document Server

    Matsakos, T; Trussoni, E; Tsinganos, K; Vlahakis, N; Sauty, C; Mignone, A

    2009-01-01

    Recent observations as well as theoretical studies of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the observed stellar spin down. In this framework, we construct numerical two-component jet models by properly mixing an analytical disk wind solution with a complementary analytically derived stellar outflow. Their combination is controlled by both spatial and temporal parameters, in order to address different physical conditions and time variable features. We study the temporal evolution and the interaction of the two jet components on both small and large scales. The simulations reach steady state configurations close to the initial solutions. Although time variability is not found to considerably affect the dynamics, flow fluctuations generate condensations, whose large scale structures have a strong resemblance to observed YSO jet knots.

  16. Two-component coupled KdV equations and its connection with the generalized Harry Dym equations

    Energy Technology Data Exchange (ETDEWEB)

    Popowicz, Ziemowit, E-mail: ziemek@ift.uni.wroc.pl [Institute of Theoretical Physics, University of Wrocław, Wrocław pl. M. Borna 9, 50-205 Wrocław (Poland)

    2014-01-15

    It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.

  17. Two-component coupled KdV equations and its connection with the generalized Harry Dym equations

    Science.gov (United States)

    Popowicz, Ziemowit

    2014-01-01

    It is shown that three different Lax operators in the Dym hierarchy produce three generalized coupled Harry Dym equations. These equations transform, via the reciprocal link, to the coupled two-component Korteweg de Vries (KdV) system. The first equation gives us known integrable two-component KdV system, while the second reduces to the known symmetrical two-component KdV equation. The last one reduces to the Drienfeld-Sokolov equation. This approach gives us new Lax representation for these equations.

  18. Two-component Brownian coagulation: Monte Carlo simulation and process characterization

    Institute of Scientific and Technical Information of China (English)

    Haibo Zhao; Chu guang Zheng

    2011-01-01

    The compositional distribution within aggregates of a given size is essential to the functionality of composite aggregates that are usually enlarged by rapid Brownian coagulation.There is no analytical solution for the process of such two-component systems.Monte Carlo method is an effective numerical approach for two-component coagulation.In this paper,the differentially weighted Monte Carlo method is used to investigate two-component Brownian coagulation,respectively,in the continuum regime,the freemolecular regime and the transition regime.It is found that ( 1 ) for Brownian coagulation in the continuum regime and in the free-molecular regime,the mono-variate compositional distribution,i.e.,the number density distribution function of one component amount (in the form of volume of the component in aggregates) satisfies self-preserving form the same as particle size distribution in mono-component Brownian coagulation; (2) however,for Brownian coagulation in the transition regime the mono-variate compositional distribution cannot reach self-similarity; and (3) the bivariate compositional distribution,i.e.,the combined number density distribution function of two component amounts in the three regimes satisfies a semi self-preserving form.Moreover,other new features inherent to aggregative mixing are also demonstrated; e.g.,the degree of mixing between components,which is largely controlled by the initial compositional mass fraction,improves as aggregate size increases.

  19. Bloch Oscillations of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    GU Huai-Qiang; WANG Zhi-Cheng; JIN Kang; TAN Lei

    2006-01-01

    @@ We study the Bloch oscillations of two-component Bose-Einstein condensates trapped in spin-dependent optical lattices. The influence of the intercomponent atom interaction on the system is discussed in detail Accelerated breakdown of the Bloch oscillations and revival phenomena are found respectively for the repulsive and attractive case. For both the cases, the system will finally be set in a quantum self-trapping state due to dynamical instability.

  20. Two-component perfect fluid in FRW universe

    CERN Document Server

    ,

    2012-01-01

    We propose the cosmological model which allows to describe on equal footing the evolution of matter in the universe on the time interval from the inflation till the domination of dark energy. The matter is considered as a two-component perfect fluid imitated by homogeneous scalar fields between which there is energy exchange. Dark energy is represented by the cosmological constant, which is supposed invariable during the whole evolution of the universe. The matter changes its equation of state with time, so that the era of radiation domination in the early universe smoothly passes into the era of a pressureless gas, which then passes into the late-time epoch, when the matter is represented by a gas of low-velocity cosmic strings. The inflationary phase is described as an analytic continuation of the energy density in the very early universe into the region of small negative values of the parameter which characterizes typical time of energy transfer from one matter component to another. The Hubble expansion ra...

  1. A minimal model for two-component dark matter

    Energy Technology Data Exchange (ETDEWEB)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E. [Institut fuer theoretische Physik, Universitaet Muenster, Wilhelm-Klemm-Strasse 9,D-48149 Muenster (Germany)

    2015-07-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z{sub 2} symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  2. A minimal model for two-component dark matter

    CERN Document Server

    Esch, Sonja; Yaguna, Carlos E

    2014-01-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a $Z_2$ symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatibl...

  3. A minimal model for two-component dark matter

    Science.gov (United States)

    Esch, Sonja; Klasen, Michael; Yaguna, Carlos E.

    2014-09-01

    We propose and study a new minimal model for two-component dark matter. The model contains only three additional fields, one fermion and two scalars, all singlets under the Standard Model gauge group. Two of these fields, one fermion and one scalar, are odd under a Z 2 symmetry that renders them simultaneously stable. Thus, both particles contribute to the observed dark matter density. This model resembles the union of the singlet scalar and the singlet fermionic models but it contains some new features of its own. We analyze in some detail its dark matter phenomenology. Regarding the relic density, the main novelty is the possible annihilation of one dark matter particle into the other, which can affect the predicted relic density in a significant way. Regarding dark matter detection, we identify a new contribution that can lead either to an enhancement or to a suppression of the spin-independent cross section for the scalar dark matter particle. Finally, we define a set of five benchmarks models compatible with all present bounds and examine their direct detection prospects at planned experiments. A generic feature of this model is that both particles give rise to observable signals in 1-ton direct detection experiments. In fact, such experiments will be able to probe even a subdominant dark matter component at the percent level.

  4. Dynamical principles of two-component genetic oscillators.

    Directory of Open Access Journals (Sweden)

    Raúl Guantes

    2006-03-01

    Full Text Available Genetic oscillators based on the interaction of a small set of molecular components have been shown to be involved in the regulation of the cell cycle, the circadian rhythms, or the response of several signaling pathways. Uncovering the functional properties of such oscillators then becomes important for the understanding of these cellular processes and for the characterization of fundamental properties of more complex clocks. Here, we show how the dynamics of a minimal two-component oscillator is drastically affected by its genetic implementation. We consider a repressor and activator element combined in a simple logical motif. While activation is always exerted at the transcriptional level, repression is alternatively operating at the transcriptional (Design I or post-translational (Design II level. These designs display differences on basic oscillatory features and on their behavior with respect to molecular noise or entrainment by periodic signals. In particular, Design I induces oscillations with large activator amplitudes and arbitrarily small frequencies, and acts as an "integrator" of external stimuli, while Design II shows emergence of oscillations with finite, and less variable, frequencies and smaller amplitudes, and detects better frequency-encoded signals ("resonator". Similar types of stimulus response are observed in neurons, and thus this work enables us to connect very different biological contexts. These dynamical principles are relevant for the characterization of the physiological roles of simple oscillator motifs, the understanding of core machineries of complex clocks, and the bio-engineering of synthetic oscillatory circuits.

  5. Implementation of Two Component Advective Flow Solution in XSPEC

    CERN Document Server

    Debnath, Dipak; Mondal, Santanu

    2014-01-01

    Spectral and Temporal properties of black hole candidates can be explained reasonably well using Chakrabarti-Titarchuk solution of two component advective flow (TCAF). This model requires two accretion rates, namely, the Keplerian disk accretion rate and the halo accretion rate, the latter being composed of a sub-Keplerian, low angular momentum flow which may or may not develop a shock. In this solution, the relevant parameter is the relative importance of the halo (which creates the Compton cloud region) rate with respect to the Keplerian disk rate (soft photon source). Though this model has been used earlier to manually fit data of several black hole candidates quite satisfactorily, for the first time, we made it user friendly by implementing it into XSPEC software of GSFC/NASA. This enables any user to extract physical parameters of the accretion flows, such as two accretion rates, the shock location, the shock strength etc. for any black hole candidate. We provide some examples of fitting a few cases usin...

  6. Structural dynamics of the two-component response regulator RstA in recognition of promoter DNA element

    Science.gov (United States)

    Li, Yi-Chuan; Chang, Chung-ke; Chang, Chi-Fon; Cheng, Ya-Hsin; Fang, Pei-Ju; Yu, Tsunai; Chen, Sheng-Chia; Li, Yi-Ching; Hsiao, Chwan-Deng; Huang, Tai-huang

    2014-01-01

    The RstA/RstB system is a bacterial two-component regulatory system consisting of the membrane sensor, RstB and its cognate response regulator (RR) RstA. The RstA of Klebsiella pneumoniae (kpRstA) consists of an N-terminal receiver domain (RD, residues 1–119) and a C-terminal DNA-binding domain (DBD, residues 130–236). Phosphorylation of kpRstA induces dimerization, which allows two kpRstA DBDs to bind to a tandem repeat, called the RstA box, and regulate the expression of downstream genes. Here we report the solution and crystal structures of the free kpRstA RD, DBD and DBD/RstA box DNA complex. The structure of the kpRstA DBD/RstA box complex suggests that the two protomers interact with the RstA box in an asymmetric fashion. Equilibrium binding studies further reveal that the two protomers within the kpRstA dimer bind to the RstA box in a sequential manner. Taken together, our results suggest a binding model where dimerization of the kpRstA RDs provides the platform to allow the first kpRstA DBD protomer to anchor protein–DNA interaction, whereas the second protomer plays a key role in ensuring correct recognition of the RstA box. PMID:24990372

  7. Analysis of proteins regulated by two-component signal transduction system saeRS in Staphylococcus epidermidis%表皮葡萄球菌双组分信号转导系统saeRS对相关蛋白调控的研究

    Institute of Scientific and Technical Information of China (English)

    娄强; 王艳歌; 瞿涤

    2012-01-01

    目的 利用双向电泳技术对表皮葡萄球菌菌体蛋白进行蛋白质组学分析,寻找双组分信号转导系统saeRS的调控网络.方法 对表皮葡萄球菌1457双组分信号转导系统saeRS删除株与野生株菌体蛋白进行双向电泳差异比较;电泳图谱采用Image Master 2D Platinum软件分析;免疫印迹法验证saeRS调控的差异蛋白.结果 在表皮葡萄球菌1457双组分信号转导系统saeRS删除株与野生株蛋白质图谱中共发现23个差异表达的蛋白点(10个下调,13个上调).结论 蛋白质双向电泳技术可以成功应用于分析表皮葡萄球菌双组分信号转导系统saeRS的调控网络;此图谱为进一步研究saeRS在表皮葡萄球菌中的调控机制奠定了基础.%Objective To search for new proteins regulated by two-component signal transduction system saeRS, the proteomics of whole cellular proteins between saeRS deletion mutant and wild-type strain of Staphylococcus epidermidis ( S. epidermidis) using two-dimensional electrophoresis. Methods Immobilized pH gradient (IPG) two-dimensional electrophoresis was adopted and the gels were analyzed with Image Master 2D Platinum software. Western blot was used to analyze the differentially expressed proteins. Results We found 23 differentially expressed protein spots (10 down-regulated and 13 up-regulated) in 2-DE gels of saeRS deletion mutant and wild-type strain of S. epidermidis. Conclusion Two-dimensional electrophoresis of protein can be used to analyze the regulation network of two-component signal transduction system saeRS in S. epidermidis, and this provides basis for further study on saeRS regulation mechanism.

  8. Serine/threonine/tyrosine phosphorylation regulates DNA binding of bacterial transcriptional regulators

    DEFF Research Database (Denmark)

    Kalantari, Aida; Derouiche, Abderahmane; Shi, Lei;

    2015-01-01

    Reversible phosphorylation of bacterial transcriptional regulators (TRs) belonging to the family of two-component systems (TCSs) is a well-established mechanism for regulating gene expression. Recent evidence points to the fact that reversible phosphorylation of bacterial TRs on other types...

  9. Trapping of two-component matter-wave solitons by mismatched optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Law, K.J.H. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States); Kevrekidis, P.G. [Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515 (United States)], E-mail: kevrekid@gmail.com; Malomed, B.A. [Department of Physical Electronics, School of Electrical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 (Israel)

    2008-05-26

    We consider a one-dimensional model of a two-component Bose-Einstein condensate in the presence of periodic external potentials of opposite signs, acting on the two species. The interaction between the species is attractive, while intra-species interactions may be attractive too [the system of the bright-bright (BB) type], or of opposite signs in the two components [the gap-bright (GB) type]. We identify the existence and stability domains for soliton complexes of the BB and GB types. The evolution of unstable solitons leads to the establishment of oscillatory states. The increase of the strength of the nonlinear attraction between the species results in symbiotic stabilization of the complexes, despite the fact that one component is centered around a local maximum of the respective periodic potential.

  10. A two-component Frenkel-Kontorowa model for surface alloy formation

    CERN Document Server

    Daruka, I

    2003-01-01

    It has been shown by recent experiments that bulk immiscible metals (e.g. Ag/Cu, Ag/Co and Au/Ni) can form binary alloys on certain surfaces where the substrate mediates the elastic misfits between the two components, thus relieving the elastic strain in the overlayer. These novel surface alloys exhibit a rich phase structure. We formulate a two-component Frenkel-Kontorova model in one dimension to study surface alloy formation. This model can naturally incorporate dislocation formation that plays a crucial role in determining the actual structure of the system. Using energy minimization calculations we provide a phase diagram in terms of average alloy composition and the energy of mixing. Monte Carlo simulations were also performed to study the structure and interaction of the emerging dislocations.

  11. Design of Novel Mixer and Applicator for Two-Component Surgical Adhesives

    Science.gov (United States)

    Go, Kevin; Kim, Yeong; Lee, Andy H.; Staricha, Kelly; Messersmith, Phillip; Glucksberg, Matthew

    2015-01-01

    Current mixer and applicator devices on the market are not able to properly and efficiently mix two-component surgical adhesives in small volumes necessary to achieve economic viability. Furthermore, in these devices a significant amount of adhesive is wasted during the application process, as material within the dead space of the mixing chamber must be discarded. We have designed and demonstrated a new active mixer and applicator system capable of rapidly and efficiently mixing two components of an adhesive and applying it to the surgical site. Recently, Messersmith et al. have developed a tissue adhesive inspired by the mussel byssus and have shown that it is effective as a surgical sealant, and is especially suited for wet environments such as in fetal surgery. Like some other tissue sealants, this one requires that two components of differing viscosities be thoroughly mixed within a specified and short time period. Through a combination of compression and shear testing, we demonstrated that our device could effectively mix the adhesive developed by Messersmith et al. and improve its shear strength to significantly higher values than what has been reported for vortex mixing. Overall, our mixer and applicator system not only has potential applications in mixing and applying various adhesives in multiple surgical fields but also makes this particular adhesive viable for clinical use. PMID:26421090

  12. Real time propagation of the exact two component time-dependent density functional theory

    Science.gov (United States)

    Goings, Joshua J.; Kasper, Joseph M.; Egidi, Franco; Sun, Shichao; Li, Xiaosong

    2016-09-01

    We report the development of a real time propagation method for solving the time-dependent relativistic exact two-component density functional theory equations (RT-X2C-TDDFT). The method is fundamentally non-perturbative and may be employed to study nonlinear responses for heavy elements which require a relativistic Hamiltonian. We apply the method to several group 12 atoms as well as heavy-element hydrides, comparing with the extensive theoretical and experimental studies on this system, which demonstrates the correctness of our approach. Because the exact two-component Hamiltonian contains spin-orbit operators, the method is able to describe the non-zero transition moment of otherwise spin-forbidden processes in non-relativistic theory. Furthermore, the two-component approach is more cost effective than the full four-component approach, with similar accuracy. The RT-X2C-TDDFT will be useful in future studies of systems containing heavy elements interacting with strong external fields.

  13. Different electronic charges in two-component superconductor by coherent state

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xuguang, E-mail: shixg@bjfu.edu.cn

    2015-07-17

    Recently, the different electronic charges, which are related to the different coupling constants with magnetic field, in the two-component superconductor have been studied in the frame of Ginzburg–Landau theory. In order to study the electronic charges in detail we suggest the wave function in the two-component superconductor to be in the coherent state. We find the different electronic charges exist not only in the coherent state but also in the incoherent state. But the ratio of the different charges in the coherent state is different from the ratio in the incoherence. The expressions of the coupling constants are given directly based on the coherence effects. We also discuss the winding number in such a system. - Highlights: • Suggest the wave function in two-component superconductor is coherent. • Interpret the existence of different electric charges by the coherent states. • Derive a new expression for the supercurrent. • Reveal the relation between different electric charges and winding number.

  14. A processed noncoding RNA regulates an altruistic bacterial antiviral system.

    Science.gov (United States)

    Blower, Tim R; Pei, Xue Y; Short, Francesca L; Fineran, Peter C; Humphreys, David P; Luisi, Ben F; Salmond, George P C

    2011-02-01

    The ≥ 10³⁰ bacteriophages on Earth relentlessly drive adaptive coevolution, forcing the generation of protective mechanisms in their bacterial hosts. One such bacterial phage-resistance system, ToxIN, consists of a protein toxin (ToxN) that is inhibited in vivo by a specific RNA antitoxin (ToxI); however, the mechanisms for this toxicity and inhibition have not been defined. Here we present the crystal structure of the ToxN-ToxI complex from Pectobacterium atrosepticum, determined to 2.75-Å resolution. ToxI is a 36-nucleotide noncoding RNA pseudoknot, and three ToxI monomers bind to three ToxN monomers to generate a trimeric ToxN-ToxI complex. Assembly of this complex is mediated entirely through extensive RNA-protein interactions. Furthermore, a 2'-3' cyclic phosphate at the 3' end of ToxI, and catalytic residues, identify ToxN as an endoRNase that processes ToxI from a repetitive precursor but is regulated by its own catalytic product.

  15. N-linked protein glycosylation in a bacterial system.

    Science.gov (United States)

    Nothaft, Harald; Liu, Xin; McNally, David J; Szymanski, Christine M

    2010-01-01

    N-Linked protein glycosylation is conserved throughout the three domains of life and influences protein function, stability, and protein complex formation. N-Linked glycosylation is an essential process in Eukaryotes; however, although N-glycosylation affects multiple cellular processes in Archaea and Bacteria, it is not needed for cell survival. Methods for the analyses of N-glycosylation in eukaryotes are well established, but comparable techniques for the analyses of the pathways in Bacteria and Archaea are needed. In this chapter we describe new methods for the detection and analyses of N-linked, and the recently discovered free oligosaccharides (fOS), from whole cell lysates of Campylobacter jejuni using non-specific pronase E digestion and permethylation followed by mass spectrometry. We also describe the expression and immunodetection of the model N-glycoprotein, AcrA, fused to a hexa-histidine tag to follow protein glycosylation in C. jejuni. This chapter concludes with the recent demonstration that high-resolution magic angle spinning NMR of intact bacterial cells provides a rapid, non-invasive method for analyzing fOS in C. jejuni in vivo. This combination of techniques provides a powerful tool for the exploration, quantification, and structural analyses of N-linked and free oligosaccharides in the bacterial system.

  16. Mapping the Two-Component Atomic Fermi Gas to the Nuclear Shell-Model

    DEFF Research Database (Denmark)

    Özen, C.; Zinner, Nikolaj Thomas

    2014-01-01

    of the external potential becomes important. A system of two-species fermionic cold atoms with an attractive zero-range interaction is analogous to a simple model of nucleus in which neutrons and protons interact only through a residual pairing interaction. In this article, we discuss how the problem of a two......-component atomic fermi gas in a tight external trap can be mapped to the nuclear shell model so that readily available many-body techniques in nuclear physics, such as the Shell Model Monte Carlo (SMMC) method, can be directly applied to the study of these systems. We demonstrate an application of the SMMC method...

  17. Modulational instability for a self-attractive two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Li Sheng-Chang; Duan Wen-Shan

    2009-01-01

    By means of the multiple-scale expansion method, the coupled nonlinear Schr(o)dinger equations without an explicit external potential are obtained in two-dimensional geometry for a self-attractive Bose-Einstein condensate composed of different hyperfine states. The modulational instability of two-component condensate is investigated by using a simple technique. Based on the discussion about two typical cases, the explicit expression of the growth rate for a purely growing modulational instability and the optimum stable conditions are given and analysed analytically. The results show that the modulational instability of this two-dimensional system is quite different from that in a one-dimensional system.

  18. Two-component Fermions in Optical Lattice with Spatially Alternating Interactions

    Science.gov (United States)

    Hoang, Anh-Tuan; Nguyen, Thi-Hai-Yen; Tran, Thi-Thu-Trang; Le, Duc-Anh

    2016-10-01

    We investigate two-component mass-imbalanced fermions in an optical lattice with spatially modulated interactions by using two-site dynamical mean field theory. At half-filling and zero temperature, the phase diagram of the system is analytically obtained, in which the metallic region is reduced with increasing the mass imbalance. The ground-state properties of the fermionic system are discussed from the behaviors of both the spin-dependent quasi-particle weight at the Fermi level and the double occupancy for each sublattice as functions of the local interaction strengths for various values of the mass imbalance.

  19. High-temperature superfluidity of the two-component Bose gas in a transition metal dichalcogenide bilayer

    Science.gov (United States)

    Berman, Oleg L.; Kezerashvili, Roman Ya.

    2016-06-01

    The high-temperature superfluidity of two-dimensional dipolar excitons in two parallel transition metal dichalcogenide (TMDC) layers is predicted. We study Bose-Einstein condensation in the two-component system of dipolar A and B excitons. The effective mass, energy spectrum of the collective excitations, the sound velocity, and critical temperature are obtained for different TMDC materials. It is shown that in the Bogoliubov approximation, the sound velocity in the two-component dilute exciton Bose gas is always larger than in any one-component exciton system. The difference between the sound velocities for two-component and one-component dilute gases is caused by the fact that the sound velocity for a two-component system depends on the reduced mass of A and B excitons, which is always smaller than the individual mass of A or B exciton. Due to this fact, the critical temperature Tc for superfluidity for the two-component exciton system in a TMDC bilayer is about one order of magnitude higher than Tc in any one-component exciton system. We propose to observe the superfluidity of two-dimensional dipolar excitons in two parallel TMDC layers, which causes two opposite superconducting currents in each TMDC layer.

  20. Factors Affecting Bacterial Growth in Drinking Water Distribution System

    Institute of Scientific and Technical Information of China (English)

    WEI LU; XIAO-JIAN ZHANG

    2005-01-01

    Objective To define the influence of some parameters, including assimilable organic carbon (AOC), chloramine residual, etc. on the bacterial growth in drinking water distribution systems. Methods Three typical water treatment plants in a northern city (City T) of China and their corresponding distribution systems were investigated. Some parameters of the water samples, such as heterotrophic plate content (HPC), AOC, CODMn, TOC, and phosphate were measured. Results The AOC in most water samples were more than 100 μg/L, or even more than 200 μg/L in some cases. The HPC in distribution systems increased significantly with the decrease of residual chlorine. When the residual chlorine was less than 0.1 mg/L, the magnitude order of HPC was 104 CFU/mL; when it was 0.5-0.7 mg/L, the HPC was about 500 CFU/mL. Conclusion For controlling the biostability of drinking water, the controlling of AOC and residual chlorine should be considered simultaneously. The influence of phosphors on the AOC tests of water is not significant. Phosphors may not be the limiting nutrient in the water distribution systems.

  1. Topological phases of two-component bosons in species-dependent artificial gauge potentials

    Science.gov (United States)

    Wu, Ying-Hai; Shi, Tao

    2016-08-01

    We study bosonic atoms with two internal states in artificial gauge potentials whose strengths are different for the two components. A series of topological phases for such systems is proposed using the composite fermion theory and the parton construction. It is found in exact diagonalization that some of the proposed states may be realized for simple contact interaction between bosons. The ground states and low-energy excitations of these states are modeled using trial wave functions. The effective field theories for these states are also constructed and reveal some interesting properties.

  2. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    DEFF Research Database (Denmark)

    Bellotti, Filipe Furlan; Salami Dehkharghani, Amin; Zinner, Nikolaj Thomas

    2017-01-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous......) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction...

  3. The Bacterial Ghost platform system: production and applications.

    Science.gov (United States)

    Langemann, Timo; Koller, Verena Juliana; Muhammad, Abbas; Kudela, Pavol; Mayr, Ulrike Beate; Lubitz, Werner

    2010-01-01

    The Bacterial Ghost (BG) platform technology is an innovative system for vaccine, drug or active substance delivery and for technical applications in white biotechnology. BGs are cell envelopes derived from Gram-negative bacteria. BGs are devoid of all cytoplasmic content but have a preserved cellular morphology including all cell surface structures. Using BGs as delivery vehicles for subunit or DNA-vaccines the particle structure and surface properties of BGs are targeting the carrier itself to primary antigen-presenting cells. Furthermore, BGs exhibit intrinsic adjuvant properties and trigger an enhanced humoral and cellular immune response to the target antigen. Multiple antigens of the native BG envelope and recombinant protein or DNA antigens can be combined in a single type of BG. Antigens can be presented on the inner or outer membrane of the BG as well as in the periplasm that is sealed during BG formation. Drugs or supplements can also be loaded to the internal lumen or periplasmic space of the carrier. BGs are produced by batch fermentation with subsequent product recovery and purification via tangential flow filtration. For safety reasons all residual bacterial DNA is inactivated during the BG production process by the use of staphylococcal nuclease A and/or the treatment with β-propiolactone. After purification BGs can be stored long-term at ambient room temperature as lyophilized product. The production cycle from the inoculation of the pre-culture to the purified BG concentrate ready for lyophilization does not take longer than a day and thus meets modern criteria of rapid vaccine production rather than keeping large stocks of vaccines. The broad spectrum of possible applications in combination with the comparably low production costs make the BG platform technology a safe and sophisticated product for the targeted delivery of vaccines and active agents as well as carrier of immobilized enzymes for applications in white biotechnology.

