WorldWideScience

Sample records for bacterial toxins

  1. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  2. Food irradiation and bacterial toxins

    International Nuclear Information System (INIS)

    The authors' findings indicate that irradiation confers no advantage over heat processing in respect of bacterial toxins (clostridium botulinum, neurotoxin A and staphylococcal enterotoxin A). It follows that irradiation at doses less than the ACINF recommended upper limit of 10 kGy could not be used to improve the ambient temperature shelf life on non-acid foods. (author)

  3. Bacterial toxin-antitoxin systems

    OpenAIRE

    Guglielmini, Julien; Van Melderen, Laurence

    2011-01-01

    Toxin-antitoxin (TA) systems are composed of two elements: a toxic protein and an antitoxin which is either an RNA (type I and III) or a protein (type II). Type II systems are abundant in bacterial genomes in which they move via horizontal gene transfer. They are generally composed of two genes organized in an operon, encoding a toxin and a labile antitoxin. When carried by mobile genetic elements, these small modules contribute to their stability by a phenomenon denoted as addiction. Recentl...

  4. Emerging food pathogens and bacterial toxins.

    Science.gov (United States)

    Bielecki, Jacek

    2003-01-01

    Many different foodborne diseases have been described. For example, Shigella bacteria, hepatitis A virus and Norwalk virus were shown as a unwashed hands microorganisms, but pathogen Campylobacter and Escherichia coli were named as raw and undercooked meat and poultry or raw milk and untreated water born bacteria. However, two of them: Listeria monocytogenes and Yersinia enterocolitica are known as growing at refrigerator temperatures. Essential virulence determinants of Listeria monocytogenes pathogenicity are well known as a bacterial toxins. Basic molecular mechanisms of pathogenicity depending from these toxins were presented. It was shown that other bacterial toxins may act as very danger food poisoning substances. This is why elimination of pathogenic microorganisms from foods is an obvious solution in some food processes, however this approach is not practical or even desirable in many processes. Thus, risk assessment and microbial monitoring will continue to play important roles in ensuring food safety. Some technological advances have the capability of delivering detection systems that can not only monitor pathogenic microorganisms, but also entire microbial populations in the food matrix. PMID:15058810

  5. Linking bacterial type I toxins with their actions.

    Science.gov (United States)

    Brielle, Régine; Pinel-Marie, Marie-Laure; Felden, Brice

    2016-04-01

    Bacterial type I toxin-antitoxin systems consist of stable toxin-encoding mRNAs whose expression is counteracted by unstable RNA antitoxins. Accumulating evidence suggests that these players belong to broad regulatory networks influencing overall bacterial physiology. The majority of known transmembrane type I toxic peptides have conserved structural characteristics. However, recent studies demonstrated that their mechanisms of toxicity are diverse and complex. To better assess the current state of the art, type I toxins can be grouped into two classes according to their location and mechanisms of action: membrane-associated toxins acting by pore formation and/or by nucleoid condensation; and cytosolic toxins inducing nucleic acid cleavage. This classification will evolve as a result of future investigations. PMID:26874964

  6. Fold modulating function: Bacterial toxins to functional amyloids

    Directory of Open Access Journals (Sweden)

    AdnanKhawajaSyed

    2014-08-01

    Full Text Available Many bacteria produce cytolytic toxins that target host cells or other competing microbes. It is well known that environmental factors control toxin expression, however recent work suggests that some bacteria manipulate the fold of these protein toxins to control their function. The β-sheet rich amyloid fold is a highly stable ordered aggregate that many toxins form in response to specific environmental conditions. When in the amyloid state, toxins become inert, losing the cytolytic activity they display in the soluble form. Emerging evidence suggest that some amyloids function as toxin storage systems until they are again needed, while other bacteria utilize amyloids as a structural matrix component of biofilms. This amyloid matrix component facilitates resistance to biofilm disruptive challenges. The bacterial amyloids discussed in this review reveal an elegant system where changes in protein fold and solubility dictate the function of proteins in response to the environment.

  7. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom;

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex of the...

  8. Host defenses against bacterial pore-forming toxins

    OpenAIRE

    Los, F.C.O.

    2011-01-01

    Pore-forming toxins (PFTs), the most common bacterial toxins, contribute to infection by perforating host cell membranes. Excessive use and lack of new development of antibiotics are causing increasing numbers of drug-resistant bacteria, like methicillin-resistant Staphylococcus aureus (MRSA) and Mycobacterium tuberculosis. A review of primary literature shows PFTs may form a viable target for new antibiotics, warranting their further investigation. This thesis describes three studies on host...

  9. Linking bacterial type I toxins with their actions

    OpenAIRE

    Brielle, Régine; Pinel-Marie, Marie-Laure; Felden, Brice

    2016-01-01

    Bacterial type I toxin–antitoxin systems consist of stable toxin-encoding mRNAs whose expression is counteracted by unstable RNA antitoxins. Accumulating evidence suggests that these players belong to broad regulatory networks influencing overall bacterial physiology. The majority of known transmembrane type I toxic peptides have conserved structural characteristics. However, recent studies demonstrated that their mechanisms of toxicity are diverse and complex. To better assess the current st...

  10. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    Directory of Open Access Journals (Sweden)

    Philip A. Gurnev

    2014-08-01

    Full Text Available To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications.

  11. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    OpenAIRE

    Gurnev, Philip A.; Nestorovich, Ekaterina M

    2014-01-01

    To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of t...

  12. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  13. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  14. Protein Translocation by Bacterial Toxin Channels: A Comparison of Diphtheria Toxin and Colicin Ia

    OpenAIRE

    Wu, Zhengyan; Jakes, Karen S.; Samelson-Jones, Ben S.; Lai, Bing; Zhao, Gang; London, Erwin; Finkelstein, Alan

    2006-01-01

    Regions of both colicin Ia and diphtheria toxin N-terminal to the channel-forming domains can be translocated across planar phospholipid bilayer membranes. In this article we show that the translocation pathway of diphtheria toxin allows much larger molecules to be translocated than does the translocation pathway of colicin Ia. In particular, the folded A chain of diphtheria toxin is readily translocated by that toxin but is not translocated by colicin Ia. This difference cannot be attributed...

  15. A common origin for the bacterial toxin-antitoxin systems parD and ccd, suggested by analyses of toxin/target and toxin/antitoxin interactions.

    Directory of Open Access Journals (Sweden)

    Andrew B Smith

    Full Text Available Bacterial toxin-antitoxin (TA systems encode two proteins, a potent inhibitor of cell proliferation (toxin and its specific antidote (antitoxin. Structural data has revealed striking similarities between the two model TA toxins CcdB, a DNA gyrase inhibitor encoded by the ccd system of plasmid F, and Kid, a site-specific endoribonuclease encoded by the parD system of plasmid R1. While a common structural fold seemed at odds with the two clearly different modes of action of these toxins, the possibility of functional crosstalk between the parD and ccd systems, which would further point to their common evolutionary origin, has not been documented. Here, we show that the cleavage of RNA and the inhibition of protein synthesis by the Kid toxin, two activities that are specifically counteracted by its cognate Kis antitoxin, are altered, but not inhibited, by the CcdA antitoxin. In addition, Kis was able to inhibit the stimulation of DNA gyrase-mediated cleavage of DNA by CcdB, albeit less efficiently than CcdA. We further show that physical interactions between the toxins and antitoxins of the different systems do occur and define the stoichiometry of the complexes formed. We found that CcdB did not degrade RNA nor did Kid have any reproducible effect on the tested DNA gyrase activities, suggesting that these toxins evolved to reach different, rather than common, cellular targets.

  16. Synthetic peptides with antigenic specificity for bacterial toxins.

    Science.gov (United States)

    Sela, M; Arnon, R; Jacob, C O

    1986-01-01

    The attachment of a diphtheria toxin-specific synthetic antigenic determinant and a synthetic adjuvant to a synthetic polymeric carrier led to production of a totally synthetic macromolecule which provoked protective antibodies against diphtheria when administered in aqueous solution. When peptides related to the B subunit of cholera toxin were synthesized and attached to tetanus toxoid, antibodies produced against the conjugate reacted in some but not all cases with intact cholera toxin and (especially with peptide CTP 3, residues 50-64) neutralized toxin reactivity, as tested by permeability in rabbit skin, fluid accumulation in ligated small intestinal loops and adenylate cyclase activation. Polymerization of the peptide without any external carrier, or conjugation with the dipalmityl lysine group, had as good an effect in enhancing the immune response as its attachment to tetanus toxoid. Prior exposure to the carrier suppressed the immune response to the epitope attached to it, whereas prior exposure to the synthetic peptide had a good priming effect when the intact toxin was given; when two different peptides were attached to the same carrier, both were expressed. Antisera against peptide CTP 3 were highly cross-reactive with the heat-labile toxin of Escherichia coli and neutralized it to the same extent as cholera toxin, which is not surprising in view of the great homology between the two proteins. A synthetic oligonucleotide coding for CTP 3 has been used to express the peptide in a form suitable for immunization. It led to a priming effect against the intact cholera toxin. PMID:2426052

  17. Toxins

    Science.gov (United States)

    Toxins are substances created by plants and animals that are poisonous to humans. Toxins also include some medicines that are helpful in small doses, but poisonous in large amounts. Most toxins that ...

  18. Insights on the trafficking and retro-translocation of glycosphingolipid-binding bacterial toxins

    OpenAIRE

    Cho, Jin A.; Chinnapen, Daniel J.-F.; Aamar, Emil; te Welscher, Yvonne M.; Lencer, Wayne I.; Massol, Ramiro

    2012-01-01

    Some bacterial toxins and viruses have evolved the capacity to bind mammalian glycosphingolipids to gain access to the cell interior, where they can co-opt the endogenous mechanisms of cellular trafficking and protein translocation machinery to cause toxicity. Cholera toxin (CT) is one of the best-studied examples, and is the virulence factor responsible for massive secretory diarrhea seen in cholera. CT enters host cells by binding to monosialotetrahexosylganglioside (GM1 gangliosides) at th...

  19. Clostridium perfringens epsilon toxin: the third most potent bacterial toxin known.

    Science.gov (United States)

    Alves, Guilherme Guerra; Machado de Ávila, Ricardo Andrez; Chávez-Olórtegui, Carlos Delfin; Lobato, Francisco Carlos Faria

    2014-12-01

    Epsilon toxin (ETX) is produced by Clostridium perfringens type B and D strains and causes enterotoxemia, a highly lethal disease with major impacts on the farming of domestic ruminants, particularly sheep. ETX belongs to the aerolysin-like pore-forming toxin family. Although ETX has striking similarities to other toxins in this family, ETX is often more potent, with an LD50 of 100 ng/kg in mice. Due to this high potency, ETX is considered as a potential bioterrorism agent and has been classified as a category B biological agent by the Centers for Disease Control and Prevention (CDC) of the United States. The protoxin is converted to an active toxin through proteolytic cleavage performed by specific proteases. ETX is absorbed and acts locally in the intestines then subsequently binds to and causes lesions in other organs, including the kidneys, lungs and brain. The importance of this toxin for veterinary medicine and its possible use as a biological weapon have drawn the attention of researchers and have led to a large number of studies investigating ETX. The aim of the present work is to review the existing knowledge on ETX from C. perfringens type B and D. PMID:25234332

  20. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Gurkan Cemal

    2005-12-01

    Full Text Available Abstract The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase promoter that is particularly suitable for heterologous expression of foreign genes. While recombinant production of bacterial toxins and their derivatives is highly desirable, attempts at their heterologous expression using the traditional E. coli expression system can be problematic due to the formation of inclusion bodies that often severely limit the final yields of biologically active products. However, recent literature now suggests that P. pastoris may be an attractive alternative host for the heterologous production of bacterial toxins, such as those from the genera Bacillus, Clostridium, and Corynebacterium, as well as their more complex derivatives. Here, we review the recombinant production of bacterial toxins and their derivatives in P. pastoris with special emphasis on their potential clinical applications. Considering that de novo design and construction of synthetic toxin genes have often been necessary to achieve optimal heterologous expression in P. pastoris, we also present general guidelines to this end based on our experience with the P. pastoris expression of the Bacillus thuringiensis Cyt2Aa1 toxin.

  1. Harvard Medical School professor to give lecture on bacterial toxins at Virginia Bioinformatics Institute

    OpenAIRE

    Whyte, Barry James

    2009-01-01

    R. John Collier, Maude and Lillian Presley Professor of Microbiology and Molecular Genetics at Harvard Medical School, will visit the Virginia Bioinformatics Institute at Virginia Tech on May 21 and 22 to discuss his research on the function of bacterial toxins, including how this work can be used to develop countermeasures against anthrax.

  2. A bacterial toxin inhibits DNA replication elongation through a direct interaction with the β sliding clamp.

    Science.gov (United States)

    Aakre, Christopher D; Phung, Tuyen N; Huang, David; Laub, Michael T

    2013-12-12

    Toxin-antitoxin (TA) systems are ubiquitous on bacterial chromosomes, yet the mechanisms regulating their activity and the molecular targets of toxins remain incompletely defined. Here, we identify SocAB, an atypical TA system in Caulobacter crescentus. Unlike canonical TA systems, the toxin SocB is unstable and constitutively degraded by the protease ClpXP; this degradation requires the antitoxin, SocA, as a proteolytic adaptor. We find that the toxin, SocB, blocks replication elongation through an interaction with the sliding clamp, driving replication fork collapse. Mutations that suppress SocB toxicity map to either the hydrophobic cleft on the clamp that binds DNA polymerase III or a clamp-binding motif in SocB. Our findings suggest that SocB disrupts replication by outcompeting other clamp-binding proteins. Collectively, our results expand the diversity of mechanisms employed by TA systems to regulate toxin activity and inhibit bacterial growth, and they suggest that inhibiting clamp function may be a generalizable antibacterial strategy. PMID:24239291

  3. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  4. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  5. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  6. Histone modifications induced by a family of bacterial toxins

    OpenAIRE

    Hamon, Mélanie Anne; Batsché, Eric; Régnault, Béatrice; Tham, To Nam; Seveau, Stéphanie; Muchardt, Christian; Cossart, Pascale

    2007-01-01

    Upon infection, pathogens reprogram host gene expression. In eukaryotic cells, genetic reprogramming is induced by the concerted activation/repression of transcription factors and various histone modifications that control DNA accessibility in chromatin. We report here that the bacterial pathogen Listeria monocytogenes induces a dramatic dephosphorylation of histone H3 as well as a deacetylation of histone H4 during early phases of infection. This effect is mediated by the major listerial tox...

