WorldWideScience

Sample records for bacterial transmembrane histidine

  1. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based dru

  2. New Class of Competitive Inhibitor of Bacterial Histidine Kinases

    OpenAIRE

    Gilmour, Raymond; Foster, J. Estelle; Sheng, Qin; McClain, Jonathan R.; Riley, Anna; Sun, Pei-Ming; Ng, Wai-Leung; Yan, Dalai; Nicas, Thalia I.; Henry, Kenneth; Winkler, Malcolm E.

    2005-01-01

    Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a s...

  3. Assembly of the transmembrane domain of E. coli PhoQ histidine kinase: implications for signal transduction from molecular simulations.

    Directory of Open Access Journals (Sweden)

    Thomas Lemmin

    Full Text Available The PhoQP two-component system is a signaling complex essential for bacterial virulence and cationic antimicrobial peptide resistance. PhoQ is the histidine kinase chemoreceptor of this tandem machine and assembles in a homodimer conformation spanning the bacterial inner membrane. Currently, a full understanding of the PhoQ signal transduction is hindered by the lack of a complete atomistic structure. In this study, an atomistic model of the key transmembrane (TM domain is assembled by using molecular simulations, guided by experimental cross-linking data. The formation of a polar pocket involving Asn202 in the lumen of the tetrameric TM bundle is crucial for the assembly and solvation of the domain. Moreover, a concerted displacement of the TM helices at the periplasmic side is found to modulate a rotation at the cytoplasmic end, supporting the transduction of the chemical signal through a combination of scissoring and rotational movement of the TM helices.

  4. New insight into transmembrane topology of Staphylococcus aureus histidine kinase AgrC.

    Science.gov (United States)

    Wang, Lina; Quan, Chunshan; Xiong, Wen; Qu, Xiaojing; Fan, Shengdi; Hu, Wenzhong

    2014-03-01

    Staphylococcus aureus accessory gene regulator (agr) locus controls the expression of virulence factors through a classical two-component signal transduction system that consists of a receptor histidine protein kinase AgrC and a cytoplasmic response regulator AgrA. An autoinducing peptide (AIP) encoded by agr locus activates AgrC, which transduces extracellular signals into the cytoplasm. Despite extensive investigations to identify AgrC-AIP interaction sites, precise signal recognition mechanisms remain unknown. This study aims to clarify the membrane topology of AgrC by applying the green fluorescent protein (GFP) fusion technique and the substituted cysteine accessibility method (SCAM). However, our findings were inconsistent with profile obtained previously by alkaline phosphatase. We report the topology of AgrC shows seven transmembrane segments, a periplasmic N-terminus, and a cytoplasmic C-terminus. PMID:24361366

  5. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes.

    Science.gov (United States)

    van Dam, Vincent; Sijbrandi, Robert; Kol, Matthijs; Swiezewska, Ewa; de Kruijff, Ben; Breukink, Eefjan

    2007-05-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced by the presence of single spanning helical transmembrane peptides that facilitate transbilayer movement of membrane phospholipids. MurG catalysed synthesis of Lipid II from Lipid I in lipid vesicles also did not result in membrane translocation of Lipid II. These findings demonstrate that a specialized protein machinery is needed for transmembrane movement of Lipid II. In line with this, we could demonstrate Lipid II translocation in isolated Escherichia coli inner membrane vesicles and this transport could be uncoupled from the synthesis of Lipid II at low temperatures. The transport process appeared to be independent from an energy source (ATP or proton motive force). Additionally, our studies indicate that translocation of Lipid II is coupled to transglycosylation activity on the periplasmic side of the inner membrane. PMID:17501931

  6. Cell fate regulation governed by a repurposed bacterial histidine kinase.

    Directory of Open Access Journals (Sweden)

    W Seth Childers

    2014-10-01

    Full Text Available One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.

  7. Transmembrane Signaling Characterized in Bacterial Chemoreceptors by Using Sulfhydryl Cross-Linking in vivo

    Science.gov (United States)

    Lee, Geoffrey F.; Lebert, Michael R.; Lilly, Angela A.; Hazelbauer, Gerald L.

    1995-04-01

    Transmembrane signaling by bacterial chemoreceptors is thought to involve conformational changes within a stable homodimer. We investigated the functional consequences of constraining movement between pairs of helices in the four-helix structure of the transmembrane domain of chemoreceptor Trg. Using a family of cysteine-containing receptors, we identified oxidation treatments for intact cells that catalyzed essentially complete sulfhydryl cross-linking at selected positions and yet left flagellar and sensory functions largely unperturbed. Constraining movement by cross-links between subunits had little effect on tactic response, but constraining movement between transmembrane segments of the monomer drastically reduced function. We deduce that transmembrane signaling requires substantial movement between transmembrane helices of a monomer but not between interacting helices across the interface between subunits.

  8. Transmembrane transport of peptidoglycan precursors across model and bacterial membranes

    NARCIS (Netherlands)

    van Dam, V.; Sijbrandi, R.; Kol, M.A.; Swiezewska, E.; de Kruijff, B.; Breukink, E.J.

    2007-01-01

    Translocation of the peptidoglycan precursor Lipid II across the cytoplasmic membrane is a key step in bacterial cell wall synthesis, but hardly understood. Using NBD-labelled Lipid II, we showed by fluorescence and TLC assays that Lipid II transport does not occur spontaneously and is not induced b

  9. Transmembrane helix dynamics of bacterial chemoreceptors supports a piston model of signalling.

    Directory of Open Access Journals (Sweden)

    Benjamin A Hall

    2011-10-01

    Full Text Available Transmembrane α-helices play a key role in many receptors, transmitting a signal from one side to the other of the lipid bilayer membrane. Bacterial chemoreceptors are one of the best studied such systems, with a wealth of biophysical and mutational data indicating a key role for the TM2 helix in signalling. In particular, aromatic (Trp and Tyr and basic (Arg residues help to lock α-helices into a membrane. Mutants in TM2 of E. coli Tar and related chemoreceptors involving these residues implicate changes in helix location and/or orientation in signalling. We have investigated the detailed structural basis of this via high throughput coarse-grained molecular dynamics (CG-MD of Tar TM2 and its mutants in lipid bilayers. We focus on the position (shift and orientation (tilt, rotation of TM2 relative to the bilayer and how these are perturbed in mutants relative to the wildtype. The simulations reveal a clear correlation between small (ca. 1.5 Å shift in position of TM2 along the bilayer normal and downstream changes in signalling activity. Weaker correlations are seen with helix tilt, and little/none between signalling and helix twist. This analysis of relatively subtle changes was only possible because the high throughput simulation method allowed us to run large (n = 100 ensembles for substantial numbers of different helix sequences, amounting to ca. 2000 simulations in total. Overall, this analysis supports a swinging-piston model of transmembrane signalling by Tar and related chemoreceptors.

  10. Identification of novel bacterial histidine biosynthesis inhibitors using docking, ensemble rescoring, and whole-cell assays

    DEFF Research Database (Denmark)

    Henriksen, Signe Teuber; Liu, J.; Estiu, G.;

    2010-01-01

    The rapid spread on multidrug-resistant strains of Staphylococcus aureus requires not just novel treatment options, but the development of faster methods for the identification of new hits for drug development. The exponentially increasing speed of computational methods makes a more extensive use...... in the early stages of drug discovery attractive if sufficient accuracy can be achieved. Computational target identification using systems-level methods suggested the histidine biosynthesis pathway as an attractive target against S. aureus. Potential inhibitors for the pathway were identified through docking...

  11. Generation of a Proton Motive Force by Histidine Decarboxylation and Electrogenic Histidine/Histamine Antiport in Lactobacillus buchneri

    OpenAIRE

    Molenaar, Douwe; Bosscher, Jaap S.; Brink, Bart ten; Arnold J M Driessen; Konings, Wil N.

    1993-01-01

    Lactobaciflus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (Δψ), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate that histi...

  12. Generation of a proton motive force by histidine decarboxylation and electrogenic histidine/histamine antiport in Lactobacillus buchneri.

    OpenAIRE

    Molenaar, D; Bosscher, J S; ten Brink, B.; Driessen, A J; Konings, W N

    1993-01-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (delta psi), inside negative, upon addition of histidine. Studies of the mechanism of histidine uptake and histamine excretion in membrane vesicles and proteoliposomes devoid of cytosolic histidine decarboxylase activity demonstrate tha...

  13. THE TRANSMEMBRANE SIGNAL TRANSDUCTION IN HEp-2 CELLS INDUCED BY BACTERIAL ADHERENCE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ In order to understand the role of transmembrane signal transduction of host cells in the early steps of infection,the adherence of E. coli to HEp-2 cells and the change of activity of phospholipase C-γ (PLC-γ) induced by the adherence were investigated.The adherence of enteropathogenic E.coli (EPEC), strain E.7, induced a significant increase of inositol-triphosphat (IP-3) level in HEp-2 cells. The adherence of the bacteria and the increase of IP-3 was kinetically correlated. Whereas the increase of IP3 level induced by the adherence of the control strain EPEC (H511), a non-piliated strain, was much meager than that by E7, a piliated strain. The results highlighted an important role of transmembrane signals like IP-3 in the pathogenesis of EPEC.

  14. Uncovering the Transmembrane Metal Binding Site of the Novel Bacterial Major Facilitator Superfamily-Type Copper Importer CcoA

    Directory of Open Access Journals (Sweden)

    Bahia Khalfaoui-Hassani

    2016-01-01

    Full Text Available Uptake and trafficking of metals and their delivery to their respective metalloproteins are important processes. Cells need precise control of each step to avoid exposure to excessive metal concentrations and their harmful consequences. Copper (Cu is a required micronutrient used as a cofactor in proteins. However, in large amounts, it can induce oxidative damage; hence, Cu homeostasis is indispensable for cell survival. Biogenesis of respiratory heme-Cu oxygen (HCO reductases includes insertion of Cu into their catalytic subunits to form heme-Cu binuclear centers. Previously, we had shown that CcoA is a major facilitator superfamily (MFS-type bacterial Cu importer required for biogenesis of cbb3-type cytochrome c oxidase (cbb3-Cox. Here, using Rhodobacter capsulatus, we focused on the import and delivery of Cu to cbb3-Cox. By comparing the CcoA amino acid sequence with its homologues from other bacterial species, we located several well-conserved Met, His, and Tyr residues that might be important for Cu transport. We determined the topology of the transmembrane helices that carry these residues to establish that they are membrane embedded, and substituted for them amino acids that do not ligand metal atoms. Characterization of these mutants for their uptake of radioactive 64Cu and cbb3-Cox activities demonstrated that Met233 and His261 of CcoA are essential and Met237 and Met265 are important, whereas Tyr230 has no role for Cu uptake or cbb3-Cox biogenesis. These findings show for the first time that CcoA-mediated Cu import relies on conserved Met and His residues that could act as metal ligands at the membrane-embedded Cu binding domain of this transporter.

  15. GENERATION OF A PROTON MOTIVE FORCE BY HISTIDINE DECARBOXYLATION AND ELECTROGENIC HISTIDINE HISTAMINE ANTIPORT IN LACTOBACILLUS-BUCHNERI

    NARCIS (Netherlands)

    MOLENAAR, D; BOSSCHER, JS; TENBRINK, B; DRIESSEN, AJM; KONINGS, WN

    1993-01-01

    Lactobacillus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (DELTApsi), inside negative, upon addit

  16. Generation of a Proton Motive Force by Histidine Decarboxylation and Electrogenic Histidine/Histamine Antiport in Lactobacillus buchneri

    NARCIS (Netherlands)

    Molenaar, Douwe; Bosscher, Jaap S.; Brink, Bart ten; Driessen, Arnold J.M.; Konings, Wil N.

    1993-01-01

    Lactobaciflus buchneri ST2A vigorously decarboxylates histidine to the biogenic amine histamine, which is excreted into the medium. Cells grown in the presence of histidine generate both a transmembrane pH gradient, inside alkaline, and an electrical potential (Δψ), inside negative, upon addition of

  17. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    Science.gov (United States)

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling.

  18. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking

    Science.gov (United States)

    Dubey, Badri N.; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-01-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di–guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  19. Cyclic di-GMP mediates a histidine kinase/phosphatase switch by noncovalent domain cross-linking.

    Science.gov (United States)

    Dubey, Badri N; Lori, Christian; Ozaki, Shogo; Fucile, Geoffrey; Plaza-Menacho, Ivan; Jenal, Urs; Schirmer, Tilman

    2016-09-01

    Histidine kinases are key components of regulatory networks in bacteria. Although many of these enzymes are bifunctional, mediating both phosphorylation and dephosphorylation of downstream targets, the molecular details of this central regulatory switch are unclear. We showed recently that the universal second messenger cyclic di-guanosine monophosphate (c-di-GMP) drives Caulobacter crescentus cell cycle progression by forcing the cell cycle kinase CckA from its default kinase into phosphatase mode. We use a combination of structure determination, modeling, and functional analysis to demonstrate that c-di-GMP reciprocally regulates the two antagonistic CckA activities through noncovalent cross-linking of the catalytic domain with the dimerization histidine phosphotransfer (DHp) domain. We demonstrate that both c-di-GMP and ADP (adenosine diphosphate) promote phosphatase activity and propose that c-di-GMP stabilizes the ADP-bound quaternary structure, which allows the receiver domain to access the dimeric DHp stem for dephosphorylation. In silico analyses predict that c-di-GMP control is widespread among bacterial histidine kinases, arguing that it can replace or modulate canonical transmembrane signaling. PMID:27652341

  20. Intramolecular cross-linking in a bacterial homolog of mammalian SLC6 neurotransmitter transporters suggests an evolutionary conserved role of transmembrane segments 7 and 8

    DEFF Research Database (Denmark)

    Kniazeff, Julie; Loland, Claus Juul; Goldberg, Naomi;

    2005-01-01

    The extracellular concentration of the neurotransmitters dopamine, serotonin, norepinephrine, GABA and glycine is tightly controlled by plasma membrane transporters belonging to the SLC6 gene family. A very large number of putative transport proteins with a remarkable homology to the SLC6...... transporters has recently been identified in prokaryotes. Here we have probed structural relationships in a 'microdoman' corresponding to the extracellular ends of transmembrane segments (TM) 7 and 8 in one of these homologs, the tryptophan transporter TnaT from Symbiobacterium thermophilum. We found...... proximity between TM 7 and 8 in the tertiary structure of TnaT as previously suggested for the mammalian counterparts. Furthermore, the inhibition of uptake upon cross-linking the two cysteines provides indirect support for a conserved conformational role of these transmembrane domains in the transport...

  1. HISTIDINE BIOTRANSFORMATION MEDIATED BY L-HISTIDINE-AMMONIA-LYASE

    OpenAIRE

    Borisova, G.; Bessonova, O.

    2013-01-01

    Kinetics of the metabolism of the heterocyclic amino acid histidine exposed to the L-histidine ammonia-lyase enzyme has been investigated and the technology of extraction of histidine biotransformation products (urocanic acid and ammonia) from casein hydrolyzates enabling the subsequent use of these hydrolyzates as a milk protein concentrate for the production of specialized dietary products for the nutrition of histidinemia patients has been developed.

  2. Carboplatin binding to histidine

    Energy Technology Data Exchange (ETDEWEB)

    Tanley, Simon W. M. [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Diederichs, Kay [University of Konstanz, D-78457 Konstanz (Germany); Kroon-Batenburg, Loes M. J. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Levy, Colin [University of Manchester, 131 Princess Street, Manchester M1 7DN (United Kingdom); Schreurs, Antoine M. M. [Utrecht University, Padualaan 8, 3584 CH Utrecht (Netherlands); Helliwell, John R., E-mail: john.helliwell@manchester.ac.uk [University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom)

    2014-08-29

    An X-ray crystal structure showing the binding of purely carboplatin to histidine in a model protein has finally been obtained. This required extensive crystallization trials and various novel crystal structure analyses. Carboplatin is a second-generation platinum anticancer agent used for the treatment of a variety of cancers. Previous X-ray crystallographic studies of carboplatin binding to histidine (in hen egg-white lysozyme; HEWL) showed the partial conversion of carboplatin to cisplatin owing to the high NaCl concentration used in the crystallization conditions. HEWL co-crystallizations with carboplatin in NaBr conditions have now been carried out to confirm whether carboplatin converts to the bromine form and whether this takes place in a similar way to the partial conversion of carboplatin to cisplatin observed previously in NaCl conditions. Here, it is reported that a partial chemical transformation takes place but to a transplatin form. Thus, to attempt to resolve purely carboplatin binding at histidine, this study utilized co-crystallization of HEWL with carboplatin without NaCl to eliminate the partial chemical conversion of carboplatin. Tetragonal HEWL crystals co-crystallized with carboplatin were successfully obtained in four different conditions, each at a different pH value. The structural results obtained show carboplatin bound to either one or both of the N atoms of His15 of HEWL, and this particular variation was dependent on the concentration of anions in the crystallization mixture and the elapsed time, as well as the pH used. The structural details of the bound carboplatin molecule also differed between them. Overall, the most detailed crystal structure showed the majority of the carboplatin atoms bound to the platinum centre; however, the four-carbon ring structure of the cyclobutanedicarboxylate moiety (CBDC) remained elusive. The potential impact of the results for the administration of carboplatin as an anticancer agent are described.

  3. Identification of two domains and distal histidine ligands to the four haems in the bacterial c-type cytochrome NapC; the prototype connector between quinol/quinone and periplasmic oxido-reductases.

    Science.gov (United States)

    Cartron, Michaël L; Roldán, M Dolores; Ferguson, Stuart J; Berks, Ben C; Richardson, David J

    2002-12-01

    NapC is a tetra-haem member of a family of bacterial membrane-anchored multi-haem c -type cytochromes implicated in electron transfer between membrane quinols and periplasmic enzymes. The water-soluble tetra-haem fragment of Paracoccus pantotrophus NapC has been expressed as a periplasmic protein (NapC(sol)) in Paracoccus denitrificans, P. pantotrophus and Escherichia coli. Site-specific mutagenesis of NapC(sol), combined with spectroscopic studies, suggests that each haem iron centre has bis -histidinyl co-ordination. Four proximal ligands arise from each of four Cys-Xaa-Xaa-Cys-His haem-binding motifs; candidates for the four distal ligands are His(81), His(99), His(174) and His(194). NapC(H81A), NapC(H99A), NapC(H174A) and NapC(H194A) mutants (with alanine substituted for each of the four candidate residues) have all been purified from E. coli. In each case, one of the haems has become high-spin, as judged by the presence of a broad absorption band between 620 nm and 650 nm for the oxidized cytochrome; this feature is absent for wild-type protein and presumably arises because of the absence of the distal histidine ligand from one of the haems. NapC(H81A) and NapC(H174A) are less well expressed in E. coli than NapC(H99A) and NapC(H194A) and cannot be detected when expressed in P. denitrificans or P. pantotrophus. In vitro and in vivo complementation studies demonstrate that the soluble periplasmic NapC can mediate electron transfer from quinols to the periplasmic nitrate reductase. This capacity was retained in vitro with the NapC(H99A) and NapC(H194A) mutants but was lost in vivo. A model for the structural organization of NapC(sol) into two domains, each containing a di-haem pair, is proposed. In this model, each haem pair obtains one distal haem ligand from its own domain and a second from the other domain. The suggestion of two domains is supported by observations that the 24 kDa NapC(sol) cleaves to yield a 12 kDa haem-staining band. Determination of the

  4. Prebiotic synthesis of histidine

    Science.gov (United States)

    Shen, C.; Yang, L.; Miller, S. L.; Oro, J.

    1990-01-01

    The prebiotic formation of histidine (His) has been accomplished experimentally by the reaction of erythrose with formamidine followed by a Strecker synthesis. In the first step of this reaction sequence, the formation of imidazole-4-acetaldehyde took place by the condensation of erythrose and formamidine, two compounds that are known to be formed under prebiotic conditions. In a second step, the imidazole-4-acetaldehyde was converted to His, without isolation of the reaction products by adding HCN and ammonia to the reaction mixture. LC, HPLC, thermospray liquid chromatography-mass spectrometry, and tandem mass spectrometry were used to identify the product, which was obtained in a yield of 3.5% based on the ratio of His/erythrose. This is a new chemical synthesis of one of the basic amino acids which had not been synthesized prebiotically until now.

  5. Histidine Decarboxylase in Enterobacteriaceae Revisited

    OpenAIRE

    Wauters, Georges; Avesani, Véronique; Charlier, Jacqueline; Janssens, Michèle; Delmée, Michel

    2004-01-01

    With a modification of Taylor's decarboxylation broth, histidine decarboxylase was detected in Enterobacter aerogenes, Morganella morganii, Raoultella ornithinolytica, and some strains of Citrobacter youngae and Raoultella planticola. This method provides a useful confirmatory test for identification of E. aerogenes strains.

  6. Visualizing autophosphorylation in histidine kinases

    OpenAIRE

    Casino, Patricia; Miguel-Romero, Laura; Marina, Alberto

    2014-01-01

    Reversible protein phosphorylation is the most widespread regulatory mechanism in signal transduction. Autophosphorylation in a dimeric sensor histidine kinase is the first step in two-component signalling, the predominant signal-transduction device in bacteria. Despite being the most abundant sensor kinases in nature, the molecular bases of the histidine kinase autophosphorylation mechanism are still unknown. Furthermore, it has been demonstrated that autophosphorylation can occur in two dir...

  7. Gene inactivation in Lactococcus lactis: histidine biosynthesis.

    OpenAIRE

    Delorme, C; Godon, J J; Ehrlich, S D; Renault, P

    1993-01-01

    Lactococcus lactis strains from dairy and nondairy sources were tested for the ability to grow in the absence of histidine. Among 60 dairy strains tested, 56 required histidine, whereas only 1 of 11 nondairy strains had this requirement. Moreover, 10 of the 56 auxotrophic strains were able to grow in the presence of histidinol (Hol+), the immediate histidine precursor. This indicates that adaptation to milk often results in histidine auxotrophy. The histidine operon was detected by Southern h...

  8. Ethylene Controls Autophosphorylation of the Histidine Kinase Domain in Ethylene Receptor ETR1

    Institute of Scientific and Technical Information of China (English)

    Jan Voet-van-Vormizeele; Georg Groth

    2008-01-01

    Perception of the phytohormone ethylene is accomplished by a small family of integral membrane receptors.In Arabidopsis,five ethylene receptor proteins are known,including ethylene resistant 1 (ETR1).The hydrophobic aminoterminal domain of these receptors contains the ethylene-binding site while the carboxyl-terminal part consists of a histidine kinase domain and a response regulator domain,which are well known elements found in bacterial two-component signaling.The soluble membrane-extrinsic carboxyl-terminal part of the receptor,which is likely to play an important role in signal transduction,showed intrinsic kinase activity when expressed and purified on its own.However,a correlation between signal input and autokinase activity was not established in these studies,as receptors were missing the transmembrane amino-terminal sensor domain.Thus,it is still unclear whether autophosphorylation occurs in response to perception of the ethylene signal.Here,we report on autophosphorylation studies of purified full-length ETR1.Autokinase activity of the purified receptor is controlled by ethylene or by ethylene agonists like the π-acceptor compound cyanide.In fact,both signal molecules were able to completely turn off the intrinsic kinase activity.Furthermore,the observed inhibition of autophosphorylation in ETR1 by both molecules could be prevented when the ethylene antagonist 1-methyl-cyclopropene (MCP) was applied.

  9. In vivo synthesis of histidine by a cloned histidine ammonia-lyase in Escherichia coli.

    OpenAIRE

    Fuchs, R L; Kane, J F

    1985-01-01

    Histidine ammonia-lyase catalyzes the first step in histidine catabolism, the deamination of histidine to urocanate and ammonia. In vitro experiments have shown that histidine ammonia-lyase also can catalyze the reverse (amination) reaction, histidine synthesis, relatively efficiently under extreme reaction conditions (4 M NH4OH, pH 10). An Escherichia coli hisB deletion strain was transformed with a pBR322 derivative plasmid (pCB101) containing the entire Klebsiella aerogenes histidine utili...

  10. Histidine-Containing Peptide Nucleic Acids

    DEFF Research Database (Denmark)

    2000-01-01

    Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics.......Peptide nucleic acids containing histidine moieties are provided. These compounds have applications including diagnostics, research and potential therapeutics....

  11. Determinants of homodimerization specificity in histidine kinases

    OpenAIRE

    Ashenberg, Orr; Rozen-Gagnon, Kathryn; Laub, Michael T; Keating, Amy E.

    2011-01-01

    Two-component signal transduction pathways consisting of a histidine kinase and a response regulator are used by prokaryotes to respond to diverse environmental and intracellular stimuli. Most species encode numerous paralogous histidine kinases that exhibit significant structural similarity. Yet in almost all known examples, histidine kinases are thought to function as homodimers. We investigated the molecular basis of dimerization specificity, focusing on the model histidine kinase EnvZ and...

  12. 2-Fluoro-l-histidine

    OpenAIRE

    Andra, Kiran K.; Bullinger, John C.; Bann, James G; Eichhorn, David M.

    2010-01-01

    The title compound, C6H8FN3O2, an analog of histidine, shows a reduced side-chain pKa (ca 1). The title structure exhibits a shortening of the bond between the proximal ring N atom and the F-substituted ring C atom, indicating an increase in π-bond character due to an inductive effect of fluorine.

  13. 21 CFR 582.5361 - Histidine.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Histidine. 582.5361 Section 582.5361 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... 1 § 582.5361 Histidine. (a) Product. Histidine (L- and DL-forms). (b) Conditions of use....

  14. 2-Fluoro-l-histidine

    Directory of Open Access Journals (Sweden)

    Kiran K. Andra

    2010-11-01

    Full Text Available The title compound, C6H8FN3O2, an analog of histidine, shows a reduced side-chain pKa (ca 1. The title structure exhibits a shortening of the bond between the proximal ring N atom and the F-substituted ring C atom, indicating an increase in π-bond character due to an inductive effect of fluorine.

  15. Isolated Toll-like receptor transmembrane domains are capable of oligomerization.

    Directory of Open Access Journals (Sweden)

    James I Godfroy

    Full Text Available Toll-like receptors (TLRs act as the first line of defense against bacterial and viral pathogens by initiating critical defense signals upon dimer activation. The contribution of the transmembrane domain in the dimerization and signaling process has heretofore been overlooked in favor of the extracellular and intracellular domains. As mounting evidence suggests that the transmembrane domain is a critical region in several protein families, we hypothesized that this was also the case for Toll-like receptors. Using a combined biochemical and biophysical approach, we investigated the ability of isolated Toll-like receptor transmembrane domains to interact independently of extracellular domain dimerization. Our results showed that the transmembrane domains had a preference for the native dimer partners in bacterial membranes for the entire receptor family. All TLR transmembrane domains showed strong homotypic interaction potential. The TLR2 transmembrane domain demonstrated strong heterotypic interactions in bacterial membranes with its known interaction partners, TLR1 and TLR6, as well as with a proposed interaction partner, TLR10, but not with TLR4, TLR5, or unrelated transmembrane receptors providing evidence for the specificity of TLR2 transmembrane domain interactions. Peptides for the transmembrane domains of TLR1, TLR2, and TLR6 were synthesized to further study this subfamily of receptors. These peptides validated the heterotypic interactions seen in bacterial membranes and demonstrated that the TLR2 transmembrane domain had moderately strong interactions with both TLR1 and TLR6. Combined, these results suggest a role for the transmembrane domain in Toll-like receptor oligomerization and as such, may be a novel target for further investigation of new therapeutic treatments of Toll-like receptor mediated diseases.

  16. 21 CFR 862.1375 - Histidine test system.

    Science.gov (United States)

    2010-04-01

    ... free histidine (an amino acid) in plasma and urine. Histidine measurements are used in the diagnosis... often resulting in mental retardation and disordered speech development. (b) Classification. Class...

  17. Transmembrane heme delivery systems

    OpenAIRE

    Goldman, Barry S; Beck, David L.; Monika, Elizabeth M.; Kranz, Robert G.

    1998-01-01

    Heme proteins play pivotal roles in a wealth of biological processes. Despite this, the molecular mechanisms by which heme traverses bilayer membranes for use in biosynthetic reactions are unknown. The biosynthesis of c-type cytochromes requires that heme is transported to the bacterial periplasm or mitochondrial intermembrane space where it is covalently ligated to two reduced cysteinyl residues of the apocytochrome. Results herein suggest that a family of integral membrane proteins in proka...

  18. Hydrophobic pulses predict transmembrane helix irregularities and channel transmembrane units

    Directory of Open Access Journals (Sweden)

    Claustres Mireille

    2011-05-01

    Full Text Available Abstract Background Few high-resolution structures of integral membranes proteins are available, as crystallization of such proteins needs yet to overcome too many technical limitations. Nevertheless, prediction of their transmembrane (TM structure by bioinformatics tools provides interesting insights on the topology of these proteins. Methods We describe here how to extract new information from the analysis of hydrophobicity variations or hydrophobic pulses (HPulses in the sequence of integral membrane proteins using the Hydrophobic Pulse Predictor, a new tool we developed for this purpose. To analyze the primary sequence of 70 integral membrane proteins we defined two levels of analysis: G1-HPulses for sliding windows of n = 2 to 6 and G2-HPulses for sliding windows of n = 12 to 16. Results The G2-HPulse analysis of 541 transmembrane helices allowed the definition of the new concept of transmembrane unit (TMU that groups together transmembrane helices and segments with potential adjacent structures. In addition, the G1-HPulse analysis identified helix irregularities that corresponded to kinks, partial helices or unannotated structural events. These irregularities could represent key dynamic elements that are alternatively activated depending on the channel status as illustrated by the crystal structures of the lactose permease in different conformations. Conclusions Our results open a new way in the understanding of transmembrane secondary structures: hydrophobicity through hydrophobic pulses strongly impacts on such embedded structures and is not confined to define the transmembrane status of amino acids.

  19. OsHT, a Rice Gene Encoding for a Plasma-Membrane Localized Histidine Transporter

    Institute of Scientific and Technical Information of China (English)

    Di LIU; Wei GONG; Yong BAI; Jing-Chu LUO; Yu-Xian ZHU

    2005-01-01

    Using a degenerative probe designed according to the most conservative region of a known Lys- and His-specific amino acid transporter (LHT1) from Arabidopsis, we isolated a full-length cDNA named OsHT (histidine transporter of Oryza sativa L.) by screening the rice cDNA library. The cDNA is 1.3kb in length and the open reading frame encodes for a 441 amino acid protein with a calculated molecular mass of 49 kDa. Multiple sequence alignments showed that OsHT shares a high degree of sequence conservation at the deduced amino acid level with the Arabidopsis LHT1 and six putative lysine and histidine transporters. Computational analysis indicated that OsHT is an integral membrane protein with 11 putative transmembrane helices. This was confirmed by the transient expression assay because the OsHT-GFP fusion protein was, indeed, localized mainly in the plasma membrane of onion epidermal cells. Functional complementation experiments demonstrated that OsHT was able to work as a histidine transporter in Saccharomyces cerevisiae, suggesting that OsHT is a gene that encodes for a histidine transporter from rice.This is the first time that an LHT-type amino acid transporter gene has been cloned from higher plants other than A rabidopsis.

  20. Disordered regions in transmembrane proteins.

    Science.gov (United States)

    Tusnády, Gábor E; Dobson, László; Tompa, Peter

    2015-11-01

    The functions of transmembrane proteins in living cells are widespread; they range from various transport processes to energy production, from cell-cell adhesion to communication. Structurally, they are highly ordered in their membrane-spanning regions, but may contain disordered regions in the cytosolic and extra-cytosolic parts. In this study, we have investigated the disordered regions in transmembrane proteins by a stringent definition of disordered residues on the currently available largest experimental dataset, and show a significant correlation between the spatial distributions of positively charged residues and disordered regions. This finding suggests a new role of disordered regions in transmembrane proteins by providing structural flexibility for stabilizing interactions with negatively charged head groups of the lipid molecules. We also find a preference of structural disorder in the terminal--as opposed to loop--regions in transmembrane proteins, and survey the respective functions involved in recruiting other proteins or mediating allosteric signaling effects. Finally, we critically compare disorder prediction methods on our transmembrane protein set. While there are no major differences between these methods using the usual statistics, such as per residue accuracies, Matthew's correlation coefficients, etc.; substantial differences can be found regarding the spatial distribution of the predicted disordered regions. We conclude that a predictor optimized for transmembrane proteins would be of high value to the field of structural disorder. PMID:26275590

  1. The stability of the three transmembrane and the four transmembrane human vitamin K epoxide reductase models

    Science.gov (United States)

    Wu, Sangwook

    2016-04-01

    The three transmembrane and the four transmembrane helix models are suggested for human vitamin K epoxide reductase (VKOR). In this study, we investigate the stability of the human three transmembrane/four transmembrane VKOR models by employing a coarse-grained normal mode analysis and molecular dynamics simulation. Based on the analysis of the mobility of each transmembrane domain, we suggest that the three transmembrane human VKOR model is more stable than the four transmembrane human VKOR model.

  2. Histidine in Continuum Electrostatics Protonation State Calculations

    OpenAIRE

    Couch, Vernon; Stuchebruckhov, Alexei

    2011-01-01

    A modification to the standard continuum electrostatics approach to calculate protein pKas which allows for the decoupling of histidine tautomers within a two state model is presented. Histidine with four intrinsically coupled protonation states cannot be easily incorporated into a two state formalism because the interaction between the two protonatable sites of the imidazole ring is not purely electrostatic. The presented treatment, based on a single approximation of the interrelation betwee...

  3. Transmembrane protein sorting driven by membrane curvature

    Science.gov (United States)

    Strahl, H.; Ronneau, S.; González, B. Solana; Klutsch, D.; Schaffner-Barbero, C.; Hamoen, L. W.

    2015-11-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show that the classical chemoreceptor TlpA of Bacillus subtilis does not localize according to the consensus stochastic nucleation mechanism but accumulates at strongly curved membrane areas generated during cell division. This preference was confirmed by accumulation at non-septal curved membranes. Localization appears to be an intrinsic property of the protein complex and does not rely on chemoreceptor clustering, as was previously shown for Escherichia coli. By constructing specific amino-acid substitutions, we demonstrate that the preference for strongly curved membranes arises from the curved shape of chemoreceptor trimer of dimers. These findings demonstrate that the intrinsic shape of transmembrane proteins can determine their cellular localization.

  4. Prebiotic synthesis of histidyl-histidine

    Science.gov (United States)

    Shen, C.; Mills, T.; Oro, J.

    1990-01-01

    Histidyl-histidine (His-His) has been synthesized in a yield of up to 14.4% under plausible prebiotic conditions using histidine (His), cyanamide, and 4-amino-5-imidazole carboxamide. A trace amount of His trimer was also detected. Because the imidazole group of His is involved in a number of important enzymatic reactions, and His-His has been shown to catalyze the prebiotic synthesis of glycyl-glycine, we expect this work will stimulate further studies on the catalytic activities of simple His-containing peptides in prebiotic reactions.

  5. Molecular mechanisms for generating transmembrane proton gradients.

    Science.gov (United States)

    Gunner, M R; Amin, Muhamed; Zhu, Xuyu; Lu, Jianxun

    2013-01-01

    Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.

  6. The multiple roles of histidine in protein interactions

    OpenAIRE

    Liao, Si-Ming; Du, Qi-Shi; Meng, Jian-Zong; Pang, Zong-Wen; Huang, Ri-Bo

    2013-01-01

    Background Among the 20 natural amino acids histidine is the most active and versatile member that plays the multiple roles in protein interactions, often the key residue in enzyme catalytic reactions. A theoretical and comprehensive study on the structural features and interaction properties of histidine is certainly helpful. Results Four interaction types of histidine are quantitatively calculated, including: (1) Cation-π interactions, in which the histidine acts as the aromatic π-motif in ...

  7. Computational design of a Zn2+ receptor that controls bacterial gene expression

    Science.gov (United States)

    Dwyer, M. A.; Looger, L. L.; Hellinga, H. W.

    2003-09-01

    The control of cellular physiology and gene expression in response to extracellular signals is a basic property of living systems. We have constructed a synthetic bacterial signal transduction pathway in which gene expression is controlled by extracellular Zn2+. In this system a computationally designed Zn2+-binding periplasmic receptor senses the extracellular solute and triggers a two-component signal transduction pathway via a chimeric transmembrane protein, resulting in transcriptional up-regulation of a -galactosidase reporter gene. The Zn2+-binding site in the designed receptor is based on a four-coordinate, tetrahedral primary coordination sphere consisting of histidines and glutamates. In addition, mutations were introduced in a secondary coordination sphere to satisfy the residual hydrogen-bonding potential of the histidines coordinated to the metal. The importance of the secondary shell interactions is demonstrated by their effect on metal affinity and selectivity, as well as protein stability. Three designed protein sequences, comprising two distinct metal-binding positions, were all shown to bind Zn2+ and to function in the cell-based assay, indicating the generality of the design methodology. These experiments demonstrate that biological systems can be manipulated with computationally designed proteins that have drastically altered ligand-binding specificities, thereby extending the repertoire of genetic control by extracellular signals.

  8. Evaluation of interaction between histidine binding Cu2+ ion and histidine by atomic force microscopy.

    Science.gov (United States)

    Kim, Jong Min; Lee, Haeng-Ja; Kim, Woo-Sik; Sano, Masato; Muramatsu, Hiroshi; Chang, Sang-Mok

    2012-07-01

    This paper presents a direct interaction force measurement between histidine molecules using AFM force-distance curve measurement. AFM force-distance curves between the histidine-modified cantilever and substrate in the different conditions with or without intercalating Cu2+ ion were measured and interpreted via Gaussian curve fitting analyses. The adhesion force between histidine molecules was shown to be 110 pN under the presence of Cu2+. The result was compareable to the measured adhesion force about 0 pN, which was measured by the removal of Cu2+ ion with the addition of EDTA. The result indicated the direct histidine-histidie interaction was difficult without the role of the bridigible ionic component. From the results, the possibility of direct measurement on chemical affinities between biomolecules was suggested by using AFM force-distance curve analyses. Especially, the current approach showed the possible affinity measurement techniques that elucidate the role of bridge ions. PMID:22966539

  9. Incorporation of copper histidine complexes into a zeolite Y matrix

    NARCIS (Netherlands)

    Mesu, J.G.; Baute, D.; Tromp, H.J.; Faassen, E.E.H. van; Weckhuysen, B.M.

    2003-01-01

    Preformed copper-histidine complexes were loaded into zeolite Y by ion exchange. The zeolite was found to contain a mixture of two different encaged complexes: a mono-histidine complex (A) and a bis-histidine complex (B). The initial copper concentration affects the composition of this mixture, with

  10. Histidine Hydrogen-Deuterium Exchange Mass Spectrometry for Probing the Microenvironment of Histidine Residues in Dihydrofolate Reductase

    OpenAIRE

    Masaru Miyagi; Qun Wan; Md. Faiz Ahmad; Giridharan Gokulrangan; Tomechko, Sara E; Brad Bennett; Chris Dealwis

    2011-01-01

    BACKGROUND: Histidine Hydrogen-Deuterium Exchange Mass Spectrometry (His-HDX-MS) determines the HDX rates at the imidazole C(2)-hydrogen of histidine residues. This method provides not only the HDX rates but also the pK(a) values of histidine imidazole rings. His-HDX-MS was used to probe the microenvironment of histidine residues of E. coli dihydrofolate reductase (DHFR), an enzyme proposed to undergo multiple conformational changes during catalysis. METHODOLOGY/PRINCIPAL FINDINGS: Using His-...

  11. Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus

    OpenAIRE

    Fioravanti, Antonella; Clantin, Bernard; Dewitte, Frédérique; Lens, Zoé; Verger, Alexis; Biondi, Emanuele G; Villeret, Vincent

    2012-01-01

    Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: a...

  12. An Autonomously Reciprocating Transmembrane Nanoactuator.

    Science.gov (United States)

    Watson, Matthew A; Cockroft, Scott L

    2016-01-22

    Biological molecular machines operate far from equilibrium by coupling chemical potential to repeated cycles of dissipative nanomechanical motion. This principle has been exploited in supramolecular systems that exhibit true machine behavior in solution and on surfaces. However, designed membrane-spanning assemblies developed to date have been limited to simple switches or stochastic shuttles, and true machine behavior has remained elusive. Herein, we present a transmembrane nanoactuator that turns over chemical fuel to drive autonomous reciprocating (back-and-forth) nanomechanical motion. Ratcheted reciprocating motion of a DNA/PEG copolymer threaded through a single α-hemolysin pore was induced by a combination of DNA strand displacement processes and enzyme-catalyzed reactions. Ion-current recordings revealed saw-tooth patterns, indicating that the assemblies operated in autonomous, asymmetric cycles of conformational change at rates of up to one cycle per minute. PMID:26661295

  13. Complex formation of platelet thrombospondin with histidine-rich glycoprotein.

    OpenAIRE

    Leung, L L; Nachman, R L; Harpel, P C

    1984-01-01

    Thrombospondin and histidine-rich glycoprotein are two proteins with diverse biological activities which have been associated with human platelets and other cell systems. Using an enzyme-linked immunosorbent assay, we have demonstrated that purified human platelet thrombospondin formed a complex with purified human plasma histidine-rich glycoprotein. The formation of the thrombospondin-histidine-rich glycoprotein complex was specific, concentration dependent, and saturable. Significant bindin...

  14. Stabilization of a histidine-producing strain of Serratia marcescens.

    OpenAIRE

    Sugiura, M; Kisumi, M

    1984-01-01

    A decrease in histidine productivity was observed during subculture of a histidine-producing strain of Serratia marcescens. The decrease was accompanied by an increase in the number of wild-type revertants. Adenine accelerated the growth of producing strain HT-2892 to nearly equal that of revertants, and histidine production was stable because the depletion of ATP in strain HT-2892 was restored by adenine. To increase the intracellular ATP content, mutants resistant to 6-methylpurine, an anta...

  15. Cooperative Transmembrane Penetration of Nanoparticles

    Science.gov (United States)

    Zhang, Haizhen; Ji, Qiuju; Huang, Changjin; Zhang, Sulin; Yuan, Bing; Yang, Kai; Ma, Yu-qiang

    2015-01-01

    Physical penetration of lipid bilayer membranes presents an alternative pathway for cellular delivery of nanoparticles (NPs) besides endocytosis. NPs delivered through this pathway could reach the cytoplasm, thereby opening the possibility of organelle-specific targeting. Herein we perform dissipative particle dynamics simulations to elucidate the transmembrane penetration mechanisms of multiple NPs. Our simulations demonstrate that NPs’ translocation proceeds in a cooperative manner, where the interplay of the quantity and surface chemistry of the NPs regulates the translocation efficiency. For NPs with hydrophilic surfaces, the increase of particle quantity facilitates penetration, while for NPs with partly or totally hydrophobic surfaces, the opposite highly possibly holds. Moreover, a set of interesting cooperative ways, such as aggregation, aggregation-dispersion, and aggregation-dispersion-reaggregation of the NPs, are observed during the penetration process. We find that the penetration behaviors of multiple NPs are mostly dominated by the changes of the NP-membrane force components in the membrane plane direction, in addition to that in the penetration direction, suggesting a different interaction mechanism between the multiple NPs and the membrane compared with the one-NP case. These results provide a fundamental understanding in the underlying mechanisms of cooperative penetration of NPs, and shed light on the NP-based drug and gene delivery. PMID:26013284

  16. Biophysical Aspects of Transmembrane Signaling

    CERN Document Server

    Damjanovich, Sandor

    2005-01-01

    Transmembrane signaling is one of the most significant cell biological events in the life and death of cells in general and lymphocytes in particular. Until recently biochemists and biophysicists were not accustomed to thinking of these processes from the side of a high number of complex biochemical events and an equally high number of physical changes at molecular and cellular levels at the same time. Both types of researchers were convinced that their findings are the most decisive, having higher importance than the findings of the other scientist population. Both casts were wrong. Life, even at cellular level, has a number of interacting physical and biochemical mechanisms, which finally build up the creation of an "excited" cell that will respond to particular signals from the outer or inner world. This book handles both aspects of the signalling events, and in some cases tries to unify our concepts and help understand the signals that govern the life and death of our cells. Not only the understanding, bu...

  17. Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options.

    Directory of Open Access Journals (Sweden)

    Manika Indrajit Singh

    Full Text Available We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3. Two of the three plasmids have been designed to provide the expressed protein with either N- or C-terminus 6 histidine amino acids in tandem. The third plasmid, however, does not add any tag to the expressed protein. The cloning is achieved quickly with the requirement of phosphorylation of PCR product without any restriction digestion. Additionally, the generated clones can be confirmed with a single step PCR reaction carried out from bacterial colonies (generally termed as "colony PCR". We show the cloning, expression and purification of Green Fluorescent Protein (GFP as proof-of-concept. Additionally, we also show the cloning and expression of four sigma factors from Mycobacterium tuberculosis further demonstrating the utility of the designed plasmids. We strongly believe that the vectors and the strategy that we have developed will facilitate the rapid cloning and expression of any gene in E. coli BL21(DE3 with or without a hexa-histidine tag.

  18. Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options.

    Science.gov (United States)

    Singh, Manika Indrajit; Jain, Vikas

    2013-01-01

    We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3). Two of the three plasmids have been designed to provide the expressed protein with either N- or C-terminus 6 histidine amino acids in tandem. The third plasmid, however, does not add any tag to the expressed protein. The cloning is achieved quickly with the requirement of phosphorylation of PCR product without any restriction digestion. Additionally, the generated clones can be confirmed with a single step PCR reaction carried out from bacterial colonies (generally termed as "colony PCR"). We show the cloning, expression and purification of Green Fluorescent Protein (GFP) as proof-of-concept. Additionally, we also show the cloning and expression of four sigma factors from Mycobacterium tuberculosis further demonstrating the utility of the designed plasmids. We strongly believe that the vectors and the strategy that we have developed will facilitate the rapid cloning and expression of any gene in E. coli BL21(DE3) with or without a hexa-histidine tag. PMID:23691118

  19. Essential histidine pairs indicate conserved haem binding in epsilonproteobacterial cytochrome c haem lyases

    Science.gov (United States)

    Kern, Melanie; Scheithauer, Juliane; Kranz, Robert G.; Simon, Jörg

    2010-01-01

    Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins found in other bacteria. CcsBA-type CCHLs have been proposed to act as haem transporters that contain two haem b coordination sites located at different sides of the membrane and formed by histidine pairs. W. succinogenes cells contain three CcsBA-type CCHL isoenzymes (NrfI, CcsA1 and CcsA2) that are known to differ in their specificity for apocytochromes and apparently recognize different haem c binding motifs such as CX2CH (by CcsA2), CX2CK (by NrfI) and CX15CH (by CcsA1). In this study, conserved histidine residues were individually replaced by alanine in each of the W. succinogenes CCHLs. Characterization of NrfI and CcsA1 variants in W. succinogenes demonstrated that a set of four histidines is essential for maturing the dedicated multihaem cytochromes c NrfA and MccA, respectively. The function of W. succinogenes CcsA2 variants produced in Escherichia coli was also found to depend on each of these four conserved histidine residues. The presence of imidazole in the growth medium of both W. succinogenes and E. coli rescued the cytochrome c biogenesis activity of most histidine variants, albeit to different extents, thereby implying the presence of two functionally distinct histidine pairs in each CCHL. The data support a model in which two conserved haem b binding sites are involved in haem transport catalysed by CcsBA-type CCHLs. PMID:20705660

  20. Biological functions of histidine-dipeptides and metabolic syndrome.

    Science.gov (United States)

    Song, Byeng Chun; Joo, Nam-Seok; Aldini, Giancarlo; Yeum, Kyung-Jin

    2014-02-01

    The rapid increase in the prevalence of metabolic syndrome, which is associated with a state of elevated systemic oxidative stress and inflammation, is expected to cause future increases in the prevalence of diabetes and cardiovascular diseases. Oxidation of polyunsaturated fatty acids and sugars produces reactive carbonyl species, which, due to their electrophilic nature, react with the nucleophilic sites of certain amino acids. This leads to formation of protein adducts such as advanced glycoxidation/lipoxidation end products (AGEs/ALEs), resulting in cellular dysfunction. Therefore, an effective reactive carbonyl species and AGEs/ALEs sequestering agent may be able to prevent such cellular dysfunction. There is accumulating evidence that histidine containing dipeptides such as carnosine (β-alanyl-L-histidine) and anserine (β-alanyl-methyl-L-histidine) detoxify cytotoxic reactive carbonyls by forming unreactive adducts and are able to reverse glycated protein. In this review, 1) reaction mechanism of oxidative stress and certain chronic diseases, 2) interrelation between oxidative stress and inflammation, 3) effective reactive carbonyl species and AGEs/ALEs sequestering actions of histidine-dipeptides and their metabolism, 4) effects of carnosinase encoding gene on the effectiveness of histidine-dipeptides, and 5) protective effects of histidine-dipeptides against progression of metabolic syndrome are discussed. Overall, this review highlights the potential beneficial effects of histidine-dipeptides against metabolic syndrome. Randomized controlled human studies may provide essential information regarding whether histidine-dipeptides attenuate metabolic syndrome in humans. PMID:24611099

  1. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    of GRNs this thesis also provided the first evidence of the sensor histidine kinase VC1831 being an additional player in the Vibrio cholerae quorum sensing (QS) GRN. Bacteria use a process of cell-cell communication called QS which enable the bacterial cells to collectively control their gene expression...

  2. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  3. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum

    OpenAIRE

    Kulis-Horn, Robert K; Persicke, Marcus; Kalinowski, Jörn

    2013-01-01

    l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium...

  4. Assembly of transmembrane proteins on oil-water interfaces

    Science.gov (United States)

    Yunker, Peter; Landry, Corey; Chong, Shaorong; Weitz, David

    2015-03-01

    Transmembrane proteins are difficult to handle by aqueous solution-based biochemical and biophysical approaches, due to the hydrophobicity of transmembrane helices. Detergents can solubilize transmembrane proteins; however, surfactant coated transmembrane proteins are not always functional, and purifying detergent coated proteins in a micellar solution can be difficult. Motivated by this problem, we study the self-assembly of transmembrane proteins on oil-water interfaces. We found that the large water-oil interface of oil drops prevents nascent transmembrane proteins from forming non-functional aggregates. The oil provides a hydrophobic environment for the transmembrane helix, allowing the ectodomain to fold into its natural structure and orientation. Further, modifying the strength or valency of hydrophobic interactions between transmembrane proteins results in the self-assembly of spatially clustered, active proteins on the oil-water interface. Thus, hydrophobic interactions can facilitate, rather than inhibit, the assembly of transmembrane proteins.

  5. Site-specific mutagenesis of histidine residues in the lac permease of Escherichia coli.

    OpenAIRE

    Padan, E; Sarkar, H K; Viitanen, P V; Poonian, M S; Kaback, H R

    1985-01-01

    The lacY gene of Escherichia coli, which encodes the lac permease, has been modified by oligonucleotide-directed, site-specific mutagenesis such that each of the four histidine residues in the molecule is replaced with an arginine residue. Replacement of histidine-35 and histidine-39 with arginine has no apparent effect on permease activity. In contrast, replacement of either histidine-205 or histidine-322 by arginine causes a dramatic loss of transport activity, although the cells contain a ...

  6. The identification of histidine ligands to cytochrome a in cytochrome c oxidase

    OpenAIRE

    Martin, Craig T.; Scholes, Charles P.; Chan, Sunney I.

    1985-01-01

    A histidine auxotroph of Saccharomyces cerevisiae has been used to metabolically incorporate [1,3-15N2] histidine into yeast cytochrome c oxidase. Electron nuclear double resonance (ENDOR) spectroscopy of cytochrome a in the [15N]histidine-substituted enzyme reveals an ENDOR signal which can be assigned to hyperfine coupling of a histidine 15N with the low-spin heme, thereby unambiguously identifying histidine as an axial ligand to this cytochrome. Comparison of this result with similar ENDOR...

  7. Structures of OppA and PstS from Yersinia pestis indicate variability of interactions with transmembrane domains

    DEFF Research Database (Denmark)

    Tanabe, Mikio; Mirza, Osman; Bertrand, Thomas;

    2007-01-01

    Bacterial ATP-binding cassette (ABC) transport systems couple ATP hydrolysis with the uptake and efflux of a wide range of substances across bacterial membranes. These systems are comprised of transmembrane domains, nucleotide binding domains and, in the case of uptake systems, periplasmic bindin...

  8. Structural insights into ChpT, an essential dimeric histidine phosphotransferase regulating the cell cycle in Caulobacter crescentus.

    Science.gov (United States)

    Fioravanti, Antonella; Clantin, Bernard; Dewitte, Frédérique; Lens, Zoé; Verger, Alexis; Biondi, Emanuele G; Villeret, Vincent

    2012-09-01

    Two-component and phosphorelay signal-transduction proteins are crucial for bacterial cell-cycle regulation in Caulobacter crescentus. ChpT is an essential histidine phosphotransferase that controls the activity of the master cell-cycle regulator CtrA by phosphorylation. Here, the 2.2 Å resolution crystal structure of ChpT is reported. ChpT is a homodimer and adopts the domain architecture of the intracellular part of class I histidine kinases. Each subunit consists of two distinct domains: an N-terminal helical hairpin domain and a C-terminal α/β domain. The two N-terminal domains are adjacent within the dimer, forming a four-helix bundle. The ChpT C-terminal domain adopts an atypical Bergerat ATP-binding fold.

  9. Virus-Encoded 7 Transmembrane Receptors

    DEFF Research Database (Denmark)

    Mølleskov-Jensen, Ann-Sofie; Oliveira, MarthaTrindade; Farrell, Helen Elizabeth;

    2015-01-01

    Herpesviruses are an ancient group which have exploited gene capture of multiple cellular modulators of the immune response. Viral homologues of 7 transmembrane receptors (v7TMRs) are a consistent feature of beta- and gammaherpesviruses; the majority of the v7TMRs are homologous to cellular chemo...

  10. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms.

    Science.gov (United States)

    Saada, Mohamed-Chiheb; Montero, Jean-Louis; Vullo, Daniela; Scozzafava, Andrea; Winum, Jean-Yves; Supuran, Claudiu T

    2011-03-10

    Lipoic acid moieties were attached to amine or amino acids showing activating properties against the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1). The obtained lipoic acid conjugates of histamine, L-histidine methyl ester, and L-carnosine methyl ester were attached to gold nanoparticles (NPs) by reaction with Au(III) salts in reducing conditions. The CA activators (CAAs)-coated NPs showed low nanomolar activation (K(A)s of 1-9 nM) of relevant cytosolic, membrane-bound, mitochondrial, and transmembrane CA isoforms, such as CA I, II, IV, VA, VII, and XIV. These NPs also effectively activated CAs ex vivo, in whole blood experiments, with an increase of 200-280% of the CA activity. This is the first example of enzyme activation with nanoparticles and may lead to biomedical applications for conditions in which the CA activity is diminished, such as aging, Alzheimer's disease, or CA deficiency syndrome. PMID:21291238

  11. Crystallizing Transmembrane Peptides in Lipidic Mesophases

    Energy Technology Data Exchange (ETDEWEB)

    Höfer, Nicole; Aragão, David; Caffrey, Martin (Trinity)

    2011-09-28

    Structure determination of membrane proteins by crystallographic means has been facilitated by crystallization in lipidic mesophases. It has been suggested, however, that this so-called in meso method, as originally implemented, would not apply to small protein targets having {le}4 transmembrane crossings. In our study, the hypothesis that the inherent flexibility of the mesophase would enable crystallogenesis of small proteins was tested using a transmembrane pentadecapeptide, linear gramicidin, which produced structure-grade crystals. This result suggests that the in meso method should be considered as a viable means for high-resolution structure determination of integral membrane peptides, many of which are predicted to be coded for in the human genome.

  12. Ion fluxes through nanopores and transmembrane channels

    Science.gov (United States)

    Bordin, J. R.; Diehl, A.; Barbosa, M. C.; Levin, Y.

    2012-03-01

    We introduce an implicit solvent Molecular Dynamics approach for calculating ionic fluxes through narrow nanopores and transmembrane channels. The method relies on a dual-control-volume grand-canonical molecular dynamics (DCV-GCMD) simulation and the analytical solution for the electrostatic potential inside a cylindrical nanopore recently obtained by Levin [Europhys. Lett.EULEEJ0295-507510.1209/epl/i2006-10240-4 76, 163 (2006)]. The theory is used to calculate the ionic fluxes through an artificial transmembrane channel which mimics the antibacterial gramicidin A channel. Both current-voltage and current-concentration relations are calculated under various experimental conditions. We show that our results are comparable to the characteristics associated to the gramicidin A pore, especially the existence of two binding sites inside the pore and the observed saturation in the current-concentration profiles.

  13. Synergistic transmembrane alignment of the antimicrobial heterodimer PGLa/magainin.

    Science.gov (United States)

    Tremouilhac, Pierre; Strandberg, Erik; Wadhwani, Parvesh; Ulrich, Anne S

    2006-10-27

    The antimicrobial activity of amphipathic alpha-helical peptides is usually attributed to the formation of pores in bacterial membranes, but direct structural information about such a membrane-bound state is sparse. Solid state (2)H-NMR has previously shown that the antimicrobial peptide PGLa undergoes a concentration-dependent realignment from a surface-bound S-state to a tilted T-state. The corresponding change in helix tilt angle from 98 to 125 degrees was interpreted as the formation of PGLa/magainin heterodimers residing on the bilayer surface. Under no conditions so far, has an upright membrane-inserted I-state been observed in which a transmembrane helix alignment would be expected. Here, we have demonstrated that PGLa is able to assume such an I-state in a 1:1 mixture with magainin 2 at a peptide-to-lipid ratio as low as 1:100 in dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol model membranes. This (2)H-NMR analysis is based on seven orientational constraints from Ala-3,3,3-d(3) substituted in a non-perturbing manner for four native Ala residues as well as two Ile and one Gly. The observed helix tilt of 158 degrees is rationalized by the formation of heterodimers. This structurally synergistic effect between the two related peptides from the skin of Xenopus laevis correlates very well with their known functional synergistic mode of action. To our knowledge, this example of PGLa is the first case where an alpha-helical antimicrobial peptide is directly shown to assume a transmembrane state that is compatible with the postulated toroidal wormhole pore structure. PMID:16877761

  14. Effect of Abiotic Stresses on Histidine kinases Gene Expression in Zea mays L. cv. SC. 704

    Directory of Open Access Journals (Sweden)

    Javadmanesh, Susan

    2013-02-01

    Full Text Available UV-B radiation and osmotic stress (like drought and salinity have a significant effect on physiology, morphology, biochemistry and molecular biology. To cope with such stimuli, plants must be able to effectively sense, respond to and adapt to changes in their biological activities. Hence, signal transduction pathways play important role in response to environmental stimuli. In this study, the expression of three Histidine Kinases including ZmHK1, ZmHK2 and ZmHK3a was studied in maize plants exposed to 8 days drought, salinity and UV-B stresses applying transcript approach. The semi-quantitative RT-PCR analyses of ZmHKs showed up-regulation of ZmHK1 and ZmHK3 agenes after 8 days exposure to applied stresses except salinity in leaves, although, their regulation was more prominent during drought stress. Astonishingly, exposure to these stresses showed down-regulation of all genes in maize roots. However, the ZmHK1 behavior was quite different from two other homologues and showed up-regulation in combined stresses. We suggest that ZmHK1 and ZmHK3a, as cytokinin transmembrane receptors, sense osmolarity changes in cells caused by dehydration. Our data supports the involvement of ZmHK homologues under these stresses in maize and provides a gene expression dynamics during the stress which will be valuable for further studies of the molecular mechanisms of stress tolerance in maize.