  4. Named entity recognition for bacterial Type IV secretion systems.

    Science.gov (United States)

    Ananiadou, Sophia; Sullivan, Dan; Black, William; Levow, Gina-Anne; Gillespie, Joseph J; Mao, Chunhong; Pyysalo, Sampo; Kolluru, Balakrishna; Tsujii, Junichi; Sobral, Bruno

    2011-03-29

    Research on specialized biological systems is often hampered by a lack of consistent terminology, especially across species. In bacterial Type IV secretion systems genes within one set of orthologs may have over a dozen different names. Classifying research publications based on biological processes, cellular components, molecular functions, and microorganism species should improve the precision and recall of literature searches allowing researchers to keep up with the exponentially growing literature, through resources such as the Pathosystems Resource Integration Center (PATRIC, patricbrc.org). We developed named entity recognition (NER) tools for four entities related to Type IV secretion systems: 1) bacteria names, 2) biological processes, 3) molecular functions, and 4) cellular components. These four entities are important to pathogenesis and virulence research but have received less attention than other entities, e.g., genes and proteins. Based on an annotated corpus, large domain terminological resources, and machine learning techniques, we developed recognizers for these entities. High accuracy rates (>80%) are achieved for bacteria, biological processes, and molecular function. Contrastive experiments highlighted the effectiveness of alternate recognition strategies; results of term extraction on contrasting document sets demonstrated the utility of these classes for identifying T4SS-related documents.

  5. Named entity recognition for bacterial Type IV secretion systems.

    Directory of Open Access Journals (Sweden)

    Sophia Ananiadou

    Full Text Available Research on specialized biological systems is often hampered by a lack of consistent terminology, especially across species. In bacterial Type IV secretion systems genes within one set of orthologs may have over a dozen different names. Classifying research publications based on biological processes, cellular components, molecular functions, and microorganism species should improve the precision and recall of literature searches allowing researchers to keep up with the exponentially growing literature, through resources such as the Pathosystems Resource Integration Center (PATRIC, patricbrc.org. We developed named entity recognition (NER tools for four entities related to Type IV secretion systems: 1 bacteria names, 2 biological processes, 3 molecular functions, and 4 cellular components. These four entities are important to pathogenesis and virulence research but have received less attention than other entities, e.g., genes and proteins. Based on an annotated corpus, large domain terminological resources, and machine learning techniques, we developed recognizers for these entities. High accuracy rates (>80% are achieved for bacteria, biological processes, and molecular function. Contrastive experiments highlighted the effectiveness of alternate recognition strategies; results of term extraction on contrasting document sets demonstrated the utility of these classes for identifying T4SS-related documents.

  6. Two Component Injection Moulding for Moulded Interconnect Devices

    DEFF Research Database (Denmark)

    Islam, Aminul

    The moulded interconnect devices (MIDs) contain huge possibilities for many applications in micro electro-mechanical-systems because of their potential in reducing the number of components, process steps and finally in miniaturization of the product. Among the available MID process chains, two...

  7. Entanglement dynamics in two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Hao Ya-Jiang; Liang Jiu-Qing

    2006-01-01

    Based on the exact solution of the time-dependent Schrodinger equation for two-species Bose-Einstein condensates(BECs) consisting of two hyperfine states of the atoms coupled by a tuned adiabatic and time-varying Raman coupling,we obtain analytically the entanglement dynamics of the system with various initial states, particularly the SU(2)coherent state, for both of cases with and without the nonlinear interactions. It is shown that the effect of nonlinear interaction on the entanglement appears only in a longer time period depending on the BEC parameters.

  8. Instabilities in relativistic two-component (super)fluids

    CERN Document Server

    Haber, Alexander; Stetina, Stephan

    2016-01-01

    We study two-fluid systems with nonzero fluid velocities and compute their sound modes, which indicate various instabilities. For the case of two zero-temperature superfluids we employ a microscopic field-theoretical model of two coupled bosonic fields, including an entrainment coupling and a non-entrainment coupling. We analyse the onset of the various instabilities systematically and point out that the dynamical two-stream instability can only occur beyond Landau's critical velocity, i.e., in an already energetically unstable regime. A qualitative difference is found for the case of two normal fluids, where certain transverse modes suffer a two-stream instability in an energetically stable regime if there is entrainment between the fluids. Since we work in a fully relativistic setup, our results are very general and of potential relevance for (super)fluids in neutron stars and, in the non-relativistic limit of our results, in the laboratory.

  9. Analytical solution and meaning of feasible regions in two-component three-way arrays.

    Science.gov (United States)

    Omidikia, Nematollah; Abdollahi, Hamid; Kompany-Zareh, Mohsen; Rajkó, Róbert

    2016-10-01

    Although many efforts have been directed to the development of approximation methods for determining the extent of feasible regions in two- and three-way data sets; analytical determination (i.e. using only finite-step direct calculation(s) instead of the less exact numerical ones) of feasible regions in three-way arrays has remained unexplored. In this contribution, an analytical solution of trilinear decomposition is introduced which can be considered as a new direct method for the resolution of three-way two-component systems. The proposed analytical calculation method is applied to the full rank three-way data array and arrays with rank overlap (a type of rank deficiency) loadings in a mode. Close inspections of the analytically calculated feasible regions of rank deficient cases help us to make clearer the information gathered from multi-way problems frequently emerged in physics, chemistry, biology, agricultural, environmental and clinical sciences, etc. These examinations can also help to answer, e.g., the following practical question: "Is two-component three-way data with proportional loading in a mode actually a three-way data array?" By the aid of the additional information resulted from the investigated feasible regions of two-component three-way data arrays with proportional profile in a mode, reasons for the inadequacy of the seemingly trilinear data treatment methods published in the literature (e.g., U-PLS/RBL-LD that was used for extraction of quantitative and qualitative information reported by Olivieri et al. (Anal. Chem. 82 (2010) 4510-4519)) could be completely understood.

  10. Arabidopsis ethylene-response gene ETR1: Similiarity of product to two-component regulators

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.; Kwok, S.F.; Bleecker, A.B.; Meyerowitz, E.M. (California Institute of Technology, Pasadena, CA (United States))

    1993-10-22

    Ethylene behaves as a hormone in plants, regulating such aspects of growth and development as fruit ripening, flower senescence, and abscission. Ethylene insensitivity is conferred by dominant mutations in the ETR1 gene early in the ethylene signal transduction pathway of Arabidopsis thaliana. The ETR1 gene was cloned by the method of chromosome walking. Each of the four known etr1 mutant alleles contains a missense mutation near the amino terminus of the predicted protein. Although the sequence of the amino-terminal half of the deduced ETR1 protein appears to be novel, the carboxyl-terminal half is similar in sequence to both components of the prokaryotic family of signal transducers known as the two-component systems. Thus, an early step in ethylene signal transduction in plants may involve transfer of phosphate as in prokaryotic two-component systems. The dominant etr1-1 mutant gene conferred ethylene insensitivity to wild-type Arabidopsis plants when introduced by transformation.

  11. Phase Separation and Dynamics of two-component Bose-Einstein condensates

    CERN Document Server

    Lee, Kean Loon; Liu, I-Kang; Wacker, Lars; Arlt, Jan J; Proukakis, Nick P

    2016-01-01

    The miscibility of two interacting quantum systems is an important testing ground for the understanding of complex quantum systems. Two-component Bose-Einstein condensates enable the investigation of this scenario in a particularly well controlled setting. In a homogeneous system, the transition between mixed and separated phases is fully characterised by a `miscibility parameter', based on the ratio of intra- to inter-species interaction strengths. Here we show, however, that this parameter is no longer the optimal one for trapped gases, for which the location of the phase boundary depends critically on atom numbers. We demonstrate how monitoring of damping rates and frequencies of dipole oscillations enables the experimental mapping of the phase diagram by numerical implementation of a fully self-consistent finite-temperature kinetic theory for binary condensates. The change in damping rate is explained in terms of surface oscillation in the immiscible regime, and counterflow instability in the miscible reg...

  12. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  13. Comparison of bacterial communities of conventional and A-stage activated sludge systems

    NARCIS (Netherlands)

    Gonzalez-Martinez, A.; Rodriguez-Sanchez, A.; Lotti, T.; Garcia-Ruiz, M.J.; Gonzalez-Lopez, J.; Van Loosdrecht, M.C.M.

    2016-01-01

    The bacterial community structure of 10 different wastewater treatment systems and their influents has been investigated through pyrosequencing, yielding a total of 283486 reads. These bioreactors had different technological configurations: conventional activated sludge (CAS) systems and very highly

  14. Two-component hybrid time-dependent density functional theory within the Tamm-Dancoff approximation

    Energy Technology Data Exchange (ETDEWEB)

    Kühn, Michael [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Weigend, Florian, E-mail: florian.weigend@kit.edu [Institut für Physikalische Chemie, Karlsruher Institut für Technologie, Kaiserstraße 12, 76131 Karlsruhe (Germany); Institut für Nanotechnologie, Karlsruher Institut für Technologie, Postfach 3640, 76021 Karlsruhe (Germany)

    2015-01-21

    We report the implementation of a two-component variant of time-dependent density functional theory (TDDFT) for hybrid functionals that accounts for spin-orbit effects within the Tamm-Dancoff approximation (TDA) for closed-shell systems. The influence of the admixture of Hartree-Fock exchange on excitation energies is investigated for several atoms and diatomic molecules by comparison to numbers for pure density functionals obtained previously [M. Kühn and F. Weigend, J. Chem. Theory Comput. 9, 5341 (2013)]. It is further related to changes upon switching to the local density approximation or using the full TDDFT formalism instead of TDA. Efficiency is demonstrated for a comparably large system, Ir(ppy){sub 3} (61 atoms, 1501 basis functions, lowest 10 excited states), which is a prototype molecule for organic light-emitting diodes, due to its “spin-forbidden” triplet-singlet transition.

  15. Universal properties of a trapped two-component fermi gas at unitarity.

    Science.gov (United States)

    Blume, D; von Stecher, J; Greene, Chris H

    2007-12-01

    We treat the trapped two-component Fermi system, in which unlike fermions interact through a two-body short-range potential having no bound state but an infinite scattering length. By accurately solving the Schrödinger equation for up to N=6 fermions, we show that no many-body bound states exist other than those bound by the trapping potential, and we demonstrate unique universal properties of the system: Certain excitation frequencies are separated by 2variant Planck's over 2piomega, the wave functions agree with analytical predictions and a virial theorem is fulfilled. Further calculations up to N=30 determine the excitation gap, an experimentally accessible universal quantity, and it agrees with recent predictions based on a density functional approach.

  16. Comparing numerical and analytical approaches to strongly interacting two-component mixtures in one dimensional traps

    Science.gov (United States)

    Bellotti, Filipe F.; Dehkharghani, Amin S.; Zinner, Nikolaj T.

    2017-02-01

    We investigate one-dimensional harmonically trapped two-component systems for repulsive interaction strengths ranging from the non-interacting to the strongly interacting regime for Fermi-Fermi mixtures. A new and powerful mapping between the interaction strength parameters from a continuous Hamiltonian and a discrete lattice Hamiltonian is derived. As an example, we show that this mapping does not depend neither on the state of the system nor on the number of particles. Energies, density profiles and correlation functions are obtained both numerically (density matrix renormalization group (DMRG) and exact diagonalization) and analytically. Since DMRG results do not converge as the interaction strength is increased, analytical solutions are used as a benchmark to identify the point where these calculations become unstable. We use the proposed mapping to set a quantitative limit on the interaction parameter of a discrete lattice Hamiltonian above which DMRG gives unrealistic results.

  17. Analytical method for yrast line states in the interacting two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    解炳昊; 景辉

    2002-01-01

    The yrast spectrum for the harmonically trapped two-component Bose-Einstein condensate (BEC), omitting thedifference between the two components, has been studied using an analytical method. The energy eigenstates andeigenvalues for L=0,1,2,3 are given. We illustrate that there are different eigenstate behaviours between the even Land odd L cases for the two-component BEC in two dimensions. Except for symmetric states, there are antisymmetricstates for the permutation of the two components, which cannot reduce to those in a single condensate case when thevalue of L is odd.

  18. Correlations of the upper branch of 1D harmonically trapped two-component fermi gases.

    Science.gov (United States)

    Gharashi, Seyed Ebrahim; Blume, D

    2013-07-26

    We present highly accurate energy spectra and eigenfunctions of small 1D harmonically trapped two-component Fermi gases with interspecies δ-function interactions, and analyze the correlations of the so-called upper branch (i.e., the branch that describes a repulsive Fermi gas consisting of atoms but no molecules) for positive and negative coupling constants. Changes of the two-body correlations as a function of the interspecies coupling strength reflect the competition of the interspecies interaction and the effective repulsion due to the Pauli exclusion principle, and are interpreted as a few-body analog of a transition from a nonmagnetic to a magnetic phase. Moreover, we show that the eigenstate ψadia of the infinitely strongly interacting system with |n1+n2|>2 and |n1-n2|Fermi-Fermi mapping function to the eigenfunction of the noninteracting single-component Fermi gas.

  19. Singular solutions of a modified two-component Camassa-Holm equation.

    Science.gov (United States)

    Holm, Darryl D; O Náraigh, Lennon; Tronci, Cesare

    2009-01-01

    The Camassa-Holm (CH) equation is a well-known integrable equation describing the velocity dynamics of shallow water waves. This equation exhibits spontaneous emergence of singular solutions (peakons) from smooth initial conditions. The CH equation has been recently extended to a two-component integrable system (CH2), which includes both velocity and density variables in the dynamics. Although possessing peakon solutions in the velocity, the CH2 equation does not admit singular solutions in the density profile. We modify the CH2 system to allow a dependence on the average density as well as the pointwise density. The modified CH2 system (MCH2) does admit peakon solutions in the velocity and average density. We analytically identify the steepening mechanism that allows the singular solutions to emerge from smooth spatially confined initial data. Numerical results for the MCH2 system are given and compared with the pure CH2 case. These numerics show that the modification in the MCH2 system to introduce the average density has little short-time effect on the emergent dynamical properties. However, an analytical and numerical study of pairwise peakon interactions for the MCH2 system shows a different asymptotic feature. Namely, besides the expected soliton scattering behavior seen in overtaking and head-on peakon collisions, the MCH2 system also allows the phase shift of the peakon collision to diverge in certain parameter regimes.

  20. Live bacterial delivery systems for development of mucosal vaccines

    NARCIS (Netherlands)

    Thole, J.E.R.; Dalen, P.J. van; Havenith, C.E.G.; Pouwels, P.H.; Seegers, J.F.M.L.; Tielen, F.D.; Zee, M.D. van der; Zegers, N.D.; Shaw, M.

    2000-01-01

    By expression of foreign antigens in attenuated strains derived from bacterial pathogens and in non-pathogenic commensal bacteria, recombinant vaccines are being developed that aim to stimulate mucosal immunity. Recent advances in the pathogenesis and molecular biology of these bacteria have allowed

  1. TASI 2011 lectures notes: two-component fermion notation and supersymmetry

    OpenAIRE

    Martin, Stephen P.

    2012-01-01

    These notes, based on work with Herbi Dreiner and Howie Haber, discuss how to do practical calculations of cross sections and decay rates using two-component fermion notation, as appropriate for supersymmetry and other beyond-the-Standard-Model theories. Included are a list of two-component fermion Feynman rules for the Minimal Supersymmetric Standard Model, and some example calculations.

  2. Relativistic two-component jet evolutions in 2D and 3D

    NARCIS (Netherlands)

    Meliani, Z.; Keppens, R.

    2009-01-01

    Observations of astrophysical jets and theoretical arguments suggest a transverse stratification with two components induced by intrinsic features of the central engine (accretion disk + black hole). We study two-component jet dynamics for an inner fast low density jet, surrounded by a slower, dense

  3. Logistic Regression for Prediction and Diagnosis of Bacterial Regrowth in Water Distribution System

    Institute of Scientific and Technical Information of China (English)

    DONG Lihua; ZHAO Xinhua; WU Qing; YANG You'an

    2009-01-01

    This paper focuses on the quantitative expression of bacterial regrowth in water distribution system. Considering public health risks of bacterial regrowth, the experiment was performed on a distribution system of selected area. Physical, chemical, and microbiological parameters such as turbidity, temperature, residual chlorine and pH were measured over a three-month period and correlation analysis was carried out. Combined with principal components analysis(PCA), a logistic regression model is developed to predict and diagnose bacterial regrowth and locate the zones with high risks of microbiology in the distribution system. The model gives the probability of bacterial regrowth with the number of heterotrophic plate counts as the binary response variable and three new prin-cipal components variables as the explanatory variables. The veracity of the logistic regression model was 90%, which meets the precision requirement of the model.

  4. Direct molecular dynamics simulation of liquid-solid phase equilibria for two-component plasmas.

    Science.gov (United States)

    Schneider, A S; Hughto, J; Horowitz, C J; Berry, D K

    2012-06-01

    We determine the liquid-solid phase diagram for carbon-oxygen and oxygen-selenium plasma mixtures using two-phase molecular dynamics simulations. We identify liquid, solid, and interface regions using a bond angle metric. To study finite-size effects, we perform 27,648- and 55,296-ion simulations. To help monitor nonequilibrium effects, we calculate diffusion constants D(i). For the carbon-oxygen system we find that D(O) for oxygen ions in the solid is much smaller than D(C) for carbon ions and that both diffusion constants are 80 or more times smaller than diffusion constants in the liquid phase. There is excellent agreement between our carbon-oxygen phase diagram and that predicted by Medin and Cumming. This suggests that errors from finite-size and nonequilibrium effects are small and that the carbon-oxygen phase diagram is now accurately known. The oxygen-selenium system is a simple two-component model for more complex rapid proton capture nucleosynthesis ash compositions for an accreting neutron star. Diffusion of oxygen, in a predominantly selenium crystal, is remarkably fast, comparable to diffusion in the liquid phase. We find a somewhat lower melting temperature for the oxygen-selenium system than that predicted by Medin and Cumming. This is probably because of electron screening effects.

  5. Bioorthogonal two-component drug delivery in HER2(+) breast cancer mouse models

    Science.gov (United States)

    Hapuarachchige, Sudath; Kato, Yoshinori; Artemov, Dmitri

    2016-04-01

    The HER2 receptor is overexpressed in approximately 20% of breast cancers and is associated with tumorigenesis, metastasis, and a poor prognosis. Trastuzumab is a first-line targeted drug used against HER2(+) breast cancers; however, at least 50% of HER2(+) tumors develop resistance to trastuzumab. To treat these patients, trastuzumab-based antibody-drug conjugates (ACDs) have been developed and are currently used in the clinic. Despite their high efficacy, the long circulation half-life and non-specific binding of cytotoxic ADCs can result in systemic toxicity. In addition, standard ADCs do not provide an image-guided mode of administration. Here, we have developed a two-component, two-step, pre-targeting drug delivery system integrated with image guidance to circumvent these issues. In this strategy, HER2 receptors are pre-labeled with a functionalized trastuzumab antibody followed by the delivery of drug-loaded nanocarriers. Both components are cross-linked by multiple bioorthogonal click reactions in situ on the surface of the target cell and internalized as nanoclusters. We have explored the efficacy of this delivery strategy in HER2(+) human breast cancer models. Our therapeutic study confirms the high therapeutic efficacy of the new delivery system, with no significant toxicity.

  6. A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. citri.

    Directory of Open Access Journals (Sweden)

    Tzu-Pi Huang

    Full Text Available Citrus bacterial canker caused by Xanthomonas axonopodis pv. citri is a serious disease that impacts citrus production worldwide, and X. axonopodis pv. citri is listed as a quarantine pest in certain countries. Biofilm formation is important for the successful development of a pathogenic relationship between various bacteria and their host(s. To understand the mechanisms of biofilm formation by X. axonopodis pv. citri strain XW19, the strain was subjected to transposon mutagenesis. One mutant with a mutation in a two-component response regulator gene that was deficient in biofilm formation on a polystyrene microplate was selected for further study. The protein was designated as BfdR for biofilm formation defective regulator. BfdR from strain XW19 shares 100% amino acid sequence identity with XAC1284 of X. axonopodis pv. citri strain 306 and 30-100% identity with two-component response regulators in various pathogens and environmental microorganisms. The bfdR mutant strain exhibited significantly decreased biofilm formation on the leaf surfaces of Mexican lime compared with the wild type strain. The bfdR mutant was also compromised in its ability to cause canker lesions. The wild-type phenotype was restored by providing pbfdR in trans in the bfdR mutant. Our data indicated that BfdR did not regulate the production of virulence-related extracellular enzymes including amylase, lipase, protease, and lecithinase or the expression of hrpG, rfbC, and katE; however, BfdR controlled the expression of rpfF in XVM2 medium, which mimics cytoplasmic fluids in planta. In conclusion, biofilm formation on leaf surfaces of citrus is important for canker development in X. axonopodis pv. citri XW19. The process is controlled by the two-component response regulator BfdR via regulation of rpfF, which is required for the biosynthesis of a diffusible signal factor.

  7. The graphic representations for the one-dimensional solutions of problem from elastic mechanic deformations of two-component mixture

    Directory of Open Access Journals (Sweden)

    Ghenadie Bulgac

    2006-12-01

    Full Text Available In this paper we find the analytical solution of simple one-dimensional unsteady elastic problem of two-component mixture using Laplace integral transformation. The integral transformations simplify the initial motion systems for finding analytical solutions. The analytical solutions are represented as the graphic on time dependence in the fixed point of medium, and the graphic on the horizontal coordinate at the fixed time.

  8. Laser controlling chaotic region of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Boli Xia; Wenhua Hai

    2005-01-01

    @@ For a weakly and periodically driven two-component Bose-Einstein condensate (BEC) the Melnikov chaotic solution and boundedness conditions are derived from a direct perturbation theory that leads to the chaotic regions in the parameter space.

  9. Inactivating effects of the lactoperoxidase system on bacterial lyases involved in oral malodour production.

    Science.gov (United States)

    Nakano, Manabu; Shin, Kouichirou; Wakabayashi, Hiroyuki; Yamauchi, Koji; Abe, Fumiaki; Hironaka, Shouji

    2015-10-01

    The main components of oral malodour have been identified as volatile sulfur compounds (VSCs), including hydrogen sulfide (H(2)S) and methyl mercaptan (CH(3)SH). The lactoperoxidase (LPO) system (consisting of LPO, glucose oxidase, glucose and thiocyanate) was previously shown to exhibit antimicrobial activities against some oral bacteria in vitro and suppressive effects on VSCs in mouth air in a clinical trial. Here, we examined the in vitro effects of the LPO system on the activities of the bacterial lyases involved in the production of VSCs by oral anaerobes. The exposure of crude bacterial extracts of Fusobacterium nucleatum and Porphyromonas gingivalis or purified methionine γ-lyase to the LPO system resulted in the inactivation of their lyase activities through l-cysteine and l-methionine, which was linked to the production of H(2)S and CH(3)SH, respectively. The exposure of living F. nucleatum and P. gingivalis cells to the LPO system resulted in the suppression of cell numbers and lyase activities. The inactivation of the crude bacterial extracts of F. nucleatum and purified methionine γ-lyase by the LPO system was partly recovered by the addition of DTT. Therefore, the LPO system may inactivate bacterial lyases including methionine γ-lyase by reacting with the free cysteine residues of lyases. These results suggested that the LPO system suppresses the production of VSCs not only through its antimicrobial effects, but also by its inactivating effects on the bacterial lyases of F. nucleatum and P. gingivalis.

  10. Competitive Adsorption of a Two-Component Gas on a Deformable Adsorbent

    OpenAIRE

    Usenko, A. S.

    2013-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary in adsorption due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas taking into account variations in adsorption properties of the adsorbent in adsorption is obtained. We establi...

  11. Impact of backmixing of the aqueous phase on two-component rare earth separation process

    Institute of Scientific and Technical Information of China (English)

    WU Sheng; CHENG Fuxiang; LIAO Chunsheng; YAN Chunhua

    2013-01-01

    Solvent extraction based on mixer-settler is the major industrial method of rare earth (RE) separation.In the mixer-settler extraction process,due to the insufficient settling time in normal circumstances,backmixing of the aqueous phase could have significant impact on the process of RE extraction separation.Therefore on the basis of the extraction equilibrium and mass balance of the mixer-settler extraction process,here we developed a mathematic expression of the aqueous phase backmixing in a two-component separation process,and obtained a quantitative analysis of the backmixing effect on the purification process by the approximations according to certain hypotheses.Two extraction systems of La/Ce and Pr/Nd separation were chosen as the examples to analyze the backmixing effect,and the results showed that the aqueous backmixing had greater influence in the scrubbing segment than in the extraction segment,especially in the system with a high separation factor such as La/Ce separation.Therefore it was suggested that the aqueous backmixing effect should be well attended in the design and application of RE extraction separation.