  7. Fragments of the bacterial toxin microcin B17 as gyrase poisons.

    Directory of Open Access Journals (Sweden)

    Frédéric Collin

    Full Text Available Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex, which triggers a chain of events leading to cell death. Microcin B17 (MccB17 is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable as a therapeutic drug. However, its structure and mechanism could inspire the design of new antibacterial compounds that are needed to circumvent the rise in bacterial resistance to current antibiotics. Here we describe the investigation of the structural features responsible for MccB17 activity and the identification of fragments of the toxin that retain the ability to stabilise the cleavage complex.

  8. Fragments of the Bacterial Toxin Microcin B17 as Gyrase Poisons

    OpenAIRE

    Frédéric Collin; Thompson, Robert E; Jolliffe, Katrina A.; Payne, Richard J.; Anthony Maxwell

    2013-01-01

    Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex), which triggers a chain of events leading to cell death. Microcin B17 (MccB17) is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable as a therapeutic drug. However, its structure and mechanism could inspire the design of new antibact...

  9. Cell-to-Cell Propagation of the Bacterial Toxin CNF1 via Extracellular Vesicles: Potential Impact on the Therapeutic Use of the Toxin

    Directory of Open Access Journals (Sweden)

    Alessia Fabbri

    2015-11-01

    Full Text Available Eukaryotic cells secrete extracellular vesicles (EVs, either constitutively or in a regulated manner, which represent an important mode of intercellular communication. EVs serve as vehicles for transfer between cells of membrane and cytosolic proteins, lipids and RNA. Furthermore, certain bacterial protein toxins, or possibly their derived messages, can be transferred cell to cell via EVs. We have herein demonstrated that eukaryotic EVs represent an additional route of cell-to-cell propagation for the Escherichia coli protein toxin cytotoxic necrotizing factor 1 (CNF1. Our results prove that EVs from CNF1 pre-infected epithelial cells can induce cytoskeleton changes, Rac1 and NF-κB activation comparable to that triggered by CNF1. The observation that the toxin is detectable inside EVs derived from CNF1-intoxicated cells strongly supports the hypothesis that extracellular vesicles can offer to the toxin a novel route to travel from cell to cell. Since anthrax and tetanus toxins have also been reported to engage in the same process, we can hypothesize that EVs represent a common mechanism exploited by bacterial toxins to enhance their pathogenicity.

  10. Urokinase-targeted recombinant bacterial protein toxins-a rationally designed and engineered anticancer agent for cancer therapy

    Institute of Scientific and Technical Information of China (English)

    Yizhen LIU; Shi-Yan LI

    2009-01-01

    Urokinase-targeted recombinant bacterial protein toxins are a sort of rationally designed and engineered anticancer recombinant fusion proteins representing a novel class of agents for cancer therapy.Bacterial protein toxins have long been known as the primary virulence factor(s) for a variety of pathogenic bacteria and are the most powerful human poisons.On the other hand,it has been well documented that urokinase-type plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR),making up the uPA system,are overexpressed in a variety of human tumors and tumor cell lines.The expression of uPA system is highly correlated with tumor invasion and metastasis.To exploit these characteristics in the design of tumor cell-selective cytotoxins,two prominent bacterial protein toxins,i.e.,the diphtheria toxin and anthrax toxin are deliberately engineered through placing a sequence targeted specifically by the uPA system to form anticancer recombinant fusion proteins.These uPA system-targeted bacterial protein toxins are activated selectively on the surface of uPA systemexpressing tumor cells,thereby killing these cells.This article provides a review on the latest progress in the exploitation of these recombinant fusion proteins as potent tumoricidal agents.It is perceptible that the strategies for cancer therapy are being innovated by this novel therapeutic approach.

  11. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  12. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  13. Lack of effect of maize expressing bacterial toxin Cry1Ab on the composition of insect communities

    Czech Academy of Sciences Publication Activity Database

    Habuštová, Oxana; Doležal, Petr; Hussein, H. M.; Spitzer, L.; Turanli, F.; Růžička, Vlastimil; Sehnal, František

    Warsaw : Warsaw Agricultural University, 2007. s. 40-40. [EIGMO Meeting Ecological Impact of Genetically Modified Organisms /3./. 23.05.2007-25.05.2007, Warsaw] R&D Projects: GA AV ČR KJB6007304 Institutional research plan: CEZ:AV0Z50070508 Keywords : bacterial toxin Cry1Ab Subject RIV: EH - Ecology, Behaviour

  14. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    Energy Technology Data Exchange (ETDEWEB)

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis (Emory-MED); (UCD); (Adelaide); (Monash)

    2009-01-30

    AB{sub 5} toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB{sub 5} toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.

  15. Bacterial metabolic 'toxins': a new mechanism for lactose and food intolerance, and irritable bowel syndrome.

    Science.gov (United States)

    Campbell, A K; Matthews, S B; Vassel, N; Cox, C D; Naseem, R; Chaichi, J; Holland, I B; Green, J; Wann, K T

    2010-12-30

    Lactose and food intolerance cause a wide range of gut and systemic symptoms, including gas, gut pain, diarrhoea or constipation, severe headaches, severe fatigue, loss of cognitive functions such as concentration, memory and reasoning, muscle and joint pain, heart palpitations, and a variety of allergies (Matthews and Campbell, 2000; Matthews et al., 2005; Waud et al., 2008). These can be explained by the production of toxic metabolites from gut bacteria, as a result of anaerobic digestion of carbohydrates and other foods, not absorbed in the small intestine. These metabolites include alcohols, diols such as butan 2,3 diol, ketones, acids, and aldehydes such as methylglyoxal (Campbell et al., 2005, 2009). These 'toxins' induce calcium signals in bacteria and affect their growth, thereby acting to modify the balance of microflora in the gut (Campbell et al., 2004, 2007a,b). These bacterial 'toxins' also affect signalling mechanisms in cells around the body, thereby explaining the wide range of symptoms in people with food intolerance. This new mechanism also explains the most common referral to gastroenterologists, irritable bowel syndrome (IBS), and the illness that afflicted Charles Darwin for 50 years (Campbell and Matthews, 2005a,b). We propose it will lead to a new understanding of the molecular mechanism of type 2 diabetes and some cancers. PMID:20851732

  16. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food

    OpenAIRE

    Yan Xianghe; Gurtler Joshua B; Fratamico Pina M; Hu Jing; Juneja Vijay K

    2012-01-01

    Abstract Background Toxin-antitoxin (TA) systems are commonly found in bacteria and Archaea, and it is the most common mechanism involved in bacterial programmed cell death or apoptosis. Recently, MazF, the toxin component of the toxin-antitoxin module, has been categorized as an endoribonuclease, or it may have a function similar to that of a RNA interference enzyme. Results In this paper, with comparative data and phylogenetic analyses, we are able to identify several potential MazF-conserv...

  17. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  18. Phylogenetic identification of bacterial MazF toxin protein motifs among probiotic strains and foodborne pathogens and potential implications of engineered probiotic intervention in food

    Science.gov (United States)

    The most common mechanism involved in bacterial programmed cell death or apoptosis is through toxin-antitoxin (TA) modules, which exist in many bacterial species. An experimental procedure or method that provides novel insights into the molecular basis for the development of engineered/synthetic pr...

  19. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    International Nuclear Information System (INIS)

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP

  20. Binary Bacterial Toxins: Biochemistry, Biology, and Applications of Common Clostridium and Bacillus Proteins

    OpenAIRE

    Barth, Holger; Aktories, Klaus; Popoff, Michel R.; Stiles, Bradley G.

    2004-01-01

    Certain pathogenic species of Bacillus and Clostridium have developed unique methods for intoxicating cells that employ the classic enzymatic “A-B” paradigm for protein toxins. The binary toxins produced by B. anthracis, B. cereus, C. botulinum, C. difficile, C. perfringens, and C. spiroforme consist of components not physically associated in solution that are linked to various diseases in humans, animals, or insects. The “B” components are synthesized as precursors that are subsequently acti...

  1. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products

    OpenAIRE

    Stephen Inbaraj, B; Chen, B H

    2016-01-01

    Food safety draws considerable attention in the modern pace of the world owing to rapid-changing food recipes and food habits. Foodborne illnesses associated with pathogens, toxins, and other contaminants pose serious threat to human health. Besides, a large amount of money is spent on both analyses and control measures, which causes significant loss to the food industry. Conventional detection methods for bacterial pathogens and toxins are time consuming and laborious, requiring certain soph...

  2. Neuronal Goα and CAPS regulate behavioral and immune responses to bacterial pore-forming toxins.

    Directory of Open Access Journals (Sweden)

    Ferdinand C O Los

    Full Text Available Pore-forming toxins (PFTs are abundant bacterial virulence factors that attack host cell plasma membranes. Host defense mechanisms against PFTs described to date all function in the host tissue that is directly attacked by the PFT. Here we characterize a rapid and fully penetrant cessation of feeding of Caenorhabditis elegans in response to PFT attack. We demonstrate via analyses of C. elegans mutants that inhibition of feeding by PFT requires the neuronal G protein Goα subunit goa-1, and that maintenance of this response requires neuronally expressed calcium activator for protein secretion (CAPS homolog unc-31. Independently from their role in feeding cessation, we find that goa-1 and unc-31 are additionally required for immune protection against PFTs. We thus demonstrate that the behavioral and immune responses to bacterial PFT attack involve the cross-talk between the nervous system and the cells directly under attack.

  3. The effects of Bt Cry1Ie toxin on bacterial diversity in the midgut of Apis mellifera ligustica (Hymenoptera: Apidae).

    Science.gov (United States)

    Jia, Hui-Ru; Geng, Li-Li; Li, Yun-He; Wang, Qiang; Diao, Qing-Yun; Zhou, Ting; Dai, Ping-Li

    2016-01-01

    The honey bee has been regarded as a key species in the environmental risk assessment of biotech crops. Here, the potential adverse effects of Cry1Ie toxin on the midgut bacteria of the worker bees (Apis mellifera ligustica) were investigated under laboratory conditions. Newly emerged bees were fed with different concentrations of Cry1Ie toxin syrups (20 ng/mL, 200 ng/mL, and 20 μg/mL), pure sugar syrup, and 48 ppb of imidacloprid syrups, then sampled after 15 and 30 d. We characterized the dominant midgut bacteria and compared the composition and structure of the midgut bacterial community in all samples using the Illumina MiSeq platform targeting the V3-V4 regions of 16S rDNA. No significant differences in the diversity of the midgut bacteria were observed between the five treatments. This work was the first to show the effects of Cry1Ie toxin on honey bees, and our study provided a theoretical basis for the biosafety assessment of transgenic Cry1Ie maize. PMID:27090812

  4. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.

    Science.gov (United States)

    Heuck, Alejandro P; Moe, Paul C; Johnson, Benjamin B

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are a family of beta-barrel pore-forming toxins secreted by Gram-positive bacteria. These toxins are produced as water-soluble monomeric proteins that after binding to the target cell oligomerize on the membrane surface forming a ring-like pre-pore complex, and finally insert a large beta-barrel into the membrane (about 250 A in diameter). Formation of such a large transmembrane structure requires multiple and coordinated conformational changes. The presence of cholesterol in the target membrane is absolutely required for pore-formation, and therefore it was long thought that cholesterol was the cellular receptor for these toxins. However, not all the CDCs require cholesterol for binding. Intermedilysin, secreted by Streptoccocus intermedius only binds to membranes containing a protein receptor, but forms pores only if the membrane contains sufficient cholesterol. In contrast, perfringolysin O, secreted by Clostridium perfringens, only binds to membranes containing substantial amounts of cholesterol. The mechanisms by which cholesterol regulates the cytolytic activity of the CDCs are not understood at the molecular level. The C-terminus of perfringolysin O is involved in cholesterol recognition, and changes in the conformation of the loops located at the distal tip of this domain affect the toxin-membrane interactions. At the same time, the distribution of cholesterol in the membrane can modulate toxin binding. Recent studies support the concept that there is a dynamic interplay between the cholesterol-binding domain of the CDCs and the excess of cholesterol molecules in the target membrane. PMID:20213558

  5. Reevaluating the Concept of Treating Experimental Tumors with a Mixed Bacterial Vaccine: Coley's Toxin

    OpenAIRE

    Maletzki, C.; Klier, U.; W. Obst; Kreikemeyer, B.; Linnebacher, M

    2012-01-01

    Several decades after Coley's initial work, we here systematically analyzed tumoricidal as well as immunostimulatory effects of the historical preparation Coley's Toxin (CT), a safe vaccine made of heat-inactivated S. pyogenes and S. marcescens. First, by performing in vitro analysis, established human pancreatic carcinoma cell lines responded with dose- and time-dependent growth inhibition. Effects were attributed to necrotic as well as apoptotic cell death as determined by increased Caspase...

  6. Activation of Bacteroides fragilis toxin by a novel bacterial protease contributes to anaerobic sepsis in mice.

    Science.gov (United States)

    Choi, Vivian M; Herrou, Julien; Hecht, Aaron L; Teoh, Wei Ping; Turner, Jerrold R; Crosson, Sean; Bubeck Wardenburg, Juliane

    2016-05-01

    Bacteroides fragilis is the leading cause of anaerobic bacteremia and sepsis. Enterotoxigenic strains that produce B. fragilis toxin (BFT, fragilysin) contribute to colitis and intestinal malignancy, yet are also isolated in bloodstream infection. It is not known whether these strains harbor unique genetic determinants that confer virulence in extra-intestinal disease. We demonstrate that BFT contributes to sepsis in mice, and we identify a B. fragilis protease called fragipain (Fpn) that is required for the endogenous activation of BFT through the removal of its auto-inhibitory prodomain. Structural analysis of Fpn reveals a His-Cys catalytic dyad that is characteristic of C11-family cysteine proteases that are conserved in multiple pathogenic Bacteroides spp. and Clostridium spp. Fpn-deficient, enterotoxigenic B. fragilis has an attenuated ability to induce sepsis in mice; however, Fpn is dispensable in B. fragilis colitis, wherein host proteases mediate BFT activation. Our findings define a role for B. fragilis enterotoxin and its activating protease in the pathogenesis of bloodstream infection, which indicates a greater complexity of cellular targeting and activity of BFT than previously recognized. The expression of fpn by both toxigenic and nontoxigenic strains suggests that this protease may contribute to anaerobic sepsis in ways that extend beyond its role in toxin activation. It could thus potentially serve as a target for disease modification. PMID:27089515

  7. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Science.gov (United States)

    Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531

  8. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise M;

    2013-01-01

    In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus...