  15. Sodium hydrosulfide improves the protective potential of the cardioplegic histidine buffer solution.

    Science.gov (United States)

    Alves, Marco G; Soares, Ana F; Carvalho, Rui A; Oliveira, Paulo J

    2011-03-01

    Since H(2)S has an emerging role as a cardioprotector, we hypothesized that NaHS addition to the new cardioplegic histidine buffer solution (HBS) could improve its cardioprotective potential. Male Wistar-Han rat hearts were divided in 4 groups: i) control, ii) perfusion control (perfusion only), iii) 6h ischemia in HBS or in a modified-HBS with 100 μM of NaHS, a H(2)S donor, (HBSM) and iv) as iii followed by 30 min reperfusion. During ischemia, aliquots of the cardioplegic solution were collected for NMR analysis. Heart mitochondria respiration and transmembrane potential were measured after ischemia or after ischemia followed by reperfusion. Proteins involved in the apoptotic signaling pathway were also quantified in both mitochondrial and tissue samples. Cardiac mechanic performance was evaluated by measuring the heart rate and the left ventricular pressure. In HBSM-preserved hearts, a) glucose consumption increased as well as lactate and alanine production during ischemia, b) heart mitochondria presented an improved phosphorylative efficiency, including decreased phosphorylative lag phase for complex I and complex II substrates, c) mitochondrial and tissue p53, Bax and caspase-9 were lower and d) there was a more positive atrial chronotropic response than in HBS-preserved hearts. We concluded that the addition of NaHS to HBS enhances glycolysis during ischemia, decreases mitochondrial dysfunction, especially by preserving the phosphorylative system, prevents apoptosis and during ischemia/reperfusion.

  16. The H-loop in the Second Nucleotide-binding Domain of the Cystic Fibrosis Transmembrane Conductance Regulator is Required for Efficient Chloride Channel Closing

    OpenAIRE

    Kloch, Monika; Milewski, Michał; Nurowska, Ewa; Dworakowska, Beata; Cutting, Garry R; Dołowy, Krzysztof

    2010-01-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is an ATP-binding cassette (ABC) transporter that functions as a cAMP-activated chloride channel. The recent model of CFTR gating predicts that the ATP binding to both nucleotide-binding domains (NBD1 and NBD2) of CFTR is required for the opening of the channel, while the ATP hydrolysis at NBD2 induces subsequent channel closing. In most ABC proteins, efficient hydrolysis of ATP requires the presence of the invariant histidine res...

  17. A census of membrane-bound and intracellular signal transduction proteins in bacteria: Bacterial IQ, extroverts and introverts

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2005-06-01

    Full Text Available Abstract Background Analysis of complete microbial genomes showed that intracellular parasites and other microorganisms that inhabit stable ecological niches encode relatively primitive signaling systems, whereas environmental microorganisms typically have sophisticated systems of environmental sensing and signal transduction. Results This paper presents results of a comprehensive census of signal transduction proteins – histidine kinases, methyl-accepting chemotaxis receptors, Ser/Thr/Tyr protein kinases, adenylate and diguanylate cyclases and c-di-GMP phosphodiesterases – encoded in 167 bacterial and archaeal genomes, sequenced by the end of 2004. The data have been manually checked to avoid false-negative and false-positive hits that commonly arise during large-scale automated analyses and compared against other available resources. The census data show uneven distribution of most signaling proteins among bacterial and archaeal phyla. The total number of signal transduction proteins grows approximately as a square of genome size. While histidine kinases are found in representatives of all phyla and are distributed according to the power law, other signal transducers are abundant in certain phylogenetic groups but virtually absent in others. Conclusion The complexity of signaling systems differs even among closely related organisms. Still, it usually can be correlated with the phylogenetic position of the organism, its lifestyle, and typical environmental challenges it encounters. The number of encoded signal transducers (or their fraction in the total protein set can be used as a measure of the organism's ability to adapt to diverse conditions, the 'bacterial IQ', while the ratio of transmembrane receptors to intracellular sensors can be used to define whether the organism is an 'extrovert', actively sensing the environmental parameters, or an 'introvert', more concerned about its internal homeostasis. Some of the microorganisms with the

  18. Conformational changes of the histidine ATP-binding cassette transporter studied by double electron-electron resonance spectroscopy.

    Science.gov (United States)

    Sippach, Michael; Weidlich, Daniela; Klose, Daniel; Abé, Christoph; Klare, Johann; Schneider, Erwin; Steinhoff, Heinz-Jürgen

    2014-07-01

    The conformational dynamics of the histidine ABC transporter HisQMP2 from Salmonella enterica serovar Typhimurium, reconstituted into liposomes, is studied by site-directed spin labeling and double electron-electron resonance spectroscopy in the absence of nucleotides, in the ATP-bound, and in the post-hydrolysis state. The results show that the inter-dimer distances as measured between the Q-loops of HisP2 in the intact transporter resemble those determined for the maltose transporter in all three states of the hydrolysis cycle. Only in the presence of liganded HisJ the closed conformation of the nucleotide binding sites is achieved revealing the transmembrane communication of the presence of substrate. Two conformational states can be distinguished for the periplasmic moiety of HisQMP2 as detected by differences in distributions of interspin distances between positions 86 and 96 or 104 and 197. The observed conformational changes are correlated to proposed open, semi-open and closed conformations of the nucleotide binding domains HisP2. Our results are in line with a rearrangement of transmembrane helices 4 and 4' of HisQM during the closed to the semi-open transition of HisP2 driven by the reorientation of the coupled helices 3a and 3b to occur upon hydrolysis. PMID:24583084

  19. Expression of Recombinant pET22b-LysK-Cysteine/Histidine-Dependent Amidohydrolase/Peptidase Bacteriophage Therapeutic Protein in Escherichia coli BL21 (DE3)

    OpenAIRE

    Kashani, Hamed Haddad; Moniri, Rezvan

    2015-01-01

    Objectives Bacteriophage-encoded endolysins are a group of enzymes that act by digesting the peptidoglycan of bacterial cell walls. LysK has been reported to lyse live staphylococcal cultures. LysK proteins containing only the cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain has the capability to show lytic activity against live clinical staphylococcal isolates, including methicillin-resistant Staphylococcus aureus (MRSA). The aim of this study was to clone and express LysK...

  20. Use of a Semisynthetic Epitope to Probe Histidine Kinase Activity and Regulation

    OpenAIRE

    Carlson, Hans K.; Plate, Lars; Price, Mark S.; Allen, Jasmina J.; Shokat, Kevan M.; Marletta, Michael A.

    2009-01-01

    Histidine-aspartic acid phosphotransfer pathways are central components of prokaryotic signal transduction pathways, and are also found in many eukaryotes. Tools to study histidine kinases, however, are currently quite limited. In this paper, we present a new tool to study histidine-aspartic acid phosphotransfer pathways. We show that many histidine kinases will accept ATPγS as a substrate to form a stable thiophosphohistidine, even when they do not form stable phosphohistidines using the nat...

  1. Conformational constraining of inactive and active States of a seven transmembrane receptor by metal ion site engineering in the extracellular end of transmembrane segment V

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; David, Ralf; Oerlecke, Ilka;

    2006-01-01

    The extracellular part of transmembrane segment V (TM-V) is expected to be involved in the activation process of 7TM receptors, but its role is far from clear. Here, we study the highly constitutively active CXC-chemokine receptor encoded by human herpesvirus 8 (ORF74-HHV8), in which a metal ion...... site was introduced at the extracellular end of TM-V by substitution of two arginines at positions V:01 and V:05 with histidines [R208H; R212H]. The metal ion site conferred high-potency inverse agonist properties (EC(50), 1.7 microM) to Zn(II) in addition to agonist and allosteric enhancing properties....... The activating properties of Zn(II) were not due to a metal ion site between the ligand and the receptor because CXCL1/GROalpha analogs in which the putative metal-ion binding residues had been substituted-[H19A] and [H34A]-acted like wild-type CXCL1/GROalpha. Based on the complex action of Zn...

  2. Intermolecular Phosphoryl Transfer Between Serine and Histidine Residues

    Institute of Scientific and Technical Information of China (English)

    Yu Qian SU; Ming Yu NIU; Shu Xia CAO; Jian Chen ZHANG; Yu Fen ZHAO

    2004-01-01

    A novel intermolecular phosphoryl transfer from O-trimethylsilyl-N-(O, O-diisopropyl) phosphoryl serine trimethylsilyl ester to N, N'-bis(trimethylsilyl) histidine trimethylsilyl ester was studied through electrospray ionization mass spectrometry (ESI-MS). It was proposed that the transfer reaction went through penta-coordinated phosphorus intermediate.

  3. Serum histidine in rheumatoid arthritis: a family study

    OpenAIRE

    J Kirkham; Lowe, J.; Bird, H. A.; Wright, V

    1981-01-01

    We have compared free serum histidine in patients with rheumatoid arthritis, their blood relatives, and their non-blood relatives. The hypohistidinaemia of rheumatoid arthritis is acquired with the disease and does not provide a biochemical marker of those at risk.

  4. Safety, absorption, and antioxidant effects of chromium histidine

    Science.gov (United States)

    Supplemental chromium has been shown to be involved in the alleviation of the metabolic syndrome, glucose intolerance, polycystic ovary syndrome, depression, excess body fat, and gestational, steroid-induced, and type 2 diabetes. Chromium amino acid complexes that contained histidine displayed cons...

  5. Highly Efficient Synthesis of Novel Poly-aza Bis-histidines

    Institute of Scientific and Technical Information of China (English)

    ZHOU Cheng-He; Juan F. Miravet; LIU Qiang; M. Isabel Burguete; Santiago V. Luis

    2003-01-01

    @@ A series of novel poly-aza bis-histidines with much potential in medicinal, bioinorganic, bioorganic, biomimetic and supramolecular chemistry were synthesized conveniently, efficiently and readily in excellent yields from commercial histidine. The low temperature in the reaction of the protected histidine with poly-aza diamine 5 is key condition for the selective preparation of target compounds with high yields.

  6. L-histidine enhances learning in stressed zebrafish

    Directory of Open Access Journals (Sweden)

    L.P.V. Cofiel

    2009-01-01

    Full Text Available The aim of the present study was to determine the effect of the histaminergic precursor L-histidine and the H3 receptor antagonist thioperamide on the learning process of zebrafish submitted or not to confinement stress. On each of the 5 consecutive days of experiment (D1, D2, D3, D4, D5, animals had to associate an interruption of the aquarium air supply with food offering. Non-stressed zebrafish received an intraperitoneal injection of 100 mg/kg L-histidine, 10 mg/kg thioperamide or saline after training. Stressed animals received drug treatment and then were submitted to confinement stress for 1 h before the learning procedure. Time to approach the feeder was measured (in seconds and was considered to be indicative of learning. A decrease in time to approach the feeder was observed in the saline-treated group (D1 = 141.92 ± 13.57; D3 = 55 ± 13.54, indicating learning. A delay in learning of stressed animals treated with saline was observed (D1 = 217.5 ± 25.66. L-histidine facilitated learning in stressed (D1 = 118.68 ± 13.9; D2 = 45.88 ± 8.2 and non-stressed (D1 = 151.11 ± 19.20; D5 = 62 ± 14.68 animals. Thioperamide inhibited learning in non-stressed (D1 = 110.38 ± 9.49; D4 = 58.79 ± 16.83 and stressed animals (D1 = 167.3 ± 26.39; D5 = 172.15 ± 27.35. L-histidine prevented the increase in blood glucose after one session of confinement (L-histidine = 65.88 ± 4.50; control = 53 ± 3.50 mg/dL. These results suggest that the histaminergic system enhances learning and modulates stress responses in zebrafish.

  7. Preparation of 2'-13C-L-Histidine Starting from 13C-Thiocyanate: Synthetic Access to Any Site-Directed Stable Isotope Enriched L-Histidine

    OpenAIRE

    Sarra Talab; Kamal Khalifa Taha; Johan Lugtenburg

    2014-01-01

    1-Benzyl-2-(methylthio)-imidazole-5-ketone is obtained in a few simple steps starting from thiocyanate and glycine amide (glycin). Subsequent treatment with diethyl phosphorocyanidate and functional group manipulations gives 1-benzyl-5-chloromethyl-imidazolium chloride. This compound is converted under mild O’Donnell conditions into the corresponding L-histidine derivative. After deprotection L-histidine is obtained in good yield and 99% enantiomeric excess. 2'-13C-L-Histidine has been obtai...

  8. Protonation of Individual Histidine Residues Is Not Required for the pH-Dependent Entry of West Nile Virus: Evaluation of the “Histidine Switch” Hypothesis▿

    OpenAIRE

    Nelson, Steevenson; Poddar, Subhajit; Lin, Tsai-Yu; Pierson, Theodore C.

    2009-01-01

    Histidine residues have been hypothesized to function as sensors of environmental pH that can trigger the activity of viral fusion proteins. We investigated a requirement for histidine residues in the envelope (E) protein of West Nile virus during pH-dependent entry into cells. Each histidine was individually replaced with a nonionizable amino acid and tested functionally. In each instance, mutants capable of orchestrating pH-dependent infection were identified. These results do not support a...

  9. Comparison of fractal dimension and Shannon entropy in myocytes from rats treated with histidine-tryptophan-glutamate and histidine-tryptophan cetoglutarate

    OpenAIRE

    de Oliveira, Marcos Aurélio Barboza; Brandi, Antônio Carlos; dos Santos, Carlos Alberto; Botelho, Paulo Henrique Husseni; Cortez, José Luís Lasso; de Godoy, Moacir Fernandes; Braile, Domingo Marcolino

    2014-01-01

    Introduction Solutions that cause elective cardiac arrest are constantly evolving, but the ideal compound has not yet been found. The authors compare a new cardioplegic solution with histidine-tryptophan-glutamate (Group 2) and other one with histidine-tryptophan-cetoglutarate (Group 1) in a model of isolated rat heart. Objective To quantify the fractal dimension and Shannon entropy in rat myocytes subjected to cardioplegia solution using histidine-tryptophan with glutamate in an experimental...

  10. Evolution of vertebrate interferon inducible transmembrane proteins

    Directory of Open Access Journals (Sweden)

    Hickford Danielle

    2012-04-01

    Full Text Available Abstract Background Interferon inducible transmembrane proteins (IFITMs have diverse roles, including the control of cell proliferation, promotion of homotypic cell adhesion, protection against viral infection, promotion of bone matrix maturation and mineralisation, and mediating germ cell development. Most IFITMs have been well characterised in human and mouse but little published data exists for other animals. This study characterised IFITMs in two distantly related marsupial species, the Australian tammar wallaby and the South American grey short-tailed opossum, and analysed the phylogeny of the IFITM family in vertebrates. Results Five IFITM paralogues were identified in both the tammar and opossum. As in eutherians, most marsupial IFITM genes exist within a cluster, contain two exons and encode proteins with two transmembrane domains. Only two IFITM genes, IFITM5 and IFITM10, have orthologues in both marsupials and eutherians. IFITM5 arose in bony fish and IFITM10 in tetrapods. The bone-specific expression of IFITM5 appears to be restricted to therian mammals, suggesting that its specialised role in bone production is a recent adaptation specific to mammals. IFITM10 is the most highly conserved IFITM, sharing at least 85% amino acid identity between birds, reptiles and mammals and suggesting an important role for this presently uncharacterised protein. Conclusions Like eutherians, marsupials also have multiple IFITM genes that exist in a gene cluster. The differing expression patterns for many of the paralogues, together with poor sequence conservation between species, suggests that IFITM genes have acquired many different roles during vertebrate evolution.

  11. Ligand Exchange Between Penta-Coordinated Phosphoryl Serine and Histidine Compounds

    Institute of Scientific and Technical Information of China (English)

    曹书霞; 牛明玉; 苏玉倩; 廖新成; 卢奎; 赵玉芬

    2003-01-01

    With the assistance of HPLC-ESI-MS/MS, the self-assembly products of serine and histidine penta-coordinated phosphorus compound were separated and identified. The expectative product was seryl-histidine dipeptide, but it was found that there was almost equimolar amount of histidyl-histidine dipeptide as well as seryl-histidine dipeptide. The mechanism was speculated that there was iigand exchange between penta-coordinated phosphoryl serine and histidine in the reaction process. As a result,two types of dipeptide were produced.

  12. Chiral Interactions of Histidine in a Hydrated Vermiculite

    CERN Document Server

    Fraser, Donald G; Skipper, Neal T; Smalley, Martin V; Wilkinson, Michael A; Demé, Bruno; Heenan, R K

    2010-01-01

    Recent work suggests a link between chiral asymmetry in the amino acid iso-valine extracted from the Murchison meteorite and the extent of hydrous alteration. We present the results of neutron scattering experiments on an exchanged, 1-dimensionally ordered n-propyl ammonium vermiculite clay. The vermiculite gel has a (001) d-spacing of order 5nm at the temperature and concentration of the experiments and the d-spacing responds sensitively to changes in concentration, temperature and electronic environment. The data show that isothermal addition of D-histidine or L-histidine solutions produces shifts in the d-spacing that are different for each enantiomer. This chiral specificity is of interest for the question of whether clays could have played an important role in the origin of biohomochirality.

  13. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes.

    Science.gov (United States)

    Forster, Brian M; Bitar, Alan Pavinski; Marquis, Hélène

    2014-01-01

    Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified negatively charged and uncharged amino acid residues within the N terminus of the PC-PLC propeptide that influence the ability of Mpl to mediate the maturation of PC-PLC, suggesting that these residues promote the interaction of the PC-PLC propeptide with Mpl. In the present study, we identified a non-catalytic histidine residue (H226) that influences Mpl secretion across the cell wall and its ability to process PC-PLC. Our results suggest that a positive charge at position 226 is required for Mpl functions other than autolysis. Based on the charge requirement at this position, we hypothesize that this residue contributes to the interaction of Mpl with the PC-PLC propeptide. PMID:24140648

  14. Low-temperature Raman spectra of L-histidine crystal

    CERN Document Server

    De Sousa, G P; Filho, J Mendes; Melo, F E A; Lima, C L

    2013-01-01

    We present a Raman spectroscopy investigation of the vibrational properties of L-histidine crystals at low temperatures. The temperature dependence of the spectra show discontinuities at 165 K, which we identify with modifications in the bonds associated to both the NH3+ and CO2- motifs indicative of a conformational phase transition that changes the intermolecular bonds. Additional evidence of such a phase transition was provided by differential scanning calorimetry measurements, which identified an enthalpic anomaly at ~165 K.

  15. Structural, vibrational and theoretical studies of L-histidine bromide

    Science.gov (United States)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Mlayah, A.

    2008-10-01

    This paper presents the results of our calculations of the geometric parameters, vibrational spectra and hyperpolarizability of a non linear optical material, L-histidine bromide. Due to the lack of sufficiently precise information on the geometric structure available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystals of L-histidine bromide have been grown by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro symmetric space group P2 12 12 1 of the orthorhombic system. Raman spectra have been recorded in the range [200-3500 cm -1]. All observed vibrational bands have been discussed and assigned to normal mode or to combinations and overtones on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP and BLYP) show good agreement with the experimental data. Comparison between the measured and the calculated vibrational frequencies indicate that B3LYP is superior to the scaled HF approach for molecular vibrational problems. To investigate microscopic second order non linear optical properties of L-histidine bromide, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G(d) method. According to our calculations, the title compound exhibits non-zero β value revealing microscopic second order NLO behaviour.

  16. Bacterial mutagenicity assays: test methods.

    Science.gov (United States)

    Gatehouse, David

    2012-01-01

    The most widely used assays for detecting chemically induced gene mutations are those employing bacteria. The plate incorporation assay using various Salmonella typhimurium LT2 and E. coli WP2 strains is a short-term bacterial reverse mutation assay specifically designed to detect a wide range of chemical substances capable of causing DNA damage leading to gene mutations. The test is used worldwide as an initial screen to determine the mutagenic potential of new chemicals and drugs.The test uses several strains of S. typhimurium which carry different mutations in various genes of the histidine operon, and E. coli which carry the same AT base pair at the critical mutation site within the trpE gene. These mutations act as hot spots for mutagens that cause DNA damage via different mechanisms. When these auxotrophic bacterial strains are grown on a minimal media agar plates containing a trace of the required amino-acid (histidine or tryptophan), only those bacteria that revert to amino-acid independence (His(+) or Tryp(+)) will grow to form visible colonies. The number of spontaneously induced revertant colonies per plate is relatively constant. However, when a mutagen is added to the plate, the number of revertant colonies per plate is increased, usually in a dose-related manner.This chapter provides detailed procedures for performing the test in the presence and absence of a metabolic activation system (S9-mix), including advice on specific assay variations and any technical problems. PMID:22147566

  17. A synergistic effect between cholesterol and tryptophan-flanked transmembrane helices modulates membrane curvature.

    Science.gov (United States)

    van Duyl, Bianca Y; Meeldijk, Hans; Verkleij, Arie J; Rijkers, Dirk T S; Chupin, Vladimir; de Kruijff, Ben; Killian, J Antoinette

    2005-03-22

    The aim of this study was to gain insight into the structural consequences of hydrophobic mismatch for membrane proteins in lipid bilayers that contain cholesterol. For this purpose, tryptophan-flanked peptides, designed to mimic transmembrane segments of membrane proteins, were incorporated in model membranes of unsaturated phosphatidylcholine bilayers of varying thickness and containing varying amounts of cholesterol. Analysis of the lipid organization by (31)P NMR and cryo-TEM demonstrated the formation of an isotropic phase, most likely representing a cubic phase, which occurred exclusively in mixtures containing lipids with relatively long acyl chains. Formation of this phase was inhibited by incorporation of lysophosphatidylcholine. These results indicate that the isotropic phase is formed as a consequence of negative hydrophobic mismatch and that its formation is related to a negative membrane curvature. When either peptide or cholesterol was omitted from the mixture, isotropic-phase formation did not occur, not even when the concentrations of these compounds were significantly increased. This suggests that formation of the isotropic phase is the result of a synergistic effect between the peptides and cholesterol. Interestingly, isotropic-phase formation was not observed when the tryptophans in the peptide were replaced by either lysines or histidines. We propose a model for the mechanism of this synergistic effect, in which its dependence on the flanking residues is explained by preferential interactions between cholesterol and tryptophan residues. PMID:15766283

  18. Transmembrane protein sorting driven by membrane curvature

    NARCIS (Netherlands)

    H. Strahl; S. Ronneau; B. Solana González; D. Klutsch; C. Schaffner-Barbero; L.W. Hamoen

    2015-01-01

    The intricate structure of prokaryotic and eukaryotic cells depends on the ability to target proteins to specific cellular locations. In most cases, we have a poor understanding of the underlying mechanisms. A typical example is the assembly of bacterial chemoreceptors at cell poles. Here we show th

  19. The Origins of Transmembrane Ion Channels

    Science.gov (United States)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Even though membrane proteins that mediate transport of ions and small molecules across cell walls are among the largest and least understood biopolymers in contemporary cells, it is still possible to shed light on their origins and early evolution. The central observation is that transmembrane portions of most ion channels are simply bundles of -helices. By combining results of experimental and computer simulation studies on synthetic models and natural channels, mostly of non-genomic origin, we show that the emergence of -helical channels was protobiologically plausible, and did not require highly specific amino acid sequences. Despite their simple structure, such channels could possess properties that, at the first sight, appear to require markedly larger complexity. Specifically, we explain how the antiamoebin channels, which are made of identical helices, 16 amino acids in length, achieve efficiency comparable to that of highly evolved channels. We further show that antiamoebin channels are extremely flexible, compared to modern, genetically coded channels. On the basis of our results, we propose that channels evolved further towards high structural complexity because they needed to acquire stable rigid structures and mechanisms for precise regulation rather than improve efficiency. In general, even though architectures of membrane proteins are not nearly as diverse as those of water-soluble proteins, they are sufficiently flexible to adapt readily to the functional demands arising during evolution.

  20. Control of phospholipid flip-flop by transmembrane peptides

    Energy Technology Data Exchange (ETDEWEB)

    Kaihara, Masanori; Nakao, Hiroyuki; Yokoyama, Hirokazu [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Endo, Hitoshi [Quantum Beam Science Directorate, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195 (Japan); Ishihama, Yasushi [Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto 606-8501 (Japan); Handa, Tetsurou [Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, 3500-3 Minami-Tamagaki-cho, Suzuka, Mie 513-8670 (Japan); Nakano, Minoru, E-mail: mnakano@pha.u-toyama.ac.jp [Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194 (Japan)

    2013-06-20

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity.

  1. Control of phospholipid flip-flop by transmembrane peptides

    International Nuclear Information System (INIS)

    Highlights: ► Phospholipid flip-flop in transmembrane peptide-containing vesicles was investigated. ► Peptides that contained polar residues in the center of the transmembrane region promoted phospholipid flip-flop. ► A bioinformatics approach revealed the presence of polar residues in the transmembrane region of ER membrane proteins. ► Polar residues in ER membrane proteins possibly provide flippase-like activity. - Abstract: We designed three types of transmembrane model peptides whose sequence originates from a frequently used model peptide KALP23, and we investigated their effects on phospholipid flip-flop. Time-resolved small-angle neutron scattering and a dithionite fluorescent quenching assay demonstrated that TMP-L, which has a fully hydrophobic transmembrane region, did not enhance phospholipid flip-flop, whereas TMP-K and TMP-E, which have Lys and Glu, respectively, in the center of their transmembrane regions, enhanced phospholipid flip-flop. Introduction of polar residues in the membrane-spanning helices is considered to produce a locally polar region and enable the lipid head group to interact with the polar side-chain inside the bilayers, thereby reducing the activation energy for the flip-flop. A bioinformatics approach revealed that acidic and basic residues account for 4.5% of the central region of the transmembrane domain in human ER membrane proteins. Therefore, polar residues in ER membrane proteins are considered to provide flippase-like activity

  2. Exogenous addition of histidine reduces copper availability in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Daisuke Watanabe; Rie Kikushima; Miho Aitoku; Akira Nishimura; Iwao Ohtsu; Ryo Nasuno; Hiroshi Takag

    2014-01-01

    The basic amino acid histidine inhibited yeast cell growth more severely than lysine and arginine. Overexpression of CTR1, which encodes a high-affinity copper transporter on the plasma membrane, or addition of copper to the medium alleviated this cytotoxicity. However, the intracellular level of copper ions was not decreased in the presence of excess histidine. These results indicate that histidine cytotoxicity is associated with low copper availability inside cells, not with impaired copper...

  3. Histidine 21 is at the NAD+ binding site of diphtheria toxin.

    OpenAIRE

    Papini, E; Schiavo, G; Sandoná, D.; Rappuoli, R; C. Montecucco

    1989-01-01

    Treatment of fragment A chain of diphtheria toxin (DT-A) with diethylpyrocarbonate modifies His-21, the single histidine residue present in the chain, without alteration of other residues. Parallel to histidine modification, NAD+ binding and the NAD-glycohydrolase and ADP-ribosyltransferase activities of DT-A are lost. Both NAD+ and adenosine are very effective in protecting DT-A from histidine modification and in preserving its biological properties, while adenine is ineffective. Reversal of...

  4. Revisiting histidine-dependent acid phosphatases: a distinct group of tyrosine phosphatases

    OpenAIRE

    Veeramani, Suresh; Lee, Ming-Shyue; Lin, Ming-Fong

    2009-01-01

    Although classical protein tyrosine phosphatase (PTP) superfamily members are cysteine-dependent, emerging evidence shows that many acid phosphatases (AcPs) function as histidine-dependent PTPs in vivo. These AcPs dephosphorylate phospho-tyrosine substrates intracellularly and could have roles in development and disease. In contrast to cysteine-dependent PTPs, they utilize histidine, rather than cysteine, for substrate dephosphorylation. Structural analyses reveal that active site histidine, ...

  5. Possible regulation of the Salmonella typhimurium histidine operon by adenosine triphosphate phosphoribosyltransferase: large metabolic effects.

    OpenAIRE

    Goitein, R K; Parsons, S. M.

    1980-01-01

    An effort to find growth conditions leading to conditional regulation of the histidine operon of Salmonella typhimurium by the allosteric first enzyme of the pathway, adenosine triphosphate phosphoribosyltransferase (EC 2.4.2.17), is reported. A strain deleting the enzyme, TR3343, behaved simply and predictably under all growth conditions, whereas histidine auxotrophs containing active enzyme behaved in complicated ways dependent upon the location of the histidine pathway lesion. hisE strains...

  6. Studies on the Interactions between Potassium oxalato oxodiperoxovanadate and Histidine by NMR and MS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Multi-nuclear NMR and ESI-MS have been applied to study the interactions between oxalato-oxodiperoxovanadate and histidine in neutral solution. Coordination between the complex and histidine was monitored by 51V NMR. A pair of new isomers produced via vanadium atom binding separately to N1 and N3 of the imidazole ring of histidine was characterized by several spectroscopic methods. Experimental results show that the structure activity relationship of peroxovanadium complexes bearing organic ligands may be related to the specific recognition between peroxovanadium and histidine residue of tyrosine phosphatase.

  7. Flow Injection Analysis of Histidine with Enhanced Electrogenerated Chemiluminescence of Luminol

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A simple and sensitive flow injection method is presented for the determination of histidine based on its enhancement of electrogenerated chemiluminescence (ECL) of luminol. After optimization of the experimental parameters, the working range for histidine was in 1.0 x 10-6 to 1.0 x 10 -3 mol/L with a detection limit (S/N = 3) of 0.56 μmol/L. The relative standard deviation was 1.6% for 11 measurements of 5 x 10 -5 mol/L histidine solution. The proposed method has been successfully applied to the determination of histidine in real pharmaceutical preparation.

  8. Mechanism of Oxidation of L-Histidine by Heptavalent Manganese in Alkaline Medium

    OpenAIRE

    Jose, Timy P.; Nandibewoor, Sharanappa T.; Suresh M. Tuwar

    2005-01-01

    The kinetics of oxidation of L-histidine by manganese(VII) in aqueous alkaline medium at a constant ionic strength of 0.05 mol dm-3 was studied spectrophotometrically. The reaction between permanganate and L-histidine in alkaline medium exhibits 2:1 stoichiometry (KMnO4: L-histidine). The reaction is of first order in [KMnO4], less than unit order in [L-histidine] and [alkali]. Decrease in the dielectric constant of the medium decreases the rate of reaction. Effect of added products and ionic...

  9. Kinetic investigations into the possible cause of low serum histidine in rheumatoid arthritis.

    OpenAIRE

    Sitton, N G; Dixon, J S; Astbury, C; Francis, R J; Bird, H. A.; Wright, V

    1988-01-01

    To investigate the cause of low serum histidine in rheumatoid arthritis (RA) single oral and intravenous doses of L-histidine were administered to patients with active RA, and to an equal number of age and sex matched control subjects. In the first study 13 patients and their controls received a 100 mg kg-1 dose of L-histidine as an aqueous slurry. Significant differences were seen in body weight, predose baseline serum histidine concentration, Cmax, t1/2, and area under curve, AUC0-infinity....

  10. Isolation and nucleotide sequence of a mouse histidine tRNA gene.

    OpenAIRE

    Han, J. H.; Harding, J D

    1982-01-01

    We have sequenced a 1307 base pair mouse genomic DNA fragment which contains a histidine tRNA gene. The sequence of the putative mouse histidine tRNA differs from the published sequence of sheep liver histidine tRNA by a single base change in the D-loop. It does not contain an unpaired 5' terminal G residue, as reported for Drosophila and sheep histidine tRNAs. The gene does not contain introns. The 3' flanking region contains a typical RNA polymerase III termination site of 6 consecutive T r...

  11. Histidyl-histidine catalysis of glycine condensation in fluctuating clay environments

    Science.gov (United States)

    White, D. H.; Erickson, J. C.

    1981-01-01

    Histidyl-histidine is a remarkably effective catalyst of peptide bond formation in the reaction of glycine in a fluctuating (hot-dry, cold-wet) clay environment. It has shown turnover numbers (molecules of glycine incorporated in oligoglycines per molecule of catalyst) as high as 18 in a single cycle and as high as 52 overall. A number of other dipeptides were tested, as well as monomeric histidine, N-acetyl histidine, and imidazole, none of which showed turnover numbers greater than one. Histidyl-histidine is a model for a prebiotic protoenzyme, and implications for the development of a simple translation mechanism are discussed.

  12. Positioning of bacterial chemoreceptors.

    Science.gov (United States)

    Jones, Christopher W; Armitage, Judith P

    2015-05-01

    For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.

  13. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface.

    Science.gov (United States)

    Affandi, Trisiani; Issaian, Aaron V; McEvoy, Megan M

    2016-09-20

    In bacteria, two-component systems act as signaling systems to respond to environmental stimuli. Two-component systems generally consist of a sensor histidine kinase and a response regulator, which work together through histidyl-aspartyl phosphorelay to result in gene regulation. One of the two-component systems in Escherichia coli, CusS-CusR, is known to induce expression of cusCFBA genes at increased periplasmic Cu(I) and Ag(I) concentrations to help maintain metal ion homeostasis. CusS is a membrane-associated histidine kinase with a periplasmic sensor domain connected to the cytoplasmic ATP binding and catalytic domains through two transmembrane helices. The mechanism of how CusS senses increasing metal ion concentrations and activates CusR is not yet known. Here, we present the crystal structure of the Ag(I)-bound periplasmic sensor domain of CusS at a resolution of 2.15 Å. The structure reveals that CusS forms a homodimer with four Ag(I) binding sites per dimeric complex. Two symmetric metal binding sites are found at the dimeric interface, which are each formed by two histidines and one phenylalanine with an unusual cation-π interaction. The other metal ion binding sites are in a nonconserved region within each monomer. Functional analyses of CusS variants with mutations in the metal sites suggest that the metal ion binding site at the dimer interface is more important for function. The structural and functional data provide support for a model in which metal-induced dimerization results in increases in kinase activity in the cytoplasmic domains of CusS.

  14. The Structure of the Periplasmic Sensor Domain of the Histidine Kinase CusS Shows Unusual Metal Ion Coordination at the Dimeric Interface

    Science.gov (United States)

    Affandi, Trisiani; Issaian, Aaron V.; McEvoy, Megan M.

    2016-01-01

    In bacteria, two-component systems act as signaling systems to respond to environmental stimuli. Two-component systems generally consist of a sensor histidine kinase and a response regulator, which work together through histidyl-aspartyl phospho-relay to result in gene regulation. One of the two-component systems in Escherichia coli, CusS-CusR, is known to induce expression of cusCFBA genes under increased periplasmic Cu(I) and Ag(I) concentrations to help maintain metal ion homeostasis. CusS is a membrane-associated histidine kinase with a periplasmic sensor domain connected to the cytoplasmic ATP-binding and catalytic domains through two transmembrane helices. The mechanism of how CusS senses increasing metal ion concentrations and activates CusR is not yet known. Here, we present the crystal structure of the Ag(I)-bound periplasmic sensor domain of CusS at a resolution of 2.15 Å. The structure reveals that CusS forms a homodimer with four Ag(I) binding sites per dimeric complex. Two symmetric metal binding sites are found at the dimeric interface, which are each formed by two histidines and one phenylalanine with an unusual cation-π interaction. The other metal ion binding sites are in a non-conserved region within each monomer. Functional analyses of CusS variants with mutations in the metal sites suggest that the metal ion binding site at the dimer interface is more important for function. The structural and functional data provide support for a model in which metal-induced dimerization results in increases in kinase activity in the cytoplasmic domains of CusS. PMID:27583660

  15. Thermokinetics of the Formation Reaction of Zinc Histidine Complex

    Institute of Scientific and Technical Information of China (English)

    GAO,Sheng-Li(高胜利); CHEN,San-Ping(陈三平); HU,Rong-Zu(胡荣祖); SHI,Qi-Zhen(史启祯)

    2002-01-01

    The enthalpy change of reaction of zinc chloride with L-α-histidine in the temperature range of 25-50 ℃ has been determined by a microcalorimeter. On the basis of experimental and calculated results, three thermodynamics parameters (the activation enthalpy, the activation entropy, the activation free energy), the rate constant and three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) of the reaction, and the standard enthalpy of formarion of Zn(His)2+ (aq.) are obtained. The results showed that the title reaction easily took place at the studied temperature.

  16. Prebiotic synthesis of imidazole-4-acetaldehyde and histidine

    Science.gov (United States)

    Shen, Chun; Oro, J.; Yang, Lily; Miller, Stanley L.

    1987-01-01

    The prebiotic synthesis of imidazole-4-acetaldehyde and imidazole-4-glycol from erythrose and formamidine has been demonstrated as well as the prebiotic synthesis of imidazole-4-ethanol and imidazole-4-glycol from erythrose, formaldehyde, and ammonia. The maximum yields of imidazole-4-acetaldehyde, imidazole-4-ethanol, and imidazole-4-glycol obtained in these reactions are 1.6, 5.4, and 6.8 percent respectively, based on the erythrose. Imidazole-4-acetaldehyde would have been converted to histidine on the primitive earth by a Strecker synthesis, and several prebiotic reactions would convert imidazole-4-glycol and imidazole-4-ethanol to imidazole-4-acetaldehyde.

  17. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein.

  18. A Cyclic di-GMP-binding Adaptor Protein Interacts with Histidine Kinase to Regulate Two-component Signaling.

    Science.gov (United States)

    Xu, Linghui; Venkataramani, Prabhadevi; Ding, Yichen; Liu, Yang; Deng, Yinyue; Yong, Grace Lisi; Xin, Lingyi; Ye, Ruijuan; Zhang, Lianhui; Yang, Liang; Liang, Zhao-Xun

    2016-07-29

    The bacterial messenger cyclic di-GMP (c-di-GMP) binds to a diverse range of effectors to exert its biological effect. Despite the fact that free-standing PilZ proteins are by far the most prevalent c-di-GMP effectors known to date, their physiological function and mechanism of action remain largely unknown. Here we report that the free-standing PilZ protein PA2799 from the opportunistic pathogen Pseudomonas aeruginosa interacts directly with the hybrid histidine kinase SagS. We show that PA2799 (named as HapZ: histidine kinase associated PilZ) binds directly to the phosphoreceiver (REC) domain of SagS, and that the SagS-HapZ interaction is further enhanced at elevated c-di-GMP concentration. We demonstrate that binding of HapZ to SagS inhibits the phosphotransfer between SagS and the downstream protein HptB in a c-di-GMP-dependent manner. In accordance with the role of SagS as a motile-sessile switch and biofilm growth factor, we show that HapZ impacts surface attachment and biofilm formation most likely by regulating the expression of a large number of genes. The observations suggest a previously unknown mechanism whereby c-di-GMP mediates two-component signaling through a PilZ adaptor protein. PMID:27231351

  19. Charged histidine affects alpha-helix stability at all positions in the helix by interacting with the backbone charges.

    OpenAIRE

    Armstrong, K M; Baldwin, R L

    1993-01-01

    To determine whether a charged histidine side chain affects alpha-helix stability only when histidine is close to one end of the helix or also when it is in the central region, we substitute a single histidine residue at many positions in two reference peptides and measure helix stability and histidine pKa. The position of a charged histidine residue has a major effect on helix stability in 0.01 M NaCl: the helix content of a 17-residue peptide is 24% when histidine is at position 3 compared ...

  20. TSSOM:Transmembrane Segments Prediction by Self—Organizing Map

    Institute of Scientific and Technical Information of China (English)

    LIUQi; ZHUYisheng; WANGBaohua; LIYixue

    2003-01-01

    A novel method ealled TSSOM(Transmembrane segments prediction by self-organizing map)is presented in the paper.The main idea of the method lies in the application of self-organizing feature map together with special visualization techniques to classify the multivariate "time" series of transmembrane proteins into flve classes.Through the analysis of resulting trajectories on the map,frequent patterns of transmembrane segments are detected and even some kind of "new"knowledge about membrane insertion mechanism is acquired.The discovered patterns and the knowledge are then used to predict transmembrane segments for auery sequence.The prediction results not only show that the method is powerful,but also prove that the patterns and the knowledge about the interaction bwtween the patterns are effective and acceptable.

  1. Lipid bilayer microarray for parallel recording of transmembrane ion currents.

    Science.gov (United States)

    Le Pioufle, Bruno; Suzuki, Hiroaki; Tabata, Kazuhito V; Noji, Hiroyuki; Takeuchi, Shoji

    2008-01-01

    This paper describes a multiwell biochip for simultaneous parallel recording of ion current through transmembrane pores reconstituted in planar lipid bilayer arrays. Use of a thin poly(p-xylylene) (parylene) film having micrometer-sized apertures (phi=15-50 microm, t=20 microm) led to formation of highly stable bilayer lipid membranes (BLMs) for incorporation of transmembrane pores; thus, a large number of BLMs could be arrayed without any skillful technique. We optically confirmed the simultaneous formation of BLMs in a 5x5 matrix, and in our durability test, the BLM lasted more than 15 h. Simultaneous parallel recording of alamethicin and gramicidin transmembrane pores in multiple contiguous recording sites demonstrated the feasibility of high-throughput screening of transmembrane ion currents in artificial lipid bilayers.

  2. Histidine Residue 94 Is Involved in pH Sensing by Histidine Kinase ArsS of Helicobacter pylori

    OpenAIRE

    Stefanie Müller; Monika Götz; Dagmar Beier

    2009-01-01

    BACKGROUND: The ArsRS two-component system is the master regulator of acid adaptation in the human gastric pathogen Helicobacter pylori. Low pH is supposed to trigger the autophosphorylation of the histidine kinase ArsS and the subsequent transfer of the phosphoryl group to its cognate response regulator ArsR which then acts as an activator or repressor of pH-responsive genes. Orthologs of the ArsRS two-component system are also present in H. pylori's close relatives H. hepaticus, Campylobact...

  3. Histidine residue 94 is involved in pH sensing by histidine kinase ArsS of Helicobacter pylori.

    Directory of Open Access Journals (Sweden)

    Stefanie Müller

    Full Text Available BACKGROUND: The ArsRS two-component system is the master regulator of acid adaptation in the human gastric pathogen Helicobacter pylori. Low pH is supposed to trigger the autophosphorylation of the histidine kinase ArsS and the subsequent transfer of the phosphoryl group to its cognate response regulator ArsR which then acts as an activator or repressor of pH-responsive genes. Orthologs of the ArsRS two-component system are also present in H. pylori's close relatives H. hepaticus, Campylobacter jejuni and Wolinella succinogenes which are non-gastric colonizers. METHODOLOGY/PRINCIPAL FINDINGS: In order to investigate the mechanism of acid perception by ArsS, derivatives of H. pylori 26695 expressing ArsS proteins with substitutions of the histidine residues present in its periplasmic input domain were constructed. Analysis of pH-responsive transcription of selected ArsRS target genes in these mutants revealed that H94 is relevant for pH sensing, however, our data indicate that protonatable amino acids other than histidine contribute substantially to acid perception by ArsS. By the construction and analysis of H. pylori mutants carrying arsS allels from the related epsilon-proteobacteria we demonstrate that WS1818 of W. succinogenes efficiently responds to acidic pH. CONCLUSIONS/SIGNIFICANCE: We show that H94 in the input domain of ArsS is crucial for acid perception in H. pylori 26695. In addition our data suggest that ArsS is able to adopt different conformations depending on the degree of protonation of acidic amino acids in the input domain. This might result in different activation states of the histidine kinase allowing a gradual transcriptional response to low pH conditions. Although retaining considerable similarity to ArsS the orthologous proteins of H. hepaticus and C. jejuni may have evolved to sensors of a different environmental stimulus in accordance with the non gastric habitat of these bacteria.

  4. Histidine-rich glycoprotein protects from systemic Candida infection.

    Directory of Open Access Journals (Sweden)

    Victoria Rydengård

    2008-08-01

    Full Text Available Fungi, such as Candida spp., are commonly found on the skin and at mucosal surfaces. Yet, they rarely cause invasive infections in immunocompetent individuals, an observation reflecting the ability of our innate immune system to control potentially invasive microbes found at biological boundaries. Antimicrobial proteins and peptides are becoming increasingly recognized as important effectors of innate immunity. This is illustrated further by the present investigation, demonstrating a novel antifungal role of histidine-rich glycoprotein (HRG, an abundant and multimodular plasma protein. HRG bound to Candida cells, and induced breaks in the cell walls of the organisms. Correspondingly, HRG preferentially lysed ergosterol-containing liposomes but not cholesterol-containing ones, indicating a specificity for fungal versus other types of eukaryotic membranes. Both antifungal and membrane-rupturing activities of HRG were enhanced at low pH, and mapped to the histidine-rich region of the protein. Ex vivo, HRG-containing plasma as well as fibrin clots exerted antifungal effects. In vivo, Hrg(-/- mice were susceptible to infection by C. albicans, in contrast to wild-type mice, which were highly resistant to infection. The results demonstrate a key and previously unknown antifungal role of HRG in innate immunity.

  5. Distal histidine conformational flexibility in dehaloperoxidase from Amphitrite ornata

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zuxu; de Serrano, Vesna; Betts, Laurie; Franzen, Stefan; (NCSU); (UNC)

    2009-01-28

    The enzyme dehaloperoxidase (DHP) from the terebellid polychaete Amphitrite ornata is a heme protein which has a globin fold but can function as both a hemoglobin and a peroxidase. As a peroxidase, DHP is capable of converting 2,4,6-trihalophenols to the corresponding 2,6-dihaloquinones in the presence of hydrogen peroxide. As a hemoglobin, DHP cycles between the oxy and deoxy states as it reversibly binds oxygen for storage. Here, it is reported that the distal histidine, His55, exhibits conformational flexibility in the deoxy form and is consequently observed in two solvent-exposed conformations more than 9.5 {angstrom} away from the heme. These conformations are analogous to the open conformation of sperm whale myoglobin. The heme iron in deoxy ferrous DHP is five-coordinate and has an out-of-plane displacement of 0.25 {angstrom} from the heme plane. The observation of five-coordinate heme iron with His55 in a remote solvent-exposed conformation is consistent with the hypothesis that His55 interacts with heme iron ligands through hydrogen bonding in the closed conformation. Since His55 is also displaced by the binding of 4-iodophenol in an internal pocket, these results provide new insight into the correlation between heme iron ligation, molecular binding in the distal pocket and the conformation of the distal histidine in DHP.

  6. Segmental helical motions and dynamical asymmetry modulate histidine kinase autophosphorylation.

    Directory of Open Access Journals (Sweden)

    Ariel E Mechaly

    2014-01-01

    Full Text Available Histidine kinases (HKs are dimeric receptors that participate in most adaptive responses to environmental changes in prokaryotes. Although it is well established that stimulus perception triggers autophosphorylation in many HKs, little is known on how the input signal propagates through the HAMP domain to control the transient interaction between the histidine-containing and ATP-binding domains during the catalytic reaction. Here we report crystal structures of the full cytoplasmic region of CpxA, a prototypical HK involved in Escherichia coli response to envelope stress. The structural ensemble, which includes the Michaelis complex, unveils HK activation as a highly dynamic process, in which HAMP modulates the segmental mobility of the central HK α-helices to promote a strong conformational and dynamical asymmetry that characterizes the kinase-active state. A mechanical model based on our structural and biochemical data provides insights into HAMP-mediated signal transduction, the autophosphorylation reaction mechanism, and the symmetry-dependent control of HK kinase/phosphatase functional states.

  7. Loss of fragile histidine triad protein in human hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Po Zhao; Xin Song; Yuan-Yuan Nin; Ya-Li Lu; Xiang-Hong Li

    2003-01-01

    AIM: To investigate the expression of fragile histidine triad (FHIT) gene protein, Fhit, which is recently thought to be a candidate tumor suppressor. Abnormal expression of fragile histidine triad has been found in a variety of human cancers,but little is known about its expression in human hepatocellular carcinogenesis and evolution.METHODS: Sections of 83 primary human hepatocellular carcionoma with corresponding para-neoplastic liver tissue and 10 normal liver tissue were evaluated immunohistochemically for Fhit protein expression.RESULTS: All normal liver tissue and para-neoplastic liver tissue showed a strong expression of Fhit, whereas 50 of 83(65.0 %) carcinomas showed a marked loss or absence of Fhit expression. The differences of Fhit expression between carcinoma and normal or para-neoplastic liver tissue werehighly significant (P=0.000). The proportion of carcinomas with reduced Fhit expression showed an increasing trend (a) with decreasing differentiation or higher histological grade (P=0.219); (b) in tumors with higher clinical stage Ⅲ and ⅣV (91.3 %, P=0.000), compared with tumors with lower stage Ⅰ and Ⅱ (27.6 %); and (c) in cancers with bigger tumor size (>50 mm) (75.0 %, P=0.017), compared withsmaller tumor size (≤ 50 mm). CONCLUSION: FHIT inactivation seems to be both an earlyand a later event, associated with carcinogenesis andprogression to more aggressive hepatocellular carcinomas.Thus, evaluation of Fhit expression by immunohistochemistryin hepatocellular carcinoma may provide important diagnosticand prognostic information in clinical application.

  8. Systematic Mutational Analysis of Histidine Kinase Genes in the Nosocomial Pathogen Stenotrophomonas maltophilia Identifies BfmAK System Control of Biofilm Development.

    Science.gov (United States)

    Zheng, Liu; Wang, Fang-Fang; Ren, Bao-Zhen; Liu, Wei; Liu, Zhong; Qian, Wei

    2016-04-01

    The Gram-negative bacterium Stenotrophomonas maltophilialives in diverse ecological niches. As a result of its formidable capabilities of forming biofilm and its resistance to multiple antibiotic agents, the bacterium is also a nosocomial pathogen of serious threat to the health of patients whose immune systems are suppressed or compromised. Besides the histidine kinase RpfC, the two-component signal transduction system (TCS), which is the canonical regulatory machinery used by most bacterial pathogens, has never been experimentally investigated inS. maltophilia Here, we annotated 62 putative histidine kinase genes in the S. maltophilia genome and successfully obtained 51 mutants by systematical insertional inactivation. Phenotypic characterization identified a series of mutants with deficiencies in bacterial growth, swimming motility, and biofilm development. A TCS, named here BfmA-BfmK (Smlt4209-Smlt4208), was genetically confirmed to regulate biofilm formation inS. maltophilia Together with interacting partner prediction and chromatin immunoprecipitation screens, six candidate promoter regions bound by BfmA in vivo were identified. We demonstrated that, among them, BfmA acts as a transcription factor that binds directly to the promoter regions of bfmA-bfmK and Smlt0800(acoT), a gene encoding an acyl coenzyme A thioesterase that is associated with biofilm development, and positively controls their transcription. Genome-scale mutational analyses of histidine kinase genes and functional dissection of BfmK-BfmA regulation in biofilm provide genetic information to support more in-depth studies on cellular signaling inS. maltophilia, in the context of developing novel approaches to fight this important bacterial pathogen. PMID:26873318

  9. Inhibition of Morganella morganii Histidine Decarboxylase Activity and Histamine Accumulation in Mackerel Muscle Derived from Filipendula ulumaria Extracts.

    Science.gov (United States)

    Nitta, Yoko; Yasukata, Fumiko; Kitamoto, Noritoshi; Ito, Mikiko; Sakaue, Motoyoshi; Kikuzaki, Hiroe; Ueno, Hiroshi

    2016-03-01

    Filipendula ulmaria, also known as meadowsweet, is an herb; its extract was examined for the prevention of histamine production, primarily that caused by contaminated fish. The efficacy of meadowsweet was assessed using two parameters: inhibition of Morganella morganii histidine decarboxylase (HDC) and inhibition of histamine accumulation in mackerel. Ellagitannins from F. ulmaria (rugosin D, rugosin A methyl ester, tellimagrandin II, and rugosin A) were previously shown to be potent inhibitors of human HDC; and in the present work, these compounds inhibited M. morganii HDC, with half maximal inhibitory concentration values of 1.5, 4.4, 6.1, and 6.8 μM, respectively. Application of the extracts (at 2 wt%) to mackerel meat yielded significantly decreased histamine accumulation compared with treatment with phosphate-buffered saline as a control. Hence, F. ulmaria exhibits inhibitory activity against bacterial HDC and might be effective for preventing food poisoning caused by histamine.

  10. Preparation of 2'-13C-L-Histidine Starting from 13C-Thiocyanate: Synthetic Access to Any Site-Directed Stable Isotope Enriched L-Histidine

    Directory of Open Access Journals (Sweden)

    Sarra Talab

    2014-01-01

    Full Text Available 1-Benzyl-2-(methylthio-imidazole-5-ketone is obtained in a few simple steps starting from thiocyanate and glycine amide (glycin. Subsequent treatment with diethyl phosphorocyanidate and functional group manipulations gives 1-benzyl-5-chloromethyl-imidazolium chloride. This compound is converted under mild O’Donnell conditions into the corresponding L-histidine derivative. After deprotection L-histidine is obtained in good yield and 99% enantiomeric excess. 2'-13C-L-Histidine has been obtained via this new scheme with high (99% 13C incorporation starting with commercially available 13C- thiocyanate. This synthetic scheme allows access to any isotopomer of L-histidine and many other biologically important imidazole derivatives.

  11. Vanadate inhibition of fungal phyA and bacterial appA2 histidine acid phosphatases

    Science.gov (United States)

    The fungal PhyA protein, which was first identified as an acid optimum phosphomonoesterase (EC 3.1.3.8), could also serve as a vanadate haloperoxidase (EC 1.11.1.10) provided the acid phosphatase activity is shutdown by vanadate. To understand how vanadate inhibits both phytate and pNPP degrading ac...

  12. Virulence Effects and Signaling Partners Modulated by Brucella melitensis Light-sensing Histidine Kinase

    Science.gov (United States)

    Gourley, Christopher R.

    The facultative intracellular pathogen Brucella melitensis utilizes diverse virulence factors. A Brucella light sensing histidine kinase can influence in vitro virulence of the bacteria during intracellular infection. First, we demonstrated that the B. melitensis light sensing kinase (BM-LOV-HK) affects virulence in an IRF-1-/- mouse model of infection. Infection with a Δ BM-LOV-HK strain resulted in less bacterial colonization of IRF-1-/- spleens and extended survivorship compared to mice infected with wild type B. melitensis 16M. Second, using PCR arrays, we observed less expression of innate and adaptive immune system activation markers in ΔBM-LOV-HK infected mouse spleens than wild type B. melitensis 16M infected mouse spleens 6 days after infection. Third, we demonstrated by microarray analysis of B. melitensis that deletion of BM-LOV-HK alters bacterial gene expression. Downregulation of genes involved in control of the general stress response system included the alternative sigma factor RpoE1 and its anti-anti sigma factor PhyR. Conversely, genes involved in flagella production, quorum sensing, and the type IV secretion system (VirB operon) were upregulated in the Δ BM-LOV-HK strain compared to the wild type B. melitensis 16M. Analysis of genes differentially regulated in Δ BM-LOV-HK versus the wild type strain indicated an overlap of 110 genes with data from previous quorum sensing regulator studies of Δ vjbR and/ΔblxR(babR) strains. Also, several predicted RpoE1 binding sites located upstream of genes were differentially regulated in the ΔBM-LOV-HK strain. Our results suggest BM-LOV-HK is important for in vivo Brucella virulence, and reveals that BM-LOV-HK directly or indirect regulates members of the Brucella quorum sensing, type IV secretion, and general stress systems.

  13. Histidine side-chain dynamics and protonation monitored by C-13 CPMG NMR relaxation dispersion

    DEFF Research Database (Denmark)

    Hass, M. A. S.; Yilmaz, A.; Christensen, Hans Erik Mølager;

    2009-01-01

    The use of C-13 NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically C-13 labeled histidine residues in plastocyanin (PCu) from An...

  14. Synthesis and catalytic activity of histidine-based NHC ruthenium complexes

    OpenAIRE

    Monney, Angèle; Venkatachalam, Galmari; Albrecht, Martin

    2011-01-01

    Main-chain C,N-protected histidine has been successfully alkylated at both side-chain nitrogens. The corresponding histidinium salt was metallated with ruthenium(II) by a transmetalation procedure, thus providing histidine-derived NHC ruthenium complexes. These bio-inspired comsxsxsplexes show appreciable activity in the catalytic transfer hydrogenation of ketones. peer-reviewed

  15. Histidine is the axial ligand to cytochrome alpha 3 in cytochrome c oxidase

    OpenAIRE

    Stevens, Tom H.; Chan, Sunney I.

    1981-01-01

    The nitric oxide-bound complexes of reduced yeast cytochrome c oxidase incorporated with [1,3-15N2]histidine have been investigated by EPR spectroscopy. The results of this study have allowed the unambiguous identification of histidine as the endogenous axial ligand to cytochrome alpha 3.

  16. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    Science.gov (United States)

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK.

  17. 2D IR Spectroscopy of Histidine: Probing Side-Chain Structure and Dynamics via Backbone Amide Vibrations

    OpenAIRE

    Ghosh, Ayanjeet; Tucker, Matthew J.; Gai, Feng

    2014-01-01

    It is well known that histidine is involved in many biological functions due to the structural versatility of its side chain. However, probing the conformational transitions of histidine in proteins, especially those occurring on an ultrafast time scale, is difficult. Herein we show, using a histidine dipeptide as a model, that it is possible to probe the tautomer and protonation status of a histidine residue by measuring the two-dimensional infrared (2D IR) spectrum of its amide I vibrationa...

  18. Transmembrane domain II of the human bile acid transporter SLC10A2 coordinates sodium translocation.

    Science.gov (United States)

    Sabit, Hairat; Mallajosyula, Sairam S; MacKerell, Alexander D; Swaan, Peter W

    2013-11-01

    Human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) is responsible for intestinal reabsorption of bile acids and plays a key role in cholesterol homeostasis. We used a targeted and systematic approach to delineate the role of highly conserved transmembrane helix 2 on the expression and function of hASBT. Cysteine mutation significantly depressed transport activity for >60% of mutants without affecting cell surface localization of the transporter. All mutants were inaccessible toward chemical modification by membrane-impermeant MTSET reagent, strongly suggesting that transmembrane 2 (TM2) plays an indirect role in bile acid substrate translocation. Both bile acid uptake and sodium dependence of TM2 mutants revealed a distinct α-helical periodicity. Kinetic studies with conservative and non-conservative mutants of sodium sensitive residues further underscored the importance of Gln(75), Phe(76), Met(79), Gly(83), Leu(86), Phe(90), and Asp(91) in hASBT function. Computational analysis indicated that Asp(91) may coordinate with sodium during the transport cycle. Combined, our data propose that a consortium of sodium-sensitive residues along with previously reported residues (Thr(134), Leu(138), and Thr(149)) from TM3 may form the sodium binding and translocation pathway. Notably, residues Gln(75), Met(79), Thr(82), and Leu(86) from TM2 are highly conserved in TM3 of a putative remote bacterial homologue (ASBTNM), suggesting a universal mechanism for the SLC10A transporter family.

  19. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Directory of Open Access Journals (Sweden)

    Marc Bou Zeidan

    Full Text Available Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  20. Sequencing, characterization, and gene expression analysis of the histidine decarboxylase gene cluster of Morganella morganii.

    Science.gov (United States)

    Ferrario, Chiara; Borgo, Francesca; de Las Rivas, Blanca; Muñoz, Rosario; Ricci, Giovanni; Fortina, Maria Grazia

    2014-03-01

    The histidine decarboxylase gene cluster of Morganella morganii DSM30146(T) was sequenced, and four open reading frames, named hdcT1, hdc, hdcT2, and hisRS were identified. Two putative histidine/histamine antiporters (hdcT1 and hdcT2) were located upstream and downstream the hdc gene, codifying a pyridoxal-P dependent histidine decarboxylase, and followed by hisRS gene encoding a histidyl-tRNA synthetase. This organization was comparable with the gene cluster of other known Gram negative bacteria, particularly with that of Klebsiella oxytoca. Recombinant Escherichia coli strains harboring plasmids carrying the M. morganii hdc gene were shown to overproduce histidine decarboxylase, after IPTG induction at 37 °C for 4 h. Quantitative RT-PCR experiments revealed the hdc and hisRS genes were highly induced under acidic and histidine-rich conditions. This work represents the first description and identification of the hdc-related genes in M. morganii. Results support the hypothesis that the histidine decarboxylation reaction in this prolific histamine producing species may play a role in acid survival. The knowledge of the role and the regulation of genes involved in histidine decarboxylation should improve the design of rational strategies to avoid toxic histamine production in foods.