  12. Total viable bacterial count using a real time all-fibre spectroscopic system.

    Science.gov (United States)

    Bogomolny, E; Swift, S; Vanholsbeeck, F

    2013-07-21

    Rapid, accurate and sensitive enumeration of bacterial populations in the natural environment is an essential task for many research fields. Widely used standard methods for counting bacteria such as heterotrophic plate count require 1 to 8 days of incubation time for limited accuracy, while more accurate and rapid techniques are often expensive and may require bulky equipment. In the present study, we have developed a computerized optical prototype for bacterial detection. The goal of this research was to estimate the potential of this optical system for Total Viable Bacterial Count in water. For this purpose, we tested water batches with different microbiological content. Bacterial detection was based on fluorescence enhanced by nucleic acid staining. High sensitivity was achieved by a stable diode pumped solid state laser, sensitive CCD spectrometer and in situ excitation and signal collection. The results have shown that the bacterial count from different water origins using our optical setup along with multivariate analysis presents a higher accuracy and a shorter detection time compared to standard methods. For example, in a case where the fluorescence signal is calibrated to the water batch regression line, the relative standard deviation of the optical system enumeration varies between 21 and 36%, while that of the heterotropic plate count counterpart varies between 41 and 59%. In summary, we conclude that the all-fibre optical system may offer the following advantages over conventional methods: near real time examinations, portability, sensitivity, accuracy and ability to detect 10(2) to 10(8) CFU per ml bacterial concentrations.

  13. CRISPR/Cas systems: new players in gene regulation and bacterial physiology

    Directory of Open Access Journals (Sweden)

    David eWeiss

    2014-04-01

    Full Text Available CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP. Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2, CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.

  14. A new pair of hard-soft plastic combination for precision manufacturing of two component plastic parts

    DEFF Research Database (Denmark)

    Islam, Aminul; Hansen, Hans Nørgaard; Marhöfer, David Maximilian

    2011-01-01

    of sealing between the Plug-Socket combination so, corrosive agents like human sweat, oil and dirt could corrode the contact pins inside the Socket house. The new design of the Socket is an improvement of the old design which contains a micro sealing ring. This 2k micro part was moulded by the use of State...... copolymers (TPE-S). By using this pair of materials, a demonstrator 2k micro part (Socket house for hearing aid) has been fabricated. This kind of socket is used in Receiver-in-the-canal hearing aid system to connect the receiver with hearing aid processors. The problem with the previous design was lack......-of-the-art two component micro moulding machine named Formica Plast from Desma Tec. The tests performed on the demonstrator showed potential for the material pair to be used in high precision two component moulding applications. The adhesion between the two materials, replication quality of the 2k part, sealing...

  15. A pair of two-component regulatory genes ecrA1/A2 in S.coelicolor

    Institute of Scientific and Technical Information of China (English)

    李永泉; 岑沛霖; 陈时飞; 吴丹; 郑静

    2004-01-01

    Two-component genes are kinds of genetic elements involved in regulation of antibiotic production in Streptomyces coelicolor. DNA microarray analysis revealed that ecrA1/A2, which mapped at distant sites from red locus and encode respectively the kinase and regulator, expressed coordinately with genes of Red specific biosynthetic pathway, ecrA1 and ecrA2 gene-disruptive mutants were constructed using homogenotisation by reciprocal double crossover. Fermentation data showed that the undecylprodigiosin (Red) level of production was lower than that of wild-type strain. However, the change of the actinorhodin (Act) production level was not significant compared with wild type. Thus, these experiment results confirmed that the two-component system ecrA 1/A2 was positive regulatory element for red gene cluster.

  16. Interference of Two-Component Bose-Einstein Condensates with a Coupling Drive in Presence of Dissipation

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The interference of the two-component Bose-Einstein condensates with a coupling drive in the presence of the dissipation is studied. We find that when the two-component Bose-Einstein condensates are initially in the coherent states, for the smaller dissipation parameters compared with that of the rf frequency ωrf, the interference intensity exhibits damply oscillation behavior, whereas when the dissipation parameters are larger than that of the ωrf, the interference intensity exhibits a fast attenuation behavior. As a comparison, the interference intensity in the absence of the dissipation is also studied. We conclude that the dissipation of the system can be evaluated by selecting the ωrf experimentally.

  17. Two-component Dirac-like Hamiltonian for generating quantum walk on one-, two- and three-dimensional lattices.

    Science.gov (United States)

    Chandrashekar, C M

    2013-10-03

    From the unitary operator used for implementing two-state discrete-time quantum walk on one-, two- and three- dimensional lattice we obtain a two-component Dirac-like Hamiltonian. In particular, using different pairs of Pauli basis as position translation states we obtain three different form of Hamiltonians for evolution on one-dimensional lattice. We extend this to two- and three-dimensional lattices using different Pauli basis states as position translation states for each dimension and show that the external coin operation, which is necessary for one-dimensional walk is not a necessary requirement for a walk on higher dimensions but can serve as an additional resource to control the dynamics. The two-component Hamiltonian we present here for quantum walk on different lattices can serve as a general framework to simulate, control, and study the dynamics of quantum systems governed by Dirac-like Hamiltonian.

  18. Dynamics of coupled simplest chaotic two-component electronic circuits and its potential application to random bit generation

    Energy Technology Data Exchange (ETDEWEB)

    Modeste Nguimdo, Romain, E-mail: Romain.Nguimdo@vub.ac.be [Applied Physics Research Group, APHY, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel (Belgium); Tchitnga, Robert [Laboratory of Electronics, Automation and Signal Processing, Department of Physics, University of Dschang, P.O. Box 67, Dschang (Cameroon); Woafo, Paul [Laboratory of Modelling and Simulation in Engineering and Biological Physics, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé (Cameroon)

    2013-12-15

    We numerically investigate the possibility of using a coupling to increase the complexity in simplest chaotic two-component electronic circuits operating at high frequency. We subsequently show that complex behaviors generated in such coupled systems, together with the post-processing are suitable for generating bit-streams which pass all the NIST tests for randomness. The electronic circuit is built up by unidirectionally coupling three two-component (one active and one passive) oscillators in a ring configuration through resistances. It turns out that, with such a coupling, high chaotic signals can be obtained. By extracting points at fixed interval of 10 ns (corresponding to a bit rate of 100 Mb/s) on such chaotic signals, each point being simultaneously converted in 16-bits (or 8-bits), we find that the binary sequence constructed by including the 10(or 2) least significant bits pass statistical tests of randomness, meaning that bit-streams with random properties can be achieved with an overall bit rate up to 10×100 Mb/s =1Gbit/s (or 2×100 Mb/s =200 Megabit/s). Moreover, by varying the bias voltages, we also investigate the parameter range for which more complex signals can be obtained. Besides being simple to implement, the two-component electronic circuit setup is very cheap as compared to optical and electro-optical systems.

  19. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.

    Science.gov (United States)

    Li, Ru; Khafipour, Ehsan; Krause, Denis O; Entz, Martin H; de Kievit, Teresa R; Fernando, W G Dilantha

    2012-01-01

    It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional) and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat) was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

  20. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities.

    Directory of Open Access Journals (Sweden)

    Ru Li

    Full Text Available It has been debated how different farming systems influence the composition of soil bacterial communities, which are crucial for maintaining soil health. In this research, we applied high-throughput pyrosequencing of V1 to V3 regions of bacterial 16S rRNA genes to gain further insight into how organic and conventional farming systems and crop rotation influence bulk soil bacterial communities. A 2×2 factorial experiment consisted of two agriculture management systems (organic versus conventional and two crop rotations (flax-oat-fababean-wheat versus flax-alfalfa-alfalfa-wheat was conducted at the Glenlea Long-Term Crop Rotation and Management Station, which is Canada's oldest organic-conventional management study field. Results revealed that there is a significant difference in the composition of bacterial genera between organic and conventional management systems but crop rotation was not a discriminator factor. Organic farming was associated with higher relative abundance of Proteobacteria, while Actinobacteria and Chloroflexi were more abundant in conventional farming. The dominant genera including Blastococcus, Microlunatus, Pseudonocardia, Solirubrobacter, Brevundimonas, Pseudomonas, and Stenotrophomonas exhibited significant variation between the organic and conventional farming systems. The relative abundance of bacterial communities at the phylum and class level was correlated to soil pH rather than other edaphic properties. In addition, it was found that Proteobacteria and Actinobacteria were more sensitive to pH variation.

  1. Modelling elliptical galaxies phase-space constraints on two-component (gamma1,gamma2) models

    CERN Document Server

    Ciotti, L

    1999-01-01

    In the context of the study of the properties of the mutual mass distribution of the bright and dark matter in elliptical galaxies, present a family of two-component, spherical, self-consistent galaxy models, where one density distribution follows a gamma_1 profile, and the other a gamma_2 profile [(gamma_1,gamma_2) models], with different total masses and ``core'' radii. A variable amount of Osipkov-Merritt (radial) orbital anisotropy is allowed in both components. For these models, I derive analytically the necessary and sufficient conditions that the model parameters must satisfy in order to correspond to a physical system. Moreover, the possibility of adding a black hole at the center of radially anisotropic gamma models is discussed, determining analytically a lower limit of the anisotropy radius as a function of gamma. The analytical phase-space distribution function for (1,0) models is presented, together with the solution of the Jeans equations and the quantities entering the scalar virial theorem. It...

  2. Vapour-mediated sensing and motility in two-component droplets

    Science.gov (United States)

    Cira, N. J.; Benusiglio, A.; Prakash, M.

    2015-03-01

    Controlling the wetting behaviour of liquids on surfaces is important for a variety of industrial applications such as water-repellent coatings and lubrication. Liquid behaviour on a surface can range from complete spreading, as in the `tears of wine' effect, to minimal wetting as observed on a superhydrophobic lotus leaf. Controlling droplet movement is important in microfluidic liquid handling, on self-cleaning surfaces and in heat transfer. Droplet motion can be achieved by gradients of surface energy. However, existing techniques require either a large gradient or a carefully prepared surface to overcome the effects of contact line pinning, which usually limit droplet motion. Here we show that two-component droplets of well-chosen miscible liquids such as propylene glycol and water deposited on clean glass are not subject to pinning and cause the motion of neighbouring droplets over a distance. Unlike the canonical predictions for these liquids on a high-energy surface, these droplets do not spread completely but exhibit an apparent contact angle. We demonstrate experimentally and analytically that these droplets are stabilized by evaporation-induced surface tension gradients and that they move in response to the vapour emitted by neighbouring droplets. Our fundamental understanding of this robust system enabled us to construct a wide variety of autonomous fluidic machines out of everyday materials.

  3. CHANGES IN BACTERIAL COMPOSITION OF BIOFILM IN A METROPOLITAN DRINKING WATER DISTRIBUTION SYSTEM

    Science.gov (United States)

    This study examined the development of bacterial biofilms within a metropolitan distribution system. The distribution system is fed with different source water (i.e., groundwater, GW and surface water, SW) and undergoes different treatment processes in separate facilities. The b...

  4. A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2015-05-01

    Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, P

  5. Shading correction and calibration in bacterial fluorescence measurement by image processing system

    NARCIS (Netherlands)

    Wilkinson, M.H.F.

    1994-01-01

    An image processing system with applications in bacterial (immuno-)fluorescence measurement has been developed. To reach quantitative results, correction for non-uniformities in system sensitivity, both as a function of time (calibration for drifts) and as a function of image coordinates (shading co

  6. Two-component Langmuir monolayers and LB films of DPPC with partially fluorinated alcohol (F8H9OH).

    Science.gov (United States)

    Nakahara, Hiromichi; Hirano, Chikayo; Shibata, Osamu

    2013-01-01

    The interaction of (perfluorooctyl)nonanol (F8H9OH) with dipalmitoylphosphatidylcholine (DPPC) was systematically studied in two-component monolayers at air-water interface. The thermodynamic property and phase morphology of the monolayers were investigated by isotherm measurements and several microscopic methods such as Brewster angle microscopy, fluorescence microscopy, and atomic force microscopy (AFM). The AFM topographies for Langmuir-Blodgett films of F8H9OH exhibit the formation of monodispersed surface micelles. In the two-component system, the incorporation of F8H9OH induces condensation (or solidification) of DPPC monolayers. The excess Gibbs free energy and interaction parameter (or energy) of the two components were calculated from the isotherm data. Both the phase transition pressure for the coexistence of ordered and disordered phases and collapse pressure of monolayers vary with the mole fraction of F8H9OH, indicating binary miscibility between F8H9OH and DPPC within a monolayer state. The miscibility is also confirmed visually by in situ and ex situ microscopy at micro- and nanometer scales.

  7. Methionine oxidation contributes to bacterial killing by the myeloperoxidase system of neutrophils.

    Science.gov (United States)

    Rosen, Henry; Klebanoff, Seymour J; Wang, Yi; Brot, Nathan; Heinecke, Jay W; Fu, Xiaoyun

    2009-11-03

    Reactive oxygen intermediates generated by neutrophils kill bacteria and are implicated in inflammatory tissue injury, but precise molecular targets are undefined. We demonstrate that neutrophils use myeloperoxidase (MPO) to convert methionine residues of ingested Escherichia coli to methionine sulfoxide in high yield. Neutrophils deficient in individual components of the MPO system (MPO, H(2)O(2), chloride) exhibited impaired bactericidal activity and impaired capacity to oxidize methionine. HOCl, the principal physiologic product of the MPO system, is a highly efficient oxidant for methionine, and its microbicidal effects were found to correspond linearly with oxidation of methionine residues in bacterial cytosolic and inner membrane proteins. In contrast, outer envelope proteins were initially oxidized without associated microbicidal effect. Disruption of bacterial methionine sulfoxide repair systems rendered E. coli more susceptible to killing by HOCl, whereas over-expression of a repair enzyme, methionine sulfoxide reductase A, rendered them resistant, suggesting a direct role for methionine oxidation in bactericidal activity. Prominent among oxidized bacterial proteins were those engaged in synthesis and translocation of peptides to the cell envelope, an essential physiological function. Moreover, HOCl impaired protein translocation early in the course of bacterial killing. Together, our findings indicate that MPO-mediated methionine oxidation contributes to bacterial killing by neutrophils. The findings further suggest that protein translocation to the cell envelope is one important pathway targeted for damage.

  8. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.;

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... of the relB gene counteracted the effect of relE to some extent, suggesting that toxin-antitoxin interaction also occurs in S. cerevisiae, Thus, bacterial toxin-antitoxin gene systems also have potential applications in the control of cell proliferation in eukaryotic cells, especially in those industrial...

  9. Stochastic simulation of prokaryotic two-component signalling indicates stochasticity-induced active-state locking and growth-rate dependent bistability.

    Science.gov (United States)

    Wei, Katy; Moinat, Maxim; Maarleveld, Timo R; Bruggeman, Frank J

    2014-07-29

    Signal transduction by prokaryotes almost exclusively relies on two-component systems for sensing and responding to (extracellular) signals. Here, we use stochastic models of two-component systems to better understand the impact of stochasticity on the fidelity and robustness of signal transmission, the outcome of autoregulatory gene expression and the influence of cell growth and division. We report that two-component systems are remarkably robust against copy number fluctuations of the signalling proteins they are composed of, which enhances signal transmission fidelity. Furthermore, we find that due to stochasticity these systems can get locked in an active state for extended time periods when (initially high) signal levels drop to zero. This behaviour can contribute to a bet-hedging adaptation strategy, aiding survival in fluctuating environments. Additionally, autoregulatory gene expression can cause two-component systems to become bistable at realistic parameter values. As a result, two sub-populations of cells can co-exist-active and inactive cells, which contributes to fitness in unpredictable environments. Bistability proved robust with respect to cell growth and division, and is tunable by the growth rate. In conclusion, our results indicate how single cells can cope with the inevitable stochasticity occurring in the activity of their two-component systems. They are robust to disadvantageous fluctuations that scramble signal transduction and they exploit beneficial stochasticity that generates fitness-enhancing heterogeneity across an isogenic population of cells.

  10. Modeling Thermal Dust Emission with Two Components: Application to the Planck High Frequency Instrument Maps

    Science.gov (United States)

    Meisner, Aaron M.; Finkbeiner, Douglas P.

    2015-01-01

    We apply the Finkbeiner et al. two-component thermal dust emission model to the Planck High Frequency Instrument maps. This parameterization of the far-infrared dust spectrum as the sum of two modified blackbodies (MBBs) serves as an important alternative to the commonly adopted single-MBB dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. based on FIRAS and DIRBE. We also derive full-sky 6.'1 resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 μm data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.'1 FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to 3000 GHz. We find that, in diffuse sky regions, our two-component 100-217 GHz predictions are on average accurate to within 2.2%, while extrapolating the Planck Collaboration et al. single-MBB model systematically underpredicts emission by 18.8% at 100 GHz, 12.6% at 143 GHz, and 7.9% at 217 GHz. We calibrate our two-component optical depth to reddening, and compare with reddening estimates based on stellar spectra. We find the dominant systematic problems in our temperature/reddening maps to be zodiacal light on large angular scales and the cosmic infrared background anisotropy on small angular scales.

  11. Rabi Oscillations in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    LI Wei-Dong; FAN Wen-Bing; ZHOU Xiao-Ji; WANG Yi-Qiu; LIANG Jiu-Qing

    2002-01-01

    The Rabi oscillations in two-component Bose-Einstein condensates with a coupling drive are studiedby means of a pair of bosonic operators. The coupling drive and initial phase difference will affect the amplitudeand the period of the Rabi oscillations. The Rabi oscillations will vanish in the evolution of the condensate densityfor some special initial phase differences (ψ = 0 or π). Our theory provides not only an analytical framework forquantitative predictions for two-component condensates, but also gives an intuitive understanding of some mysteriousfeatures observed in experiments and numerical. simulations.

  12. Discovery of an archetypal protein transport system in bacterial outer membranes.

    Science.gov (United States)

    Selkrig, Joel; Mosbahi, Khedidja; Webb, Chaille T; Belousoff, Matthew J; Perry, Andrew J; Wells, Timothy J; Morris, Faye; Leyton, Denisse L; Totsika, Makrina; Phan, Minh-Duy; Celik, Nermin; Kelly, Michelle; Oates, Clare; Hartland, Elizabeth L; Robins-Browne, Roy M; Ramarathinam, Sri Harsha; Purcell, Anthony W; Schembri, Mark A; Strugnell, Richard A; Henderson, Ian R; Walker, Daniel; Lithgow, Trevor

    2012-04-01

    Bacteria have mechanisms to export proteins for diverse purposes, including colonization of hosts and pathogenesis. A small number of archetypal bacterial secretion machines have been found in several groups of bacteria and mediate a fundamentally distinct secretion process. Perhaps erroneously, proteins called 'autotransporters' have long been thought to be one of these protein secretion systems. Mounting evidence suggests that autotransporters might be substrates to be secreted, not an autonomous transporter system. We have discovered a new translocation and assembly module (TAM) that promotes efficient secretion of autotransporters in proteobacteria. Functional analysis of the TAM in Citrobacter rodentium, Salmonella enterica and Escherichia coli showed that it consists of an Omp85-family protein, TamA, in the outer membrane and TamB in the inner membrane of diverse bacterial species. The discovery of the TAM provides a new target for the development of therapies to inhibit colonization by bacterial pathogens.

  13. Breakdown of the innate immune system by bacterial proteases

    NARCIS (Netherlands)

    Laarman, A.J.

    2011-01-01

    Bacteria have developed many strategies to circumvent our immune system to survive and colonize human tissues. One of these strategies is by secreting proteases that specifically target the innate immune system. Aureolysin is a metalloprotease from Staphylococcus aureus which target the main compone

  14. Microfluidic system for the identification of bacterial pathogens causing urinary tract infections

    Science.gov (United States)

    Becker, Holger; Hlawatsch, Nadine; Haraldsson, Tommy; van der Wijngaart, Wouter; Lind, Anders; Malhotra-Kumar, Surbi; Turlej-Rogacka, Agata; Goossens, Herman

    2015-03-01

    Urinary tract infections (UTIs) are among the most common bacterial infections and pose a significant healthcare burden. The growing trend in antibiotic resistance makes it mandatory to develop diagnostic kits which allow not only the determination of a pathogen but also the antibiotic resistances. We have developed a microfluidic cartridge which takes a direct urine sample, extracts the DNA, performs an amplification using batch-PCR and flows the sample over a microarray which is printed into a microchannel for fluorescence detection. The cartridge is injection-molded out of COP and contains a set of two-component injection-molded rotary valves to switch between input and to isolate the PCR chamber during thermocycling. The hybridization probes were spotted directly onto a functionalized section of the outlet microchannel. We have been able to successfully perform PCR of E.coli in urine in this chip and perform a fluorescence detection of PCR products. An upgraded design of the cartridge contains the buffers and reagents in blisters stored on the chip.

  15. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    Science.gov (United States)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  16. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, M J [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five {alpha}-helices and a five-stranded {beta}-sheet in a ({beta}/{alpha}){sub 5} topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  17. Temporal Variability from the Two-Component Advective Flow Solution and Its Observational Evidence

    Science.gov (United States)

    Dutta, Broja G.; Chakrabarti, Sandip K.

    2016-09-01

    In the propagating oscillatory shock model, the oscillation of the post-shock region, i.e., the Compton cloud, causes the observed low-frequency quasi-periodic oscillations (QPOs). The evolution of QPO frequency is explained by the systematic variation of the Compton cloud size, i.e., the steady radial movement of the shock front, which is triggered by the cooling of the post-shock region. Thus, analysis of the energy-dependent temporal properties in different variability timescales can diagnose the dynamics and geometry of accretion flows around black holes. We study these properties for the high-inclination black hole source XTE J1550-564 during its 1998 outburst and the low-inclination black hole source GX 339-4 during its 2006-07 outburst using RXTE/PCA data, and we find that they can satisfactorily explain the time lags associated with the QPOs from these systems. We find a smooth decrease of the time lag as a function of time in the rising phase of both sources. In the declining phase, the time lag increases with time. We find a systematic evolution of QPO frequency and hard lags in these outbursts. In XTE J1550-564, the lag changes from hard to soft (i.e., from a positive to a negative value) at a crossing frequency (ν c) of ˜3.4 Hz. We present possible mechanisms to explain the lag behavior of high and low-inclination sources within the framework of a single two-component advective flow model.

  18. Structural studies of the activation of the two component receiver domain NTRC by multidimensional heteronuclear NMR

    Energy Technology Data Exchange (ETDEWEB)

    Nohaile, Michael James [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1996-05-01

    Multidimensional heteronuclear NMR spectroscopy was used to investigate the N-terminal domain of the transcriptional enhancer NTRC (NiTrogen Regulatory protein C). This domain belongs to the family of receiver domains of two-component regulatory systems involved in signal transduction. Phosphorylation of NTRC at D54 leads to an activated form of the molecule which stimulates transcription of genes involved in nitrogen regulation. Three and four dimensional NMR techniques were used to determine an intermediate resolution structure of the unphosphorylated, inactive form of the N-terminal domain of NTRC. The structure is comprised of five α-helices and a five-stranded β-sheet in a (β/α)5 topology. Analysis of the backbone dynamics of NTRC indicate that helix 4 and strand 5 are significantly more flexible than the rest of the secondary structure of the protein and that the loops making up the active site are flexible. The short lifetime of phospho-NTRC hampers the study of this form. However, conditions for determining the resonance assignments and, possibly, the three dimensional structure of phosphorylated NTRC have been obtained. Tentative assignments of the phosphorylated form indicate that the majority of the changes that NTRC experiences upon phosphorylation occur in helix 3, strand 4, helix 4, strand 5, and the loop between strand 5 and helix 5 (the 3445 face of NTRC) as well as near the site of phosphorylation. In order to examine a stable, activated form of the protein, constitutively active mutants of NTRC were investigated.

  19. A second order anti-diffusive Lagrange-remap scheme for two-component flows

    Directory of Open Access Journals (Sweden)

    Lagoutière Frédéric

    2011-11-01

    Full Text Available We build a non-dissipative second order algorithm for the approximate resolution of the one-dimensional Euler system of compressible gas dynamics with two components. The considered model was proposed in [1]. The algorithm is based on [8] which deals with a non-dissipative first order resolution in Lagrange-remap formalism. In the present paper we describe, in the same framework, an algorithm that is second order accurate in time and space, and that preserves sharp interfaces. Numerical results reported at the end of the paper are very encouraging, showing the interest of the second order accuracy for genuinely non-linear waves. Nous construisons un algorithme d’ordre deux et non dissipatif pour la résolution approchée des équations d’Euler de la dynamique des gaz compressibles à deux constituants en dimension un. Le modèle que nous considérons est celui à cinq équations proposé et analysé dans [1]. L’algorithme est basé sur [8] qui proposait une résolution approchée à l’ordre un et non dissipative au moyen d’un splitting de type Lagrange-projection. Dans le présent article, nous décrivons, dans le même formalisme, un algorithme d’ordre deux en temps et en espace, qui préserve des interfaces « parfaites » entre les constituants. Les résultats numériques rapportés à la fin de l’article sont très encourageants ; ils montrent clairement les avantages d’un schéma d’ordre deux pour les ondes vraiment non linéaires.

  20. Impacts of photon bending on observational aspects of Two Component Advective Flow

    CERN Document Server

    Chatterjee, Arka

    2016-01-01

    Nature of photon trajectories in a curved spacetime around black holes are studied without constraining their motion to any plane. Impacts of photon bending are separately scrutinized for Keplerian and CENBOL components of Two Component Advective Flow (TCAF) model. Parameters like Red shift, Bolometric Flux, temperature profile and time of arrival of photons are also computed.