  9. Transfer of toxin genes to alternate bacterial hosts for mosquito control

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1995-02-01

    Full Text Available Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

  10. Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA.

    Science.gov (United States)

    Wei, Yong; Gao, Zengqiang; Zhang, Heng; Dong, Yuhui

    2016-04-15

    Toxin-antitoxin (TA) loci are widespread in bacteria plasmids and chromosomes, and target various cellular functions to regulate cell growth and death. A type II TA system RnlA-RnlB from Escherichia coli is associated with phage-resistance. After the infection of bacteriophage T4 with Dmd defection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs. Dmd can bind to RnlA directly and neutralize RnlA toxicity to allow phage reproduction. Dmd represent a heterogenous antitoxin of RnlA replacing antitoxin RnlB. Here, we reported two structures of Dmd from T4 phage and RB69 phage. Both Dmd structures are high similar with a compacted domain composed of a four-stranded anti-parallel β-sheet and an α-helix. Chromatography and SAXS suggest Dmd forms a dimer in solution consistent with that in crystal. Structure-based mutagenesis of Dmd reveals key residues involved in RnlA-binding. Possibility cavities in Dmd used for compounds design were modeled. Our structural study revealed the recognition and inhibition mechanism of RnlA by Dmd and providing a potential laboratory phage prevention target for drug design. PMID:26972252

  11. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products

    Directory of Open Access Journals (Sweden)

    B. Stephen Inbaraj

    2016-01-01

    Full Text Available Food safety draws considerable attention in the modern pace of the world owing to rapid-changing food recipes and food habits. Foodborne illnesses associated with pathogens, toxins, and other contaminants pose serious threat to human health. Besides, a large amount of money is spent on both analyses and control measures, which causes significant loss to the food industry. Conventional detection methods for bacterial pathogens and toxins are time consuming and laborious, requiring certain sophisticated instruments and trained personnel. In recent years, nanotechnology has emerged as a promising field for solving food safety issues in terms of detecting contaminants, enabling controlled release of preservatives to extend the shelf life of foods, and improving food-packaging strategies. Nanomaterials including metal oxide and metal nanoparticles, carbon nanotubes, and quantum dots are gaining a prominent role in the design of sensors and biosensors for food analysis. In this review, various nanomaterial-based sensors reported in the literature for detection of several foodborne bacterial pathogens and toxins are summarized highlighting their principles, advantages, and limitations in terms of simplicity, sensitivity, and multiplexing capability. In addition, the application through a noncross-linking method without the need for any surface modification is also presented for detection of pork adulteration in meat products.

  12. Human Cytolytic Fusion Proteins: Modified Versions of Human Granzyme B and Angiogenin Have the Potential to Replace Bacterial Toxins in Targeted Therapies against CD64+ Diseases

    Directory of Open Access Journals (Sweden)

    Nina Berges

    2014-02-01

    Full Text Available Targeted therapies for the treatment of cancer, but also inflammation and autoimmune diseases will reduce major side effects accompanied with conventional treatment modalities. The immunotoxin concept uses bacterial or plant toxins, coupled to antibodies or natural ligands targeting cancer cells. Initially, immunotoxins suffered from drawbacks like nonspecific cytotoxicity. Even the third generation of immunotoxins comprised of truncated antibodies and modified effector molecules experienced clinical set-backs due to immune responses. Long-term treatment of cancer and non-life-threatening chronic inflammatory diseases requires their complete ‘humanization’. This lead to evaluating human cytolytic fusion proteins (hCFPs, based on human apoptosis-inducing proteins. Lacking an endogenous translocation domain dramatically reduces the cell-death inducing capacity of such proteins. Here, we report on optimizing hCFPs, based on the anti-CD64 single chain variable fragment H22(scFv, specifically eliminating CD64+ macrophages and malignant progenitor cells. We replaced the bacterial toxin in H22(scFv-ETA' with the pro-apoptotic human granzyme B or angiogenin. Translocation was promoted by a sophisticated adapter containing a membrane transfer peptide (MTD flanked by endosomal and cytosolic cleavable peptides, thus achieving in vitro cytotoxic activity comparable to bacterial immunotoxins. We demonstrate for the first time that optimized hCFPs, based on granzyme B or angiogenin, can compete with classical ETA-based immunotoxins.

  13. An Entamoeba histolytica ADP-ribosyl transferase from the diphtheria toxin family modifies the bacterial elongation factor Tu.

    Science.gov (United States)

    Avila, Eva E; Rodriguez, Orlando I; Marquez, Jaqueline A; Berghuis, Albert M

    2016-06-01

    ADP-ribosyl transferases are enzymes involved in the post-translational modification of proteins; they participate in multiple physiological processes, pathogenesis and host-pathogen interactions. Several reports have characterized the functions of these enzymes in viruses, prokaryotes and higher eukaryotes, but few studies have reported ADP-ribosyl transferases in lower eukaryotes, such as parasites. The locus EHI_155600 from Entamoeba histolytica encodes a hypothetical protein that possesses a domain from the ADP-ribosylation superfamily; this protein belongs to the diphtheria toxin family according to a homology model using poly-ADP-ribosyl polymerase 12 (PARP12 or ARTD12) as a template. The recombinant protein expressed in Escherichia coli exhibited in vitro ADP-ribosylation activity that was dependent on the time and temperature. Unlabeled βNAD(+), but not ADP-ribose, competed in the enzymatic reaction using biotin-βNAD(+) as the ADP-ribose donor. The recombinant enzyme, denominated EhToxin-like, auto-ADP-ribosylated and modified an acceptor from E. coli that was identified by MS/MS as the elongation factor Tu (EF-Tu). To the best of our knowledge, this is the first report to identify an ADP-ribosyl transferase from the diphtheria toxin family in a protozoan parasite. The known toxins from this family (i.e., the diphtheria toxin, the Pseudomonas aeruginosa toxin Exo-A, and Cholix from Vibrio cholerae) modify eukaryotic elongation factor two (eEF-2), whereas the amoeba EhToxin-like modified EF-Tu, which is another elongation factor involved in protein synthesis in bacteria and mitochondria. PMID:27234208

  14. Interactions between the toxin kid of the bacterial parD system and the antitoxins Kis and MazE

    NARCIS (Netherlands)

    Kamphuis, M.B.; Monti, M.C.; van den Heuvel, R.H.H.; Santos-Sierra, S.; Folkers, G.E.; Lemonnier, M.; Diaz-Orejas, R.; Heck, A.J.R.; Boelens, R.

    2007-01-01

    The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demo

  15. Interactions between the toxin kid of the bacterial parD system and the antitoxins Kis and MazE

    OpenAIRE

    Kamphuis, M.B.; Monti, M. C.; van den Heuvel, R.H.H.; Santos-Sierra, S.; Folkers, G E; Lemonnier, M.; Diaz-Orejas, R.; Heck, A.J.R.; Boelens, R.

    2007-01-01

    The proteins Kid and Kis are the toxin and antitoxin, respectively, encoded by the parD operon of Escherichia coli plasmid R1. Kis prevents the inhibition of E. coli cell growth caused by the RNA cleavage activity of Kid. Overproduction of MazE, the chromosome-encoded homologue of Kis, has been demonstrated to neutralize Kid toxicity to a certain extent in the absence of native Kis. Here,we show that a high structural similarity exists between these antitoxins, using NMR spectroscopy. We repo...

  16. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  17. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  18. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  19. Multicenter evaluation of the BD max enteric bacterial panel PCR assay for rapid detection of Salmonella spp., Shigella spp., Campylobacter spp. (C. jejuni and C. coli), and Shiga toxin 1 and 2 genes.

    Science.gov (United States)

    Harrington, S M; Buchan, B W; Doern, C; Fader, R; Ferraro, M J; Pillai, D R; Rychert, J; Doyle, L; Lainesse, A; Karchmer, T; Mortensen, J E

    2015-05-01

    Diarrhea due to enteric bacterial pathogens causes significant morbidity and mortality in the United States and worldwide. However, bacterial pathogens may be infrequently identified. Currently, culture and enzyme immunoassays (EIAs) are the primary methods used by clinical laboratories to detect enteric bacterial pathogens. We conducted a multicenter evaluation of the BD Max enteric bacterial panel (EBP) PCR assay in comparison to culture for the detection of Salmonella spp., Shigella spp., Campylobacter jejuni, and Campylobacter coli and an EIA for Shiga toxins 1 and 2. A total of 4,242 preserved or unpreserved stool specimens, including 3,457 specimens collected prospectively and 785 frozen, retrospective samples, were evaluated. Compared to culture or EIA, the positive percent agreement (PPA) and negative percent agreement (NPA) values for the BD Max EBP assay for all specimens combined were as follows: 97.1% and 99.2% for Salmonella spp., 99.1% and 99.7% for Shigella spp., 97.2% and 98.4% for C. jejuni and C. coli, and 97.4% and 99.3% for Shiga toxins, respectively. Discrepant results for prospective samples were resolved with alternate PCR assays and bidirectional sequencing of amplicons. Following discrepant analysis, PPA and NPA values were as follows: 97.3% and 99.8% for Salmonella spp., 99.2% and 100% for Shigella spp., 97.5% and 99.0% for C. jejuni and C. coli, and 100% and 99.7% for Shiga toxins, respectively. No differences in detection were observed for samples preserved in Cary-Blair medium and unpreserved samples. In this large, multicenter study, the BD Max EBP assay showed superior sensitivity compared to conventional methods and excellent specificity for the detection of enteric bacterial pathogens in stool specimens. PMID:25740779

  20. Targeted Toxins in Brain Tumor Therapy

    Directory of Open Access Journals (Sweden)

    Walter A. Hall

    2010-11-01

    Full Text Available Targeted toxins, also known as immunotoxins or cytotoxins, are recombinant molecules that specifically bind to cell surface receptors that are overexpressed in cancer and the toxin component kills the cell. These recombinant proteins consist of a specific antibody or ligand coupled to a protein toxin. The targeted toxins bind to a surface antigen or receptor overexpressed in tumors, such as the epidermal growth factor receptor or interleukin-13 receptor. The toxin part of the molecule in all clinically used toxins is modified from bacterial or plant toxins, fused to an antibody or carrier ligand. Targeted toxins are very effective against cancer cells resistant to radiation and chemotherapy. They are far more potent than any known chemotherapy drug. Targeted toxins have shown an acceptable profile of toxicity and safety in early clinical studies and have demonstrated evidence of a tumor response. Currently, clinical trials with some targeted toxins are complete and the final results are pending. This review summarizes the characteristics of targeted toxins and the key findings of the important clinical studies with targeted toxins in malignant brain tumor patients. Obstacles to successful treatment of malignant brain tumors include poor penetration into tumor masses, the immune response to the toxin component and cancer heterogeneity. Strategies to overcome these limitations are being pursued in the current generation of targeted toxins.

  1. From the Gastrointestinal Tract (GIT) to the Kidneys: Live Bacterial Cultures (Probiotics) Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling

    OpenAIRE

    Luis Vitetta; Linnane, Anthony W.; Gobe, Glenda C.

    2013-01-01

    A host of compounds are retained in the body of uremic patients, as a consequence of progressive renal failure. Hundreds of compounds have been reported to be retention solutes and many have been proven to have adverse biological activity, and recognized as uremic toxins. The major mechanistic overview considered to contribute to uremic toxin overload implicates glucotoxicity, lipotoxicity, hexosamine, increased polyol pathway activity and the accumulation of advanced glycation end-products (...

  2. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  3. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo; Klokk, Tove Irene

    2013-01-01

    A number of protein toxins from plants and bacteria take advantage of transport through the Golgi apparatus to gain entry into the cytosol where they exert their action. These toxins include the plant toxin ricin, the bacterial Shiga toxins, and cholera toxin. Such toxins bind to lipids or proteins...... at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER......, the enzymatically active part is released and then transported into the cytosol, exploiting components of the ER-associated degradation system. In this review, we will discuss transport of different protein toxins, but we will focus on factors involved in entry and sorting of ricin and Shiga toxin...

  4. Botulinum toxin.

    OpenAIRE

    Savardekar Preeti

    1989-01-01

    Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G). All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about...

  5. Shiga Toxin (Stx) Classification, Structure, and Function

    OpenAIRE

    Melton-Celsa, Angela R.

    2014-01-01

    Shiga toxin (Stx) is one of the most potent bacterial toxins known. Stx is found in Shigella dysenteriae 1 and in some serogroups of Escherichia coli (called Stx1 in E. coli). In addition to or instead of Stx1, some E. coli strains produce a second type of Stx, Stx2, that has the same mode of action as Stx/Stx1 but that is antigenically distinct. Because subtypes of each toxin have been identified, the prototype toxin for each group is now designated Stx1a or Stx2a. The Stxs consist of two ma...

  6. Developing New Tools for the in vivo Generation/Screening of Cyclic Peptide Libraries. A New Combinatorial Approach for the Detection of Bacterial Toxin Inhibitors

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A

    2006-11-28

    A new combinatorial approach for the biosynthesis and screening of small drug-like toxin inhibitors inside living cells is presented. This approach has been initially used as proof of principle for finding inhibitors against the LF factor from Bacillus anthracis. Key to our ''living combinatorial'' approach is the use of a living cell as a micro-chemical factory for both synthesis and screening of potential inhibitors for a given molecular recognition event (see Scheme 1). This powerful technique posses the advantage that both processes synthesis and screening happen inside the cell thus accelerating the whole screening/selection process.