  1. Prediction of three-dimensional transmembrane helical protein structures

    Science.gov (United States)

    Barth, Patrick

    Membrane proteins are critical to living cells and their dysfunction can lead to serious diseases. High-resolution structures of these proteins would provide very valuable information for designing eficient therapies but membrane protein crystallization is a major bottleneck. As an important alternative approach, methods for predicting membrane protein structures have been developed in recent years. This chapter focuses on the problem of modeling the structure of transmembrane helical proteins, and describes recent advancements, current limitations, and future challenges facing de novo modeling, modeling with experimental constraints, and high-resolution comparative modeling of these proteins. Abbreviations: MP, membrane protein; SP, water-soluble protein; RMSD, root-mean square deviation; Cα RMSD, root-mean square deviation over Cα atoms; TM, transmembrane; TMH, transmembrane helix; GPCR, G protein-coupled receptor; 3D, three dimensional; NMR, nuclear magnetic resonance spectroscopy; EPR, electron paramagnetic resonance spectroscopy; FTIR, Fourier transform infrared spectroscopy.

  2. Solid-State NMR Investigation of the Conformation, Proton Conduction, and Hydration of the Influenza B Virus M2 Transmembrane Proton Channel.

    Science.gov (United States)

    Williams, Jonathan K; Tietze, Daniel; Lee, Myungwoon; Wang, Jun; Hong, Mei

    2016-07-01

    Together with the influenza A virus, influenza B virus causes seasonal flu epidemics. The M2 protein of influenza B (BM2) forms a tetrameric proton-conducting channel that is important for the virus lifecycle. BM2 shares little sequence homology with AM2, except for a conserved HxxxW motif in the transmembrane (TM) domain. Unlike AM2, no antiviral drugs have been developed to block the BM2 channel. To elucidate the proton-conduction mechanism of BM2 and to facilitate the development of BM2 inhibitors, we have employed solid-state NMR spectroscopy to investigate the conformation, dynamics, and hydration of the BM2 TM domain in lipid bilayers. BM2 adopts an α-helical conformation in lipid membranes. At physiological temperature and low pH, the proton-selective residue, His19, shows relatively narrow (15)N chemical exchange peaks for the imidazole nitrogens, indicating fast proton shuttling that interconverts cationic and neutral histidines. Importantly, pH-dependent (15)N chemical shifts indicate that His19 retains the neutral population to much lower pH than His37 in AM2, indicating larger acid-dissociation constants or lower pKa's. We attribute these dynamical and equilibrium differences to the presence of a second titratable histidine, His27, which may increase the proton-dissociation rate of His19. Two-dimensional (1)H-(13)C correlation spectra probing water (1)H polarization transfer to the peptide indicates that the BM2 channel becomes much more hydrated at low pH than at high pH, particularly at Ser12, indicating that the pore-facing serine residues in BM2 mediate proton relay to the proton-selective histidine. PMID:27286559

  3. Induction of IL-1 during hemodialysis: Transmembrane passage of intact endotoxins (LPS)

    Energy Technology Data Exchange (ETDEWEB)

    Laude-Sharp, M.; Caroff, M.; Simard, L.; Pusineri, C.; Kazatchkine, M.D.; Haeffner-Cavaillon, N. (INSERM U 28, Hopital Broussais, Paris (France))

    1990-12-01

    Circulating monocytes of patients undergoing chronic hemodialysis are triggered to produce interleukin-1 (IL-1) in vivo. Intradialytic induction of IL-1 is associated with complement activation in patients dialyzed with first-use cellulose membranes. Chronic stimulation of IL-1 production occurs because of an yet unidentified mechanism in patients dialyzed with high permeability membranes. The present study demonstrates that intact bacterial lipopolysaccharide (LPS) molecules may cross cuprophan, AN69 and polysulfone membranes under in vitro conditions simulating in vivo hemodialysis. The experiments used purified LPS from Neisseria meningitidis and LPS from Pseudomonas testosteroni, a bacterial strain grown out from a clinically used dialysate. LPS were purified to homogeneity and radiolabeled. Transmembrane passage of 3H-labeled LPS was observed within the first five minutes of dialysis. A total of 0.1 to 1% of 3H-labeled LPS were recovered in the dialysate compartment after one hour of dialysis. High amounts of LPS, representing 40 to 70% of the amount originally present in the dialysate, were absorbed onto high permeability membranes. Low amounts of LPS were absorbed onto cuprophan membranes. The amount of LPS absorbed decreased with the concentration of LPS in the dialysate. LPS recovered from the blood compartment exhibited the same molecular weight as that used to contaminate the dialysate. Biochemically detectable transmembrane passage of LPS was not associated with that of material detectable using the limulus amebocyte lysate (LAL) assay. An IL-1-inducing activity was, however, detected in the blood compartment upon dialysis with high permeability membranes, as previously found by others with cuprophan membranes.

  4. Histidine promotes the loading of nickel and zinc, but not of cadmium, into the xylem in Noccaea caerulescens

    OpenAIRE

    Kozhevnikova, Anna D; Seregin, Ilya V.; Verweij, Rudo; Schat, Henk

    2014-01-01

    Histidine is known to be involved in Ni hyperaccumulation. Recently, histidine-dependent xylem loading of Ni and Zn has been demonstrated in the Zn/Ni/Cd hyperaccumulator, Noccaea caerulescens. Here we tested the hypothesis whether Cd xylem loading is histidine-dependent, too. In contrast to that of Ni and Zn, the xylem loading of Cd was not affected by exogenous histidine. Histidine accumulation in root cells appears to facilitate the radial transport of Ni and Zn, but not Cd, across the roo...

  5. Optimizing an emperical scoring function for transmembrane protein structure determination.

    Energy Technology Data Exchange (ETDEWEB)

    Young, Malin M.; Sale, Kenneth L.; Gray, Genetha Anne; Kolda, Tamara Gibson

    2003-10-01

    We examine the problem of transmembrane protein structure determination. Like many other questions that arise in biological research, this problem cannot be addressed by traditional laboratory experimentation alone. An approach that integrates experiment and computation is required. We investigate a procedure which states the transmembrane protein structure determination problem as a bound constrained optimization problem using a special empirical scoring function, called Bundler, as the objective function. In this paper, we describe the optimization problem and some of its mathematical properties. We compare and contrast results obtained using two different derivative free optimization algorithms.

  6. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    Science.gov (United States)

    Trigoso, Yvonne D; Evans, Russell C; Karsten, William E; Chooback, Lilian

    2016-01-01

    The enzyme dihydrodipicolinate reductase (DHDPR) is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(P)H dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3). The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification. PMID:26815040

  7. Cloning, Expression, and Purification of Histidine-Tagged Escherichia coli Dihydrodipicolinate Reductase.

    Directory of Open Access Journals (Sweden)

    Yvonne D Trigoso

    Full Text Available The enzyme dihydrodipicolinate reductase (DHDPR is a component of the lysine biosynthetic pathway in bacteria and higher plants. DHDPR catalyzes the NAD(PH dependent reduction of 2,3-dihydrodipicolinate to the cyclic imine L-2,3,4,5,-tetrahydropicolinic acid. The dapB gene that encodes dihydrodipicolinate reductase has previously been cloned, but the expression of the enzyme is low and the purification is time consuming. Therefore the E. coli dapB gene was cloned into the pET16b vector to improve the protein expression and simplify the purification. The dapB gene sequence was utilized to design forward and reverse oligonucleotide primers that were used to PCR the gene from Escherichia coli genomic DNA. The primers were designed with NdeI or BamHI restriction sites on the 5'and 3' terminus respectively. The PCR product was sequenced to confirm the identity of dapB. The gene was cloned into the expression vector pET16b through NdeI and BamHI restriction endonuclease sites. The resulting plasmid containing dapB was transformed into the bacterial strain BL21 (DE3. The transformed cells were utilized to grow and express the histidine-tagged reductase and the protein was purified using Ni-NTA affinity chromatography. SDS/PAGE gel analysis has shown that the protein was 95% pure and has approximate subunit molecular weight of 28 kDa. The protein purification is completed in one day and 3 liters of culture produced approximately 40-50 mgs of protein, an improvement on the previous protein expression and multistep purification.

  8. Branched signal wiring of an essential bacterial cell-cycle phosphotransfer protein

    OpenAIRE

    Blair, Jimmy A.; Xu, Qingping; Childers, W. Seth; Mathews, Irimpan I.; Kern, Justin W.; Eckart, Michael; Deacon, Ashley M.; Shapiro, Lucy

    2013-01-01

    Vital to bacterial survival is the faithful propagation of cellular signals, and in Caulobacter crescentus ChpT is an essential mediator within the cell cycle circuit. ChpT functions as a histidine-containing phosphotransfer protein (HPt) that shuttles a phosphoryl group from the receiver domain of CckA, the upstream hybrid histidine kinase (HK), to one of two downstream response regulators (RRs)—CtrA or CpdR—that controls cell cycle progression. To understand how ChpT interacts with multiple...

  9. Modelling of a transmembrane evaporation module for desalination of seawater

    NARCIS (Netherlands)

    Guijt, Caroliene M.; Rácz, Imre G.; Heuven, van Jan Willem; Reith, Tom; Haan, de André B.

    1999-01-01

    Transmembrane evaporation (often called membrane distillation) carried out in a countercurrent flow module, in which incoming cold seawater is heated by the condensing product water flow, is a promising technology for low-cost seawater desalination. This paper presents a model for preliminary design

  10. A hidden Markov model for prediction transmembrane helices in proteinsequences

    DEFF Research Database (Denmark)

    Sonnhammer, Erik L.L.; von Heijne, Gunnar; Krogh, Anders Stærmose

    1998-01-01

    constraints involved. Models were estimated both by maximum likelihood and a discriminative method, and a method for reassignment of the membrane helix boundaries were developed. In a cross validated test on single sequences, our transmembrane HMM, TMHMM, correctly predicts the entire topology for 77% of the...

  11. The Lantibiotic Nisin Induces Transmembrane Movement of a Fluorescent Phospholipid

    NARCIS (Netherlands)

    Moll, Gert N.; Konings, Wil N.; Driessen, Arnold J.M.

    1998-01-01

    Nisin is a pore-forming antimicrobial peptide. The capacity of nisin to induce transmembrane movement of a fluorescent phospholipid in lipid vesicles was investigated. Unilamellar phospholipid vesicles that contained a fluorescent phospholipid (1-acyl-2-{6-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]ca

  12. Computational approaches to detect allosteric pathways in transmembrane molecular machines.

    Science.gov (United States)

    Stolzenberg, Sebastian; Michino, Mayako; LeVine, Michael V; Weinstein, Harel; Shi, Lei

    2016-07-01

    Many of the functions of transmembrane proteins involved in signal processing and transduction across the cell membrane are determined by allosteric couplings that propagate the functional effects well beyond the original site of activation. Data gathered from breakthroughs in biochemistry, crystallography, and single molecule fluorescence have established a rich basis of information for the study of molecular mechanisms in the allosteric couplings of such transmembrane proteins. The mechanistic details of these couplings, many of which have therapeutic implications, however, have only become accessible in synergy with molecular modeling and simulations. Here, we review some recent computational approaches that analyze allosteric coupling networks (ACNs) in transmembrane proteins, and in particular the recently developed Protein Interaction Analyzer (PIA) designed to study ACNs in the structural ensembles sampled by molecular dynamics simulations. The power of these computational approaches in interrogating the functional mechanisms of transmembrane proteins is illustrated with selected examples of recent experimental and computational studies pursued synergistically in the investigation of secondary active transporters and GPCRs. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov. PMID:26806157

  13. A Novel Approach to the Prediction of Transmembrane Proteins

    Institute of Scientific and Technical Information of China (English)

    Jian Ding QIU; Ru Ping LIANG; Xiao Yong ZOU; Jin Yuan MO

    2004-01-01

    A novel method based on continuous wavelet transform (CWT) for predicting the number and location of helices in membrane proteins is presented. The PDB code of 1yst is chosen as an example to describe the prediction of transmembrane helices (HTM) by using CWT. The results indicate that CWT is a promising approach for the prediction of HTM.

  14. Crystal Structures of Trypanosoma cruzi UDP-Galactopyranose Mutase Implicate Flexibility of the Histidine Loop in Enzyme Activation

    Energy Technology Data Exchange (ETDEWEB)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Sobrado, Pablo; Tanner, John J. (Virginia Tech); (UMC)

    2012-11-01

    Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. Here we report crystal structures of the galactofuranose biosynthetic enzyme UDP-galactopyranose mutase (UGM) from T. cruzi, which are the first structures of this enzyme from a protozoan parasite. UGM is an attractive target for drug design because galactofuranose is absent in humans but is an essential component of key glycoproteins and glycolipids in trypanosomatids. Analysis of the enzyme-UDP noncovalent interactions and sequence alignments suggests that substrate recognition is exquisitely conserved among eukaryotic UGMs and distinct from that of bacterial UGMs. This observation has implications for inhibitor design. Activation of the enzyme via reduction of the FAD induces profound conformational changes, including a 2.3 {angstrom} movement of the histidine loop (Gly60-Gly61-His62), rotation and protonation of the imidazole of His62, and cooperative movement of residues located on the si face of the FAD. Interestingly, these changes are substantially different from those described for Aspergillus fumigatus UGM, which is 45% identical to T. cruzi UGM. The importance of Gly61 and His62 for enzymatic activity was studied with the site-directed mutant enzymes G61A, G61P, and H62A. These mutations lower the catalytic efficiency by factors of 10-50, primarily by decreasing k{sub cat}. Considered together, the structural, kinetic, and sequence data suggest that the middle Gly of the histidine loop imparts flexibility that is essential for activation of eukaryotic UGMs. Our results provide new information about UGM biochemistry and suggest a unified strategy for designing inhibitors of UGMs from the eukaryotic pathogens.

  15. Sensor histidine kinase is a β-lactam receptor and induces resistance to β-lactam antibiotics.

    Science.gov (United States)

    Li, Lu; Wang, Qiyao; Zhang, Hui; Yang, Minjun; Khan, Mazhar I; Zhou, Xiaohui

    2016-02-01

    β-Lactams disrupt bacterial cell wall synthesis, and these agents are the most widely used antibiotics. One of the principle mechanisms by which bacteria resist the action of β-lactams is by producing β-lactamases, enzymes that degrade β-lactams. In Gram-negative bacteria, production of β-lactamases is often induced in response to the antibiotic-associated damage to the cell wall. Here, we have identified a previously unidentified mechanism that governs β-lactamase production. In the Gram-negative enteric pathogen Vibrio parahaemolyticus, we found a histidine kinase/response regulator pair (VbrK/VbrR) that controls expression of a β-lactamase. Mutants lacking either VbrK or VbrR do not produce the β-lactamase and are no longer resistant to β-lactam antibiotics. Notably, VbrK autophosphorylation is activated by β-lactam antibiotics, but not by other lactams. However, single amino acid substitutions in the putative periplasmic binding pocket of VbrK leads its phosphorylation in response to both β-lactam and other lactams, suggesting that this kinase is a β-lactam receptor that can directly detect β-lactam antibiotics instead of detecting the damage to cell wall resulting from β-lactams. In strong support of this idea, we found that purified periplasmic sensor domain of VbrK binds penicillin, and that such binding is critical for VbrK autophosphorylation and β-lactamase production. Direct recognition of β-lactam antibiotics by a histidine kinase receptor may represent an evolutionarily favorable mechanism to defend against β-lactam antibiotics.

  16. Transcriptome atlas of eight liver cell types uncovers effects of histidine catabolites on rat liver regeneration

    Indian Academy of Sciences (India)

    C. F. Chang; J. Y. Fan; F. C. Zhang; J. Ma; C. S. Xu

    2010-12-01

    Eight liver cell types were isolated using the methods of Percoll density gradient centrifugation and immunomagnetic beads to explore effects of histidine catabolites on rat liver regeneration. Rat Genome 230 2.0 Array was used to detect the expression profiles of genes associated with metabolism of histidine and its catabolites for the above-mentioned eight liver cell types, and bioinformatic and systems biology approaches were employed to analyse the relationship between above genes and rat liver regeneration. The results showed that the urocanic acid (UA) was degraded from histidine in Kupffer cells, acts on Kupffer cells itself and dendritic cells to generate immune suppression by autocrine and paracrine modes. Hepatocytes, biliary epithelia cells, oval cells and dendritic cells can convert histidine to histamine, which can promote sinusoidal endothelial cells proliferation by GsM pathway, and promote the proliferation of hepatocytes and biliary epithelia cells by GqM pathway.

  17. Thermodynamic and kinetic stability of zwitterionic histidine: Effects of gas phase hydration

    Science.gov (United States)

    Lee, Sung-Sik; Kim, Ju-Young; Han, Yuna; Shim, Hyun-Jin; Lee, Sungyul

    2015-09-01

    We present calculations for histidine-(H2O)n (n = 0-6) to examine the effects of micro-hydrating water molecules on the relative stability of the zwitterionic vs. canonical forms of histidine. We calculate the structures and Gibbs free energies of the conformers at wB97XD/6-311++G(d,p) level of theory. We find that six water molecules are required to produce the thermodynamically stable histidine zwitterion. By calculating the barriers of canonical ↔ zwitterionic transformation, we predict that both the most stable canonical and zwitterionic forms of histidine-(H2O)6 may be observed in low temperature gas phase environment.

  18. Crystallographic characterization of a multidomain histidine protein kinase from an essential two-component regulatory system

    OpenAIRE

    Zhao, Haiyan; Tang, Liang

    2009-01-01

    The multidomain cytoplasmic portion of the histidine protein kinase from an essential two-component signal transduction system has been crystallized and X-ray data have been collected to 2.8 Å resolution.

  19. Catalysis of peptide bond formation by histidyl-histidine in a fluctuating clay environment

    Science.gov (United States)

    White, D. H.; Erickson, J. C.

    1980-01-01

    The condensation of glycine to form oligoglycines during wet-dry fluctuations on clay surfaces was enhanced up to threefold or greater by small amounts of histidyl-histidine. In addition, higher relative yields of the longer oligomers were produced. Other specific dipeptides tested gave no enhancement, and imidazole, histidine, and N-acetylhistidine gave only slight enhancements. Histidyl-histidine apparently acts as a true catalyst (in the sense of repeatedly catalyzing the reaction), since up to 52 nmol of additional glycine were incorporated into oligoglycine for each nmol of catalyst added. This is the first known instance of a peptide or similar molecule demonstrating a catalytic turnover number greater than unity in a prebiotic oligomer synthesis reaction, and suggests that histidyl-histidine is a model for a primitive prebiotic proto-enzyme. Catalysis of peptide bond synthesis by a molecule which is itself a peptide implies that related systems may be capable of exhibiting autocatalytic growth.

  20. Unusual peroxidase activity of a myoglobin mutant with two distal histidines

    Institute of Scientific and Technical Information of China (English)

    Wei Wei Guo; Dun Wan; Li Fu Liao; Ying Wu Lin

    2012-01-01

    By retaining the native distal His64 in sperm whale myoglobin (Mb),a second distal histidine was engineered in Mb by mutating Leu29 to His29.The resultant mutant of L29H Mb exhibits an unusual enhanced peroxidase activity with a positive cooperativity in comparison to that of wild type Mb.The new enzyme with two cooperative distal histidines has not been found in native peroxidase,which emphasizes a creation of the rational protein design.

  1. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Energy Technology Data Exchange (ETDEWEB)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V. [Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089-0484 (United States)

    2015-03-21

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N–H ⋅ ⋅ ⋅ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  2. Histidine-catalyzed synthesis of cyclic carbonates in supercritical carbon dioxide

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The coupling reaction of carbon dioxide with epoxides was investigated using naturally occurring α-amino acids as the catalyst in supercritical carbon dioxide and it was found that L-histidine is the most active catalyst.In the presence of 0.8 mol% of L-histidine at 130°C under 8 MPa of CO2,the reaction of carbon dioxide with epoxides proceeded smoothly,affording corresponding cyclic carbonates in good to excellent yields.

  3. Physical state of L-histidine after freeze-drying and long-term storage.

    Science.gov (United States)

    Osterberg, T; Wadsten, T

    1999-08-01

    Liquid samples of L-histidine of varying pH values and mixed with salt, metal ions, polysorbate 80 and sucrose have been analysed by differential scanning calorimetry to evaluate the influence of these additives on the glass transition temperature and crystallisation of L-histidine during freezing and thawing. L-Histidine solutions of varying pH were freeze-dried with and without a thermal cycle and the physical state of the freeze-dried cakes, following long-term storage, were studied by powder X-ray diffraction. Amorphous L-histidine crystallised when it was exposed to moisture, and the identity of the crystalline materials is reported. The crystallisation of L-histidine during freezing and thawing is dependent on the pH of the solution and is shown to be at a minimum at pH 6, which coincides with the pK(a) of the imidazoline function. Sucrose inhibited the crystallisation of L-histidine during thawing, while sodium chloride or polysorbate 80 did not. The addition of metal ions (Ca2+ and Mg2+) up to 10% (w/w) did not depress the glass transition temperature significantly, while the addition of Zn2+ increased it. The physical state of L-histidine after freeze-drying is shown to be dependent on both the pH of the solution and the freezing cycle. The risk of crystallisation of amorphous L-histidine is low if the freeze-dried material is protected from moisture. PMID:10425380

  4. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins.

    Science.gov (United States)

    Lindbo, Sarah; Garousi, Javad; Åstrand, Mikael; Honarvar, Hadis; Orlova, Anna; Hober, Sophia; Tolmachev, Vladimir

    2016-03-16

    Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP. PMID:26781756

  5. Effect of peptide histidine isoleucine on water and electrolyte transport in the human jejunum.

    OpenAIRE

    Moriarty, K J; Hegarty, J E; Tatemoto, K; Mutt, V; Christofides, N D; Bloom, S R; Wood, J. R.

    1984-01-01

    Peptide histidine isoleucine, a 27 amino acid peptide with close amino acid sequence homology to vasoactive intestinal peptide and secretin, is distributed throughout the mammalian intestinal tract, where it has been localised to intramural neurones. An intestinal perfusion technique has been used to study the effect of intravenous peptide histidine isoleucine (44.5 pmol/kg/min) on water and electrolyte transport from a plasma like electrolyte solution in human jejunum in vivo. Peptide histid...

  6. Histidine biosynthesis plays a crucial role in metal homeostasis and virulence of Aspergillus fumigatus

    OpenAIRE

    Dietl, Anna-Maria; Amich, Jorge; Leal, Sixto; Beckmann, Nicola; Binder, Ulrike; Beilhack, Andreas; Pearlman, Eric; Haas, Hubertus

    2016-01-01

    Abstract Aspergillus fumigatus is the most prevalent airborne fungal pathogen causing invasive fungal infections in immunosuppressed individuals. The histidine biosynthetic pathway is found in bacteria, archaebacteria, lower eukaryotes, and plants, but is absent in mammals. Here we demonstrate that deletion of the gene encoding imidazoleglycerol-phosphate dehydratase (HisB) in A. fumigatus causes (i) histidine auxotrophy, (ii) decreased resistance to both starvation and excess of various heav...

  7. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    Science.gov (United States)

    Bellina, Bruno; Merthe, Daniel J.; Kresin, Vitaly V.

    2015-03-01

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H ṡ ṡ ṡ N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  8. Dietary histidine supplementation prevents cataract development in adult Atlantic salmon, Salmo salar L., in seawater

    OpenAIRE

    Waagbø, Rune; Tröße, Christiane; Koppe, Wolfgang; Fontanillas, Ramon; Breck, Olav

    2010-01-01

    The aim of the present study was to investigate the cataract preventive effect of dietary histidine regimes in adult Atlantic salmon (Salmo salar L.) in seawater, both through manipulating the dietary histidine level and feeding period. Mean body weight of individually tagged Atlantic salmon at the start of the experiment was 1662 (SD 333) g. Low prevalence of mild cataracts were recorded in the beginning of June. Three fishmeal and fish oil-based extruded diets (crude protein: 375 g...

  9. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells

    OpenAIRE

    NAGASHIMA, YUSUKE; Kako, Koichiro; KIM, JUN-DAL; Fukamizu, Akiyoshi

    2012-01-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced prod...

  10. L-histidine inhibits production of lysophosphatidic acid by the tumor-associated cytokine, autotaxin

    Directory of Open Access Journals (Sweden)

    Schiffmann Elliott

    2005-02-01

    Full Text Available Abstract Background Autotaxin (ATX, NPP-2, originally purified as a potent tumor cell motility factor, is now known to be the long-sought plasma lysophospholipase D (LPLD. The integrity of the enzymatic active site, including three crucial histidine moieties, is required for motility stimulation, as well as LPLD and 5'nucleotide phosphodiesterase (PDE activities. Except for relatively non-specific chelation agents, there are no known inhibitors of the ATX LPLD activity. Results We show that millimolar concentrations of L-histidine inhibit ATX-stimulated but not LPA-stimulated motility in two tumor cell lines, as well as inhibiting enzymatic activities. Inhibition is reversed by 20-fold lower concentrations of zinc salt. L-histidine has no significant effect on the Km of LPLD, but reduces the Vmax by greater than 50%, acting as a non-competitive inhibitor. Several histidine analogs also inhibit the LPLD activity of ATX; however, none has greater potency than L-histidine and all decrease cell viability or adhesion. Conclusion L-histidine inhibition of LPLD is not a simple stoichiometric chelation of metal ions but is more likely a complex interaction with a variety of moieties, including the metal cation, at or near the active site. The inhibitory effect of L-histidine requires all three major functional groups of histidine: the alpha amino group, the alpha carboxyl group, and the metal-binding imidazole side chain. Because of LPA's involvement in pathological processes, regulation of its formation by ATX may give insight into possible novel therapeutic approaches.

  11. Proton transfer in histidine-tryptophan heterodimers embedded in helium droplets

    CERN Document Server

    Bellina, Bruno; Kresin, Vitaly V

    2015-01-01

    We used cold helium droplets as nano-scale reactors to form and ionize, by electron bombardment and charge transfer, aromatic amino acid heterodimers of histidine with tryptophan, methyl-tryptophan, and indole. The molecular interaction occurring through an N-H...N hydrogen bond leads to a proton transfer from the indole group of tryptophan to the imidazole group of histidine in a radical cationic environment.

  12. Localization of histidine decarboxylase mRNA in rat brain.

    Science.gov (United States)

    Bayliss, D A; Wang, Y M; Zahnow, C A; Joseph, D R; Millhorn, D E

    1990-08-01

    The recent cloning of a cDNA encoding fetal rat liver histidine decarboxylase (HDC), the synthesizing enzyme for histamine, allows the study of the central histaminergic system at the molecular level. To this end, Northern blot and in situ hybridization analyses were used to determine the regional and cellular distribution of neurons which express HDC mRNA in rat brain. Three hybridizing species which migrate as 1.6-, 2.6-, and 3.5-kb RNA were identified with Northern blots. The major (2.6 kb) and minor (3.5 kb) species, characteristic of HDC mRNA in fetal liver, were expressed at high levels in diencephalon and at just detectable levels in hippocampus, but not in other brain regions. In contrast, the 1.6-kb species was present in all brain regions examined except the olfactory bulb. Cells which contain HDC mRNA were found by in situ hybridization in the hypothalamus; HDC mRNA-containing cells were not detected in other areas, including the hippocampus. Hypothalamic neurons which express HDC mRNA were localized to all aspects of the tuberomammillary nucleus, a result consistent with previous immunohistochemical findings. PMID:19912749

  13. ADSORPTION CHARACTERISTICS OF L-HISTIDINE ON ACTIVE CARBON

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Adsorption properties of L-histidine on active carbon were studied in the paper, which are affected by the main parameters, such as the quantity percent of active carbon, pH value of the solution, the time of adsorption equilibrium and adsorption temperature. The results indicate that adsorption equilibrium time of L-his on active carbon is about 80 minutes. With the increasing of the quantity percent of active carbon, the adsorbance of L-his decreases sharply, and increases lighter after that. When the quantity percent of active carbon is 10%, the adsorbance reaches the minimum.pH value of solution and extraction temperature have great affection on the adsorption. When the pH value is higher or lower than the pI of L-his, the adsorbance is small, even zero. It is proven that the experimental equilibrium data which are obtained under the conditions of 80 ℃and pH=1.0, are fitted with the Freundlich equation: q=2.5914c0.8097. The results can provide certain references in L-his adsorption process of industrial operation.

  14. Neuroprotective actions of a histidine analogue in models of ischemic stroke.

    Science.gov (United States)

    Tang, Sung-Chun; Arumugam, Thiruma V; Cutler, Roy G; Jo, Dong-Gyu; Magnus, Tim; Chan, Sic L; Mughal, Mohamed R; Telljohann, Richard S; Nassar, Matthew; Ouyang, Xin; Calderan, Andrea; Ruzza, Paolo; Guiotto, Andrea; Mattson, Mark P

    2007-05-01

    Histidine is a naturally occurring amino acid with antioxidant properties, which is present in low amounts in tissues throughout the body. We recently synthesized and characterized histidine analogues related to the natural dipeptide carnosine, which selectively scavenge the toxic lipid peroxidation product 4-hydroxynonenal (HNE). We now report that the histidine analogue histidyl hydrazide is effective in reducing brain damage and improving functional outcome in a mouse model of focal ischemic stroke when administered intravenously at a dose of 20 mg/kg, either 30 min before or 60 min and 3 h after the onset of middle cerebral artery occlusion. The histidine analogue also protected cultured rat primary neurons against death induced by HNE, chemical hypoxia, glucose deprivation, and combined oxygen and glucose deprivation. The histidine analogue prevented neuronal apoptosis as indicated by decreased production of cleaved caspase-3 protein. These findings suggest a therapeutic potential for HNE-scavenging histidine analogues in the treatment of stroke and related neurodegenerative conditions. PMID:17254011

  15. Expression and functional analysis of genes encoding cytokinin receptor-like histidine kinase in maize (Zea mays L.).

    Science.gov (United States)

    Wang, Bo; Chen, Yanhong; Guo, Baojian; Kabir, Muhammad Rezaul; Yao, Yingyin; Peng, Huiru; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2014-08-01

    Cytokinin signaling is vital for plant growth and development which function via the two-component system (TCS). As one of the key component of TCS, transmembrane histidine kinases (HK) are encoded by a small gene family in plants. In this study, we focused on expression and functional analysis of cytokinin receptor-like HK genes (ZmHK) in maize. Firstly, bioinformatics analysis revealed that seven cloned ZmHK genes have different expression patterns during maize development. Secondly, ectopic expression by CaMV35S promoter in Arabidopsis further revealed that functional differentiation exists among these seven members. Among them, the ZmHK1a2-OX transgenic line has the lowest germination rate in the dark, ZmHK1-OX and ZmHK2a2-OX can delay leaf senescence, and seed size of ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX was obviously reduced as compared to wild type. Additionally, ZmHK genes play opposite roles in shoot and root development; all ZmHK-OX transgenic lines display obvious shorter root length and reduced number of lateral roots, but enhanced shoot development compared with the wild type. Most notably, Arabidopsis response regulator ARR5 gene was up-regulated in ZmHK1-OX, ZmHK1a2-OX, ZmHK2-OX, ZmHK3b-OX and ZmHK2a2-OX as compared to wild type. Although the causal link between ZmHK genes and cytokinin signaling pathway is still an area to be further elucidated, these findings reflected that the diversification of ZmHK genes expression patterns and functions occurred in the course of maize evolution, indicating that some ZmHK genes might play different roles during maize development. PMID:24585212

  16. Salmonella enterica serovar typhi modulates cell surface expression of its receptor, the cystic fibrosis transmembrane conductance regulator, on the intestinal epithelium.

    Science.gov (United States)

    Lyczak, Jeffrey B; Pier, Gerald B

    2002-11-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) protein is an epithelial receptor mediating the translocation of Salmonella enterica serovar Typhi to the gastric submucosa. Since the level of cell surface CFTR is directly related to the efficiency of serovar Typhi translocation, the goal of this study was to measure CFTR expression by the intestinal epithelium during infection. CFTR protein initially present in the epithelial cell cytoplasm was rapidly trafficked to the plasma membrane following exposure to live serovar Typhi or bacterial extracts. CFTR-dependent bacterial uptake by epithelial cells increased (>100-fold) following CFTR redistribution. The bacterial factor which triggers CFTR redistribution is heat and protease sensitive. These data suggest that serovar Typhi induces intestinal epithelial cells to increase membrane CFTR levels, leading to enhanced bacterial ingestion and submucosal translocation. This could be a key, early step in the infectious process leading to typhoid fever. PMID:12379722

  17. Brucella Intracellular Life Relies on the Transmembrane Protein CD98 Heavy Chain.

    Science.gov (United States)

    Keriel, Anne; Botella, Eric; Estrach, Soline; Bragagnolo, Gabriel; Vergunst, Annette C; Feral, Chloe C; O'Callaghan, David

    2015-06-01

    Brucella are intracellular bacterial pathogens that use a type IV secretion system (T4SS) to escape host defenses and create a niche in which they can multiply. Although the importance of Brucella T4SS is clear, little is known about its interactions with host cell structures. In this study, we identified the eukaryotic protein CD98hc as a partner for Brucella T4SS subunit VirB2. This transmembrane glycoprotein is involved in amino acid transport, modulation of integrin signaling, and cell-to-cell fusion. Knockdown of CD98hc expression in HeLa cells demonstrated that it is essential for Brucella infection. Using knockout dermal fibroblasts, we confirmed its role for Brucella but found that it is not required for Salmonella infection. CD98hc transiently accumulates around the bacteria during the early phases of infection and is required for both optimal bacterial uptake and intracellular multiplication of Brucella. These results provide new insights into the complex interplay between Brucella and its host.

  18. Infrared Spectroscopy of Hydrogen-Bonded Clusters of Protonated Histidine

    Science.gov (United States)

    Kondo, Makoto; Kasahara, Yasutoshi; Ishikawa, Haruki

    2015-06-01

    Histidine(His), one of the essential amino acids, is involved in active sites in many enzyme proteins, and known to play fundamental roles in human body. Thus, to gain detailed information about intermolecular interactions of His as well as its structure is very important. In the present study, we have recorded IR spectra of hydrogen-bonded clusters of protonated His (HisH^+) in the gas phase to discuss the relation between the molecular structure and intermolecular interaction of HisH^+. Clusters of HisH^+-(MeOH)_n (n = 1, 2) were generated by an electrospray ionization of the MeOH solution of L-His hydrochloride monohydrate. IR photodissociation spectra of HisH^+-(MeOH)1,2 were recorded. By comparing with the results of the DFT calculations, we determined the structures of these clusters. In the case of n = 1 cluster, MeOH is bonded to the imidazole ring as a proton acceptor. The most of vibrational bands observed were well explained by this isomer. However, a free NH stretch band of the imidazole ring was also observed in the spectrum. This indicates an existence of an isomer in which MeOH is bounded to the carboxyl group of HisH^+. Furthermore, it is found that a protonated position of His is influenced by a hydrogen bonding position of MeOH. In the case of n = 2 cluster, one MeOH molecule is bonded to the amino group, while the other MeOH molecule is separately bonded to the carboxyl group in the most stable isomer. However, there is a possibility that other conformers also exist in our experimental condition. The details of the experimental and theoretical results will be presented in the paper.

  19. N-H···N Hydrogen Bonds Involving Histidine Imidazole Nitrogen Atoms: A New Structural Role for Histidine Residues in Proteins.

    Science.gov (United States)

    Krishna Deepak, R N V; Sankararamakrishnan, Ramasubbu

    2016-07-12

    The amino acid histidine can play a significant role in the structure and function of proteins. Its various functions include enzyme catalysis, metal binding activity, and involvement in cation-π, π-π, salt-bridge, and other types of noncovalent interactions. Although histidine's imidazole nitrogens (Nδ and Nε) are known to participate in hydrogen bond (HB) interactions as an acceptor or a donor, a systematic study of N-H···N HBs with the Nδ/Nε atom as the acceptor has not been conducted. In this study, we have examined two data sets of ultra-high-resolution (data set I) and very high-resolution (data set II) protein structures and identified 28 and 4017 examples of HBs of the N-H···Nδ/Nε type from both data sets involving histidine imidazole nitrogen as the acceptor. In nearly 70% of them, the main-chain N-H bond is the HB donor, and a majority of the examples are from the N-H group separated by two residues (Ni+2-Hi+2) from histidine. Quantum chemical calculations using model compounds were performed with imidazole and N-methylacetamide, and they assumed conformations from 19 examples from data set I with N-H···Nδ/Nε HBs. Basis set superposition error-corrected interaction energies varied from -5.0 to -6.78 kcal/mol. We also found that the imidazole nitrogen of 9% of histidine residues forming N-H···Nδ/Nε interactions in data set II participate in bifurcated HBs. Natural bond orbital analyses of model compounds indicate that the strength of each HB is mutually influenced by the other. Histidine residues involved in Ni+2-Hi+2···Nδi/Nεi HBs are frequently observed in a specific N-terminal capping position giving rise to a novel helix-capping motif. Along with their predominant occurrence in loop segments, we propose a new structural role for histidines in protein structures. PMID:27305350

  20. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  1. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  2. Monitoring the Hydrolysis of p-Nitrophenyl Acetate Catalyzed by Seryl-histidine with Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    CHEN,Jing(陈晶); ZHANG,Yun(张韵); CAO,Xiao-Yu(曹晓宇); WANG,Jin(王津); CHEN,Yi(陈益); ZHAO,Yu-Fen(赵玉芬)

    2002-01-01

    The hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by seryl- histidine or histidine has been monitored by electrospray ionization mass spectrometry in the presence of the internal calibration, 8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS). The half-life of p-NPA in the presence of 10 mmol.L-1 seryl- histidine or histidine at25 ℃ was 370 min and70 min respectively. With the occurrence of acetyl seryl- histidine and acetyl histidine in the reaction, and the fact that p-NPA was stable in the presence of 10 mmol. L- 1 serine, an imidazolysis mechanism has been proposed, which is in accordance with the reported work.

  3. Monitoring the Hydrolysis of p—Nitrophenyl Acetate Catalyzed by Seryl—histidine with Electrospray Ionization Mass Spectrometry

    Institute of Scientific and Technical Information of China (English)

    陈益; 赵玉芬; 陈晶; 张韵; 曹晓宇; 王津

    2002-01-01

    The hydrolysis of p-nitrophenyl acetate(p-NPA)catalyzed by seryl-histidine or histidine has been monitored by electrospray ionization mass spectrometry in the presence of the internal calibration,8-anilino-1-naphthalenesulfonic acid ammonium salt (ANS).The half-life of p-NPA in the presence of 10 mmol·L-1 seryl-histidine or histidine at 25℃ was 370min and 70min respectively.With the occurrence of acetyl seryl-histidine and acetyl histidine in the reaction,and the fact that p-NPA was stable in the presence of 10mmol·L-1 serine,an imidazolysis mechanism has been proposed,Which is in accordance with the reported work.

  4. Rigidity of transmembrane proteins determines their cluster shape

    CERN Document Server

    Jafarinia, Hamidreza; Jalali, Mir Abbas

    2015-01-01

    Protein aggregation in cell membrane is vital for majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as $\\alpha$-helices and $\\beta$-sheets have different structural rigidity. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations in thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch which has been previously proposed as the mechanism of protein aggregation. According to our results, semi-flexible proteins aggregate to form two-dimensional clusters while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional tr...

  5. Promiscuous Seven Transmembrane Receptors Sensing L-α-amino Acids

    DEFF Research Database (Denmark)

    Smajilovic, Sanela; Wellendorph, Petrine; Bräuner-Osborne, Hans

    2014-01-01

    A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight. T....... The present review describes the current status of promiscuous L-α-amino acid sensors, the calcium sensing receptor (CaSR), the GPRC6A receptor, the T1R1/T1R3 receptor and also their molecular pharmacology, expression pattern and physiological significance.......A number of nutrient sensing seven trans-membrane (7TM) receptors have been identified and characterized over the past few years. While the sensing mechanisms to carbohydrates and free fatty acids are well understood, the molecular basis of amino acid sensing has recently come to the limelight...

  6. Detecting pore-lining regions in transmembrane protein sequences

    Directory of Open Access Journals (Sweden)

    Nugent Timothy

    2012-07-01

    Full Text Available Abstract Background Alpha-helical transmembrane channel and transporter proteins play vital roles in a diverse range of essential biological processes and are crucial in facilitating the passage of ions and molecules across the lipid bilayer. However, the experimental difficulties associated with obtaining high quality crystals has led to their significant under-representation in structural databases. Computational methods that can identify structural features from sequence alone are therefore of high importance. Results We present a method capable of automatically identifying pore-lining regions in transmembrane proteins from sequence information alone, which can then be used to determine the pore stoichiometry. By labelling pore-lining residues in crystal structures using geometric criteria, we have trained a support vector machine classifier to predict the likelihood of a transmembrane helix being involved in pore formation. Results from testing this approach under stringent cross-validation indicate that prediction accuracy of 72% is possible, while a support vector regression model is able to predict the number of subunits participating in the pore with 62% accuracy. Conclusion To our knowledge, this is the first tool capable of identifying pore-lining regions in proteins and we present the results of applying it to a data set of sequences with available crystal structures. Our method provides a way to characterise pores in transmembrane proteins and may even provide a starting point for discovering novel routes of therapeutic intervention in a number of important diseases. This software is freely available as source code from: http://bioinf.cs.ucl.ac.uk/downloads/memsat-svm/.

  7. Grafting PNIPAAm from β-barrel shaped transmembrane nanopores.

    Science.gov (United States)

    Charan, Himanshu; Kinzel, Julia; Glebe, Ulrich; Anand, Deepak; Garakani, Tayebeh Mirzaei; Zhu, Leilei; Bocola, Marco; Schwaneberg, Ulrich; Böker, Alexander

    2016-11-01

    The research on protein-polymer conjugates by grafting from the surface of proteins has gained significant interest in the last decade. While there are many studies with globular proteins, membrane proteins have remained untouched to the best of our knowledge. In this study, we established the conjugate formation with a class of transmembrane proteins and grow polymer chains from the ferric hydroxamate uptake protein component A (FhuA; a β-barrel transmembrane protein of Escherichia coli). As the lysine residues of naturally occurring FhuA are distributed over the whole protein, FhuA was reengineered to have up to 11 lysines, distributed symmetrically in a rim on the membrane exposed side (outside) of the protein channel and exclusively above the hydrophobic region. Reengineering of FhuA ensures a polymer growth only on the outside of the β-barrel and prevents blockage of the channel as a result of the polymerization. A water-soluble initiator for controlled radical polymerization (CRP) was consecutively linked to the lysine residues of FhuA and N-isopropylacrylamide (NIPAAm) polymerized under copper-mediated CRP conditions. The conjugate formation was analyzed by using MALDI-ToF mass spectrometry, SDS-PAGE, circular dichroism spectroscopy, analytical ultracentrifugation, dynamic light scattering, transmission electron microscopy and size exclusion chromatography. Such conjugates combine the specific functions of the transmembrane proteins, like maintaining membrane potential gradients or translocation of substrates with the unique properties of synthetic polymers such as temperature and pH stimuli handles. FhuA-PNIPAAm conjugates will serve as functional nanosized building blocks for applications in targeted drug delivery, self-assembly systems, functional membranes and transmembrane protein gated nanoreactors. PMID:27614163

  8. Surfactantlipid biosynthesis: Regulation of transmembrane transport of palmitate

    OpenAIRE

    Guthmann, Florian

    2010-01-01

    Considering the mechanisms by which antenatal maturation of lung can be induced, the role of long chain fatty acids as precursors of surfactant lipid synthesis has not been thoroughly investigated. To specifically increase surfactant synthesis during the fetal and/or neonatal period we studied the regulation of de novo phosphatidyl synthesis in type II pneumocytes. First, we characterised the transmembrane transport of palmitate, a long chain fatty acid prevalent in surfactant lipids, with...

  9. Transmembrane Helix Assembly by Max-Min Ant System Algorithm.

    Science.gov (United States)

    Sujaree, Kanon; Kitjaruwankul, Sunan; Boonamnaj, Panisak; Supunyabut, Chirayut; Sompornpisut, Pornthep

    2015-12-01

    Because of the rapid progress in biochemical and structural studies of membrane proteins, considerable attention has been given on developing efficient computational methods for solving low-to-medium resolution structures using sparse structural data. In this study, we demonstrate a novel algorithm, max-min ant system (MMAS), designed to find an assembly of α-helical transmembrane proteins using a rigid helix arrangement guided by distance constraints. The new algorithm generates a large variety with finite number of orientations of transmembrane helix bundle and finds the solution that is matched with the provided distance constraints based on the behavior of ants to search for the shortest possible path between their nest and the food source. To demonstrate the efficiency of the novel search algorithm, MMAS is applied to determine the transmembrane packing of KcsA and MscL ion channels from a limited distance information extracted from the crystal structures, and the packing of KvAP voltage sensor domain using a set of 10 experimentally determined constraints, and the results are compared with those of two popular used stochastic methods, simulated annealing Monte Carlo method and genetic algorithm. PMID:26058409

  10. Transcriptome analysis reveals transmembrane targets on transplantable midbrain dopamine progenitors.

    Science.gov (United States)

    Bye, Chris R; Jönsson, Marie E; Björklund, Anders; Parish, Clare L; Thompson, Lachlan H

    2015-04-14

    An important challenge for the continued development of cell therapy for Parkinson's disease (PD) is the establishment of procedures that better standardize cell preparations for use in transplantation. Although cell sorting has been an anticipated strategy, its application has been limited by lack of knowledge regarding transmembrane proteins that can be used to target and isolate progenitors for midbrain dopamine (mDA) neurons. We used a "FACS-array" approach to identify 18 genes for transmembrane proteins with high expression in mDA progenitors and describe the utility of four of these targets (Alcam, Chl1, Gfra1, and Igsf8) for isolating mDA progenitors from rat primary ventral mesencephalon through flow cytometry. Alcam and Chl1 facilitated a significant enrichment of mDA neurons following transplantation, while targeting of Gfra1 allowed for robust separation of dopamine and serotonin neurons. Importantly, we also show that mDA progenitors isolated on the basis of transmembrane proteins are capable of extensive, functional innervation of the host striatum and correction of motor impairment in a unilateral model of PD. These results are highly relevant for current efforts to establish safe and effective stem cell-based procedures for PD, where clinical translation will almost certainly require safety and standardization measures in order to deliver well-characterized cell preparations.

  11. Histidine phosphorylation relieves copper inhibition in the mammalian potassium channel KCa3.1.

    Science.gov (United States)

    Srivastava, Shekhar; Panda, Saswati; Li, Zhai; Fuhs, Stephen R; Hunter, Tony; Thiele, Dennis J; Hubbard, Stevan R; Skolnik, Edward Y

    2016-01-01

    KCa2.1, KCa2.2, KCa2.3 and KCa3.1 constitute a family of mammalian small- to intermediate-conductance potassium channels that are activated by calcium-calmodulin. KCa3.1 is unique among these four channels in that activation requires, in addition to calcium, phosphorylation of a single histidine residue (His358) in the cytoplasmic region, by nucleoside diphosphate kinase-B (NDPK-B). The mechanism by which KCa3.1 is activated by histidine phosphorylation is unknown. Histidine phosphorylation is well characterized in prokaryotes but poorly understood in eukaryotes. Here, we demonstrate that phosphorylation of His358 activates KCa3.1 by antagonizing copper-mediated inhibition of the channel. Furthermore, we show that activated CD4(+) T cells deficient in intracellular copper exhibit increased KCa3.1 histidine phosphorylation and channel activity, leading to increased calcium flux and cytokine production. These findings reveal a novel regulatory mechanism for a mammalian potassium channel and for T-cell activation, and highlight a unique feature of histidine versus serine/threonine and tyrosine as a regulatory phosphorylation site. PMID:27542194

  12. Histidine provides long-term neuroprotection after cerebral ischemia through promoting astrocyte migration

    Science.gov (United States)

    Liao, Ru-jia; Jiang, Lei; Wang, Rong-rong; Zhao, Hua-wei; Chen, Ying; Li, Ya; Wang, Lu; Jie, Li-Yong; Zhou, Yu-dong; Zhang, Xiang-nan; Chen, Zhong; Hu, Wei-wei

    2015-01-01

    The formation of glial scar impedes the neurogenesis and neural functional recovery following cerebral ischemia. Histamine showed neuroprotection at early stage after cerebral ischemia, however, its long-term effect, especially on glial scar formation, hasn’t been characterized. With various administration regimens constructed for histidine, a precursor of histamine, we found that histidine treatment at a high dose at early stage and a low dose at late stage demonstrated the most remarkable long-term neuroprotection with decreased infarct volume and improved neurological function. Notably, this treatment regimen also robustly reduced the glial scar area and facilitated the astrocyte migration towards the infarct core. In wound-healing assay and transwell test, histamine significantly promoted astrocyte migration. H2 receptor antagonists reversed the promotion of astrocyte migration and the neuroprotection provided by histidine. Moreover, histamine upregulated the GTP-bound small GTPase Rac1, while a Rac1 inhibitor, NSC23766, abrogated the neuroprotection of histidine and its promotion of astrocyte migration. Our data indicated that a dose/stage-dependent histidine treatment, mediated by H2 receptor, promoted astrocyte migration towards the infarct core, which benefited long-term post-cerebral ischemia neurological recovery. Therefore, targeting histaminergic system may be an effective therapeutic strategy for long-term cerebral ischemia injury through its actions on astrocytes. PMID:26481857

  13. Performance and Mechanism of UV/Immobilized Cu-TiO2 System to Degradation Histidine

    Directory of Open Access Journals (Sweden)

    Cheng Liu

    2016-01-01

    Full Text Available More and more attention is paid to dissolved organic nitrogen (DON and some specific categories of amino acids are considered to be the direct precursors of nitrogenous disinfection byproducts (N-DBPs. Histidine was chosen to study the efficiency and mechanism of amino acid in UV/Cu-TiO2 system. Moreover, the influences of pH, organics, and inorganic ion on the photocatalytic efficiency were also investigated. The results show that the degradation rate of DON in the UV/Cu-TiO2 system was about 50% after 60 min, and it was much lower than that of histidine (72%, which indicated that a part of degraded histidine was oxidized to other N-containing organics. The optimal pH value was 7.0 for the photodegradation of histidine, and the presence of organic compound and inorganic ion would decrease the degradation performance to some extent. After 6 h irradiation, histidine was totally degraded into NH4+, and in the following 2 h, NH4+ was oxidized to NO3- firstly and then NO3- was reduced to N2 and overflowed from water, which should be attributed to the doping of Cu in the TiO2 and provided a way to totally degrade the DON from the water.

  14. Histidine side-chain dynamics and protonation monitored by {sup 13}C CPMG NMR relaxation dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Hass, Mathias A. S. [Leiden University, Institute of Chemistry (Netherlands); Yilmaz, Ali [University of Copenhagen, Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences (Denmark); Christensen, Hans E. M. [Technical University of Denmark, Department of Chemistry (Denmark); Led, Jens J. [University of Copenhagen, Department of Chemistry (Denmark)], E-mail: led@kiku.dk

    2009-08-15

    The use of {sup 13}C NMR relaxation dispersion experiments to monitor micro-millisecond fluctuations in the protonation states of histidine residues in proteins is investigated. To illustrate the approach, measurements on three specifically {sup 13}C labeled histidine residues in plastocyanin (PCu) from Anabaena variabilis (A.v.) are presented. Significant Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion is observed for {sup 13}C{sup {epsilon}}{sup 1} nuclei in the histidine imidazole rings of A.v. PCu. The chemical shift changes obtained from the CPMG dispersion data are in good agreement with those obtained from the chemical shift titration experiments, and the CPMG derived exchange rates agree with those obtained previously from {sup 15}N backbone relaxation measurements. Compared to measurements of backbone nuclei, {sup 13}C{sup {epsilon}}{sup 1} dispersion provides a more direct method to monitor interchanging protonation states or other kinds of conformational changes of histidine side chains or their environment. Advantages and shortcomings of using the {sup 13}C{sup {epsilon}}{sup 1} dispersion experiments in combination with chemical shift titration experiments to obtain information on exchange dynamics of the histidine side chains are discussed.

  15. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  16. Identifying Zn-bound histidine residues in metalloproteins using hydrogen-deuterium exchange mass spectrometry.

    Science.gov (United States)

    Dong, Jia; Callahan, Katie L; Borotto, Nicholas B; Vachet, Richard W

    2014-01-01

    In this work, we have developed a method that uses hydrogen-deuterium exchange (HDX) of C2-hydrogens of histidines coupled with mass spectrometry (MS) to identify Zn-bound histidines in metalloproteins. This method relies on differences in HDX reaction rates of Zn-bound and Zn-free His residues. Using several model peptides and proteins, we find that all Zn-bound His residues have substantially lower HDX reaction rates in the presence of the metal. The vast majority of non-Zn-binding His residues undergo no significant changes in HDX reaction rates when their reactivity is compared in the presence and absence of Zn. Using this new approach, we then determined the Zn binding site of β-2-microglobulin, a protein associated with metal-induced amyloidosis. Together, these results suggest that HDX-MS of His C2-hydrogens is a promising new method for identifying Zn-bound histidines in metalloproteins.

  17. Thermodynamics of the formation of copper(II) complexes with L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2015-02-01

    The heat effects from the reaction between L-histidine solutions and Cu(NO3)2 solutions at 298.15 K in the 0.2 to 1.0 (KNO3) range of ionic strength are measured by means of direct calorimetry. The experimental data is treated with allowance for the simultaneous proceeding of several processes. The heat effects of the formation of complexes Cu(His)+, Cu(His)2, CuHHis2+, CuH(His){2/+} and CuH2(His){2/2+} are calculated from calorimetric measurements. The standard enthalpies of formation for complexes of L-histidine with Cu2+ ions are obtained via extrapolation to zero ionic strength. The relationship between the thermodynamic characteristics of the formation of complexes of copper(II) with L-histidine and their structure is determined.

  18. High constitutive activity of a virus-encoded seven transmembrane receptor in the absence of the conserved DRY motif (Asp-Arg-Tyr) in transmembrane helix 3

    DEFF Research Database (Denmark)

    Rosenkilde, Mette M; Kledal, Thomas N; Schwartz, Thue W

    2005-01-01

    The highly conserved Arg in the so-called DRY motif (Asp-Arg-Tyr) at the intracellular end of transmembrane helix 3 is in general considered as an essential residue for G protein coupling in rhodopsin-like seven transmembrane (7TM) receptors. In the open reading frame 74 (ORF74) receptor encoded by...

  19. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Wen-Jian [National Cancer Inst., Frederick, MD (United States); Park, Jung-Eun [National Cancer Inst., Bethesda, MD (United States); Grant, Robert [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lai, Christopher C. [National Cancer Inst., Frederick, MD (United States); Kelley, James A. [National Cancer Inst., Frederick, MD (United States); Yaffe, Michael B. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lee, Kyung S. [National Cancer Inst., Bethesda, MD (United States); Burke, Terrence R. [National Cancer Inst., Frederick, MD (United States)

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  20. Kinetics of histidine sorption and desorption on Fumasep® FTCM cation-exchange membranes

    Science.gov (United States)

    Maigurova, N. I.; Eliseeva, T. V.; Lantsuzskaya, E. V.; Sholokhova, A. Yu.

    2015-05-01

    The sorption of the basic amino acid histidine by Fumasep® FTCM membranes in different ionic forms is investigated over a wide range of solution concentrations. It is established that sorption limited by the stage of external diffusion. The time required for equilibrium to be established in the membrane-amino acid solution system is found to grow from 4 to 9 h when the initial concentration of the solution is reduced. The reversibility of histidine sorption is demonstrated, and the conditions of effective desorption are determined.

  1. Localized lipid packing of transmembrane domains impedes integrin clustering.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    Full Text Available Integrin clustering plays a pivotal role in a host of cell functions. Hetero-dimeric integrin adhesion receptors regulate cell migration, survival, and differentiation by communicating signals bidirectionally across the plasma membrane. Thus far, crystallographic structures of integrin components are solved only separately, and for some integrin types. Also, the sequence of interactions that leads to signal transduction remains ambiguous. Particularly, it remains controversial whether the homo-dimerization of integrin transmembrane domains occurs following the integrin activation (i.e. when integrin ectodomain is stretched out or if it regulates integrin clustering. This study employs molecular dynamics modeling approaches to address these questions in molecular details and sheds light on the crucial effect of the plasma membrane. Conducting a normal mode analysis of the intact αllbβ3 integrin, it is demonstrated that the ectodomain and transmembrane-cytoplasmic domains are connected via a membrane-proximal hinge region, thus merely transmembrane-cytoplasmic domains are modeled. By measuring the free energy change and force required to form integrin homo-oligomers, this study suggests that the β-subunit homo-oligomerization potentially regulates integrin clustering, as opposed to α-subunit, which appears to be a poor regulator for the clustering process. If α-subunits are to regulate the clustering they should overcome a high-energy barrier formed by a stable lipid pack around them. Finally, an outside-in activation-clustering scenario is speculated, explaining how further loading the already-active integrin affects its homo-oligomerization so that focal adhesions grow in size.

  2. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  3. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  4. Mechanics of torque generation in the bacterial flagellar motor

    CERN Document Server

    Mandadapu, Kranthi K; Berry, Richard M; Oster, George

    2015-01-01

    The bacterial flagellar motor (BFM) is responsible for driving bacterial locomotion and chemotaxis, fundamental processes in pathogenesis and biofilm formation. In the BFM, torque is generated at the interface between transmembrane proteins (stators) and a rotor. It is well-established that the passage of ions down a transmembrane gradient through the stator complex provides the energy needed for torque generation. However, the physics involved in this energy conversion remain poorly understood. Here we propose a mechanically specific model for torque generation in the BFM. In particular, we identify two fundamental forces involved in torque generation: electrostatic and steric. We propose that electrostatic forces serve to position the stator, while steric forces comprise the actual 'power stroke'. Specifically, we predict that ion-induced conformational changes about a proline 'hinge' residue in an $\\alpha$-helix of the stator are directly responsible for generating the power stroke. Our model predictions f...

  5. Association of Rare Loss-Of-Function Alleles in HAL, Serum Histidine: Levels and Incident Coronary Heart Disease

    NARCIS (Netherlands)

    B. Yu (Bing); A.H. Li (Alexander H.); D. Muzny (Donna); N. Veeraraghavan (Narayanan); P.S. de Vries (Paul); J.C. Bis (Joshua); S. Musani (Solomon); D. Alexander (Danny); A.C. Morrison (Alanna); O.H. Franco (Oscar); A.G. Uitterlinden (Andre G.); A. Hofman (Albert); A. Dehghan (Abbas); J.G. Wilson (James); B.M. Psaty (Bruce); R. Gibbs (Richard); P. Wei (Peng); E. Boerwinkle (Eric)

    2015-01-01

    textabstractBackground-Histidine is a semiessential amino acid with antioxidant and anti-inflammatory properties. Few data are available on the associations between genetic variants, histidine levels, and incident coronary heart disease (CHD) in a population-based sample. Methods and Results-By cond

  6. Ergothioneine, histidine, and two naturally occurring histidine dipeptides as radioprotectors against gamma-irradiation inactivation of bacteriophages T4 and P22

    Energy Technology Data Exchange (ETDEWEB)

    Hartman, P.E.; Hartman, Z.; Citardi, M.J.

    1988-05-01

    Bacteriophages P22, T4+, and T4os (osmotic shock-resistant mutant with altered capsids) were diluted in 0.85% NaCl and exposed to gamma irradiation (2.79 Gy/min) at room temperature (24 degrees C). T4+ was more sensitive to inactivation than was P22, and the T4os mutant was even more sensitive than T4+. Catalase exhibited a strong protective effect and superoxide dismutase a weaker protection, indicating that H/sub 2/O/sub 2/ or some product derived therefrom was predominant in causing inactivation of plaque formation. Low but significant (0.1-0.3 mM) reduced glutathione (GSH) enhanced phage inactivation, but a higher (1 mM) GSH concentration protected. A similar effect was found for the polyamine, spermidine. In contrast, 0.1 mM L-ergothioneine (2-thiol-L-histidine betaine) exhibited strong protection and 1 mM afforded essentially complete protection. L-Ergothioneine is present in millimolar concentrations in some fungi and is conserved up to millimolar concentrations in critical tissues when consumed by man. L-Histidine and two histidine-containing dipeptides, carnosine and anserine, protected at a concentration of 1 mM, a level at which they are present in striated muscles of various animals.