  1. The Integrability of New Two-Component KdV Equation

    Directory of Open Access Journals (Sweden)

    Ziemowit Popowicz

    2010-02-01

    Full Text Available We consider the bi-Hamiltonian representation of the two-component coupled KdV equations discovered by Drinfel'd and Sokolov and rediscovered by Sakovich and Foursov. Connection of this equation with the supersymmetric Kadomtsev-Petviashvilli-Radul-Manin hierarchy is presented. For this new supersymmetric equation the Lax representation and odd Hamiltonian structure is given.

  2. Modeling Thermal Dust Emission with Two Components: Application to the Planck HFI Maps

    CERN Document Server

    Meisner, Aaron

    2014-01-01

    We apply the Finkbeiner et al. (1999) two-component thermal dust emission model to the Planck HFI maps. This parametrization of the far-infrared dust spectrum as the sum of two modified blackbodies serves as an important alternative to the commonly adopted single modified blackbody (MBB) dust emission model. Analyzing the joint Planck/DIRBE dust spectrum, we show that two-component models provide a better fit to the 100-3000 GHz emission than do single-MBB models, though by a lesser margin than found by Finkbeiner et al. (1999) based on FIRAS and DIRBE. We also derive full-sky 6.1' resolution maps of dust optical depth and temperature by fitting the two-component model to Planck 217-857 GHz along with DIRBE/IRAS 100 micron data. Because our two-component model matches the dust spectrum near its peak, accounts for the spectrum's flattening at millimeter wavelengths, and specifies dust temperature at 6.1' FWHM, our model provides reliable, high-resolution thermal dust emission foreground predictions from 100 to...

  3. Phase of Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    YU Zhao-Xian; JIN Shuo; JIAO Zhi-Yong; WANG Ji-Suo

    2007-01-01

    By using the invariant theory, we study the phases of two-component Bose-Einstein condensates with a coupling drive under the case that the strength of the interatomic interaction in each condensate equals the interspecies interaction. The dynamical and geometric phases are presented respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.

  4. The dynamics of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates

    Institute of Scientific and Technical Information of China (English)

    Lü Bin-Bin; Hao Xue; Tian Qiang

    2011-01-01

    This paper investigates the dynamical properties of nonstationary solutions in one-dimensional two-component Bose-Einstein condensates. It gives three kinds of stationary solutions to this model and develops a general method of constructing nonstationary solutions. It obtains the unique features about general evolution and soliton evolution of nonstationary solutions in this model.

  5. A Two-Component Generalization of Burgers' Equation with Quasi-Periodic Solution

    Science.gov (United States)

    Pan, Hongfei; Xia, Tiecheng; Chen, Dengyuan

    2014-10-01

    In this paper, we aim for the theta function representation of quasi-periodic solution and related crucial quantities for a two-component generalization of Burgers' equation. Our tools include the theory of algebraic curves, meromorphic functions, Baker-Akhiezer functions and the Dubrovin-type equations for auxiliary divisor. Eith these tools, the explicit representations for above quantities are obtained.

  6. Transport of a two-component mixture in one-dimensional channels

    NARCIS (Netherlands)

    Borman, VD; Tronin, VN; Tronin, [No Value; Troyan, [No Value

    2004-01-01

    The transport of a two-component gas mixture in subnanometer channels is investigated theoretically for an arbitrary filling of channels. Special attention is paid to consistent inclusion of density effects, which are associated both with the interaction and with a finite size of particles. The anal

  7. A bacterial pathogen uses distinct type III secretion systems to alternate between host kingdoms

    Science.gov (United States)

    Plant and animal-pathogenic bacteria utilize phylogenetically distinct type III secretion systems (T3SS) that produce needle-like injectisomes or pili for the delivery of effector proteins into host cells. Pantoea stewartii subsp. stewartii (Pnss), the causative agent of Stewart’s bacterial wilt and...

  8. HRT and nutrients affect bacterial communities grown on recirculation aquaculture system effluents

    NARCIS (Netherlands)

    Schneider, O.; Chabrillon-Popelka, M.; Smidt, H.; Haenen, O.L.M.; Sereti, V.; Eding, E.H.; Verreth, J.A.J.

    2007-01-01

    In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. B

  9. Sealing ability of a novel hydrophilic vs. conventional hydrophobic obturation systems: A bacterial leakage study

    Science.gov (United States)

    Hegde, Vibha; Arora, Shashank

    2015-01-01

    Aim: Comparative assessment of apical sealing ability of a novel Smart-Seal System, Resilon, and conventional Gutta-Percha system using a bacterial leakage model. Materials and Methods: Seventy freshly extracted human single rooted teeth with fully formed apices were randomly divided into three groups (20 each) and two control groups (5 positive and 5 negative). Teeth were de-coronated, and roots were standardized to a working length of 16 mm. Root canal preparation was done with rotary pro-taper file system in all groups. Group A was obturated using Smart-Seal system (Hydrophilic), Group B using Resilon/Epiphany system (Hydrophilic), and Group C using Gutta-Percha (GP)/AH plus system (Hydrophobic) in a single cone technique. Using Enterococcus faecalis, a split chamber bacterial leakage model was developed to evaluate the sealing ability of three obturation systems. Samples will be monitored every 24 hours for 60 days. Results: All three groups have shown leakage. Novel Smart-Seal System and Resilon have shown similar results and relatively lesser samples leaked in comparison to GP obturations at the end of the observation period. There was no significant difference amongst Resilon and Smart-Seal System (P > 0.05) but there was a significant difference amongst them when compared to GP obturations (P < 0.05). Conclusion: Hydrophilic obturations of the root canal shows a better resistance to bacterial leakage as compared to hydrophobic obturations. PMID:25657530

  10. CRISPR technologies for bacterial systems: Current achievements and future directions

    DEFF Research Database (Denmark)

    Choi, Kyeong Rok; Lee, Sang Yup

    2016-01-01

    Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now revolution......Throughout the decades of its history, the advances in bacteria-based bio-industries have coincided with great leaps in strain engineering technologies. Recently unveiled clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) systems are now...... revolutionizing biotechnology as well as biology. Diverse technologies have been derived from CRISPR/Cas systems in bacteria, yet the applications unfortunately have not been actively employed in bacteria as extensively as in eukaryotic organisms. A recent trend of engineering less explored strains in industrial...... microbiology-metabolic engineering, synthetic biology, and other related disciplines-is demanding facile yet robust tools, and various CRISPR technologies have potential to cater to the demands. Here, we briefly review the science in CRISPR/Cas systems and the milestone inventions that enabled numerous CRISPR...

  11. UV Radiation Damage and Bacterial DNA Repair Systems

    Science.gov (United States)

    Zion, Michal; Guy, Daniel; Yarom, Ruth; Slesak, Michaela

    2006-01-01

    This paper reports on a simple hands-on laboratory procedure for high school students in studying both radiation damage and DNA repair systems in bacteria. The sensitivity to ultra-violet (UV) radiation of both "Escherichia coli" and "Serratia marcescens" is tested by radiating them for varying time periods. Two growth temperatures are used in…

  12. Engineering analysis of potential photosynthetic bacterial hydrogen-production systems

    Science.gov (United States)

    Herlevich, A.; Karpuk, M. E.

    1982-06-01

    Photosynthetic bacteria (PSB) are capable of generating hydrogen from organics in effluents from food processing, pulp and paper, and chemical and pharmaceutical industries. Hydrogen evolution takes place under light in the absence of air. The rate of hydrogen production is expected to range between 300 to 600 scf of hydrogen per 1000 galloons of waste stream treated per hour. This hydrogen production system has been demonstrated at a bench-scale level and is ready for engineering development. A conceptual design for a PSB hydrogen production system is described. The system is expected to be sited adjacent to a waste stream source which will be pretreated by fermentation and pH adjustment, innoculated with bacteria, and then passed into the reactor. The reactor effluent can either be discharged into a rapid infiltration system, an irrigation ditch, and/or recycled back into the reactor. Several potential reactor designs have been developed, analyzed, and costed. A large covered pond appears to be the most economical design approach.

  13. Metagenomic Analysis of Water Distribution System Bacterial Communities

    Science.gov (United States)

    The microbial quality of drinking water is assessed using culture-based methods that are highly selective and that tend to underestimate the densities and diversity of microbial populations inhabiting distribution systems. In order to better understand the effect of different dis...

  14. Biofilm bacterial communities in urban drinking water distribution systems transporting waters with different purification strategies.

    Science.gov (United States)

    Wu, Huiting; Zhang, Jingxu; Mi, Zilong; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-02-01

    Biofilm formation in drinking water distribution systems (DWDS) has many adverse consequences. Knowledge of microbial community structure of DWDS biofilm can aid in the design of an effective control strategy. However, biofilm bacterial community in real DWDS and the impact of drinking water purification strategy remain unclear. The present study investigated the composition and diversity of biofilm bacterial community in real DWDSs transporting waters with different purification strategies (conventional treatment and integrated treatment). High-throughput Illumina MiSeq sequencing analysis illustrated a large shift in the diversity and structure of biofilm bacterial community in real DWDS. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, Nitrospirae, and Cyanobacteria were the major components of biofilm bacterial community. Proteobacteria (mainly Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria) predominated in each DWDS biofilm, but the compositions of the dominant proteobacterial classes and genera and their proportions varied among biofilm samples. Drinking water purification strategy could shape DWDS biofilm bacterial community. Moreover, Pearson's correlation analysis indicated that Actinobacteria was positively correlated with the levels of total alkalinity and dissolved organic carbon in tap water, while Firmicutes had a significant positive correlation with nitrite nitrogen.

  15. Three-body recombination of two-component cold atomic gases into deep dimers in an optical model

    DEFF Research Database (Denmark)

    Mikkelsen, Mathias; Jensen, A. S.; Fedorov, D. V.

    2015-01-01

    We consider three-body recombination into deep dimers in a mass-imbalanced two-component atomic gas. We use an optical model where a phenomenological imaginary potential is added to the lowest adiabatic hyper-spherical potential. The consequent imaginary part of the energy eigenvalue corresponds...... to the decay rate or recombination probability of the three-body system. The method is formulated in details and the relevant qualitative features are discussed as functions of scattering lengths and masses. We use zero-range model in analyses of recent recombination data. The dominating scattering length...

  16. Kink-Like Wave and Compacton-Like Wave Solutions for a Two-Component Fornberg-Whitham Equation

    Directory of Open Access Journals (Sweden)

    Shaoyong Li

    2014-01-01

    systems, we study a two-component Fornberg-Whitham equation. Two types of bounded traveling wave solutions are found, that is, the kink-like wave and compacton-like wave solutions. The planar graphs of these solutions are simulated by using software Mathematica; meanwhile, two new phenomena are revealed; that is, the periodic wave solution can become the kink-like wave or compacton-like wave solution under some conditions, respectively. Exact implicit or parameter expressions of these solutions are given.

  17. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (psupply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.

  18. Establishment of a Multiplex PCR System to Diagnose Tuberculosis and Other Bacterial Infections

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to rapidly diagnose and differentiate tuberculosis from other bacterial infections, a 16S rRNA gene (16s rDNA)-directed multiplex PCR system was developed. In this system, a pair of universal primers and a tubercle bacillus (Tb)-specific primer were designed based on highly conserved regions and Tb species-specific variable region of bacterial 16s rDNA. A 360bp fragment was detected in all bacteria tested, and a 210bp fragment was found only in Tb. 19 species of known bacteria including Tb were used for evaluating specificity, universality and sensitivity of the PCR. Candida albicans and human diploid cell served as controls. It was found that both 210bp and 360bp fragments were amplified only in Tb, and only 360 bp fragment was detected in other 18 species of general bacteria. Candida albicans and human cells were negative for both 360bp and 210bp fragments.The lowest detectable level of the PCR was 10 fg of DNA for Escherichia coli and 100 fg of DNA for Tb. The results indicated that this multiplex PCR system for the simultaneous detection of Tb and other common bacteria had higher specificity and sensitivity, as well as good universality and might be useful to rapidly diagnose bacterial infections and effectively distinguish tuberculosis from other bacterial involvement.

  19. A Fuzzy Expert System for Distinguishing between Bacterial and Aseptic Meningitis

    Directory of Open Access Journals (Sweden)

    Mostafa Langarizadeh

    2015-05-01

    Full Text Available Introduction Bacterial meningitis is a known infectious disease which occurs at early ages and should be promptly diagnosed and treated. Bacterial and aseptic meningitis are hard to be distinguished. Therefore, physicians should be highly informed and experienced in this area. The main aim of this study was to suggest a system for distinguishing between bacterial and aseptic meningitis, using fuzzy logic.    Materials and Methods In the first step, proper attributes were selected using Weka 3.6.7 software. Six attributes were selected using Attribute Evaluator, InfoGainAttributeEval, and Ranker search method items. Then, a fuzzy inference engine was designed using MATLAB software, based on Mamdani’s fuzzy logic method with max-min composition, prod-probor, and centroid defuzzification. The rule base consisted of eight rules, based on the experience of three specialists and information extracted from textbooks. Results Data were extracted from 106 records of patients with meningitis (42 cases with bacterial meningitis in order to evaluate the proposed system. The system accuracy, specificity, and sensitivity were 89%, 92 %, and 97%, respectively. The area under the ROC curve was 0.93, and Kappa test revealed a good level of agreement (k=0.84, P

  20. Study on the Application of a New Solvent System (Ⅱ) Study on Application of Ambient Dry Two-component Polyurethane Coatings Thinner%新溶剂体系应用研究(二)在常温干燥双组分聚氨酯涂料稀释剂体系的应用研究

    Institute of Scientific and Technical Information of China (English)

    刘新泰; 何慧霞

    2012-01-01

    新溶剂体系是指由乙酸仲丁酯、甲氧基乙酸甲酯、甲氧基乙酸仲丁酯、聚酯油构成的溶剂体系,本文以这些新产品溶剂为对象,在常温干燥环境下的双纽分聚氨酯涂料中予以应用,考察溶剂的稀释剂性能,进行对比研究、%A new solvent system is composed of sec-butyl acetate, methyl methoxy acetate, methoxy butyl acetate and polyester oil. The common characteristics include low- toxicity or non-toxicity, new synthetic technology, low second pollution and high price/performance ratio. The paper also introduces the application results of the new solvent system in ambient dry tow- component polyurethane coatings thinner system. The contrast test between the new solvent system with the present solvents based oil benzene, xylene, propylene glycol monomethyl ether acetate and cyclohexanone etc. is also made.

  1. Correlation of two-component signaling system ComD/ComE and β-lactam antibiotics resistance of Streptococcus pneumoniae%二元信号系统ComD/ComE与肺炎链球菌对β-内酰胺类抗生素耐药的相关性

    Institute of Scientific and Technical Information of China (English)

    樊欢; 严杰; 孙爱华

    2010-01-01

    目的 构建肺炎链球菌comD基因敲除突变株,了解comD基因与细菌β-内酰类抗生素耐药性的相关性,探讨氯氰碘柳胺下调comD、comE和comC基因mRNA的作用.方法 构建用于comD基因敲除的自杀质粒pEVP3comD,通过同源重组及插入失活获得肺炎链球菌ATCC6306株comD基因敲除突变株comD-.采用PCR及免疫荧光法对comD-突变株进行鉴定.采用实时荧光定量RT-PCR检测氯氰碘柳胺处理前后comD-突变株及野生株comD、comE和comC基因mRNA水平变化.采用二倍琼脂稀释法测定comD-突变株及野生株对青霉素G和头孢噻肟的敏感性.结果 测序及免疫荧光试验结果证实,所构建的comD-突变株染色体DNA中comD基因被插入失活.50μmol/L或100 μmol/L的氯氰碘柳胺能明显下调comD、comE和comC基因mRNA水平(P<0.05),25μmol/L的氯氰碘柳胺则否.comD-突变株对青霉素及头孢噻肟最低抑菌浓度(MIC)值均为32μg/ml,明显高于野生株的0.06 μg/ml和1 μg/ml.结论 本研究成功地构建了肺炎链球菌comD基因敲除突变株.comD基因与细菌对β-内酰类抗生素耐药性密切相关.氯氰碘柳胺可通过下调comD、comE和comC基因的转录水平,从而对细菌感受态形成产生影响.%Objective To generate a comD gene knock-out mutant of Streptococcus pneumoniae,and determine the correlation of comD gene and the bacterial resistance against β-lactam antibiotics and understand the effect of closantel down-regulating comD, comE and comC mRNA levels. Methods A suicide plasmid pEVP3comD was constructed for comD gene knock-out and a comD gene knock-out mutant (comD-)was generated through homologous recombination and insertion inactivation. PCR and immunofluorescence method were used to identify the comD- mutant and real-time fluorescence quantitative PCR was applied to detect the changes of comD, comE and comC mRNA levels before and after closantel treatment in comD-mutant and wild-type strain. Double agar

  2. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  3. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  4. Bacterial community characterization and biogeochemistry of sediments from a tropical upwelling system (Cabo Frio, Southeastern Brazil)

    Science.gov (United States)

    Castelo-Branco, R.; Barreiro, A.; Silva, F. S.; Carvalhal-Gomes, S. B. V.; Fontana, L. F.; Mendonça-Filho, J. G.; Vasconcelos, V.

    2016-11-01

    The Cabo Frio Upwelling System is one of the largest and most productive areas in southeastern Brazil. Although it is well-known that bacterial communities play a crucial role in the biogeochemical cycles and food chain of marine ecosystems, little is known regarding the microbial communities in the sediments of this upwelling region. In this research, we address the effect of different hydrological conditions on the biogeochemistry of sediments and the diversity of bacterial communities. Biogeochemistry profiles of sediments from four sampling stations along an inner-outer transect on the continental shelf were evaluated and denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments was used to study the bacterial community composition in these sediments. Our sequencing analysis of excised bands identified Alpha- and Gammaproteobacteria, Bacteroidetes and bacteria belonging to the Firmicutes phyla as the phylogenetic groups, indicating the existence of great diversity in these marine sediments. In this multidisciplinary study, the use of multivariate analysis was crucial for understanding how biogeochemical profiles influence bacterial community distribution. A Principal Component Analysis (PCA) indicated that the biogeochemical variables exhibited a clear spatial pattern that is mainly related to hydrological conditions. A Correspondence Analysis (CA) revealed an important association between certain taxonomic groups and specific sampling locations. Canonical Correspondence Analysis (CCA) demonstrated that the biogeochemistry influences the structure of the bacterial community in sediments. Among the bacterial groups identified, the most taxonomically diverse classes (Alphaproteobacteria and Gammaproteobacteria) were found to be distributed regardless of any studied biogeochemical variables influences, whereas other groups responded to biogeochemical conditions which, in turn, were influenced by hydrological conditions. This finding

  5. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules

    CERN Document Server

    Peng, Daoling; Weigend, Florian; Reiher, Markus

    2013-01-01

    We present an efficient algorithm for one- and two-component relativistic exact-decoupling calculations. The spin-orbit coupling was taken into account for the evaluation of relativistically transformed Hamiltonian. The relativistic decoupling transformation has to be evaluated with primitive functions so that the construction of the relativistic one-electron Hamiltonian becomes the bottleneck of the whole calculation for large molecules. We apply our recently developed local DLU scheme [J. Chem. Phys. 136 (2012) 244108] to accelerate this step. With our new implementation two-component relativistic density functional calculations can be performed invoking the resolution-of-identity density-fitting approximation and (Abelian as well as non-Abelian) point group symmetries to accelerate both the exact-decoupling and the two-electron part. The capability of our implementation is illustrated at the example of silver clusters with up to 309 atoms, for which the cohesive energy is calculated and extrapolated to the...

  6. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAOZhi-Yong; YUZhao-Xian; YANGXin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of two-component Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  7. Two-component Fermi-liquid theory - Equilibrium properties of liquid metallic hydrogen

    Science.gov (United States)

    Oliva, J.; Ashcroft, N. W.

    1981-01-01

    It is reported that the transition of condensed hydrogen from an insulating molecular crystal phase to a metallic liquid phase, at zero temperature and high pressure, appears possible. Liquid metallic hydrogen (LMH), comprising interpenetrating proton and electron fluids, would constitute a two-component Fermi liquid with both a very high component-mass ratio and long-range, species-dependent bare interactions. The low-temperature equilibrium properties of LMH are examined by means of a generalization to the case of two components of the phenomenological Landau Fermi-liquid theory, and the low-temperature specific heat, compressibility, thermal expansion coefficient and spin susceptibility are given. It is found that the specific heat and the thermal expansion coefficient are vastly greater in the liquid than in the corresponding solid, due to the presence of proton quasiparticle excitations in the liquid.

  8. A hydrodynamic scheme for two-component winds from hot stars

    CERN Document Server

    Votruba, V; Kubát, J; Rätzel, D

    2007-01-01

    We have developed a time-dependent two-component hydrodynamics code to simulate radiatively-driven stellar winds from hot stars. We use a time-explicit van Leer scheme to solve the hydrodynamic equations of a two-component stellar wind. Dynamical friction due to Coulomb collisions between the passive bulk plasma and the line-scattering ions is treated by a time-implicit, semi-analytic method using a polynomial fit to the Chandrasekhar function. This gives stable results despite the stiffness of the problem. This method was applied to model stars with winds that are both poorly and well-coupled. While for the former case we reproduce the mCAK solution, for the latter case our solution leads to wind decoupling.

  9. Error Propagation in Equations for Geochemical Modeling of Radiogenic Isotopes in Two-Component Mixing

    Indian Academy of Sciences (India)

    Surendra P Verma

    2000-03-01

    This paper presents error propagation equations for modeling of radiogenic isotopes during mixing of two components or end-members. These equations can be used to estimate errors on an isotopic ratio in the mixture of two components, as a function of the analytical errors or the total errors of geological field sampling and analytical errors. Two typical cases (``Small errors'' and ``Large errors'') are illustrated for mixing of Sr isotopes. Similar examples can be formulated for the other radiogenic isotopic ratios. Actual isotopic data for sediment and basalt samples from the Cocos plate are also included to further illustrate the use of these equations. The isotopic compositions of the predicted mixtures can be used to constrain the origin of magmas in the central part of the Mexican Volcanic Belt. These examples show the need of high quality experimental data for them to be useful in geochemical modeling of magmatic processes.

  10. Stability properties of vector solitons in two-component Bose-Einstein condensates with tunable interactions

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiao-Fei; Zhang Pei; He Wan-Quan; Liu Xun-Xu

    2011-01-01

    By using a unified theory of the formation of various types of vector-solitons in two-component Bose-Einstein condensates with tunable interactions, we obtain a family of exact vector-soliton solutions for the coupled nonlinear Schr(o)dinger equations. Moreover, the Bogoliubov equation shows that there exists stable dark soliton in specific situations. Our results open up new ways in considerable experimental interest for the quantum control of multi-component Bose-Einstein condensates.

  11. Kinetics and mechanism of the oxidation process of two-component Fe-Al alloys

    Science.gov (United States)

    Przewlocka, H.; Siedlecka, J.

    1982-01-01

    The oxidation process of two-component Fe-Al alloys containing up to 7.2% Al and from 18 to 30% Al was studied. Kinetic measurements were conducted using the isothermal gravimetric method in the range of 1073-1223 K and 1073-1373 K for 50 hours. The methods used in studies of the mechanism of oxidation included: X-ray microanalysis, X-ray structural analysis, metallographic analysis and marker tests.

  12. Histidine Phosphotransfer Proteins in Fungal Two-Component Signal Transduction Pathways

    OpenAIRE

    2013-01-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, s...

  13. A Possible Two-Component Structure of the Non-Perturbative Pomeron

    CERN Document Server

    Gauron, P; Gauron, Pierre; Nicolescu, Basarab

    2000-01-01

    We propose a QCD-inspired two-component Pomeron form which gives an excellent description of the proton-proton, pi-proton, kaon-proton, gamma-proton and gamma-gamma total cross sections. Our fit has a better CHI2/dof for a smaller number of parameters as compared with the PDG fit. Our 2-Pomeron form is fully compatible with weak Regge exchange-degeneracy, universality, Regge factorization and the generalized vector dominance model.

  14. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    OpenAIRE

    Provornikova, E. A.; Izmodenov, V. V.; Lallement, R.

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma...

  15. Effect of topical and systemic antibiotics on bacterial growth kinesis in generalized peritonitis in man.

    Science.gov (United States)

    Krukowski, Z H; Al-Sayer, H M; Reid, T M; Matheson, N A

    1987-04-01

    Quantitative bacteriology in peritoneal exudate was studied in 40 patients with generalized peritonitis of small intestinal, appendicular or colonic origin. Bacterial growth kinesis was measured in 28 of the patients. Systemic antibiotics given before operation resulted in a significant reduction in both the concentration and growth rate of viable bacteria in the peritoneal fluid. Lavage of the peritoneal cavity with saline resulted in a further reduction in growth rate in patients given pre-operative systemic antibiotics by an effect attributable to simple dilution. In contrast, peritoneal lavage with tetracycline (1 mg/ml) resulted in complete inhibition of bacterial growth in the residual peritoneal fluid. These observations support the policy of giving systemic antibiotics to patients with generalized peritonitis as soon as the diagnosis has been made and provide bacteriological evidence for the value of peroperative antibiotic peritoneal lavage.

  16. Bacterial Vesicle Secretion and the Evolutionary Origin of the Eukaryotic Endomembrane System.

    Science.gov (United States)

    Gould, Sven B; Garg, Sriram G; Martin, William F

    2016-07-01

    Eukaryotes possess an elaborate endomembrane system with endoplasmic reticulum, nucleus, Golgi, lysosomes, peroxisomes, autophagosomes, and dynamic vesicle traffic. Theories addressing the evolutionary origin of eukaryotic endomembranes have overlooked the outer membrane vesicles (OMVs) that bacteria, archaea, and mitochondria secrete into their surroundings. We propose that the eukaryotic endomembrane system originated from bacterial OMVs released by the mitochondrial ancestor within the cytosol of its archaeal host at eukaryote origin. Confined within the host's cytosol, OMVs accumulated naturally, fusing either with each other or with the host's plasma membrane. This matched the host's archaeal secretory pathway for cotranslational protein insertion with outward bound mitochondrial-derived vesicles consisting of bacterial lipids, forging a primordial, secretory endoplasmic reticulum as the cornerstone of the eukaryotic endomembrane system. VIDEO ABSTRACT.