  7. From the Gastrointestinal Tract (GIT to the Kidneys: Live Bacterial Cultures (Probiotics Mediating Reductions of Uremic Toxin Levels via Free Radical Signaling

    Directory of Open Access Journals (Sweden)

    Luis Vitetta

    2013-11-01

    Full Text Available A host of compounds are retained in the body of uremic patients, as a consequence of progressive renal failure. Hundreds of compounds have been reported to be retention solutes and many have been proven to have adverse biological activity, and recognized as uremic toxins. The major mechanistic overview considered to contribute to uremic toxin overload implicates glucotoxicity, lipotoxicity, hexosamine, increased polyol pathway activity and the accumulation of advanced glycation end-products (AGEs. Until recently, the gastrointestinal tract (GIT and its associated micro-biometabolome was a neglected factor in chronic disease development. A systematic underestimation has been to undervalue the contribution of GIT dysbiosis (a gut barrier-associated abnormality whereby low-level pro-inflammatory processes contribute to chronic kidney disease (CKD development. Gut dysbiosis provides a plausible clue to the origin of systemic uremic toxin loads encountered in clinical practice and may explain the increasing occurrence of CKD. In this review, we further expand a hypothesis that posits that environmentally triggered and maintained microbiome perturbations drive GIT dysbiosis with resultant uremia. These subtle adaptation responses by the GIT microbiome can be significantly influenced by probiotics with specific metabolic properties, thereby reducing uremic toxins in the gut. The benefit translates to a useful clinical treatment approach for patients diagnosed with CKD. Furthermore, the role of reactive oxygen species (ROS in different anatomical locales is highlighted as a positive process. Production of ROS in the GIT by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which acts as an essential second messenger required for normal cellular homeostasis and physiological function. Whilst this critical review has focused on end-stage CKD (type 5, our aim was to build a plausible

  8. From the gastrointestinal tract (GIT) to the kidneys: live bacterial cultures (probiotics) mediating reductions of uremic toxin levels via free radical signaling.

    Science.gov (United States)

    Vitetta, Luis; Linnane, Anthony W; Gobe, Glenda C

    2013-11-01

    A host of compounds are retained in the body of uremic patients, as a consequence of progressive renal failure. Hundreds of compounds have been reported to be retention solutes and many have been proven to have adverse biological activity, and recognized as uremic toxins. The major mechanistic overview considered to contribute to uremic toxin overload implicates glucotoxicity, lipotoxicity, hexosamine, increased polyol pathway activity and the accumulation of advanced glycation end-products (AGEs). Until recently, the gastrointestinal tract (GIT) and its associated micro-biometabolome was a neglected factor in chronic disease development. A systematic underestimation has been to undervalue the contribution of GIT dysbiosis (a gut barrier-associated abnormality) whereby low-level pro-inflammatory processes contribute to chronic kidney disease (CKD) development. Gut dysbiosis provides a plausible clue to the origin of systemic uremic toxin loads encountered in clinical practice and may explain the increasing occurrence of CKD. In this review, we further expand a hypothesis that posits that environmentally triggered and maintained microbiome perturbations drive GIT dysbiosis with resultant uremia. These subtle adaptation responses by the GIT microbiome can be significantly influenced by probiotics with specific metabolic properties, thereby reducing uremic toxins in the gut. The benefit translates to a useful clinical treatment approach for patients diagnosed with CKD. Furthermore, the role of reactive oxygen species (ROS) in different anatomical locales is highlighted as a positive process. Production of ROS in the GIT by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which acts as an essential second messenger required for normal cellular homeostasis and physiological function. Whilst this critical review has focused on end-stage CKD (type 5), our aim was to build a plausible hypothesis

  9. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  10. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1

    OpenAIRE

    Ivie, Susan E.; McClain, Mark S.

    2012-01-01

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsi...

  11. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L; van Deurs, Bo; Sandvig, Kirsten

    2010-01-01

    for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells....... The toxicity of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport......The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...

  12. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  13. Roles of Anthrax Toxin Receptor 2 in Anthrax Toxin Membrane Insertion and Pore Formation

    Directory of Open Access Journals (Sweden)

    Jianjun Sun

    2016-01-01

    Full Text Available Interaction between bacterial toxins and cellular surface receptors is an important component of the host-pathogen interaction. Anthrax toxin protective antigen (PA binds to the cell surface receptor, enters the cell through receptor-mediated endocytosis, and forms a pore on the endosomal membrane that translocates toxin enzymes into the cytosol of the host cell. As the major receptor for anthrax toxin in vivo, anthrax toxin receptor 2 (ANTXR2 plays an essential role in anthrax toxin action by providing the toxin with a high-affinity binding anchor on the cell membrane and a path of entry into the host cell. ANTXR2 also acts as a molecular clamp by shifting the pH threshold of PA pore formation to a more acidic pH range, which prevents premature pore formation at neutral pH before the toxin reaches the designated intracellular location. Most recent studies have suggested that the disulfide bond in the immunoglobulin (Ig-like domain of ANTXR2 plays an essential role in anthrax toxin action. Here we will review the roles of ANTXR2 in anthrax toxin action, with an emphasis on newly updated knowledge.

  14. Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Wils, E.R.J.

    2002-01-01

    A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB

  15. Botox (Botulinum Toxin)

    Science.gov (United States)

    ... and rashes clinical tools newsletter | contact Share | Botox (Botulinum Toxin) A A A BEFORE: Crow's feet before Botox ... wrinkles. One such procedure involves the use of botulinum toxin injections. Botulinum toxin is produced by the fermentation ...

  16. Entry of ricin and Shiga toxin into cells: molecular mechanisms and medical perspectives.

    Science.gov (United States)

    Sandvig, K; van Deurs, B

    2000-11-15

    A large number of plant and bacterial toxins with enzymatic activity on intracellular targets are now known. These toxins enter cells by first binding to cell surface receptors, then they are endocytosed and finally they become translocated into the cytosol from an intracellular compartment. In the case of the plant toxin ricin and the bacterial toxin Shiga toxin, this happens after retrograde transport through the Golgi apparatus and to the endoplasmic reticulum. The toxins are powerful tools to reveal new pathways in intracellular transport. Furthermore, knowledge about their action on cells can be used to combat infectious diseases where such toxins are involved, and a whole new field of research takes advantage of their ability to enter the cytosol for therapeutic purposes in connection with a variety of diseases. This review deals with the mechanisms of entry of ricin and Shiga toxin, and the attempts to use such toxins in medicine are discussed. PMID:11080141

  17. Toxin yet not toxic: Botulinum toxin in dentistry.

    Science.gov (United States)

    Archana, M S

    2016-04-01

    Paracelsus contrasted poisons from nonpoisons, stating that "All things are poisons, and there is nothing that is harmless; the dose alone decides that something is a poison". Living organisms, such as plants, animals, and microorganisms, constitute a huge source of pharmaceutically useful medicines and toxins. Depending on their source, toxins can be categorized as phytotoxins, mycotoxins, or zootoxins, which include venoms and bacterial toxins. Any toxin can be harmful or beneficial. Within the last 100 years, the perception of botulinum neurotoxin (BTX) has evolved from that of a poison to a versatile clinical agent with various uses. BTX plays a key role in the management of many orofacial and dental disorders. Its indications are rapidly expanding, with ongoing trials for further applications. However, despite its clinical use, what BTX specifically does in each condition is still not clear. The main aim of this review is to describe some of the unclear aspects of this potentially useful agent, with a focus on the current research in dentistry. PMID:27486290

  18. Bacterial Toxin Fusion Proteins Elicit Mucosal Immunity against a Foot-and-Mouth Disease Virus Antigen When Administered Intranasally to Guinea Pigs

    Directory of Open Access Journals (Sweden)

    Sreerupa Challa

    2011-01-01

    Full Text Available Peptides corresponding to the foot-and-mouth disease virus VP1 G-H loop are capable of inducing neutralizing antibodies in some species but are considered relatively poor immunogens, especially at mucosal surfaces. However, intranasal administration of antigens along with the appropriate delivery vehicle/adjuvant has been shown to induce mucosal immune responses, and bacterial enterotoxins have long been known to be effective in this regard. In the current study, two different carrier/adjuvant approaches were used to augment mucosal immunity to the FMDV O1 BFS G-H loop epitope, in which the G-H loop was genetically coupled to the E. coli LT-B subunit and coexpressed with the LTA2 fragment (LTA2B-GH, or the nontoxic pseudomonas exotoxin A (ntPE was fused to LTA2B-GH at LT-A2 to enhance receptor targeting. Only guinea pigs that were inoculated intranasally with ntPE-LTA2B-GH and LTA2B-GH induced significant anti-G-H loop IgA antibodies in nasal washes at weeks 4 and 6 when compared to ovalbumin or G-H loop immunized animals. These were also the only groups that exhibited G-H loop-specific antigen-secreting cells in the nasal mucosa. These data demonstrate that fusion of nonreplicating antigens to LTA2B and ntPE-LTA2B has the potential to be used as carriers/adjuvants to induce mucosal immune responses against infectious diseases.

  19. Evidence for production of paralytic shellfish toxins by bacteria associated with Alexandrium spp. (Dinophyta) in culture

    OpenAIRE

    Gallacher, S.; Flynn, Kevin J.; Franco, José M.; Brueggemann, E. E. (Ernst); Hines, H.B. (Harry)

    1997-01-01

    A substantial proportion of bacteria from five Alexandrium cultures originally isolated from various countries produced sodium channel blocking (SCB) toxins, as ascertained by mouse neuroblastoma assay. The quantities of SCB toxins produced by bacteria and dinoflagellates were noted, and the limitations in comparing the toxicities of these two organisms are discussed. The chemical nature of the SCB toxins in selected bacterial isolates was determined as paralytic shellfish toxins by pre- and ...

  20. *CYANOBACTERIA AND THEIR TOXINS

    Science.gov (United States)

    Cyanobacteria, or blue-green algae, are naturally-occurring contaminants of surface waters worldwide. These photosynthesizing prokaryotes thrive in warm, shallow, nutrient-rich waters. Many produce potent toxins as secondary metabolites. Cyanobacteria toxins have been document...

  1. Botulinum toxin injection - larynx

    Science.gov (United States)

    Injection laryngoplasty; Botox-larynx: spasmodic dysphonia-BTX; Essential voice tremor (EVT)-btx; Glottic insufficiency; Percutaneous electromyography-guided botulinum toxin treatment; Percutaneous indirect laryngoscopy-guided botulinum toxin Treatment; ...

  2. Stool C. difficile toxin

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/003590.htm Stool C. difficile toxin To use the sharing features on this page, please enable JavaScript. The stool C. difficile toxin test detects harmful substances produced by ...

  3. Bordetella protein toxins

    Czech Academy of Sciences Publication Activity Database

    Mašín, Jiří; Šebo, Peter; Locht, C.

    New York : Elsevier, Academic Press, 2006, s. 291-309. ISBN 978-0-12-088445-2 R&D Projects: GA AV ČR IAA5020406; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50200510 Keywords : pertussis toxin * adenylate cyclase toxin * dermonecrotic toxin Subject RIV: EE - Microbiology, Virology

  4. Streptococcal toxins: role in pathogenesis and disease.

    Science.gov (United States)

    Barnett, Timothy C; Cole, Jason N; Rivera-Hernandez, Tania; Henningham, Anna; Paton, James C; Nizet, Victor; Walker, Mark J

    2015-12-01

    Group A Streptococcus (Streptococcus pyogenes), group B Streptococcus (Streptococcus agalactiae) and Streptococcus pneumoniae (pneumococcus) are host-adapted bacterial pathogens among the leading infectious causes of human morbidity and mortality. These microbes and related members of the genus Streptococcus produce an array of toxins that act against human cells or tissues, resulting in impaired immune responses and subversion of host physiological processes to benefit the invading microorganism. This toxin repertoire includes haemolysins, proteases, superantigens and other agents that ultimately enhance colonization and survival within the host and promote dissemination of the pathogen. PMID:26433203

  5. The Long-Lived Nature of Clostridium perfringens Iota Toxin in Mammalian Cells Induces Delayed Apoptosis ▿

    OpenAIRE

    Hilger, Hanna; Pust, Sascha; von Figura, Guido; Kaiser, Eva; Stiles, Bradley G.; Popoff, Michel R.; Barth, Holger

    2009-01-01

    Mono-ADP ribosylation of actin by bacterial toxins, such as Clostridium perfringens iota or Clostridium botulinum C2 toxins, results in rapid depolymerization of actin filaments and cell rounding. Here we report that treatment of African green monkey kidney (Vero) cells with iota toxin resulted in delayed caspase-dependent death. Unmodified actin did not reappear in toxin-treated cells, and enzyme-active toxin was detectable in the cytosol for at least 24 h. C2 toxin showed comparable, long-l...

  6. Shiga Toxin Interaction with Human Intestinal Epithelium

    OpenAIRE

    Stephanie Schüller

    2011-01-01

    After ingestion via contaminated food or water, enterohaemorrhagic E. coli colonises the intestinal mucosa and produces Shiga toxins (Stx). No Stx-specific secretion system has been described so far, and it is assumed that Stx are released into the gut lumen after bacterial lysis. Human intestinal epithelium does not express the Stx receptor Gb3 or other Stx binding sites, and it remains unknown how Stx cross the intestinal epithelial barrier and gain access to the systemic circulation. This ...

  7. An Overview of Helicobacter pylori VacA Toxin Biology

    OpenAIRE

    Nora J. Foegeding; Caston, Rhonda R.; McClain, Mark S.; Ohi, Melanie D.; Cover, Timothy L.

    2016-01-01

    The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA ac...

  8. [Toxins of Clostridium perfringens as a natural and bioterroristic threats].

    Science.gov (United States)

    Omernik, Andrzej; Płusa, Tadeusz

    2015-09-01

    Clostridium perfringens is absolutely anaerobic rod-shaped, sporeforming bacterium. The morbidity is connected with producing toxins. Depending on the type of toxin produced Clostridium perfringens can be divided into five serotypes:A-E. Under natural conditions, this bacterium is responsible for local outbreaks of food poisoning associated with eating contaminated food which which was improperly heat treated. Some countries with lower economic level are endemic foci of necrotizing enteritis caused by Clostridium perfringens. The bacterium is also a major cause of gas gangrene. It is a disease, associated with wound infection, with potentially fatal prognosis in the case of treatment's delays. In the absence of early radical surgery, antibiotic therapy and (if available) hyperbaric treatment leads to the spread of toxins in the body causing shock, coma and death. Due to the force of produced toxins is a pathogen that poses a substrate for the production of biological weapons. It could potentially be used to induce outbreaks of food poisoning and by missiles contamination by spore lead to increased morbidity of gas gangrene in injured soldiers. C. perfringens types B and D produce epsilon toxin considered to be the third most powerful bacterial toxin. Because of the ability to disperse the toxin as an aerosol and a lack of methods of treatment and prevention of poisoning possible factors it is a potential tool for bioterrorism It is advisable to continue research into vaccines and treatments for poisoning toxins of C. perfringens. PMID:26449576

  9. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  10. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli.