  7. Efficient isolation of Pseudomonas aeruginosa type III secretion translocators and assembly of heteromeric transmembrane pores in model membranes.

    Science.gov (United States)

    Romano, Fabian B; Rossi, Kyle C; Savva, Christos G; Holzenburg, Andreas; Clerico, Eugenia M; Heuck, Alejandro P

    2011-08-23

    Translocation of bacterial toxins or effectors into host cells using the type III secretion (T3S) system is a conserved mechanism shared by many Gram-negative pathogens. Pseudomonas aeruginosa injects different proteins across the plasma membrane of target cells, altering the normal metabolism of the host. Protein translocation presumably occurs through a proteinaceous transmembrane pore formed by two T3S secreted protein translocators, PopB and PopD. Unfolded translocators are secreted through the T3S needle prior to insertion into the target membrane. Purified PopB and PopD form pores in model membranes. However, their tendency to form heterogeneous aggregates in solution had hampered the analysis of how these proteins undergo the transition from a denatured state to a membrane-inserted state. Translocators were purified as stable complexes with the cognate chaperone PcrH and isolated from the chaperone using 6 M urea. We report here the assembly of stable transmembrane pores by dilution of urea-denatured translocators in the presence of membranes. PopB and PopD spontaneously bound liposomes containing anionic phospholipids and cholesterol in a pH-dependent manner as observed by two independent assays, time-resolved Förster resonance energy transfer and sucrose-step gradient ultracentrifugation. Using Bodipy-labeled proteins, we found that PopB interacts with PopD on the membrane surface as determined by excitation energy migration and fluorescence quenching. Stable transmembrane pores are more efficiently assembled at pH <5.0, suggesting that acidic residues might be involved in the initial membrane binding and/or insertion. Altogether, the experimental setup described here represents an efficient method for the reconstitution and analysis of membrane-inserted translocators.

  8. Membrane-spanning domain of bovine foamy virus transmembrane protein having cytotoxicity

    Institute of Scientific and Technical Information of China (English)

    MA Yonggang; YU Hong; WANG Jinzhong; CHEN Qimin; GENG Yunqi

    2006-01-01

    Foamy viruses (FVs) have broad cellular tropism infecting vertebrates from fish to human being,which indicates that Env protein has a high capability for membrane fusion.Conservative features in all FV transmembrane (TM) proteins include a region of hydrophobic domain called membrane-spanning domain (MSD),which contains several stretches of hydrophobic amino acids.To investigate whether these features were associated with the cytotoxicity effect of TM on Escherichia coli,a series of mutants were constructed and expressed in the E.coli BL21 (DE3) using pET-32a (+) as expressing vector.The results showed that only TM3 without MSD was expressed in E.coli,whereas the other two containing full or part of the MSD (TM1 and TM2) could not be expressed.Furthermore,the bacterial amount and living bacteria analysis revealed that the cytotoxicity of TM was dependent on its MSD,especially on the stretches of hydrophobic amino acids.Western blotting analysis showed that TM3 protein was purified with affinity purification.

  9. Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore

    Science.gov (United States)

    Song, Langzhou; Hobaugh, Michael R.; Shustak, Christopher; Cheley, Stephen; Bayley, Hagan; Gouaux, J. Eric

    1996-12-01

    The structure of the Staphylococcus aureus α-hemolysin pore has been determined to 1.9 overset{circ}{mathrm A} resolution. Contained within the mushroom-shaped homo-oligomeric heptamer is a solvent-filled channel, 100 overset{circ}{mathrm A} in length, that runs along the sevenfold axis and ranges from 14 overset{circ}{mathrm A} to 46 overset{circ}{mathrm A} in diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, to which each protomer contributes two β strands, each 65 overset{circ}{mathrm A} long. The interior of the β barrel is primarily hydrophilic, and the exterior has a hydrophobic belt 28 overset{circ}{mathrm A} wide. The structure proves the heptameric subunit stoichiometry of the α-hemolysin oligomer, shows that a glycine-rich and solvent-exposed region of a water-soluble protein can self-assemble to form a transmembrane pore of defined structure, and provides insight into the principles of membrane interaction and transport activity of β barrel pore-forming toxins.

  10. Structure and function of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    M.M. Morales

    1999-08-01

    Full Text Available Cystic fibrosis (CF is a lethal autosomal recessive genetic disease caused by mutations in the CF transmembrane conductance regulator (CFTR. Mutations in the CFTR gene may result in a defective processing of its protein and alter the function and regulation of this channel. Mutations are associated with different symptoms, including pancreatic insufficiency, bile duct obstruction, infertility in males, high sweat Cl-, intestinal obstruction, nasal polyp formation, chronic sinusitis, mucus dehydration, and chronic Pseudomonas aeruginosa and Staphylococcus aureus lung infection, responsible for 90% of the mortality of CF patients. The gene responsible for the cellular defect in CF was cloned in 1989 and its protein product CFTR is activated by an increase of intracellular cAMP. The CFTR contains two membrane domains, each with six transmembrane domain segments, two nucleotide-binding domains (NBDs, and a cytoplasmic domain. In this review we discuss the studies that have correlated the role of each CFTR domain in the protein function as a chloride channel and as a regulator of the outwardly rectifying Cl- channels (ORCCs.

  11. Stability analysis of the inverse transmembrane potential problem in electrocardiography

    Science.gov (United States)

    Burger, Martin; Mardal, Kent-André; Nielsen, Bjørn Fredrik

    2010-10-01

    In this paper we study some mathematical properties of an inverse problem arising in connection with electrocardiograms (ECGs). More specifically, we analyze the possibility for recovering the transmembrane potential in the heart from ECG recordings, a challenge currently investigated by a growing number of groups. Our approach is based on the bidomain model for the electrical activity in the myocardium, and leads to a parameter identification problem for elliptic partial differential equations (PDEs). It turns out that this challenge can be split into two subproblems: the task of recovering the potential at the heart surface from body surface recordings; the problem of computing the transmembrane potential inside the heart from the potential determined at the heart surface. Problem (1), which can be formulated as the Cauchy problem for an elliptic PDE, has been extensively studied and is well known to be severely ill-posed. The main purpose of this paper is to prove that problem (2) is stable and well posed if a suitable prior is available. Moreover, our theoretical findings are illuminated by a series of numerical experiments. Finally, we discuss some aspects of uniqueness related to the anisotropy in the heart.

  12. Bioenergetics and mitochondrial transmembrane potential during differentiation of cultured osteoblasts

    Science.gov (United States)

    Komarova, S. V.; Ataullakhanov, F. I.; Globus, R. K.

    2000-01-01

    To evaluate the relationship between osteoblast differentiation and bioenergetics, cultured primary osteoblasts from fetal rat calvaria were grown in medium supplemented with ascorbate to induce differentiation. Before ascorbate treatment, the rate of glucose consumption was 320 nmol. h(-1). 10(6) cells(-1), respiration was 40 nmol. h(-1). 10(6) cells(-1), and the ratio of lactate production to glucose consumption was approximately 2, indicating that glycolysis was the main energy source for immature osteoblasts. Ascorbate treatment for 14 days led to a fourfold increase in respiration, a threefold increase in ATP production, and a fivefold increase in ATP content compared with that shown in immature cells. Confocal imaging of mitochondria stained with a transmembrane potential-sensitive vital dye showed that mature cells possessed abundant amounts of high-transmembrane-potential mitochondria, which were concentrated near the culture medium-facing surface. Acute treatment of mature osteoblasts with metabolic inhibitors showed that the rate of glycolysis rose to maintain the cellular energy supply constant. Thus progressive differentiation coincided with changes in cellular metabolism and mitochondrial activity, which are likely to play key roles in osteoblast function.

  13. Transmembrane proteins--Mining the cattle tick transcriptome.

    Science.gov (United States)

    Richards, Sabine A; Stutzer, Christian; Bosman, Anna-Mari; Maritz-Olivier, Christine

    2015-09-01

    Managing the spread and load of pathogen-transmitting ticks is an important task worldwide. The cattle tick, Rhipicephalus microplus, not only impacts the economy through losses in dairy and meat production, but also raises concerns for human health in regards to the potential of certain transmitted pathogens becoming zoonotic. However, novel strategies to control R. microplus are hindered by lack of understanding tick biology and the discovery of suitable vaccine or acaricide targets. The importance of transmembrane proteins as vaccine targets are well known, as is the case in tick vaccines with Bm86 as antigen. In this study, we describe the localization and functional annotation of 878 putative transmembrane proteins. Thirty proteins could be confirmed in the R. microplus gut using LC-MS/MS analysis and their roles in tick biology are discussed. To the best of our knowledge, 19 targets have not been reported before in any proteomics study in various tick species and the possibility of using the identified proteins as targets for tick control are discussed. Although tissue expression of identified putative proteins through expansive proteomics is necessary, this study demonstrates the possibility of using bioinformatics for the identification of targets for further evaluation in tick control strategies. PMID:26096851

  14. Rigidity of transmembrane proteins determines their cluster shape

    Science.gov (United States)

    Jafarinia, Hamidreza; Khoshnood, Atefeh; Jalali, Mir Abbas

    2016-01-01

    Protein aggregation in cell membrane is vital for the majority of biological functions. Recent experimental results suggest that transmembrane domains of proteins such as α -helices and β -sheets have different structural rigidities. We use molecular dynamics simulation of a coarse-grained model of protein-embedded lipid membranes to investigate the mechanisms of protein clustering. For a variety of protein concentrations, our simulations under thermal equilibrium conditions reveal that the structural rigidity of transmembrane domains dramatically affects interactions and changes the shape of the cluster. We have observed stable large aggregates even in the absence of hydrophobic mismatch, which has been previously proposed as the mechanism of protein aggregation. According to our results, semiflexible proteins aggregate to form two-dimensional clusters, while rigid proteins, by contrast, form one-dimensional string-like structures. By assuming two probable scenarios for the formation of a two-dimensional triangular structure, we calculate the lipid density around protein clusters and find that the difference in lipid distribution around rigid and semiflexible proteins determines the one- or two-dimensional nature of aggregates. It is found that lipids move faster around semiflexible proteins than rigid ones. The aggregation mechanism suggested in this paper can be tested by current state-of-the-art experimental facilities.

  15. Structural Dynamics of Insulin Receptor and Transmembrane Signaling.

    Science.gov (United States)

    Tatulian, Suren A

    2015-09-15

    The insulin receptor (IR) is a (αβ)2-type transmembrane tyrosine kinase that plays a central role in cell metabolism. Each αβ heterodimer consists of an extracellular ligand-binding α-subunit and a membrane-spanning β-subunit that comprises the cytoplasmic tyrosine kinase (TK) domain and the phosphorylation sites. The α- and β-subunits are linked via a single disulfide bridge, and the (αβ)2 tetramer is formed by disulfide bonds between the α-chains. Insulin binding induces conformational changes in IR that reach the intracellular β-subunit followed by a protein phosphorylation and activation cascade. Defects in this signaling process, including IR dysfunction caused by mutations, result in type 2 diabetes. Rational drug design aimed at treatment of diabetes relies on knowledge of the detailed structure of IR and the dynamic structural transformations during transmembrane signaling. Recent X-ray crystallographic studies have provided important clues about the mode of binding of insulin to IR, the resulting structural changes and their transmission to the TK domain, but a complete understanding of the structural basis underlying insulin signaling has not been achieved. This review presents a critical analysis of the current status of the structure-function relationship of IR, with a comparative assessment of the other IR family receptors, and discusses potential advancements that may provide insight into the molecular mechanism of insulin signaling.

  16. Possible involvement of phospholipase A2 and cyclooxygenase in stimulatory action of L-histidine on protein synthesis in L6 myotubes

    OpenAIRE

    Yagasaki, Kazumi; Hatano, Naoko; Fujii, Motoki; Miura, Yutaka; Funabiki, Ryuhei

    2002-01-01

    Effects of L-histidine and related compounds on protein synthesiswere studied in cultured L6 myotubes. L-Histidine specifically stimulated protein synthesis, whereas D-histidine, histamine, L-arginine and L-lysine did not. Inhibitors of phospholipase A2, phospholipase C and cyclooxygenase intercepted the stimulatory action of L-histidine on protein synthesis, while inhibitors of protein kinase C and 5-lipoxygenase did not. These results suggest an involvement of phospholipase A2 and cyclooxyg...

  17. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  18. Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans.

    Science.gov (United States)

    Ashenberg, Orr; Keating, Amy E; Laub, Michael T

    2013-04-12

    Bacteria frequently use two-component signal transduction pathways to sense and respond to environmental and intracellular stimuli. Upon receipt of a stimulus, a homodimeric sensor histidine kinase autophosphorylates and then transfers its phosphoryl group to a cognate response regulator. The autophosphorylation of histidine kinases has been reported to occur both in cis and in trans, but the molecular determinants dictating which mechanism is employed are unknown. Based on structural considerations, one model posits that the handedness of a loop at the base of the helical dimerization domain plays a critical role. Here, we tested this model by replacing the loop from Escherichia coli EnvZ, which autophosphorylates in trans, with the loop from three PhoR orthologs that autophosphorylate in cis. These chimeric kinases autophosphorylated in cis, indicating that this small loop is sufficient to determine autophosphorylation mechanism. Further, we report that the mechanism of autophosphorylation is conserved in orthologous sets of histidine kinases despite highly dissimilar loop sequences. These findings suggest that histidine kinases are under selective pressure to maintain their mode of autophosphorylation, but they can do so with a wide range of sequences. PMID:23333741

  19. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif.

    Science.gov (United States)

    Hernández-Sánchez, Itzell E; Maruri-López, Israel; Ferrando, Alejandro; Carbonell, Juan; Graether, Steffen P; Jiménez-Bremont, Juan F

    2015-01-01

    The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA) proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC) approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine-rich motif is proposed as a targeting element for OpsDHN1 nuclear localization. PMID:26442018

  20. Nuclear localization of the dehydrin OpsDHN1 is determined by histidine-rich motif

    Directory of Open Access Journals (Sweden)

    Itzell Euridice Hernández-Sánchez

    2015-09-01

    Full Text Available The cactus OpsDHN1 dehydrin belongs to a large family of disordered and highly hydrophilic proteins known as Late Embryogenesis Abundant (LEA proteins, which accumulate during the late stages of embryogenesis and in response to abiotic stresses. Herein, we present the in vivo OpsDHN1 subcellular localization by N-terminal GFP translational fusion; our results revealed a cytoplasmic and nuclear localization of the GFP::OpsDHN1 protein in Nicotiana benthamiana epidermal cells. In addition, dimer assembly of OpsDHN1 in planta using a Bimolecular Fluorescence Complementation (BiFC approach was demonstrated. In order to understand the in vivo role of the histidine-rich motif, the OpsDHN1-ΔHis version was produced and assayed for its subcellular localization and dimer capability by GFP fusion and BiFC assays, respectively. We found that deletion of the OpsDHN1 histidine-rich motif restricted its localization to cytoplasm, but did not affect dimer formation. In addition, the deletion of the S-segment in the OpsDHN1 protein affected its nuclear localization. Our data suggest that the deletion of histidine-rich motif and S-segment show similar effects, preventing OpsDHN1 from getting into the nucleus. Based on these results, the histidine rich motif is proposed as a targeting element for OpsDHN1 nuclear localization.

  1. Profiling histidine dipeptides in plasma and urine after ingesting beef, chicken or chicken broth in humans

    Science.gov (United States)

    Reactive carbonyl species (RCS), oxidation products of polyunsaturated fatty acids, protein & sugars, play a role in the etiology of certain chronic diseases. Our previous studies revealed that histidine-dipeptides such as carnosine and anserine detoxify cytotoxic carbonyls such as 4-hydroxy-trans-...

  2. Conformation Switching in Gas-Phase Complexes of Histidine with Alkaline Earth Ions

    NARCIS (Netherlands)

    Dunbar, R. C.; Hopkinson, A. C.; Oomens, J.; Siu, C. K.; Siu, K. W. M.; Steill, J. D.; Verkerk, U. H.; Zhao, J. F.

    2009-01-01

    Infrared multiple photon dissociation spectroscopy of gas-phase doubly charged alkaline earth complexes of histidine reveals a transition from dominance of the zwitterion (salt bridge, SB) conformation with Ba2+ to substantial presence of the canonical (charge-solvated, CS) conformation with Ca2+. T

  3. Crystallization of a newly discovered histidine acid phosphatase from Francisella tularensis

    OpenAIRE

    Felts, Richard L.; Reilly, Thomas J.; Calcutt, Michael J.; Tanner, John J.

    2005-01-01

    A histidine acid phosphatase from the CDC Category A pathogen F. tularensis has been crystallized in space group P41212, with unit-cell parameters a = 61.96, c = 210.78 Å. A 1.75 Å resolution data set was collected at Advanced Light Source beamline 4.2.2.

  4. Diversity of tri-functional histidine biosynthesis gene (his) in cereal Phaeosphaeria species

    Science.gov (United States)

    The full length genomic sequences of tri-functional histidine biosynthesis (his) gene were obtained and compared from cereal Phaeosphaeria species by PCR amplification. The his gene coding sequence in wheat-biotype P. nodorum (PN-w) was 2697 bp in size. The his genes in barley-biotype P. nodorum (PN...

  5. Highly Efficient Photocatalytic Hydrogen Production of Flower-like Cadmium Sulfide Decorated by Histidine

    Science.gov (United States)

    Wang, Qizhao; Lian, Juhong; Li, Jiajia; Wang, Rongfang; Huang, Haohao; Su, Bitao; Lei, Ziqiang

    2015-09-01

    Morphology-controlled synthesis of CdS can significantly enhance the efficiency of its photocatalytic hydrogen production. In this study, a novel three-dimensional (3D) flower-like CdS is synthesized via a facile template-free hydrothermal process using Cd(NO3)2•4H2O and thiourea as precursors and L-Histidine as a chelating agent. The morphology, crystal phase, and photoelectrochemical performance of the flower-like CdS and pure CdS nanocrystals are carefully investigated via various characterizations. Superior photocatalytic activity relative to that of pure CdS is observed on the flower-like CdS photocatalyst under visible light irradiation, which is nearly 13 times of pure CdS. On the basis of the results from SEM studies and our analysis, a growth mechanism of flower-like CdS is proposed by capturing the shape evolution. The imidazole ring of L-Histidine captures the Cd ions from the solution, and prevents the growth of the CdS nanoparticles. Furthermore, the photocatalytic contrast experiments illustrate that the as-synthesized flower-like CdS with L-Histidine is more stable than CdS without L-Histidine in the hydrogen generation.

  6. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  7. Specific Resistance to Pseudomonas aeruginosa Infection in Zebrafish Is Mediated by the Cystic Fibrosis Transmembrane Conductance Regulator ▿ †

    Science.gov (United States)

    Phennicie, Ryan T.; Sullivan, Matthew J.; Singer, John T.; Yoder, Jeffrey A.; Kim, Carol H.

    2010-01-01

    Cystic fibrosis (CF) is a genetic disease caused by recessive mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene and is associated with prevalent and chronic Pseudomonas aeruginosa lung infections. Despite numerous studies that have sought to elucidate the role of CFTR in the innate immune response, the links between CFTR, innate immunity, and P. aeruginosa infection remain unclear. The present work highlights the zebrafish as a powerful model organism for human infectious disease, particularly infection by P. aeruginosa. Zebrafish embryos with reduced expression of the cftr gene (Cftr morphants) exhibited reduced respiratory burst response and directed neutrophil migration, supporting a connection between cftr and the innate immune response. Cftr morphants were infected with P. aeruginosa or other bacterial species that are commonly associated with infections in CF patients, including Burkholderia cenocepacia, Haemophilus influenzae, and Staphylococcus aureus. Intriguingly, the bacterial burden of P. aeruginosa was found to be significantly higher in zebrafish Cftr morphants than in controls, but this phenomenon was not observed with the other bacterial species. Bacterial burden in Cftr morphants infected with a P. aeruginosa ΔLasR mutant, a quorum sensing-deficient strain, was comparable to that in control fish, indicating that the regulation of virulence factors through LasR is required for enhancement of infection in the absence of Cftr. The zebrafish system provides a multitude of advantages for studying the pathogenesis of P. aeruginosa and for understanding the role that innate immune cells, such as neutrophils, play in the host response to acute bacterial infections commonly associated with cystic fibrosis. PMID:20732993

  8. Pulmonary bacterial pathogens in cystic fibrosis patients and antibiotic therapy: a tool for the health workers

    OpenAIRE

    2008-01-01

    Cystic fibrosis is the most common and best known genetic disease involving a defect in transepithelial Cl- transport by mutations in the CF gene on chromosome 7, which codes for the cystic fibrosis transmembrane conductance regulator protein (CFTR). The most serious symptoms are observed in the lungs, augmenting the risk of bacterial infection. The objective of this review was to describe the bacterial pathogens colonizing patients with cystic fibrosis. A systematic search was conducted usin...

  9. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  10. Effects of La3+ on H+ Transmembrane Gradient and Membrane Potential in Rice Seedling Roots

    Institute of Scientific and Technical Information of China (English)

    郑海雷; 张春光; 赵中秋; 马建华; 李利

    2002-01-01

    The effects of LaCl3 on membrane potential and transmembrane proton gradient for rice (Oryza sativa) seedling roots were studied. Highly purified plasma membrane was isolated by aqueous two-phase partitioning method. Both the gradient of transmembrane proton and membrane potential were stimulated by certain low concentration of LaCl3 and depressed by high concentration of LaCl3. The optimal concentration of La3+ is around 40~60 μmolL-1 for transmembrane proton gradient and membrane potential. It shows that La3+ can influence the generations and maintenances of membrane potential and transmembrane proton gradient in rice seedling roots.

  11. Muscle histidine-containing dipeptides are elevated by glucose intolerance in both rodents and men.

    Directory of Open Access Journals (Sweden)

    Sanne Stegen

    Full Text Available Muscle carnosine and its methylated form anserine are histidine-containing dipeptides. Both dipeptides have the ability to quench reactive carbonyl species and previous studies have shown that endogenous tissue levels are decreased in chronic diseases, such as diabetes.Rodent study: Skeletal muscles of rats and mice were collected from 4 different diet-intervention studies, aiming to induce various degrees of glucose intolerance: 45% high-fat feeding (male rats, 60% high-fat feeding (male rats, cafeteria feeding (male rats, 70% high-fat feeding (female mice. Body weight, glucose-tolerance and muscle histidine-containing dipeptides were assessed. Human study: Muscle biopsies were taken from m. vastus lateralis in 35 males (9 lean, 8 obese, 9 prediabetic and 9 newly diagnosed type 2 diabetic patients and muscle carnosine and gene expression of muscle fiber type markers were measured.Diet interventions in rodents (cafeteria and 70% high-fat feeding induced increases in body weight, glucose intolerance and levels of histidine-containing dipeptides in muscle. In humans, obese, prediabetic and diabetic men had increased muscle carnosine content compared to the lean (+21% (p>0.1, +30% (p<0.05 and +39% (p<0.05, respectively. The gene expression of fast-oxidative type 2A myosin heavy chain was increased in the prediabetic (1.8-fold, p<0.05 and tended to increase in the diabetic men (1.6-fold, p = 0.07, compared to healthy lean subjects.Muscle histidine-containing dipeptides increases with progressive glucose intolerance, in male individuals (cross-sectional. In addition, high-fat diet-induced glucose intolerance was associated with increased muscle histidine-containing dipeptides in female mice (interventional. Increased muscle carnosine content might reflect fiber type composition and/or act as a compensatory mechanism aimed at preventing cell damage in states of impaired glucose tolerance.

  12. Antioxidant status of turkey breast meat and blood after feeding a diet enriched with histidine.

    Science.gov (United States)

    Kopec, W; Wiliczkiewicz, A; Jamroz, D; Biazik, E; Pudlo, A; Hikawczuk, T; Skiba, T; Korzeniowska, M

    2016-01-01

    The objective of this study was to investigate the effects of 1) spray dried blood cells rich in histidine and 2) pure histidine added to feed on the antioxidant status and concentration of carnosine related components in the blood and breast meat of female turkeys. The experiment was performed on 168 Big7 turkey females randomly assigned to 3 dietary treatments: control; control with the addition of 0.18% L-histidine (His); and control with the addition of spray dried blood cells (SDBC). Birds were raised for 103 d on a floor with sawdust litter, with drinking water and feed ad libitum. The antioxidant status of blood plasma and breast muscle was analyzed by ferric reducing ability (FRAP) and by 2,2-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) and 1,1-Diphenyl-2-picrylhydrazyl (DPPH) radicals scavenging ability. The activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) was analyzed in the blood and breast meat, with the content of carnosine and anserine quantified by HPLC. Proximate analysis as well as amino acid profiling were carried out for the feed and breast muscles. Growth performance parameters also were calculated. Histidine supplementation of the turkey diet resulted in increased DPPH radical scavenging capacity in the breast muscles and blood, but did not result in higher histidine dipeptide concentrations. The enzymatic antioxidant system of turkey blood was affected by the diet with SDBC. In the plasma, the SDBC addition increased both SOD and GPx activity, and decreased GPx activity in the erythrocytes. Feeding turkeys with an SDBC containing diet increased BW and the content of isoleucine and valine in breast muscles. PMID:26574038

  13. Fe2+-Tetracycline-Mediated Cleavage of the Tn10 Tetracycline Efflux Protein TetA Reveals a Substrate Binding Site near Glutamine 225 in Transmembrane Helix 7

    OpenAIRE

    McMurry, Laura M.; Aldema-Ramos, Mila L.; Levy, Stuart B.

    2002-01-01

    TetA specified by Tn10 is a class B member of a group of related bacterial transport proteins of 12 transmembrane alpha helices that mediate resistance to the antibiotic tetracycline. A tetracycline-divalent metal cation complex is expelled from the cell in exchange for a entering proton. The site(s) where tetracycline binds to this export pump is not known. We found that, when chelated to tetracycline, Fe2+ cleaved the backbone of TetA predominantly at a single position, glutamine 225 in tra...

  14. Large-Conductance Transmembrane Porin Made from DNA Origami.

    Science.gov (United States)

    Göpfrich, Kerstin; Li, Chen-Yu; Ricci, Maria; Bhamidimarri, Satya Prathyusha; Yoo, Jejoong; Gyenes, Bertalan; Ohmann, Alexander; Winterhalter, Mathias; Aksimentiev, Aleksei; Keyser, Ulrich F

    2016-09-27

    DNA nanotechnology allows for the creation of three-dimensional structures at nanometer scale. Here, we use DNA to build the largest synthetic pore in a lipid membrane to date, approaching the dimensions of the nuclear pore complex and increasing the pore-area and the conductance 10-fold compared to previous man-made channels. In our design, 19 cholesterol tags anchor a megadalton funnel-shaped DNA origami porin in a lipid bilayer membrane. Confocal imaging and ionic current recordings reveal spontaneous insertion of the DNA porin into the lipid membrane, creating a transmembrane pore of tens of nanosiemens conductance. All-atom molecular dynamics simulations characterize the conductance mechanism at the atomic level and independently confirm the DNA porins' large ionic conductance. PMID:27504755

  15. Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients

    DEFF Research Database (Denmark)

    Wellendorph, Petrine; Johansen, Lars Dan; Bräuner-Osborne, Hans

    2009-01-01

    in taste tissue, the gastrointestinal tract, endocrine glands, adipose tissue, and/or kidney. These receptors thus hold the potential to act as sensors of food intake, regulating, for example, release of incretin hormones from the gut, insulin/glucagon from the pancreas, and leptin from adipose tissue......A number of highly promiscuous seven transmembrane (7TM) receptors have been cloned and characterized within the last few years. It is noteworthy that many of these receptors are activated broadly by amino acids, proteolytic degradation products, carbohydrates, or free fatty acids and are expressed....... The promiscuous tendency in ligand recognition of these receptors is in contrast to the typical specific interaction with one physiological agonist seen for most receptors, which challenges the classic "lock-and-key" concept. We here review the molecular mechanisms of nutrient sensing of the calcium...

  16. Glycosylation and the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Glick Mary Catherine

    2001-08-01

    Full Text Available Abstract The cystic fibrosis transmembrane conductance regulator (CFTR has been known for the past 11 years to be a membrane glycoprotein with chloride channel activity. Only recently has the glycosylation of CFTR been examined in detail, by O'Riordan et al in Glycobiology. Using cells that overexpress wild-type (wtCFTR, the presence of polylactosamine was noted on the fully glycosylated form of CFTR. In the present commentary the results of that work are discussed in relation to the glycosylation phenotype of cystic fibrosis (CF, and the cellular localization and processing of ΔF508 CFTR. The significance of the glycosylation will be known when endogenous CFTR from primary human tissue is examined.

  17. Transmembrane protein topology prediction using support vector machines

    Directory of Open Access Journals (Sweden)

    Nugent Timothy

    2009-05-01

    Full Text Available Abstract Background Alpha-helical transmembrane (TM proteins are involved in a wide range of important biological processes such as cell signaling, transport of membrane-impermeable molecules, cell-cell communication, cell recognition and cell adhesion. Many are also prime drug targets, and it has been estimated that more than half of all drugs currently on the market target membrane proteins. However, due to the experimental difficulties involved in obtaining high quality crystals, this class of protein is severely under-represented in structural databases. In the absence of structural data, sequence-based prediction methods allow TM protein topology to be investigated. Results We present a support vector machine-based (SVM TM protein topology predictor that integrates both signal peptide and re-entrant helix prediction, benchmarked with full cross-validation on a novel data set of 131 sequences with known crystal structures. The method achieves topology prediction accuracy of 89%, while signal peptides and re-entrant helices are predicted with 93% and 44% accuracy respectively. An additional SVM trained to discriminate between globular and TM proteins detected zero false positives, with a low false negative rate of 0.4%. We present the results of applying these tools to a number of complete genomes. Source code, data sets and a web server are freely available from http://bioinf.cs.ucl.ac.uk/psipred/. Conclusion The high accuracy of TM topology prediction which includes detection of both signal peptides and re-entrant helices, combined with the ability to effectively discriminate between TM and globular proteins, make this method ideally suited to whole genome annotation of alpha-helical transmembrane proteins.

  18. Photometric recording of transmembrane potential in outer hair cells

    Science.gov (United States)

    Nakagawa, Takashi; Oghalai, John S.; Saggau, Peter; Rabbitt, Richard D.; Brownell, William E.

    2006-06-01

    Cochlear outer hair cells (OHCs) are polarized epithelial cells that have mechanoelectrical transduction channels within their apical stereocilia and produce electromotile force along their lateral wall. Phase shifts, or time delays, in the transmembrane voltage occurring at different axial locations along the cell may contribute to our understanding of how these cells operate at auditory frequencies. We developed a method to optically measure the phase of the OHC transmembrane potential using the voltage-sensitive dye (VSD) di-8-ANEPPS. The exit aperture of a fibre-optic light source was driven in two dimensions so that a 24 µm spot of excitation light could be positioned along the length of the OHC. We used the whole-cell patch-clamp technique in the current-clamp mode to stimulate the OHC at the base. The photometric response and the voltage response were monitored with a photodetector and patch-clamp amplifier, respectively. The photometric response was used to measure the regional changes in the membrane potential in response to maintained (dc) and sinusoidal (ac) current stimuli applied at the base of the cell. We used a neutral density filter to lower the excitation light intensity and reduce phototoxicity. A sensitive detector and lock-in amplifier were used to measure the small ac VSD signal. This permitted measurements of the ac photometric response below the noise floor of the static fluorescence. The amplitude and phase components of the photometric response were recorded for stimuli up to 800 Hz. VSD data at 400-800 Hz show the presence of a small phase delay between the stimulus voltage at the base of the cell and the local membrane potential measured along the lateral wall. Results are consistent with the hypothesis that OHCs exhibit inhomogeneous membrane potentials that vary with position in analogy with the voltage in nerve axons.

  19. Magnetic resonance study of the transmembrane nitrite diffusion.

    Science.gov (United States)

    Samouilov, A; Woldman, Ya Yu; Zweier, J L; Khramtsov, V V

    2007-05-01

    Nitrite (NO(2)-), being a product of metabolism of both nitric oxide (NO(*)) and nitrate (NO(3)-), can accumulate in tissues and regenerate NO() by several mechanisms. The effect of NO(2)- on ischemia/reperfusion injury was also reported. Nevertheless, the mechanisms of intracellular NO(2)- accumulation are poorly understood. We suggested significant role of nitrite penetration through biological membranes in the form of undissociated nitrous acid (HNO(2)). This hypothesis has been tested using large unilamellar phosphatidylcholine liposomes and several spectroscopic techniques. HNO(2) transport across the phospholipid bilayer of liposomes facilitates proton transfer resulting in intraliposomal acidification, which was measured using pH-sensitive probes. NO(2)(-)-mediated intraliposomal acidification was confirmed by EPR spectroscopy using membrane-impermeable pH-sensitive nitroxide, AMC (2,2,5,5-tetramethyl-1-yloxy-2,5-dihydro-1H-imidazol-3-ium-4-yl)-aminomethanesulfonic acid (pK 5.25), and by (31)P NMR spectroscopy using inorganic phosphate (pK 6.9). Nitrite accumulates inside liposomes in concentration exceeding its concentration in the bulk solution, when initial transmembrane pH gradient (alkaline inside) is applied. Intraliposomal accumulation of NO(2)- was observed by direct measurement using chemiluminescence technique. Perfusion of isolated rat hearts with buffer containing 4 microM NO(2)- was performed. The nitrite concentrations in the effluent and in the tissue, measured after 1 min perfusion, were close, supporting fast penetration of the nitrite through the tissue. Measurements of the nitrite/nitrate showed that total concentration of NO(x) in myocardium increased from initial 7.8 to 24.7 microM after nitrite perfusion. Physiological significance of passive transmembrane transport of NO(2)- and its coupling with intraliposomal acidification are discussed.

  20. A Mechanistic Investigation of the Enhanced Cleavage at Histidine in the Gas-Phase Dissociation of Protonated Peptides

    OpenAIRE

    Tsaprailis, George; Nair, Hari; Zhong, Wenqing; Kuppannan, Krishnamoorthy; Futrell, Jean H.; Wysocki, Vicki H

    2004-01-01

    Enhanced gas-phase cleavage of peptides adjacent to histidine was investigated. The peptides examined were angiotensins III (RVYIHPF) and IV (VYIHPF) as well as synthetic peptide analogs with altered key residues ((R)VYI-X-Z-F; X=F or H and Z=A, P or Sar) or a fixed charge Φ3P+CH2C(O)-VYIHPF. While all singly protonated peptide ions containing both histidine and arginine fragment non-selectively, the doubly protonated peptide ions with arginine and histidine, and the singly protonated peptide...

  1. 21 CFR 866.5900 - Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutation detection system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cystic fibrosis transmembrane conductance... DEVICES Immunological Test Systems § 866.5900 Cystic fibrosis transmembrane conductance regulator (CFTR... intended as an aid in confirmatory diagnostic testing of individuals with suspected cystic fibrosis...

  2. Understanding Function of Transmembrane Proteins by Single-Molecule Experiments on Native-like Environments

    DEFF Research Database (Denmark)

    Jørgensen, Sune Klamer

    Transmembrane proteins are vital for a range of biological processes. Here we investigate three representatives from three different classes of transmembrane proteins; an active ion transporter, a photosynthetic electron transporter, and a signaling protein. To isolate them from other cellular in...

  3. THE COMBINATION PREDICTION OF TRANSMEMBRANE REGIONS BASED ON DEMPSTER-SHAFER THEORY OF EVIDENCE

    Institute of Scientific and Technical Information of China (English)

    Deng Xinyang; Xu Peida; Deng Yong

    2012-01-01

    Transmembrane proteins are some special and important proteins in cells.Because of their importance and specificity,the prediction of the transmembrane regions has very important theoretical and practical significance.At present,the prediction methods are mainly based on the physicochemical property and statistic analysis of amino acids.However,these methods are suitable for some environments but inapplicable for other environments.In this paper,the multi-sources information fusion theory has been introduced to predict the transmembrane regions.The proposed method is test on a data set of transmembrane proteins.The results show that the proposed method has the ability of predicting the transmembrane regions as a good performance and powerful tool.

  4. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  5. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  6. Structural Studies on the Extracellular Domain of Sensor Histidine Kinase YycG from Staphylococcus aureus and Its Functional Implications.

    Science.gov (United States)

    Kim, Truc; Choi, Jongkeun; Lee, Sangho; Yeo, Kwon Joo; Cheong, Hae-Kap; Kim, Kyeong Kyu

    2016-07-31

    Bacterial two-component signal transduction systems are used to adapt to fluctuations in the environment. YycG, a key two-component histidine kinase in Staphylococcus aureus, plays an essential role in cell viability and regulates cell wall metabolism, biofilm formation, virulence, and antibiotic resistance. For these reasons, YycG is considered a compelling target for the development of novel antibiotics. However, to date, the signaling mechanism of YycG and its stimulus are poorly understood mainly because of a lack of structural information on YycG. To address this deficiency, we determined the crystal structure of the extracellular domain of S. aureus YycG (YycGex) at 2.0-Å resolution. The crystal structure indicated two subunits with an extracellular Per-Arnt-Sim (PAS) topology packed into a dimer with interloop interactions. Disulfide scanning using cysteine-substituted mutants revealed that YycGex possessed dimeric interfaces not only in the loop but also in the helix α1. Cross-linking studies using intact YycG demonstrated that it was capable of forming high molecular weight oligomers on the cell membrane. Furthermore, we also observed that two auxiliary proteins of YycG, YycH and YycI, cooperatively interfered with the multimerization of YycG. From these results, we propose that signaling through YycG is regulated by multimerization and binding of YycH and YycI. These structural studies, combined with biochemical analyses, provide a better understanding of the signaling mechanism of YycG, which is necessary for developing novel antibacterial drugs targeting S. aureus. PMID:27389096

  7. Growth and characterization of an organic nonlinear optical material: L-Histidine malonate

    Science.gov (United States)

    Ramya, K.; Saraswathi, N. T.; Raja, C. Ramachandra

    2016-10-01

    L-Histidine malonate is one of the potential organic material for nonlinear optical applications. Single crystals of L-Histidine malonate were grown by the liquid diffusion method. The lattice parameter values were evaluated from single crystal X-ray diffraction technique. The Fourier Transform Infra Red and Raman spectral studies were employed to identify the different modes of vibrations of molecular groups in the crystal. Optical characterization and the percentage of optical transmission were recorded using UV-vis-NIR spectroscopy. The molecular structure was established by proton and carbon Nuclear magnetic resonance spectral studies. The thermal behavior of the material has been studied by Thermo gravimetric and Differential thermal plots. The second harmonic generation conversion efficiency was found out from the powder technique of Kurtz and Perry.

  8. Thiamin Pyrimidine Biosynthesis in Candida albicans: A Remarkable Reaction between Histidine and Pyridoxal Phosphate

    Energy Technology Data Exchange (ETDEWEB)

    Lai, Rung-Yi; Huang, Siyu; Fenwick, Michael K.; Hazra, Amrita; Zhang, Yang; Rajashankar, Kanagalaghatta; Philmus, Benjamin; Kinsland, Cynthia; Sanders, Jennie Mansell; Ealick, Steven E.; Begley, Tadhg P. (Cornell); (TAM)

    2012-06-26

    In Saccharomyces cerevisiae, thiamin pyrimidine is formed from histidine and pyridoxal phosphate (PLP). The origin of all of the pyrimidine atoms has been previously determined using labeling studies and suggests that the pyrimidine is formed using remarkable chemistry that is without chemical or biochemical precedent. Here we report the overexpression of the closely related Candida albicans pyrimidine synthase (THI5p) and the reconstitution and preliminary characterization of the enzymatic activity. A structure of the C. albicans THI5p shows PLP bound at the active site via an imine with Lys62 and His66 in close proximity to the PLP. Our data suggest that His66 of the THI5 protein is the histidine source for pyrimidine formation and that the pyrimidine synthase is a single-turnover enzyme.

  9. Metal-activated histidine carbon donor hydrogen bonds contribute to metalloprotein folding and function.

    Science.gov (United States)

    Schmiedekamp, Ann; Nanda, Vikas

    2009-07-01

    Carbon donor hydrogen bonds are typically weak interactions that contribute less than 2 kcal/mol, and provide only modest stabilization in proteins. One exception is the class of hydrogen bonds donated by heterocyclic side chain carbons. Histidine is capable of particularly strong interactions through the Cepsilon(1) and Cdelta(2) carbons when the imidazole is protonated or bound to metal. Given the frequent occurrence of metal-bound histidines in metalloproteins, we characterized the energies of these interactions through DFT calculations on model compounds. Imidazole-water hydrogen bonding could vary from -11.0 to -17.0 kcal/mol, depending on the metal identity and oxidation state. A geometric search of metalloprotein structures in the PDB identified a number of candidate His C-H...O hydrogen bonds which may be important for folding or function. DFT calculations on model complexes of superoxide reductase show a carbon donor hydrogen bond positioning a water molecule above the active site.

  10. Standard thermodynamic functions of Co2+ complexation with glycine and L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2016-02-01

    The enthalpies of the reactions between solutions of Co(NO3)2 and solutions of glycine (Gly) and L-histidine (His) are determined via direct calorimetry at different pH values and metal: ligand ratios using KNO3 as a background electrolyte ( T = 298.15 K, I = 0.2-1.0). The enthalpy changes upon the formation of cobalt glycinate complexes and Co2+ mixed-ligand complex, viz., glycine-L-histidine, were calculated. The standard thermodynamic parameters (Δr H°, Δr G°, Δr S°) of complexation are determined. The CoGlyHis complex is shown to be stable toward decomposition into homogeneous complexes.

  11. Crystal Structure of a Nickel(Ⅱ) Complex with Asymmetric L-Histidine Ligand

    Institute of Scientific and Technical Information of China (English)

    JIN Yi; CHE Yun-Xia; ZHENG Ji-Min

    2006-01-01

    A novel nickel(Ⅱ) complex with L-histidine has been synthesized and solved by single-crystal X-ray diffraction analysis at physiological pH. The title complex (C7H16NiN4O6S, Mr= 343.01) crystallizes in monoclinic, space group P21 with a = 7.2194(7), b = 7.5968(7), c =12.2797(11) (A), β = 93.3110(10)°, V = 672.35(11) (A)3, Z = 2, Dc= 1.694 g/cm3, F(000) = 356,μ(MoKα) = 1.626 mm-1, T = 293(2) K, the final R = 0.0184 and wR = 0.0426 for 2207 observed reflections with I > 2σ(Ⅰ). The complex provides insights into a possible structural arrangement between nickel (Ⅱ) and L-histidine which may be physiologically important and abundantly present in biological systems.

  12. Density Functional Theory Study on the Histidine-assisted Mechanism of Arylamine N-Acetyltransferase Acetylation

    Institute of Scientific and Technical Information of China (English)

    QIAO Qing-An; GAO Shan-Min; JIN Yue-Qing; CHEN Xin; SUN Xiao-Min; YANG Chuan-Lu

    2008-01-01

    Arylamine N-acetyltransferases (NATs, EC 2.3.1.5) catalyze the N-acetylation of primary arylamines, and play a key role in the biotransformation and metabolism of drugs, carcinogens, etc.In this paper, three possible reaction mechanisms are investigated and the results indicate that if the acetyl group directly transfers from the donor to the acceptor, the high activation energies will make it hard to obtain the target products.When using histidine to mediate the acetylation process, these energies will drop in the 15~45 kJ/mol range.If the histidine residue is protonated, the corresponding energies will be decreased by about 35~87 kJ/mol.The calculations predict an enzymatic acetylation mechanism that undergoes a thiolate-imidazolium pair, which agrees with the experimental results very well.

  13. Inhibitory activity of Filipendula ulmaria constituents on recombinant human histidine decarboxylase.

    Science.gov (United States)

    Nitta, Yoko; Kikuzaki, Hiroe; Azuma, Toshiaki; Ye, Yuan; Sakaue, Motoyoshi; Higuchi, Yoshiki; Komori, Hirohumi; Ueno, Hiroshi

    2013-06-01

    Histidine decarboxylase (HDC) catalyses the formation of histamine, a bioactive amine. Agents that control HDC activity are beneficial for treating histamine-mediated symptoms, such as allergies and stomach ulceration. We searched for inhibitors of HDC from the ethyl acetate extract of the petal of Filipendula ulmaria, also called meadowsweet. Rugosin D, rugosin A, rugosin A methyl ester (a novel compound), and tellimagrandin II were the main components; these 4 ellagitannins exhibited a non-competitive type of inhibition, with K(i) values of approximately 0.35-1 μM. These K(i) values are nearly equal to that of histidine methyl ester (K(i)=0.46 μM), an existing substrate analogue inhibitor. Our results show that food products contain potent HDC inhibitors and that these active food constituents might be useful for designing clinically available HDC inhibitors. PMID:23411280

  14. Structural, vibrational and ab initio studies of L-histidine oxalate

    Science.gov (United States)

    Dammak, T.; Fourati, N.; Abid, Y.; Boughzala, H.; Mlayah, A.; Minot, C.

    2007-04-01

    Single crystals of L-histidine oxalate were obtained by slow evaporation of an aqueous solution at room temperature. The grown crystals have been subjected to X-ray diffraction (XRD), Infrared, and Raman spectroscopy. The title compound crystallises in the non-centrosymmetric space group P2 12 12 1, the crystal cohesion is achieved by relatively strong hydrogen bonds, so that the NH 3 groups show significant distortion with respect to the tetrahedral symmetry. Raman and infrared spectra of the title compound were recorded in the frequency range 300-3200 and 400-4000 cm -1, respectively. To obtain a reliable assignment of the observed spectral lines , we have calculated the geometry and the frequencies of the vibrational modes of histidine cation and the oxalate anion using the semi empirical PM3 method.

  15. Proton Mobility in b2 Ion Formation and Fragmentation Reactions of Histidine-Containing Peptides

    Science.gov (United States)

    Nelson, Carissa R.; Abutokaikah, Maha T.; Harrison, Alex G.; Bythell, Benjamin J.

    2016-03-01

    A detailed energy-resolved study of the fragmentation reactions of protonated histidine-containing peptides and their b2 ions has been undertaken. Density functional theory calculations were utilized to predict how the fragmentation reactions occur so that we might discern why the mass spectra demonstrated particular energy dependencies. We compare our results to the current literature and to synthetic b2 ion standards. We show that the position of the His residue does affect the identity of the subsequent b2 ion (diketopiperazine versus oxazolone versus lactam) and that energy-resolved CID can distinguish these isomeric products based on their fragmentation energetics. The histidine side chain facilitates every major transformation except trans-cis isomerization of the first amide bond, a necessary prerequisite to diketopiperazine b2 ion formation. Despite this lack of catalyzation, trans-cis isomerization is predicted to be facile. Concomitantly, the subsequent amide bond cleavage reaction is rate-limiting.

  16. An X-ray structural study of pyruvate dehydrogenase kinase: A eukaryotic serine kinase with a prokaryotic histidine-kinase fold

    Science.gov (United States)

    Steussy, Calvin Nicklaus, Jr.

    2001-07-01

    Pyruvate Dehydrogenase Kinase is an enzyme that controls the flow of glucose through the eukaryotic cell and contributes to the pathology of diabetes mellitus. Early work on this kinase demonstrated that it has an amino acid sequence much like bacterial histidine kinases, but an activity similar to that of modern serine/threonine kinases. This project utilized the techniques of X-ray crystallography to determine molecular structure of pyruvate dehydrogenase kinase, isozyme 2. The structure was phased using selenium substituted for sulfur in methionine residues, and data at multiple wavelengths was collected at the National Synchrotron Light Source, Brookhaven National Laboratories. PDK 2 was found to fold into a two-domain monomer that forms a dimer through two beta sheets in the C-terminal domain. The N-terminal domain is an alpha-helical bundle while the C-terminal domain is an alpha/beta sandwich. The fold of the C-terminal domain is very similar to that of the prokaryotic histidine kinases, indicating that they share a common ancestor. The catalytic mechanism, however, has evolved to use general base catalysis to activate the serine substrate, rather than the direct nucleophilic attack by the imidazole sidechain used in the prokaryotic kinases. Thus, the structure of the protein echoes its prokaryotic ancestor, while the chemical mechanism has adapted to a serine substrate. The electrostatic surface of PDK2 leads to the suggestion that the lipoyl domain of the pyruvate dehydrogenase kinase, an important associated structure, may bind in the cleft formed between the N- and C-terminal domains. In addition, a network of hydrogen bonds directly connects the nucleotide binding pocket to the dimer interface, suggesting that there may be some interaction between dimer formation and ATP binding or ADP release.

  17. τ-regioselective addition of (-)-Nα -tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate

    OpenAIRE

    López-Larrubia, Pilar; García-Amo, María; Mayoral, Elena P.; Robert J. Gillies; Cerdán, Sebastián; Ballesteros, Paloma

    2004-01-01

    Addition of (-)-Nα-tert-butoxycarbonyl-L-histidine methyl ester to diethyl fumarate regioselectively yielded diethyl 2-[4-(2-methoxycarbonyl-2-tert-butoxycarbonylaminoethyl) imidazol-1-yl] succinate as a 1:1 mixture of diastereomers. These compounds were identified by NMR using (Eu(fod)3 as a stereospecific shift reagent, but were impossible to separate and characterise independently. Neutral hydrolysis of the mixture yielded the corresponding deprotected diastereomeric N τ-(2-ethoxycarbonyl-...

  18. Enthalpies of Solution of Complexes of Rare Earth Nitrate with L-α-Histidine in Water

    Institute of Scientific and Technical Information of China (English)

    刘洋; 房艳; 高胜利; 陈三平; 史启祯

    2002-01-01

    The enthalpies of solution in water of complexes of RE(NO3)3 (RE=La~Nd, Sm~Lu, Y) with L-α-Histidine (His) were measured at 298.15 K. The standard enthalpies of formation of RE(His)3+(aq) were calculated. The "tetrad effect" regularity was observed from the curve, which is the enthalpies of solution plotted against the atomic numbers of the elements in lanthanide series.

  19. Linear short histidine and cysteine modified arginine peptides constitute a potential class of DNA delivery agents.

    Science.gov (United States)

    Mann, Anita; Shukla, Vasundhara; Khanduri, Richa; Dabral, Spoorti; Singh, Harpal; Ganguli, Munia

    2014-03-01

    The success of gene therapy relies on the development of safe and efficient multifunctional carriers of nucleic acids that can overcome extra- and intracellular barriers, protect the nucleic acid and mediate its release at the desired site allowing gene expression. Peptides bear unique properties that are indispensable for any carrier, e.g., they can mediate DNA condensation, cellular targeting, membrane translocation, endosomal escape and nuclear localization. In an effort to design a multifunctional peptide, we have modified an arginine homopeptide R16 by replacement of seven arginines with histidines and addition of one cysteine at each end respectively to impart endosomal escape property while maintaining the DNA condensation and release balance. Addition of histidines imparts endosomal escape property to arginine homopeptide, but their arrangement with respect to arginines is more critical in controlling DNA condensation, release and transfection efficiency. Intriguingly, R5H7R4 peptide where charge/arginine is distributed in blocks is preferred for strong condensation while more efficient transfection is seen in the variants R9H7 and H4R9H3, which exhibit weak condensation and strong release. Addition of cysteine to each of these peptides further fine-tuned the condensation-release balance without application of any oxidative procedure unlike other similar systems reported in the literature. This resulted in a large increase in the transfection efficiency in all of the histidine modified peptides irrespective of the arginine and histidine positions. This series of multifunctional peptides shows comparable transfection efficiency to commercially available transfection reagent Lipofectamine 2000 at low charge ratios, with simple preparative procedure and exhibits much less toxicity. PMID:24476132

  20. Identification of essential histidine residues in the active site of Escherichia coli xylose (glucose) isomerase.

    OpenAIRE

    Batt, C A; Jamieson, A. C.; Vandeyar, M A

    1990-01-01

    Two conserved histidine residues (His-101 and His-271) appear to be essential components in the active site of the enzyme xylose (glucose) isomerase (EC 5.3.1.5). These amino acid residues were targeted for mutagenesis on the basis of sequence homology among xylose isomerases isolated from Escherichia coli, Bacillus subtilis, Ampullariella sp. strain 3876, and Streptomyces violaceus-niger. Each residue was selectively replaced by site-directed mutagenesis and shown to be essential for activit...

  1. An artificial CO-releasing metalloprotein built by histidine-selective metallation.

    Science.gov (United States)

    Albuquerque, Inês S; Jeremias, Hélia F; Chaves-Ferreira, Miguel; Matak-Vinkovic, Dijana; Boutureira, Omar; Romão, Carlos C; Bernardes, Gonçalo J L

    2015-03-01

    We report the design and synthesis of an aquacarbonyl Ru(II) dication cis-[Ru(CO)2(H2O)4](2+) reagent for histidine (His)-selective metallation of interleukin (IL)-8 at site 33. The artificial, non-toxic interleukin (IL)-8-Ru(II)(CO)2 metalloprotein retained IL-8-dependent neutrophil chemotactic activity and was shown to spontaneously release CO in live cells.

  2. Thermokinetics of Liquid-Liquid Reaction of Dy(NO3)3 with Histidine

    Institute of Scientific and Technical Information of China (English)

    李仲谨; 陈三平; 房艳; 高胜利

    2003-01-01

    The thermokinetics of liquid-liquid reaction of dysprosium nitrate with histidine were studied using a microcalorimeter. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant, three kinetic parameters (the activation energy, the pre-exponential constant and the reaction order) were obtained. On the basis of thermodynamics and kinetics, the formation reaction of the complex was discussed.

  3. A Histidine Switch in Hemagglutinin-Neuraminidase Triggers Paramyxovirus-Cell Membrane Fusion▿

    OpenAIRE

    Krishnan, Anuja; Santosh K Verma; Mani, Prashant; Gupta, Rahul; Kundu, Suman; Sarkar, Debi P

    2008-01-01

    Most paramyxovirus fusion proteins require coexpression of and activation by a homotypic attachment protein, hemagglutinin-neuraminidase (HN), to promote membrane fusion. However, the molecular mechanism of the activation remains unknown. We previously showed that the incorporation of a monohistidylated lipid into F-virosome (Sendai viral envelope containing only fusion protein) enhanced its fusion to hepatocytes, suggesting that the histidine residue in the lipid accelerated membrane fusion....

  4. A conserved dimorphism-regulating histidine kinase controls the dimorphic switching in Paracoccidioides brasiliensis.

    Science.gov (United States)

    Chaves, Alison F A; Navarro, Marina V; Castilho, Daniele G; Calado, Juliana C P; Conceição, Palloma M; Batista, Wagner L

    2016-08-01

    Paracoccidioides brasiliensis and P. lutzii, thermally dimorphic fungi, are the causative agents of paracoccidioidomycosis (PCM). Paracoccidioides infection occurs when conidia or mycelium fragments are inhaled by the host, which causes the Paracoccidioides cells to transition to the yeast form. The development of disease requires conidia inside the host alveoli to differentiate into yeast cells in a temperature-dependent manner. We describe the presence of a two-component signal transduction system in P. brasiliensis, which we investigated by expression analysis of a hypothetical protein gene (PADG_07579) that showed high similarity with the dimorphism-regulating histidine kinase (DRK1) gene of Blastomyces dermatitidis and Histoplasma capsulatum This gene was sensitive to environmental redox changes, which was demonstrated by a dose-dependent decrease in transcript levels after peroxide stimulation and a subtler decrease in transcript levels after NO stimulation. Furthermore, the higher PbDRK1 levels after treatment with increasing NaCl concentrations suggest that this histidine kinase can play a role as osmosensing. In the mycelium-yeast (M→Y) transition, PbDRK1 mRNA expression increased 14-fold after 24 h incubation at 37°C, consistent with similar observations in other virulent fungi. These results demonstrate that the PbDRK1 gene is differentially expressed during the dimorphic M→Y transition. Finally, when P. brasiliensis mycelium cells were exposed to a histidine kinase inhibitor and incubated at 37°C, there was a delay in the dimorphic M→Y transition, suggesting that histidine kinases could be targets of interest for PCM therapy. PMID:27268997

  5. Detoxification of aldehydes by histidine-containing dipeptides: from chemistry to clinical implications

    OpenAIRE

    Xie, Zhengzhi; Baba, Shahid P.; Sweeney, Brooke R.; Barski, Oleg A.

    2013-01-01

    Aldehydes are generated by oxidized lipids and carbohydrates at increased levels under conditions of metabolic imbalance and oxidative stress during atherosclerosis, myocardial and cerebral ischemia, diabetes, neurodegenerative diseases and trauma. In most tissues, aldehydes are detoxified by oxidoreductases that catalyze the oxidation or the reduction of aldehydes or enzymatic and nonenzymatic conjugation with low molecular weight thiols and amines, such as glutathione and histidine dipeptid...

  6. Anti-diabetic potential of chromium histidinate in diabetic retinopathy rats

    OpenAIRE

    Ulas, Mustafa; Orhan, Cemal; Tuzcu, Mehmet; Ozercan, Ibrahim Hanifi; Sahin, Nurhan; Gencoglu, Hasan; Komorowski, James R; Sahin, Kazim

    2015-01-01

    Background Chromium (Cr) is commonly used as a complementary medicine for diabetes mellitus. Several studies suggest that Cr intakes may improve glucose metabolism and decrease oxidative stress. Therefore, we aimed to assess the effects of chromium histidinate (CrHis) supplementation using a range of reliable biomarkers of oxidative damage and histopathological changes in rats with diabetic retinopathy. Methods Diabetes was induced with streptozotocin [(STZ), 55 mg/kg] by intraperitoneal inje...

  7. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study

    Directory of Open Access Journals (Sweden)

    Yan-Chuan Li

    2016-07-01

    Full Text Available Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC. Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p < 0.05 and obese (p < 0.01 participants of both sexes. Dietary histidine was inversely associated with body mass index (BMI, waist circumference (WC and blood pressure in overall population and stronger associations were observed in women and overweight/obese participants. Higher dietary histidine was associated with lower prevalence of overweight/obesity and abdominal obesity, especially in women. Further studies indicated that higher dietary histidine was associated with lower fasting blood glucose (FBG, homeostasis model assessment of insulin resistance (HOMA-IR, 2-h postprandial glucose (2 h-PG, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, interleukin-6 (IL-6, C-reactive protein (CRP, malonaldehyde (MDA and vaspin and higher glutathione peroxidase (GSH-Px, superoxide dismutase (SOD and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults.

  8. Doped zinc sulfide quantum dots based phosphorescence turn-off/on probe for detecting histidine in biological fluid

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Wei [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wang, Fang [School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001 (China); Wei, Yanli; Wang, Li; Liu, Qiaoling; Dong, Wenjuan [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Shuang, Shaomin, E-mail: smshuang@sxu.edu.cn [School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006 (China); Choi, Martin M.F., E-mail: mmfchoi@gmail.com [Partner State Key Laboratory of Environmental and Biological Analysis, and Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR (China)

    2015-01-26

    Highlights: • A turn-on phosphorescence quantum dots probe for histidine is fabricated. • High sensitivity, good selectivity and low interference are achieved. • Histidine in urine samples can be easily detected by the phosphorescence probe. - Abstract: We report a turn-on phosphorescence probe for detection of histidine based on Co{sup 2+}-adsorbed N-acetyl-L-cysteine (NAC) capped Mn: ZnS quantum dots (QDs) which is directly synthesized by the hydrothermal method. The phosphorescence of NAC-Mn: ZnS QDs is effectively quenched by Co{sup 2+} attributing to the adsorption of Co{sup 2+} onto the surface of QDs with a concomitant in suppressing the recombination process of hole and electron of QDs. The phosphorescence of Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs can be recovered by binding of Co{sup 2+} with histidine. The quenching and regeneration of the phosphorescence of NAC-Mn: ZnS QDs have been studied in detail. The as-prepared QDs-based probe is applied to determine histidine with a linear range of 1.25–30 μM and a detection limit of 0.74 μM. The relative standard deviation for eleven repeat detections of 20 μM histidine is 0.65%. Co{sup 2+}-adsorbed NAC-Mn: ZnS QDs show high sensitivity and good selectivity to histidine over other amino acids, metal ions and co-existing substances. The proposed QDs probe has been successfully applied to determination of histidine in human urine samples with good recoveries of 98.5–103%.