  17. Auto-production of biosurfactants reverses the coffee ring effect in a bacterial system

    Science.gov (United States)

    Sempels, Wouter; de Dier, Raf; Mizuno, Hideaki; Hofkens, Johan; Vermant, Jan

    2013-04-01

    The deposition of material at the edge of evaporating droplets, known as the ‘coffee ring effect’, is caused by a radially outward capillary flow. This phenomenon is common to a wide array of systems including colloidal and bacterial systems. The role of surfactants in counteracting these coffee ring depositions is related to the occurrence of local vortices known as Marangoni eddies. Here we show that these swirling flows are universal, and not only lead to a uniform deposition of colloids but also occur in living bacterial systems. Experiments on Pseudomonas aeruginosa suggest that the auto-production of biosurfactants has an essential role in creating a homogeneous deposition of the bacteria upon drying. Moreover, at biologically relevant conditions, intricate time-dependent flows are observed in addition to the vortex regime, which are also effective in reversing the coffee ring effect at even lower surfactant concentrations.

  18. Evaluation of the operational parameters for NBI-driven fusion in low-gain tokamaks with two-component plasma

    Science.gov (United States)

    Chirkov, A. Yu.

    2015-09-01

    Low gain (Q ~ 1) fusion plasma systems are of interest for concepts of fusion-fission hybrid reactors. Operational regimes of large modern tokamaks are close to Q  ≈  1. Therefore, they can be considered as prototypes of neutron sources for fusion-fission hybrids. Powerful neutral beam injection (NBI) can support the essential population of fast particles compared with the Maxwellial population. In such two-component plasma, fusion reaction rate is higher than for Maxwellian plasma. Increased reaction rate allows the development of relatively small-size and relatively inexpensive neutron sources. Possible operating regimes of the NBI-heated tokamak neutron source are discussed. In a relatively compact device, the predictions of physics of two-component fusion plasma have some volatility that causes taking into account variations of the operational parameters. Consequent parameter ranges are studied. The feasibility of regimes with Q  ≈  1 is shown for the relatively small and low-power system. The effect of NBI fraction in total heating power is analyzed.

  19. Vortices in a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); Du, Zhi-Jing [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China); Tan, Ren-Bing [Department of Physics, School of Mathematics and Physics, Chongqing University of Science and Technology, Chongqing 401331 (China); Dong, Rui-Fang; Chang, Hong; Zhang, Shou-Gang [Key Laboratory of Time and Frequency Primary Standards, National Time Service Center, Chinese Academy of Sciences, Xi’an 710600 (China)

    2014-07-15

    We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic) harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.

  20. A Bacterial Analysis Platform: An Integrated System for Analysing Bacterial Whole Genome Sequencing Data for Clinical Diagnostics and Surveillance

    DEFF Research Database (Denmark)

    Thomsen, Martin Christen Frølund; Ahrenfeldt, Johanne; Bellod Cisneros, Jose Luis;

    2016-01-01

    web-based tools we developed a single pipeline for batch uploading of whole genome sequencing data from multiple bacterial isolates. The pipeline will automatically identify the bacterial species and, if applicable, assemble the genome, identify the multilocus sequence type, plasmids, virulence genes...... and made publicly available, providing easy-to-use automated analysis of bacterial whole genome sequencing data. The platform may be of immediate relevance as a guide for investigators using whole genome sequencing for clinical diagnostics and surveillance. The platform is freely available at: https......Recent advances in whole genome sequencing have made the technology available for routine use in microbiological laboratories. However, a major obstacle for using this technology is the availability of simple and automatic bioinformatics tools. Based on previously published and already available...

  1. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  2. Drosophila embryos as model systems for monitoring bacterial infection in real time.

    Directory of Open Access Journals (Sweden)

    Isabella Vlisidou

    2009-07-01

    Full Text Available Drosophila embryos are well studied developmental microcosms that have been used extensively as models for early development and more recently wound repair. Here we extend this work by looking at embryos as model systems for following bacterial infection in real time. We examine the behaviour of injected pathogenic (Photorhabdus asymbiotica and non-pathogenic (Escherichia coli bacteria and their interaction with embryonic hemocytes using time-lapse confocal microscopy. We find that embryonic hemocytes both recognise and phagocytose injected wild type, non-pathogenic E. coli in a Dscam independent manner, proving that embryonic hemocytes are phagocytically competent. In contrast, injection of bacterial cells of the insect pathogen Photorhabdus leads to a rapid 'freezing' phenotype of the hemocytes associated with significant rearrangement of the actin cytoskeleton. This freezing phenotype can be phenocopied by either injection of the purified insecticidal toxin Makes Caterpillars Floppy 1 (Mcf1 or by recombinant E. coli expressing the mcf1 gene. Mcf1 mediated hemocyte freezing is shibire dependent, suggesting that endocytosis is required for Mcf1 toxicity and can be modulated by dominant negative or constitutively active Rac expression, suggesting early and unexpected effects of Mcf1 on the actin cytoskeleton. Together these data show how Drosophila embryos can be used to track bacterial infection in real time and how mutant analysis can be used to genetically dissect the effects of specific bacterial virulence factors.

  3. BSim: an agent-based tool for modeling bacterial populations in systems and synthetic biology.

    Directory of Open Access Journals (Sweden)

    Thomas E Gorochowski

    Full Text Available Large-scale collective behaviors such as synchronization and coordination spontaneously arise in many bacterial populations. With systems biology attempting to understand these phenomena, and synthetic biology opening up the possibility of engineering them for our own benefit, there is growing interest in how bacterial populations are best modeled. Here we introduce BSim, a highly flexible agent-based computational tool for analyzing the relationships between single-cell dynamics and population level features. BSim includes reference implementations of many bacterial traits to enable the quick development of new models partially built from existing ones. Unlike existing modeling tools, BSim fully considers spatial aspects of a model allowing for the description of intricate micro-scale structures, enabling the modeling of bacterial behavior in more realistic three-dimensional, complex environments. The new opportunities that BSim opens are illustrated through several diverse examples covering: spatial multicellular computing, modeling complex environments, population dynamics of the lac operon, and the synchronization of genetic oscillators. BSim is open source software that is freely available from http://bsim-bccs.sf.net and distributed under the Open Source Initiative (OSI recognized MIT license. Developer documentation and a wide range of example simulations are also available from the website. BSim requires Java version 1.6 or higher.

  4. Speed and Displacement Control System of Bearingless Brushless DC Motor Based on Improved Bacterial Foraging Algorithm

    Directory of Open Access Journals (Sweden)

    Diao Xiaoyan

    2016-01-01

    Full Text Available To solve the deficiencies of long optimization time and poor precision existing in conventional bacterial foraging algorithm (BFA in the process of parameter optimization, an improved bacterial foraging algorithm (IBFA is proposed and applied to speed and displacement control system of bearingless brushless DC (Bearingless BLDC motors. To begin with the fundamental principle of BFA, the proposed method is introduced and the individual intelligence is efficiently used in the process of parameter optimization, and then the working principle of bearingless BLDC motors is expounded. Finally, modeling and simulation of the speed and displacement control system of bearingless BLDC motors based on the IBFA are carried out by taking the software of MATLAB/Simulink as a platform. Simulation results show that, speed overshoot, torque ripple and rotor position oscillation are dramatically reduced, thus the proposed method has good application prospects in the field of bearingless motors.

  5. [Autochthonous acute viral and bacterial infections of the central nervous system (meningitis and encephalitis)].

    Science.gov (United States)

    Pérez-Ruiz, Mercedes; Vicente, Diego; Navarro-Marí, José María

    2008-07-01

    Rapid diagnosis of acute viral and bacterial infections of the central nervous system (meningitis and encephalitis) is highly important for the clinical management of the patient and helps to establish early therapy that may solve life-threatening situations, to avoid unnecessary empirical treatments, to reduce hospital stay, and to facilitate appropriate interventions in the context of public health. Molecular techniques, especially real-time polymerase chain reaction, have become the fastest and most sensitive diagnostic procedures for autochthonous viral meningitis and encephalitis, and their role is becoming increasingly important for the diagnosis and control of most frequent acute bacterial meningitides. Automatic and closed systems may encourage the widespread and systematic use of molecular techniques for the diagnosis of these neurological syndromes in most laboratories.

  6. 8.3 Microbiology and Biodegradation: A New Bacterial Communication System

    Science.gov (United States)

    2014-04-09

    Approved for Public Release; Distribution Unlimited 8.3 Microbiology and Biodegradation: A new bacterial communication system The views, opinions and...palustris , Molecular Microbiology , (02 2010): 0. doi: 10.1111/j.1365-2958.2009.07037.x H. Hirakawa, C. S. Harwood, K. B. Pechter, A. L. Schaefer, E. P...hydrogen Proctor and Gamble Award in Applied and Environmental Microbiology to Caroline Harwood Peter Greenberg was recipient of the Doctor of Science

  7. Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials

    OpenAIRE

    Friederike Menzel; Bianca Conradi; Karsten Rodenacker; Gorbushina, Anna A; Karin Schwibbert

    2016-01-01

    Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to...

  8. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-12-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated.

  9. Bacterial Community Structure Shifted by Geosmin in Granular Activated Carbon System of Water Treatment Plants.

    Science.gov (United States)

    Pham, Ngoc Dung; Lee, Eun-Hee; Chae, Seon-Ha; Cho, Yongdeok; Shin, Hyejin; Son, Ahjeong

    2016-01-01

    We investigated the relation between the presence of geosmin in water and the bacterial community structure within the granular activated carbon (GAC) system of water treatment plants in South Korea. GAC samples were collected in May and August of 2014 at three water treatment plants (Sungnam, Koyang, and Yeoncho in Korea). Dissolved organic carbon and geosmin were analyzed before and after GAC treatment. Geosmin was found in raw water from Sungnam and Koyang water treatment plants but not in that from Yeoncho water treatment plant. Interestingly, but not surprisingly, the 16S rRNA clone library indicated that the bacterial communities from the Sungnam and Koyang GAC systems were closely related to geosmin-degrading bacteria. Based on the phylogenetic tree and multidimensional scaling plot, bacterial clones from GAC under the influence of geosmin were clustered with Variovorax paradoxus strain DB 9b and Comamonas sp. DB mg. In other words, the presence of geosmin in water might have inevitably contributed to the growth of geosmin degraders within the respective GAC system.

  10. Bacterial Plasminogen Receptors Utilize Host Plasminogen System for Effective Invasion and Dissemination

    Directory of Open Access Journals (Sweden)

    Sarbani Bhattacharya

    2012-01-01

    Full Text Available In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.

  11. Bacterial plasminogen receptors utilize host plasminogen system for effective invasion and dissemination.

    Science.gov (United States)

    Bhattacharya, Sarbani; Ploplis, Victoria A; Castellino, Francis J

    2012-01-01

    In order for invasive pathogens to migrate beyond the site of infection, host physiological barriers such as the extracellular matrix, the basement membrane, and encapsulating fibrin network must be degraded. To circumvent these impediments, proteolytic enzymes facilitate the dissemination of the microorganism. Recruitment of host proteases to the bacterial surface represents a particularly effective mechanism for enhancing invasiveness. Plasmin is a broad spectrum serine protease that degrades fibrin, extracellular matrices, and connective tissue. A large number of pathogens express plasminogen receptors which immobilize plasmin(ogen) on the bacterial surface. Surface-bound plasminogen is then activated by plasminogen activators to plasmin through limited proteolysis thus triggering the development of a proteolytic surface on the bacteria and eventually assisting the spread of bacteria. The host hemostatic system plays an important role in systemic infection. The interplay between hemostatic processes such as coagulation and fibrinolysis and the inflammatory response constitutes essential components of host defense and bacterial invasion. The goal of this paper is to highlight mechanisms whereby pathogenic bacteria, by engaging surface receptors, utilize and exploit the host plasminogen and fibrinolytic system for the successful dissemination within the host.

  12. Profiling bacterial communities associated with sediment-based aquaculture bioremediation systems under contrasting redox regimes

    Science.gov (United States)

    Robinson, Georgina; Caldwell, Gary S.; Wade, Matthew J.; Free, Andrew; Jones, Clifford L. W.; Stead, Selina M.

    2016-01-01

    Deposit-feeding invertebrates are proposed bioremediators in microbial-driven sediment-based aquaculture effluent treatment systems. We elucidate the role of the sediment reduction-oxidation (redox) regime in structuring benthic bacterial communities, having direct implications for bioremediation potential and deposit-feeder nutrition. The sea cucumber Holothuria scabra was cultured on sediments under contrasting redox regimes; fully oxygenated (oxic) and redox stratified (oxic-anoxic). Taxonomically, metabolically and functionally distinct bacterial communities developed between the redox treatments with the oxic treatment supporting the greater diversity; redox regime and dissolved oxygen levels were the main environmental drivers. Oxic sediments were colonised by nitrifying bacteria with the potential to remediate nitrogenous wastes. Percolation of oxygenated water prevented the proliferation of anaerobic sulphate-reducing bacteria, which were prevalent in the oxic-anoxic sediments. At the predictive functional level, bacteria within the oxic treatment were enriched with genes associated with xenobiotics metabolism. Oxic sediments showed the greater bioremediation potential; however, the oxic-anoxic sediments supported a greater sea cucumber biomass. Overall, the results indicate that bacterial communities present in fully oxic sediments may enhance the metabolic capacity and bioremediation potential of deposit-feeder microbial systems. This study highlights the benefits of incorporating deposit-feeding invertebrates into effluent treatment systems, particularly when the sediment is oxygenated. PMID:27941918

  13. The oligomeric assembly of the novel haem-degrading protein HbpS is essential for interaction with its cognate two-component sensor kinase

    NARCIS (Netherlands)

    Ortiz de Orué Lucana, Darío; Bogel, Gabriele; Zou, Peijian; Groves, Matthew R

    2009-01-01

    HbpS, a novel protein of previously unknown function from Streptomyces reticuli, is up-regulated in response to haemin- and peroxide-based oxidative stress and interacts with the SenS/SenR two-component signal transduction system. In this study, we report the high-resolution crystal structures (2.2

  14. Bacterial DNA induces the complement system activation in serum and ascitic fluid from patients with advanced cirrhosis.

    Science.gov (United States)

    Francés, Rubén; González-Navajas, José M; Zapater, Pedro; Muñoz, Carlos; Caño, Rocío; Pascual, Sonia; Márquez, Dorkas; Santana, Francia; Pérez-Mateo, Miguel; Such, José

    2007-07-01

    Translocation of intestinal bacteria to ascitic fluid is, probably, the first step in the development of spontaneous bacterial peritonitis in patients with cirrhosis. Proteins of the complement system are soluble mediators implicated in the host immune response to bacterial infections and its activation has been traditionally considered to be an endotoxin-induced phenomenon. The aim of this study was to compare the modulation of these proteins in response to the presence of bacterial DNA and/or endotoxin in patients with advanced cirrhosis and ascites in different clinical conditions. Groups I and II consisted of patients without/with bacterial DNA. Group III included patients with spontaneous bacterial peritonitis and Group IV with patients receiving norfloxacin as secondary long-term prophylaxis of spontaneous bacterial peritonitis. Serum and ascitic fluid levels of endotoxin and truncated residues of the complement system were measured by ELISA. The complement system is triggered in response to bacterial DNA, as evidenced by significantly increased levels of C3b, membrane attack complex, and C5a in patients from Groups II and III compared with patients without bacterial DNA (Group I) and those receiving norfloxacin (Group IV). Gram classification did not further differentiate the immune response between patients within groups II and III, even though endotoxin levels were, as expected, significantly higher in patients with bacterial DNA from gram-negative microorganisms. The complement protein activation observed in patients with bacterial DNA in blood and ascitic fluid is indistinguishable from that observed in patients with spontaneous bacterial peritonitis and may occur in an endotoxin-independent manner.

  15. Phosphate sink containing two-component signaling systems as tunable threshold devices

    DEFF Research Database (Denmark)

    Amin, Munia; Kothamachu, Varun B; Feliu, Elisenda

    2014-01-01

    and define key parameters that control threshold levels and sensitivity of the signal-response curve. We confirm these findings experimentally, by in vitro reconstitution of the one HK-two RR motif found in the Sinorhizobium meliloti chemotaxis pathway and measuring the resulting signal-response curve. We...

  16. A Sinorhizobium meliloti osmosensory two-component system required for cyclic glucan export and symbiosis.

    Science.gov (United States)

    Griffitts, Joel S; Carlyon, Rebecca E; Erickson, Jacob H; Moulton, Jason L; Barnett, Melanie J; Toman, Carol J; Long, Sharon R

    2008-07-01

    screen for novel symbiotic mutants of the nitrogen-fixing legume symbiont Sinorhizobium meliloti uncovered a crucial role for the putative response regulator FeuP in the symbiotic infection process. Transcriptome analysis shows that FeuP controls the transcription of at least 16 genes, including ndvA, which encodes an ATP-dependent exporter of cyclic beta glucans. Loss of feuP function gives rise to traits associated with cyclic beta glucan biosynthetic defects, including poor growth and motility under hypoosmotic conditions, and the inability to invade plant tissue during the early stages of symbiotic infection. Analysis of cyclic glucans indicates that the feuP mutant is able to synthesize intracellular cyclic beta glucans, but is unable to export them. Cyclic beta glucan export can be restored to feuP mutant cells by constitutive expression of ndvA; likewise, the symbiotic phenotype of a feuP mutant is rescued by ectopic ndvA expression. We further show that the linked sensor kinase gene, feuQ, is also important for modulating ndvA transcription, and that signalling through the FeuP/FeuQ pathway is responsive to extracellular osmotic conditions, with low osmolarity stimulating ndvA expression.

  17. Thermal Regulation of Membrane Lipid Fluidity by a Two-Component System in "Bacillus Subtilis"

    Science.gov (United States)

    Bredeston, L. M.; Marciano, D.; Albanesi, D.; De Mendoza, D.; Delfino, J. M.

    2011-01-01

    This article describes a simple and robust laboratory exercise on the regulation of membrane unsaturated fatty acid composition in bacteria by a decrease in growth temperature. We take advantage of the well characterized Des pathway of "Bacillus subtilis", composed of a [delta]5-desaturase (encoded by the "des" gene) and the canonical…

  18. Lipase expression in Pseudomonas alcaligenes is under the control of a two-component regulatory system

    NARCIS (Netherlands)

    Krzeslak, Joanna; Gerritse, Gijs; van Merkerk, Ronald; Cool, Robbert H.; Quax, Wim J.

    2008-01-01

    Preliminary observations in a large-scale fermentation process suggested that the lipase expression of Pseudomonas alcaligenes can be switched on by the addition of certain medium components, such as soybean oil. In an attempt to elucidate the mechanism of induction of lipase expression, we have set

  19. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: cycloheptanol + cyclooctanol two-component system.

    Science.gov (United States)

    Martínez-García, Julio C; Tamarit, Josep Ll; Pardo, Luis C; Barrio, María; Rzoska, Sylwester J; Droz-Rzoska, Aleksandra

    2010-05-13

    The dynamics of the pure compounds and mixed crystals formed between cycloheptanol (cC7-ol) and cyclooctanol (cC8-ol) has been studied by means of broadband dielectric spectroscopy at temperatures near and above the orientational glass transition temperature. Both compounds are known to display at least one orientationally disordered (OD) phase of simple cubic symmetry, and within this phase, a continuous formation of mixed crystals was demonstrated in the past (Rute, M. A. et al. J. Phys. Chem. B 2003, 107, 5914). The dielectric loss spectra of cC7-ol and cC8-ol show, in addition to the well-pronounced alpha-relaxation peaks with a continuous temperature shift (characteristic of the freezing of the molecular dynamics), secondary relaxations (beta and gamma for cC8-ol and gamma for cC7-ol) which are intramolecular in nature. The dynamics of several OD mixed crystals was recently studied (Singh, L. P.; Murthy, S. S. N. J. Phys. Chem. B 2008, 112, 2606), and surprisingly enough one of the secondary relaxations was not evidenced. We show here by means of a careful set of measurements for several mixed crystals and of a detailed analysis procedure the existence of the secondary relaxations for the mixed crystals. The results, moreover, doubtless reinforce the physical origin of each of the secondary relaxations.

  20. Disentangling the secondary relaxations in the orientationally disordered mixed crystals: cycloheptanol + cyclooctanol two-component system

    OpenAIRE

    2010-01-01

    The dynamics of the pure compounds and mixed crystals formed between cycloheptanol (cC7-ol) and cyclooctanol (cC8-ol) has been studied by means of broadband dielectric spectroscopy at temperatures near and above the orientational glass transition temperature. Both compounds are known to display at least one orientationally disordered (OD) phase of simple cubic symmetry, and within this phase, a continuous formation of mixed crystals was demonstrated in the past (Rute, M. A. et al. J. Phys. Ch...

  1. Predictions of Phase Distribution in Liquid-Liquid Two-Component Flow

    Science.gov (United States)

    Wang, Xia; Sun, Xiaodong; Duval, Walter M.

    2011-06-01

    Ground-based liquid-liquid two-component flow can be used to study reduced-gravity gas-liquid two-phase flows provided that the two liquids are immiscible with similar densities. In this paper, we present a numerical study of phase distribution in liquid-liquid two-component flows using the Eulerian two-fluid model in FLUENT, together with a one-group interfacial area transport equation (IATE) that takes into account fluid particle interactions, such as coalescence and disintegration. This modeling approach is expected to dynamically capture changes in the interfacial structure. We apply the FLUENT-IATE model to a water-Therminol 59® two-component vertical flow in a 25-mm inner diameter pipe, where the two liquids are immiscible with similar densities (3% difference at 20°C). This study covers bubbly (drop) flow and bubbly-to-slug flow transition regimes with area-averaged void (drop) fractions from 3 to 30%. Comparisons of the numerical results with the experimental data indicate that for bubbly flows, the predictions of the lateral phase distributions using the FLUENT-IATE model are generally more accurate than those using the model without the IATE. In addition, we demonstrate that the coalescence of fluid particles is dominated by wake entrainment and enhanced by increasing either the continuous or dispersed phase velocity. However, the predictions show disagreement with experimental data in some flow conditions for larger void fraction conditions, which fall into the bubbly-to-slug flow transition regime. We conjecture that additional fluid particle interaction mechanisms due to the change of flow regimes are possibly involved.

  2. Two-component model of strong Langmuir turbulence - Scalings, spectra, and statistics of Langmuir waves

    Science.gov (United States)

    Robinson, P. A.; Newman, D. L.

    1990-01-01

    A simple two-component model of strong turbulence that makes clear predictions for the scalings, spectra, and statistics of Langmuir waves is developed. Scalings of quantities such as energy density, power input, dissipation power wave collapse, and number density of collapsing objects are investigated in detail and found to agree well with model predictions. The nucleation model of wave-packet formation is strongly supported by the results. Nucleation proceeds with energy flowing from background to localized states even in the absence of a driver. Modulational instabilities play little or no role in maintaining the turbulent state when significant density nonuniformities are present.

  3. Numerical simulation of two-component flow fluid - fluid in the microchannel T- type

    Directory of Open Access Journals (Sweden)

    Shebeleva A.A.

    2015-01-01

    Full Text Available Results of testing methodology for calculating two-phase flows based on the method of fluid in the cells (VOF method, and the procedure for CSF accounting of surface tension forces in the microchannel are considered in the work. Mathematical modeling of two-component flow fluid -fluid in the T- microchannel conducted using this methodology. The following flow regimes studied slug flow, rivulet flow, parallel flow, dispersed (droplet flow, plug flow. Comparison of numerical results with experimental data done. Satisfactory agreement between the calculated values with the experimental data obtained.

  4. Dynamics of bubbles in a two-component Bose-Einstein condensate

    Science.gov (United States)

    Sasaki, Kazuki; Suzuki, Naoya; Saito, Hiroki

    2011-03-01

    The dynamics of a phase-separated two-component Bose-Einstein condensate are investigated, in which a bubble of one component moves through the other component. Numerical simulations of the Gross-Pitaevskii equation reveal a variety of dynamics associated with the creation of quantized vortices. In two dimensions, a circular bubble deforms into an ellipse and splits into fragments with vortices, which undergo the Magnus effect. The Bénard-von Kármán vortex street is also generated. In three dimensions, a spherical bubble deforms into toruses with vortex rings. When two rings are formed, they exhibit leapfrogging dynamics.

  5. Three-wave interaction in two-component quadratic nonlinear lattices

    DEFF Research Database (Denmark)

    Konotop, V. V.; Cunha, M. D.; Christiansen, Peter Leth

    1999-01-01

    We investigate a two-component lattice with a quadratic nonlinearity and find with the multiple scale technique that integrable three-wave interaction takes place between plane wave solutions when these fulfill resonance conditions. We demonstrate that. energy conversion and pulse propagation known...... from three-wave interaction is reproduced in the lattice and that exact phase matching of parametric processes can be obtained in non-phase-matched lattices by tilting the interacting plane waves with respect to each other. [S1063-651X(99)15110-9]....

  6. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-09-01

    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.