    Science.gov (United States)

    Licznerska, Katarzyna; Nejman-Faleńczyk, Bożena; Bloch, Sylwia; Dydecka, Aleksandra; Topka, Gracja; Gąsior, Tomasz; Węgrzyn, Alicja; Węgrzyn, Grzegorz

    2016-01-01

    Virulence of enterohemorrhagic Escherichia coli (EHEC) strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages), present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the "bacterial altruism" and "Trojan Horse" hypotheses, which are connected to the oxidative stress, are discussed. PMID:26798420

  11. Bordetella pertussis adenylate cyclase toxin translocation across a tethered lipid bilayer

    OpenAIRE

    Veneziano, Rémi; Rossi, Claire; Chenal, Alexandre; Devoisselle, Jean-Marie; Ladant, Daniel; Chopineau, Joel

    2013-01-01

    Many bacterial toxins can cross biological membranes to reach the cytosol of mammalian cells, although how they pass through a lipid bilayer remains largely unknown. Bordetella pertussis adenylate cyclase (CyaA) toxin delivers its catalytic domain directly across the cell membrane. To characterize this unique translocation process, we designed an in vitro assay based on a tethered lipid bilayer assembled over a biosensor surface derivatized with calmodulin, a natural activator of the toxin. C...

  12. Understanding malarial toxins.

    Science.gov (United States)

    Starkl Renar, Katarina; Iskra, Jernej; Križaj, Igor

    2016-09-01

    Recognized since antiquity, malaria is one of the most infamous and widespread infectious diseases in humans and, although the death rate during the last century has been diminishing, it still accounts for more than a half million deaths annually. It is caused by the Plasmodium parasite and typical symptoms include fever, shivering, headache, diaphoresis and nausea, all resulting from an excessive inflammatory response induced by malarial toxins released into the victim's bloodstream. These toxins are hemozoin and glycosylphosphatidylinositols. The former is the final product of the parasite's detoxification of haeme, a by-product of haemoglobin catabolism, while the latter anchor proteins to the Plasmodium cell surface or occur as free molecules. Currently, only two groups of antimalarial toxin drugs exist on the market, quinolines and artemisinins. As we describe, they both target biosynthesis of hemozoin. Other substances, currently in various phases of clinical trials, are directed towards biosynthesis of glycosylphosphatidylinositol, formation of hemozoin, or attenuation of the inflammatory response of the patient. Among the innovative approaches to alleviating the effects of malarial toxins, is the development of antimalarial toxin vaccines. In this review the most important lessons learned from the use of treatments directed against the action of malarial toxins in antimalarial therapy are emphasized and the most relevant and promising directions for future research in obtaining novel antimalarial agents acting on malarial toxins are discussed. PMID:27353131

  13. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Wils, E.R.J.

    2004-01-01

    In a follow-up of the earlier characterisation of botulinum toxins type A and B (BTxA and BTxB) by mass spectrometry (MS), types C, D, E, and F (BTxC, BTxD, BTxE, BTxF) were now investigated. Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. B

  14. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  15. Anthrax lethal and edema toxins in anthrax pathogenesis

    OpenAIRE

    Liu, Shihui; Moayeri, Mahtab; Leppla, Stephen H.

    2014-01-01

    The pathophysiological effects resulting from many bacterial diseases are caused by exotoxins released by the bacteria. Bacillus anthracis, a spore-forming bacterium, is such a pathogen, causing anthrax through a combination of bacterial infection and toxemia. B. anthracis causes natural infection in humans and animals and has been a top bioterrorism concern since the 2001 anthrax attacks in the USA. The exotoxins secreted by B. anthracis use CMG2 as the major toxin receptor and play essentia...

  16. Bacterial gastroenteritis

    Science.gov (United States)

    Infectious diarrhea - bacterial gastroenteritis; Acute gastroenteritis; Gastroenteritis - bacterial ... Bacterial gastroenteritis can affect 1 person or a group of people who all ate the same food. It is ...

  17. Staphylococcus aureus toxins

    OpenAIRE

    Otto, Michael

    2013-01-01

    Staphylococcus aureus is a dangerous pathogen that causes a variety of severe diseases. The virulence of S. aureus is defined by a large repertoire of virulence factors, among which secreted toxins play a preeminent role. Many S. aureus toxins damage biological membranes, leading to cell death. In particular, S. aureus produces potent hemolysins and leukotoxins. Among the latter, some were recently identified to lyse neutrophils after ingestion, representing an especially powerful weapon agai...

  18. Shiga Toxin Interaction with Human Intestinal Epithelium

    Directory of Open Access Journals (Sweden)

    Stephanie Schüller

    2011-06-01

    Full Text Available After ingestion via contaminated food or water, enterohaemorrhagic E. coli colonises the intestinal mucosa and produces Shiga toxins (Stx. No Stx-specific secretion system has been described so far, and it is assumed that Stx are released into the gut lumen after bacterial lysis. Human intestinal epithelium does not express the Stx receptor Gb3 or other Stx binding sites, and it remains unknown how Stx cross the intestinal epithelial barrier and gain access to the systemic circulation. This review summarises current knowledge about the influence of the intestinal environment on Stx production and release, Stx interaction with intestinal epithelial cells and intracellular uptake, and toxin translocation into underlying tissues. Furthermore, it highlights gaps in understanding that need to be addressed by future research.

  19. Comparative genomics of Shiga toxin encoding bacteriophages

    Directory of Open Access Journals (Sweden)

    Smith Darren L

    2012-07-01

    Full Text Available Abstract Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC, however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.

  20. Crystal Structures of the Staphylococcal Toxin SSL5 in Complex With Sialyl-Lewis X Reveal a Conserved Binding Site That Shares Common Features With Viral And Bacterial Sialic Acid-Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Baker, H.M.; Basu, I.; Chung, M.C.; Caradoc-Davies, T.; Fraser, J.D.; Baker, E.N.

    2009-06-02

    Staphylococcus aureus is a significant human pathogen. Among its large repertoire of secreted toxins is a group of staphylococcal superantigen-like proteins (SSLs). These are homologous to superantigens but do not have the same activity. SSL5 is shown here to bind to human granulocytes and to the cell surface receptors for human IgA (Fc alphaRI) and P-selectin [P-selectin glycoprotein ligand-1 (PSGL-1)] in a sialic acid (Sia)-dependent manner. Co-crystallization of SSL5 with the tetrasaccharide sialyl Lewis X (sLe(X)), a key determinant of PSGL-1 binding to P-selectin, led to crystal structures of the SSL5-sLe(X) complex at resolutions of 1.65 and 2.75 A for crystals at two pH values. In both structures, sLe(X) bound to a specific site on the surface of the C-terminal domain of SSL5 in a conformation identical with that bound by P-selectin. Conservation of the key carbohydrate binding residues indicates that this ability to bind human glycans is shared by a substantial subgroup of the SSLs, including SSL2, SSL3, SSL4, SSL5, SSL6, and SSL11. This indicates that the ability to target human glycans is an important property of this group of toxins. Structural comparisons also showed that the Sia binding site in SSL5 contains a substructure that is shared by other Sia binding proteins from bacteria as well as viruses and represents a common binding motif.

  1. Toxins Best Paper Award 2015

    OpenAIRE

    Tesh, Vernon L.

    2015-01-01

    In order to recognize outstanding papers related to biotoxins and toxinology that have been published in Toxins, the Editorial Board established an annual “Toxins Best Paper Award”. We are pleased to announce the first “Toxins Best Paper Award” for 2015. Nominations were selected by the Editorial Board members, with all papers published in 2011 eligible for consideration. Reviews and original research articles were evaluated separately. Following review and voting by the Toxins Best Paper Awa...

  2. Toxin plasmids of Clostridium perfringens.

    Science.gov (United States)

    Li, Jihong; Adams, Vicki; Bannam, Trudi L; Miyamoto, Kazuaki; Garcia, Jorge P; Uzal, Francisco A; Rood, Julian I; McClane, Bruce A

    2013-06-01

    In both humans and animals, Clostridium perfringens is an important cause of histotoxic infections and diseases originating in the intestines, such as enteritis and enterotoxemia. The virulence of this Gram-positive, anaerobic bacterium is heavily dependent upon its prolific toxin-producing ability. Many of the ∼16 toxins produced by C. perfringens are encoded by large plasmids that range in size from ∼45 kb to ∼140 kb. These plasmid-encoded toxins are often closely associated with mobile elements. A C. perfringens strain can carry up to three different toxin plasmids, with a single plasmid carrying up to three distinct toxin genes. Molecular Koch's postulate analyses have established the importance of several plasmid-encoded toxins when C. perfringens disease strains cause enteritis or enterotoxemias. Many toxin plasmids are closely related, suggesting a common evolutionary origin. In particular, most toxin plasmids and some antibiotic resistance plasmids of C. perfringens share an ∼35-kb region containing a Tn916-related conjugation locus named tcp (transfer of clostridial plasmids). This tcp locus can mediate highly efficient conjugative transfer of these toxin or resistance plasmids. For example, conjugative transfer of a toxin plasmid from an infecting strain to C. perfringens normal intestinal flora strains may help to amplify and prolong an infection. Therefore, the presence of toxin genes on conjugative plasmids, particularly in association with insertion sequences that may mobilize these toxin genes, likely provides C. perfringens with considerable virulence plasticity and adaptability when it causes diseases originating in the gastrointestinal tract. PMID:23699255

  3. Rifaximin Does Not Induce Toxin Production or Phage-Mediated Lysis of Shiga Toxin-Producing Escherichia coli▿

    Science.gov (United States)

    Ochoa, Theresa J.; Chen, Jane; Walker, Christopher M.; Gonzales, Elsa; Cleary, Thomas G.

    2007-01-01

    Diarrhea in children is often caused by enteropathogen infections that might benefit from early empirical antibiotic therapy. However, when the definition of the pathogen requires sophisticated laboratory studies, the etiology of enteritis is not known early in illness. Empirical therapy may be dangerous if the child is infected with a Shiga toxin-producing Escherichia coli (STEC) strain because antimicrobials may increase Shiga toxin (Stx) release, resulting in increased risk of microangiopathic hemolytic anemia with acute renal failure (hemolytic-uremic syndrome [HUS]) and death. There is a need for antimicrobials that would be effective against multiple bacterial enteropathogens yet not induce Stx release or increase the risk of HUS. Rifaximin has been evaluated in adults for treatment of bacterial enteritis and has a good record for safety and efficacy, but it has not been evaluated extensively in children with gastroenteritis. We therefore evaluated rifaximin's potential for phage induction, drug-induced bacteriolysis, and toxin release in 57 STEC strains (26 O157 and 31 non-O157 strains). Growth in ciprofloxacin, a known Stx phage inducer, caused bacteriolysis and release of toxin in 25/26 (96%) O157 strains and 15/31 (48%) non-O157 strains. In contrast, rifaximin did not induce phage replication or lysis in any strain. Toxin release in the presence of rifaximin was not different from release in the absence of antibiotic. Rifaximin, unlike many antibiotics used to treat pediatric gastroenteritis, does not induce phage-mediated bacteriolysis and Stx release. PMID:17526759

  4. Botulinum Toxin Therapy

    Science.gov (United States)

    ... resources Meet our partners Español Donate Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ... toxin therapy public SPOT Skin Cancer™ Diseases and treatments Acne and rosacea Bumps and growths Color problems Contagious skin diseases ...

  5. Dynamic Duo—The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin

    OpenAIRE

    Rachel Miller; Martin Wiedmann

    2016-01-01

    The cytolethal distending toxin (CDT) is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica). The CDT produced by Salmonella (S-CDT) differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typh...

  6. Toxins Best Paper Award 2015

    Directory of Open Access Journals (Sweden)

    Vernon L. Tesh

    2015-03-01

    Full Text Available In order to recognize outstanding papers related to biotoxins and toxinology that have been published in Toxins, the Editorial Board established an annual “Toxins Best Paper Award”. We are pleased to announce the first “Toxins Best Paper Award” for 2015. Nominations were selected by the Editorial Board members, with all papers published in 2011 eligible for consideration. Reviews and original research articles were evaluated separately. Following review and voting by the Toxins Best Paper Award Committee, the following three papers have won Toxins Best Paper Awards for 2015:[...

  7. Toxins and drug discovery.

    Science.gov (United States)

    Harvey, Alan L

    2014-12-15

    Components from venoms have stimulated many drug discovery projects, with some notable successes. These are briefly reviewed, from captopril to ziconotide. However, there have been many more disappointments on the road from toxin discovery to approval of a new medicine. Drug discovery and development is an inherently risky business, and the main causes of failure during development programmes are outlined in order to highlight steps that might be taken to increase the chances of success with toxin-based drug discovery. These include having a clear focus on unmet therapeutic needs, concentrating on targets that are well-validated in terms of their relevance to the disease in question, making use of phenotypic screening rather than molecular-based assays, and working with development partners with the resources required for the long and expensive development process. PMID:25448391

  8. Using phenotype microarrays to determine culture conditions that induce or repress toxin production by Clostridium difficile and other microorganisms.

    Directory of Open Access Journals (Sweden)

    Xiang-He Lei

    Full Text Available Toxin production is a central issue in the pathogenesis of Clostridium difficile and many other pathogenic microorganisms. Toxin synthesis is influenced by a variety of known and unknown factors of genetics, physiology, and environment. To facilitate the study of toxin production by C. difficile, we have developed a new, reliable, quantitative, and robust cell-based cytotoxicity assay. Then we combined this new assay with Phenotype MicroArrays (PM technology which provides high throughput testing of culture conditions. This allowed us to quantitatively measure toxin production by C. difficile type strain ATCC 9689 under 768 culture conditions. The culture conditions include different carbon, nitrogen, phosphorus, and sulfur sources. Among these, 89 conditions produced strong toxin induction and 31 produced strong toxin repression. Strong toxin inducers included adenine, guanosine, arginine dipeptides, γ-D-Glu-Gly, methylamine, and others. Some leucine dipeptides and the triple-leucine tripeptide were among the strongest toxin repressors. While some results are consistent with previous observations, others are new observations that provide insights into toxin regulation and pathogenesis of C. difficile. Additionally, we have demonstrated that this combined assay technology can be applied broadly to a wide range of toxin producing microorganisms. This study is the first demonstration of simultaneous assessment of a large number of culture conditions influencing bacterial toxin production. The new functional cytotoxin quantitation method developed provides a valuable tool for studying toxigenic microorganisms and may also find applications in clinical and epidemiological research.