  9. Theoretical study of the adsorption of histidine amino acid on graphene

    Science.gov (United States)

    Rodríguez, S. J.; Makinistian, L.; Albanesi, E.

    2016-04-01

    Previous studies have demonstrated how the interactions between biomolecules and graphene play a crucial role in the characterization and functionalization of biosensors. In this paper we present a theoretical study of the adsorption of histidine on graphene using density functional theory (DFT). In order to evaluate the relevance of including the carboxyl (-COOH) and amino (-NH2) groups in the calculations, we considered i) the histidine complete (i.e., with its carboxyl and its amino groups included), and ii) the histidine’s imidazole ring alone. We calculated the density of states for the two systems before and after adsorption. Furthermore, we compared the results of three approximations of the exchange and correlation interactions: local density (LDA), the generalized gradients by Perdew, Burke and Ernzerhof (GGA-PBE), and one including van der Waals forces (DFT-D2). We found that the adsorption energy calculated by DFT-D2 is higher than the other two: Eads-DFT-D2 >E ads-LDA >E ads-GGA . We report the existence of charge transfer from graphene to the molecule when the adsorption occurs; this charge transfer turns up to be greater for the complete histidine than for the imidazole ring alone. Our results revealed that including the carboxyl and amino groups generates a shift in the states of imidazole ring towards EF .

  10. Evolution of the Structure and Chromosomal Distribution of Histidine Biosynthetic Genes

    Science.gov (United States)

    Fani, Renato; Mori, Elena; Tamburini, Elena; Lazcano, Antonio

    1998-10-01

    A database of more than 100 histidine biosynthetic genes from different organisms belonging to the three primary domains has been analyzed, including those found in the now completely sequenced genomes of Haemophilus influenzae, Mycoplasma genitalium, Synechocystis sp., Methanococcus jannaschii, and Saccharomyces cerevisiae. The ubiquity of his genes suggests that it is a highly conserved pathway that was probably already present in the last common ancestor of all extant life. The chromosomal distribution of the his genes shows that the enterobacterial histidine operon structure is not the only possible organization, and that there is a diversity of gene arrays for the his pathway. Analysis of the available sequences shows that gene fusions (like those involved in the origin of the Escherichia coli and Salmonella typhimurium hisIE and hisB gene structures) are not universal. In contrast, the elongation event that led to the extant hisA gene from two homologous ancestral modules, as well as the subsequent paralogous duplication that originated hisF, appear to be irreversible and are conserved in all known organisms. The available evidence supports the hypothesis that histidine biosynthesis was assembled by a gene recruitment process.

  11. The Role of Histidine-Proline-Rich Glycoprotein as Zinc Chaperone for Skeletal Muscle AMP Deaminase

    Directory of Open Access Journals (Sweden)

    Maria Ranieri-Raggi

    2014-05-01

    Full Text Available Metallochaperones function as intracellular shuttles for metal ions. At present, no evidence for the existence of any eukaryotic zinc-chaperone has been provided although metallochaperones could be critical for the physiological functions of Zn2+ metalloenzymes. We propose that the complex formed in skeletal muscle by the Zn2+ metalloenzyme AMP deaminase (AMPD and the metal binding protein histidine-proline-rich glycoprotein (HPRG acts in this manner. HPRG is a major plasma protein. Recent investigations have reported that skeletal muscle cells do not synthesize HPRG but instead actively internalize plasma HPRG. X-ray absorption spectroscopy (XAS performed on fresh preparations of rabbit skeletal muscle AMPD provided evidence for a dinuclear zinc site in the enzyme compatible with a (μ-aqua(μ-carboxylatodizinc(II core with two histidine residues at each metal site. XAS on HPRG isolated from the AMPD complex showed that zinc is bound to the protein in a dinuclear cluster where each Zn2+ ion is coordinated by three histidine and one heavier ligand, likely sulfur from cysteine. We describe the existence in mammalian HPRG of a specific zinc binding site distinct from the His-Pro-rich region. The participation of HPRG in the assembly and maintenance of skeletal muscle AMPD by acting as a zinc chaperone is also demonstrated.

  12. Thermokinetic Study on the Complexation Reaction of the First-Row Transitional Metal Chlorides with Histidine

    Institute of Scientific and Technical Information of China (English)

    CHEN,San-Ping(陈三平); GAO,Sheng-Li(高胜利); SHI,Qi-Zhen(史启祯)

    2004-01-01

    The enthalpy change of the complexation reactions of the first-row transitional metal chlorides including CrCl3,MnCl2, FeCl2, CoCl2, NiCl2 and CuCl2 with L-α-histidine in water were determined by a microcalorimeter at 298.15-323.15 K. The standard enthalpy of formation of Cr(His)3+2 (aq) and M(His)2+2 (aq) (M=Mn, Fe, Co,Ni and Cu) were calculated. Based on the thermodynamic and kinetic equations of the reactions, three thermodynamic parameters (the activation enthalpy, the activation entropy, the activation free energy), the rate constants, and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) are obtained. The solid complexes of CrCl3, MnCl2, FeCl2, CoCl2, NiCl2 and CuCl2 with histidine were prepared and acterized by IR as well. The results showed that, with the atomic number increasing, three thermodynamic parameters, △G≠(-), △H≠(-) and △S≠(-) of the complexation reaction of these metal chlorides with L-α-histidine in water present an analogy regularity.

  13. Vibrational spectra and non linear optical proprieties of L-histidine oxalate: DFT studies

    Science.gov (United States)

    Ahmed, A. Ben; Elleuch, N.; Feki, H.; Abid, Y.; Minot, C.

    2011-08-01

    This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a nonlinear optical material L-histidine oxalate. Due to the lack of sufficiently precise information on geometric structure in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine oxalate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro symmetric space group P2 12 12 1 of orthorhombic system. The FT-IR and Raman spectra of L-histidine oxalate were recorded and analyzed. The vibrational wave numbers were examined theoretical with the aid of Gaussian98 package of programs using the DFT//B3LYP/6-31G(d) level of theory. The data obtained from vibrational wave number calculations are used to assign vibrational bands obtained in IR and Raman spectroscopy of the studied compound. The geometrical parameters of the title compound are in agreement with the values of similar structures. To investigate microscopic second order non-linear optical NLO behaviour of the examined complex, the electric dipole μtot, the polarizability αtot and the hyperpolarizability βtot were computed using DFT//B3LYP/6-31G(d) method. According to our calculation, the title compound exhibits non-zero βtot value revealing microscopic second order NLO behaviour.

  14. A rapid and ultrasensitive SERRS assay for histidine and tyrosine based on azo coupling.

    Science.gov (United States)

    Sui, Huimin; Wang, Yue; Yu, Zhi; Cong, Qian; Han, Xiao Xia; Zhao, Bing

    2016-10-01

    A simple and highly sensitive surface-enhanced resonance Raman scattering (SERRS)-based approach coupled with azo coupling reaction has been put forward for quantitative analysis of histidine and tyrosine. The SERRS-based assay is simple and rapid by mixing the azo reaction products with silver nanoparticles (AgNPs) for measurements within 2min. The limits of detection (LODs) of the method are as low as 4.33×10(-11) and 8.80×10(-11)M for histidine and tyrosine, respectively. Moreover, the SERRS fingerprint information specific to corresponding amino acids guarantees the selective detection for the target histidine and tyrosine. The results from serum indicated the potential application of the proposed approach into biological samples. Compared with the methods ever reported, the main advantages of this methodology are simpleness, rapidity without time-consuming separation or pretreatment steps, high sensitivity, selectivity and the potential for determination of other molecules containing imidazole or phenol groups. PMID:27474300

  15. Electron transfer pathway analysis in bacterial photosynthetic reaction center

    CERN Document Server

    Kitoh-Nishioka, Hirotaka

    2016-01-01

    A new computational scheme to analyze electron transfer (ET) pathways in large biomolecules is presented with applications to ETs in bacterial photosynthetic reaction center. It consists of a linear combination of fragment molecular orbitals and an electron tunneling current analysis, which enables an efficient first-principles analysis of ET pathways in large biomolecules. The scheme has been applied to the ET from menaquinone to ubiquinone via nonheme iron complex in bacterial photosynthetic reaction center. It has revealed that not only the central Fe$^{2+}$ ion but also particular histidine ligands are involved in the ET pathways in such a way to mitigate perturbations that can be caused by metal ion substitution and depletion, which elucidates the experimentally observed insensitivity of the ET rate to these perturbations.

  16. Availability of zinc and the ligands citrate and histidine to wheat: does uptake of entire complexes play a role?

    Science.gov (United States)

    Gramlich, Anja; Tandy, Susan; Frossard, Emmanuel; Eikenberg, Jost; Schulin, Rainer

    2013-11-01

    Organic ligands in soils affect the availability of trace metals such as Zn to plants. This study investigated the effects of two of these ligands, citrate and histidine, on Zn uptake by wheat under hydroponic conditions. Uptake of (65)Zn in the presence of these ligands was compared to uptake in the presence of EDTA at the same free Zn concentration (Zn(2+) ~ 50 nM). In the presence of citrate Zn root uptake was enhanced ~3.5 times and in the presence of histidine, by a factor of ~9, compared to the EDTA treatments. Citrate uptake was slightly reduced in the treatment containing ligands and Zn compared to the treatment containing the same ligand concentration but no Zn. In addition, a higher uptake of Zn than of citrate was observed. This suggests that the enhanced Zn uptake was primarily due to increased supply of Zn(2+) by diffusion and dissociation of Zn-citrate complexes at the root surface. Histidine uptake was much higher than citrate uptake and not influenced by the presence of Zn. As histidine forms stronger complexes with Zn than citrate, the results suggest that the enhancement of Zn uptake in the presence of histidine was in part due to the uptake of undissociated Zn-histidine complexes.

  17. Responses of Transmembrane Peptide and Lipid Chains to Hydrophobic Mismatch

    Institute of Scientific and Technical Information of China (English)

    YANG Lei; LI Jian-tao; QI Hai-yan; LI Fei

    2012-01-01

    Hydrophobic mismatch between the hydrophobic length of membrane proteins and hydrophobic thickness of membranes is a crucial factor in controlling protein function and assembly.We combined fluorescence with circular dichroism(CD) and attenuated total reflection infrared(ATR-IR) spectroscopic methods to investigate the behaviors of the peptide and lipids under hydrophobic mismatch using a model peptide from the fourth transmembrane domain of natural resistance-associated macrophage protein 1 (Nramp 1),the phosphatidylcholines(PCs) and phosphatidylglycerols(PGs) with different lengths of acyl chains(14:0,16:0 and 18:0).In all PG lipid membranes,the peptide forms stable α-helix structure,and the helix axis is parallel to lipid chains.The helical span and orientation hardly change in varying thickness of PG membranes,while the lipid chains can deform to accommodate to the hydrophobic surface of embedded peptide.By comparison,the helical structures of the model peptide in PC lipid membranes are less stable.Upon incorporation with PC lipid membranes,the peptide can deform itself to accommodate to the hydrophobic thickness of lipid membranes in response to hydrophobic mismatch.In addition,hydrophobic mismatch can increase the aggregation propensity of the peptide in both PC and PG lipid membranes and the peptide in PC membranes has more aggregation tendency than that in PG membranes.

  18. Expression of Cystic Fibrosis Transmembrane Conductance Regulator in Rat Ovary

    Institute of Scientific and Technical Information of China (English)

    Lei JIN; Ruiling TANG

    2008-01-01

    Summary: The protein expression of cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated Cl- channel, in ovarian stimulated premature female rat ovary during a cycle of follicle development and corpus luteum formation was investigated. Animals were injected with 10 U pregnant Mare's serum gonadotropin (PMSG) and subsequently 10U hCG 48h later. Time-dependent immunohistochemistry and Western blotting experiments were performed before and 24, 48, 72h after hCG treatment. The immnnohistochemistry revealed that administration of PMSG stimulated the CFTR expression in theeal cell layer and granulosa cell layer of mature follicles 48 h post injection, coincident with the PMSG-induced peak in follicular estradiol. However, the expression of CFTR in the granuiose lutein cell layer and theeal lutein cell layer was time-dependently reduced following hCG injection, in accordance with the gradually increased progestogen level during luteum corpus formation. Western blotting analysis demonstrated that rat ovarian tissue expressed the special CFTR band at 170kD. It is concluded that cAMP-dependent Cl- channels are involved in regulation of follicle development and luteum formation.

  19. The Cystic Fibrosis Transmembrane Regulator (CFTR in the kidney

    Directory of Open Access Journals (Sweden)

    MORALES MARCELO M.

    2000-01-01

    Full Text Available The cystic fibrosis transmembrane regulator (CFTR is a Cl- channel. Mutations of this transporter lead to a defect of chloride secretion by epithelial cells causing the Cystic Fibrosis disease (CF. In spite of the high expression of CFTR in the kidney, patients with CF do not show major renal dysfunction, but it is known that both the urinary excretion of drugs and the renal capacity to concentrate and dilute urine is deficient. CFTR mRNA is expressed in all nephron segments and its protein is involved with chloride secretion in the distal tubule, and the principal cells of the cortical (CCD and medullary (IMCD collecting ducts. Several studies have demonstrated that CFTR does not only transport Cl- but also secretes ATP and, thus, controls other conductances such as Na+ (ENaC and K+ (ROMK2 channels, especially in CCD. In the polycystic kidney the secretion of chloride through CFTR contributes to the cyst enlargement. This review is focused on the role of CFTR in the kidney and the implications of extracellular volume regulators, such as hormones, on its function and expression.

  20. The transmembrane domain of TACE regulates protein ectodomain shedding

    Institute of Scientific and Technical Information of China (English)

    Xiaojin Li; Liliana Pérez; Zui Pan; Huizhou Fan

    2007-01-01

    Numerous membrane proteins are cleaved by tumor necrosis factor-α converting enzyme (TACE), which causes the release of their ectodomains. An ADAM (a disintegrin and metalloprotease domain) family member, TACE contains several noncatalytic domains whose roles in ectodomain shedding have yet to be fully resolved. Here, we have explored the function of the transmembrane domain (TM) of TACE by coupling molecular engineering and functional analysis. A TM-free TACE construct that is anchored to the plasma membrane by a glycosylphosphatidylino-sitol (GPI)-binding polypeptide failed to restore shedding of transforming growth factor-α (TGF-α), tumor necrosis factor-α (TNF-α) and L-selectin in cells lacking endogenous TACE activity. Substitution of the TACE TM with that of the prolactin receptor or platelet-derived growth factor receptor (PDGFR) also resulted in severe loss of TGF-α shedding, but had no effects on the cleavage of TNF-α and L-selectin. Replacement of the TM in TGF-a with that of L-selectin enabled TGF-a shedding by the TACE mutants carrying the TM of prolactin receptor and PDGFR. Taken together, our observations suggest that anchorage of TACE to the lipid bilayer through a TM is required for efficient cleavage of a broad spectrum of substrates, and that the amino-acid sequence of TACE TM may play a role in regulatory specificity among TACE substrates.

  1. Transmembrane channel-like (tmc) gene regulates Drosophila larval locomotion.

    Science.gov (United States)

    Guo, Yanmeng; Wang, Yuping; Zhang, Wei; Meltzer, Shan; Zanini, Damiano; Yu, Yue; Li, Jiefu; Cheng, Tong; Guo, Zhenhao; Wang, Qingxiu; Jacobs, Julie S; Sharma, Yashoda; Eberl, Daniel F; Göpfert, Martin C; Jan, Lily Yeh; Jan, Yuh Nung; Wang, Zuoren

    2016-06-28

    Drosophila larval locomotion, which entails rhythmic body contractions, is controlled by sensory feedback from proprioceptors. The molecular mechanisms mediating this feedback are little understood. By using genetic knock-in and immunostaining, we found that the Drosophila melanogaster transmembrane channel-like (tmc) gene is expressed in the larval class I and class II dendritic arborization (da) neurons and bipolar dendrite (bd) neurons, both of which are known to provide sensory feedback for larval locomotion. Larvae with knockdown or loss of tmc function displayed reduced crawling speeds, increased head cast frequencies, and enhanced backward locomotion. Expressing Drosophila TMC or mammalian TMC1 and/or TMC2 in the tmc-positive neurons rescued these mutant phenotypes. Bending of the larval body activated the tmc-positive neurons, and in tmc mutants this bending response was impaired. This implicates TMC's roles in Drosophila proprioception and the sensory control of larval locomotion. It also provides evidence for a functional conservation between Drosophila and mammalian TMCs. PMID:27298354

  2. A Novel Type III Endosome Transmembrane Protein, TEMP

    Directory of Open Access Journals (Sweden)

    Rohan D. Teasdale

    2012-11-01

    Full Text Available As part of a high-throughput subcellular localisation project, the protein encoded by the RIKEN mouse cDNA 2610528J11 was expressed and identified to be associated with both endosomes and the plasma membrane. Based on this, we have assigned the name TEMP for Type III Endosome Membrane Protein. TEMP encodes a short protein of 111 amino acids with a single, alpha-helical transmembrane domain. Experimental analysis of its membrane topology demonstrated it is a Type III membrane protein with the amino-terminus in the lumenal, or extracellular region, and the carboxy-terminus in the cytoplasm. In addition to the plasma membrane TEMP was localized to Rab5 positive early endosomes, Rab5/Rab11 positive recycling endosomes but not Rab7 positive late endosomes. Video microscopy in living cells confirmed TEMP's plasma membrane localization and identified the intracellular endosome compartments to be tubulovesicular. Overexpression of TEMP resulted in the early/recycling endosomes clustering at the cell periphery that was dependent on the presence of intact microtubules. The cellular function of TEMP cannot be inferred based on bioinformatics comparison, but its cellular distribution between early/recycling endosomes and the plasma membrane suggests a role in membrane transport.

  3. Nitrogen-doped carbon nanoparticle modulated turn-on fluorescent probes for histidine detection and its imaging in living cells

    Science.gov (United States)

    Zhu, Xiaohua; Zhao, Tingbi; Nie, Zhou; Miao, Zhuang; Liu, Yang; Yao, Shouzhuo

    2016-01-01

    In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which presented great potential in the bio-labeling assay and clinical diagnostic applications.In this work, nitrogen-doped carbon nanoparticle (N-CNP) modulated turn-on fluorescent probes were developed for rapid and selective detection of histidine. The as synthesized N-CNPs exhibited high fluorescence quantum yield and excellent biocompatibility. The fluorescence of N-CNPs can be quenched selectively by Cu(ii) ions with high efficiency, and restored by the addition of histidine owing to the competitive binding of Cu(ii) ions and histidine that removes Cu(ii) ions from the surface of the N-CNPs. Under the optimal conditions, a linear relationship between the increased fluorescence intensity of N-CNP/Cu(ii) ion conjugates and the concentration of histidine was established in the range from 0.5 to 60 μM. The detection limit was as low as 150 nM (signal-to-noise ratio of 3). In addition, the as-prepared N-CNP/Cu(ii) ion nanoprobes showed excellent biocompatibility and were applied for a histidine imaging assay in living cells, which

  4. A unique phenylalanine in the transmembrane domain strengthens homodimerization of the syndecan-2 transmembrane domain and functionally regulates syndecan-2.

    Science.gov (United States)

    Kwon, Mi-Jung; Choi, Youngsil; Yun, Ji-Hye; Lee, Weontae; Han, Inn-Oc; Oh, Eok-Soo

    2015-02-27

    The syndecans are a type of cell surface adhesion receptor that initiates intracellular signaling events through receptor clustering mediated by their highly conserved transmembrane domains (TMDs). However, the exact function of the syndecan TMD is not yet fully understood. Here, we investigated the specific regulatory role of the syndecan-2 TMD. We found that syndecan-2 mutants in which the TMD had been replaced with that of syndecan-4 were defective in syndecan-2-mediated functions, suggesting that the TMD of syndecan-2 plays one or more specific roles. Interestingly, syndecan-2 has a stronger tendency to form sodium dodecyl sulfate (SDS)-resistant homodimers than syndecan-4. Our structural studies showed that a unique phenylalanine residue (Phe(167)) enables an additional molecular interaction between the TMDs of the syndecan-2 homodimer. The presence of Phe(167) was correlated with a higher tendency toward oligomerization, and its replacement with isoleucine significantly reduced the SDS-resistant dimer formation and cellular functions of syndecan-2 (e.g. cell migration). Conversely, replacement of isoleucine with phenylalanine at this position in the syndecan-4 TMD rescued the defects observed in a mutant syndecan-2 harboring the syndecan-4 TMD. Taken together, these data suggest that Phe(167) in the TMD of syndecan-2 endows the protein with specific functions. Our work offers new insights into the signaling mediated by the TMD of syndecan family members.

  5. Chemical synthesis of transmembrane peptide and its application for research on the transmembrane-juxtamembrane region of membrane protein.

    Science.gov (United States)

    Sato, Takeshi

    2016-11-01

    Membrane proteins possess one or more hydrophobic regions that span the membrane and interact with the lipids that constitute the membrane. The interactions between the transmembrane (TM) region and lipids affect the structure and function of these membrane proteins. Molecular characterization of synthetic TM peptides in lipid bilayers helps to understand how the TM region participates in the formation of the structure and in the function of membrane proteins. The use of synthetic peptides enables site-specific labeling and modification and allows for designing of an artificial TM sequence. Research involving such samples has resulted in significant increase in the knowledge of the mechanisms that govern membrane biology. In this review, the chemical synthesis of TM peptides has been discussed. The preparation of synthetic TM peptides is still not trivial; however, the accumulated knowledge summarized here should provide a basis for preparing samples for spectroscopic analyses. The application of synthetic TM peptides for gaining insights into the mechanism of signal transduction by receptor tyrosine kinase (RTK) has also been discussed. RTK is a single TM protein and is one of the difficult targets in structural biology as crystallization of the full-length receptor has not been successful. This review describes the structural characterization of the synthetic TM-juxtamembrane sequence and proposes a possible scheme for the structural changes in this region for the activation of ErbBs, the epidermal growth factor receptor family. © 2015 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 613-621, 2016. PMID:26573237

  6. Magnetotactic Bacterial Cages as Safe and Smart Gene Delivery Vehicles

    KAUST Repository

    Alsaiari, Shahad K.

    2016-07-27

    In spite of the huge advances in the area of synthetic carriers, their efficiency still poorly compares to natural vectors. Herein, we report the use of unmodified magnetotactic bacteria as a guidable delivery vehicle for DNA functionalized gold nanoparticles (AuNPs). High cargo loading is established under anaerobic conditions (bacteria is alive) through endocytosis where AuNPs are employed as transmembrane proteins mimics (facilitate endocytosis) as well as imaging agents to verify and quantify loading and release. The naturally bio-mineralized magnetosomes, within the bacteria, induce heat generation inside bacteria through magnetic hyperthermia. Most importantly after exposing the system to air (bacteria is dead) the cell wall stays intact providing an efficient bacterial vessel. Upon incubation with THP-1 cells, the magnetotactic bacterial cages (MBCs) adhere to the cell wall and are directly engulfed through the phagocytic activity of these cells. Applying magnetic hyperthermia leads to the dissociation of the bacterial microcarrier and eventual release of cargo.

  7. Functional characterization of transmembrane adenylyl cyclases from the honeybee brain.

    Science.gov (United States)

    Balfanz, Sabine; Ehling, Petra; Wachten, Sebastian; Jordan, Nadine; Erber, Joachim; Mujagic, Samir; Baumann, Arnd

    2012-06-01

    The second messenger cAMP has a pivotal role in animals' physiology and behavior. Intracellular concentrations of cAMP are balanced by cAMP-synthesizing adenylyl cyclases (ACs) and cAMP-cleaving phosphodiesterases. Knowledge about ACs in the honeybee (Apis mellifera) is rather limited and only an ortholog of the vertebrate AC3 isoform has been functionally characterized, so far. Employing bioinformatics and functional expression we characterized two additional honeybee genes encoding membrane-bound (tm)ACs. The proteins were designated AmAC2t and AmAC8. Unlike the common structure of tmACs, AmAC2t lacks the first transmembrane domain. Despite this unusual topography, AmAC2t-activity could be stimulated by norepinephrine and NKH477 with EC(50s) of 0.07 μM and 3 μM. Both ligands stimulated AmAC8 with EC(50s) of 0.24 μM and 3.1 μM. In brain cryosections, intensive staining of mushroom bodies was observed with specific antibodies against AmAC8, an expression pattern highly reminiscent of the Drosophila rutabaga AC. In a current release of the honeybee genome database we identified three additional tmAC- and one soluble AC-encoding gene. These results suggest that (1) the AC-gene family in honeybees is comparably large as in other species, and (2) based on the restricted expression of AmAC8 in mushroom bodies, this enzyme might serve important functions in honeybee behavior. PMID:22426196

  8. [Polymethoxylated flavonoids activate cystic fibrosis transmembrane conductance regulator chloride channel].

    Science.gov (United States)

    Cao, Huan-Huan; Fang, Fang; Yu, Bo; Luan, Jian; Jiang, Yu; Yang, Hong

    2015-04-25

    Cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-dependent chloride channel, plays key roles in fluid secretion in serous epithelial cells. Previously, we identified two polymethoxylated flavonoids, 3',4',5,5',6,7-hexamethoxyflavone (HMF) and 5-hydroxy-6,7,3',4'-tetramethoxyflavone (HTF) which could potentiate CFTR chloride channel activities. The present study was aimed to investigate the potentiation effects of HMF and HTF on CFTR Cl(-) channel activities by using a cell-based fluorescence assay and the short circuit Ussing chamber assay. The results of cell-based fluorescence assay showed that both HMF and HTF could dose-dependently potentiate CFTR Cl(-) channel activities in rapid and reversible ways, and the activations could be reversed by the CFTR blocker CFTRinh-172. Notably, HMF showed the highest affinity (EC50 = 2 μmol/L) to CFTR protein among the flavonoid CFTR activators identified so far. The activation of CFTR by HMF or HTF was forskolin (FSK) dependent. Both compounds showed additive effect with FSK and 3-Isobutyl-1-methylx (IBMX) in the activation of CFTR, while had no additive effect with genistein (GEN). In ex vivo studies, HMF and HTF could stimulate transepithelial Cl(-) secretion in rat colonic mucosa and enhance fluid secretion in mouse trachea submucosal glands. These results suggest that HMF and HTF may potentiate CFTR Cl(-) channel activities through both elevation of cAMP level and binding to CFTR protein pathways. The results provide new clues in elucidating structure and activity relationship of flavonoid CFTR activators. HMF might be developed as a new drug in the therapy of CFTR-related diseases such as bronchiectasis and habitual constipation. PMID:25896054

  9. Corynebacterium glutamicum ATP-phosphoribosyl transferases suitable for L-histidine production--Strategies for the elimination of feedback inhibition.

    Science.gov (United States)

    Kulis-Horn, Robert K; Persicke, Marcus; Kalinowski, Jörn

    2015-07-20

    L-Histidine biosynthesis in Corynebacterium glutamicum is mainly regulated by L-histidine feedback inhibition of the ATP-phosphoribosyltransferase HisG that catalyzes the first step of the pathway. The elimination of this feedback inhibition is the first and most important step in the development of an L-histidine production strain. For this purpose, a combined approach of random mutagenesis and rational enzyme redesign was performed. Mutants spontaneously resistant to the toxic L-histidine analog β-(2-thiazolyl)-DL-alanine (2-TA) revealed novel and unpredicted mutations in the C-terminal regulatory domain of HisG resulting in increased feedback resistance. Moreover, deletion of the entire C-terminal regulatory domain in combination with the gain of function mutation S143F in the catalytic domain resulted in a HisG variant that is still highly active even at L-histidine concentrations close to the solubility limit. Notably, the S143F mutation on its own provokes feedback deregulation, revealing for the first time an amino acid residue in the catalytic domain of HisG that is involved in the feedback regulatory mechanism. In addition, we investigated the effect of hisG mutations for L-histidine production on different levels. This comprised the analysis of different expression systems, including plasmid- and chromosome-based overexpression, as well as the importance of codon choice for HisG mutations. The combination of domain deletions, single amino acid exchanges, codon choice, and chromosome-based overexpression resulted in production strains accumulating around 0.5 g l(-1) L-histidine, demonstrating the added value of the different approaches. PMID:25892668

  10. Structure and function of transmembrane segment XII in osmosensor and osmoprotectant transporter ProP of Escherichia coli.

    Science.gov (United States)

    Liu, Feng; Culham, Doreen E; Vernikovska, Yaroslava I; Keates, Robert A B; Boggs, Joan M; Wood, Janet M

    2007-05-15

    Escherichia coli transporter ProP acts as both an osmosensor and an osmoregulator. As medium osmolality rises, ProP is activated and mediates H+-coupled uptake of osmolytes like proline. A homology model of ProP with 12-transmembrane (TM) helices and cytoplasmic termini was created, and the protein's topology was substantiated experimentally. Residues 468-497, at the end of the C-terminal domain and linked to TM XII, form an intermolecular, homodimeric alpha-helical coiled-coil that tunes the transporter's response to osmolality. We aim to further define the structure and function of ProP residues Q415-E440, predicted to include TM XII. Each residue was replaced with cysteine (Cys) in a histidine-tagged, Cys-less ProP variant (ProP*). Cys at positions 415-418 and 438-440 were most reactive with Oregon Green Maleimide (OGM), suggesting that residues 419 through 437 are in the membrane. Except for V429-I433, reactivity of those Cys varied with helical periodicity. Cys predicted to face the interior of ProP were more reactive than Cys predicted to face the lipid. The former may be exposed to hydrated polar residues in the protein interior, particularly on the periplasmic side. Intermolecular cross-links formed when ProP* variants with Cys at positions 419, 420, 422, and 439 were treated with DTME. Thus TM XII can participate, along its entire length, in the dimer interface of ProP. Cys substitution E440C rendered ProP* inactive. All other variants retained more than 30% of the proline uptake activity of ProP* at high osmolality. Most variants with Cys substitutions in the periplasmic half of TM XII activated at lower osmolalities than ProP*. Variants with Cys substitutions on one face of the cytoplasmic half of TM XII required a higher osmolality to activate. They included elements of a GXXXG motif that are predicted to form the interface of TM XII with TM VII. These studies define the position of ProP TM XII within the membrane, further support the predicted

  11. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    OpenAIRE

    Irudayam, Sheeba J.; Pobandt, Tobias; Berkowitz, Max L.

    2013-01-01

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energ...

  12. Transmembrane Protein Diffusion in Gel-Supported Dual-Leaflet Membranes

    OpenAIRE

    Wang, Chih-Ying; Hill, Reghan J.

    2014-01-01

    Tools to measure transmembrane-protein diffusion in lipid bilayer membranes have advanced in recent decades, providing a need for predictive theoretical models that account for interleaflet leaflet friction on tracer mobility. Here we address the fully three-dimensional flows driven by a (nonprotruding) transmembrane protein embedded in a dual-leaflet membrane that is supported above and below by soft porous supports (e.g., hydrogel or extracellular matrix), each of which has a prescribed per...

  13. TMRPres2D: high quality visual representation of transmembrane protein models.

    Science.gov (United States)

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  14. L-histidine augments the response to 1-deamino-8-D-arginine vasopressin in Brattleboro homozygous (di/di) rats.

    OpenAIRE

    Charnogursky, G; Moses, A M; Coulson, R.; Bernstein, M; Carvounis, C P

    1990-01-01

    Studies in vitro have shown that L-histidine increases the hydroosmotic response to vasopressin. We examined whether this phenomenon occurs also in vivo. Homozygous Brattleboro rats (di/di) were fed a regular diet (0.5% histidine) or a diet enriched with histidine and received 1 ng of 1-deamino-8-D-arginine vasopressin (dDAVP) daily. Addition of histidine (1% by weight) increased post-dDAVP urine osmolality to a level higher than that of control (502 +/- 62 vs. 316 +/- 36 mosmol/kg, P less th...

  15. Crystal studies, vibrational spectra and non-linear optical properties of L-histidine chloride monohydrate

    Science.gov (United States)

    Ahmed, A. Ben; Feki, H.; Abid, Y.; Boughzala, H.; Minot, C.

    2010-01-01

    This paper presents the results of our calculations on the geometric parameters, vibrational spectra and hyperpolarizability of a non-linear optical material L-histidine chloride monohydrate. Due to the lack of sufficiently precise information on geometric parameters available in literature, theoretical calculations were preceded by re-determination of the crystal X-ray structure. Single crystal of L-histidine chloride monohydrate has been growing by slow evaporation of an aqueous solution at room temperature. The compound crystallizes in the non-Centro-symmetric space group P2 12 12 1 of orthorhombic system. IR spectrum has been recorded in the range [400-4000 cm -1]. All the experimental vibrational bands have been discussed and assigned to normal mode or to combinations on the basis of our calculations. The optimized geometric bond lengths and bond angles obtained by using DFT//B3LYP/6-31G (d) method show a good agreement with the experimental data. The calculated vibrational spectra are in well agreement with the experimental one. To investigate microscopic second-order non-linear optical NLO behavior of the examined complex, the electric dipole μ, the polarizability α and the hyperpolarizability β were computed using DFT//B3LYP/6-31G (d) method. The time-dependent density functional theory (TD-DFT) was employed to descript the molecular electron structure of the title compound using the B3LYP/6-31G (d) method. According to our calculations, L-histidine chloride monohydrate exhibits non-zero β value revealing microscopic second-order NLO behavior.

  16. Silver adducts of four-branched histidine rich peptides exhibit synergistic antifungal activity.

    Science.gov (United States)

    Leng, Qixin; Woodle, Martin C; Liu, Yijia; Mixson, A James

    2016-09-01

    Previously, a four branched histidine-lysine rich peptide, H3K4b, was shown to demonstrate selective antifungal activity with minimal antibacterial activity. Due to the potential breakdown from proteases, H3K4b was further evaluated in the current study by varying the D- and l-amino acid content in its branches. Whereas analogues of H3K4b that selectively replaced l-amino acids (H3k4b, h3K4b) had improved antifungal activity, the all d-amino acid analogue, h3k4b, had reduced activity, suggesting that partial breakdown of the peptide may be necessary. Moreover, because histidines form coordination bonds with the silver ion, we examined whether silver adducts can be formed with these branched histidine-lysine peptides, which may improve antifungal activity. For Candida albicans, the silver adduct of h3K4b or H3k4b reduced the MIC compared to peptide and silver ions alone by 4- and 5-fold, respectively. For Aspergillus fumigatus, the silver adducts showed even greater enhancement of activity. Although the silver adducts of H3k4b or h3K4b showed synergistic activity, the silver adduct with the all l-amino acid H3K4b surprisingly showed the greatest synergistic and growth inhibition of A. fumigatus: the silver adduct of H3K4b reduced the MIC compared to the peptide and silver ions alone by 30- and 26-fold, respectively. Consistent with these antifungal efficacy results, marked increases in free oxygen radicals were produced with the H3K4b and silver combination. These studies suggest that there is a balance between stability and breakdown for optimal antifungal activity of the peptide alone and for the peptide-silver adduct. PMID:27387239

  17. Insufficient intake of L-histidine reduces brain histamine and causes anxiety-like behaviors in male mice.

    Science.gov (United States)

    Yoshikawa, Takeo; Nakamura, Tadaho; Shibakusa, Tetsuro; Sugita, Mayu; Naganuma, Fumito; Iida, Tomomitsu; Miura, Yamato; Mohsen, Attayeb; Harada, Ryuichi; Yanai, Kazuhiko

    2014-10-01

    L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.

  18. Increased adsorption of histidine-tagged proteins onto tissue culture polystyrene

    DEFF Research Database (Denmark)

    Holmberg, Maria; Hansen, Thomas Steen; Lind, Johan Ulrik;

    2012-01-01

    In this study we compare histidine-tagged and native proteins with regards to adsorption properties. We observe significantly increased adsorption of proteins with an incorporated polyhistidine amino acid motif (HIS-tag) onto tissue culture polystyrene (TCPS) compared to similar proteins without...... a HIS-tag. The effect is not observed on polystyrene (PS). Adsorption experiments have been performed at physiological pH (7.4) and the effect was only observed for the investigated proteins that have pI values below or around 7.4. Competitive adsorption experiments with imidazole...

  19. Effects of grain, fructose, and histidine feeding on endotoxin and oxidative stress measures in dairy heifers.

    Science.gov (United States)

    Golder, H M; Lean, I J; Rabiee, A R; King, R; Celi, P

    2013-01-01

    Ruminal endotoxin and plasma oxidative stress biomarker concentrations were studied in dairy heifers challenged with grain, fructose, and histidine in a partial factorial study. Holstein-Friesian heifers [n=30; average body weight (BW) of 359.3±47.3 kg] were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [crushed triticale at 1.2% of BW dry matter intake (DMI)]; (3) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI) + histidine (6g/head); and (5) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI) + histidine (6 g/head). Rumen samples were collected by stomach tube 5, 65, 115, 165, and 215 min after diet consumption and blood samples at 5 and 215 min after consumption. Rumen fluid was analyzed for endotoxin concentrations. Plasma was analyzed for concentrations of the following oxidative stress biomarkers: reactive oxygen metabolites (dROM), biological antioxidant potential (BAP), advanced oxidation protein products, and ceruloplasmin, and activity of glutathione peroxidase. Dietary treatment had no effect on concentrations of endotoxin or oxidative stress biomarkers. We observed no interactions of treatment by time. Ruminal concentrations of endotoxin decreased during the sampling period from 1.12×10(5) ± 0.06 to 0.92×10(5) endotoxin units/mL ± 0.05 (5 and 215 min after diet consumption, respectively). Concentrations of dROM and the oxidative stress index (dROM/BAP × 100) increased over the sampling period, from 108.7 to 123.5 Carratelli units (Carr U), and from 4.1 to 4.8, respectively. Ceruloplasmin concentrations markedly declined 5 min after the consumption of diets, from 190 to 90 mg/L over the 215-min sampling period. Overall, a single feeding challenge for dairy cattle with grain, fructose, and histidine, and combinations thereof, may not be sufficient to induce marked changes in endotoxin or oxidative stress biomarker concentrations.

  20. Effects of grain, fructose, and histidine feeding on endotoxin and oxidative stress measures in dairy heifers.

    Science.gov (United States)

    Golder, H M; Lean, I J; Rabiee, A R; King, R; Celi, P

    2013-01-01

    Ruminal endotoxin and plasma oxidative stress biomarker concentrations were studied in dairy heifers challenged with grain, fructose, and histidine in a partial factorial study. Holstein-Friesian heifers [n=30; average body weight (BW) of 359.3±47.3 kg] were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [crushed triticale at 1.2% of BW dry matter intake (DMI)]; (3) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI) + histidine (6g/head); and (5) grain (0.8% of BW DMI) + fructose (0.4% of BW DMI) + histidine (6 g/head). Rumen samples were collected by stomach tube 5, 65, 115, 165, and 215 min after diet consumption and blood samples at 5 and 215 min after consumption. Rumen fluid was analyzed for endotoxin concentrations. Plasma was analyzed for concentrations of the following oxidative stress biomarkers: reactive oxygen metabolites (dROM), biological antioxidant potential (BAP), advanced oxidation protein products, and ceruloplasmin, and activity of glutathione peroxidase. Dietary treatment had no effect on concentrations of endotoxin or oxidative stress biomarkers. We observed no interactions of treatment by time. Ruminal concentrations of endotoxin decreased during the sampling period from 1.12×10(5) ± 0.06 to 0.92×10(5) endotoxin units/mL ± 0.05 (5 and 215 min after diet consumption, respectively). Concentrations of dROM and the oxidative stress index (dROM/BAP × 100) increased over the sampling period, from 108.7 to 123.5 Carratelli units (Carr U), and from 4.1 to 4.8, respectively. Ceruloplasmin concentrations markedly declined 5 min after the consumption of diets, from 190 to 90 mg/L over the 215-min sampling period. Overall, a single feeding challenge for dairy cattle with grain, fructose, and histidine, and combinations thereof, may not be sufficient to induce marked changes in endotoxin or oxidative stress biomarker concentrations. PMID:24119801

  1. A Thermochemical Study on Complex Nickel(Ⅲ)L—α—Histidine

    Institute of Scientific and Technical Information of China (English)

    GAOSheng-li; CHENSan-ping; HURong-zu; SHIQi-zhen

    2003-01-01

    The formation enthalpy ofcomplex nickel(Ⅱ)-histidine(His)in water was determined by means of microcalorimetry in the temperature range of 298.15-323.15K.The standard enthalpy of the formation of Ni(His)22+ (aq) was calculated.On the basis of the experimental and the calculated results,three thermodynamic parameters(the activation enthaly,the activation entropy and the activation free energy),the rate constants,three kinetic parameters(the apparent activation energy,the pre-exponential constant and the reaction order)of the formation reaction of the title complex were obtained.

  2. A Thermochemical Study on Complex Nickel(Ⅱ) L-α-Histidine

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The formation enthalpy of complex nickel(Ⅱ)-histidine(His) in water was determined by means of microcalorimetry in the temperature range of 298.15-323.15 K. The standard enthalpy of the formation of Ni(His)2+2(aq) was calculated. On the basis of the experimental and the calculated results, three thermodynamic parameters(the activation enthalpy, the activation entropy and the activation free energy), the rate constants, three kinetic parameters(the apparent activation energy, the pre-exponential constant and the reaction order) of the formation reaction of the title complex were obtained.

  3. Histidine kinases mediate differentiation, stress response, and pathogenicity in Magnaporthe oryzae

    OpenAIRE

    Jacob, Stefan; Foster, Andrew J.; Yemelin, Alexander; Thines, Eckhard

    2014-01-01

    The aim of this study is a functional characterization of 10 putative histidine kinases (HIKs)-encoding genes in the phytopathogenic fungus Magnaporthe oryzae. Two HIKs were found to be required for pathogenicity in the fungus. It was found that the mutant strains ΔMohik5 and ΔMohik8 show abnormal conidial morphology and furthermore ΔMohik5 is unable to form appressoria. Both HIKs MoHik5p and MoHik8p appear to be essential for pathogenicity since the mutants fail to infect rice plants. MoSln1...

  4. Growth and characterization of L-histidine cadmium chloride monohydrate a semiorganic nonlinear optical crystals

    Science.gov (United States)

    Chandrasekaran, J.; Ilayabarathi, P.; Maadeswaran, P.; Mohamed Kutty, P.; Pari, S.

    2012-04-01

    L-histidine cadmium chloride monohydrate (LHCCM), a semiorganic nonlinear optical material was grown from aqueous solution by slow solvent evaporation method at room temperature. The LHCCM crystals were characterized by X-ray powder diffraction analysis. The presence of functional groups was identified through fourier transform infrared spectroscopy. Thermogravimetric and differential thermal analysis confirms that the crystal is stable up to 277 °C. The dielectric constant was studied as a function of frequency for various temperatures. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester. The second harmonic generation behavior of LHCCM crystal was tested by modified Kurtz-Perry powder technique.

  5. Tagging the Expressed Protein with 6 Histidines: Rapid Cloning of an Amplicon with Three Options

    OpenAIRE

    Singh, Manika Indrajit; Jain, Vikas

    2013-01-01

    We report the designing of three expression vectors that can be used for rapid cloning of any blunt-end DNA segment. Only a single set of oligonucleotides are required to perform the amplification of the target DNA and its cloning in all three vectors simultaneously. The DNA thus cloned can express a protein either with or without a hexa-histidine tag depending upon the vector used. The expression occurs from T7 promoter when transformed into E. coli BL21(DE3). Two of the three plasmids have ...

  6. Ultraviolet spectrophotometric characterization of copper(II) complexes with imidazole N-methyl derivatives of ?-histidine in aqueous solution

    Science.gov (United States)

    Prenesti, Enrico; Berto, Silvia; Daniele, Pier Giuseppe

    2003-01-01

    In this study we considered π-methyl- L-histidine (π-methis) and τ-methyl- L-histidine (τ-methis) as ligands for copper(II) ion, in order to clarify, by means of ultraviolet (UV) spectroscopy in aqueous solution ( T=25 °C, I=0.1 M), some aspects of the co-ordination mode with respect to other ligands of a previous study in which copper(II) complexes of L-histidine, N-acetyl- L-histidine, histamine, L-histidine methyl ester or carnosine were investigated. Particularly, UV spectra (300-400 nm) were recorded on solutions at various pH values, containing each binary system Cu-L; afterwards, an UV absorption spectrum for single complexes was calculated, taking into account the chemical model previously assessed, in order to fulfil a correct spectrum-structure correlation. The problem related to the eventual superimposition of the CT shoulder (≈330 nm) to copper(II) of OH - and imidazole pyridine nitrogen groups were now solved by means of a comparison of the UV spectra of dimer species formed by both π-methis or τ-methis. Finally, copper(II) complex formation with 2,2'-bipyridine was taken into account to compare the behaviour of pyridine (from 2,2'-bipyridine) and pyridine imidazole nitrogens (from π-methis or τ-methis) with respect to the UV charge transfer process to copper(II) ion.

  7. Proton affinity of the histidine-tryptophan cluster motif from the influenza A virus from ab initio molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bankura, Arindam; Klein, Michael L.; Carnevale, Vincenzo, E-mail: vincenzo.carnevale@temple.edu

    2013-08-30

    Highlights: • The estimated pK{sub a} is in agreement with the experimental one. • The affinity for protons is similar to that of a histidine residue in aqueous solution. • The electrostatic environment is responsible for the stabilization of the charged imidazolium moiety. - Abstract: Ab initio molecular dynamics calculations have been used to compare and contrast the deprotonation reaction of a histidine residue in aqueous solution with the situation arising in a histidine-tryptophan cluster. The latter is used as a model of the proton storage unit present in the pore of the M2 proton conducting ion channel. We compute potentials of mean force for the dissociation of a proton from the Nδ and N∊ positions of the imidazole group to estimate the pK{sub a}s. Anticipating our results, we will see that the estimated pK{sub a} for the first protonation event of the M2 channel is in good agreement with experimental estimates. Surprisingly, despite the fact that the histidine is partially desolvated in the M2 channel, the affinity for protons is similar to that of a histidine in aqueous solution. Importantly, the electrostatic environment provided by the indoles is responsible for the stabilization of the charged imidazolium.

  8. Relationships of Dietary Histidine and Obesity in Northern Chinese Adults, an Internet-Based Cross-Sectional Study.

    Science.gov (United States)

    Li, Yan-Chuan; Li, Chun-Long; Qi, Jia-Yue; Huang, Li-Na; Shi, Dan; Du, Shan-Shan; Liu, Li-Yan; Feng, Ren-Nan; Sun, Chang-Hao

    2016-01-01

    Our previous studies have demonstrated that histidine supplementation significantly ameliorates inflammation and oxidative stress in obese women and high-fat diet-induced obese rats. However, the effects of dietary histidine on general population are not known. The objective of this Internet-based cross-sectional study was to evaluate the associations between dietary histidine and prevalence of overweight/obesity and abdominal obesity in northern Chinese population. A total of 2376 participants were randomly recruited and asked to finish our Internet-based dietary questionnaire for the Chinese (IDQC). Afterwards, 88 overweight/obese participants were randomly selected to explore the possible mechanism. Compared with healthy controls, dietary histidine was significantly lower in overweight (p glucose (FBG), homeostasis model assessment of insulin resistance (HOMA-IR), 2-h postprandial glucose (2 h-PG), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), C-reactive protein (CRP), malonaldehyde (MDA) and vaspin and higher glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and adiponectin of overweight/obese individuals of both sexes. In conclusion, higher dietary histidine is inversely associated with energy intake, status of insulin resistance, inflammation and oxidative stress in overweight/obese participants and lower prevalence of overweight/obesity in northern Chinese adults. PMID:27409634

  9. Enzyme-linked immunosorbent assays for insulin-like growth factor-I using six-histidine tag fused proteins

    International Nuclear Information System (INIS)

    The fusion proteins of insulin-like growth factor-I (IGF-I) and six-histidine tag (IGF-I-6H, 6H-IGF-I-6H) were cloned, expressed, purified and renatured, with their immunoreaction properties and biological activities intact. The binding kinetics between these fusion proteins and anti-IGF-I antibody or anti-6H antibody were studied using surface plasmon resonance (SPR). Two enzyme-linked immunosorbent assay (ELISA) modes, which proved feasible in the measurement of human serum samples, were used to detect IGF-I with the help of the six-histidine tagged proteins. Furthermore, combining the production technique of the six-histidine tagged fusion protein with the competitive sandwich ELISA mode, using an enzyme labeled anti-6H antibody as a tracer, can be a universal immunochemical method to quantitate other polypeptides or proteins

  10. Preparation of silica coated cobalt ferrite magnetic nanoparticles for the purification of histidine-tagged proteins

    Science.gov (United States)

    Aygar, Gülfem; Kaya, Murat; Özkan, Necati; Kocabıyık, Semra; Volkan, Mürvet

    2015-12-01

    Surface modified cobalt ferrite (CoFe2O4) nanoparticles containing Ni-NTA affinity group were synthesized and used for the separation of histidine tag proteins from the complex matrices through the use of imidazole side chains of histidine molecules. Firstly, CoFe2O4 nanoparticles with a narrow size distribution were prepared in an aqueous solution using the controlled co-precipitation method. In order to obtain small CoFe2O4 agglomerates, oleic acid and sodium chloride were used as dispersants. The CoFe2O4 particles were coated with silica and subsequently the surface of these silica coated particles (SiO2-CoFe2O4) was modified by amine (NH2) groups in order to add further functional groups on the silica shell. Then, carboxyl (-COOH) functional groups were added to the SiO2-CoFe2O4 magnetic nanoparticles through the NH2 groups. After that Nα,Nα-Bis(carboxymethyl)-L-lysine hydrate (NTA) was attached to carboxyl ends of the structure. Finally, the surface modified nanoparticles were labeled with nickel (Ni) (II) ions. Furthermore, the modified SiO2-CoFe2O4 magnetic nanoparticles were utilized as a new system that allows purification of the N-terminal His-tagged recombinant small heat shock protein, Tpv-sHSP 14.3.

  11. Isotope effect studies of the pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii

    Energy Technology Data Exchange (ETDEWEB)

    Abell, L.M.; O' Leary, M.H.

    1988-08-09

    The pyridoxal 5'-phosphate dependent histidine decarboxylase from Morganella morganii shows a nitrogen isotope effect k/sup 14//k/sup 15/ = 0.9770 +/- 0.0021, a carbon isotope effect k/sup 12//k/sup 13/ = 1.0308 +/- 0.0006, and a carbon isotope effect for L-(..cap alpha..-/sup 2/H)histidine of 1.0333 +/- 0.0001 at pH 6.3, 37/sup 0/C. These results indicate that the overall decarboxylation rate is limited jointly by the rate of Schiff base interchange and by the rate of decarboxylation. Although the observed isotope effects are quite different from those for the analogous glutamate decarboxylase from Escherichia coli, the intrinsic isotope effects for the two enzymes are essentially the same. The difference in observed isotope effects occurs because of a roughly twofold difference in the partitioning of the pyridoxal 5'-phosphate-substrate Schiff base between decarboxylation and Schiff base interchange. The observed nitrogen isotope effect requires that the imine nitrogen in this Schiff base is protonated. Comparison of carbon isotope effects for deuteriated and undeuteriated substrates reveals that the deuterium isotope effect on the decarboxylation step is about 1.20; thus, in the transition state for the decarboxylation step, the carbon-carbon bond is about two-thirds broken.

  12. N-acetyl-l-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates

    Science.gov (United States)

    Baslow, Morris H.; Guilfoyle, David N.

    2015-01-01

    N-acetyl-l-histidine (NAH) is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from l-histidine (His) and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP) to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS) and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates. PMID:25919898

  13. Effect of including torsional parameters for histidine-metal interactions in classical force fields for metalloproteins.

    Science.gov (United States)

    Mera-Adasme, Raúl; Sadeghian, Keyarash; Sundholm, Dage; Ochsenfeld, Christian

    2014-11-20

    Classical force-field parameters of the metal site of metalloproteins usually comprise only the partial charges of the involved atoms, as well as the bond-stretching and bending parameters of the metal-ligand interactions. Although for certain metal ligands such as histidine residues, the torsional motions at the metal site play an important role for the dynamics of the protein, no such terms have been considered to be crucial in the parametrization of the force fields, and they have therefore been omitted in the parametrization. In this work, we have optimized AMBER-compatible force-field parameters for the reduced state of the metal site of copper, zinc superoxide dismutase (SOD1) and assessed the effect of including torsional parameters for the histidine-metal interactions in molecular dynamics simulations. On the basis of the obtained results, we recommend that torsion parameters of the metal site are included when processes at the metal site are investigated or when free-energy calculations are performed. As the torsion parameters mainly affect the structure of the metal site, other kinds of structural studies can be performed without considering the torsional parameters of the metal site.

  14. Enhanced histamine production through the induction of histidine decarboxylase expression by phorbol ester in Jurkat cells.

    Science.gov (United States)

    Nagashima, Yusuke; Kako, Koichiro; Kim, Jun-Dal; Fukamizu, Akiyoshi

    2012-11-01

    Histamine (HA), a mediator of inflammation, type I allergic responses and neurotransmission, is synthesized from L-histidine, the reaction of which is catalyzed by histidine decarboxylase (HDC). HDC has been reported to be induced by various stimuli, not only in mast cells and basophils, but also in T lymphocytes and macrophages. Although its mRNA has been shown to be increased in Jurkat cells when treated with phorbol 12-myristate 13-acetate (TPA), little is known concerning the induced production of HA by HDC. The present study quantified the trace amounts of intracellular HA using ultra-high liquid chromatography in combination with the 6-aminoquinoline carbamate-derivatization technique. To test whether the cellular level of HA is elevated by the induction of HDC in Jurkat cells treated with TPA, the peak corresponding to authentic HA in the cell lysate was fractioned and its molecular weight determined by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry. The results of this study show that the HA level is increased by the induction of HDC expression by TPA in Jurkat cells. Therefore, this method is useful in elucidating the physiological significance of HA production. PMID:22940786

  15. N-acetyl-l-histidine, a Prominent Biomolecule in Brain and Eye of Poikilothermic Vertebrates

    Directory of Open Access Journals (Sweden)

    Morris H. Baslow

    2015-04-01

    Full Text Available N-acetyl-l-histidine (NAH is a prominent biomolecule in brain, retina and lens of poikilothermic vertebrates. In fish lens, NAH exhibits an unusual compartmentalized metabolism. It is synthesized from L-histidine (His and acetyl Co-enzyme A. However, NAH cannot be catabolized by lens cells. For its hydrolysis, NAH is exported to ocular fluid where a specific acylase cleaves His which is then actively taken up by lens and re-synthesized into NAH. This energy-dependent cycling suggested a pump mechanism operating at the lens/ocular fluid interface. Additional studies led to the hypothesis that NAH functioned as a molecular water pump (MWP to maintain a highly dehydrated lens and avoid cataract formation. In this process, each NAH molecule released to ocular fluid down its gradient carries with it 33 molecules of bound water, effectively transporting the water against a water gradient. In ocular fluid the bound water is released for removal from the eye by the action of NAH acylase. In this paper, we demonstrate for the first time the identification of NAH in fish brain using proton magnetic resonance spectroscopy (MRS and describe recent evidence supporting the NAH MWP hypothesis. Using MRS, we also document a phylogenetic transition in brain metabolism between poikilothermic and homeothermic vertebrates.

  16. NMR-based approach to measure the free energy of transmembrane helix-helix interactions.

    Science.gov (United States)

    Mineev, Konstantin S; Lesovoy, Dmitry M; Usmanova, Dinara R; Goncharuk, Sergey A; Shulepko, Mikhail A; Lyukmanova, Ekaterina N; Kirpichnikov, Mikhail P; Bocharov, Eduard V; Arseniev, Alexander S

    2014-01-01

    Knowledge of the energetic parameters of transmembrane helix-helix interactions is necessary for the establishment of a structure-energy relationship for α-helical membrane domains. A number of techniques have been developed to measure the free energies of dimerization and oligomerization of transmembrane α-helices, and all of these have their advantages and drawbacks. In this study we propose a methodology to determine the magnitudes of the free energy of interactions between transmembrane helices in detergent micelles. The suggested approach employs solution nuclear magnetic resonance (NMR) spectroscopy to determine the population of the oligomeric states of the transmembrane domains and introduces a new formalism to describe the oligomerization equilibrium, which is based on the assumption that both the dimerization of the transmembrane domains and the dissociation of the dimer can occur only upon the collision of detergent micelles. The technique has three major advantages compared with other existing approaches: it may be used to analyze both weak and relatively strong dimerization/oligomerization processes, it works well for the analysis of complex equilibria, e.g. when monomer, dimer and high-order oligomer populations are simultaneously present in the solution, and it can simultaneously yield both structural and energetic characteristics of the helix-helix interaction under study. The proposed methodology was applied to investigate the oligomerization process of transmembrane domains of fibroblast growth factor receptor 3 (FGFR3) and vascular endothelium growth factor receptor 2 (VEGFR2), and allowed the measurement of the free energy of dimerization of both of these objects. In addition the proposed method was able to describe the multi-state oligomerization process of the VEGFR2 transmembrane domain. PMID:24036227

  17. Histidine enhances carbamazepine action against seizures and improves spatial memory deficits induced by chronic transauricular kindling in rats

    Institute of Scientific and Technical Information of China (English)

    Qing LI; Chun-lei JIN; Li-sha XU; Zheng-bin ZHU-GE; Li-xia YANG; Lu-ying LIU; Zhong CHEN

    2005-01-01

    Aim: To investigate whether histidine can enhance the anticonvulsant efficacy of carbamazepine (CBZ) and simultaneously improve the spatial memory impairment induced by transauricular kindled seizures in Sprague-Dawley rats. Methods:Chronic transauricular kindling was induced by repeated application of initially subconvulsive electrical stimulation through ear-clip electrodes once every 24 h until the occurrence of 3 consecutive clonic-tonic seizures. An 8-arm radial maze (4 arms baited) was used to measure spatial memory, and histamine and γ-aminobutyric acid levels were measured by high performance liquid chromatography (HPLC). Results: Chronic transauricular kindling produced a significant impairment of spatial memory and a marked decrease in histamine content in the hypothalamus, the brainstem, and the hippocampus. Injection of histidine (1000 mg/kg or 1500 mg/kg, ip) significantly inhibited transauricular kindled seizures. Injection of histidine at lower doses (200 mg/kg or 500 mg/kg, ip) had no appreciable anticonvulsant effect when administered alone, whereas it significantly potentiated the protective effects of CBZ against kindled seizures. CBZ had no meliorative effect on memory deficit, but, in contrast, histidine (200 mg/kg or 500 mg/kg, ip) alone or co-administered with CBZ significantly ameliorated the memory deficits induced by the seizures. Conclusion: Chronic transauricular kindling is a very useful animal model for evaluating memory deficits associated with epilepsy, and histidine has both a potentiate effect on the anticonvulsant efficacy of CBZ and an ameliorative effect on the spatial memory deficits induced in this model. Histidine at a specific dosage range might serve as a beneficial adjuvant for the clinical treatment of epilepsy, especially when accompanied by impaired spatial memory.