  7. A hybrid two-component Bose-Einstein condensate interferometer for measuring magnetic field gradients

    Science.gov (United States)

    Xu, Fei; Huang, Jiahao; Liu, Quan

    2017-03-01

    We have proposed a scheme to detect magnetic field gradients via an interferometer based on a double-well two-component Bose-Einstein condensate (BEC). Utilizing a sequence of quantum control operations on both external and internal degree of the BEC, one can extract the magnetic field gradients by measuring either the population in one component or the fidelity between the final external state and the initial ground state. Our scheme can be implemented by current experimental techniques of manipulating ultracold atoms.

  8. Two-component colour dipole emission in the central region of onium-onium scattering

    CERN Document Server

    Peschanski, R

    1995-01-01

    The initial-state radiation of soft colour dipoles produced in the central region of onium-onium scattering via single QCD Pomeron exchange (BFKL) is calculated in the framework of Mueller's dipole approach. The resulting dipole production has a two-component structure. One is constant with energy while the other grows and possesses a power-law tail at appreciably large transverse distances from the collision axis. It may be related to the growth of the gluon distribution at small Bjorken-x.

  9. Optimization and control of two-component radially self-accelerating beams

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, Christian; Eichelkraut, Toni; Ornigotti, Marco; Szameit, Alexander [Institute of Applied Physics, Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, Albert-Einstein-Str. 15, 07745 Jena (Germany)

    2015-11-23

    We report on the properties of radially self-accelerating intensity distributions consisting of two components in the angular frequency domain. We show how this subset of solutions, in literature also known as helicon beams, possesses peculiar characteristics that enable a better control over its properties. In this work, we present a step-by-step optimization procedure to achieve the best possible intensity contrast, a distinct rotation rate and long propagation lengths. All points are discussed on a theoretical basis and are experimentally verified.

  10. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris).

    Science.gov (United States)

    Erler, Silvio; Popp, Mario; Lattorff, H Michael G

    2011-03-29

    The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT). There is a lack of immune genes in social insects (e.g. honeybees) when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals). The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP) (abaecin, defensin 1, hymenoptaecin) were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish) and JNK pathway (basket). Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the transcription

  11. Dynamics of immune system gene expression upon bacterial challenge and wounding in a social insect (Bombus terrestris.

    Directory of Open Access Journals (Sweden)

    Silvio Erler

    Full Text Available The innate immune system which helps individuals to combat pathogens comprises a set of genes representing four immune system pathways (Toll, Imd, JNK and JAK/STAT. There is a lack of immune genes in social insects (e.g. honeybees when compared to Diptera. Potentially, this might be compensated by an advanced system of social immunity (synergistic action of several individuals. The bumble bee, Bombus terrestris, is a primitively eusocial species with an annual life cycle and colonies headed by a single queen. We used this key pollinator to study the temporal dynamics of immune system gene expression in response to wounding and bacterial challenge.Antimicrobial peptides (AMP (abaecin, defensin 1, hymenoptaecin were strongly up-regulated by wounding and bacterial challenge, the latter showing a higher impact on the gene expression level. Sterile wounding down-regulated TEP A, an effector gene of the JAK/STAT pathway, and bacterial infection influenced genes of the Imd (relish and JNK pathway (basket. Relish was up-regulated within the first hour after bacterial challenge, but decreased strongly afterwards. AMP expression following wounding and bacterial challenge correlates with the expression pattern of relish whereas correlated expression with dorsal was absent. Although expression of AMPs was high, continuous bacterial growth was observed throughout the experiment.Here we demonstrate for the first time the temporal dynamics of immune system gene expression in a social insect. Wounding and bacterial challenge affected the innate immune system significantly. Induction of AMP expression due to wounding might comprise a pre-adaptation to accompanying bacterial infections. Compared with solitary species this social insect exhibits reduced immune system efficiency, as bacterial growth could not be inhibited. A negative feedback loop regulating the Imd-pathway is suggested. AMPs, the end product of the Imd-pathway, inhibited the up-regulation of the

  12. Prospects for using combined engineered bacterial enzymes and plant systems to rhizoremediate polychlorinated biphenyls.

    Science.gov (United States)

    Sylvestre, Michel

    2013-03-01

    The fate of polychlorinated biphenyls (PCBs) in soil is driven by a combination of interacting biological processes. Several investigations have brought evidence that the rhizosphere provides a remarkable ecological niche to enhance the PCB degradation process by rhizobacteria. The bacterial oxidative enzymes involved in PCB degradation have been investigated extensively and novel engineered enzymes exhibiting enhanced catalytic activities toward more persistent PCBs have been described. Furthermore, recent studies suggest that approaches involving processes based on plant-microbe associations are very promising to remediate PCB-contaminated sites. In this review emphasis will be placed on the current state of knowledge regarding the strategies that are proposed to engineer the enzymes of the PCB-degrading bacterial oxidative pathway and to design PCB-degrading plant-microbe systems to remediate PCB-contaminated soil.

  13. Modeling quorum sensing trade-offs between bacterial cell density and system extension from open boundaries

    Science.gov (United States)

    Marenda, Mattia; Zanardo, Marina; Trovato, Antonio; Seno, Flavio; Squartini, Andrea

    2016-12-01

    Bacterial communities undergo collective behavioural switches upon producing and sensing diffusible signal molecules; a mechanism referred to as Quorum Sensing (QS). Exemplarily, biofilm organic matrices are built concertedly by bacteria in several environments. QS scope in bacterial ecology has been debated for over 20 years. Different perspectives counterpose the role of density reporter for populations to that of local environment diffusivity probe for individual cells. Here we devise a model system where tubes of different heights contain matrix-embedded producers and sensors. These tubes allow non-limiting signal diffusion from one open end, thereby showing that population spatial extension away from an open boundary can be a main critical factor in QS. Experimental data, successfully recapitulated by a comprehensive mathematical model, demonstrate how tube height can overtake the role of producer density in triggering sensor activation. The biotic degradation of the signal is found to play a major role and to be species-specific and entirely feedback-independent.

  14. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model

    Energy Technology Data Exchange (ETDEWEB)

    Butlitsky, M. A.; Zelener, B. V. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Zelener, B. B. [Joint Institute for High Temperature of Russian Academy of Science, 125412, Russia, Moscow, Izhorskaya str. 13/2 (Russian Federation); Moscow Engineering Physics Institute, 115409, Russia, Moscow, Kashirskoe sh. 31 (Russian Federation)

    2014-07-14

    A two-component plasma model, which we called a “shelf Coulomb” model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The “shelf Coulomb” model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ε parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ε and γ = βe{sup 2}n{sup 1/3} (where β = 1/k{sub B}T, n is the particle's density, k{sub B} is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ε and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ε{sub crit}≈13(T{sub crit}{sup *}≈0.076),γ{sub crit}≈1.8(v{sub crit}{sup *}≈0.17),P{sub crit}{sup *}≈0.39, where specific volume v* = 1/γ{sup 3} and reduced temperature T{sup *} = ε{sup −1}.

  15. Critical point of gas-liquid type phase transition and phase equilibrium functions in developed two-component plasma model.

    Science.gov (United States)

    Butlitsky, M A; Zelener, B B; Zelener, B V

    2014-07-14

    A two-component plasma model, which we called a "shelf Coulomb" model has been developed in this work. A Monte Carlo study has been undertaken to calculate equations of state, pair distribution functions, internal energies, and other thermodynamics properties. A canonical NVT ensemble with periodic boundary conditions was used. The motivation behind the model is also discussed in this work. The "shelf Coulomb" model can be compared to classical two-component (electron-proton) model where charges with zero size interact via a classical Coulomb law. With important difference for interaction of opposite charges: electrons and protons interact via the Coulomb law for large distances between particles, while interaction potential is cut off on small distances. The cut off distance is defined by an arbitrary ɛ parameter, which depends on system temperature. All the thermodynamics properties of the model depend on dimensionless parameters ɛ and γ = βe(2)n(1/3) (where β = 1/kBT, n is the particle's density, kB is the Boltzmann constant, and T is the temperature) only. In addition, it has been shown that the virial theorem works in this model. All the calculations were carried over a wide range of dimensionless ɛ and γ parameters in order to find the phase transition region, critical point, spinodal, and binodal lines of a model system. The system is observed to undergo a first order gas-liquid type phase transition with the critical point being in the vicinity of ɛ(crit) ≈ 13(T(*)(crit) ≈ 0.076), γ(crit) ≈ 1.8(v(*)(crit) ≈ 0.17), P(*)(crit) ≈ 0.39, where specific volume v* = 1/γ(3) and reduced temperature T(*) = ɛ(-1).

  16. Characterization of the bacterial metagenome in an industrial algae bioenergy production system

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Shi [Chinese Academy of Sciences; Fulbright, Scott P [Colorado State University; Zeng, Xiaowei [Chinese Academy of Sciences; Yates, Tracy [Solix Biofuels; Wardle, Greg [Solix Biofuels; Chisholm, Stephen T [Colorado State University; Xu, Jian [Chinese Academy of Sciences; Lammers, Peter [New Mexico State University

    2011-03-16

    Cultivation of oleaginous microalgae for fuel generally requires growth of the intended species to the maximum extent supported by available light. The presence of undesired competitors, pathogens and grazers in cultivation systems will create competition for nitrate, phosphate, sulfate, iron and other micronutrients in the growth medium and potentially decrease microalgal triglyceride production by limiting microalgal health or cell density. Pathogenic bacteria may also directly impact the metabolism or survival of individual microalgal cells. Conversely, symbiotic bacteria that enhance microalgal growth may also be present in the system. Finally, the use of agricultural and municipal wastes as nutrient inputs for microalgal production systems may lead to the introduction and proliferation of human pathogens or interfere with the growth of bacteria with beneficial effects on system performance. These considerations underscore the need to understand bacterial community dynamics in microalgal production systems in order to assess microbiome effects on microalgal productivity and pathogen risks. Here we focus on the bacterial component of microalgal production systems and describe a pipeline for metagenomic characterization of bacterial diversity in industrial cultures of an oleaginous alga, Nannochloropsis salina. Environmental DNA was isolated from 12 marine algal cultures grown at Solix Biofuels, a region of the 16S rRNA gene was amplified by PCR, and 16S amplicons were sequenced using a 454 automated pyrosequencer. The approximately 70,000 sequences that passed quality control clustered into 53,950 unique sequences. The majority of sequences belonged to thirteen phyla. At the genus level, sequences from all samples represented 169 different genera. About 52.94% of all sequences could not be identified at the genus level and were classified at the next highest possible resolution level. Of all sequences, 79.92% corresponded to 169 genera and 70 other taxa. We

  17. Numerical analysis of a non equilibrium two-component two-compressible flow in porous media

    KAUST Repository

    Saad, Bilal Mohammed

    2013-09-01

    We propose and analyze a finite volume scheme to simulate a non equilibrium two components (water and hydrogen) two phase flow (liquid and gas) model. In this model, the assumption of local mass non equilibrium is ensured and thus the velocity of the mass exchange between dissolved hydrogen and hydrogen in the gas phase is supposed finite. The proposed finite volume scheme is fully implicit in time together with a phase-by-phase upwind approach in space and it is discretize the equations in their general form with gravity and capillary terms We show that the proposed scheme satisfies the maximum principle for the saturation and the concentration of the dissolved hydrogen. We establish stability results on the velocity of each phase and on the discrete gradient of the concentration. We show the convergence of a subsequence to a weak solution of the continuous equations as the size of the discretization tends to zero. At our knowledge, this is the first convergence result of finite volume scheme in the case of two component two phase compressible flow in several space dimensions.

  18. Implications of Two-component Dark Matter Induced by Forbidden Channels and Thermal Freeze-out

    CERN Document Server

    Aoki, Mayumi

    2016-01-01

    We consider a model of two-component dark matter based on a hidden $U(1)_D$ symmetry, in which relic densities of the dark matter are determined by forbidden channels and thermal freeze-out. The hidden $U(1)_D$ symmetry is spontaneously broken to a residual $\\mathbb{Z}_4$ symmetry, and the lightest $\\mathbb{Z}_4$ charged particle can be a dark matter candidate. Moreover, depending on the mass hierarchy in the dark sector, we have two-component dark matter. We show that the relic density of the lighter dark matter component can be determined by forbidden annihilation channels which require larger couplings compared to the normal freeze-out mechanism. As a result, a large self-interaction of the lighter dark matter component can be induced, which may solve small scale problems of $\\Lambda$CDM model. On the other hand, the heavier dark matter component is produced by normal freeze-out mechanism. We find that interesting implications emerge between the two dark matter components in this framework. We explore dete...

  19. Two-component model of the interaction of an interstellar cloud with surrounding hot plasma

    CERN Document Server

    Provornikova, E A; Lallement, R

    2011-01-01

    We present a two-component gasdynamic model of an interstellar cloud embedded in a hot plasma. It is assumed that the cloud consists of atomic hydrogen gas, interstellar plasma is quasineutral. Hydrogen atoms and plasma protons interact through a charge exchange process. Magnetic felds and radiative processes are ignored in the model. The influence of heat conduction within plasma on the interaction between a cloud and plasma is studied. We consider the extreme case and assume that hot plasma electrons instantly heat the plasma in the interaction region and that plasma flow can be described as isothermal. Using the two-component model of the interaction of cold neutral cloud and hot plasma, we estimate the lifetime of interstellar clouds. We focus on the clouds typical for the cluster of local interstellar clouds embedded in the hot Local Bubble and give an estimate of the lifetime of the Local interstellar cloud where the Sun currently travels. The charge transfer between highly charged plasma ions and neutr...

  20. Modeling and Simulation of Two-Phase Two-Component Flow with Disappearing Nonwetting Phase

    CERN Document Server

    Neumann, Rebecca; Ippisch, Olaf

    2012-01-01

    Carbon Capture and Storage (CCS) is a recently discussed new technology, aimed at allowing an ongoing use of fossil fuels while preventing the produced CO2 to be released to the atmosphere. CSS can be modeled with two components (water and CO2) in two phases (liquid and CO2). To simulate the process, a multiphase flow equation with equilibrium phase exchange is used. One of the big problems arising in two-phase two-component flow simulations is the disappearance of the nonwetting phase, which leads to a degeneration of the equations satisfied by the saturation. A standard choice of primary variables, which is the pressure of one phase and the saturation of the other phase, cannot be applied here. We developed a new approach using the pressure of the nonwetting phase and the capillary pressure as primary variables. One important advantage of this approach is the fact that we have only one set of primary variables that can be used for the biphasic as well as the monophasic case. We implemented this new choice o...

  1. Two-component vector solitons in defocusing Kerr-type media with spatially modulated nonlinearity

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Wei-Ping, E-mail: zhongwp6@126.com [Department of Electronic and Information Engineering, Shunde Polytechnic, Guangdong Province, Shunde 528300 (China); Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Belić, Milivoj [Texas A and M University at Qatar, P.O. Box 23874 Doha (Qatar); Institute of Physics, University of Belgrade, P.O. Box 57, 11001 Belgrade (Serbia)

    2014-12-15

    We present a class of exact solutions to the coupled (2+1)-dimensional nonlinear Schrödinger equation with spatially modulated nonlinearity and a special external potential, which describe the evolution of two-component vector solitons in defocusing Kerr-type media. We find a robust soliton solution, constructed with the help of Whittaker functions. For specific choices of the topological charge, the radial mode number and the modulation depth, the solitons may exist in various forms, such as the half-moon, necklace-ring, and sawtooth vortex-ring patterns. Our results show that the profile of such solitons can be effectively controlled by the topological charge, the radial mode number, and the modulation depth. - Highlights: • Two-component vector soliton clusters in defocusing Kerr-type media are reported. • These soliton clusters are constructed with the help of Whittaker functions. • The half-moon, necklace-ring and vortex-ring patterns are found. • The profile of these solitons can be effectively controlled by three soliton parameters.

  2. A theory of scintillation for two-component power law irregularity spectra: Overview and numerical results

    Science.gov (United States)

    Carrano, Charles S.; Rino, Charles L.

    2016-06-01

    We extend the power law phase screen theory for ionospheric scintillation to account for the case where the refractive index irregularities follow a two-component inverse power law spectrum. The two-component model includes, as special cases, an unmodified power law and a modified power law with spectral break that may assume the role of an outer scale, intermediate break scale, or inner scale. As such, it provides a framework for investigating the effects of a spectral break on the scintillation statistics. Using this spectral model, we solve the fourth moment equation governing intensity variations following propagation through two-dimensional field-aligned irregularities in the ionosphere. A specific normalization is invoked that exploits self-similar properties of the structure to achieve a universal scaling, such that different combinations of perturbation strength, propagation distance, and frequency produce the same results. The numerical algorithm is validated using new theoretical predictions for the behavior of the scintillation index and intensity correlation length under strong scatter conditions. A series of numerical experiments are conducted to investigate the morphologies of the intensity spectrum, scintillation index, and intensity correlation length as functions of the spectral indices and strength of scatter; retrieve phase screen parameters from intensity scintillation observations; explore the relative contributions to the scintillation due to large- and small-scale ionospheric structures; and quantify the conditions under which a general spectral break will influence the scintillation statistics.

  3. Detection and Identification System of Bacteria and Bacterial Endotoxin Based on Raman Spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Elsayeh

    2016-03-01

    Full Text Available Sepsis is a global health problem that causes risk of death. In the developing world, about 60 to 80 % of death cases are caused by Sepsis. Rapid methods for detecting its causes, represent one of the major factors that may reduce Sepsis risks. Such methods can provide microbial detection and identification which is critical to determine the right treatment for the patient. Microbial and Pyrogen detection is important for quality control system to ensure the absence of pathogens and Pyrogens in the manufacturing of both medical and food products. Raman spectroscopes represent a q uick and accurate identification and detection method, for bacteria and bacterial endotoxin, which this plays an important role in delivering high quality biomedical products using the power of Raman spectroscopy. It is a rapid method for chemical structure detection that can be used in identifying and classifying bacteria and bacterial endotoxin. Such a method acts as a solution for time and cost effective quality control procedures. This work presents an automatic system based on Raman spectroscopy to detect and identify bacteria and bacterial endotoxin. It uses the frequency properties of Raman scattering through the interaction between organic materials and electromagnetic waves. The scattered intensities are measured and wave number converted into frequency, then the cepstral coefficients are extracted for both the detection and identification. The methodology depends on normalization of Fourier transformed cepstral signal to extract their classification features. Experiments’ results proved effective identification and detection of bacteria and bacterial endotoxin even with concentrations as low as 0.0003 Endotoxin unit (EU/ml and 1 Colony Forming Unit (CFU/ml using signal processing based enhancement technique.

  4. Nucleic Acid-based Detection of Bacterial Pathogens Using Integrated Microfluidic Platform Systems

    Directory of Open Access Journals (Sweden)

    Carl A. Batt

    2009-05-01

    Full Text Available The advent of nucleic acid-based pathogen detection methods offers increased sensitivity and specificity over traditional microbiological techniques, driving the development of portable, integrated biosensors. The miniaturization and automation of integrated detection systems presents a significant advantage for rapid, portable field-based testing. In this review, we highlight current developments and directions in nucleic acid-based micro total analysis systems for the detection of bacterial pathogens. Recent progress in the miniaturization of microfluidic processing steps for cell capture, DNA extraction and purification, polymerase chain reaction, and product detection are detailed. Discussions include strategies and challenges for implementation of an integrated portable platform.

  5. Odd-parity superconductors with two-component order parameters: Nematic and chiral, full gap, and Majorana node

    Science.gov (United States)

    Venderbos, Jörn W. F.; Kozii, Vladyslav; Fu, Liang

    2016-11-01

    Motivated by the recent experiment indicating that superconductivity in the doped topological insulator CuxBi2Se3 has an odd-parity pairing symmetry with rotational symmetry breaking, we study the general class of odd-parity superconductors with two-component order parameters in trigonal and hexagonal crystal systems. In the presence of strong spin-orbit interaction, we find two possible superconducting phases below Tc, a time-reversal-breaking (i.e., chiral) phase and an anisotropic (i.e., nematic) phase, and determine their relative energetics from the gap function in momentum space. The nematic superconductor generally has a full quasiparticle gap, whereas the chiral superconductor with a three-dimensional (3D) Fermi surface has point nodes with lifted spin degeneracy, resulting in itinerant Majorana fermions in the bulk and topological Majorana arcs on the surface.

  6. Relatedness between the two-component lantibiotics lacticin 3147 and staphylococcin C55 based on structure, genetics and biological activity

    Directory of Open Access Journals (Sweden)

    O'Sullivan Orla

    2007-04-01

    Full Text Available Abstract Background Two component lantibiotics, such as the plasmid-encoded lacticin 3147 produced by Lactococcus lactis DPC3147 and staphylococcin C55 produced by Staphylococcus aureus C55, represent an emerging subgroup of bacteriocins. These two bacteriocins are particularly closely related, exhibiting 86% (LtnA1 and C55α and 55% (LtnA2 and C55β identity in their component peptides. The aim of this study was to investigate, for the first time for any two component bacteriocins, the significance of the relatedness between these two systems. Results So close is this relatedness that the hybrid peptide pairs LtnA1:C55β and C55α:LtnA2 were found to have activities in the single nanomolar range, comparing well with the native pairings. To determine whether this flexibility extended to the associated post-translational modification/processing machinery, the staphylococcin C55 structural genes were directly substituted for their lacticin 3147 counterparts in the ltn operon on the large conjugative lactococcal plasmid pMRC01. It was established that the lacticin LtnA1 post-translational and processing machinery could produce functionally active C55α, but not C55β. In order to investigate in closer detail the significance of the differences between LtnA1 and C55α, three residues in LtnA1 were replaced with the equivalent residues in C55α. Surprisingly, one such mutant LtnA1-Leu21Ala was not produced. This may be significant given the positioning of this residue in a putative lipid II binding loop. Conclusion It is apparent, despite sharing striking similarities in terms of structure and activity, that these two complex bacteriocins display some highly dedicated features particular to either system.

  7. Applications of the Saccharomyces cerevisiae Flp-FRT system in bacterial genetics.

    Science.gov (United States)

    Schweizer, Herbert P

    2003-01-01

    The Flp-FRT site-specific recombination system from Saccharomyces cerevisiae is a powerful and efficient tool for high-throughput genetic analysis of bacteria in the postgenomic era. This review highlights the features of the Flp-FRT system, describes current bacterial genetic methods incorporating this technology and, finally, suggests potential future uses of this system. In combination with improved allele replacement methods, recyclable FRT mutagenesis cassettes, whose antibiotic resistance markers can be excised from the chromosome in vivo, are useful for the rapid construction of multiple, unmarked mutations in the same chromosome, and thus aid in the generation of live vaccine strains or food-safe bacteria. The high-specificity of the Flp-FRT system makes it also applicable for manipulation of whole genomes, including in vivo cloning of large genomic segments. Integration-proficient vectors, from which antibiotic resistance markers and replication functions can be evicted after integration of the desired sequences into the chromosome, are useful for the construction of strains destined for environmental release, e.g. strains used as biosensors or for bioremediation. Although the Flp-FRT system is extremely efficient and easy to use, its true potential in bacterial genetics has not yet been fully exploited. On the contrary, in many instances this technology is probably greatly underutilized, especially in gram-positive bacteria.

  8. Flow Chamber System for the Statistical Evaluation of Bacterial Colonization on Materials

    Directory of Open Access Journals (Sweden)

    Friederike Menzel

    2016-09-01

    Full Text Available Biofilm formation on materials leads to high costs in industrial processes, as well as in medical applications. This fact has stimulated interest in the development of new materials with improved surfaces to reduce bacterial colonization. Standardized tests relying on statistical evidence are indispensable to evaluate the quality and safety of these new materials. We describe here a flow chamber system for biofilm cultivation under controlled conditions with a total capacity for testing up to 32 samples in parallel. In order to quantify the surface colonization, bacterial cells were DAPI (4`,6-diamidino-2-phenylindole-stained and examined with epifluorescence microscopy. More than 100 images of each sample were automatically taken and the surface coverage was estimated using the free open source software g’mic, followed by a precise statistical evaluation. Overview images of all gathered pictures were generated to dissect the colonization characteristics of the selected model organism Escherichia coli W3310 on different materials (glass and implant steel. With our approach, differences in bacterial colonization on different materials can be quantified in a statistically validated manner. This reliable test procedure will support the design of improved materials for medical, industrial, and environmental (subaquatic or subaerial applications.

  9. Prokaryotic toxin-antitoxin systems--the role in bacterial physiology and application in molecular biology.

    Science.gov (United States)

    Bukowski, Michal; Rojowska, Anna; Wladyka, Benedykt

    2011-01-01

    Bacteria have developed multiple complex mechanisms ensuring an adequate response to environmental changes. In this context, bacterial cell division and growth are subject to strict control to ensure metabolic balance and cell survival. A plethora of studies cast light on toxin-antitoxin (TA) systems as metabolism regulators acting in response to environmental stress conditions. Many of those studies suggest direct relations between the TA systems and the pathogenic potential or antibiotic resistance of relevant bacteria. Other studies point out that TA systems play a significant role in ensuring stability of mobile genetic material. The evolutionary origin and relations between various TA systems are still a subject of a debate. The impact of toxin-antitoxin systems on bacteria physiology prompted their application in molecular biology as tools allowing cloning of some hard-to-maintain genes, plasmid maintenance and production of recombinant proteins.