  9. Clostridium difficile binary toxin CDT

    OpenAIRE

    Gerding, Dale N.; Johnson, Stuart; Rupnik, Maja; Aktories, Klaus

    2013-01-01

    Binary toxin (CDT) is frequently observed in Clostridium difficile strains associated with increased severity of C. difficile infection (CDI). CDT belongs to the family of binary ADP-ribosylating toxins consisting of two separate toxin components: CDTa, the enzymatic ADP-ribosyltransferase which modifies actin, and CDTb which binds to host cells and translocates CDTa into the cytosol. CDTb is activated by serine proteases and binds to lipolysis stimulated lipoprotein receptor. ADP-ribosylatio...

  10. Role of Pore-Forming Toxins in Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    Andreas F.-P. Sonnen

    2013-01-01

    Full Text Available Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.

  11. Requirements for anthrax toxin entry into cells

    OpenAIRE

    Ryan, Patricia Lynn

    2010-01-01

    Bacillus anthracis secretes a harmful exotoxin called anthrax toxin. Anthrax toxin has deleterious effects on several host cell types and is a significant contributor to anthrax pathogenesis. Toxin-deleted strains of B. anthracis are highly attenuated and many of the symptoms of anthrax can be replicated with anthrax toxin alone. Anthrax toxin is an AB-type toxin with two catalytic A moieties. PA, the B moiety, is responsible for receptor binding, pore formation and translocation of the catal...

  12. Shiga Toxin Detection Methods : A Short Review

    OpenAIRE

    Guerrero, Y. Castaño; González-Aguilar, G.

    2013-01-01

    The Shiga toxins comprise a family of related protein toxins secreted by certain types of bacteria. Shigella dysenteriae, some strain of Escherichia coli and other bacterias can express toxins which caused serious complication during the infection. Shiga toxin and the closely related Shiga-like toxins represent a group of very similar cytotoxins that may play an important role in diarrheal disease and hemolytic-uremic syndrome. The outbreaks caused by this toxin raised serious public health c...

  13. Conditional cooperativity in toxin-antitoxin regulation prevents random toxin activation and promotes fast translational recovery.

    Science.gov (United States)

    Cataudella, Ilaria; Trusina, Ala; Sneppen, Kim; Gerdes, Kenn; Mitarai, Namiko

    2012-08-01

    Many toxin-antitoxin (TA) loci are known to strongly repress their own transcription. This auto-inhibition is often called 'conditional cooperativity' as it relies on cooperative binding of TA complexes to operator DNA that occurs only when toxins are in a proper stoichiometric relationship with antitoxins. There has recently been an explosion of interest in TA systems due to their role in bacterial persistence, however the role of conditional cooperativity is still unclear. We reveal the biological function of conditional cooperativity by constructing a mathematical model of the well studied TA system, relBE of Escherichia coli. We show that the model with the in vivo and in vitro established parameters reproduces experimentally observed response to nutritional stress. We further demonstrate that conditional cooperativity stabilizes the level of antitoxin in rapidly growing cells such that random induction of relBE is minimized. At the same time it enables quick removal of free toxin when the starvation is terminated. PMID:22495927

  14. Lymphocyte receptors for pertussis toxin

    International Nuclear Information System (INIS)

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes

  15. Toxin-Based Therapeutic Approaches

    Directory of Open Access Journals (Sweden)

    Itai Benhar

    2010-10-01

    Full Text Available Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmaceutical potential of such toxins when they are used to efficiently impair essential cellular processes and/or damage the integrity of their target cells. The following review summarizes major advances in the field of toxin based therapeutics and offers a comprehensive description of the mode of action of each applied toxin.

  16. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  17. A Type VI Secretion System Is Involved in Pseudomonas fluorescens Bacterial Competition

    OpenAIRE

    Victorien Decoin; Corinne Barbey; Dorian Bergeau; Xavier Latour; Feuilloley, Marc G. J.; Nicole Orange; Annabelle Merieau

    2014-01-01

    Protein secretion systems are crucial mediators of bacterial interactions with other organisms. Among them, the type VI secretion system (T6SS) is widespread in Gram-negative bacteria and appears to inject toxins into competitor bacteria and/or eukaryotic cells. Major human pathogens, such as Vibrio cholerae, Burkholderia and Pseudomonas aeruginosa, express T6SSs. Bacteria prevent self-intoxication by their own T6SS toxins by producing immunity proteins, which interact with the cognate toxins...

  18. New monoclonal antibodies against a novel subtype of Shiga toxin 1 produced by Enterobacter cloacae and their use in analysis of human serum

    Science.gov (United States)

    Shiga toxin (Stx) is a major virulence factor for several bacterial pathogens that cause potentially fatal illness, including Escherichia coli and Shigella spp. The continual emergence of new subtypes of Stxs presents challenges in clinical diagnosis of infections caused by Shiga toxin-producing org...

  19. [Shiga toxin and tetanus toxin as a potential biologic weapon].

    Science.gov (United States)

    Toczyska, Izabela; Płusa, Tadeusz

    2015-09-01

    Toxins produced by the bacteria are of particular interest as potential cargo combat possible for use in a terrorist attack or war. Shiga toxin is usually produced by shiga toxigenic strains of Escherichia coli (STEC - shigatoxigenic Escherichia coli). To infection occurs mostly after eating contaminated beef. Clinical syndromes associated with Shiga toxin diarrhea, hemorrhagic colitis, hemolytic uremic syndrome (HUS - hemolytic uremic syndrome) or thrombotic thrombocytopenic purpura. Treatment is symptomatic. In HUS, in which mortality during an epidemic reaches 20%, extending the kidney injury dialysis may be necessary. Exposure to tetanus toxin produced by Clostridium tetani, resulting in the most generalized tetanus, characterized by increased muscle tension and painful contractions of individual muscle groups. In the treatment beyond symptomatic behavior (among others spasticity medications, anticonvulsants, muscle relaxants) is used tetanus antitoxin and antibiotics (metronidazole choice). A common complication is acute respiratory failure - then it is necessary to implement mechanical ventilation. PMID:26449578

  20. Detection of extracellular toxin(s) produced by Vibrio vulnificus.

    OpenAIRE

    Kreger, A; Lockwood, D.

    1981-01-01

    Conditions are described for the production, in high titers, a heat-labile, antigenic, extracellular toxin(s) by Vibrio vulnificus, a recently recognized human pathogen. Bacteriologically sterile culture filtrate preparations obtained from mid-logarithmic-phase cultures of the bacterium possessed cytolytic activity against mammalian erythrocytes, cytotoxic activity for Chinese hamster ovary cells, vascular permeability factor activity in guinea pig skin, and lethal activity for mice. The spec...

  1. sRNA Antitoxins: More than One Way to Repress a Toxin

    Directory of Open Access Journals (Sweden)

    Jia Wen

    2014-08-01

    Full Text Available Bacterial toxin-antitoxin loci consist of two genes: one encodes a potentially toxic protein, and the second, an antitoxin to repress its function or expression. The antitoxin can either be an RNA or a protein. For type I and type III loci, the antitoxins are RNAs; however, they have very different modes of action. Type I antitoxins repress toxin protein expression through interacting with the toxin mRNA, thereby targeting the mRNA for degradation or preventing its translation or both; type III antitoxins directly bind to the toxin protein, sequestering it. Along with these two very different modes of action for the antitoxin, there are differences in the functions of the toxin proteins and the mobility of these loci between species. Within this review, we discuss the major differences as to how the RNAs repress toxin activity, the potential consequences for utilizing different regulatory strategies, as well as the confirmed and potential biological roles for these loci across bacterial species.

  2. Epsilon toxin: a fascinating pore-forming toxin.

    Science.gov (United States)

    Popoff, Michel R

    2011-12-01

    Epsilon toxin (ETX) is produced by strains of Clostridium perfringens classified as type B or type D. ETX belongs to the heptameric β-pore-forming toxins including aerolysin and Clostridium septicum alpha toxin, which are characterized by the formation of a pore through the plasma membrane of eukaryotic cells consisting in a β-barrel of 14 amphipatic β strands. By contrast to aerolysin and C. septicum alpha toxin, ETX is a much more potent toxin and is responsible for enterotoxemia in animals, mainly sheep. ETX induces perivascular edema in various tissues and accumulates in particular in the kidneys and brain, where it causes edema and necrotic lesions. ETX is able to pass through the blood-brain barrier and stimulate the release of glutamate, which accounts for the symptoms of nervous excitation observed in animal enterotoxemia. At the cellular level, ETX causes rapid swelling followed by cell death involving necrosis. The precise mode of action of ETX remains to be determined. ETX is a powerful toxin, however, it also represents a unique tool with which to vehicle drugs into the central nervous system or target glutamatergic neurons. PMID:21535407

  3. Toxin-Based Therapeutic Approaches

    OpenAIRE

    Itai Benhar; Assaf Shapira

    2010-01-01

    Protein toxins confer a defense against predation/grazing or a superior pathogenic competence upon the producing organism. Such toxins have been perfected through evolution in poisonous animals/plants and pathogenic bacteria. Over the past five decades, a lot of effort has been invested in studying their mechanism of action, the way they contribute to pathogenicity and in the development of antidotes that neutralize their action. In parallel, many research groups turned to explore the pharmac...

  4. Repurposing a Prokaryotic Toxin-Antitoxin System for the Selective Killing of Oncogenically Stressed Human Cells.

    Science.gov (United States)

    Preston, Mark A; Pimentel, Belén; Bermejo-Rodríguez, Camino; Dionne, Isabelle; Turnbull, Alice; de la Cueva-Méndez, Guillermo

    2016-07-15

    Prokaryotes express intracellular toxins that pass unnoticed to carrying cells until coexpressed antitoxin partners are degraded in response to stress. Although not evolved to function in eukaryotes, one of these toxins, Kid, induces apoptosis in mammalian cells, an effect that is neutralized by its cognate antitoxin, Kis. Here we engineered this toxin-antitoxin pair to create a synthetic system that becomes active in human cells suffering a specific oncogenic stress. Inspired by the way Kid becomes active in bacterial cells, we produced a Kis variant that is selectively degraded in human cells expressing oncoprotein E6. The resulting toxin-antitoxin system functions autonomously in human cells, distinguishing those that suffer the oncogenic insult, which are killed by Kid, from those that do not, which remain protected by Kis. Our results provide a framework for developing personalized anticancer strategies avoiding off-target effects, a challenge that has been hardly tractable by other means thus far. PMID:26230535

  5. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  6. Discovery of functional toxin/antitoxin systems in bacteria by shotgun cloning

    Energy Technology Data Exchange (ETDEWEB)

    Sberro, Hila; Leavitt, Azita; Kiro, Ruth; Koh, Eugene; Peleg, Yoav; Qimron, Udi; Sorek, Rotem

    2013-04-01

    Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using over 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an 'anti-defense' protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.

  7. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells from Intoxication

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  8. Semicarbazone EGA Inhibits Uptake of Diphtheria Toxin into Human Cells and Protects Cells Articlefrom Intoxication.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    Diphtheria toxin is a single-chain protein toxin that invades human cells by receptor-mediated endocytosis. In acidic endosomes, its translocation domain inserts into endosomal membranes and facilitates the transport of the catalytic domain (DTA) from endosomal lumen into the host cell cytosol. Here, DTA ADP-ribosylates elongation factor 2 inhibits protein synthesis and leads to cell death. The compound 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA) has been previously shown to protect cells from various bacterial protein toxins which deliver their enzymatic subunits from acidic endosomes to the cytosol, including Bacillus anthracis lethal toxin and the binary clostridial actin ADP-ribosylating toxins C2, iota and Clostridium difficile binary toxin (CDT). Here, we demonstrate that EGA also protects human cells from diphtheria toxin by inhibiting the pH-dependent translocation of DTA across cell membranes. The results suggest that EGA might serve for treatment and/or prevention of the severe disease diphtheria. PMID:27428999

  9. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø;

    1997-01-01

    inserted. Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  10. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø; Christiansen, Gunnar; Klemm, Per

    inserted. Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  11. Characterization of an RTX-Like Toxin and an Alpha-2-Macroglobulin in Pantoea stewartii subsp. stewartii, Causal Agent of Stewart's Wilt of Sweet Corn

    OpenAIRE

    Williams, Kayla Marie

    2014-01-01

    Pantoea stewartii subsp. stewartii DC283, the causal agent of Stewart's wilt, is an important bacterial pathogen of sweet corn. P. stewartii colonizes the apoplastic space and xylem tissue, resulting in characteristic water-soaked (WS) lesions and wilting. A gene encoding a putative RTX-like toxin, rtx2, has been identified in P. stewartii. RTX toxins belong to the pore-forming toxin family and have lytic properties in animal systems. Little is known about the role of RTX toxins in plant path...

  12. [Toxins of Clostridium perfringens].

    Science.gov (United States)

    Morris, W E; Fernández-Miyakawa, M E

    2009-01-01

    Clostridium perfringens is an anaerobic gram-positive spore-forming bacillus. It is one of the pathogens with larger distribution in the environment; it can be isolated from soil and water samples, which also belongs to the intestinal flora of animals and humans. However, on some occasions it can act as an opportunistic pathogen, causing diseases such as gas gangrene, enterotoxemia in sheep and goats and lamb dysentery, among others. In human beings, it is associated to diseases such as food poisoning, necrotic enterocolitis of the infant and necrotic enteritis or pigbel in Papua-New Guinea tribes. The renewed interest existing nowadays in the study of C. perfringens as a veterinarian and human pathogen, together with the advance of molecular biology, had enabled science to have deeper knowledge of the biology and pathology of these bacteria. In this review, we discuss and update the principal aspects of C. perfringens intestinal pathology, in terms of the toxins with major medical relevance at present. PMID:20085190

  13. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    Science.gov (United States)

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  14. Detection of bacterial toxins by lateral flow immunoassay

    Science.gov (United States)

    Foodborne bacteria sicken over 48 million Americans each year, causing more than 200,000 hospitalizations and over 3,000 deaths. The majority of food producers operate with strict sanitation and hygiene controls throughout production to minimize the risk of product contamination. Additional consume...