  18. Poisson-Nernst-Planck models of nonequilibrium ion electrodiffusion through a protegrin transmembrane pore.

    Directory of Open Access Journals (Sweden)

    Dan S Bolintineanu

    2009-01-01

    Full Text Available Protegrin peptides are potent antimicrobial agents believed to act against a variety of pathogens by forming nonselective transmembrane pores in the bacterial cell membrane. We have employed 3D Poisson-Nernst-Planck (PNP calculations to determine the steady-state ion conduction characteristics of such pores at applied voltages in the range of -100 to +100 mV in 0.1 M KCl bath solutions. We have tested a variety of pore structures extracted from molecular dynamics (MD simulations based on an experimentally proposed octomeric pore structure. The computed single-channel conductance values were in the range of 290-680 pS. Better agreement with the experimental range of 40-360 pS was obtained using structures from the last 40 ns of the MD simulation, where conductance values range from 280 to 430 pS. We observed no significant variation of the conductance with applied voltage in any of the structures that we tested, suggesting that the voltage dependence observed experimentally is a result of voltage-dependent channel formation rather than an inherent feature of the open pore structure. We have found the pore to be highly selective for anions, with anionic to cationic current ratios (I(Cl-/I(K+ on the order of 10(3. This is consistent with the highly cationic nature of the pore but surprisingly in disagreement with the experimental finding of only slight anionic selectivity. We have additionally tested the sensitivity of our PNP model to several parameters and found the ion diffusion coefficients to have a significant influence on conductance characteristics. The best agreement with experimental data was obtained using a diffusion coefficient for each ion set to 10% of the bulk literature value everywhere inside the channel, a scaling used by several other studies employing PNP calculations. Overall, this work presents a useful link between previous work focused on the structure of protegrin pores and experimental efforts aimed at investigating their

  19. Cystic Fibrosis Transmembrane Conductance Regulator and H+ Permeability in Regulation of Golgi pH

    Directory of Open Access Journals (Sweden)

    Machen TE

    2001-07-01

    Full Text Available This paper reviews experiments from this lab that have tested the hypothesis that pH of the Golgi (pH(G of cystic fibrosis (CF airway epithelial cells is alkaline compared to normal, that this altered pH affects sialyltransferase and other Golgi enzymes controlling biochemical composition of the plasma membrane and that altered surface biochemistry increases bacterial binding. We generated a plasmid encoding a modified green fluorescence protein-sialyltransferase (GFP-ST chimera protein that was pH-sensitive and localized to the Golgi when transfected into HeLa cells and also CF and normal or cystic fibrosis transmembrane conductance regulator- (CFTR-corrected airway epithelial cells. Digital imaging microscopy of these Golgi-localized probes showed that there was no correlation between pH(G (6.4-7.0 and the presence of CFTR, whether cells were in HCO(3(-/CO(2-containing or in HCO(3(-/CO(2-free solutions. Activation of CFTR by raising cell [cAMP] had no effect on pH(G. Thus, CFTR seemed not to be involved in controlling pH(G. Experiments on HeLa cells using an avidin-sialyltransferase chimera in combination with a pH-sensitive fluorescent biotin indicated that even in cells that do not express CFTR, Cl(- and K(+ conductances of the Golgi and other organelle membranes were large and that pH(G was controlled solely by the H(+ v-ATPase countered by a H(+ leak. A mathematical model was applied to these and other published data to calculate passive H(+ permeability (P(H+ of the Golgi, endoplasmic reticulum, trans-Golgi network, recycling endosomes and secrety granules from a variety of cells. An organelle's acidity was inversely correlated to its calculated P(H+. We conclude that the CFTR plays a minor role in organelle pH regulation because other (Cl(- and K(+ channels are present in sufficient numbers to shunt voltages generated during H(+ pumping. Acidity of the Golgi (and perhaps other organelles appears to be determined by the activity of H

  20. In vivo and in vitro detection of the leader RNA of the histidine operon of Escherichia coli K-12.

    OpenAIRE

    Frunzio, R; Bruni, C B; Blasi, F.

    1981-01-01

    The DNA of the attenuator region of the histidine operon of Escherichia coli has been transcribed in a purified in vitro system and found to synthesize two major RNA transcripts. The first one, 180 nucleotides long, has been identified as the histidine-specific leader RNA. It contains the coding sequence for the leader peptide [Di Nocera, P. P., Blasi, F., Di Lauro, R., Frunzio, R. & Bruni, C. B. (1978) Proc. Natl. Acad. Sci. USA 75, 4276-4280] and is terminated at the attenuator site. Termin...

  1. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  2. Monitoring the Transmembrane Proton Gradient Generated by Cytochrome bo3 in Tethered Bilayer Lipid Membranes Using SEIRA Spectroscopy.

    Science.gov (United States)

    Wiebalck, Swantje; Kozuch, Jacek; Forbrig, Enrico; Tzschucke, C Christoph; Jeuken, Lars J C; Hildebrandt, Peter

    2016-03-10

    Membrane proteins act as biocatalysts or ion/proton pumps to convert and store energy from ubiquitous environmental sources. Interfacing these proteins to electrodes allows utilizing the energy for enzymatic biofuel cells or other auspicious biotechnological applications. To optimize the efficiency of these devices, appropriate membrane models are required that ensure structural and functional integrity of the embedded enzymes and provide structural insight. We present a spectroelectrochemical surface-enhanced infrared absorption (SEIRA) and electrical impedance spectroscopy (EIS) study of the bacterial respiratory ubiquinol/cytochrome bo3 (cyt bo3) couple incorporated into a tethered bilayer lipid membrane (tBLM). Here, we employed a new lipid tether (WK3SH, dihydrocholesteryl (2-(2-(2-ethoxy)ethoxy)ethanethiol), which was synthesized using a three-step procedure with very good yield and allowed measuring IR spectra without significant spectral interference of the tBLM. The functional integrity of the incorporated cyt bo3 was demonstrated by monitoring the enzymatic O2 reduction current and the formation of the transmembrane proton gradient. Based on a SEIRA-spectroscopic redox titration, a shift of the pH-dependent redox potential of the ubiquinones under turnover conditions was correlated with an alkalinization of the submembrane reservoir by +0.8 pH units. This study demonstrates the high potential of tBLMs and the SEIRA spectroscopic approach to study bioenergetic processes.

  3. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  4. Re-introduction of transmembrane serine residues reduce the minimum pore diameter of channelrhodopsin-2.

    Directory of Open Access Journals (Sweden)

    Ryan Richards

    Full Text Available Channelrhodopsin-2 (ChR2 is a microbial-type rhodopsin found in the green algae Chlamydomonas reinhardtii. Under physiological conditions, ChR2 is an inwardly rectifying cation channel that permeates a wide range of mono- and divalent cations. Although this protein shares a high sequence homology with other microbial-type rhodopsins, which are ion pumps, ChR2 is an ion channel. A sequence alignment of ChR2 with bacteriorhodopsin, a proton pump, reveals that ChR2 lacks specific motifs and residues, such as serine and threonine, known to contribute to non-covalent interactions within transmembrane domains. We hypothesized that reintroduction of the eight transmembrane serine residues present in bacteriorhodopsin, but not in ChR2, will restrict the conformational flexibility and reduce the pore diameter of ChR2. In this work, eight single serine mutations were created at homologous positions in ChR2. Additionally, an endogenous transmembrane serine was replaced with alanine. We measured kinetics, changes in reversal potential, and permeability ratios in different alkali metal solutions using two-electrode voltage clamp. Applying excluded volume theory, we calculated the minimum pore diameter of ChR2 constructs. An analysis of the results from our experiments show that reintroducing serine residues into the transmembrane domain of ChR2 can restrict the minimum pore diameter through inter- and intrahelical hydrogen bonds while the removal of a transmembrane serine results in a larger pore diameter. Therefore, multiple positions along the intracellular side of the transmembrane domains contribute to the cation permeability of ChR2.

  5. Structural and dynamic study of the transmembrane domain of the amyloid precursor protein.

    Science.gov (United States)

    Nadezhdin, K D; Bocharova, O V; Bocharov, E V; Arseniev, A S

    2011-01-01

    Alzheimer's disease affects people all over the world, regardless of nationality, gender or social status. An adequate study of the disease requires essential understanding of the molecular fundamentals of the pathogenesis. The amyloid β-peptide, which forms amyloid plaques in the brain of people with Alzheimer's disease, is the product of sequential cleavage of a single-span membrane amyloid precursor protein (APP). More than half of the APP mutations found to be associated with familial forms of Alzheimer's disease are located in its transmembrane domain. The pathogenic mutations presumably affect the structural-dynamic properties of the APP transmembrane domain by changing its conformational stability and/or lateral dimerization. In the present study, the structure and dynamics of the recombinant peptide corresponding to the APP fragment, Gln686-Lys726, which comprises the APP transmembrane domain with an adjacent N-terminal juxtamembrane sequence, were determined in the membrane mimetic environment composed of detergent micelles using NMR spectroscopy. The structure obtained in dodecylphosphocholine micelles consists of two α-helices: a short surface-associated juxtamembrane helix (Lys687-Asp694) and a long transmembrane helix (Gly700-Leu723), both connected via a mobile loop region. A minor bend of the transmembrane α-helix is observed near the paired residues Gly708-Gly709. A cholesterol-binding hydrophobic cavity is apparently formed under the loop region, where the juxtamembrane α-helix comes into contact with the membrane surface near the N-terminus of the transmembrane α-helix. PMID:22649674

  6. TMM@: a web application for the analysis of transmembrane helix mobility

    Directory of Open Access Journals (Sweden)

    Jonassen Inge

    2007-07-01

    Full Text Available Abstract Background To understand the mechanism by which a protein transmits a signal through the cell membrane, an understanding of the flexibility of its transmembrane (TM region is essential. Normal Mode Analysis (NMA has become the method of choice to investigate the slowest motions in macromolecular systems. It has been widely used to study transmembrane channels and pumps. It relies on the hypothesis that the vibrational normal modes having the lowest frequencies (also named soft modes describe the largest movements in a protein and are the ones that are functionally relevant. In particular NMA can be used to study dynamics of TM regions, but no tool making this approach available for non-experts, has been available so far. Results We developed the web-application TMM@ (TransMembrane α-helical Mobility analyzer. It uses NMA to characterize the propensity of transmembrane α-helices to be displaced. Starting from a structure file at the PDB format, the server computes the normal modes of the protein and identifies which helices in the bundle are the most mobile. Each analysis is performed independently from the others and results can be visualized using only a web browser. No additional plug-in or software is required. For users who would like to further analyze the output data with their favourite software, raw results can also be downloaded. Conclusion We built a novel and unique tool, TMM@, to study the mobility of transmembrane α-helices. The tool can be applied to for example membrane transporters and provides biologists studying transmembrane proteins with an approach to investigate which α-helices are likely to undergo the largest displacements, and hence which helices are most likely to be involved in the transportation of molecules in and out of the cell.

  7. Identification of essential histidine residues involved in heme binding and Hemozoin formation in heme detoxification protein from Plasmodium falciparum.

    Science.gov (United States)

    Nakatani, Keisuke; Ishikawa, Haruto; Aono, Shigetoshi; Mizutani, Yasuhisa

    2014-01-01

    Malaria parasites digest hemoglobin within a food vacuole to supply amino acids, releasing the toxic product heme. During the detoxification, toxic free heme is converted into an insoluble crystalline form called hemozoin (Hz). Heme detoxification protein (HDP) in Plasmodium falciparum is one of the most potent of the hemozoin-producing enzymes. However, the reaction mechanisms of HDP are poorly understood. We identified the active site residues in HDP using a combination of Hz formation assay and spectroscopic characterization of mutant proteins. Replacement of the critical histidine residues His122, His172, His175, and His197 resulted in a reduction in the Hz formation activity to approximately 50% of the wild-type protein. Spectroscopic characterization of histidine-substituted mutants revealed that His122 binds heme and that His172 and His175 form a part of another heme-binding site. Our results show that the histidine residues could be present in the individual active sites and could be ligated to each heme. The interaction between heme and the histidine residues would serve as a molecular tether, allowing the proper positioning of two hemes to enable heme dimer formation. The heme dimer would act as a seed for the crystal growth of Hz in P. falciparum. PMID:25138161

  8. Implication of citrate, malate and histidine in the accumulation and transport of nickel in Mesembryanthemum crystallinum and Brassica juncea.

    Science.gov (United States)

    Amari, Taoufik; Lutts, Stanley; Taamali, Manel; Lucchini, Giorgio; Sacchi, Gian Attilio; Abdelly, Chedly; Ghnaya, Tahar

    2016-04-01

    Citrate, malate and histidine have been involved in many processes including metal tolerance and accumulation in plants. These molecules have been frequently reported to be the potential nickel chelators, which most likely facilitate metal transport through xylem. In this context, we assess here, the relationship between organics acids and histidine content and nickel accumulation in Mesembryanthemum crystallinum and Brassica juncea grown in hydroponic media added with 25, 50 and 100 µM NiCl2. Results showed that M. crystallinum is relatively more tolerant to Ni toxicity than B. juncea. For both species, xylem transport rate of Ni increased with increasing Ni supply. A positive correlation was established between nickel and citrate concentrations in the xylem sap. In the shoot of B. juncea, citric and malic acids concentrations were significantly higher than in the shoot of M. crystallinum. Also, the shoots and roots of B. juncea accumulated much more histidine. In contrast, a higher root citrate concentration was observed in M. crystallinum. These findings suggest a specific involvement of malic and citric acid in Ni translocation and accumulation in M. crystallinum and B. juncea. The high citrate and histidine accumulation especially at 100µM NiCl2, in the roots of M. crystallinum might be among the important factors associated with the tolerance of this halophyte to toxic Ni levels. PMID:26745003

  9. Differentiation of Histidine Tautomeric States using 15N Selectively Filtered 13C Solid-State NMR Spectroscopy

    Science.gov (United States)

    Miao, Yimin; Cross, Timothy A.; Fu, Riqiang

    2014-01-01

    The histidine imidazole ring in proteins usually contains a mixture of three possible tautomeric states (two neutral - τ and π states and a charged state) at physiological pHs. Differentiating the tautomeric states is critical for understanding how the histidine residue participates in many structurally and functionally important proteins. In this work, one dimensional 15N selectively filtered 13C solid-state NMR spectroscopy is proposed to differentiate histidine tautomeric states and to identify all 13C resonances of the individual imidazole rings in a mixture of tautomeric states. When 15N selective 180° pulses are applied to the protonated or non-protonated nitrogen region, the 13C sites that are bonded to the non-protonated or protonated nitrogen sites can be identified, respectively. A sample of 13C,15N labeled histidine powder lyophilized from a solution at pH 6.3 has been used to illustrate the usefulness of this scheme by uniquely assigning resonances of the neutral τ and charged states from the mixture. PMID:25026459

  10. Standard thermodynamic functions of complexation between copper(II) and glycine and L-histidine in aqueous solutions

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2016-09-01

    The Cu2+-glycine-L-histidine system is studied calorimetrically at 298.15 K and an ionic strength of 0.2, 0.5, and 1.0 in aqueous solutions containing potassium nitrate. The standard thermodynamic parameters (Δr H°, Δr G°, Δr S°) of complexation processes are determined.

  11. Implication of citrate, malate and histidine in the accumulation and transport of nickel in Mesembryanthemum crystallinum and Brassica juncea.

    Science.gov (United States)

    Amari, Taoufik; Lutts, Stanley; Taamali, Manel; Lucchini, Giorgio; Sacchi, Gian Attilio; Abdelly, Chedly; Ghnaya, Tahar

    2016-04-01

    Citrate, malate and histidine have been involved in many processes including metal tolerance and accumulation in plants. These molecules have been frequently reported to be the potential nickel chelators, which most likely facilitate metal transport through xylem. In this context, we assess here, the relationship between organics acids and histidine content and nickel accumulation in Mesembryanthemum crystallinum and Brassica juncea grown in hydroponic media added with 25, 50 and 100 µM NiCl2. Results showed that M. crystallinum is relatively more tolerant to Ni toxicity than B. juncea. For both species, xylem transport rate of Ni increased with increasing Ni supply. A positive correlation was established between nickel and citrate concentrations in the xylem sap. In the shoot of B. juncea, citric and malic acids concentrations were significantly higher than in the shoot of M. crystallinum. Also, the shoots and roots of B. juncea accumulated much more histidine. In contrast, a higher root citrate concentration was observed in M. crystallinum. These findings suggest a specific involvement of malic and citric acid in Ni translocation and accumulation in M. crystallinum and B. juncea. The high citrate and histidine accumulation especially at 100µM NiCl2, in the roots of M. crystallinum might be among the important factors associated with the tolerance of this halophyte to toxic Ni levels.

  12. Structural and Functional Aspects of the Sensor Histidine Kinase PrrB from Mycobacterium tuberculosis

    DEFF Research Database (Denmark)

    Nowak, E.; Panjikar, S.; Morth, J.P.;

    2006-01-01

    We describe the solution structures of two- and three-domain constructs of the sensor histidine kinase PrrB from Mycobacterium tuberculosis, which allow us to locate the HAMP linker relative to the ATP binding and dimerization domains. We show that the three-domain construct is active both for...

  13. Thermochemical study of the processes of complexation of cobalt(II) ions with L-histidine in aqueous solution

    Science.gov (United States)

    Gorboletova, G. G.; Metlin, A. A.

    2015-09-01

    Thermal effects of the complexation of cobalt(II) ions with L-histidine at 298.15 K and several values of the ionic strength against the background of KNO3 are determined by means of direct calorimetry. The standard thermodynamic characteristics of the reactions of complexation in the aqueous solution have been calculated.

  14. Identification of a crucial histidine involved in metal transport activity in the Arabidopsis cation/H(+) exchanger CAX1

    Science.gov (United States)

    In plants, yeast and bacteria, cation/H(+) exchangers (CAXs), have been shown to translocate Ca(2+) and other metals. The best characterized of these related transporters is the plant vacuolar-localized CAX1. We used site-directed mutagenesis to assess the impact of altering the seven histidine re...

  15. Hydrogels formed by enantioselective self-assembly of histidine-derived amphiphiles with tartaric acid.

    Science.gov (United States)

    Zhang, Fanjun; Xu, Zhenghu; Dong, Shuli; Feng, Lei; Song, Aixin; Tung, Chen-Ho; Hao, Jingcheng

    2014-07-21

    Two chiral enantiomers of histidine-derived amphiphilic gelators, (4R,6S)-UIPCA and (4S,6R)-UIPCA, were synthesized through Pictet-Spengler reaction and their gelation behaviors with different organic acids were investigated. Interestingly, the chiral enantiomers of UIPCA showed smart enantioselectivity for gelating tartaric acid enantiomers to form hydrogels with excellent mechanical strength. The TEM and SEM images demonstrated that the hydrogels were composed of networks by physical entanglement of nanofibers with high aspect ratios. The formation of nanofibers was considered to be driven by the interplay of hydrogen bonding, electrostatic attraction, and hydrophobic interaction, which was supported by XRD and FT-IR spectra. The hydrogels exhibited sensitive response to a series of external stimuli, such as temperature, metal ions, and host-guest interactions, to realize the reversible gel-sol transition. The property of the gelation was elaborated and the gelators were expected to find their applications in chiral discrimination. PMID:24865976

  16. The nucleotide sequence of histidine tRNA gamma of Drosophila melanogaster.

    OpenAIRE

    Altwegg, M.; Kubli, E

    1980-01-01

    The nucleotide sequence of D. melanogaster histidine tRNA gamma was determined to be: pG-G-C-C-G-U-G-A-U-C-G-U-C-psi-A-G-D-G-G-D-D-A-G-G-A-C-C-C-C-A-C-G-psi-U-G-U-G- m1G-C-C-G-U-G-G-U-A-A-C-C-m5C-A-G-G-U-psi-C-G-m1A-A-U-C-C-U-G-G-U-C-A-C-G-G-m5C -A-C-C-AOH. An additional unpaired G is found at the 5' end, and the T in the TpsiC loop is replaced by a U.

  17. Using Poly-L-Histidine Modified Glassy Carbon Electrode to Trace Hydroquinone in the Sewage Water

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2014-01-01

    Full Text Available A sensitive voltammetric method for trace measurements of hydroquinone in the sewage water is described. The poly-L-histidine is prepared to modify the glassy carbon electrode in order to improve the electrochemical catalysis of interesting substances such as hydroquinone. The influence of the base solution, pH value, and scanning speed on the tracing of hydroquinone is discussed, and the experimental procedures and conditions are optimized. The laboratory results show that it is possible to construct a linear calibration curve between the peak current of hydroquinone on modified electrode and its concentration at the level of 0.00001 mol/L. The potential limitation of the method is suggested by a linear peaking shift model as well. The method was successfully applied to the determination of hydroquinone in the actual sample of industrial waste water.

  18. Raman Spectroscopic Studies on L-histidine, aniline Doped Triglycine Sulphate Single Crystals

    Science.gov (United States)

    Benial, A. Milton Franklin; Ramakrishnan, V.; Parameswari, A.

    2015-02-01

    Single crystals of triglycine sulphate (TGS) doped with L-histidine and aniline were studied by Raman Spectroscopy. The structure and symmetry of molecules, the nature of bonding and the effect of crystalline field on molecular vibrations were studied for pure and doped TGS. The characteristic group frequencies were identified and analysed for H2SO4 and glycine. The skeletal motion, lattice vibrational peaks were observed in the low wavenumber region. The site symmetry effect and the correlation field effect were studied from the splitting of vibrational bands. The observed Raman shift towards higher wave number region reveals that the symmetry reduction in doped TGS crystals. The broadening of Raman spectral line showed that a decrease in the hardness value for the doped crystals. Comparative studies of the Raman Spectra of pure TGS and doped TGS were also carried out.

  19. Histidine-rich stabilized polyplexes for cMet-directed tumor-targeted gene transfer

    Science.gov (United States)

    Kos, Petra; Lächelt, Ulrich; Herrmann, Annika; Mickler, Frauke Martina; Döblinger, Markus; He, Dongsheng; Krhač Levačić, Ana; Morys, Stephan; Bräuchle, Christoph; Wagner, Ernst

    2015-03-01

    Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing terminal cysteines for redox-sensitive polyplex stabilization, were assembled by solid-phase supported syntheses. The resulting oligomers exhibited a greatly enhanced cellular uptake and gene transfer over non-targeted control sequences, confirming the efficacy and target-specificity of the formed polyplexes. Implementation of endosomal escape-promoting histidines in the cationic core was required for gene expression without additional endosomolytic agent. The histidine-enriched polyplexes demonstrated stability in serum as well as receptor-specific gene transfer in vivo upon intratumoral injection. The co-formulation with an analogous PEG-free cationic oligomer led to a further compaction of pDNA polyplexes with an obvious change of shape as demonstrated by transmission electron microscopy. Such compaction was critically required for efficient intravenous gene delivery which resulted in greatly enhanced, cMBP2 ligand-dependent gene expression in the distant tumor.Overexpression of the hepatocyte growth factor receptor/c-Met proto oncogene on the surface of a variety of tumor cells gives an opportunity to specifically target cancerous tissues. Herein, we report the first use of c-Met as receptor for non-viral tumor-targeted gene delivery. Sequence-defined oligomers comprising the c-Met binding peptide ligand cMBP2 for targeting, a monodisperse polyethylene glycol (PEG) for polyplex surface shielding, and various cationic (oligoethanamino) amide cores containing

  20. Growth and characterization of a new nonlinear optical L-histidine acetate single crystals

    Science.gov (United States)

    Madhavan, J.; Aruna, S.; Anuradha, A.; Premanand, D.; Vetha Potheher, I.; Thamizharasan, K.; Sagayaraj, P.

    2007-05-01

    Bulk single crystals of L-histidine acetate dihydrate (LHA), a new organic nonlinear material was successfully grown from aqueous solution for the first time by slow evaporation method. The solubility of LHA was determined in water and good optical quality single crystal of dimensions up to 21 × 13 × 9 mm 3 was obtained. The grown crystals were characterized by X-ray diffraction, FTIR, UV-Vis-NIR, microhardness and DTA/TGA studies. The SHG efficiency is found to be higher than that of KDP crystal. The dielectric constant and dielectric loss of the crystal were studied as function of frequency and the results are discussed. Photoconductivity studies of LHA reveal its positive photoconducting nature.

  1. Growth and characterization of a pure and doped nonlinear optical L-histidine acetate single crystals

    Science.gov (United States)

    Praveen Kumar, P.; Manivannan, V.; Tamilselvan, S.; Senthil, S.; Antony Raj, Victor; Sagayaraj, P.; Madhavan, J.

    2008-05-01

    Single crystals of pure, Cu 2+and Mg 2+ doped L-histidine acetate (LHA) were grown successfully by slow evaporation technique. The X-ray diffraction (XRD) studies were carried out for the pure and doped grown crystals. Absorption of these grown crystals was analyzed using UV-vis-NIR studies, and it was found that these crystals possess minimum absorption from 200 nm to 1500 nm. The pure and doped crystals are characterized by Fourier transform Raman (FT-Raman), thermal and photoconductivity studies. Vickers microhardness tests were carried out for the pure and doped crystals and the mechanical strengths were found. The dielectric constant and the dielectric loss with frequency were also studied.

  2. Effects of MgO evolution on the critical current density in bulk MgB{sub 2} containing histidine

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Qi; Liu, Yongchang, E-mail: licmtju@163.com; Ma, Zongqing; Yu, Liming

    2014-01-15

    Highlights: •Histidine is an effective dopant for improving the critical current density. •The dominating pinning effects are provided by nano-scale MgO pinning centers. •MgO performed stronger pinning effects than defects caused by C substitution. •We clarified how to select the amino acid for doping. -- Abstract: Glycine, an amino acid with the simplest composition, was introduced into MgB{sub 2} systems, making great contribution to the enhancement of critical current density in our previous study. Aiming at investigating the effects of histidine, another amino acid with more complicated structure and lower decomposition temperature than glycine, on the superconducting properties of MgB{sub 2}, samples of MgB{sub 2} + x wt.% histidine (with x = 0, 2, 3, 5, and 8) were sintered at 800 °C after mechanical mixing. The best critical current density was obtained in the sample with 2 wt.% histidine addition, owing to the small-sized MgO and C substitution. The sample showed a significant increase in critical current density under high field compared with pure MgB{sub 2}, and this property maintained at a relatively high level under low field as well. However, the growth and agglomeration of MgO with the increasing amount of histidine should be responsible for the tendency of the decrease in the connectivity and critical current density versus doping content. Finally, the conditions that the used amino acid should meet were investigated as a guide for effective amino acid doping.

  3. Ligand-mediated negative regulation of a chimeric transmembrane receptor tyrosine phosphatase

    DEFF Research Database (Denmark)

    Desai, D M; Sap, J; Schlessinger, J;

    1993-01-01

    CD45, a transmembrane protein tyrosine phosphatase (PTPase), is required for TCR signaling. Multiple CD45 isoforms, differing in the extracellular domain, are expressed in a tissue- and activation-specific manner, suggesting an important function for this domain. We report that a chimeric protein...

  4. Critical Role of Cystic Fibrosis Transmembrane Conductance Regulation(CFTR)in Female Reproduction

    Institute of Scientific and Technical Information of China (English)

    Hsiao Chang CHAN

    2003-01-01

    @@ Cystic fibrosis transmembrane conductance regulator (CFTR) is a cAMP-activated Cl- channel, mutations of which are responsible for defective Cl- and/or HCO-3 secretions seen in cystic fibrosis (CF), a common lethal genetic disease affecting most exocrine glands/organs, including the lungs, intestine, pancreas and reproductive tracts of both sexes.

  5. Transmembrane Ca2+ gradient-mediated phosphatidylcholine modulating sarcoplasmic reticulum Ca2+-ATPase

    Institute of Scientific and Technical Information of China (English)

    屠亚平; 徐红; 杨福愉

    1995-01-01

    The sarcoplasmic reticulum (SR) Ca2+-ATPase was purified and reconstituted into the sealed phospholipids vesicles with or without transmembrane Ca2+ gradient. The role ofphospholipids, especially phosphatidylcholine(PC), in the modulation of Ca2+-ATPase by transmembrane Ca2+ gradient was investigated. The results are as follows, (i) Incubated with phospholiplds, the enzyme activity of the delipidated Ca2+-ATPase is inhibited by Ca2+ and the highest inhibition is observed in the presence of PC. (ii) When there exists a transmembrane Ca2+ gradient (higher Ca2+ concentration inside vesicles, 1 000μmol/L:50μmol/L, similar to the physiological condition), the inhibition of Ca2+-ATPase by transmembrane Ca2+ gradient can be only observed in the vesicles containing PC:PE, but not in those containing PS:PE or PG:PE. The highest inhibition is obtained at a 50.50 molar ratio of PC:PE. (iii) By comparing the effects of PC differing in acyl chains, higher inhibition of Ca2+-ATPase is observed in vesicles containin

  6. Trans-membrane area asymmetry controls the shape of cellular organelles

    NARCIS (Netherlands)

    Beznoussenko, Galina V; Pilyugin, Sergei S; Geerts, Willie J C; Kozlov, Michael M; Burger, Koert N J; Luini, Alberto; Derganc, Jure; Mironov, Alexander A

    2015-01-01

    Membrane organelles often have complicated shapes and differ in their volume, surface area and membrane curvature. The ratio between the surface area of the cytosolic and luminal leaflets (trans-membrane area asymmetry (TAA)) determines the membrane curvature within different sites of the organelle.

  7. Comparison between clinical indicators of transmembrane oxygenator thrombosis and multidetector computed tomographic analysis.

    Science.gov (United States)

    Panigada, Mauro; L'Acqua, Camilla; Passamonti, Serena Maria; Mietto, Cristina; Protti, Alessandro; Riva, Roberto; Gattinoni, Luciano

    2015-04-01

    This study aims to assess whether multidetector computed tomography (MDCT) could accurately confirm the clinical suspicion of transmembrane oxygenator thrombosis (MOT) during extracorporeal membrane oxygenation (ECMO). Twenty-seven oxygenators were examined using MDCT at the end of patient treatment. Transmembrane oxygenator thrombosis was suspected in 15 of them according to the presence of at least 2 of the following clinical indicators: (1) increase in d-dimer, (2) decrease in platelet count, (3) decrease in oxygenator performance, and (4) presence of clots on the surface of the oxygenator. Transmembrane oxygenator thrombosis was confirmed by MDCT in 5 (33%) of them. Transmembrane oxygenator thrombosis was unexpectedly found in 5 (41%) of the remaining 12 oxygenators not suspected for MOT. Eight (80%) of these oxygenators had clots accounting for less than 1% of total volume. Clots were mainly detectable at the apical corner of the oxygenator, most likely due to greater blood stasis. We found a significant increase in d-dimer and in membrane oxygenator shunt and a decrease in platelet count from the start to the discontinuation of ECMO. Hemostatic abnormalities significantly reverted 48 hours after oxygenator removal, suggesting the role of ECMO in activation of the coagulation cascade. Multidetector computed tomographic scan could not accurately confirm the clinical suspicion of MOT.

  8. Molecular dynamics study of the solvation of an alpha-helical transmembrane peptide by DMSO

    NARCIS (Netherlands)

    Duarte, A.M.; Mierlo, van C.P.M.; Hemminga, M.A.

    2008-01-01

    10-ns molecular dynamics study of the solvation of a hydrophobic transmembrane helical peptide in dimethyl sulfoxide (DMSO) is presented. The objective is to analyze how this aprotic polar solvent is able to solvate three groups of amino acid residues (i.e., polar, apolar, and charged) that are loca

  9. Role of transmembrane pH gradient and membrane binding in nisin pore formation

    NARCIS (Netherlands)

    Moll, Gert N.; Clark, Jonathan; Chan, Weng C.; Bycroft, Barrie W.; Roberts, Gordon C.K.; Konings, Wil N.; Driessen, Arnold J.M.

    1997-01-01

    Nisin is a cationic antimicrobial peptide that belongs to the group of lantibiotics. It is thought to form oligomeric pores in the target membrane by a mechanism that requires the transmembrane electrical potential (Delta psi) and that involves local pertubation of the lipid bilayer structure. Here

  10. A quantitative model for using acridine orange as a transmembrane pH gradient probe.

    Science.gov (United States)

    Clerc, S; Barenholz, Y

    1998-05-15

    Monitoring the acidification of the internal space of membrane vesicles by proton pumps can be achieved easily with optical probes. Transmembrane pH gradients cause a blue-shift in the absorbance spectrum and the quenching of the fluorescence of the cationic dye acridine orange. It has been postulated that these changes are caused by accumulation and aggregation of the dye inside the vesicles. We tested this hypothesis using liposomes with transmembrane concentration gradients of ammonium sulfate as model system. Fluorescence intensity of acridine orange solutions incubated with liposomes was affected by magnitude of the gradient, volume trapped by vesicles, and temperature. These experimental data were compared to a theoretical model describing the accumulation of acridine orange monomers in the vesicles according to the inside-to-outside ratio of proton concentrations, and the intravesicular formation of sandwich-like piles of acridine orange cations. This theoretical model predicted quantitatively the relationship between the transmembrane pH gradients and spectral changes of acridine orange. Therefore, adequate characterization of aggregation of dye in the lumen of biological vesicles provides the theoretical basis for using acridine orange as an optical probe to quantify transmembrane pH gradients.

  11. Order parameters of a transmembrane helix in a fluid Bilayer: case study of a WALP peptide

    NARCIS (Netherlands)

    Holt, A.; Rougier, L.; Réat, V.; Jolibois, F.; Saurel, O.; Czaplicki, J.; Killian, J.A.; Milon, A.

    2010-01-01

    A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N di

  12. Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane

    DEFF Research Database (Denmark)

    Olsen, M; Krog, L; Edvardsen, K;

    1993-01-01

    density-gradient centrifugation it was shown that shed transmembrane NCAM-B was present in fractions of high, as well as low, density, indicating that a fraction of the shed NCAM is associated with minor plasma membrane fragments. Finally, it was shown that isolated soluble NCAM inhibited cell binding to......-s1 and NCAM-s2 and the function of soluble NCAM forms were investigated. It was shown that all three soluble forms could be released from brain membranes with M(r) values identical to the three major membrane-associated forms: the large transmembrane 190,000-M(r) form (NCAM-A), the smaller...... intact soluble form from membranes of cells transfected with this isoform. Thus, NCAM-s1 and NCAM-s2 probably represent intact released transmembrane NCAM-A and NCAM-B. The soluble transmembrane forms are likely to exist in vivo, as NCAM-s1 and NCAM-s2 were readily demonstrated in cerebrospinal fluid. By...

  13. Exploiting hydrophobicity for efficient production of transmembrane helices for structure determination by NMR spectroscopy

    DEFF Research Database (Denmark)

    Bugge, Katrine Østergaard; Steinocher, Helena; Brooks, Andrew J.;

    2015-01-01

    -labeled protein. In this work, we have exploited the hydrophobic nature of membrane proteins to develop a simple and efficient production scheme for isotope-labeled single-pass transmembrane domains (TMDs) with or without intrinsically disordered regions. We have evaluated the applicability and limitations...... of single-pass TMDs, which are difficult to solve by other means....

  14. A transmembrane ubiquitin ligase required to sort membrane proteins into multivesicular bodies

    NARCIS (Netherlands)

    Reggiori, Fulvio; Pelham, Hugh R B; Reggiori, Fulvio

    2002-01-01

    Membrane proteins with transmembrane domains (TMDs) that contain polar residues exposed to the lipid bilayer are selectively sorted into multivesicular bodies (MVBs) and delivered to the yeast vacuole. Sorting of some, although not all, proteins into these structures is mediated by ubiquitination. W

  15. Advantages of combined transmembrane topology and signal peptide prediction--the Phobius web server

    DEFF Research Database (Denmark)

    Käll, Lukas; Krogh, Anders; Sonnhammer, Erik L L

    2007-01-01

    When using conventional transmembrane topology and signal peptide predictors, such as TMHMM and SignalP, there is a substantial overlap between these two types of predictions. Applying these methods to five complete proteomes, we found that 30-65% of all predicted signal peptides and 25-35% of al...

  16. The membrane topology of vitamin K epoxide reductase is conserved between human isoforms and the bacterial enzyme.

    Science.gov (United States)

    Cao, Zhenbo; van Lith, Marcel; Mitchell, Lorna J; Pringle, Marie Anne; Inaba, Kenji; Bulleid, Neil J

    2016-04-01

    The membrane topology of vitamin K epoxide reductase (VKOR) is controversial with data supporting both a three transmembrane and a four transmembrane model. The positioning of the transmembrane domains and the loops between these domains is critical if we are to understand the mechanism of vitamin K oxidation and its recycling by members of the thioredoxin family of proteins and the mechanism of action of warfarin, an inhibitor of VKOR. Here we show that both mammalian VKOR isoforms adopt the same topology, with the large loop between transmembrane one and two facing the lumen of the endoplasmic reticulum (ER). We used a redox sensitive green fluorescent protein (GFP) fused to the N- or C-terminus to show that these regions face the cytosol, and introduction of glycosylation sites along with mixed disulfide formation with thioredoxin-like transmembrane protein (TMX) to demonstrate ER localization of the major loop. The topology is identical with the bacterial homologue from Synechococcussp., for which the structure and mechanism of recycling has been characterized. Our results provide a resolution to the membrane topology controversy and support previous results suggesting a role for members of the ER protein disulfide isomerase (PDI) family in recycling VKOR.

  17. An Environmentally Benign System for Synthesis of β-Hydroxylketones: L-Histidine Asymmetrically Catalyzed Direct Aldol Reactions in Aqueous Micelle and Water-like Media

    Institute of Scientific and Technical Information of China (English)

    PENG Yi-Yuan; PENG Shu-Jun; DING Qiu-Ping; WANG Qi; CHENG Jin-Pei

    2007-01-01

    The first histidine catalyzed direct aldol reactions of ketones with nitrobenzaldehydes in water and in poly(ethylene glycol) (PEG) were reported. It reveals that histidine is a good aldol catalyst for synthesis of β-hydroxylketones in water and in PEG, giving good to excellent yields of the respective products. Better enantioand regioselectivity were achieved using low molecular weight PEG as the media. The results show that histidine and PEG-200 or -300 may constitute a promising environmentally benign system for asymmetric synthesis of β-hydroxylketones.

  18. Species-specific activity of HIV-1 Vpu and positive selection of tetherin transmembrane domain variants.

    Directory of Open Access Journals (Sweden)

    Matthew W McNatt

    2009-02-01

    Full Text Available Tetherin/BST-2/CD317 is a recently identified antiviral protein that blocks the release of nascent retrovirus, and other virus, particles from infected cells. An HIV-1 accessory protein, Vpu, acts as an antagonist of tetherin. Here, we show that positive selection is evident in primate tetherin sequences and that HIV-1 Vpu appears to have specifically adapted to antagonize variants of tetherin found in humans and chimpanzees. Tetherin variants found in rhesus macaques (rh, African green monkeys (agm and mice were able to inhibit HIV-1 particle release, but were resistant to antagonism by HIV-1 Vpu. Notably, reciprocal exchange of transmembrane domains between human and monkey tetherins conferred sensitivity and resistance to Vpu, identifying this protein domain as a critical determinant of Vpu function. Indeed, differences between hu-tetherin and rh-tetherin at several positions in the transmembrane domain affected sensitivity to antagonism by Vpu. Two alterations in the hu-tetherin transmembrane domain, that correspond to differences found in rh- and agm-tetherin proteins, were sufficient to render hu-tetherin completely resistant to HIV-1 Vpu. Interestingly, transmembrane and cytoplasmic domain sequences in primate tetherins exhibit variation at numerous codons that is likely the result of positive selection, and some of these changes coincide with determinants of HIV-1 Vpu sensitivity. Overall, these data indicate that tetherin could impose a barrier to viral zoonosis as a consequence of positive selection that has been driven by ancient viral antagonists, and that the HIV-1 Vpu protein has specialized to target the transmembrane domains found in human/chimpanzee tetherin proteins.

  19. Deletion of Plasmodium falciparum Histidine-Rich Protein 2 (pfhrp2 and Histidine-Rich Protein 3 (pfhrp3 Genes in Colombian Parasites.

    Directory of Open Access Journals (Sweden)

    Claribel Murillo Solano

    Full Text Available A number of studies have analyzed the performance of malaria rapid diagnostic tests (RDTs in Colombia with discrepancies in performance being attributed to a combination of factors such as parasite levels, interpretation of RDT results and/or the handling and storage of RDT kits. However, some of the inconsistencies observed with results from Plasmodium falciparum histidine-rich protein 2 (PfHRP2-based RDTs could also be explained by the deletion of the gene that encodes the protein, pfhrp2, and its structural homolog, pfhrp3, in some parasite isolates. Given that pfhrp2- and pfhrp3-negative P. falciparum isolates have been detected in the neighboring Peruvian and Brazilian Amazon regions, we hypothesized that parasites with deletions of pfhrp2 and pfhrp3 may also be present in Colombia. In this study we tested 100 historical samples collected between 1999 and 2009 from six Departments in Colombia for the presence of pfhrp2, pfhrp3 and their flanking genes. Seven neutral microsatellites were also used to determine the genetic background of these parasites. In total 18 of 100 parasite isolates were found to have deleted pfhrp2, a majority of which (14 of 18 were collected from Amazonas Department, which borders Peru and Brazil. pfhrp3 deletions were found in 52 of the 100 samples collected from all regions of the country. pfhrp2 flanking genes PF3D7_0831900 and PF3D7_0831700 were deleted in 22 of 100 and in 1 of 100 samples, respectively. pfhrp3 flanking genes PF3D7_1372100 and PF3D7_1372400 were missing in 55 of 100 and in 57 of 100 samples. Structure analysis of microsatellite data indicated that Colombian samples tested in this study belonged to four clusters and they segregated mostly based on their geographic region. Most of the pfhrp2-deleted parasites were assigned to a single cluster and originated from Amazonas Department although a few pfhrp2-negative parasites originated from the other three clusters. The presence of a high proportion

  20. Conserved allosteric hot spots in the transmembrane domains of cystic fibrosis transmembrane conductance regulator (CFTR) channels and multidrug resistance protein (MRP) pumps.

    Science.gov (United States)

    Wei, Shipeng; Roessler, Bryan C; Chauvet, Sylvain; Guo, Jingyu; Hartman, John L; Kirk, Kevin L

    2014-07-18

    ATP-binding cassette (ABC) transporters are an ancient family of transmembrane proteins that utilize ATPase activity to move substrates across cell membranes. The ABCC subfamily of the ABC transporters includes active drug exporters (the multidrug resistance proteins (MRPs)) and a unique ATP-gated ion channel (cystic fibrosis transmembrane conductance regulator (CFTR)). The CFTR channel shares gating principles with conventional ligand-gated ion channels, but the allosteric network that couples ATP binding at its nucleotide binding domains (NBDs) with conformational changes in its transmembrane helices (TMs) is poorly defined. It is also unclear whether the mechanisms that govern CFTR gating are conserved with the thermodynamically distinct MRPs. Here we report a new class of gain of function (GOF) mutation of a conserved proline at the base of the pore-lining TM6. Multiple substitutions of this proline promoted ATP-free CFTR activity and activation by the weak agonist, 5'-adenylyl-β,γ-imidodiphosphate (AMP-PNP). TM6 proline mutations exhibited additive GOF effects when combined with a previously reported GOF mutation located in an outer collar of TMs that surrounds the pore-lining TMs. Each TM substitution allosterically rescued the ATP sensitivity of CFTR gating when introduced into an NBD mutant with defective ATP binding. Both classes of GOF mutations also rescued defective drug export by a yeast MRP (Yor1p) with ATP binding defects in its NBDs. We conclude that the conserved TM6 proline helps set the energy barrier to both CFTR channel opening and MRP-mediated drug efflux and that CFTR channels and MRP pumps utilize similar allosteric mechanisms for coupling conformational changes in their translocation pathways to ATP binding at their NBDs.

  1. A non-catalytic histidine residue influences the function of the metalloprotease of Listeria monocytogenes

    OpenAIRE

    Forster, Brian M.; Bitar, Alan Pavinski; Marquis, Hélène

    2014-01-01

    Mpl, a thermolysin-like metalloprotease, and PC-PLC, a phospholipase C, are synthesized as proenzymes by the intracellular bacterial pathogen Listeria monocytogenes. During intracellular growth, L. monocytogenes is temporarily confined in a membrane-bound vacuole whose acidification leads to Mpl autolysis and Mpl-mediated cleavage of the PC-PLC N-terminal propeptide. Mpl maturation also leads to the secretion of both Mpl and PC-PLC across the bacterial cell wall. Previously, we identified neg...

  2. Metabolic profiling of plasma amino acids shows that histidine increases following the consumption of pork

    Directory of Open Access Journals (Sweden)

    Samman S

    2014-06-01

    Full Text Available Samir Samman,1 Ben Crossett,2 Miles Somers,1 Kirstine J Bell,1 Nicole T Lai,1,3 David R Sullivan,3 Peter Petocz4 1Discipline of Nutrition and Metabolism, 2Discipline of Proteomics and Biotechnology, School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia; 3Department of Clinical Biochemistry, Royal Prince Alfred Hospital, Sydney, NSW, Australia; 4Department of Statistics, Macquarie University, Sydney, NSW, Australia Abstract: Amino acid (AA status is determined by factors including nutrition, metabolic rate, and interactions between the metabolism of AA, carbohydrates, and lipids. Analysis of the plasma AA profile, together with markers of glucose and lipid metabolism, will shed light on metabolic regulation. The objectives of this study were to investigate the acute responses to the consumption of meals containing either pork (PM or chicken (CM, and to identify relationships between plasma AA and markers of glycemic and lipemic control. A secondary aim was to explore AA predictors of plasma zinc concentrations. Ten healthy adults participated in a postprandial study on two separate occasions. In a randomized cross-over design, participants consumed PM or CM. The concentrations of 21 AA, glucose, insulin, triglycerides, nonesterified fatty acids, and zinc were determined over 5 hours postprandially. The meal composition did not influence glucose, insulin, triglyceride, nonesterified fatty acid, or zinc concentrations. Plasma histidine was higher following the consumption of PM (P=0.014, with consistently higher changes observed after 60 minutes (P<0.001. Greater percentage increases were noted at limited time points for valine and leucine + isoleucine in those who consumed CM compared to PM. In linear regression, some AAs emerged as predictors of the metabolic responses, irrespective of the meal that was consumed. The present study demonstrates that a single meal of PM or CM produces a differential profile of AA in the

  3. Oxidative Stress Tolerance by Calcium and Histidine in Two Tomato Cultivars Under Nickel Stress

    Directory of Open Access Journals (Sweden)

    Mozafari H.

    2014-05-01

    Full Text Available We investigated calcium (Ca and L-histidine (His interaction on nickel (Ni-induced oxidative stress tolerance in two tomato (Solanum lycopersicum Mill. cultivars including Cal-J N3 and Petoearly CH. CaCl2 (0 and 300 µM and L-histidine (0 and 300 µM effects on the oxidative responses in these cultivars cultured were compared in the hydroponic media under Ni stress (NiSO4; 0,150 and 300 µM. The activities of antioxidative enzymes including catalase (CAT, guaiacol peroxidase (GPX, ascorbate peroxidase (APX, superoxide dismutase (SOD and total content of proteins, malondialdehyde (MDA, other aldehydes, H2O2, Ca2+, Ni2+, ascorbate (ASC, dehydroascorbate (DHA and electrolytes leakage (EL were determined. The obtained results indicated that the application of Ca and His generally reduced oxidative markers such as the contents of EL, H2O2, MDA and activity of CAT as well as the Ni2+content of root and shoot organs under nickel toxicity, while application of Ni treatment without Ca+His increased these oxidative parameters and accumulation of Ni2+, compared to the control. Applying Ni without Ca and His has resulted in reduction of GPX, APX and SOD activities as well as concentrations of root and shoot Ca2+and ASC in the two mentioned cultivars. Application of Ca and His lead to the elevated contents of Ca2+ and ASC, increased activities of GPX, APX and SOD as well as inhibition of Ni2+ accumulation differently in both cultivars. Ca and His also alleviated the adverse effects of Ni stress on the selected investigated parameters especially in Petoearly CH cultivar. Thus, interaction of Ca and His appeared to improve adaptive responses to Ni stress leading to decreasing Ni-induced oxidative stress in the tomato plants. Therefore, our results suggest that Ca+His alleviated nickel-induced oxidative stress by uptake and inhibition of translocation of Ni2+ plus Ni chelating mechanism improvement in the tomato cultivars.

  4. Channel-forming bacterial toxins in biosensing and macromolecule delivery.

    Science.gov (United States)

    Gurnev, Philip A; Nestorovich, Ekaterina M

    2014-08-21

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on "Intracellular Traffic and Transport of Bacterial Protein Toxins", reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their "second life" in a variety of developing medical and technological applications.

  5. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    Directory of Open Access Journals (Sweden)

    Philip A. Gurnev

    2014-08-01

    Full Text Available To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications.

  6. Assembly of the bacterial type III secretion machinery.

    Science.gov (United States)

    Diepold, Andreas; Wagner, Samuel

    2014-07-01

    Many bacteria that live in contact with eukaryotic hosts, whether as symbionts or as pathogens, have evolved mechanisms that manipulate host cell behaviour to their benefit. One such mechanism, the type III secretion system, is employed by Gram-negative bacterial species to inject effector proteins into host cells. This function is reflected by the overall shape of the machinery, which resembles a molecular syringe. Despite the simplicity of the concept, the type III secretion system is one of the most complex known bacterial nanomachines, incorporating one to more than hundred copies of up to twenty different proteins into a multi-MDa transmembrane complex. The structural core of the system is the so-called needle complex that spans the bacterial cell envelope as a tripartite ring system and culminates in a needle protruding from the bacterial cell surface. Substrate targeting and translocation are accomplished by an export machinery consisting of various inner membrane embedded and cytoplasmic components. The formation of such a multimembrane-spanning machinery is an intricate task that requires precise orchestration. This review gives an overview of recent findings on the assembly of type III secretion machines, discusses quality control and recycling of the system and proposes an integrated assembly model.

  7. PheVI:09 (Phe6.44) as a sliding microswitch in seven-transmembrane (7TM) G protein-coupled receptor activation

    DEFF Research Database (Denmark)

    Valentin-Hansen, Louise; Holst, Birgitte; Frimurer, Thomas M;

    2012-01-01

    In seven-transmembrane (7TM), G protein-coupled receptors, highly conserved residues function as microswitches, which alternate between different conformations and interaction partners in an extended allosteric interface between the transmembrane segments performing the large scale conformational...

  8. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  9. Histidine-rich glycoprotein binds fibrin(ogen) with high affinity and competes with thrombin for binding to the gamma'-chain.

    Science.gov (United States)

    Vu, Trang T; Stafford, Alan R; Leslie, Beverly A; Kim, Paul Y; Fredenburgh, James C; Weitz, Jeffrey I

    2011-09-01

    Histidine-rich glycoprotein (HRG) is an abundant protein that binds fibrinogen and other plasma proteins in a Zn(2+)-dependent fashion but whose function is unclear. HRG has antimicrobial activity, and its incorporation into fibrin clots facilitates bacterial entrapment and killing and promotes inflammation. Although these findings suggest that HRG contributes to innate immunity and inflammation, little is known about the HRG-fibrin(ogen) interaction. By immunoassay, HRG-fibrinogen complexes were detected in Zn(2+)-supplemented human plasma, a finding consistent with a high affinity interaction. Surface plasmon resonance determinations support this concept and show that in the presence of Zn(2+), HRG binds the predominant γ(A)/γ(A)-fibrinogen and the γ-chain elongated isoform, γ(A)/γ'-fibrinogen, with K(d) values of 9 nm. Likewise, (125)I-labeled HRG binds γ(A)/γ(A)- or γ(A)/γ'-fibrin clots with similar K(d) values when Zn(2+) is present. There are multiple HRG binding sites on fibrin(ogen) because HRG binds immobilized fibrinogen fragment D or E and γ'-peptide, an analog of the COOH terminus of the γ'-chain that mediates the high affinity interaction of thrombin with γ(A)/γ'-fibrin. Thrombin competes with HRG for γ'-peptide binding and displaces (125)I-HRG from γ(A)/γ'-fibrin clots and vice versa. Taken together, these data suggest that (a) HRG circulates in complex with fibrinogen and that the complex persists upon fibrin formation, and (b) by competing with thrombin for γ(A)/γ'-fibrin binding, HRG may modulate coagulation. Therefore, the HRG-fibrin interaction may provide a novel link between coagulation, innate immunity, and inflammation.

  10. Overexpression of Antimicrobial, Anticancer, and Transmembrane Peptides in Escherichia coli through a Calmodulin-Peptide Fusion System.

    Science.gov (United States)

    Ishida, Hiroaki; Nguyen, Leonard T; Gopal, Ramamourthy; Aizawa, Tomoyasu; Vogel, Hans J

    2016-09-01

    In recent years, the increasing number of antibiotic-resistant bacteria has become a serious health concern. Antimicrobial peptides (AMPs) are an important component of the innate immune system of most organisms. A better understanding of their structures and mechanisms of action would lead to the design of more potent and safer AMPs as alternatives for current antibiotics. For detailed investigations, effective recombinant production which allows the facile modification of the amino acid sequence, the introduction of unnatural amino acids, and labeling with stable isotopes for nuclear magnetic resonance (NMR) studies is desired. Several expression strategies have been introduced in previous reports; however, their effectiveness has been limited to a select few AMPs. Here, we have studied calmodulin (CaM) as a more universal carrier protein to express many types of AMPs in E. coli. We have discovered that the unique architecture of CaM, consisting of two independent target binding domains with malleable methionine-rich interaction surfaces, can accommodate numerous amino acid sequences containing basic and hydrophobic residues. This effectively masks the toxic antimicrobial activities of many amphipathic AMPs and protects them from degradation during expression and purification. Here, we demonstrate the expression of various AMPs using a CaM-fusion expression system, including melittin, fowlicidin-1, tritrpticin, indolicidin, puroindoline A peptide, magainin II F5W, lactoferrampin B, MIP3α51-70, and human β-defensin 3 (HBD-3), the latter requiring three disulfide bonds for proper folding. In addition, our approach was extended to the transmembrane domain of the cell adhesion protein l-selectin. We propose the use of the CaM-fusion system as a universal approach to express many cationic amphipathic peptides that are normally toxic and would kill the bacterial host cells. PMID:27502305

  11. Cystic fibrosis transmembrane conductance regulator (CFTR allelic variants relate to shifts in faecal microbiota of cystic fibrosis patients.

    Directory of Open Access Journals (Sweden)

    Serena Schippa

    Full Text Available INTRODUCTION: In this study we investigated the effects of the Cystic Fibrosis Transmembrane conductance Regulator (CFTR gene variants on the composition of faecal microbiota, in patients affected by Cystic Fibrosis (CF. CFTR mutations (F508del is the most common lead to a decreased secretion of chloride/water, and to mucus sticky secretions, in pancreas, respiratory and gastrointestinal tracts. Intestinal manifestations are underestimated in CF, leading to ileum meconium at birth, or small bowel bacterial overgrowth in adult age. METHODS: Thirty-six CF patients, fasting and under no-antibiotic treatment, were CFTR genotyped on both alleles. Faecal samples were subjected to molecular microbial profiling through Temporal Temperature Gradient Electrophoresis and species-specific PCR. Ecological parameters and multivariate algorithms were employed to find out if CFTR variants could be related to the microbiota structure. RESULTS: Patients were classified by two different criteria: 1 presence/absence of F508del mutation; 2 disease severity in heterozygous and homozygous F508del patients. We found that homozygous-F508del and severe CF patients exhibited an enhanced dysbiotic faecal microbiota composition, even within the CF cohort itself, with higher biodiversity and evenness. We also found, by species-specific PCR, that potentially harmful species (Escherichia coli and Eubacterium biforme were abundant in homozygous-F508del and severe CF patients, while beneficial species (Faecalibacterium prausnitzii, Bifidobacterium spp., and Eubacterium limosum were reduced. CONCLUSIONS: This is the first report that establishes a link among CFTR variants and shifts in faecal microbiota, opening the way to studies that perceive CF as a 'systemic disease', linking the lung and the gut in a joined axis.

  12. Application of DEPBT on the Synthesis of the Protected Dipeptides Containing Histidine with Unprotected Imidazole Group by Solution Method

    Institute of Scientific and Technical Information of China (English)

    沈鸿雁; 田桂玲; 朱文江; 哈莎; 叶蕴华

    2003-01-01

    3- (Diethoxyphosphoryloxy)- 1,2,3-benzotriazln-4 (3H)-one (DE-PBT) was an organophosphorus coupling reagent developed by our group. It was an effective coupling reagent for the synthesis of protected peptides containing Tyr, Ser and Thr with unprotected hydroxy group on their side chain. The further study of the synthesis of a series of protected dipeptides containing hisfidine with unprotected imidazole group using DEPBT is reported. During the synthetic procedure, the imidazole group of histidine did not need to be protected. When the carboxyl components were N-protected aromatic amino acids or basic amino acids, the yields were relatively high (63%--81%). However,when the carboxyl components were N-protected acidic amino acids, the yields were relatively low (47%--48%). The results expanded the application of DEPBT on the synthesis of bioactive peptides containing histidine.

  13. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: evidence of histidine as a measure of phytoextractable nickel.

    Science.gov (United States)

    Singer, Andrew C; Bell, Thomas; Heywood, Chloe A; Smith, J A C; Thompson, Ian P

    2007-05-01

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. PMID:17084494

  14. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  15. Mechanisms of cataract development in adult Atlantic salmon growers relative to dietary histidine and plant feed ingredients

    OpenAIRE

    Tröße, Christiane

    2010-01-01

    Cataracts are defined as opacities of the eye lens and can be caused by a large number of risk factors. In aquaculture, cataracts in farmed Atlantic salmon (Salmo salar L.) represent an ethical problem and can cause economical losses. A series of studies have shown the cataract mitigating effect of dietary histidine (His) levels above the currently recommended minimum requirement in Atlantic salmon smolt and that dietary His levels are reflected in the concentrations of the His...

  16. In Vivo Neuroprotective Effect of Histidine-Tryptophan-Ketoglutarate Solution in an Ischemia/Reperfusion Spinal Cord Injury Animal Model

    OpenAIRE

    Kang, Shin Kwang; Kang, Min-Woong; Rhee, Youn Ju; Kim, Cuk-Seong; Jeon, Byeong Hwa; Han, Sung Joon; Cho, Hyun Jin; Na, Myung Hoon; Yu, Jae-Hyeon

    2016-01-01

    Background Paraplegia is a devastating complication following operations on the thoracoabdominal aorta. We investigated whether histidine-tryptophan-ketoglutarate (HTK) solution could reduce the extent of ischemia/reperfusion (IR) spinal cord injuries in a rat model using a direct delivery method. Methods Twenty-four Sprague-Dawley male rats were randomly divided into four groups. The sham group (n=6) underwent a sham operation, the IR group (n=6) underwent only an aortic occlusion, the salin...

  17. CHPA, a Cysteine- and Histidine-Rich-Domain-Containing Protein, Contributes to Maintenance of the Diploid State in Aspergillus nidulans

    OpenAIRE

    Sadanandom, Ari; Findlay, Kim; Doonan, John H.; Schulze-Lefert, Paul; Shirasu, Ken

    2004-01-01

    The alternation of eukaryotic life cycles between haploid and diploid phases is crucial for maintaining genetic diversity. In some organisms, the growth and development of haploid and diploid phases are nearly identical, and one might suppose that all genes required for one phase are likely to be critical for the other phase. Here, we show that targeted disruption of the chpA (cysteine- and histidine-rich-domain- [CHORD]-containing protein A) gene in haploid Aspergillus nidulans strains gives...

  18. Models for Copper Dynamic Behavior in Doped Cadmium dl-Histidine Crystals: Electron Paramagnetic Resonance and Crystallographic Analysis.