  10. Peptidomimetic Small Molecules Disrupt Type IV Secretion System Activity in Diverse Bacterial Pathogens

    Directory of Open Access Journals (Sweden)

    Carrie L. Shaffer

    2016-04-01

    Full Text Available Bacteria utilize complex type IV secretion systems (T4SSs to translocate diverse effector proteins or DNA into target cells. Despite the importance of T4SSs in bacterial pathogenesis, the mechanism by which these translocation machineries deliver cargo across the bacterial envelope remains poorly understood, and very few studies have investigated the use of synthetic molecules to disrupt T4SS-mediated transport. Here, we describe two synthetic small molecules (C10 and KSK85 that disrupt T4SS-dependent processes in multiple bacterial pathogens. Helicobacter pylori exploits a pilus appendage associated with the cag T4SS to inject an oncogenic effector protein (CagA and peptidoglycan into gastric epithelial cells. In H. pylori, KSK85 impedes biogenesis of the pilus appendage associated with the cag T4SS, while C10 disrupts cag T4SS activity without perturbing pilus assembly. In addition to the effects in H. pylori, we demonstrate that these compounds disrupt interbacterial DNA transfer by conjugative T4SSs in Escherichia coli and impede vir T4SS-mediated DNA delivery by Agrobacterium tumefaciens in a plant model of infection. Of note, C10 effectively disarmed dissemination of a derepressed IncF plasmid into a recipient bacterial population, thus demonstrating the potential of these compounds in mitigating the spread of antibiotic resistance determinants driven by conjugation. To our knowledge, this study is the first report of synthetic small molecules that impair delivery of both effector protein and DNA cargos by diverse T4SSs.

  11. Ori-Finder: A web-based system for finding oriCs in unannotated bacterial genomes

    Directory of Open Access Journals (Sweden)

    Zhang Chun-Ting

    2008-02-01

    Full Text Available Abstract Background Chromosomal replication is the central event in the bacterial cell cycle. Identification of replication origins (oriCs is necessary for almost all newly sequenced bacterial genomes. Given the increasing pace of genome sequencing, the current available software for predicting oriCs, however, still leaves much to be desired. Therefore, the increasing availability of genome sequences calls for improved software to identify oriCs in newly sequenced and unannotated bacterial genomes. Results We have developed Ori-Finder, an online system for finding oriCs in bacterial genomes based on an integrated method comprising the analysis of base composition asymmetry using the Z-curve method, distribution of DnaA boxes, and the occurrence of genes frequently close to oriCs. The program can also deal with unannotated genome sequences by integrating the gene-finding program ZCURVE 1.02. Output of the predicted results is exported to an HTML report, which offers convenient views on the results in both graphical and tabular formats. Conclusion A web-based system to predict replication origins of bacterial genomes has been presented here. Based on this system, oriC regions have been predicted for the bacterial genomes available in GenBank currently. It is hoped that Ori-Finder will become a useful tool for the identification and analysis of oriCs in both bacterial and archaeal genomes.

  12. SO(3,2) Structure and Distributions of Two-Component Bose-Einstein Condensates with Lower Excitations

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong-Biao

    2003-01-01

    The eigenstates describing two-component Bose-Einstein condensates (BEC) with weakly excitations have been found, by using the SO(3,2) algebraic mean-field approximation. We show that the two-component modified BEC (see Eq (26)) possesses uniquely super-Poissonian distribution in a fixcd magnetic ficld along z direction. The distribution will be uncertain, if B = 0.

  13. Output Rate of Atomic Four-Wave Mixing in Two-Component Bose-Einstein Condensate

    Institute of Scientific and Technical Information of China (English)

    LI Jia-Hua; LI Wei-Bing; PENG Ju-Cun

    2004-01-01

    In this letter, following the proposal of Heurich et al. [Phys. Rev. A63 (2001) 033605], we analyze and discuss output rate of atomic four-wave mixing in the two-component Bose-Einstein condensate under the condition of the steady state. The results show that the magnitude of the signal beam increases with the increase of the intensity of the probe beam, up to a saturated value, then it decreases as the probe beam increases. The influence of the interaction range on the signal beam is also predicted. In particular, it is worth while pointing out that in contrast to the previous solutions, our obtained analytical solutions are of very simple and explicit forms, which open the door for further investigating the related physical mechanisms.

  14. Dynamic form factor of two-component plasmas beyond the static local field approximation

    CERN Document Server

    Daligault, J

    2003-01-01

    The spectrum of ion density fluctuations in a strongly coupled plasma is described both within the static G(k, 0) and high-frequency G(k, infinity) local field approximation. By a direct comparison with molecular dynamics data, we find that for large coupling, G(k, 0) is inadequate. Based on this result, we employ the Zwanzig-Mori memory function approach to model the Thomson scattering cross section, i.e. the electron dynamic form factor S sub e sub e (k, omega) of a dense two-component plasma. We show the sensitivity of S sub e sub e (k, omega) to three approximations for G(k, omega).

  15. Histidine phosphotransfer proteins in fungal two-component signal transduction pathways.

    Science.gov (United States)

    Fassler, Jan S; West, Ann H

    2013-08-01

    The histidine phosphotransfer (HPt) protein Ypd1 is an important participant in the Saccharomyces cerevisiae multistep two-component signal transduction pathway and, unlike the expanded histidine kinase gene family, is encoded by a single gene in nearly all model and pathogenic fungi. Ypd1 is essential for viability in both S. cerevisiae and in Cryptococcus neoformans. These and other aspects of Ypd1 biology, combined with the availability of structural and mutational data in S. cerevisiae, suggest that the essential interactions between Ypd1 and response regulator domains would be a good target for antifungal drug development. The goal of this minireview is to summarize the wealth of data on S. cerevisiae Ypd1 and to consider the potential benefits of conducting related studies in pathogenic fungi.

  16. Phase diagram of two-component bosons on an optical lattice

    Energy Technology Data Exchange (ETDEWEB)

    Altman, Ehud; Hofstetter, Walter; Demler, Eugene; Lukin, Mikhail D [Department of Physics, Harvard University, Cambridge, MA 02138 (United States)

    2003-09-01

    We present a theoretical analysis of the phase diagram of two-component bosons on an optical lattice. A new formalism is developed which treats the effective spin interactions in the Mott and superfluid phases on the same footing. Using this new approach we chart the phase boundaries of the broken spin symmetry states up to the Mott to superfluid transition and beyond. Near the transition point, the magnitude of spin exchange can be very large, which facilitates the experimental realization of spin-ordered states. We find that spin and quantum fluctuations have a dramatic effect on the transition, making it first order in extended regions of the phase diagram. When each species is at integer filling, an additional phase transition may occur, from a spin-ordered insulator to a Mott insulator with no broken symmetries. We determine the phase boundaries in this regime and show that this is essentially a Mott transition in the spin sector.

  17. Feshbach P -Q partitioning technique and the two-component Dirac equation

    Science.gov (United States)

    Luo, Da-Wei; Pyshkin, P. V.; Yu, Ting; Lin, Hai-Qing; You, J. Q.; Wu, Lian-Ao

    2016-09-01

    We provide an alternative approach to relativistic dynamics based on the Feshbach projection technique. Instead of directly studying the Dirac equation, we derive a two-component equation for the upper spinor. This approach allows one to investigate the underlying physics in a different perspective. For particles with small mass such as the neutrino, the leading-order equation has a Hermitian effective Hamiltonian, implying there is no leakage between the upper and lower spinors. In the weak relativistic regime, the leading order corresponds to a non-Hermitian correction to the Pauli equation, which takes into account the nonzero possibility of finding the lower-spinor state and offers a more precise description.

  18. Images and Spectral Properties of Two Component Advective Flows Around Black Holes: Effects of Photon Bending

    CERN Document Server

    Chatterjee, Arka; Ghosh, Himadri

    2016-01-01

    Two component advective flow (TCAF) successfully explains spectral and timing properties of black hole candidates. We study the nature of photon trajectories in the vicinity of a Schwarzschild black hole and incorporate this in predicting images of TCAF with a black hole at the Centre. We also compute the emitted spectra. We employ a Monte-Carlo simulation technique to achieve our goal. For accurate prediction of the image and the spectra, null trajectories are generated without constraining the motion to any specific plane. Red shift, bolometric flux and corresponding temperature have been calculated with appropriate relativistic consideration. The centrifugal barrier dominated boundary layer or CENBOL near the inner region of the disk which acts as the Compton cloud is appropriately modelled as a thick accretion disk in Schwarzschild geometry for the purpose of imaging and computing spectra. The variations of spectra and image with physical parameters such as the accretion rate ($\\dot{m}_d$) and inclination...

  19. Preparation of two component Fibrin Glue and its clinical evaluation in skin grafts and flaps

    Directory of Open Access Journals (Sweden)

    Jain P

    2003-01-01

    Full Text Available Tissue adhesive is one of the alternative to conventional suturing and has some added advantages. Fibrin glue has been used in obtaining haemostasis following trauma to spleen and liver. It has also been used in repair of dural tear and bronchial fistula. Fibrin glue is a biological tissue adhesive based on the final stage of coagulation wherein. Thrombin acting on fibrinogen converts it into fibrin. Thus, it has two components, one is fibrinogen and another is thrombin. We have prepared both components of fibrin glue. Fibrinogen was obtained from patient's own blood and thrombin from fresh frozen plasma of screened healthy donor. The glue was used in 20 cases requiring skin graft or flap. The results were compared with conventional suturing method. Use of the fibrin glue is simple, safe, cost effective, and rapid technique to fix the skin grafts and flaps with avoidance of peroperative bleeding and postoperative collection. It also has better overall results.

  20. Energy Spectrum of Two-Component Bose-Einstein Condensates in Optical Lattices

    Institute of Scientific and Technical Information of China (English)

    HAN Jiu-Rong; LIU Jin-Ming; JING Hui; WANG Yu-Zhu

    2005-01-01

    With the method of Green's function, we investigate the energy spectra of two-component ultracold bosonic atoms in optical lattices. We find that there are two energy bands for each component. The critical condition of the superfluid-Mott insulator phase transition is determined by the energy band structure. We also find that the nearest neighboring and on-site interactions fail to change the structure of energy bands, but shift the energy bands only.According to the conditions of the phase transitions, three stable superfluid and Mott insulating phases can be found by adjusting the experiment parameters. We also discuss the possibility of observing these new phases and their transitions in further experiments.

  1. Atomic Tunneling Effect in Two-Component Bose-Einstein Condensates with a Coupling Drive

    Institute of Scientific and Technical Information of China (English)

    JIAO Zhi-Yong; YU Zhao-Xian; YANG Xin-Jian

    2004-01-01

    In this paper, we have studied the atomic population difference and the atomic tunneling current of twocomponent Bose-Einstein condensates with a coupling drive. It is found that when the two-component Bose-Einstein condensates are initially in the coherent states, the atomic population difference may exhibit the step structure, in which the numbers of the step increase with the decrease of the Rabi frequency and with the increment of the initial phase difference. The atomic population difference may exhibit collapses, and revivals, in which their periods are affected dramatically by the Rabi frequency and the initial phase difference. The atomic tunneling current may exhibit damping oscillation behaviors, and exist the step structure for the time range of 10-10 ~ 10-9 second.

  2. Two-component mixture model: Application to palm oil and exchange rate

    Science.gov (United States)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir; Hamzah, Firdaus Mohamad

    2014-12-01

    Palm oil is a seed crop which is widely adopt for food and non-food products such as cookie, vegetable oil, cosmetics, household products and others. Palm oil is majority growth in Malaysia and Indonesia. However, the demand for palm oil is getting growth and rapidly running out over the years. This phenomenal cause illegal logging of trees and destroy the natural habitat. Hence, the present paper investigates the relationship between exchange rate and palm oil price in Malaysia by using Maximum Likelihood Estimation via Newton-Raphson algorithm to fit a two components mixture model. Besides, this paper proposes a mixture of normal distribution to accommodate with asymmetry characteristics and platykurtic time series data.

  3. Research of waste dump water mutagenicity of bacterial detection system SOS chromotest.

    Science.gov (United States)

    Vojtková, H; Janáková, I

    2011-01-01

    The paper deals with a possible use of the bacterial detection system of SOS chromotest to test mutagenicity of waste dump water checking the mutagenicity degree on real samples from Praksice waste dump, which is a controlled waste dump with mixed industrial, municipal and inert wastes. The waste dump surface water samples were taken from a no-name influent stream springing below the waste dump body between 2005 and 2009. After metabolic activation by microsomal fraction in vitro, medium to high mutagenicity was registered in all the samples. The SOS chromotest is assessed as an effective and economically acceptable method to check and determine the mutagenicity degree of contaminated water.

  4. Functions of the MMR system and special roles of mutL in bacterial evolution

    Institute of Scientific and Technical Information of China (English)

    JUN GONG; RU JING JIA

    2006-01-01

    DNA mismatch repair guards the integrity of the genome of almost all organisms by correcting DNA biosynthetic errors and by ensuring the fidelity of homologous genetic recombination. MutL is one of the important proteins involved in mismatch repair system. It has been suggested to function as a master coordinator or molecular matchmaker because it interacts physically with MutS, the endonuclease MutH, and DNA helicase UvrD. It also binds to DNA and has an ATPase activity. MutL defective bacteria strains have elevated mutation rates and it has been reported recently that MutL defect may have an important impact on bacterial evolution.

  5. Investigation on bacterial community and diversity in the multilayer aquifer-aquitard system of the Pearl River Delta, China.

    Science.gov (United States)

    Liu, Kun; Jiao, Jiu Jimmy; Gu, Ji-Dong

    2014-12-01

    Bacteria play an important role in groundwater chemistry. The groundwater resource in the Pearl River Delta (PRD) is responsible for 50 million people's water requirement. High amount of ammonium, arsenic and methane had been reported in groundwater of the PRD, which was considered as the result of intensive bacterial metabolism in the multilayer aquifer-aquitard system. To investigate bacterial community in this system and its relation with groundwater chemistry, sediment and groundwater samples were taken from representative locations in the PRD at different lithological units. Bacterial 16S rRNA gene clone libraries were constructed for microbial identifications and community structures in different strata. Canonical correlation analysis between bacterial linages and environment variables (Cl(-), PO4(3-), SO4(2-), NH4(+)) showed that community structures were significantly modified by geological conditions. Higher bacterial diversity was observed in samples from the Holocene aquitard M1 and aquifer T1, while in the older aquitard M2 and basal aquifer T2, bacterial diversity was much lower. Chloroflexi, γ-proteobacteria and δ-proteobacteria were the dominant phyla in the aquitard sediment. β-proteobacteria was the dominant phylum in sediment which was strongly influenced by fresh water. The results of this study demonstrated that bacterial community contains information of geological events such as sea transgression and deltaic evolution, and microbes in the aquitards have great potential in dominating groundwater quality in aquifers.

  6. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism.

    Science.gov (United States)

    Blower, Tim R; Evans, Terry J; Przybilski, Rita; Fineran, Peter C; Salmond, George P C

    2012-01-01

    Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein-RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that "escaped" ToxIN-mediated abortive infection within Pectobacterium atrosepticum. Wild-type ΦTE encoded a short sequence similar to the repetitive nucleotide sequence of the RNA antitoxin, ToxI, from ToxIN. The ΦTE escape mutants had expanded the number of these "pseudo-ToxI" genetic repeats and, in one case, an escape phage had "hijacked" ToxI from the plasmid-borne toxIN locus, through recombination. Expression of the pseudo-ToxI repeats during ΦTE infection allowed the phage to replicate, unaffected by ToxIN, through RNA-based molecular mimicry. This is the first example of a non-coding RNA encoded by a phage that evolves by selective expansion and recombination to enable viral suppression of a defensive bacterial suicide system. Furthermore, the ΦTE escape phages had evolved enhanced capacity to transduce replicons expressing ToxIN, demonstrating virus-mediated horizontal transfer of genetic altruism.

  7. Viral evasion of a bacterial suicide system by RNA-based molecular mimicry enables infectious altruism.

    Directory of Open Access Journals (Sweden)

    Tim R Blower

    Full Text Available Abortive infection, during which an infected bacterial cell commits altruistic suicide to destroy the replicating bacteriophage and protect the clonal population, can be mediated by toxin-antitoxin systems such as the Type III protein-RNA toxin-antitoxin system, ToxIN. A flagellum-dependent bacteriophage of the Myoviridae, ΦTE, evolved rare mutants that "escaped" ToxIN-mediated abortive infection within Pectobacterium atrosepticum. Wild-type ΦTE encoded a short sequence similar to the repetitive nucleotide sequence of the RNA antitoxin, ToxI, from ToxIN. The ΦTE escape mutants had expanded the number of these "pseudo-ToxI" genetic repeats and, in one case, an escape phage had "hijacked" ToxI from the plasmid-borne toxIN locus, through recombination. Expression of the pseudo-ToxI repeats during ΦTE infection allowed the phage to replicate, unaffected by ToxIN, through RNA-based molecular mimicry. This is the first example of a non-coding RNA encoded by a phage that evolves by selective expansion and recombination to enable viral suppression of a defensive bacterial suicide system. Furthermore, the ΦTE escape phages had evolved enhanced capacity to transduce replicons expressing ToxIN, demonstrating virus-mediated horizontal transfer of genetic altruism.

  8. Burkholderia type VI secretion systems have distinct roles in eukaryotic and bacterial cell interactions.

    Directory of Open Access Journals (Sweden)

    Sandra Schwarz

    Full Text Available Bacteria that live in the environment have evolved pathways specialized to defend against eukaryotic organisms or other bacteria. In this manuscript, we systematically examined the role of the five type VI secretion systems (T6SSs of Burkholderia thailandensis (B. thai in eukaryotic and bacterial cell interactions. Consistent with phylogenetic analyses comparing the distribution of the B. thai T6SSs with well-characterized bacterial and eukaryotic cell-targeting T6SSs, we found that T6SS-5 plays a critical role in the virulence of the organism in a murine melioidosis model, while a strain lacking the other four T6SSs remained as virulent as the wild-type. The function of T6SS-5 appeared to be specialized to the host and not related to an in vivo growth defect, as ΔT6SS-5 was fully virulent in mice lacking MyD88. Next we probed the role of the five systems in interbacterial interactions. From a group of 31 diverse bacteria, we identified several organisms that competed less effectively against wild-type B. thai than a strain lacking T6SS-1 function. Inactivation of T6SS-1 renders B. thai greatly more susceptible to cell contact-induced stasis by Pseudomonas putida, Pseudomonas fluorescens and Serratia proteamaculans-leaving it 100- to 1000-fold less fit than the wild-type in competition experiments with these organisms. Flow cell biofilm assays showed that T6S-dependent interbacterial interactions are likely relevant in the environment. B. thai cells lacking T6SS-1 were rapidly displaced in mixed biofilms with P. putida, whereas wild-type cells persisted and overran the competitor. Our data show that T6SSs within a single organism can have distinct functions in eukaryotic versus bacterial cell interactions. These systems are likely to be a decisive factor in the survival of bacterial cells of one species in intimate association with those of another, such as in polymicrobial communities present both in the environment and in many infections.

  9. Expression, purification, and bioactivity of GST-fused v-Src from a bacterial expression system

    Institute of Scientific and Technical Information of China (English)

    GONG Xing-guo; JI Jing; XIE Jie; ZHOU Yuan; ZHANG Jun-yan; ZHONG Wen-tao

    2006-01-01

    v-Src is a non-receptor protein tyrosine kinase involved in many signal transduction pathways and closely related to the activation and development of cancers. We present herethe expression, purification, and bioactivity of a GST (glutathione S-transferase)-fused v-Src from a bacterial expression system. Different culture conditions were examined in an isopropyl β-D-thiogalactopyranoside (IPTG)-regulated expression, and the fused protein was purified using GSH (glutathione) affinity chromatography. ELISA (enzyme-linked immunosorbent assay) was employed to determine the phosphorylation kinase activity of the GST-fused v-Src. This strategy seems to be more promising than the insect cell system or other eukaryotic systems employed in earlier Src expression.

  10. The impact of zinc oxide nanoparticles on the bacterial microbiome of activated sludge systems

    Science.gov (United States)

    Meli, K.; Kamika, I.; Keshri, J.; Momba, M. N. B.

    2016-12-01

    The expected growth in nanomaterial applications could result in increased amounts of nanoparticles entering municipal sewer systems, eventually ending up in wastewater treatment plants and therefore negatively affecting microbial populations and biological nutrient removal. The aim of this study was to ascertain the impact of zinc oxide nanoparticles (nZnO) on the bacterial microbiome of an activated sludge system. A metagenomic approach combined with the latest generation Illumina MiSeq platform and RDP pipeline tools were used to identify and classify the bacterial microbiome of the sludge. Results revealed a drastic decrease in the number of operational taxonomic units (OTUs) from 27 737 recovered in the nZnO-free sample to 23 743, 17 733, and 13 324 OTUs in wastewater samples exposed to various concentrations of nZnO (5, 10 and 100 mg/L nZnO, respectively). These represented 12 phyla, 21 classes, 30 orders, 54 families and 51 genera, completely identified at each taxonomic level in the control samples; 7-15-25-28-20 for wastewater samples exposed to 5 mg/L nZnO; 9-15-24-31-23 for those exposed to 10 mg/L and 7-11-19-26-17 for those exposed 100 mg/L nZnO. A large number of sequences could not be assigned to specific taxa, suggesting a possibility of novel species to be discovered.

  11. Molecular Epidemiologic Typing Systems of Bacterial Pathogens: Current Issues and Perpectives

    Directory of Open Access Journals (Sweden)

    Marc J Struelens

    1998-09-01

    Full Text Available The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s ? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection. Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

  12. New strategies for combination vaccines based on the extended recombinant bacterial ghost system.

    Science.gov (United States)

    Eko, F O; Witte, A; Huter, V; Kuen, B; Fürst-Ladani, S; Haslberger, A; Katinger, A; Hensel, A; Szostak, M P; Resch, S; Mader, H; Raza, P; Brand, E; Marchart, J; Jechlinger, W; Haidinger, W; Lubitz, W

    1999-03-26

    Controlled expression of cloned PhiX174 gene E in Gram-negative bacteria results in lysis of the bacteria by formation of an E-specific transmembrane tunnel structure built through the cell envelope complex. Bacterial ghosts have been produced from a great variety of bacteria and are used as non-living candidate vaccines. In the recombinant ghost system, foreign proteins are attached on the inside of the inner membrane as fusions with specific anchor sequences. Ghosts have a sealed periplasmic space and the export of proteins into this space vastly extents the capacity of ghosts or recombinant ghosts to function as carriers of foreign antigens, immunomodulators or other substances. In addition, S-layer proteins forming shell-like self assembly structures can be expressed in bacterial candidate vaccine strains prior to E-mediated lysis. Such recombinant S-layer proteins carrying inserts of foreign epitopes of up to 600 amino acids within the flexible surface loop areas of the S-layer further extend the possibilities of ghosts as carriers of foreign epitopes. As ghosts do not need the addition of adjuvants to induce immunity in experimental animals they can also be used as carriers or targeting vehicles or as adjuvants in combination with subunit vaccines. Matrixes like dextran which can be used to fill the internal lumen of ghosts can be substituted with various ligands to bind the subunit or other materials of interest. Oral, aerogenic or parenteral immunization of experimental animals with recombinant ghosts induced specific humoral and cellular immune responses against bacterial and target components including protective mucosal immunity. The most relevant advantage of ghosts and recombinant bacterial ghosts as immunogens is that no inactivation procedures that denature relevant immunogenic determinants are employed in the production of ghosts. This fact explains the superior quality of ghosts when compared to other inactivated vaccines. As carriers of foreign

  13. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System

    KAUST Repository

    Prest, E. I.

    2016-10-28

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (<1–3.6 ng L-1), which were congruent with water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson’s correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously

  14. Long-Term Bacterial Dynamics in a Full-Scale Drinking Water Distribution System.

    Science.gov (United States)

    Prest, E I; Weissbrodt, D G; Hammes, F; van Loosdrecht, M C M; Vrouwenvelder, J S

    2016-01-01

    Large seasonal variations in microbial drinking water quality can occur in distribution networks, but are often not taken into account when evaluating results from short-term water sampling campaigns. Temporal dynamics in bacterial community characteristics were investigated during a two-year drinking water monitoring campaign in a full-scale distribution system operating without detectable disinfectant residual. A total of 368 water samples were collected on a biweekly basis at the water treatment plant (WTP) effluent and at one fixed location in the drinking water distribution network (NET). The samples were analysed for heterotrophic plate counts (HPC), Aeromonas plate counts, adenosine-tri-phosphate (ATP) concentrations, and flow cytometric (FCM) total and intact cell counts (TCC, ICC), water temperature, pH, conductivity, total organic carbon (TOC) and assimilable organic carbon (AOC). Multivariate analysis of the large dataset was performed to explore correlative trends between microbial and environmental parameters. The WTP effluent displayed considerable seasonal variations in TCC (from 90 × 103 cells mL-1 in winter time up to 455 × 103 cells mL-1 in summer time) and in bacterial ATP concentrations (water temperature variations. These fluctuations were not detected with HPC and Aeromonas counts. The water in the network was predominantly influenced by the characteristics of the WTP effluent. The increase in ICC between the WTP effluent and the network sampling location was small (34 × 103 cells mL-1 on average) compared to seasonal fluctuations in ICC in the WTP effluent. Interestingly, the extent of bacterial growth in the NET was inversely correlated to AOC concentrations in the WTP effluent (Pearson's correlation factor r = -0.35), and positively correlated with water temperature (r = 0.49). Collecting a large dataset at high frequency over a two year period enabled the characterization of previously undocumented seasonal dynamics in the distribution

  15. Two-component laser Doppler anemometer for measurement of velocity and turbulent shear stress near prosthetic heart valves.