  15. Scorpion toxins prefer salt solutions.

    Science.gov (United States)

    Nikouee, Azadeh; Khabiri, Morteza; Cwiklik, Lukasz

    2015-11-01

    There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and-like other proteins-an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213-9223, 1996; Baldwin Biophys J 71(4):2056-2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440-15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na(+) and K(+), was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals. PMID:26475740

  16. Botulinum Toxin Injections: A Treatment for Muscle Spasms

    Science.gov (United States)

    ... A Treatment for Muscle Spasms What is botulinum toxin? Botulinum toxin is a protein that helps stop muscle ... won't have any harmful effects from the toxin. Botulinum toxin has been used safely for a number ...

  17. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    International Nuclear Information System (INIS)

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  18. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  19. Sodium Channel Inhibiting Marine Toxins

    Science.gov (United States)

    Llewellyn, Lyndon E.

    Saxitoxin (STX), tetrodotoxin (TTX) and their many chemical relatives are part of our daily lives. From killing people who eat seafood containing these toxins, to being valuable research tools unveiling the invisible structures of their pharmacological receptor, their global impact is beyond measure. The pharmacological receptor for these toxins is the voltage-gated sodium channel which transports Na ions between the exterior to the interior of cells. The two structurally divergent families of STX and TTX analogues bind at the same location on these Na channels to stop the flow of ions. This can affect nerves, muscles and biological senses of most animals. It is through these and other toxins that we have developed much of our fundamental understanding of the Na channel and its part in generating action potentials in excitable cells.

  20. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  1. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  2. Prostatitis - bacterial

    Science.gov (United States)

    Any bacteria that can cause a urinary tract infection can cause acute bacterial prostatitis. Infections spread through sexual contact can cause prostatitis. These include chlamydia and gonorrhea . Sexually transmitted ...

  3. Entry of Shiga toxin into cells

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; van Deurs, Bo

    Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport......Cellebiologi, Shiga toxin, receptors, glycolipids, endocytosis, trans-Golgi network, endoplasmic reticulum, retrograde transport...

  4. Clostridium difficile and C. difficile Toxin Testing

    Science.gov (United States)

    ... be limited. Home Visit Global Sites Search Help? Clostridium difficile and C. difficile Toxin Testing Share this page: ... C. diff; C diff antigen; GDH Formal name: Clostridium difficile Culture; C. difficile Toxin, A and B; C. ...

  5. Proteomics analysis of toxins-producing dinoflagellates and toxins-contaminated marine organisms

    OpenAIRE

    蒋析文; Jiang, Xiwen

    2012-01-01

    Paralytic shellfish poisoning (PSP) and ciguatera fish poisoning (CFP) are the two major contributors to illnesses caused by dinoflagellate toxins. Paralytic shellfish poisoning toxins (PSTs) are produced by dinoflagellates in the genera Alexandrium, Gymnodinium, and Pyrodinium while ciguatera fish poisoning toxins, such as ciguatoxins (CTXs), are originated from benthic toxic dinoflagellates (Gambierdiscus, Prorocentrum, Ostreopsis, and Coolia species). These toxins are responsible for human...

  6. Bacterial Conjunctivitis

    OpenAIRE

    Köhle, Ülkü; Kükner, Şahap

    2003-01-01

    Conjunctivitis is an infection of the conjunctiva, generally characterized by irritation, itching, foreign body sensation, tearing and discharge. Bacterial conjunctivitis may be distinguished from other types of conjunctivitis by the presence of yellow–white mucopurulent discharge. It is the most common form of ocular infection all around the world. Staphylococcus species are the most common bacterial pathogenes, followed by Streptococcus pneumoniae and Haemophilus i...

  7. Identification of amino acids important for binding of Clostridium perfringens epsilon toxin to host cells and to HAVCR1.

    Science.gov (United States)

    Ivie, Susan E; McClain, Mark S

    2012-09-25

    Clostridium perfringens epsilon toxin belongs to the aerolysin-like family of pore-forming toxins and is one of the most potent bacterial toxins known. The epsilon toxin causes fatal enterotoxemia in sheep, goats, and possibly humans. Evidence indicates that the toxin binds to protein receptors including hepatitis A virus cellular receptor 1 (HAVCR1), but the region of the toxin responsible for cell binding has not been identified. In the present study, we identify amino acids within the epsilon toxin important for this cell interaction. Site-specific mutagenesis was used to investigate the role of a surface-accessible cluster of aromatic amino acids, and purified mutant proteins were tested in a series of cell-culture assays to assess cytotoxic activity and cell binding. When added to cells, four mutant proteins (Etx-Y29E, Etx-Y30E, Etx-Y36E and Etx-Y196E) were severely impaired in their ability to not only kill host cells, but also in their ability to permeabilize the plasma membrane. Circular dichroism spectroscopy and thermal stability studies revealed that the wild-type and mutant proteins were similarly folded. Additional experiments revealed that these mutant proteins were defective in binding to host cells and to HAVCR1. These data indicate that an amino acid motif including Y29, Y30, Y36, and Y196 is important for the ability of epsilon toxin to interact with cells and HAVCR1. PMID:22938730

  8. A toxin-antitoxin module in Bacillus subtilis can both mitigate and amplify effects of lethal stress.

    Directory of Open Access Journals (Sweden)

    Xiangli Wu

    Full Text Available BACKGROUND: Bacterial type-2 (protein-protein toxin-antitoxin (TA modules are two-gene operons that are thought to participate in the response to stress. Previous work with Escherichia coli has led to a debate in which some investigators conclude that the modules protect from stress, while others argue that they amplify lethal stress and lead to programmed cell death. To avoid ambiguity arising from the presence of multiple TA modules in E. coli, the effect of the sole type-2 toxin-antitoxin module of Bacillus subtilis was examined for several types of lethal stress. METHODOLOGY/PRINCIPAL FINDINGS: Genetic knockout of the toxin gene, ndoA (ydcE, conferred protection to lethal stressors that included kanamycin, moxifloxacin, hydrogen peroxide, and UV irradiation. However, at low doses of UV irradiation the ndoA deficiency increased lethality. Indeed, gradually increasing UV dose with the ndoA mutant revealed a crossover response--from the mutant being more sensitive than wild-type cells to being less sensitive. For high temperature and nutrient starvation, the toxin deficiency rendered cells hypersensitive. The ndoA deficiency also reduced sporulation frequency, indicating a role for toxin-antitoxin modules in this developmental process. In the case of lethal antimicrobial treatment, deletion of the toxin eliminated a surge in hydrogen peroxide accumulation observed in wild-type cells. CONCLUSIONS: A single toxin-antitoxin module can mediate two opposing effects of stress, one that lowers lethality and another that raises it. Protective effects are thought to arise from toxin-mediated inhibition of translation based on published work. The enhanced, stress-mediated killing probably involves toxin-dependent accumulation of reactive oxygen species, since a deficiency in the NdoA toxin suppressed peroxide accumulation following antimicrobial treatment. The type and perhaps the level of stress appear to be important for determining whether this toxin

  9. Plant Natural Products Targeting Bacterial Virulence Factors.

    Science.gov (United States)

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  10. Growth control switch by a DNA-damage-inducible toxin-antitoxin system in Caulobacter crescentus.

    Science.gov (United States)

    Kirkpatrick, Clare L; Martins, Daniel; Redder, Peter; Frandi, Antonio; Mignolet, Johann; Chapalay, Julien Bortoli; Chambon, Marc; Turcatti, Gerardo; Viollier, Patrick H

    2016-01-01

    Bacterial toxin-antitoxin systems (TASs) are thought to respond to various stresses, often inducing growth-arrested (persistent) sub-populations of cells whose housekeeping functions are inhibited. Many such TASs induce this effect through the translation-dependent RNA cleavage (RNase) activity of their toxins, which are held in check by their cognate antitoxins in the absence of stress. However, it is not always clear whether specific mRNA targets of orthologous RNase toxins are responsible for their phenotypic effect, which has made it difficult to accurately place the multitude of TASs within cellular and adaptive regulatory networks. Here, we show that the TAS HigBA of Caulobacter crescentus can promote and inhibit bacterial growth dependent on the dosage of HigB, a toxin regulated by the DNA damage (SOS) repressor LexA in addition to its antitoxin HigA, and the target selectivity of HigB's mRNA cleavage activity. HigB reduced the expression of an efflux pump that is toxic to a polarity control mutant, cripples the growth of cells lacking LexA, and targets the cell cycle circuitry. Thus, TASs can have outcome switching activity in bacterial adaptive (stress) and systemic (cell cycle) networks. PMID:27572440

  11. Both, toxin A and toxin B, are important in Clostridium difficile infection

    OpenAIRE

    Kuehne, Sarah A; Cartman, Stephen T; Minton, Nigel P.

    2011-01-01

    The bacterium Clostridium difficile is the leading cause of healthcare associated diarrhoea in the developed world and thus presents a major financial burden. The main virulence factors of C. difficile are two large toxins, A and B. Over the years there has been some debate over the respective roles and importance of these two toxins. To address this, we recently constructed stable toxin mutants of C. difficile and found that they were virulent if either toxin A or toxin B was functional. Thi...

  12. Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs

    Directory of Open Access Journals (Sweden)

    Finbarr Hayes

    2014-01-01

    Full Text Available Genes for toxin-antitoxin (TA complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.

  13. A bioanalytical platform for simultaneous detection and quantification of biological toxins.

    Science.gov (United States)

    Weingart, Oliver G; Gao, Hui; Crevoisier, François; Heitger, Friedrich; Avondet, Marc-André; Sigrist, Hans

    2012-01-01

    Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin's identity and concentration. The system's performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5-1 ng · mL(-1) in buffer or in raw milk. PMID:22438766

  14. Inactivation of the Elongation Factor Tu by Mosquitocidal Toxin-Catalyzed Mono-ADP-Ribosylation

    OpenAIRE

    Schirmer, Jörg; Wieden, Hans-Joachim; Rodnina, Marina V.; Aktories, Klaus

    2002-01-01

    The mosquitocidal toxin (MTX) produced by Bacillus sphaericus strain SSII-1 is an ∼97-kDa single-chain toxin which contains a 27-kDa enzyme domain harboring ADP-ribosyltransferase activity and a 70-kDa putative binding domain. Due to cytotoxicity toward bacterial cells, the 27-kDa enzyme fragment cannot be produced in Escherichia coli expression systems. However, a nontoxic 32-kDa N-terminal truncation of MTX can be expressed in E. coli and subsequently cleaved to an active 27-kDa enzyme frag...

  15. Shigella Sonnei and Shiga Toxin

    Centers for Disease Control (CDC) Podcasts

    2016-07-28

    Katherine Lamba, an infectious disease epidemiologist with the California Department of Public Health, discusses Shiga Toxin producing Shigella sonnei.  Created: 7/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/28/2016.

  16. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  17. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  18. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  19. Revisiting the Concept of Targeting Only Bacillus anthracis Toxins as a Treatment for Anthrax.

    Science.gov (United States)

    Glinert, Itai; Bar-David, Elad; Sittner, Assa; Weiss, Shay; Schlomovitz, Josef; Ben-Shmuel, Amir; Mechaly, Adva; Altboum, Zeev; Kobiler, David; Levy, Haim

    2016-08-01

    Protective antigen (PA)-based vaccines are effective in preventing the development of fatal anthrax disease both in humans and in relevant animal models. The Bacillus anthracis toxins lethal toxin (lethal factor [LF] plus PA) and edema toxin (edema factor [EF] plus PA) are essential for the establishment of the infection, as inactivation of these toxins results in attenuation of the pathogen. Since the toxins reach high toxemia levels at the bacteremic stages of the disease, the CDC's recommendations include combining antibiotic treatment with antitoxin (anti-PA) immunotherapy. We demonstrate here that while treatment with a highly potent neutralizing monoclonal antibody was highly efficient as postexposure prophylaxis treatment, it failed to protect rabbits with any detectable bacteremia (≥10 CFU/ml). In addition, we show that while PA vaccination was effective against a subcutaneous spore challenge, it failed to protect rabbits against systemic challenges (intravenous injection of vegetative bacteria) with the wild-type Vollum strain or a toxin-deficient mutant. To test the possibility that additional proteins, which are secreted by the bacteria under pathogenicity-stimulating conditions in vitro, may contribute to the vaccine's potency, we immunized rabbits with a secreted protein fraction from a toxin-null mutant. The antiserum raised against the secreted fraction reacts with the bacteria in an immunofluorescence assay. Immunization with the secreted protein fraction did not protect the rabbits against a systemic challenge with the fully pathogenic bacteria. Full protection was obtained only by a combined vaccination with PA and the secreted protein fraction. Therefore, these results indicate that an effective antiserum treatment in advanced stages of anthrax must include toxin-neutralizing antibodies in combination with antibodies against bacterial cell targets. PMID:27270276

  20. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    parameters, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to...... tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion is...... the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental...

  1. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  2. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  3. Anthrax toxin receptor 2-dependent lethal toxin killing in vivo.

    Directory of Open Access Journals (Sweden)

    Heather M Scobie

    2006-10-01

    Full Text Available Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2 have a related integrin-like inserted (I domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis.

  4. Immunological cross-reactivity in the absence of DNA homology between Pseudomonas toxin A and diphtheria toxin.

    OpenAIRE

    Sadoff, J C; Buck, G A; Iglewski, B H; Bjorn, M J; Groman, N B

    1982-01-01

    The immunodominant determinant of Pseudomonas toxin A was shown to cross-react with a normally inaccessible determinant in fragment A of diphtheria toxin. Trypsin-treated diphtheria toxin and fragment A of diphtheria toxin inhibited binding of toxin A antibody to whole toxin A, whereas whole diphtheria toxin did not inhibit this reaction. However, even at the lowest stringency no hybridization was detected between diphtheria tox probe and Pseudomonas aeruginosa DNA.