    Science.gov (United States)

    Colaneri, Michael J; Teat, Simon J; Vitali, Jacqueline

    2015-11-12

    Electron paramagnetic resonance and crystallographic studies of copper-doped cadmium dl-histidine, abbreviated as CdDLHis, were undertaken to gain further understanding on the relationship between site structure and dynamic behavior in biological model complexes. X-ray diffraction measurements determined the crystal structure of CdDLHis at 100 and 298 K. CdDLHis crystallizes in the monoclinic space group P21/c with two cadmium complexes per asymmetric unit. In each complex, the Cd is hexacoordinated to two histidine molecules. Both histidines are l in one complex and d in the other. Additionally, each complex contains multiple waters of varying disorder. Single crystal EPR spectroscopic splitting (g) and copper hyperfine (A(Cu)) tensors at room temperature (principal values: g = 2.249, 2.089, 2.050; A(Cu) = -453, -30.5, -0.08 MHz) were determined from rotational experiments. Alignments of the tensor directions with the host structure were used to position the copper unpaired dx(2)-y(2) orbital in an approximate plane made by four proposed ligand atoms: the N-imidazole and N-amino of one histidine, and the N-amino and O-carboxyl of the other. Each complex has two such planes related by noncrystallographic symmetry, which make an angle of 65° and have a 1.56 Å distance between their midpoints. These findings are consistent with three interpretations that can adequately explain previous temperature-dependent EPR powder spectra of this system: (1) a local structural distortion (static strain) at the copper site has a temperature dependence significant enough to affect the EPR pattern, (2) the copper can hop between the two sites in each complex at high temperature, and (3) there exists a dynamic Jahn-Teller effect involving the copper ligands. PMID:26501364

  19. Effects of grain, fructose, and histidine on ruminal pH and fermentation products during an induced subacute acidosis protocol.

    Science.gov (United States)

    Golder, H M; Celi, P; Rabiee, A R; Heuer, C; Bramley, E; Miller, D W; King, R; Lean, I J

    2012-04-01

    The effects of grain, fructose, and histidine on ruminal pH and fermentation products were studied in dairy cattle during an induced subacute acidosis protocol. Thirty Holstein heifers were randomly allocated to 5 treatment groups: (1) control (no grain); (2) grain [fed at a crushed triticale dry matter intake (DMI) of 1.2% of body weight (BW)]; (3) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI); (4) grain (1.2% of BW DMI)+histidine (6 g/head); and (5) grain (0.8% of BW DMI)+fructose (0.4% of BW DMI)+histidine (6 g/head) in a partial factorial arrangement. Heifers were fed 1 kg of grain daily with ad libitum access to ryegrass silage and alfalfa hay for 10 d. Feed was withheld for 14 h before challenge day, on which heifers were fed 200 g of alfalfa hay and then the treatment diets immediately thereafter. Rumen samples were collected 5 min after diet ingestion, 60 min later, and at 3 subsequent 50-min intervals. Grain decreased ruminal pH and increased ammonia, total volatile fatty acid (VFA), acetate, butyrate, propionate, and valerate concentrations compared with controls. The addition of grain had no effect on ruminal D- and L-lactate concentrations. Fructose markedly decreased ruminal pH and markedly increased D- and L-lactate concentrations. Fructose increased total VFA and butyrate and decreased valerate concentrations. Although histidine did not have a marked effect on ruminal fermentation, increased concentrations of histamine were observed following feeding. This study demonstrates that the substitution of some grain for fructose can lower ruminal pH and increase VFA and lactate concentrations, warranting further investigation into the role of sugars on the risk of acidosis in dairy cattle. PMID:22459843

  20. Insight into the sporulation phosphorelay: Crystal structure of the sensor domain of Bacillus subtilis histidine kinase, KinD

    OpenAIRE

    Wu, R.; Gu, M; Wilton, R.; Babnigg, G; Kim, Y.; Pokkuluri, P. R.; Szurmant, H.; Joachimiak, A.; Schiffer, M.

    2013-01-01

    The Bacillus subtilis KinD signal-transducing histidine kinase is a part of the sporulation phosphorelay known to regulate important developmental decisions such as sporulation and biofilm formation. We have determined crystal structures of the extracytoplasmic sensing domain of KinD, which was copurified and crystallized with a pyruvate ligand. The structure of a ligand-binding site mutant was also determined; it was copurified and crystallized with an acetate ligand. The structure of the Ki...

  1. Structural influences on preferential oxazolone versus diketopiperazine b(2+) ion formation for histidine analogue-containing peptides.

    Science.gov (United States)

    Gucinski, Ashley C; Chamot-Rooke, Julia; Nicol, Edith; Somogyi, Árpád; Wysocki, Vicki H

    2012-05-01

    Studies of peptide fragment ion structures are important to aid in the accurate kinetic modeling and prediction of peptide fragmentation pathways for a given sequence. Peptide b(2)(+) ion structures have been of recent interest. While previously studied b(2)(+) ions that contain only aliphatic or simple aromatic residues are oxazolone structures, the HA b(2)(+) ion consists of both oxazolone and diketopiperazine structures. The structures of a series of histidine-analogue-containing Xxx-Ala b(2)(+) ions were studied by using action infrared multiphoton dissociation (IRMPD) spectroscopy, fragment ion hydrogen-deuterium exchange (HDX), and density functional theory (DFT) calculations to systematically probe the influence of different side chain structural elements on the resulting b(2)(+) ion structures formed. The b(2)(+) ions studied include His-Ala (HA), methylated histidine analogues, including π-methyl-HA and τ-methyl-HA, pyridylalanine (pa) analogues, including 2-(pa)A, 3-(pa)A, and 4-(pa)A, and linear analogues, including diaminobutanoic acid-Ala (DabA) and Lys-Ala (KA). The location and accessibility of the histidine π-nitrogen, or an amino nitrogen on an aliphatic side chain, were seen to be essential for diketopiperazine formation in addition to the more typical oxazolone structure formation, while blocking or removal of the τ-nitrogen did not change the b(2)(+) ion structures formed. Linear histidine analogues, DabA and KA, formed only diketopiperazine structures, suggesting that a steric interaction in the HisAla case may interfere with the complete trans-cis isomerization of the first amide bond that is necessary for diketopiperazine formation.

  2. Transmembrane recognition of the semaphorin co-receptors neuropilin 1 and plexin A1: coarse-grained simulations.

    Directory of Open Access Journals (Sweden)

    Samia Aci-Sèche

    Full Text Available The cancer associated class 3 semaphorins require direct binding to neuropilins and association to plexins to trigger cell signaling. Here, we address the role of the transmembrane domains of neuropilin 1 and plexin A1 for the dimerization of the two receptors by characterizing the assembly in lipid bilayers using coarse-grained molecular dynamics simulations. From experimental evidence using a two-hybrid system showing the biochemical association of the two receptors transmembrane domains, we performed molecular simulations in DOPC and POPC demonstrating spontaneously assembly to form homodimers and heterodimers with a very high propensity for right-handed packing of the helices. Inversely, left-handed packing was observed with a very low propensity. This mode of packing was observed uniquely when the plexin A1 transmembrane domain was involved in association. Potential of mean force calculations were used to predict a hierarchy of self-association for the monomers: the two neuropilin 1 transmembrane domains strongly associated, neuropilin 1 and plexin A1 transmembrane domains associated less and the two plexin A1 transmembrane domains weakly but significantly associated. We demonstrated that homodimerization and heterodimerization are driven by GxxxG motifs, and that the sequence context modulates the packing mode of the plexin A1 transmembrane domains. This work presents major advances towards our understanding of membrane signaling platforms assembly through membrane domains and provides exquisite information for the design of antagonist drugs defining a novel class of therapeutic agents.

  3. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus.

    Science.gov (United States)

    Subramanian, Kartik; Paul, Mark R; Tyson, John J

    2013-01-01

    The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.

  4. Potential role of a bistable histidine kinase switch in the asymmetric division cycle of Caulobacter crescentus.

    Directory of Open Access Journals (Sweden)

    Kartik Subramanian

    Full Text Available The free-living aquatic bacterium, Caulobacter crescentus, exhibits two different morphologies during its life cycle. The morphological change from swarmer cell to stalked cell is a result of changes of function of two bi-functional histidine kinases, PleC and CckA. Here, we describe a detailed molecular mechanism by which the function of PleC changes between phosphatase and kinase state. By mathematical modeling of our proposed molecular interactions, we derive conditions under which PleC, CckA and its response regulators exhibit bistable behavior, thus providing a scenario for robust switching between swarmer and stalked states. Our simulations are in reasonable agreement with in vitro and in vivo experimental observations of wild type and mutant phenotypes. According to our model, the kinase form of PleC is essential for the swarmer-to-stalked transition and to prevent premature development of the swarmer pole. Based on our results, we reconcile some published experimental observations and suggest novel mutants to test our predictions.

  5. The nuclear bile acid receptor FXR controls the liver derived tumor suppressor histidine-rich glycoprotein.

    Science.gov (United States)

    Deuschle, Ulrich; Birkel, Manfred; Hambruch, Eva; Hornberger, Martin; Kinzel, Olaf; Perović-Ottstadt, Sanja; Schulz, Andreas; Hahn, Ulrike; Burnet, Michael; Kremoser, Claus

    2015-06-01

    The nuclear bile acid receptor Farnesoid X receptor (FXR) is strongly expressed in liver and intestine, controls bile acid and lipid homeostasis and exerts tumor-protective functions in liver and intestine. Histidine-rich glycoprotein (HRG) is an abundant plasma protein produced by the liver with the proposed function as a pattern recognition molecule involved in the clearance of immune complexes, necrotic cells and pathogens, the modulation of angiogenesis, the normalization of deranged endothelial vessel structure in tumors and tumor suppression. FXR recognition sequences were identified within a human HRG promoter fragment that mediated FXR/FXR-agonist dependent reporter gene activity in vitro. We show that HRG is a novel transcriptional target gene of FXR in human hepatoma cells, human upcyte® primary hepatocytes and 3D human liver microtissues in vitro and in mouse liver in vivo. Prolonged administration of the potent nonsteroidal FXR agonist PX20606 increases HRG levels in mouse plasma. Finally, daily oral administration of this FXR agonist for seven days resulted in a significant increase of HRG levels in the plasma of healthy human male volunteers during a clinical Phase I safety study. HRG might serve as a surrogate marker indicative of liver-specific FXR activation in future human clinical studies. Furthermore, potent FXR agonists might be beneficial in serious health conditions where HRG is reduced, for example, in hepatocellular carcinoma but also other solid cancers, liver failure, sepsis and pre-eclampsia. PMID:25363753

  6. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Science.gov (United States)

    Surujon, Defne; Ratner, David I

    2016-01-01

    The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt) domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species) or believed to lack (mammals) HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms. PMID:26751210

  7. Use of a Probabilistic Motif Search to Identify Histidine Phosphotransfer Domain-Containing Proteins.

    Directory of Open Access Journals (Sweden)

    Defne Surujon

    Full Text Available The wealth of newly obtained proteomic information affords researchers the possibility of searching for proteins of a given structure or function. Here we describe a general method for the detection of a protein domain of interest in any species for which a complete proteome exists. In particular, we apply this approach to identify histidine phosphotransfer (HPt domain-containing proteins across a range of eukaryotic species. From the sequences of known HPt domains, we created an amino acid occurrence matrix which we then used to define a conserved, probabilistic motif. Examination of various organisms either known to contain (plant and fungal species or believed to lack (mammals HPt domains established criteria by which new HPt candidates were identified and ranked. Search results using a probabilistic motif matrix compare favorably with data to be found in several commonly used protein structure/function databases: our method identified all known HPt proteins in the Arabidopsis thaliana proteome, confirmed the absence of such motifs in mice and humans, and suggests new candidate HPts in several organisms. Moreover, probabilistic motif searching can be applied more generally, in a manner both readily customized and computationally compact, to other protein domains; this utility is demonstrated by our identification of histones in a range of eukaryotic organisms.

  8. Urinary Concentrations of Hydroxyproline and 3 Methyl Histidine in Postpartum Cow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The urinary concentrations of hydroxyproline (HYPRO)and 3-methyl histidine (3-MEH1S ) were de termined in 16 Chinese-Holstein cows. The objectives of the experiment were to find out thhe relationship between collagen and myosin ddegradation and uterine involution in the postpartum cow. The results in the experiment showed that the mean concentrations of HYPRO and 3-MEHIS were 138.92±22.99 and 37.09 ± 3.90 nmol · mL-1 ,respectively ,for the cows during the days between 60~90 postpartum ,and for the covs immediately after calving the concentrations of HYPRO and 3-MEHIS reduced from 284.30 and 65.I8 nmol · mL-1 on the day one after calving to the normal level of 109.18 and 33.51 nmol · mL-1 on the day 50 post partum ,respectively. There was a good correlation between the urinary concentrations of both HYPRO and 3 -MEHIS and the diameters of the involuting uterus ( r =0.79).

  9. Induction of histidine decarboxylase in mouse tissues by mitogens in vivo.

    Science.gov (United States)

    Endo, Y

    1983-12-15

    Various types of mitogenic substances, such as a Escherichia coli lipopolysaccharide (LPS), concanavalin A (Con A), pokeweed mitogen, polyI:polyC (a synthetic double-stranded RNA) and 12-O-tetradecanoylphorbol-13-acetate (a component of croton oil), induced histidine decarboxylase (HDC) in the liver, spleen and lung of mice at 4.5 hr after injection. Other inflammatory agents without mitogenic activity, such as zymosan, carrageenan, glycogen, D-galactosamine and N-acetyl-muramyl-L-alanyl-D-isoglutamine, did not induce the enzyme. Both LPS (a B-cell mitogen) and Con A (a T-cell mitogen) induced HDC also in nude mice that lack T-cells, indicating that T-cells are not required for HDC induction by mitogens. C3H/HeJ mice, which are LPS-low responder mice in various immunological tests, were quite a bit less responsive to LPS also in the HDC induction. These results show that mitogens with different properties can induce HDC as a common characteristic. On the basis of these results, the possible participation of macrophages in the process of HDC induction by mitogens was discussed. PMID:6661256

  10. Glucocorticoid hormones downregulate histidine decarboxylase mRNA and enzyme activity in rat lung.

    Science.gov (United States)

    Zahnow, C A; Panula, P; Yamatodani, A; Millhorn, D E

    1998-08-01

    Histidine decarboxylase (HDC) is the primary enzyme regulating histamine biosynthesis. Histamine contributes to the pathogenesis of chronic inflammatory disorders such as asthma. Because glucocorticoids are effective in the treatment of asthma, we examined the effects of 6 h of exogenously administered dexamethasone (0.5-3,000 microg/kg ip), corticosterone (0.2-200 mg/kg ip), or endogenously elevated corticosterone (via exposure of rats to 10% oxygen) on HDC expression in the rat lung. HDC transcripts were decreased approximately 73% with dexamethasone treatment, 57% with corticosterone treatment, and 50% with exposure to 10% oxygen. Likewise, HDC enzyme activity was decreased 80% by treatment with dexamethasone and corticosterone and 60% by exposure to 10% oxygen. Adrenalectomy prevented the decreases in HDC mRNA and enzyme activity observed in rats exposed to 10% oxygen, suggesting that the adrenal gland is necessary for the mediation of hypoxic effects on HDC gene expression. These results demonstrate that corticosteroids initiate a process that leads to the decrease of HDC mRNA levels and enzyme activity in rat lung. PMID:9700103

  11. Loss of fragile histidine triad protein expression in inflammatory bowel disease

    Institute of Scientific and Technical Information of China (English)

    Chun-Mei Xu; Chuan-Hu Qiao

    2006-01-01

    AIM: To investigate the expression of fragile histidine triad (FHIT) protein in 64 patients with ulcerative colitis (UC) and Crohn's disease (CD), and its relation with clinicopathological data.METHODS: Rabbit-anti-FHIT antibody was used to detect FHIT protein expression in 64 formalin-fixed,paraffin-embedded tissue specimens of inflammatory bowel disease (IBD) by citrate-microwave-streptavidin (SP)-HRP immunohistochemical method.RESULTS: The positive FHIT protein expression was 22.79% ± 16.16%, 42.14% ± 16.82% in active and remittent phases of UC, 36.07% ± 19.23% in CD, and 57.05% ± 8.86% in normal colon mucosa. Statistically significant differences in FHIT protein expression were observed between the active and remittent phases of UC, between the active phase of UC and normal colon mucosa, as well as between the remittent phase of UC and normal colon mucosa, and between CD and normal colon mucosa.CONCLUSION: Our results show that FHIT protein expression is completely absent or reduced in IBD,suggesting that the FHIT gene might be associated with the oncogenesis and progression of IBD, an early event from inflammatory conditions to carcinoma in IBD.

  12. Acute hyponatremia after cardioplegia by histidine-tryptophane-ketoglutarate – a retrospective study

    Directory of Open Access Journals (Sweden)

    Lindner Gregor

    2012-06-01

    Full Text Available Abstract Background Hyponatremia is the most common electrolyte disorder in hospitalized patients and is known to be associated with increased mortality. The administration of antegrade single-shot, up to two liters, histidine-tryptophane-ketoglutarate (HTK solution for adequate electromechanical cardiac arrest and myocardial preservation during minimally invasive aortic valve replacement (MIAVR is a standard procedure. We aimed to determine the impact of HTK infusion on electrolyte and acid–base balance. Methods In this retrospective analysis we reviewed data on patient characteristics, type of surgery, arterial blood gas analysis during surgery and intra-/postoperative laboratory results of patients receiving surgery for MIAVR at a large tertiary care university hospital. Results A total of 25 patients were included in the study. All patients were normonatremic at start of surgery. All patients developed hyponatremia after administration of HTK solution with a significant drop of serum sodium of 15 mmol/L (p  Conclusions Acute hyponatremia during cardioplegia with HTK solution is isotonic and should probably not be corrected without presence of hypotonicity as confirmed by measurement of serum osmolality.

  13. Histidine-tryptophan-ketoglutarate for pancreas allograft preservation: the Indiana University experience.

    Science.gov (United States)

    Fridell, J A; Mangus, R S; Powelson, J A

    2010-05-01

    Histidine-tryptophan-ketoglutarate solution (HTK) has been scrutinized for use in pancreas transplantation. A recent case series and a United Network for Organ Sharing data base review have suggested an increased incidence of allograft pancreatitis and graft loss with HTK compared to the University of Wisconsin solution (UW). Conversely, a recent randomized, controlled study failed to show any significant difference between HTK and UW for pancreas allograft preservation. This study was a retrospective review of all pancreas transplants performed at Indiana University between 2003 and 2009 comparing preservation with HTK or UW. Data included recipient and donor demographics, 7-day, 90-day and 1-year graft survival, peak 30-day serum amylase and lipase, HbA1c and C-peptide levels. Of the 308 pancreas transplants, 84% used HTK and 16% UW. There were more SPK compared to pancreas after kidney and pancreas transplant alone in the HTK group. Donor and recipient demographics were similar. There was no significant difference in 7-day, 90-day or 1-year graft survival, 30-day peak serum amylase and lipase, HbA1c or C-peptide. No clinically significant difference between HTK and UW for pancreas allograft preservation was identified. Specifically, in the context of low-to-moderate flush volume and short cold ischemia time (

  14. Arterial thrombosis is accelerated in mice deficient in histidine-rich glycoprotein.

    Science.gov (United States)

    Vu, Trang T; Zhou, Ji; Leslie, Beverly A; Stafford, Alan R; Fredenburgh, James C; Ni, Ran; Qiao, Shengjun; Vaezzadeh, Nima; Jahnen-Dechent, Willi; Monia, Brett P; Gross, Peter L; Weitz, Jeffrey I

    2015-04-23

    Factor (F) XII, a key component of the contact system, triggers clotting via the intrinsic pathway, and is implicated in propagating thrombosis. Although nucleic acids are potent activators, it is unclear how the contact system is regulated to prevent uncontrolled clotting. Previously, we showed that histidine-rich glycoprotein (HRG) binds FXIIa and attenuates its capacity to trigger coagulation. To investigate the role of HRG as a regulator of the intrinsic pathway, we compared RNA- and DNA-induced thrombin generation in plasma from HRG-deficient and wild-type mice. Thrombin generation was enhanced in plasma from HRG-deficient mice, and accelerated clotting was restored to normal with HRG reconstitution. Although blood loss after tail tip amputation was similar in HRG-deficient and wild-type mice, carotid artery occlusion after FeCl3 injury was accelerated in HRG-deficient mice, and HRG administration abrogated this effect. To confirm that HRG modulates the contact system, we used DNase, RNase, and antisense oligonucleotides to characterize the FeCl3 model. Whereas DNase or FVII knockdown had no effect, carotid occlusion was abrogated with RNase or FXII knockdown, confirming that FeCl3-induced thrombosis is triggered by RNA in a FXII-dependent fashion. Therefore, in a nucleic acid-driven model, HRG inhibits thrombosis by modulating the intrinsic pathway of coagulation.

  15. Oxidative modification of glutamine synthetase. I. Inactivation is due to loss of one histidine residue.

    Science.gov (United States)

    Levine, R L

    1983-10-10

    Intracellular proteolytic degradation of glutamine synthetase occurs in two distinct steps in Escherichia coli (Levine, R. L., Oliver, C. N., Fulks, R. M., and Stadtman, E. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 2120-2124). In the first step, a mixed function oxidation modifies the glutamine synthetase. The modified enzyme, which is catalytically inactive, becomes susceptible to proteolytic attack. In the second step, a protease specific for the modified enzyme catalyzes the actual proteolytic degradation. The oxidatively modified glutamine synthetase was studied to determine the chemical differences between it and the native enzyme. Only a single alteration was found; one of sixteen histidine residues/subunit was altered by the oxidative modification. The modification introduced a carbonyl group into the protein, permitting isolation of a stable dinitrophenylhydrazone. No other differences were detected between the native and modified proteins. Specifically, the cysteine, methionine, phenylalanine, tyrosine, and tryptophan contents were not altered. A number of other prokaryotic and eukaryotic enzymes are also susceptible to oxidative modification. This covalent modification may be important in intracellular proteolysis, in mammalian host defense systems, in prevention of autolysis, in aging processes, and in oxygen toxicity.

  16. Histidine-rich glycoprotein can prevent development of mouse experimental glioblastoma.

    Directory of Open Access Journals (Sweden)

    Maria Kärrlander

    Full Text Available Extensive angiogenesis, formation of new capillaries from pre-existing blood vessels, is an important feature of malignant glioma. Several antiangiogenic drugs targeting vascular endothelial growth factor (VEGF or its receptors are currently in clinical trials as therapy for high-grade glioma and bevacizumab was recently approved by the FDA for treatment of recurrent glioblastoma. However, the modest efficacy of these drugs and emerging problems with anti-VEGF treatment resistance welcome the development of alternative antiangiogenic therapies. One potential candidate is histidine-rich glycoprotein (HRG, a plasma protein with antiangiogenic properties that can inhibit endothelial cell adhesion and migration. We have used the RCAS/TV-A mouse model for gliomas to investigate the effect of HRG on brain tumor development. Tumors were induced with platelet-derived growth factor-B (PDGF-B, in the presence or absence of HRG. We found that HRG had little effect on tumor incidence but could significantly inhibit the development of malignant glioma and completely prevent the occurrence of grade IV tumors (glioblastoma.

  17. The effect of a specific histidine-rich glycoprotein polymorphism on male infertility and semen parameters.

    Science.gov (United States)

    Lindgren, Karin E; Nordqvist, Sarah; Kårehed, Karin; Sundström-Poromaa, Inger; Åkerud, Helena

    2016-08-01

    In women, there is evidence that a single nucleotide polymorphism (SNP) in the histidine-rich glycoprotein (HRG) named HRG C633T is relevant for a number of fertility outcomes including recurrent miscarriage, ovarian response and pregnancy outcome after IVF. This case-control study was designed to investigate whether the HRG C633T SNP is important for male infertility and pregnancy rate following IVF. Cases were 139 infertile couples and controls were 196 pregnant couples. The 335 couples all contributed with one blood sample per partner. Genomic DNA was extracted and genotyping was performed using a TaqMan® SNP Genotyping Assay. Information on pregnancy rate and semen parameters was derived from medical records. Infertile couples in which the male partner was a homozygous carrier of the HRG C633T SNP had significantly lower (P < 0.01) pregnancy rate following IVF in comparison with couples where the male partner was a heterozygous HRG C633T SNP carrier. Male homozygous HRG 633T SNP carriers had overall lower total sperm count, sperm concentration, motility score and yield after preparation. In conclusion, once infertility is established the HRG C633T SNP seems to be important for male infertility and pregnancy rate following IVF. PMID:27210772

  18. Solution Growth of a Novel Nonlinear Optical Material: L-Histidine Tetrafluoroborate

    Science.gov (United States)

    Aggarwal, M. D.; Choi, J.; Wang, W. S.; Bhat, K.; Lal, R. B.; Shields, Angela D.; Penn, Benjamin G.; Frazier, Donald O.

    1998-01-01

    Single crystals of L-Histidine tetrafluoroborate (L-HFB), a semiorganic nonlinear optical (NLO) material have been successfully grown by the temperature lowering and evaporation methods in our laboratory. Solubility curves of L-HFB have been determined in different solvents, such as water, ethanol and acetone. The solubility of L-HFB is very low in acetone, and ethanol, therefore, it is not feasible to grow L-HFB single crystals using these solvents. Good quality single crystals of a novel nonlinear optical material L-HFB have been grown from aqueous solution. Effects of seed orientation on morphologies of L-HFB crystals were studied. The advantages and disadvantage of both the evaporation and the temperature lowering techniques are compared. The single crystals in size 20 x 20 x 10 cubic mm were grown with deionized water as solvent in two weeks with an approximate growth rate of 1.4mm/day. The transmission range for these crystals has been found to be from 250 nm to 1500 nm.

  19. Histidine decarboxylase knockout mice, a genetic model of Tourette syndrome, show repetitive grooming after induced fear.

    Science.gov (United States)

    Xu, Meiyu; Li, Lina; Ohtsu, Hiroshi; Pittenger, Christopher

    2015-05-19

    Tics, such as are seen in Tourette syndrome (TS), are common and can cause profound morbidity, but they are poorly understood. Tics are potentiated by psychostimulants, stress, and sleep deprivation. Mutations in the gene histidine decarboxylase (Hdc) have been implicated as a rare genetic cause of TS, and Hdc knockout mice have been validated as a genetic model that recapitulates phenomenological and pathophysiological aspects of the disorder. Tic-like stereotypies in this model have not been observed at baseline but emerge after acute challenge with the psychostimulant d-amphetamine. We tested the ability of an acute stressor to stimulate stereotypies in this model, using tone fear conditioning. Hdc knockout mice acquired conditioned fear normally, as manifested by freezing during the presentation of a tone 48h after it had been paired with a shock. During the 30min following tone presentation, knockout mice showed increased grooming. Heterozygotes exhibited normal freezing and intermediate grooming. These data validate a new paradigm for the examination of tic-like stereotypies in animals without pharmacological challenge and enhance the face validity of the Hdc knockout mouse as a pathophysiologically grounded model of tic disorders.

  20. How to Switch Off a Histidine Kinase: Crystal Structure of Geobacillus Stearothermophilus KinB with the Inhibitor Sda

    Energy Technology Data Exchange (ETDEWEB)

    Bick, M.; Lamour, V; Rajashankar, K; Gordiyenko, Y; Robinson, C; Darst, S

    2009-01-01

    Entry to sporulation in bacilli is governed by a histidine kinase phosphorelay, a variation of the predominant signal transduction mechanism in prokaryotes. Sda directly inhibits sporulation histidine kinases in response to DNA damage and replication defects. We determined a 2.0-Angstroms-resolution X-ray crystal structure of the intact cytoplasmic catalytic core [comprising the dimerization and histidine phosphotransfer domain (DHp domain), connected to the ATP binding catalytic domain] of the Geobacillus stearothermophilus sporulation kinase KinB complexed with Sda. Structural and biochemical analyses reveal that Sda binds to the base of the DHp domain and prevents molecular transactions with the DHp domain to which it is bound by acting as a simple molecular barricade. Sda acts to sterically block communication between the catalytic domain and the DHp domain, which is required for autophosphorylation, as well as to sterically block communication between the response regulator Spo0F and the DHp domain, which is required for phosphotransfer and phosphatase activities.

  1. Does aluminium bind to histidine? An NMR investigation of amyloid β12 and amyloid β16 fragments.

    Science.gov (United States)

    Narayan, Priya; Krishnarjuna, Bankala; Vishwanathan, Vinaya; Jagadeesh Kumar, Dasappa; Babu, Sudhir; Ramanathan, Krishna Venkatachala; Easwaran, Kalpathy Ramaier Katchap; Nagendra, Holenarasipur Gundurao; Raghothama, Srinivasarao

    2013-07-01

    Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in Aβ (amyloid β) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal Aβ fragments, DAEFRHDSGYEV (Aβ12) and DAEFRHDSGYEVHHQK (Aβ16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with Aβ12 and Aβ16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in Aβ12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets. PMID:23464626

  2. Accumulation of chromium by Commelina communis L. grown in solution with different concentrations of Cr and L-histidine

    Institute of Scientific and Technical Information of China (English)

    唐世荣; 席磊

    2002-01-01

    Hydroponic experiments conducted to examine the chromiun uptake by C. communis in the presence of different Cr concentrations (Cr6+ 100 and 200 mg/L, respectively) and free histidine supplementation (0.5 and 1.0 mol/L) showed that shoot and root growth of C. communis decreased greatly with increasing Cr concentrations in the medium; and that the species was a typical excluder since it accumulated high concentrations of Cr in roots but comparatively low concentrations in shoots. Chromium in shoots and roots of Cr24 -supplied plants ranged from 329-1880 and 3788-4240 mg/kg DW, respectively, while those of Cr24 -histidine-supplied plants ranged from 478 to 629 mg/kg and 4157-4303 mg/kg DW, respectively. With Cr present in the hydroponic solution, C. communis accumulated more Cr in its tissues. Increasing histidine application to the solution significantly increased chromium accumulation in the plant tissues but could not alter the accumulation pattern of plants although it induced a higher concentration of Cr in its shoots and roots. These features suggested that C. communis may serve as an alternative species in a constructed wetland for phytoextraction treatment of Cr-containing wastewater and for phytostabilization of Cr mining spoils.

  3. Secretion of a malarial histidine-rich protein (Pf HRP II) from Plasmodium falciparum-infected erythrocytes

    International Nuclear Information System (INIS)

    Plasmodium falciparum-infected erythrocytes (IRBCs) synthesis several histidine-rich proteins (HRPs) that accumulate high levels of [3H]histidine but very low levels of amino acids such as [3H]isoleucine or [35S]methionine. The authors prepared a monoclonal antibody which reacts specifically with one of these HRPs (Pf HRP II) and studied the location and synthesis of this protein during the parasite's intracellular growth. With the knob-positive Malayan Camp strain of P. falciparum, the monoclonal antibody identified a multiplet of protein of protein bands with major species at M/sub r/ 72,000 and 69,000. Pf HRP II synthesis began with immature parasites (rings) and continued through the trophozoite stage. The M/sub r/ 72,000 band of Pf HRP II, but not the faster moving bands of the multiplet, was recovered as a water-soluble protein from the culture supernatant of intact IRBCs. Approximately 50% of the total [3H]histidine radioactivity incorporated into the M/sub r/ 72,000 band was extracellular between 2 and 24 h of culture. Immunofluorescence and cryothin-section immunoelectron microscopy localized Pf HRP II to several cell compartments including the parasite cytoplasm, as concentrated packets in the host erythrocyte cytoplasm and at the IRBC membrane. The results provide evidence for an intracellular route of transport for a secreted malarial protein from the parasite through several membranes and the host cell cytoplasm

  4. Recyclable decoration of amine-functionalized magnetic nanoparticles with Ni(2+) for determination of histidine by photochemical vapor generation atomic spectrometry.

    Science.gov (United States)

    Hu, Yuan; Wang, Qi; Zheng, Chengbin; Wu, Li; Hou, Xiandeng; Lv, Yi

    2014-01-01

    It is critically important to accurately determine histidine since it is an indicator for many diseases when at an abnormal level. Here, an inexpensive and simple method using an amine-functionalized magnetic nanoparticle-based Ni(2+)-histidine affinity pair system was developed for highly sensitive and selective detection of histidine in human urine by photochemical vapor generation atomic spectrometry. Ni(2+) was first bound to the amine groups of the amine-functionalized magnetic nanoparticles and then liberated to solution via the highly specific interaction between the histidine and Ni(2+) in the presence of histidine. The liberated histidine-Ni(2+) complex was exposed to UV irradiation in the presence of formic acid to form gaseous nickel tetracarbonyl, which was separated from the sample matrix and determined by atomic absorption/fluorescence spectrometry. Compared to other methods, this approach promises high sensitivity, simplicity in design, and convenient operation. The need for organic solvents, enzymatic reactions, separation processes, chemical modification, expensive instrumentations, and sophisticated and complicated pretreatment is minimized with this strategy. A limit of detection of 1 nM was obtained and provided tens-to-hundreds of fold improvements over that achieved with conventional methods. The protocol was evaluated by analysis of several urine samples with good recoveries and showed great potential for practical application. PMID:24286112

  5. A study by nitrogen-15 nuclear magnetic resonance spectroscopy of the state of histidine in the catalytic triad of α-lytic protease

    International Nuclear Information System (INIS)

    The ionization behaviour of the histidine of the catalytic triad of α-lytic protease using N-15 NMR spectroscopy is studied. This technique is especially informative about the protonation, hydrogen-bond formation, and tautomeric equilibrium of imidazole rings. The efficient and specific incorporation of N-15 labelled histidine into α-lytic protease was achieved by inducing and isolating an auxotroph of myxobacter 495 for which histidine is an essential amino acid. The results show that histidine of the catalytic triad of α-lytic protease appears to have a base strength which is essentially normal for an imidazole derivative but, in the pH range where the enzymatic activity is high, the histidine tautomer is favoured with the hydrogen located on N3 (π), as the result of hydrogen bonding to the asparate anion and possible the serine hydroxyl. Thus, the N-15 NMR shifts support the general geometry postulated for the ''charge-relay'' mechanism but not the idea of an unusually weakly basic histidine or an unusually strongly basic asparate carboxylate anion. (A.G.)

  6. Role of ATP binding and hydrolysis in the gating of the cystic fibrosis transmembrane conductance regulator

    Directory of Open Access Journals (Sweden)

    Taras Gout

    2012-01-01

    Full Text Available The CFTR gene is unique within the ATP-binding cassette (ABC protein family, predominantly of transporters, by coding a chloride channel. The gating mechanism of ABC proteins has been characterized by the ATP Switch model in terms cycles of dimer formation and dissociation linked to ATP binding and hydrolysis, respectively. It would be of interest to assess the extent that Cystic Fibrosis Transmembrane Conductance Regulator (CFTR, a functional channel, fits the ATP Switch model for ABC transporters. Additional transporter mechanisms, namely those of Pgp and HlyB, are discussed for perspective. Literature search of databases selected key references in comparing and contrasting the gating mechanism. CFTR is a functional chloride channel facilitating transmembrane anion flow down electrochemical gradients. A dysfunctional CFTR protein results in cystic fibrosis, a fatal pleiotropic disease currently managed symptomatically. Understanding the gating mechanism will help target drug development aimed at alleviating and curing the disease.

  7. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    DEFF Research Database (Denmark)

    Sikder, K. U.; Stone, K. A.; Kumar, P. B. S.;

    2014-01-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that mic...... that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells. (C) 2014 AIP Publishing LLC.......We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find...

  8. First principles design of a core bioenergetic transmembrane electron-transfer protein.

    Science.gov (United States)

    Goparaju, Geetha; Fry, Bryan A; Chobot, Sarah E; Wiedman, Gregory; Moser, Christopher C; Dutton, P Leslie; Discher, Bohdana M

    2016-05-01

    Here we describe the design, Escherichia coli expression and characterization of a simplified, adaptable and functionally transparent single chain 4-α-helix transmembrane protein frame that binds multiple heme and light activatable porphyrins. Such man-made cofactor-binding oxidoreductases, designed from first principles with minimal reference to natural protein sequences, are known as maquettes. This design is an adaptable frame aiming to uncover core engineering principles governing bioenergetic transmembrane electron-transfer function and recapitulate protein archetypes proposed to represent the origins of photosynthesis. This article is part of a Special Issue entitled Biodesign for Bioenergetics--the design and engineering of electronic transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson. PMID:26672896

  9. Achondroplastic dog breeds have no mutations in the transmembrane domain of the FGFR-3 gene.

    Science.gov (United States)

    Martínez, S; Valdés, J; Alonso, R A

    2000-10-01

    One of the most common skeletal affections in humans is achondroplasia, a short-limbed dwarfism that is, in most cases, caused by mutations in the transmembrane domain of the fibroblast growth factor receptor-3 (FGFR-3) gene. Due to the lack of sufficient radiological, genetic, and molecular studies, most types of skeletal anomalies in dogs are classified as achondroplasia. To initiate the molecular characterization of some osteochondrodysplastic dog breeds, we obtained the DNA sequence of the transmembrane domain of the FGFR-3 gene from the dachshund, basset hound, bulldog, and German shepherd dogs. All 4 breeds showed no mutation in the evaluated region. This indicates that the mutation responsible for the osteochondrodysplastic phenotype in the tested dog breeds lies either elsewhere in the FGFR-3 gene or in other ones involved in the formation and development of endochondral bone. PMID:11041504

  10. Transmembrane pH gradients in vivo: measurements using fluorinated vitamin B6 derivatives.

    Science.gov (United States)

    Mason, R P

    1999-06-01

    It is well recognized that pH plays a significant regulatory role in most cellular processes. Increasingly, there is interest in transmembrane pH gradients, particularly with respect to tumor growth and response to therapy. NMR offers a non-invasive approach to monitoring cellular pH and detecting changes in response to interventions. This review will consider the strengths of various approaches to measuring pH with particular focus on the reporter molecules designed to interrogate the cellular milieu. In particular, fluorinated vitamin B6 derivatives (6-fluoropyridoxol and 6-fluoropyridoxamine) will be described, which for the first time provide a practical non-destructive method to measure simultaneously intra- and extracellular pH, i.e., the transmembrane pH gradient in animals in vivo based on a single reporter molecule.

  11. Molecular dynamics simulation of the transmembrane subunit of BtuCD in the lipid bilayer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Based on the crystal structure of the vitamin B12 transporter protein of Escherichia coli(BtuCD) a system consisting of the BtuCD transmembrane domain(BtuC) and the palmitoyloleoyl phosphatidylcholine(POPC) lipid bilayer was constructed in silica,and a more-than-57-nanosecond molecular dynamics(MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC.The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to match the embedded BtuC which underwent relatively complicated motions.These results may help to understand the mechanism of transmembrane substrate transport at the atomic level.

  12. Osmotic and pH transmembrane gradients control the lytic power of melittin.

    OpenAIRE

    Benachir, T; Lafleur, M

    1996-01-01

    Transmembrane osmotic gradients applied on large unilamellar 1-palmitoyl-2-oleoyl-phosphatidylcholine vesicles were used to modulate the potency of melittin to induce leakage. Melittin, an amphipathic peptide, changes the permeability of vesicles, as studied using the release of entrapped calcein, a fluorescent marker. A promotion of the ability of melittin to induce leakage was observed when a hyposomotic gradient (i.e., internal salt concentration higher than the external one) was imposed o...

  13. Transmembrane sodium and potassium gradients modulate histamine secretion induced by ionophore A23187.

    OpenAIRE

    Amellal, M.; Bronner, C.; Landry, Y.

    1985-01-01

    Histamine secretion was induced from rat peritoneal mast cells by calcium ionophore A23187 in the presence of various extracellular calcium concentrations. Transmembrane sodium and potassium gradients were altered by cold pretreatment of mast cells or through the inhibition of sodium-potassium ATPase by the use of ouabain or potassium-deprivation. Such pretreatments led to a parallel shift to the left of the extracellular calcium concentration-histamine secretion curve, i.e. to an apparent de...

  14. A Portable Lipid Bilayer System for Environmental Sensing with a Transmembrane Protein

    OpenAIRE

    Ryuji Kawano; Yutaro Tsuji; Koki Kamiya; Taiga Kodama; Toshihisa Osaki; Norihisa Miki; Shoji Takeuchi

    2014-01-01

    This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin) was achieved in the field at a high-altitude (∼3623 m). This system would be broadly applicable for obtaining environment...

  15. Expression and regulation of transmembrane transporters in healthy intestine and gastrointestinal diseases

    OpenAIRE

    Hruz, Petr

    2006-01-01

    Transmembrane transporters mediate energy dependent or independent translocation of drugs, potentially toxic compounds, and of various endogenous substrates such as bile acids and bilirubin across membranes. In this thesis the focus is on two classes of transporters, the ATPbinding cassette (ABC) transporters, which mediate ATP dependent transport and the solute carriers (SLC) which use electrochemical gradients for their transport. The transporters are expressed on membranes o...

  16. Human Amnion Epithelial Cells Induced to Express Functional Cystic Fibrosis Transmembrane Conductance Regulator

    OpenAIRE

    Murphy, Sean V.; Rebecca Lim; Philip Heraud; Marian Cholewa; Mark Le Gros; de Jonge, Martin D.; Howard, Daryl L.; David Paterson; Courtney McDonald; Anthony Atala; Graham Jenkin; Wallace, Euan M

    2012-01-01

    Cystic fibrosis, an autosomal recessive disorder caused by a mutation in a gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR), remains a leading cause of childhood respiratory morbidity and mortality. The respiratory consequences of cystic fibrosis include the generation of thick, tenacious mucus that impairs lung clearance, predisposing the individual to repeated and persistent infections, progressive lung damage and shortened lifespan. Currently there is no cure fo...

  17. Combined effect of cortical cytoskeleton and transmembrane proteins on domain formation in biomembranes

    Science.gov (United States)

    Sikder, Md. Kabir Uddin; Stone, Kyle A.; Kumar, P. B. Sunil; Laradji, Mohamed

    2014-08-01

    We investigate the combined effects of transmembrane proteins and the subjacent cytoskeleton on the dynamics of phase separation in multicomponent lipid bilayers using computer simulations of a particle-based implicit solvent model for lipid membranes with soft-core interactions. We find that microphase separation can be achieved by the protein confinement by the cytoskeleton. Our results have relevance to the finite size of lipid rafts in the plasma membrane of mammalian cells.

  18. Transmembrane Agrin Regulates Dendritic Filopodia and Synapse Formation in Mature Hippocampal Neuron Cultures

    OpenAIRE

    McCroskery, Seumas; Bailey, Allison; Lin, Lin; Daniels, Mathew P.

    2009-01-01

    The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. In the present study we have investigated the role of Tm-agrin in regulation of dendr...

  19. Emerging role of cystic fibrosis transmembrane conductance regulator - an epithelial chloride channel in gastrointestinal cancers

    OpenAIRE

    Hou, Yuning; Guan, Xiaoqing; Yang, Zhe; Li, Chunying

    2016-01-01

    Cystic fibrosis transmembrane conductance regulator (CFTR), a glycoprotein with 1480 amino acids, has been well established as a chloride channel mainly expressed in the epithelial cells of various tissues and organs such as lungs, sweat glands, gastrointestinal system, and reproductive organs. Although defective CFTR leads to cystic fibrosis, a common genetic disorder in the Caucasian population, there is accumulating evidence that suggests a novel role of CFTR in various cancers, especially...

  20. Defining the disease liability of variants in the cystic fibrosis transmembrane conductance regulator gene

    OpenAIRE

    Sosnay, Patrick R.; Siklosi, Karen R; Van Goor, Fredrick; Kaniecki, Kyle; Yu, Haihui; Sharma, Neeraj; Ramalho, Anabela S; Amaral, Margarida D.; Dorfman, Ruslan; Zielenski, Julian; Masica, David L.; Karchin, Rachel; Millen, Linda; Thomas, Philip J.; George P. Patrinos

    2013-01-01

    Allelic heterogeneity in disease-causing genes presents a substantial challenge to the translation of genomic variation to clinical practice. Few of the almost 2,000 variants in the cystic fibrosis transmembrane conductance regulator (CFTR) gene have empirical evidence that they cause cystic fibrosis. To address this gap, we collected both genotype and phenotype data for 39,696 cystic fibrosis patients in registries and clinics in North America and Europe. Among these patients, 159 CFTR varia...

  1. Achondroplastic dog breeds have no mutations in the transmembrane domain of the FGFR-3 gene.

    OpenAIRE

    S. Martínez; Valdés, J; R. A. Alonso

    2000-01-01

    One of the most common skeletal affections in humans is achondroplasia, a short-limbed dwarfism that is, in most cases, caused by mutations in the transmembrane domain of the fibroblast growth factor receptor-3 (FGFR-3) gene. Due to the lack of sufficient radiological, genetic, and molecular studies, most types of skeletal anomalies in dogs are classified as achondroplasia. To initiate the molecular characterization of some osteochondrodysplastic dog breeds, we obtained the DNA sequence of th...

  2. Order Parameters of a Transmembrane Helix in a Fluid Bilayer: Case Study of a WALP Peptide

    OpenAIRE

    Holt, Andrea; Rougier, Léa; Réat, Valérie; Jolibois, Franck; Saurel, Olivier; Czaplicki, Jerzy; Killian, J. Antoinette; Milon, Alain

    2010-01-01

    A new solid-state NMR-based strategy is established for the precise and efficient analysis of orientation and dynamics of transmembrane peptides in fluid bilayers. For this purpose, several dynamically averaged anisotropic constraints, including 13C and 15N chemical shift anisotropies and 13C-15N dipolar couplings, were determined from two different triple-isotope-labeled WALP23 peptides (2H, 13C, and 15N) and combined with previously published quadrupolar splittings of the same peptide. Chem...

  3. Mapping the homodimer interface of an optimized, artificial, transmembrane protein activator of the human erythropoietin receptor.

    Directory of Open Access Journals (Sweden)

    Emily B Cohen

    Full Text Available Transmembrane proteins constitute a large fraction of cellular proteins, and specific interactions involving membrane-spanning protein segments play an important role in protein oligomerization, folding, and function. We previously isolated an artificial, dimeric, 44-amino acid transmembrane protein that activates the human erythropoietin receptor (hEPOR in trans. This artificial protein supports limited erythroid differentiation of primary human hematopoietic progenitor cells in vitro, even though it does not resemble erythropoietin, the natural ligand of this receptor. Here, we used a directed-evolution approach to explore the structural basis for the ability of transmembrane proteins to activate the hEPOR. A library that expresses thousands of mutants of the transmembrane activator was screened for variants that were more active than the original isolate at inducing growth factor independence in mouse cells expressing the hEPOR. The most active mutant, EBC5-16, supports erythroid differentiation in human cells with activity approaching that of EPO, as assessed by cell-surface expression of glycophorin A, a late-stage marker of erythroid differentiation. EBC5-16 contains a single isoleucine to serine substitution at position 25, which increases its ability to form dimers. Genetic studies confirmed the importance of dimerization for activity and identified the residues constituting the homodimer interface of EBC5-16. The interface requires a GxxxG dimer packing motif and a small amino acid at position 25 for maximal activity, implying that tight packing of the EBC5-16 dimer is a crucial determinant of activity. These experiments identified an artificial protein that causes robust activation of its target in a natural host cell, demonstrated the importance of dimerization of this protein for engagement of the hEPOR, and provided the framework for future structure-function studies of this novel mechanism of receptor activation.

  4. Selective Activation of Cystic Fibrosis Transmembrane Conductance Regulator Cl- and HCO3- Conductances

    OpenAIRE

    Reddy MM; Quinton PM

    2001-01-01

    While cystic fibrosis transmembrane conductance regulator (CFTR) is well known to function as a Cl(-) channel, some mutations in the channel protein causing cystic fibrosis (CF) disrupt another vital physiological function, HCO(3)(-) transport. Pathological implications of derailed HCO(3)(-) transport are clearly demonstrated by the pancreatic destruction that accompany certain mutations in CF. Despite the crucial role of HCO(3)(-) in buffering pH, little is known about the relationship betwe...

  5. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis.

    OpenAIRE

    Miller, P. W.; Hamosh, A.; Macek, M.; Greenberger, P. A.; MacLean, J; Walden, S M; Slavin, R G; Cutting, G R

    1996-01-01

    The etiology of allergic bronchopulmonary aspergillosis (ABPA) is not well understood. A clinical phenotype resembling the pulmonary disease seen in cystic fibrosis (CF) patients can occur in some individuals with ABPA. Reports of familial occurrence of ABPA and increased incidence in CF patients suggest a possible genetic basis for the disease. To test this possibility, the entire coding region of the cystic fibrosis transmembrane regulator (CFTR) gene was analyzed in 11 individuals who met ...

  6. On the distribution of amino acid residues in transmembrane alpha-helix bundles.

    OpenAIRE

    Samatey, F A; Xu, C.; Popot, J L

    1995-01-01

    The periodic distribution of residues in the sequence of 469 putative transmembrane alpha-helices from eukaryotic plasma membrane polytopic proteins has been analyzed with correlation matrices. The method does not involve any a priori assumption about the secondary structure of the segments or about the physicochemical properties of individual amino acid residues. Maximal correlation is observed at 3.6 residues per period, characteristic of alpha-helices. A scale extracted from the data descr...

  7. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  8. Free energy barrier for melittin reorientation from a membrane-bound state to a transmembrane state

    CERN Document Server

    Irudayam, Sheeba J; Berkowitz, Max L

    2013-01-01

    An important step in a phospholipid membrane pore formation by melittin antimicrobial peptide is a reorientation of the peptide from a surface into a transmembrane conformation. In this work we perform umbrella sampling simulations to calculate the potential of mean force (PMF) for the reorientation of melittin from a surface-bound state to a transmembrane state and provide a molecular level insight into understanding peptide and lipid properties that influence the existence of the free energy barrier. The PMFs were calculated for a peptide to lipid (P/L) ratio of 1/128 and 4/128. We observe that the free energy barrier is reduced when the P/L ratio increased. In addition, we study the cooperative effect; specifically we investigate if the barrier is smaller for a second melittin reorientation, given that another neighboring melittin was already in the transmembrane state. We observe that indeed the barrier of the PMF curve is reduced in this case, thus confirming the presence of a cooperative effect.

  9. CFTR anion channel modulates expression of human transmembrane mucin MUC3 through the PDZ protein GOPC.

    Science.gov (United States)

    Pelaseyed, Thaher; Hansson, Gunnar C

    2011-09-15

    The transmembrane mucins in the enterocyte are type 1 transmembrane proteins with long and rigid mucin domains, rich in proline, threonine and serine residues that carry numerous O-glycans. Three of these mucins, MUC3, MUC12 and MUC17 are unique in harboring C-terminal class I PDZ motifs, making them suitable ligands for PDZ proteins. A screening of 123 different human PDZ domains for binding to MUC3 identified a strong interaction with the PDZ protein GOPC (Golgi-associated PDZ and coiled-coil motif-containing protein). This interaction was mediated by the C-terminal PDZ motif of MUC3, binding to the single GOPC PDZ domain. GOPC is also a binding partner for cystic fibrosis transmembrane conductance regulator (CFTR) that directs CFTR for degradation. Overexpression of GOPC downregulated the total levels of MUC3, an effect that was reversed by introducing CFTR. The results suggest that CFTR and MUC3 compete for binding to GOPC, which in turn can regulate levels of these two proteins. For the first time a direct coupling between mucins and the CFTR channel is demonstrated, a finding that will shed further light on the still poorly understood relationship between cystic fibrosis and the mucus phenotype of this disease.

  10. Photo-crosslinking analysis of preferential interactions between a transmembrane peptide and matching lipids.

    Science.gov (United States)

    Ridder, Anja N J A; Spelbrink, Robin E J; Demmers, Jeroen A A; Rijkers, Dirk T S; Liskamp, Rob M J; Brunner, Josef; Heck, Albert J R; de Kruijff, Ben; Killian, J Antoinette

    2004-04-20

    In this study, a novel method is presented by which the molecular environment of a transmembrane peptide can be investigated directly. This was achieved by incorporating a photoactivatable crosslinking probe in the hydrophobic segment of a model transmembrane peptide. When this peptide was incorporated into lipid bilayers and irradiated with UV light, a covalent bond was formed between the crosslinking probe and a lipid. This crosslinking reaction could be visualized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and the resulting product could be characterized by mass spectrometry. By use of phospholipases, it was demonstrated that the peptide crosslinks to both acyl chains of the lipids. The peptide showed a clear preference to partition into fluid lipids and was excluded from lipids in the gel phase. However, when the peptide was incorporated into bilayers containing two lipid species with different acyl chain lengths, molecular sorting of the lipids around the peptide based on hydrophobic matching was not observed. It is proposed that the size of the transmembrane part plays an important role in the dynamic interactions of membrane proteins with the surrounding lipids and hence in determining whether molecular sorting can occur. PMID:15078094

  11. A negatively charged transmembrane aspartate residue controls activation of the relaxin-3 receptor RXFP3.

    Science.gov (United States)

    Liu, Yu; Zhang, Lei; Shao, Xiao-Xia; Hu, Meng-Jun; Liu, Ya-Li; Xu, Zeng-Guang; Guo, Zhan-Yun

    2016-08-15

    Relaxin-3 is an insulin/relaxin superfamily neuropeptide involved in the regulation of food intake and stress response via activation of its cognate receptor RXFP3, an A-class G protein-coupled receptor (GPCR). In recent studies, a highly conserved ExxxD motif essential for binding of relaxin-3 has been identified at extracellular end of the second transmembrane domain (TMD2) of RXFP3. For most of the A-class GPCRs, a highly conserved negatively charged Asp residue (Asp(2.50) using Ballesteros-Weinstein numbering and Asp128 in human RXFP3) is present at the middle of TMD2. To elucidate function of the conserved transmembrane Asp128, in the present work we replaced it with other residues and the resultant RXFP3 mutants all retained quite high ligand-binding potency, but their activation and agonist-induced internalization were abolished or drastically decreased. Thus, the negatively charged transmembrane Asp128 controlled transduction of agonist-binding information from the extracellular region to the intracellular region through maintaining RXFP3 in a metastable state for efficient conformational change induced by binding of an agonist. PMID:27353281

  12. Light induced transmembrane proton gradient in artificial lipid vesicles reconstituted with photosynthetic reaction centers.

    Science.gov (United States)

    Milano, Francesco; Trotta, Massimo; Dorogi, Márta; Fischer, Béla; Giotta, Livia; Agostiano, Angela; Maróti, Péter; Kálmán, László; Nagy, László

    2012-06-01

    Photosynthetic reaction center (RC) is the minimal nanoscopic photoconverter in the photosynthetic membrane that catalyzes the conversion of solar light to energy readily usable for the metabolism of the living organisms. After electronic excitation the energy of light is converted into chemical potential by the generation of a charge separated state accompanied by intraprotein and ultimately transmembrane proton movements. We designed a system which fulfills the minimum structural and functional requirements to investigate the physico/chemical conditions of the processes: RCs were reconstituted in closed lipid vesicles made of selected lipids entrapping a pH sensitive indicator, and electron donors (cytochrome c₂ and K₄[Fe(CN)₆]) and acceptors (decylubiquinone) were added to sustain the photocycle. Thanks to the low proton permeability of our preparations, we could show the formation of a transmembrane proton gradient under illumination and low buffering conditions directly by measuring proton-related signals simultaneously inside and outside the vesicles. The effect of selected ionophores such as gramicidin, nigericin and valinomycin was used to gain more information on the transmembrane proton gradient driven by the RC photochemistry.

  13. Fructose Degradation in the Haloarchaeon Haloferax volcanii Involves a Bacterial Type Phosphoenolpyruvate-Dependent Phosphotransferase System, Fructose-1-Phosphate Kinase, and Class II Fructose-1,6-Bisphosphate Aldolase

    OpenAIRE

    Pickl, Andreas; Johnsen, Ulrike; Schönheit, Peter

    2012-01-01

    The halophilic archaeon Haloferax volcanii utilizes fructose as a sole carbon and energy source. Genes and enzymes involved in fructose uptake and degradation were identified by transcriptional analyses, deletion mutant experiments, and enzyme characterization. During growth on fructose, the gene cluster HVO_1495 to HVO_1499, encoding homologs of the five bacterial phosphotransferase system (PTS) components enzyme IIB (EIIB), enzyme I (EI), histidine protein (HPr), EIIA, and EIIC, was highly ...

  14. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  15. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  16. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  17. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  18. Everted Intestinal Sacs As In vitro Model For Assessing Absorptivity Of L Histidine Under The Effect Of Aspirine And Gum Acacia In Male Rats

    Directory of Open Access Journals (Sweden)

    Mahmoud Rabeh Mahmoud

    2004-09-01

    Full Text Available The purpose of this study was to characterize intestinal permeability changes over a range of physiologically relevant intestinal injury. The experiments were performed in 80 rats subdivided into four groups as aspirin (400 mg/kg b.w., gum Acacia ( 1g./day and aspirin with gum Acacia groups for 21 days compared with control group. Relative reabsorption of L-Histidine was greater(p<0.001 in the aspirin in 10 min of incubation compared with that of the control rats. In aspirin in combination with gum Acacia, the relative reabsorption were significantly (p<0.001 decrease in 10, 20 and 30 min. of incubation compared with that of the control rats. Moreover, the relative reabsorption of L-histidine was significantly (p<0.01 reduced by the aspirin at 45 min of time of the incubation buffer compared with that of the control. However, gum acacia treatment was increased at 10 min (p<0.01 ,30 min (p<0.01 and 45 min (p<0.001 respectively compared with that of the control rats. Relative reabsorption of L-histidine record a nonsignificant increase of aspirin at 20 min and 30 min of incubation compared with that of the control. Gum and aspirin with gum at 20min and 45min of incubation resulted an increase and decrease in relative reabsorption of L-histidine respectively compared with that of the control. Aspirin and aspirin in combination with gum acacia treatment increased body, intestinal weights and mucosal total protein significantly with percent changes ranged from 8% to 40% compared with that of the control. On the other hand, gum treatment decreased body, intestinal weights and mucosal total protein significantly with percent changes ranged from 8% to 35% compared with that of the control. These results demonstrated that L-histidine is actively taken up by a gum Acacia system in intestinal everted sac mechanism of rat with energy supplied by glucose and Na+in incubation buffer. Moreover, aspirin system had an inhibitory effect on L-histidine uptake in

  19. Structure of bacterial respiratory complex I.

    Science.gov (United States)

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26807915

  20. Structure of bacterial respiratory complex I.

    Science.gov (United States)

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  1. Effect of [Ca2+]i and Neuronal Mitochondria Transmembrane Potentials in Hippocampus of Murine Cytomegalovirus Infected Mice

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ying; WEN Liangzhen; CHENG Biheng

    2006-01-01

    To explore the effect of [Ca2+]I and neuronal mitochondria transmembrane potentials in hippocampus of murine cytomegalovirus (MCMV) infected mice, newborn Balb/c mice were randomly divided into two groups: a virus inoculated group and a control group. After 56 days, single cell of hippocampus was isolated, and mitochondria transmembrane potentials and the intracellular free calcium level [Ca2+ ]I in hippocampus were measured by means of flow cytometry (FCM).Compared with the control group, the mitochondria transmembrane potentials was decreased (P<0.01) and the intracellular free calcium level [Ca2+]I was increased (P<0.01) in inoculated group.The dysfunction of [Ca2+ ]I and mitochondria transmembrane potentials in hippocampus may play an important role in the functional disorders in CMV-infected CNS.