    Science.gov (United States)

    Woo, Y R; Yoganathan, A P

    1985-01-01

    The velocity and turbulent shear stress measured in the immediate vicinity of prosthetic heart valves play a vital role in the design and evaluation of these devices. In the past hot wire/film and one-component laser Doppler anemometer (LDA) systems were used extensively to obtain these measurements. Hot wire/film anemometers, however, have some serious disadvantages, including the inability to measure the direction of the flow, the disturbance of the flow field caused by the probe, and the need for frequent calibration. One-component LDA systems do not have these problems, but they cannot measure turbulent shear stresses directly. Since these measurements are essential and are not available in the open literature, a two-component LDA system for measuring velocity and turbulent shear stress fields under pulsatile flow conditions was assembled under an FDA contract. The experimental methods used to create an in vitro data base of velocity and turbulent shear stress fields in the immediate vicinity of prosthetic heart valves of various designs in current clinical use are also discussed.

  16. The Formation of Bulges, Discs and Two Component Galaxies in the CANDELS Survey at z < 3

    CERN Document Server

    Margalef-Bentabol, Berta; Mortlock, Alice; Hartley, Will; Duncan, Kenneth; Ferguson, Harry C; Koekemoer, Anton M; Dekel, Avishai; Primack, Joel R

    2016-01-01

    We examine a sample of 1495 galaxies in the CANDELS fields to determine the evolution of two component galaxies, including bulges and discs, within massive galaxies at the epoch 1 < z < 3 when the Hubble sequence forms. We fit all of our galaxies' light profiles with a single S\\'ersic fit, as well as with a combination of exponential and S\\'ersic profiles. The latter is done in order to describe a galaxy with an inner and an outer component, or bulge and disc component. We develop and use three classification methods (visual, F-test and the RFF) to separate our sample into 1-component galaxies (disc/spheroids-like galaxies) and 2-component galaxies (galaxies formed by an 'inner part' or bulge and an 'outer part' or disc). We then compare the results from using these three different ways to classify our galaxies. We find that the fraction of galaxies selected as 2-component galaxies increases on average 50 per cent from the lowest mass bin to the most massive galaxies, and decreases with redshift by a fa...

  17. Osmotic Second Virial Coefficients of Aqueous Solutions from Two-Component Equations of State.

    Science.gov (United States)

    Cerdeiriña, Claudio A; Widom, B

    2016-12-29

    Osmotic second virial coefficients in dilute aqueous solutions of small nonpolar solutes are calculated from three different two-component equations of state. The solutes are five noble gases, four diatomics, and six hydrocarbons in the range C1-C4. The equations of state are modified versions of the van der Waals, Redlich-Kwong, and Peng-Robinson equations, with an added hydrogen-bonding term for the solvent water. The parameters in the resulting equations of state are assigned so as to reproduce the experimental values and temperature dependence of the density, vapor pressure, and compressibility of the solvent, the gas-phase second virial coefficient of the pure solute, the solubility and partial molecular volume of the solute, and earlier estimates of the solutes' molecular radii. For all 15 solutes, the calculations are done for 298.15 K, whereas for CH4, C2H6, and C3H8 in particular, they are also done as functions of temperature over the full range 278.15-348.15 K. The calculated osmotic virial coefficients are compared with earlier calculations of these coefficients for these solutes and also with the results derived from earlier computer simulations of model aqueous solutions of methane. They are also compared with the experimental gas-phase second virial coefficients of the pure gaseous solutes to determine the effect the mediation of the solvent has on the resulting solute-solute interactions in the solution.

  18. Adhesion-induced phase behavior of two-component membranes and vesicles.

    Science.gov (United States)

    Rouhiparkouhi, Tahereh; Weikl, Thomas R; Discher, Dennis E; Lipowsky, Reinhard

    2013-01-22

    The interplay of adhesion and phase separation is studied theoretically for two-component membranes that can phase separate into two fluid phases such as liquid-ordered and liquid-disordered phases. Many adhesion geometries provide two different environments for these membranes and then partition the membranes into two segments that differ in their composition. Examples are provided by adhering vesicles, by hole- or pore-spanning membranes, and by membranes supported by chemically patterned surfaces. Generalizing a lattice model for binary mixtures to these adhesion geometries, we show that the phase behavior of the adhering membranes depends, apart from composition and temperature, on two additional parameters, the area fraction of one membrane segment and the affinity contrast between the two segments. For the generic case of non-vanishing affinity contrast, the adhering membranes undergo two distinct phase transitions and the phase diagrams in the composition/temperature plane have a generic topology that consists of two two-phase coexistence regions separated by an intermediate one-phase region. As a consequence, phase separation and domain formation is predicted to occur separately in each of the two membrane segments but not in both segments simultaneously. Furthermore, adhesion is also predicted to suppress the phase separation process for certain regions of the phase diagrams. These generic features of the adhesion-induced phase behavior are accessible to experiment.

  19. ACOUSTIC WAVES EMISSION IN THE TWO-COMPONENT HEREDITARY-ELASTIC MEDIUM

    Directory of Open Access Journals (Sweden)

    V. S. Polenov

    2014-01-01

    Full Text Available Summary. On the dynamics of two-component media a number of papers, which address the elastic waves in a homogeneous, unbounded fluid-saturated porous medium. In other studies address issues of dissipative processes in harmonic deformation hereditary elastic medium. In the article the dissipative processes of the viscoelastic porous medium, which hereditary properties are described by the core relaxation fractional exponential function U.N. Rabotnova integro-differential Boltzmann-Volterr ratio, harmonic deformation by the straining saturated incompressible liquid are investigated. Speed of wave propagation, absorption coefficient, mechanical loss tangent, logarithmic decrement, depending on fractional parameter γ, determining formulas received. The frequency logarithm and temperature graph dependences with the goal fractional parameter are constructed. Shows the dependences velocity and attenuation coefficient of the tangent of the phase angle of the logarithm of the temperature, and the dependence of the attenuation coefficient of the logarithm of the frequency. Dependencies the speed and the tangent of the phase angle of the frequency identical function of the logarithm of temperature.

  20. Monte Carlo simulations of two-component drop growth by stochastic coalescence

    Science.gov (United States)

    Alfonso, L.; Raga, G. B.; Baumgardner, D.

    2009-02-01

    The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976) for chemical reactions in the formulation proposed by Laurenzi et al. (2002) was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975) and Golovin (1963) and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum) and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.

  1. Monte Carlo simulations of two-component drop growth by stochastic coalescence

    Directory of Open Access Journals (Sweden)

    L. Alfonso

    2009-02-01

    Full Text Available The evolution of two-dimensional drop distributions is simulated in this study using a Monte Carlo method. The stochastic algorithm of Gillespie (1976 for chemical reactions in the formulation proposed by Laurenzi et al. (2002 was used to simulate the kinetic behavior of the drop population. Within this framework, species are defined as droplets of specific size and aerosol composition. The performance of the algorithm was checked by a comparison with the analytical solutions found by Lushnikov (1975 and Golovin (1963 and with finite difference solutions of the two-component kinetic collection equation obtained for the Golovin (sum and hydrodynamic kernels. Very good agreement was observed between the Monte Carlo simulations and the analytical and numerical solutions. A simulation for realistic initial conditions is presented for the hydrodynamic kernel. As expected, the aerosol mass is shifted from small to large particles due to collection process. This algorithm could be extended to incorporate various properties of clouds such several crystals habits, different types of soluble CCN, particle charging and drop breakup.

  2. Photonic band-gap properties for two-component slow light

    CERN Document Server

    Ruseckas, J; Juzeliunas, G; Unanyan, R G; Otterbach, J; Fleischhauer, M

    2011-01-01

    We consider two-component "spinor" slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light tunnels through the sample. For frequencies outside the band gap, the transmission probability oscillates with increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali atoms such as Rubidium or Sodium.

  3. A feasibility study of using two-component polyurethane adhesive in constructing wooden structures

    Institute of Scientific and Technical Information of China (English)

    Mohammad Derikvand; Ghanbar Ebrahimi; Mehdi Tajvidi

    2014-01-01

    This investigation was conducted to determine the feasibility of using a two-component polyurethane (PUR) adhesive, with special waterproof properties, in constructing wooden structures. We designed and conducted tests to compare the shear strength and adhesion per-formance of PUR with polyvinyl acetate (PVAc) adhesive on block-shear specimens constructed of oriental beech (Fagus orientalis L.), fir (Abies alba Mill.), poplar (Populus deltoides Bartr.), white oak (Quercus alba L.), sycamore (Platanus orientalis L.) and white walnut (Juglans cinerea L.). The values of the percentage of wood failure were also determined in specimens constructed with each adhesive. The highest shear strength values of both adhesives were obtained in specimens constructed of beech, while the lowest shear strength values were obtained in fir and poplar specimens. Average shear strength of the PUR adhesive was 16.5%higher than that of the PVAc adhesive. Specimens constructed of fir, poplar and sycamore were characterised by the highest percentages of wood failure, whereas the lowest average percentages of wood failure were obtained in beech and oak specimens. With the exception of oak specimens, there was no statistically significant difference between per-centage of wood failure among the PUR and PVAc adhesives. Generally, the PUR adhesive showed an acceptable adhesion performance on wood materials used in our study.

  4. Rotational properties of two-component Bose gases in the lowest Landau level

    Science.gov (United States)

    Meyer, Marius; Sreejith, Ganesh Jaya; Viefers, Susanne

    2015-03-01

    We study the rotational (yrast) spectra of dilute two-component atomic Bose gases in the low angular momentum regime, assuming equal interspecies and intraspecies interaction. Our analysis employs the composite fermion (CF) approach including a pseudospin degree of freedom. While the CF approach is not a priori expected to work well in this angular momentum regime, we show that composite fermion diagonalization gives remarkably accurate approximations to low energy states in the spectra. For angular momenta 0 = N), we find that the CF states span the full Hilbert space and provide a convenient set of basis states which, by construction, are eigenstates of the symmetries of the Hamiltonian. Within this CF basis, we identify a subset of the basis states with the lowest Λ-level kinetic energy. Diagonalization within this significally smaller subspace constitutes a major computational simplification and provides very close approximations to ground states and a number of low-lying states within each pseudospin and angular momentum channel. This work was financially supported by the Research Council of Norway and by NORDITA.

  5. Modular microfluidic system fabricated in thermoplastics for the strain-specific detection of bacterial pathogens.

    Science.gov (United States)

    Chen, Yi-Wen; Wang, Hong; Hupert, Mateusz; Witek, Makgorzata; Dharmasiri, Udara; Pingle, Maneesh R; Barany, Francis; Soper, Steven A

    2012-09-21

    The recent outbreaks of a lethal E. coli strain in Germany have aroused renewed interest in developing rapid, specific and accurate systems for detecting and characterizing bacterial pathogens in suspected contaminated food and/or water supplies. To address this need, we have designed, fabricated and tested an integrated modular-based microfluidic system and the accompanying assay for the strain-specific identification of bacterial pathogens. The system can carry out the entire molecular processing pipeline in a single disposable fluidic cartridge and detect single nucleotide variations in selected genes to allow for the identification of the bacterial species, even its strain with high specificity. The unique aspect of this fluidic cartridge is its modular format with task-specific modules interconnected to a fluidic motherboard to permit the selection of the target material. In addition, to minimize the amount of finishing steps for assembling the fluidic cartridge, many of the functional components were produced during the polymer molding step used to create the fluidic network. The operation of the cartridge was provided by electronic, mechanical, optical and hydraulic controls located off-chip and packaged into a small footprint instrument (1 ft(3)). The fluidic cartridge was capable of performing cell enrichment, cell lysis, solid-phase extraction (SPE) of genomic DNA, continuous flow (CF) PCR, CF ligase detection reaction (LDR) and universal DNA array readout. The cartridge was comprised of modules situated on a fluidic motherboard; the motherboard was made from polycarbonate, PC, and used for cell lysis, SPE, CF PCR and CF LDR. The modules were task-specific units and performed universal zip-code array readout or affinity enrichment of the target cells with both made from poly(methylmethacrylate), PMMA. Two genes, uidA and sipB/C, were used to discriminate between E. coli and Salmonella, and evaluated as a model system. Results showed that the fluidic

  6. Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota

    Directory of Open Access Journals (Sweden)

    Mark K. Ashby

    2006-01-01

    Full Text Available The publicly available annotated archaeal genome sequences (23 complete and three partial annotations, October 2005 were searched for the presence of potential two-component open reading frames (ORFs using gene category lists and BLASTP. A total of 489 potential two-component genes were identified from the gene category lists and BLASTP. Two-component genes were found in 14 of the 21 Euryarchaeal sequences (October 2005 and in neither the Crenarchaeota nor the Nanoarchaeota. A total of 20 predicted protein domains were identified in the putative two-component ORFs that, in addition to the histidine kinase and receiver domains, also includes sensor and signalling domains. The detailed structure of these putative proteins is shown, as is the distribution of each class of two-component genes in each species. Potential members of orthologous groups have been identified, as have any potential operons containing two or more two-component genes. The number of two-component genes in those Euryarchaeal species which have them seems to be linked more to lifestyle and habitat than to genome complexity, with most examples being found in Methanospirillum hungatei, Haloarcula marismortui, Methanococcoides burtonii and the mesophilic Methanosarcinales group. The large numbers of two-component genes in these species may reflect a greater requirement for internal regulation. Phylogenetic analysis of orthologous groups of five different protein classes, three probably involved in regulating taxis, suggests that most of these ORFs have been inherited vertically from an ancestral Euryarchaeal species and point to a limited number of key horizontal gene transfer events.

  7. Effects of external magnetic trap on two dark solitons of a two-component Bose-Einstein condensate

    Institute of Scientific and Technical Information of China (English)

    Hong Li; D. N. Wang

    2008-01-01

    Two dark solitons are considered in a two-component Bose-Einstein condensate with an external magnetic trap, and effects of the trap potential on their dynamics are investigated by the numerical simulation. The results show that the dark solitons attract, collide and repel periodically in two components as time changes, the time period depends strictly on the initial condition and the potential, and there are obvious self-trapping effects on the two dark solitons.

  8. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Science.gov (United States)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar; Grunwald, Ingo

    2013-05-01

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  9. Functionalization of PDMS modified and plasma activated two-component polyurethane coatings by surface attachment of enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Kreider, Alexej; Richter, Katharina; Sell, Stephan; Fenske, Mandus; Tornow, Christian; Stenzel, Volkmar [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany); Grunwald, Ingo, E-mail: ingo.grunwald@ifam.fraunhofer.de [Fraunhofer Institute for Manufacturing Technology and Advanced Materials - IFAM, Wiener Strasse 12, 28359 Bremen (Germany)

    2013-05-15

    This article describes a new strategy for coupling the enzyme horseradish peroxidase to a two-component polyurethane (2C-PUR) coating. A stable polymer conjugate was achieved by combining the enzyme and the 2C-PUR coating which was modified with poly(dimethylsiloxane) (PDMS), located at the surface. An atmospheric pressure plasma jet system was used to convert alkyl groups from the PDMS into polar silanol functionalities. This conversion was proven by X-ray photoelectron spectroscopy and dynamic contact angle measurements. In addition, the stability of the activated 2C-PUR surface containing silanol groups was determined by measuring the contact angle as a function of time. Compared to the non-modified 2C-PUR systems the one with PDMS displayed a higher stability over a time period over 28 h. In a silanization process the coating was treated with (3-aminopropyl) trimethoxysilane and the enzyme was subsequently immobilized to the coating via the cross linker glutaraldehyde to receive new biomimetic catalytic/enzymatic functions. The chemical immobilization (chemisorption) of the enzyme to the surface showed statistically significant higher biological activity as compared to references samples without using a cross linker (physisorption). The presented technique offers the opportunity to design new and smart multifunctional surface coatings which employ biomimetic capabilities.

  10. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens.

    Science.gov (United States)

    López Hernández, Yamilé; Yero, Daniel; Pinos-Rodríguez, Juan M; Gibert, Isidre

    2015-01-01

    Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  11. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Yamilé eLópez Hernández

    2015-02-01

    Full Text Available Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as a valuate tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio, and non-vertebrate insects and nematodes (e.g. Caenorhabditis elegans in the study of diverse infectious agents that affect humans. Here we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favour of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.

  12. A two-component generalization of the reduced Ostrovsky equation and its integrable semi-discrete analogue

    Science.gov (United States)

    Feng, Bao-Feng; Maruno, Ken-ichi; Ohta, Yasuhiro

    2017-02-01

    In the present paper, we propose a two-component generalization of the reduced Ostrovsky (Vakhnenko) equation, whose differential form can be viewed as the short-wave limit of a two-component Degasperis-Procesi (DP) equation. They are integrable due to the existence of Lax pairs. Moreover, we have shown that the two-component reduced Ostrovsky equation can be reduced from an extended BKP hierarchy with negative flow through a pseudo 3-reduction and a hodograph (reciprocal) transform. As a by-product, its bilinear form and N-soliton solution in terms of pfaffians are presented. One- and two-soliton solutions are provided and analyzed. In the second part of the paper, we start with a modified BKP hierarchy, which is a Bäcklund transformation of the above extended BKP hierarchy, an integrable semi-discrete analogue of the two-component reduced Ostrovsky equation is constructed by defining an appropriate discrete hodograph transform and dependent variable transformations. In particular, the backward difference form of above semi-discrete two-component reduced Ostrovsky equation gives rise to the integrable semi-discretization of the short wave limit of a two-component DP equation. Their N-soliton solutions in terms of pffafians are also provided.

  13. Large-scale Models Reveal the Two-component Mechanics of Striated Muscle

    Directory of Open Access Journals (Sweden)

    Robert Jarosch

    2008-12-01

    Full Text Available This paper provides a comprehensive explanation of striated muscle mechanics and contraction on the basis of filament rotations. Helical proteins, particularly the coiled-coils of tropomyosin, myosin and α-actinin, shorten their H-bonds cooperatively and produce torque and filament rotations when the Coulombic net-charge repulsion of their highly charged side-chains is diminished by interaction with ions. The classical “two-component model” of active muscle differentiated a “contractile component” which stretches the “series elastic component” during force production. The contractile components are the helically shaped thin filaments of muscle that shorten the sarcomeres by clockwise drilling into the myosin cross-bridges with torque decrease (= force-deficit. Muscle stretch means drawing out the thin filament helices off the cross-bridges under passive counterclockwise rotation with torque increase (= stretch activation. Since each thin filament is anchored by four elastic α-actinin Z-filaments (provided with forceregulating sites for Ca2+ binding, the thin filament rotations change the torsional twist of the four Z-filaments as the “series elastic components”. Large scale models simulate the changes of structure and force in the Z-band by the different Z-filament twisting stages A, B, C, D, E, F and G. Stage D corresponds to the isometric state. The basic phenomena of muscle physiology, i. e. latency relaxation, Fenn-effect, the force-velocity relation, the length-tension relation, unexplained energy, shortening heat, the Huxley-Simmons phases, etc. are explained and interpreted with the help of the model experiments.

  14. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Lan, E-mail: chenglanster@gmail.com [Institute for Theoretical Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712 (United States); Gauss, Jürgen, E-mail: gauss@uni-mainz.de [Institut für Physikalische Chemie, Universität Mainz, D-55099 Mainz (Germany)

    2014-10-28

    This work deals with the perturbative treatment of spin-orbit-coupling (SOC) effects within the spin-free exact two-component theory in its one-electron variant (SFX2C-1e). We investigate two schemes for constructing the SFX2C-1e SOC matrix: the SFX2C-1e+SOC [der] scheme defines the SOC matrix elements based on SFX2C-1e analytic-derivative theory, hereby treating the SOC integrals as the perturbation; the SFX2C-1e+SOC [fd] scheme takes the difference between the X2C-1e and SFX2C-1e Hamiltonian matrices as the SOC perturbation. Furthermore, a mean-field approach in the SFX2C-1e framework is formulated and implemented to efficiently include two-electron SOC effects. Systematic approximations to the two-electron SOC integrals are also proposed and carefully assessed. Based on benchmark calculations of the second-order SOC corrections to the energies and electrical properties for a set of diatomic molecules, we show that the SFX2C-1e+SOC [der] scheme performs very well in the computation of perturbative SOC corrections and that the “2eSL” scheme, which neglects the (SS|SS)-type two-electron SOC integrals, is both efficient and accurate. In contrast, the SFX2C-1e+SOC [fd] scheme turns out to be incompatible with a perturbative treatment of SOC effects. Finally, as a first chemical application, we report high-accuracy calculations of the {sup 201}Hg quadrupole-coupling parameters of the recently characterized ethylmercury hydride (HHgCH{sub 2}CH{sub 3}) molecule based on SFX2C-1e coupled-cluster calculations augmented with second-order SOC corrections obtained at the Hartree-Fock level using the SFX2C-1e+SOC [der]/2eSL scheme.

  15. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    Science.gov (United States)

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  16. Two-component relativistic density-functional calculations of the dimers of the halogens from bromine through element 117 using effective core potential and all-electron methods.

    Science.gov (United States)

    Mitin, Alexander V; van Wüllen, Christoph

    2006-02-14

    A two-component quasirelativistic Hamiltonian based on spin-dependent effective core potentials is used to calculate ionization energies and electron affinities of the heavy halogen atom bromine through the superheavy element 117 (eka-astatine) as well as spectroscopic constants of the homonuclear dimers of these atoms. We describe a two-component Hartree-Fock and density-functional program that treats spin-orbit coupling self-consistently within the orbital optimization procedure. A comparison with results from high-order Douglas-Kroll calculations--for the superheavy systems also with zeroth-order regular approximation and four-component Dirac results--demonstrates the validity of the pseudopotential approximation. The density-functional (but not the Hartree-Fock) results show very satisfactory agreement with theoretical coupled cluster as well as experimental data where available, such that the theoretical results can serve as an estimate for the hitherto unknown properties of astatine, element 117, and their dimers.

  17. Identification of Bacterial Community Composition in Freshwater Aquaculture System Farming of Litopenaeus vannamei Reveals Distinct Temperature-Driven Patterns

    Directory of Open Access Journals (Sweden)

    Yuyi Tang

    2014-08-01

    Full Text Available Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL. Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT and at lower (WLT temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  18. Identification of bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei reveals distinct temperature-driven patterns.

    Science.gov (United States)

    Tang, Yuyi; Tao, Peiying; Tan, Jianguo; Mu, Haizhen; Peng, Li; Yang, Dandan; Tong, Shilu; Chen, Lanming

    2014-08-07

    Change in temperature is often a major environmental factor in triggering waterborne disease outbreaks. Previous research has revealed temporal and spatial patterns of bacterial population in several aquatic ecosystems. To date, very little information is available on aquaculture environment. Here, we assessed environmental temperature effects on bacterial community composition in freshwater aquaculture system farming of Litopenaeus vannamei (FASFL). Water samples were collected over a one-year period, and aquatic bacteria were characterized by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) and 16S rDNA pyrosequencing. Resulting DGGE fingerprints revealed a specific and dynamic bacterial population structure with considerable variation over the seasonal change, suggesting that environmental temperature was a key driver of bacterial population in the FASFL. Pyrosequencing data further demonstrated substantial difference in bacterial community composition between the water at higher (WHT) and at lower (WLT) temperatures in the FASFL. Actinobacteria, Proteobacteria and Bacteroidetes were the highest abundant phyla in the FASFL, however, a large number of unclassified bacteria contributed the most to the observed variation in phylogenetic diversity. The WHT harbored remarkably higher diversity and richness in bacterial composition at genus and species levels when compared to the WLT. Some potential pathogenenic species were identified in both WHT and WLT, providing data in support of aquatic animal health management in the aquaculture industry.

  19. Impact of well intake systems on bacterial, algae, and organic carbon reduction in SWRO desalination systems, SAWACO, Jeddah, Saudi Arabia

    KAUST Repository

    Dehwah, Abdullah

    2014-07-18

    The intake system can play a significant role in improving the feed water quality and ultimately influence the performance of downstream components of the seawater reverse osmosis desalination processes. In most cases, open-ocean intakes produce poor feed water quality in terms of the abundance of naturally occurring organic matter, which increases the risk of membrane fouling. An alternative intake is the subsurface system, which is based on the riverbank filtration concept that provides natural filtration and biological treatment of the feed water prior to the entry of the water into the desalination plant. The use of subsurface intakes normally improves the raw water quality by reducing suspended solids, algae, bacterial, and dissolved organic carbon concentrations. Therefore, the risk of biofouling caused by these substances can be reduced by implementing the appropriate type of intake system. The use of well intake systems was investigated along the Red Sea shoreline of Saudi Arabia in the Jeddah region. Data were collected from a seawater reverse osmosis (SWRO) plant with a capacity of 10,000 m3/d. The well system produces feed water from an artificial-fill peninsula that was constructed atop of the seabed. Ten wells have been constructed on the peninsula for extracting raw seawater. Water samples were collected from nearby surface seawater as a reference and from selected individual wells. The percentage of algae and bacterial removal by induced filtration process was evaluated by comparison of the seawater concentrations with the well discharges. Transparent exopolymer particles and organic carbon fractions reduction was also measured. The quality of raw water extracted from the well systems was highly improved compared with the raw seawater source. It was observed that algae were virtually 100% removed and the bacterial concentration was significantly removed by the aquifer matrix. The detailed analysis of organic carbon fraction using liquid

  20. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

    Science.gov (United States)

    Gong, Shiaoching; Zheng, Chen; Doughty, Martin L; Losos, Kasia; Didkovsky, Nicholas; Schambra, Uta B; Nowak, Norma J; Joyner, Alexandra; Leblanc, Gabrielle; Hatten, Mary E; Heintz, Nathaniel

    2003-10-30

    The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.