  2. A Duo of Potassium-Responsive Histidine Kinases Govern the Multicellular Destiny of Bacillus subtilis

    NARCIS (Netherlands)

    Grau, Roberto R; de Oña, Paula; Kunert, Maritta; Leñini, Cecilia; Gallegos-Monterrosa, Ramses; Mhatre, Eisha; Vileta, Darío; Donato, Verónica; Hölscher, Theresa; Boland, Wilhelm; Kuipers, Oscar P; Kovács, Ákos T

    2015-01-01

    UNLABELLED: Multicellular biofilm formation and surface motility are bacterial behaviors considered mutually exclusive. However, the basic decision to move over or stay attached to a surface is poorly understood. Here, we discover that in Bacillus subtilis, the key root biofilm-controlling transcrip

  3. Myeloperoxidase-derived oxidants rapidly oxidize and disrupt zinc-cysteine/histidine clusters in proteins.

    Science.gov (United States)

    Cook, Naomi L; Pattison, David I; Davies, Michael J

    2012-12-01

    Zinc is an abundant cellular transition metal ion, which binds avidly to protein cysteine (Cys) and histidine (His) residues to form zinc-Cys/His clusters; these play a key role in the function of many proteins (e.g., DNA binding and repair enzymes, transcription factors, nitric oxide synthase). Leukocyte-derived myeloperoxidase generates powerful oxidants including hypochlorous (HOCl), hypobromous (HOBr), and hypothiocyanous (HOSCN) acids from H(2)O(2) and (pseudo)halide ions. Excessive or misplaced formation of these species is associated with cellular dysfunction, apoptosis and necrosis, and multiple inflammatory diseases. HOCl and HOBr react rapidly with sulfur-containing compounds, and HOSCN reacts specifically with thiols. Consequently, we hypothesized that zinc-Cys/His clusters would be targets for these oxidants, and the activity of such enzymes would be perturbed. This hypothesis has been tested using yeast alcohol dehydrogenase (YADH), which contains a well-characterized Zn(1)Cys(2)His(1) cluster. Incubation of YADH with pathologically relevant concentrations of HOSCN, HOCl, and HOBr resulted in rapid oxidation of the protein (rate constants, determined by competition kinetics, for reaction of HOCl and HOSCN with YADH being (3.3±0.9)×10(8) and (2.9±0.4)×10(4) M(-1) s(-1) per YADH monomer, respectively), loss of enzyme activity, Zn(2+) release, changes in protein structure (particularly formation of disulfide cross-links), and oxidation of Cys residues. The loss of enzyme activity correlated with Zn(2+) release, loss of thiols, and changes in protein structure. We conclude that exposure of zinc-Cys/His clusters to inflammatory oxidants can result in impaired protein activity, thiol oxidation, and Zn(2+) release. These reactions may contribute to inflammation-induced tissue damage.

  4. Loss of heterozygosity and microsatellite instabilities of fragile histidine triad gene in gastric carcinoma

    Institute of Scientific and Technical Information of China (English)

    Yu-Ping Xiao; Dong-Ying Wu; Lei Xu; Yan Xin

    2006-01-01

    AIM: To detect the loss of heterozygosity (LOH) and microsatellite instabilities (MSI) of fragile histidine triad (FHIT) gene in gastric carcinoma and to study their association with the clinical pathological characteristics of gastric carcinoma.METHODS: LOH and MSI of FHIT gene were detected at four microsaterllite loci D3S13H, D3S4103, D3S1481 and D3S1234 using PCR in matched normal and cancerous tissues from 50 patients with primary gastric cancer.RESULTS: The average frequency of LOH and MSI of FHIT gene in gastric cancer was 32.4% and 26.4%respectively. LOH and MSI of FHIT gene in gastric cancer had no association with histological, Borrmann,and Lauren's classification. LOH of FHIT gene in gastric cancer was related to invasive depth. The frequency of FHIT LOH in gastric cancer with serosa-penetration was obviously higher than that in gastric cancer without serosa-penetration (73.5% vs 37.5%, P<0.05). MSI of FHIT gene in gastric cancer was associated with the lymph node metastasis. The frequency of MSI in gastric cancer without lymph node metastasis was significantly higher than that in gastric cancer with lymph node metastasis (66.7% vs 34.3%, P<0.05).CONCLUSION: LOH of FHIT gene is correlated with invasive depth of gastric carcinoma. MSI of FHIT gene is correlated with lymph node metastases. LOH and MSI of FHIT gene play an important role in carcinogenesis of gastric cancer.

  5. Effect of fragile histidine triad gene transduction on proliferation and apoptosis of human hepatocellular carcinoma cells

    Institute of Scientific and Technical Information of China (English)

    Rong-Hua Xu; Ji-Lin Yi; Liang-Yan Zheng; Dong-Lei He; Jian Tong; Li-Ping Zheng; Wu-Ping Zheng; Jin Meng; Li-Ping Xia; Cong-Jun Wang

    2008-01-01

    AIM: To evaluate the inhibitory effects of human fragile histidine triad (FHIT) gene on cell proliferation and apoptosis in human hepatocellular carcinoma line Hep3B in vitro.METHODS: A recombinant pcDNA3.1 (+)/FHIT including the functional region of FHIT gene was constructed and transferred into human hepatocellular carcinoma cells in vitro, mRNA and protein expression of the FHIT gene in the transfected cells was detected by RT-PCR and Western blot, respectively. The effect of FHIT on proliferation was detected by MTT assay. Changes in cell cycle and apoptosis were assayed by flow cytometry. Five mice received subcutaneous transplantation of Hep3B-FHIT; 5 mice received subcutaneous transplantation of normal Hep3B and Hep3B-C as controls. The body weight of nude mice and tumor growth were measured.RESULTS: RT-PCR and Western blot analysis showed that the expression level of FHIT-mRNA and FHIT protein was higher in Hep3B cells alter infection with pcDNA3.1 (+)/FHIT. The growth of Hep3B cells treated with pcDNA3.1 (+)/FHIT was significantly inhibited. The pcDNA3.1 (+)/FHIT-transfected Hep3B cells showed a significantly higher cell rate at G>0-G1 phase and increased apoptosis in comparison with controls (P<0.05). The growth of transplanted tumor was inhibited markedly by FHIT. Tumors arising from the Hep3B-FHIT cells occurred much later than those arising from the Hep3B and Hep3B-C cells. The growth of Hep3B-FHIT cells was slow and the tumor volume was low.CONCLUSION: Transduction of FHIT gene inhibits the growth of human hepatocellular carcinoma cells and induces cell apoptosis in vivo and in vitro.

  6. Diversity of plasmids encoding histidine decarboxylase gene in Tetragenococcus spp. isolated from Japanese fish sauce.

    Science.gov (United States)

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yano, Yutaka

    2011-07-15

    Nineteen isolates of histamine producing halophilic bacteria were isolated from four fish sauce mashes, each mash accumulating over 1000 ppm of histamine. The complete sequences of the plasmids encoding the pyruvoyl dependent histidine decarboxylase gene (hdcA), which is harbored in histamine producing bacteria, were determined. In conjunction, the sequence regions adjacent to hdcA were analyzed to provide information regarding its genetic origin. As reference strains, Tetragenococcus halophilus H and T. muriaticus JCM10006(T) were also studied. Phenotypic and 16S rRNA gene sequence analyses identified all isolates as T. halophilus, a predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR, Southern blot, and complete plasmid sequencing) of the histamine producing isolates confirmed that all the isolates harbored approximately 21-37 kbp plasmids encoding a single copy of the hdc cluster consisting of four genes related to histamine production. Analysis of hdc clusters, including spacer regions, indicated >99% sequence similarity among the isolates. All of the plasmids sequenced encoded traA, however genes related to plasmid conjugation, namely mob genes and oriT, were not identified. Two putative mobile genetic elements, ISLP1-like and IS200-like, respectively, were identified in the up- and downstream region of the hdc cluster of all plasmids. Most of the sequences, except hdc cluster and two adjacent IS elements, were diverse among plasmids, suggesting that each histamine producers harbored a different histamine-related plasmid. These results suggested that the hdc cluster was not spread by clonal dissemination depending on the specific plasmid and that the hdc cluster in tetragenococcal plasmid was likely encoded on transformable elements. PMID:21616548

  7. EXPRESSION OF FRAGILE HISTIDINE TRIAD AND P53 IN NON-SMALL CELL LUNG CANCER

    Institute of Scientific and Technical Information of China (English)

    HOU Xing-hua; ZHANG Dao-rong

    2006-01-01

    Objective: To investigate the expression of fragile histidine triad (FHIT) and p53 protein in non-small cell lung cancer (NSCLC) and explore the relationship between their expressions and the clinicopathological features. Methods: FHIT protein and p53 protein were detected by immunohistochemistry in 76 cases of NSCLCs and matched normal lung tissues. Results:Fifty-one cases (67.1%) showed negative expression of FHIT (apparent reduction or loss) and thirty-seven cases (48.7%)showed p53 positive expression (overexpression). The difference was significant (P=0.04). However, there was no significant difference in FHIT expression between the p53-positive group and the p53-negative group (64.9% versus 69.2%, P=0.686).The negative rate of FHIT protein expression was higher in squamous cell carcinoma than in adenocarcinoma, in moderately and poorly differentiated carcinoma than in well-differentiated carcinoma, and in cases with smoking history than in cases without smoking history (P<0.05). There was no relationship between FHIT expression and clinical stage or lymph node metastasis. The negative FHIT expression was not an independent predictor of overall survival (P=0.338). Conclusion: The frequency of negative expression of FHIT protein is higher than that of positive expression of p53 in NSCLCs. The negative expression of FHIT is independent of the expression of p53. The change of expression of FHIT may play a role in the smoking related lung tumorigenesis while it may have no relationship with the progress of NSCLC or prognosis of the patients.

  8. Saliva Rich-histidine Protein-Histatins%唾液富组氨酸蛋白

    Institute of Scientific and Technical Information of China (English)

    白娟; 李庆伟; 王继红

    2015-01-01

    唾液富组氨酸蛋白(histidine-rich protein,HRPs)是由人类和高等灵长动物的腮腺、下颌下腺、舌下腺分泌到唾液中的碱性小分子多肽,分子量为4 kD左右,其氨基酸序列富含组氨酸,分子表面带有正电荷和稳定的α螺旋结构.唾液富组氨酸蛋白具有广谱抗菌性,对革兰氏阴性菌、革兰氏阳性菌及真菌都有杀伤作用,其抗菌机制是作用线粒体呼吸通路,诱发ATP的释放.此外,唾液富组氨酸蛋白具有促进伤口愈合的能力,其作用机制与细胞内信号调节激酶1/2通路相关.同时,它也具有金属离子结合能力、机体免疫调节能力,其作用机制与分子表面本身结构特点和阻滞下游信号通路相关.唾液富组氨酸蛋白是一种天然的功能性蛋白质,有望应用在相关疾病的治疗上,本文对唾液富组氨酸蛋白的结构特点、功能机制、应用前景作一简要论述,为后续功能蛋白质的研发和应用奠定了理论基础.

  9. Gender-dependent metabolic remodeling during heart preservation in cardioplegic celsior and histidine buffer solution.

    Science.gov (United States)

    Alves, Marco G; Oliveira, Pedro F; Martins, Fátima O; Oliveira, Paulo J; Carvalho, Rui A

    2012-08-01

    Understanding heart metabolism during preservation is crucial to develop new effective cardioplegic solutions. We aim to investigate metabolic alterations during heart preservation in the clinically used Celsior (Cs) and histidine buffer solution (HBS). We also focused in gender-specific metabolic adaptations during ischemia. We followed energy metabolism in hearts from males and females preserved during 6 hours in Cs and HBS. Hearts were subjected to cold ischemia (4°C) in Cs or HBS, and aliquots of the cardioplegic solution were collected throughout preservation for nuclear magnetic resonance analysis. HBS-preserved hearts from males consumed glucose mostly between 240 and 360 minutes, whereas HBS-preserved hearts from females consumed glucose throughout the 6 hours of ischemia. Lactate production rates followed approximately the glucose consumption rates in HBS-preserved hearts. The lactate to alanine ratio, an indicator of the redox state, was increased in HBS-preserved hearts when compared with Cs-preserved hearts. Hearts from males presented a higher redox state than those from females preserved in Cs after 300 minutes. Both Cs and HBS were capable of preventing acidification in hearts from females but not in hearts from males, which decreased the extracellular pH. HBS-preserved hearts from males and females produced 0.1 ± 0.01 and 0.15 ± 0.03 μmol·min·gdw of lactate, respectively. Those rates were significantly higher than in Cs-preserved hearts. Thus, Cs was more effective in preventing lactate production. We conclude that glycolysis and lactate production are stimulated in HBS-preserved hearts. HBS shows better overall results particularly in hearts from females, which presented less extracellular acidification and were more effective in recycling the metabolic subproducts.

  10. Particularly interesting new cysteine-histidine rich protein expression in colorectal adenocarcinomas

    Institute of Scientific and Technical Information of China (English)

    Zeng-Ren Zhao; Zhi-Yong Zhang; Dong-Sheng Cui; Li Jiang; Hui-Jun Zhang; Ming-Wei Wang; Xiao-Feng Sun

    2006-01-01

    AIM: To study the relationship between particularly interesting new cysteine-histidine rich protein (PINCH)expression and clinicopathological factors in Chinese colorectal cancer patients.METHODS: The expression of PINCH was examined by immumohistochemistry in 141 samples of primary colorectal adenocarcinoma and 92 normal samples of colorectal mucosa. Eighty of the cases had both primary tumour and normal mucosa from the same patients.RESULTS: PINCH was expressed in the stroma of normal mucosa and tumours. PINCH expression in tumourassociated stroma was increased compared to normal mucosa in both unmatched cases (n = 141, X2 = 85.79, df = 3, P<0.0001) and matched cases (n=80, X2= 45.86,df = 3, P< 0.0001). Among 135 tumours with visible invasive margin, 86 (64%) showed stronger PINCH expression at the invasive margin than in the intratumoural stroma. The frequency of PINCH strong expression in mucinous and signet-ring cell carcinomas was higher (52%) compared to non-mucinous carcinomas (29%,X2=5.13, P= 0.02). We did not find that PINCH expression was related to patient's gender, age, tumour location, tumour size, gross status, histological type, differentiation, invasion depth, lymph node status and Dukes'stage (P> 0.05).CONCLUSION: The expression of PINCH was upregulated in colorectal cancers, and especially at the margin of tumours, and further was related to mucinous and signet-ring cell carcinomas. The results suggest that expression of PINCH may be involved in the tumourigenesis and aggressiveness of colorectal cancers.

  11. Characterization of the sensor domain of QseE histidine kinase from Escherichia coli.

    Science.gov (United States)

    Yeo, Kwon Joo; Park, Jin-Wan; Kim, Eun-Hee; Jeon, Young Ho; Hwang, Kwang Yeon; Cheong, Hae-Kap

    2016-10-01

    In enterohemorrhagic Escherichia coli (EHEC), the QseEF two-component system causes attaching and effacing (AE) lesion on epithelial cells. QseE histidine kinase senses the host hormone epinephrine, sulfate, and phosphate; it also regulates QseF response regulator, which activates LEE gene that encodes AE lesion. In order to understand the recognition of ligand molecules and signal transfer mechanism in pathogenic bacteria, structural studies of the sensor domain of QseE of Escherichia coli should be conducted. In this study, we describe the overexpression, purification, and structural and biophysical properties of the sensor domain of QseE. The fusion protein had a 6×His tag at its N-terminus; this protein was overexpressed as inclusion bodies in E. coli BL21 (DE3). The protein was denatured in 7M guanidine hydrochloride and refolded by dialysis. The purification of the refolded protein was carried out using Ni-NTA affinity column and size-exclusion chromatography. Thereafter, the characteristics of the refolded protein were determined from NMR, CD, and MALS spectroscopies. In a pH range of 7.4-5.0, the folded protein existed in a monomeric form with a predominantly helical structure. (1)H-(15)N HSQC NMR spectra shows that approximately 93% backbone amide peaks are detected at pH 5.0, suggesting that the number of backbone signals is sufficient for NMR studies. These data might provide an opportunity for structural and functional studies of the sensor domain of QseE. PMID:27371359

  12. Cloning and characterization of SCART1, a novel scavenger receptor cysteine-rich type I transmembrane molecule

    DEFF Research Database (Denmark)

    Holm, Dorte; Fink, Dorte Rosenbek; Grønlund, Jørn;

    2009-01-01

    by a transmembrane region and a cytoplasmic domain. The cytoplasmic domain contains two putative src kinase consensus substrate sequences, three additional potential phosphorylation sites, and two potential internalization motifs. Two possible secreted forms that lack the transmembrane region arise by alternative...... family of the SRCR superfamily. Finally, a novel human scavenger receptor cysteine-rich molecule with high homology to mSCART1 was identified by searching in the human genomic databases using the mSCART1 cDNA sequence....

  13. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  14. Analysis of a 30 kbp plasmid encoding histidine decarboxylase gene in Tetragenococcus halophilus isolated from fish sauce.

    Science.gov (United States)

    Satomi, Masataka; Furushita, Manabu; Oikawa, Hiroshi; Yoshikawa-Takahashi, Miwako; Yano, Yutaka

    2008-08-15

    In order to analyze the genes related to the histamine production, a strain of histamine producing halophilic bacteria, referred to as strain H, was isolated using enrichment culture and dilution-to-extinction methods with histidine broth inoculated from the fish sauce mashes. The two Japanese fish sauce mashes used, accumulate over 1000 mg/l of histamine. Phenotypic and 16 S rRNA gene sequence analyses identified strain H as Tetragenococcus halophilus, the predominant histamine producing bacteria present during fish sauce fermentation. Genetic analyses (PCR and Southern blot) of the histamine producing strain confirmed that the strain harbored a 30 kbp plasmid (pHDC) encoding a single copy of the pyruvoyl dependent histidine decarboxylase gene (hdc). A comparison of hdcA that is a structural gene of histidine decarboxylase among strain H, Lactobacillus hilgardii 0006, L. sakei LTH2076, Oenococcus oeni 9204, T. halophilus and T. muriaticus JCM10006 (T) indicated >99% sequence similarity. The hdc gene cluster consisted of 4 ORFs, hdcP, hdcA, hdcB, and hdcRS, and were almost identical to that of L. hilgardii 0006 with 99% sequence similarity including the structural hdc spacer region. However, the approximately 500 bp regions upstream and downstream of the hdc gene were different between that of strain H and L. hilgardii 0006. The complete sequence of pHDC revealed 29,924 nucleotides including 28 ORFs, two pairs of IR (inverted repeat), similar sequence of plasmid conjugative elements, and a theta-type replicon. These results suggested that hdc could be encoded on transformable elements among lactic acid bacteria. PMID:18573560

  15. Essential histidine pairs indicate conserved haem binding in epsilonproteobacterial cytochrome c haem lyases

    OpenAIRE

    Kern, Melanie; Scheithauer, Juliane; Kranz, Robert G.; Simon, Jörg

    2010-01-01

    Bacterial cytochrome c maturation occurs at the outside of the cytoplasmic membrane, requires transport of haem b across the membrane, and depends on membrane-bound cytochrome c haem lyase (CCHL), an enzyme that catalyses covalent attachment of haem b to apocytochrome c. Epsilonproteobacteria such as Wolinella succinogenes use the cytochrome c biogenesis system II and contain unusually large CCHL proteins of about 900 amino acid residues that appear to be fusions of the CcsB and CcsA proteins...

  16. Synthesis, stability constants and electronic spectral studies of ternary complexes of Pr(III) with histidine and diols

    International Nuclear Information System (INIS)

    The mixed ligand complexes of the type MAB, MA2B and MaB2 where M = Pr(III), A = histidine and B = ethanediol, prop-1,2-diol, 2-butene-1, 4-diol, but-2,3-diol, pent-1,5-diol and hex-1,6-diol have been investigated by alkalimetric titrations. The overall stability constants have been evaluated at 30+1degC (μ = 0.2MKNO3). The absorption spectra of some praseodymium(III) ternary complexes in solution have been used to calculate energy interaction and intensity parameters. The low intensity of the pseudohypersensitive transition suggests higher coordination number. (author)

  17. Sleep-Waking Discharge of Ventral Tuberomammillary Neurons in Wild-Type and Histidine Decarboxylase Knock-Out Mice

    OpenAIRE

    Sakai, Kazuya; Takahashi, Kazumi; Anaclet, Christelle; Lin, Jian-Sheng

    2010-01-01

    Using extracellular single-unit recordings, we have determined the characteristics of neurons in the ventral tuberomammillary nucleus (VTM) of wild-type (WT) and histidine decarboxylase knock-out (HDC-KO) mice during the sleep-waking cycle. The VTM neurons of HDC-KO mice showed no histamine immunoreactivity, but were immunoreactive for the histaminergic (HA) neuron markers adenosine deaminase and glutamic acid decarboxylase 67. In the VTM of WT mice, we found waking (W)-specific, non-W-specif...

  18. Identification of PGAM5 as a Mammalian Protein Histidine Phosphatase that Plays a Central Role to Negatively Regulate CD4(+) T Cells.

    Science.gov (United States)

    Panda, Saswati; Srivastava, Shekhar; Li, Zhai; Vaeth, Martin; Fuhs, Stephen R; Hunter, Tony; Skolnik, Edward Y

    2016-08-01

    Whereas phosphorylation of serine, threonine, and tyrosine is exceedingly well characterized, the role of histidine phosphorylation in mammalian signaling is largely unexplored. Here we show that phosphoglycerate mutase family 5 (PGAM5) functions as a phosphohistidine phosphatase that specifically associates with and dephosphorylates the catalytic histidine on nucleoside diphosphate kinase B (NDPK-B). By dephosphorylating NDPK-B, PGAM5 negatively regulates CD4(+) T cells by inhibiting NDPK-B-mediated histidine phosphorylation and activation of the K(+) channel KCa3.1, which is required for TCR-stimulated Ca(2+) influx and cytokine production. Using recently developed monoclonal antibodies that specifically recognize phosphorylation of nitrogens at the N1 (1-pHis) or N3 (3-pHis) positions of the imidazole ring, we detect for the first time phosphoisoform-specific regulation of histidine-phosphorylated proteins in vivo, and we link these modifications to TCR signaling. These results represent an important step forward in studying the role of histidine phosphorylation in mammalian biology and disease. PMID:27453048

  19. Phytoremediation of mixed-contaminated soil using the hyperaccumulator plant Alyssum lesbiacum: Evidence of histidine as a measure of phytoextractable nickel

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Andrew C. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom)]. E-mail: acsi@ceh.ac.uk; Bell, Thomas [Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS (United Kingdom); Heywood, Chloe A. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom); Smith, J.A.C. [Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB (United Kingdom); Thompson, Ian P. [Centre for Ecology and Hydrology-Oxford, Mansfield Road, Oxford OX1 3SR (United Kingdom)

    2007-05-15

    In this study we examine the effects of polycyclic aromatic hydrocarbons (PAHs) on the ability of the hyperaccumulator plant Alyssum lesbiacum to phytoextract nickel from co-contaminated soil. Planted and unplanted mesocosms containing the contaminated soils were repeatedly amended with sorbitan trioleate, salicylic acid and histidine in various combinations to enhance the degradation of two PAHs (phenanthrene and chrysene) and increase nickel phytoextraction. Plant growth was negatively affected by PAHs; however, there was no significant effect on the phytoextraction of Ni per unit biomass of shoot. Exogenous histidine did not increase nickel phytoextraction, but the histidine-extractable fraction of soil nickel showed a high correlation with phytoextractable nickel. These results indicate that Alyssum lesbiacum might be effective in phytoextracting nickel from marginally PAH-contaminated soils. In addition, we provide evidence for the broader applicability of histidine for quantifying and predicting Ni phytoavailability in soils. - Alyssum lesbiacum was shown to phytoextract nickel from PAH-contaminated soils from which the pool of nickel accessed for phytoextraction is closely modelled by a histidine-soil extract.

  20. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    International Nuclear Information System (INIS)

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis

  1. Obif, a Transmembrane Protein, Is Required for Bone Mineralization and Spermatogenesis in Mice.

    Directory of Open Access Journals (Sweden)

    Koji Mizuhashi

    Full Text Available Various kinds of transmembrane and secreted proteins play pivotal roles in development through cell-cell communication. We previously reported that Obif (Osteoblast induction factor, Tmem119, encoding a single transmembrane protein, is expressed in differentiating osteoblasts, and that Obif-/- mice exhibit significantly reduced bone volume in the femur. In the current study, we characterized the Obif protein and further investigated the biological phenotypes of a variety of tissues in Obif-/- mice.First, we found that O-glycosylation of the Obif protein occurs at serine residue 36 in the Obif extracellular domain. Next, we observed that Obif-/- mice exhibit bone dysplasia in association with significantly increased osteoid volume per osteoid surface (OV/OS and osteoid maturation time (Omt, and significantly decreased mineral apposition rate (MAR and bone formation rate per bone surface (BFR/BS. In addition, we observed that Obif-/- mice show a significant decrease in testis weight as well as in sperm number. By histological analysis, we found that Obif is expressed in spermatocytes and spermatids in the developing testis and that spermatogenesis is halted at the round spermatid stage in the Obif-/- testis that lacks sperm. However, the number of litters fathered by male mice was slightly reduced in Obif-/- mice compared with wild-type mice, although this was not statistically significant.Our results, taken together with previous observations, indicate that Obif is a type Ia transmembrane protein whose N-terminal region is O-glycosylated. In addition, we found that Obif is required for normal bone mineralization and late testicular differentiation in vivo. These findings suggest that Obif plays essential roles in the development of multiple tissues.

  2. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    Science.gov (United States)

    Melendy, Robert F.

    2015-12-01

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  3. Resolving the biophysics of axon transmembrane polarization in a single closed-form description

    Energy Technology Data Exchange (ETDEWEB)

    Melendy, Robert F., E-mail: rfmelendy@liberty.edu [School of Engineering and Computational Sciences, Liberty University, Lynchburg, Virginia 24515 (United States)

    2015-12-28

    When a depolarizing event occurs across a cell membrane there is a remarkable change in its electrical properties. A complete depolarization event produces a considerably rapid increase in voltage that propagates longitudinally along the axon and is accompanied by changes in axial conductance. A dynamically changing magnetic field is associated with the passage of the action potential down the axon. Over 75 years of research has gone into the quantification of this phenomenon. To date, no unified model exist that resolves transmembrane polarization in a closed-form description. Here, a simple but formative description of propagated signaling phenomena in the membrane of an axon is presented in closed-form. The focus is on using both biophysics and mathematical methods for elucidating the fundamental mechanisms governing transmembrane polarization. The results presented demonstrate how to resolve electromagnetic and thermodynamic factors that govern transmembrane potential. Computational results are supported by well-established quantitative descriptions of propagated signaling phenomena in the membrane of an axon. The findings demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation function together in generating an action potential in a unified closed-form description. The work presented in this paper provides compelling evidence that three basic factors contribute to the propagated signaling in the membrane of an axon. It is anticipated this work will compel those in biophysics, physical biology, and in the computational neurosciences to probe deeper into the classical and quantum features of membrane magnetization and signaling. It is hoped that subsequent investigations of this sort will be advanced by the computational features of this model without having to resort to numerical methods of analysis.

  4. Interaction of inhibitors of the vacuolar H(+)-ATPase with the transmembrane Vo-sector.

    Science.gov (United States)

    Páli, Tibor; Whyteside, Graham; Dixon, Neil; Kee, Terence P; Ball, Stephen; Harrison, Michael A; Findlay, John B C; Finbow, Malcolm E; Marsh, Derek

    2004-09-28

    The macrolide antibiotic concanamycin A and a designed derivative of 5-(2-indolyl)-2,4-pentadienamide (INDOL0) are potent inhibitors of vacuolar H(+)-ATPases, with IC(50) values in the low and medium nanomolar range, respectively. Interaction of these V-ATPase inhibitors with spin-labeled subunit c in the transmembrane V(o)-sector of the ATPase was studied by using the transport-active 16-kDa proteolipid analogue of subunit c from the hepatopancreas of Nephrops norvegicus. Analogous experiments were also performed with vacuolar membranes from Saccharomyces cerevisiae. Membranous preparations of the Nephrops 16-kDa proteolipid were spin-labeled either on the unique cysteine C54, with a nitroxyl maleimide, or on the functionally essential glutamate E140, with a nitroxyl analogue of dicyclohexylcarbodiimide (DCCD). These residues were previously demonstrated to be accessible to lipid. Interaction of the inhibitors with these lipid-exposed residues was studied by using both conventional and saturation transfer EPR spectroscopy. Immobilization of the spin-labeled residues by the inhibitors was observed on both the nanosecond and microsecond time scales. The perturbation by INDOL0 was mostly greater than that by concanamycin A. Qualitatively similar but quantitatively greater effects were obtained with the same spin-label reagents and vacuolar membranes in which the Nephrops 16-kDa proteolipid was expressed in place of the native vma3p proteolipid of yeast. The spin-label immobilization corresponds to a direct interaction of the inhibitors with these intramembranous sites on the protein. A mutational analysis on transmembrane segment 4 known to give resistance to concanamycin A also gave partial resistance to INDOL0. The results are consistent with transmembrane segments 2 and 4 of the 16-kDa putative four-helix bundle, and particularly the functionally essential protonation locus, being involved in the inhibitor binding sites. Inhibition of proton transport may also

  5. Neuregulin 1 expression and electrophysiological abnormalities in the Neuregulin 1 transmembrane domain heterozygous mutant mouse.

    Directory of Open Access Journals (Sweden)

    Leonora E Long

    Full Text Available The Neuregulin 1 transmembrane domain heterozygous mutant (Nrg1 TM HET mouse is used to investigate the role of Nrg1 in brain function and schizophrenia-like behavioural phenotypes. However, the molecular alterations in brain Nrg1 expression that underpin the behavioural observations have been assumed, but not directly determined. Here we comprehensively characterise mRNA Nrg1 transcripts throughout development of the Nrg1 TM HET mouse. In addition, we investigate the regulation of high-frequency (gamma electrophysiological oscillations in this mutant mouse to associate molecular changes in Nrg1 with a schizophrenia-relevant neurophysiological profile.Using exonic probes spanning the cysteine-rich, epidermal growth factor (EGF-like, transmembrane and intracellular domain encoding regions of Nrg1, mRNA levels were measured using qPCR in hippocampus and frontal cortex from male and female Nrg1 TM HET and wild type-like (WT mice throughout development. We also performed electrophysiological recordings in adult mice and analysed gamma oscillatory at baseline, in responses to auditory stimuli and to ketamine.In both hippocampus and cortex, Nrg1 TM HET mice show significantly reduced expression of the exon encoding the transmembrane domain of Nrg1 compared with WT, but unaltered mRNA expression encoding the extracellular bioactive EGF-like and the cysteine-rich (type III domains, and development-specific and region-specific reductions in the mRNA encoding the intracellular domain. Hippocampal Nrg1 protein expression was not altered, but NMDA receptor NR2B subunit phosphorylation was lower in Nrg1 TM HET mice. We identified elevated ongoing and reduced sensory-evoked gamma power in Nrg1 TM HET mice.We found no evidence to support the claim that the Nrg1 TM HET mouse represents a simple haploinsufficient model. Further research is required to explore the possibility that mutation results in a gain of Nrg1 function.

  6. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  7. Molecular Genetics of Cystic Fibrosis Transmembrane Conductance Regulator: Genotype and Phenotype.

    Science.gov (United States)

    Sosnay, Patrick R; Raraigh, Karen S; Gibson, Ronald L

    2016-08-01

    The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) gene encodes an epithelial ion channel. Although one mutation remains the most common cause of CF (F508del), there have been more than 2000 reported variations in CFTR. For the most part, individuals who carry only one mutation (heterozygotes) have no symptoms; individuals who inherit deleterious mutations from both parents have CF. However, growing awareness of CFTR mutations that do not ever or do not always cause CF, and individuals with mild or single-organ system manifestations of CFTR-related disease have made this Mendelian relationship more complex. PMID:27469177

  8. The transmembrane nucleoporin NDC1 is required for targeting of ALADIN to nuclear pore complexes

    Energy Technology Data Exchange (ETDEWEB)

    Yamazumi, Yusuke; Kamiya, Atsushi; Nishida, Ayumu; Nishihara, Ayako [Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Iemura, Shun-ichiro; Natsume, Tohru [Biological Information Research Center (AIST), Japan Biological Information Research Center (JBIC), Aomi 2-41-6, Koutou-ku, Tokyo 135-0064 (Japan); Akiyama, Tetsu, E-mail: akiyama@iam.u-tokyo.ac.jp [Laboratory of Molecular and Genetic Information, Institute for Molecular and Cellular Bioscience, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2009-11-06

    NDC1 is a transmembrane nucleoporin that is required for NPC assembly and nucleocytoplasmic transport. We show here that NDC1 directly interacts with the nucleoporin ALADIN, mutations of which are responsible for triple-A syndrome, and that this interaction is required for targeting of ALADIN to nuclear pore complexes (NPCs). Furthermore, we show that NDC1 is required for selective nuclear import. Our findings suggest that NDC1-mediated localization of ALADIN to NPCs is essential for selective nuclear protein import, and that abrogation of the interaction between ALADIN and NDC1 may be important for the development of triple-A syndrome.

  9. Artificial Diels–Alderase based on the transmembrane protein FhuA

    Science.gov (United States)

    Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi

    2016-01-01

    Summary Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVFtev). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels–Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  10. Artificial Diels-Alderase based on the transmembrane protein FhuA.

    Science.gov (United States)

    Osseili, Hassan; Sauer, Daniel F; Beckerle, Klaus; Arlt, Marcus; Himiyama, Tomoki; Polen, Tino; Onoda, Akira; Schwaneberg, Ulrich; Hayashi, Takashi; Okuda, Jun

    2016-01-01

    Copper(I) and copper(II) complexes were covalently linked to an engineered variant of the transmembrane protein Ferric hydroxamate uptake protein component A (FhuA ΔCVF(tev)). Copper(I) was incorporated using an N-heterocyclic carbene (NHC) ligand equipped with a maleimide group on the side arm at the imidazole nitrogen. Copper(II) was attached by coordination to a terpyridyl ligand. The spacer length was varied in the back of the ligand framework. These biohybrid catalysts were shown to be active in the Diels-Alder reaction of a chalcone derivative with cyclopentadiene to preferentially give the endo product. PMID:27559380

  11. A portable lipid bilayer system for environmental sensing with a transmembrane protein.

    Directory of Open Access Journals (Sweden)

    Ryuji Kawano

    Full Text Available This paper describes a portable measurement system for current signals of an ion channel that is composed of a planar lipid bilayer. A stable and reproducible lipid bilayer is formed in outdoor environments by using a droplet contact method with a micropipette. Using this system, we demonstrated that the single-channel recording of a transmembrane protein (alpha-hemolysin was achieved in the field at a high-altitude (∼3623 m. This system would be broadly applicable for obtaining environmental measurements using membrane proteins as a highly sensitive sensor.

  12. New Therapeutic Approaches to Modulate and Correct Cystic Fibrosis Transmembrane Conductance Regulator.

    Science.gov (United States)

    Ong, Thida; Ramsey, Bonnie W

    2016-08-01

    Cystic fibrosis transmembrane conductance regulator (CFTR) modulators are clinically available personalized medicines approved for some individuals with cystic fibrosis (CF) to target the underlying defect of disease. This review summarizes strategies used to develop CFTR modulators as therapies that improve function and availability of CFTR protein. Lessons learned from dissemination of ivacaftor across the CF population responsive to this therapy and future approaches to predict and monitor treatment response of CFTR modulators are discussed. The goal remains to expand patient-centered and personalized therapy to all patients with CF, ultimately improving life expectancy and quality of life for this disease. PMID:27469186

  13. Effects of several Chinese crude drugs on 45Ca transmembrane influx in vascular smooth muscles

    Institute of Scientific and Technical Information of China (English)

    ChenHeng-Liu; MoShang-Wu; 等

    1997-01-01

    The effects of several Chinese crude druge including Crocus sativus,Carthamus tinctorius and Ginkgo biloba on Ca2+ transmembrane influx in rat aorta rings were studied.Resting 45Ca uptake was not markedly altered by these drugs,whereas the 45 Ca influxes evoked by norepinephrine(1.2umol/L)and KCl(100mmol/L) in rat aorta rings were significantly inhibited by Crocus and Carthamus in a concentration-dependent manner,not by Ginkgo.The results indicate that extracellular Ca2+ tansmembrane influx through receptor-operated Ca2+ channels and potential-dependent Ca2+ channels can be blocked by crocus and Carthamus.

  14. Intrinsic potential of cell membranes: opposite effects of lipid transmembrane asymmetry and asymmetric salt ion distribution

    DEFF Research Database (Denmark)

    Gurtovenko, Andrey A; Vattulainen, Ilpo

    2009-01-01

    Using atomic-scale molecular dynamics simulations, we consider the intrinsic cell membrane potential that is found to originate from a subtle interplay between lipid transmembrane asymmetry and the asymmetric distribution of monovalent salt ions on the two sides of the cell membrane. It turns out......Cl saline solution and the PE leaflet is exposed to KCl, the outcome is that the effects of asymmetric lipid and salt ion distributions essentially cancel one another almost completely. Overall, our study highlights the complex nature of the intrinsic potential of cell membranes under physiological...

  15. Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors

    DEFF Research Database (Denmark)

    Rosenkilde, M M; Smit, M J; Waldhoer, M

    2008-01-01

    A number of human and animal herpes viruses encode G-protein coupled receptors with seven transmembrane (7TM) segments-most of which are clearly related to human chemokine receptors. It appears, that these receptors are used by the virus for immune evasion, cellular transformation, tissue targeting...... pathogenesis is still poorly understood. Here we focus on the current knowledge of structure, function and trafficking patterns of virally encoded chemokine receptors and further address the putative roles of these receptors in virus survival and host -cell and/or -immune system modulation. Finally, we...

  16. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  17. A single amino acid substitution within the transmembrane domain of the human immunodeficiency virus type 1 Vpu protein renders simian-human immunodeficiency virus (SHIVKU-1bMC33) susceptible to rimantadine

    International Nuclear Information System (INIS)

    Previous studies from our laboratory have shown that the transmembrane domain (TM) of the Vpu protein of human immunodeficiency virus type 1 (HIV-1) contributes to the pathogenesis of SHIVKU-1bMC33 in macaques and that the TM domain of Vpu could be replaced with the M2 protein viroporin from influenza A virus. Recently, we showed that the replacement of the TM domain of Vpu with that of the M2 protein of influenza A virus resulted in a virus (SHIVM2) that was sensitive to rimantadine [Hout, D.R., Gomez, M.L., Pacyniak, E., Gomez, L.M., Inbody, S.H., Mulcahy, E.R., Culley, N., Pinson, D.M., Powers, M.F., Wong, S.W., Stephens, E.B., 2006. Substitution of the transmembrane domain of Vpu in simian human immunodeficiency virus (SHIVKU-1bMC33) with that of M2 of influenza A results in a virus that is sensitive to inhibitors of the M2 ion channel and is pathogenic for pig-tailed macaques. Virology 344, 541-558]. Based on previous studies of the M2 protein which have shown that the His-X-X-X-Trp motif within the M2 is essential to the function of the M2 proton channel, we have constructed a novel SHIV in which the alanine at position 19 of the TM domain was replaced with a histidine residue resulting in the motif His-Ile-Leu-Val-Trp. The SHIVVpuA19H replicated with similar kinetics as the parental SHIVKU-1bMC33 and pulse-chase analysis revealed that the processing of viral proteins was similar to SHIVKU-1bMC33. This SHIVVpuA19H virus was found to be more sensitive to the M2 ion channel blocker rimantadine than SHIVM2. Electron microscopic examination of SHIVVpuA19H-infected cells treated with rimantadine revealed an accumulation of viral particles at the cell surface and within intracellular vesicles, which was similar to that previously observed to SHIVM2-infected cells treated with rimantadine. These data indicate that the Vpu protein of HIV-1 can be converted into a rimantadine-sensitive ion channel with the alteration of one amino acid and provide additional evidence

  18. Effect of the distal histidine on the peroxidatic activity of monomeric cytoglobin [v1; ref status: indexed, http://f1000r.es/4xg

    Directory of Open Access Journals (Sweden)

    Penny Beckerson

    2015-04-01

    Full Text Available The reaction of hydrogen peroxide with ferric human cytoglobin and a number of distal histidine variants were studied. The peroxidase activity of the monomeric wildtype protein with an internal disulfide bond, likely to be the form of the protein in vivo, exhibits a high peroxidase-like activity above that of other globins such as myoglobin. Furthermore, the peroxidatic activity of wildtype cytoglobin shows increased resistance to radical-based degradation compared to myoglobin. The ferryl form of wildtype cytoglobin is unstable, but is able to readily oxidize substrates such as guaiacol. In contrast distal histidine mutants of cytoglobin (H81Y and H81V show very low peroxidase activity but enhanced radical-induced degradation. Therefore, the weakly bound distal histidine appears to modulate ferryl stability and limit haem degradation. These data are consistent with a role of a peroxidase activity of cytoglobin in cell stress response mechanisms.

  19. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  20. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  1. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  2. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  3. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  4. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  5. Mechanistic insights revealed by the crystal structure of a histidine kinase with signal transducer and sensor domains.

    Directory of Open Access Journals (Sweden)

    Chen Wang

    Full Text Available Two-component systems (TCSs are important for the adaptation and survival of bacteria and fungi under stress conditions. A TCS is often composed of a membrane-bound sensor histidine kinase (SK and a response regulator (RR, which are relayed through sequential phosphorylation steps. However, the mechanism for how an SK is switched on in response to environmental stimuli remains obscure. Here, we report the crystal structure of a complete cytoplasmic portion of an SK, VicK from Streptococcus mutans. The overall structure of VicK is a long-rod dimer that anchors four connected domains: HAMP, Per-ARNT-SIM (PAS, DHp, and catalytic and ATP binding domain (CA. The HAMP, a signal transducer, and the PAS domain, major sensor, adopt canonical folds with dyad symmetry. In contrast, the dimer of the DHp and CA domains is asymmetric because of different helical bends in the DHp domain and spatial positions of the CA domains. Moreover, a conserved proline, which is adjacent to the phosphoryl acceptor histidine, contributes to helical bending, which is essential for the autokinase and phosphatase activities. Together, the elegant architecture of VicK with a signal transducer and sensor domain suggests a model where DHp helical bending and a CA swing movement are likely coordinated for autokinase activation.

  6. Investigation of the Copper Binding Site And the Role of Histidine As a Ligand in Riboflavin Binding Protein

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; Bencze, K.Z.; Russ, K.A.; Wasiukanis, K.; Benore-Parsons, M.; Stemmler, T.L.

    2009-05-26

    Riboflavin Binding Protein (RBP) binds copper in a 1:1 molar ratio, forming a distinct well-ordered type II site. The nature of this site has been examined using X-ray absorption and pulsed electron paramagnetic resonance (EPR) spectroscopies, revealing a four coordinate oxygen/nitrogen rich environment. On the basis of analysis of the Cambridge Structural Database, the average protein bound copper-ligand bond length of 1.96 {angstrom}, obtained by extended x-ray absorption fine structure (EXAFS), is consistent with four coordinate Cu(I) and Cu(II) models that utilize mixed oxygen and nitrogen ligand distributions. These data suggest a Cu-O{sub 3}N coordination state for copper bound to RBP. While pulsed EPR studies including hyperfine sublevel correlation spectroscopy and electron nuclear double resonance show clear spectroscopic evidence for a histidine bound to the copper, inclusion of a histidine in the EXAFS simulation did not lead to any significant improvement in the fit.

  7. Substitution of valine for histidine 265 in carbon monoxide dehydrogenase from Rhodospirillum rubrum affects activity and spectroscopic states.

    Science.gov (United States)

    Spangler, N J; Meyers, M R; Gierke, K L; Kerby, R L; Roberts, G P; Ludden, P W

    1998-02-13

    In carbon monoxide dehydrogenase (CODH) from Rhodospirillum rubrum, histidine 265 was replaced with valine by site-directed mutagenesis of the cooS gene. The altered form of CODH (H265V) had a low nickel content and a dramatically reduced level of catalytic activity. Although treatment with NiCl2 and CoCl2 increased the activity of H265V CODH by severalfold, activity levels remained more than 1000-fold lower than that of wild-type CODH. Histidine 265 was not essential for the formation and stability of the Fe4S4 clusters. The Km and KD for CO as well as the KD for cyanide were relatively unchanged as a result of the amino acid substitution in CODH. The time-dependent reduction of the [Fe4S4]2+ clusters by CO occurred on a time scale of hours, suggesting that, as a consequence of the mutation, a rate-limiting step had been introduced prior to the transfer of electrons from CO to the cubanes in centers B and C. EPR spectra of H265V CODH lacked the gav = 1.86 and gav = 1.87 signals characteristic of reduced forms of the active site (center C) of wild-type CODH. This indicates that the electronic properties of center C have been modified possibly by the disruption or alteration of the ligand-mediated interaction between the nickel site and Fe4S4 chromophore. PMID:9461598

  8. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure.

  9. Solubilisation of myosin in a solution of low ionic strength L-histidine: Significance of the imidazole ring.

    Science.gov (United States)

    Chen, Xing; Zou, Yufeng; Han, Minyi; Pan, Lihua; Xing, Tong; Xu, Xinglian; Zhou, Guanghong

    2016-04-01

    Myosin, a major muscle protein, can be solubilised in a low ionic strength solution containing L-histidine (His). To elucidate which chemical constituents in His are responsible for this solubilisation, we investigated the effects of 5mM His, imidazole (Imi), L-α-alanine (Ala), 1-methyl-L-histidine (M-his) and L-carnosine (Car) on particle properties of myosin suspensions and conformational characteristics of soluble myosin at low ionic strength (1 mM KCl, pH 7.5). His, Imi and Car, each containing an imidazole ring, were able to induce a myosin suspension, which had small particle size species and high absolute zeta potential, thus increasing the solubility of myosin. His, Imi and Car affected the tertiary structure and decreased the α-helix content of soluble myosin. Therefore, the imidazole ring of His appeared to be the significant chemical constituent in solubilising myosin at low ionic strength solution, presumably by affecting its secondary structure. PMID:26593463

  10. A two-component histidine kinase of the rice blast fungus is involved in osmotic stress response and fungicide action.

    Science.gov (United States)

    Motoyama, Takayuki; Kadokura, Kaori; Ohira, Tomohiro; Ichiishi, Akihiko; Fujimura, Makoto; Yamaguchi, Isamu; Kudo, Toshiaki

    2005-03-01

    We isolated and characterized a histidine kinase gene (HIK1) from the rice blast fungus, Pyricularia oryzae (Magnaporthe grisea). The deduced amino acid sequence of HIK1 showed highest similarity (85.7%) to a hybrid-type histidine kinase, Os-1/Nik-1 of Neurospora crassa. Disruption of HIK1 caused no defect in cell growth on normal media and in pathogenicity to rice plants. The Deltahik1 strain acquired resistance to three groups of fungicides (phenylpyrroles, dicarboximides, and aromatic hydrocarbons) similar to os-1 mutants of N. crassa. The Deltahik1 strain showed increased sensitivity to high concentrations of sugars although its salt sensitivity was not elevated, suggesting that the rice blast fungus can distinguish osmostresses caused by high sugar concentrations and high salt concentrations. In contrast, os-1 mutants of N. crassa are sensitive to high concentrations of both salts and sugars. These findings suggest that P. oryzae and N. crassa partially differ in their os (osmosensitive) signal transduction pathway. PMID:15707841

  11. The nonoxidative conversion of nitroethane to ethylnitronate in Neurospora crassa 2-nitropropane dioxygenase is catalyzed by histidine 196.

    Science.gov (United States)

    Francis, Kevin; Gadda, Giovanni

    2008-09-01

    The deprotonation of nitroethane catalyzed by Neurospora crassa 2-nitropropane dioxygenase was investigated by measuring the formation and release of ethylnitronate formed in turnover as a function of pH and through mutagenesis studies. Progress curves for the enzymatic reaction obtained by following the increase in absorbance at 228 nm over time were visibly nonlinear, requiring a logarithmic approximation of the initial reaction rates for the determination of the kinetic parameters of the enzyme. The pH dependence of the second-order rate constant k cat/ K m with nitroethane as substrate implicates the presence of a group with a p K a of 8.1 +/- 0.1 that must be unprotonated for nitronate formation. Mutagenesis studies suggest that this group is histidine 196 as evident from the inability of a H196N variant form of the enzyme to catalyze the formation of ethylnitronate from nitroethane. Replacement of histidine 196 with asparagine resulted in an approximately 15-fold increase in the k cat/ K m with ethylnitronate as compared to the wild-type, which results from the inability of the mutant enzyme to undergo nonoxidative turnover. The results presented herein are consistent with a branched catalytic mechanism for the enzyme in which the ethylnitronate intermediate formed from the H196-catalyzed deprotonation of nitroethane partitions between release from the active site and oxidative denitrification to yield acetaldehyde and nitrite. PMID:18690716

  12. Efficient expression of histidine-tagged large hepatitis delta antigen in baculovirus-transduced baby hamster kidney cells

    Institute of Scientific and Technical Information of China (English)

    Ying-Wei Chiang; Jaw-Chin Wu; Kuei-Chun Wang; Chia-Wei Lai; Yao-Chi Chung; Yu-Chen Hu

    2006-01-01

    AIM: To study the baculovirus/mammalian cell system for efficient expression of functional large hepatitis delta antigen (L-HDAg).METHODS: A recombinant baculovirus expressing histidine-tagged L-HDAg (L-HDAgH) was constructed to transduce baby hamster kidney (BHK) cells by a simplified transduction protocol.RESULTS: The recombinant baculovirus transduced BHK cells with efficiencies higher than 90% as determined by flow cytometry. The expression level was significantly higher than that obtained by plasmid transfection and was further enhanced 3-fold to around 19 pg/cell by the addition of 10 mmol/L sodium butyrate. Importantly,the expressed L-HDAgH was localized to the cell nucleus and correctly isoprenylated as determined by immunofluorescence labeling and confocal microscopy.Moreover, L-HDAgH interacted with hepatitis B surface antigen to form virus-like particles.CONCLUSION: The fusion with histidine tags as well as overexpression of L-HDAgH in the baculovirus-transduced BHK cells does not impair the biological functions. Taken together, the baculovirus/mammalian cell system offers an attractive alternative for high level expression of L-HDAgH or other proteins that require extensive posttranslational modifications.

  13. Uniform isotope labeling of a eukaryotic seven-transmembrane helical protein in yeast enables high-resolution solid-state NMR studies in the lipid environment

    Energy Technology Data Exchange (ETDEWEB)

    Fan Ying; Shi Lichi; Ladizhansky, Vladimir; Brown, Leonid S., E-mail: leonid@physics.uoguelph.ca [University of Guelph, Department of Physics (Canada)

    2011-02-15

    Overexpression of isotope-labeled multi-spanning eukaryotic membrane proteins for structural NMR studies is often challenging. On the one hand, difficulties with achieving proper folding, membrane insertion, and native-like post-translational modifications frequently disqualify bacterial expression systems. On the other hand, eukaryotic cell cultures can be prohibitively expensive. One of the viable alternatives, successfully used for producing proteins for solution NMR studies, is yeast expression systems, particularly Pichia pastoris. We report on successful implementation and optimization of isotope labeling protocols, previously used for soluble secreted proteins, to produce homogeneous samples of a eukaryotic seven-transmembrane helical protein, rhodopsin from Leptosphaeria maculans. Even in shake-flask cultures, yields exceeded 5 mg of purified uniformly {sup 13}C,{sup 15}N-labeled protein per liter of culture. The protein was stable (at least several weeks at 5 Degree-Sign C) and functionally active upon reconstitution into lipid membranes at high protein-to-lipid ratio required for solid-state NMR. The samples gave high-resolution {sup 13}C and {sup 15}N solid-state magic angle spinning NMR spectra, amenable to a detailed structural analysis. We believe that similar protocols can be adopted for challenging mammalian targets, which often resist characterization by other structural methods.

  14. The Ankyrin-Repeat Transmembrane Protein BDA1 Functions Downstream of the Receptor-Like Protein SNC2 to Regulate Plant Immunity1[C][OA

    Science.gov (United States)

    Yang, Yuanai; Zhang, Yaxi; Ding, Pingtao; Johnson, Kaeli; Li, Xin; Zhang, Yuelin

    2012-01-01

    Plants utilize a large number of immune receptors to recognize pathogens and activate defense responses. A small number of these receptors belong to the receptor-like protein family. Previously, we showed that a gain-of-function mutation in the receptor-like protein SNC2 (for Suppressor of NPR1, Constitutive2) leads to constitutive activation of defense responses in snc2-1D mutant plants. To identify defense signaling components downstream of SNC2, we carried out a suppressor screen in the snc2-1D mutant background of Arabidopsis (Arabidopsis thaliana). Map-based cloning of one of the suppressor genes, BDA1 (for bian da; “becoming big” in Chinese), showed that it encodes a protein with amino-terminal ankyrin repeats and carboxyl-terminal transmembrane domains. Loss-of-function mutations in BDA1 suppress the dwarf morphology and constitutive defense responses in snc2-1D npr1-1 (for nonexpressor of pathogenesis-related genes1,1) and also result in enhanced susceptibility to bacterial pathogens. In contrast, a gain-of-function allele of bda1 isolated from a separate genetic screen to search for mutants with enhanced pathogen resistance was found to constitutively activate cell death and defense responses. These data suggest that BDA1 is a critical signaling component that functions downstream of SNC2 to regulate plant immunity. PMID:22740615

  15. Channel Gating Regulation by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) First Cytosolic Loop.

    Science.gov (United States)

    Ehrhardt, Annette; Chung, W Joon; Pyle, Louise C; Wang, Wei; Nowotarski, Krzysztof; Mulvihill, Cory M; Ramjeesingh, Mohabir; Hong, Jeong; Velu, Sadanandan E; Lewis, Hal A; Atwell, Shane; Aller, Steve; Bear, Christine E; Lukacs, Gergely L; Kirk, Kevin L; Sorscher, Eric J

    2016-01-22

    In this study, we present data indicating a robust and specific domain interaction between the cystic fibrosis transmembrane conductance regulator (CFTR) first cytosolic loop (CL1) and nucleotide binding domain 1 (NBD1) that allows ion transport to proceed in a regulated fashion. We used co-precipitation and ELISA to establish the molecular contact and showed that binding kinetics were not altered by the common clinical mutation F508del. Both intrinsic ATPase activity and CFTR channel gating were inhibited severely by CL1 peptide, suggesting that NBD1/CL1 binding is a crucial requirement for ATP hydrolysis and channel function. In addition to cystic fibrosis, CFTR dysregulation has been implicated in the pathogenesis of prevalent diseases such as chronic obstructive pulmonary disease, acquired rhinosinusitis, pancreatitis, and lethal secretory diarrhea (e.g. cholera). On the basis of clinical relevance of the CFTR as a therapeutic target, a cell-free drug screen was established to identify modulators of NBD1/CL1 channel activity independent of F508del CFTR and pharmacologic rescue. Our findings support a targetable mechanism of CFTR regulation in which conformational changes in the NBDs cause reorientation of transmembrane domains via interactions with CL1 and result in channel gating.

  16. Transmembrane adaptor proteins in the high-affinity IgE receptor signaling

    Directory of Open Access Journals (Sweden)

    Petr eDraber

    2012-01-01

    Full Text Available Aggregation of the high-affinity IgE receptor (FcεRI initiates a cascade of signaling events leading to release of preformed inflammatory and allergy mediators and de novo synthesis and secretion of cytokines and other compounds. The first biochemically well defined step of this signaling cascade is tyrosine phosphorylation of the FcεRI subunits by Src family kinase Lyn, followed by recruitment and activation of Syk kinase. Activity of Syk is decisive for the formation of multicomponent signaling assemblies, the signalosomes, in the vicinity of the receptors. Formation of the signalosomes is dependent on the presence of transmembrane adaptor proteins (TRAPs. These proteins are characterized by a short extracellular domain, a single transmembrane domain and a cytoplasmic tail with various motifs serving as anchors for cytoplasmic signaling molecules. In mast cells five TRAPs have been identified (LAT, NTAL, LAX, PAG and GAPT; engagement of four of them (LAT, NTAL, LAX and PAG in FcεRI signaling has been documented. Here we discuss recent progress in the understanding of how TRAPs affect FcεRI-mediated mast cell signaling. The combined data indicate that individual TRAPs have irreplaceable roles in important signaling events such as calcium response, degranulation, cytokines production and chemotaxis.

  17. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  18. Functional characterization in Caenorhabditis elegans of transmembrane worm-human orthologs

    Directory of Open Access Journals (Sweden)

    Baillie David L

    2004-11-01

    Full Text Available Abstract Background The complete genome sequences for human and the nematode Caenorhabditis elegans offer an opportunity to learn more about human gene function through functional characterization of orthologs in the worm. Based on a previous genome-wide analysis of worm-human orthologous transmembrane proteins, we selected seventeen genes to explore experimentally in C. elegans. These genes were selected on the basis that they all have high confidence candidate human orthologs and that their function is unknown. We first analyzed their phylogeny, membrane topology and domain organization. Then gene functions were studied experimentally in the worm by using RNA interference and transcriptional gfp reporter gene fusions. Results The experiments gave functional insights for twelve of the genes studied. For example, C36B1.12, the worm ortholog of three presenilin-like genes, was almost exclusively expressed in head neurons, suggesting an ancient conserved role important to neuronal function. We propose a new transmembrane topology for the presenilin-like protein family. sft-4, the worm ortholog of surfeit locus gene Surf-4, proved to be an essential gene required for development during the larval stages of the worm. R155.1, whose human ortholog is entirely uncharacterized, was implicated in body size control and other developmental processes. Conclusions By combining bioinformatics and C. elegans experiments on orthologs, we provide functional insights on twelve previously uncharacterized human genes.

  19. Prediction of the burial status of transmembrane residues of helical membrane proteins

    Directory of Open Access Journals (Sweden)

    Hayat Sikander

    2007-08-01

    Full Text Available Abstract Background Helical membrane proteins (HMPs play a crucial role in diverse cellular processes, yet it still remains extremely difficult to determine their structures by experimental techniques. Given this situation, it is highly desirable to develop sequence-based computational methods for predicting structural characteristics of HMPs. Results We have developed TMX (TransMembrane eXposure, a novel method for predicting the burial status (i.e. buried in the protein structure vs. exposed to the membrane of transmembrane (TM residues of HMPs. TMX derives positional scores of TM residues based on their profiles and conservation indices. Then, a support vector classifier is used for predicting their burial status. Its prediction accuracy is 78.71% on a benchmark data set, representing considerable improvements over 68.67% and 71.06% of previously proposed methods. Importantly, unlike the previous methods, TMX automatically yields confidence scores for the predictions made. In addition, a feature selection incorporated in TMX reveals interesting insights into the structural organization of HMPs. Conclusion A novel computational method, TMX, has been developed for predicting the burial status of TM residues of HMPs. Its prediction accuracy is much higher than that of previously proposed methods. It will be useful in elucidating structural characteristics of HMPs as an inexpensive, auxiliary tool. A web server for TMX is established at http://service.bioinformatik.uni-saarland.de/tmx and freely available to academic users, along with the data set used.

  20. Transmembrane Inhibitor of RICTOR/mTORC2 in Hematopoietic Progenitors

    Directory of Open Access Journals (Sweden)

    Dongjun Lee

    2014-11-01

    Full Text Available Central to cellular proliferative, survival, and metabolic responses is the serine/threonine kinase mTOR, which is activated in many human cancers. mTOR is present in distinct complexes that are either modulated by AKT (mTORC1 or are upstream and regulatory of it (mTORC2. Governance of mTORC2 activity is poorly understood. Here, we report a transmembrane molecule in hematopoietic progenitor cells that physically interacts with and inhibits RICTOR, an essential component of mTORC2. Upstream of mTORC2 (UT2 negatively regulates mTORC2 enzymatic activity, reducing AKTS473, PKCα, and NDRG1 phosphorylation and increasing FOXO transcriptional activity in an mTORC2-dependent manner. Modulating UT2 levels altered animal survival in a T cell acute lymphoid leukemia (T-ALL model that is known to be mTORC2 sensitive. These studies identify an inhibitory component upstream of mTORC2 in hematopoietic cells that can reduce mortality from NOTCH-induced T-ALL. A transmembrane inhibitor of mTORC2 may provide an attractive target to affect this critical cell regulatory pathway.