  5. Crystallization of Escherichia coli CdtB, the biologically active subunit of cytolethal distending toxin

    International Nuclear Information System (INIS)

    Cytolethal distending toxin subunit CdtB from E. coli strain 9142-88 was purified and crystallized. Crystals belonging to space group P212121 diffract to a resolution of 1.72 Å. Cytolethal distending toxin (CDT) is a secreted protein toxin produced by several bacterial pathogens. The biologically active CDT subunit CdtB is an active homolog of mammalian type I DNase. Internalization of CdtB and subsequent translocation into the nucleus of target cells results in DNA-strand breaks, leading to cell-cycle arrest and apoptosis. CdtB crystals were grown using microbatch methods with polyethylene glycol 8000 as the precipitant. The CdtB crystals contain one molecule of MW 30.5 kDa per asymmetric unit, belong to space group P212121 and diffract to 1.72 Å

  6. Why do we study animal toxins?

    Science.gov (United States)

    Zhang, Yun

    2015-07-18

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence, their genetic basis, inherent association, as well as the cost-benefit and trade-offs of biological economy. Lethal animal envenomation can be found worldwide. However, from foe to friend, toxin studies have led lots of important discoveries and exciting avenues in deciphering and fighting human diseases, including the works awarded the Nobel Prize and lots of key clinic therapeutics. According to our survey, so far, only less than 0.1% of the toxins of the venomous animals in China have been explored. We emphasize on the similarities shared by venom and immune systems, as well as the studies of toxin knowledge-based physiological toxin-like proteins/peptides (TLPs). We propose the natural pairing hypothesis. Evolution links toxins with humans. Our mission is to find out the right natural pairings and interactions of our body elements with toxins, and with endogenous toxin-like molecules. Although, in nature, toxins may endanger human lives, but from a philosophical point of view, knowing them well is an effective way to better understand ourselves. So, this is why we study toxins. PMID:26228472

  7. Exfoliative Toxins of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michal Bukowski

    2010-05-01

    Full Text Available Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1, enterotoxins, and exfoliative toxins (ETs. The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS, a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.

  8. Contemporary issues in food allergy: seafood toxin-induced disease in the differential diagnosis of allergic reactions.

    Science.gov (United States)

    Chegini, Soheil; Metcalfe, Dean D

    2005-01-01

    Seafood, including fish, shrimp, lobster, crab, crayfish, mussel, and clam are among the most frequent causes of food allergy. Seafood poisoning, including reactions to natural toxins, frequently masquerades as an allergic reaction on presentation. Ingestion of contaminated shellfish results in a wide variety of symptoms, depending on the toxins present, their concentrations in the shellfish, and the amount of contaminated shellfish consumed. Five types of shellfish poisoning have been identified clearly including paralytic, neurotoxic, diarrhetic, amnestic, and azaspiracid shellfish poisonings. Based on the presence or absence of the toxin at the time of capture, fish poisoning can be considered conceptually in two categories. In ciguatera and puffer fish poisoning, the toxin is present in live fish, whereas in scombroid, it is produced only after capture, in the fish flesh, by contaminating bacteria because of improper refrigeration. Most shellfish-associated illness is infectious in nature (bacterial or viral), with the Norwalk virus accounting for most cases of gastroenteritis. PMID:16119031

  9. Identification of a Lambda Toxin-Negative Clostridium perfringens Strain that Processes and Activates Epsilon Prototoxin Intracellularly

    Science.gov (United States)

    Harkness, Justine M.; Li, Jihong; McClane, Bruce A.

    2012-01-01

    Clostridium perfringens type B and D strains produce epsilon toxin (ETX), which is one of the most potent clostridial toxins and is involved in enteritis and enterotoxemias of domestic animals. ETX is produced initially as an inactive prototoxin that is typically then secreted and processed by intestinal proteases or possibly, for some strains, lambda toxin. During the current work a unique C. perfringens strain was identified that intracellularly processes epsilon prototoxin to an active form capable of killing MDCK cells. This activated toxin is not secreted but instead is apparently released upon lysis of bacterial cells entering stationary phase. These findings broaden understanding of the pathogenesis of type B and D infections by identifying a new mechanism of ETX activation. PMID:22982043

  10. Isolation, purification and spectrometric analysis of PSP toxins from moraxella sp., a bacterium associated with a toxic dinoflagellate

    Energy Technology Data Exchange (ETDEWEB)

    Boyce, S.D.; Doucette, G.J.

    1994-12-31

    Paralytic shellfish poisoning (PSP) is a seafood intoxication syndrome caused by the injestion of shellfish contaminated with toxins produced by algae known as dinoflagellates. The PSP toxins, saxitoxin and its derivatives, act to block voltage-dependent sodium channels and can cause paralysis and even death at higher doses. It is well documented that bacteria coexist with many harmful or toxic algal species, though the exact nature of the association in relation to toxin production is unknown. Recently, the bacterium Moraxella sp. was isolated from the PSP toxin producing dinoflagellate Alexandrium tamarense. Through HPLC analysis and saxitoxin receptor binding assays performed on crude bacterial extracts, it appears that Moraxella sp. is capable of producing saxitoxin and several of its derivatives. However, physical confirmation (e.g. mass spectrometry) of these results is still needed.

  11. A novel Hsp70 inhibitor prevents cell intoxication with the actin ADP-ribosylating Clostridium perfringens iota toxin.

    Science.gov (United States)

    Ernst, Katharina; Liebscher, Markus; Mathea, Sebastian; Granzhan, Anton; Schmid, Johannes; Popoff, Michel R; Ihmels, Heiko; Barth, Holger; Schiene-Fischer, Cordelia

    2016-01-01

    Hsp70 family proteins are folding helper proteins involved in a wide variety of cellular pathways. Members of this family interact with key factors in signal transduction, transcription, cell-cycle control, and stress response. Here, we developed the first Hsp70 low molecular weight inhibitor specifically targeting the peptide binding site of human Hsp70. After demonstrating that the inhibitor modulates the Hsp70 function in the cell, we used the inhibitor to show for the first time that the stress-inducible chaperone Hsp70 functions as molecular component for entry of a bacterial protein toxin into mammalian cells. Pharmacological inhibition of Hsp70 protected cells from intoxication with the binary actin ADP-ribosylating iota toxin from Clostridium perfringens, the prototype of a family of enterotoxins from pathogenic Clostridia and inhibited translocation of its enzyme component across cell membranes into the cytosol. This finding offers a starting point for novel therapeutic strategies against certain bacterial toxins. PMID:26839186

  12. Botulinum toxin: Bioweapon & magic drug

    OpenAIRE

    Dhaked, Ram Kumar; Singh, Manglesh Kumar; Singh, Padma; Gupta, Pallavi

    2010-01-01

    Botulinum neurotoxins, causative agents of botulism in humans, are produced by Clostridium botulinum, an anaerobic spore-former Gram positive bacillus. Botulinum neurotoxin poses a major bioweapon threat because of its extreme potency and lethality; its ease of production, transport, and misuse; and the need for prolonged intensive care among affected persons. A single gram of crystalline toxin, evenly dispersed and inhaled, can kill more than one million people. The basis of the phenomenal p...

  13. Botulinum Toxin in Pediatric Neurology

    OpenAIRE

    Moawad, Eman M. I.; Abdallah, Enas Abdallah Ali

    2015-01-01

    Botulinum neurotoxins are natural molecules produced by anaerobic spore-forming bacteria called Clostradium boltulinum. The toxin has a peculiar mechanism of action by preventing the release of acetylcholine from the presynaptic membrane. Consequently, it has been used in the treatment of various neurological conditions related to muscle hyperactivity and/or spasticity. Also, it has an impact on the autonomic nervous system by acting on smooth muscle, leading to its use in the management of p...

  14. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA

    Directory of Open Access Journals (Sweden)

    Jafar Amani

    2015-06-01

    Full Text Available Shiga toxin producing bacteria are potential causes of serious human disease such as hemorrhagic colitis, severe inflammations of ileocolonic regions of gastrointestinal tract, thrombocytopenia, septicemia, malignant disorders in urinary ducts, hemolytic uremic syndrome (HUS Shiga toxin 1 (stx1, shiga toxin 2 (stx2, or a combination of both are responsible for most clinical symptoms of these diseases. A lot of methods have been developed so far to detect shiga toxins such as cell culture, ELISA, and RFPLA, but due to high costs and labor time in addition to low sensitivity, they have not received much attention. In this study, PCR-ELISA method was used to detect genes encoding shiga toxins 1 and 2 (stx1 and stx2. To detect stx1 and stx2 genes, two primer pairs were designed for Multiplex-PCR then PCR-ELISA. PCR products (490 and 275, respectively were subsequently verified by sequencing. Sensitivity and specificity of PCR-ELISA method were determined by using genome serial dilution and Enterobacteriastrains. PCR-ELISA method used in this study proved to be a rapid and precise approach to detect different types of shiga toxins and can be used to detect bacterial genes encoding shiga toxins.

  15. The Potential Contributions of Lethal and Edema Toxins to the Pathogenesis of Anthrax Associated Shock

    Directory of Open Access Journals (Sweden)

    Peter Q. Eichacker

    2011-09-01

    Full Text Available Outbreaks of Bacillus anthracis in the US and Europe over the past 10 years have emphasized the health threat this lethal bacteria poses even for developed parts of the world. In contrast to cutaneous anthrax, inhalational disease in the US during the 2001 outbreaks and the newly identified injectional drug use form of disease in the UK and Germany have been associated with relatively high mortality rates. One notable aspect of these cases has been the difficulty in supporting patients once shock has developed. Anthrax bacilli produce several different components which likely contribute to this shock. Growing evidence indicates that both major anthrax toxins may produce substantial cardiovascular dysfunction. Lethal toxin (LT can alter peripheral vascular function; it also has direct myocardial depressant effects. Edema toxin (ET may have even more pronounced peripheral vascular effects than LT, including the ability to interfere with the actions of conventional vasopressors. Additionally, ET also appears capable of interfering with renal sodium and water retention. Importantly, the two toxins exert their actions via quite different mechanisms and therefore have the potential to worsen shock and outcome in an additive fashion. Finally, both toxins have the ability to inhibit host defense and microbial clearance, possibly contributing to the very high bacterial loads noted in patients dying with anthrax. This last point is clinically relevant since emerging data has begun to implicate other bacterial components such as anthrax cell wall in the shock and organ injury observed with infection. Taken together, accumulating evidence regarding the potential contribution of LT and ET to anthrax-associated shock supports efforts to develop adjunctive therapies that target both toxins in patients with progressive shock.

  16. Limited selection of sodium channel blocking toxin-producing bacteria from paralytic shellfish toxin-contaminated mussels (Aulacomya ater).

    Science.gov (United States)

    Vásquez, Mónica; Grüttner, Carol; Möeller, Blanca; Moore, Edward R B

    2002-01-01

    Paralytic shellfish toxins (PSTs) are sodium channel blocking (SCB) toxins, produced by cyanobacteria, as well as by marine dinoflagellates and their associated bacteria, and cause serious health and economic concern worldwide. In a previous study, approximately 70% of the bacteria enriched from PST-contaminated shellfish tissue and isolated on marine agar medium were observed to produce SCB toxins. In the study reported here, the high percentage of cultivable toxigenic bacteria is demonstrated to be obtained through a marked selection on marine agar medium. The cultivable as well as the total bacterial diversity associated with PST-contaminated shellfish collected from the Magallanes region in the south of Chile has been analysed. Approximately 80% of bacterial isolates, analysed by restriction analysis of PCR amplified ribosomal DNA (i.e., ARDRA fingerprinting), were limited to only two genotypic OTUs (operational taxonomic unit). Sequence determination and analysis of the 16S rDNA from representative isolates of both OTUs established them to be closely related to species of the Psychrobacter genus of the gamma-subclass of the Proteobacteria. The total bacterial diversity in the shellfish was further analysed, using a cultivation-independent strategy of extraction of total DNA from contaminated tissue, PCR-amplification of bacterial 16S rRNA genes, cloning of the PCR products and analysis of the cloned 16S rDNA sequence types by fingerprinting and sequencing. Only 2% of the cloned sequence types corresponded to species of the Psychrobacter genus. The 16S rDNA sequence types detected clustered with species of the y-Proteobacteria subclass, the Cytophaga-Flexibacter-Bacteroides (CFB), the Fusobacteria and the Firmicutes phyla. The level of diversity observed within the libraries of cloned 16S rDNA was markedly greater than that observed among isolates obtained through marine agar enrichment cultures from the same shellfish tissue. Additionally the predominant

  17. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  18. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  19. Anthrax toxin targeting of myeloid cells through the CMG2 receptor is essential for establishment of Bacillus anthracis infections in mice

    OpenAIRE

    Liu, Shihui; Miller-Randolph, Sharmina; Crown, Devorah; Moayeri, Mahtab; Sastalla, Inka; Okugawa, Shu; Leppla, Stephen H.

    2010-01-01

    Bacillus anthracis kills through a combination of bacterial infection and toxemia. Anthrax toxin working via the CMG2 receptor mediates lethality late in infection, but its roles early in infection remain unclear. We generated myeloid-lineage specific CMG2-deficient mice to examine the roles of macrophages, neutrophils, and other myeloid cells in anthrax pathogenesis. Macrophages and neutrophils isolated from these mice were resistant to anthrax toxin. However, the myeloid-specific CMG2-defic...

  20. Use of the espZ Gene Encoded in the Locus of Enterocyte Effacement for Molecular Typing of Shiga Toxin-Producing Escherichia coli

    OpenAIRE

    Gilmour, Matthew W.; Tracz, Dobryan M.; Andrysiak, Ashleigh K.; Clark, Clifford G.; Tyson, Shari; Severini, Alberto; Ng, Lai-King

    2006-01-01

    Infections with Shiga toxin-producing Escherichia coli (STEC) result in frequent cases of sporadic and outbreak-associated enteric bacterial disease in humans. Classification of STEC is by stx genotype (encoding the Shiga toxins), O and H antigen serotype, and seropathotype (subgroupings based upon the clinical relevance and virulence-related genotypes of individual serotypes). The espZ gene is encoded in the locus of enterocyte effacement (LEE) pathogenicity island responsible for the attach...

  1. [Use of botulinum toxin in strabismus].

    Science.gov (United States)

    Wabbels, B

    2016-07-01

    Botulinum toxin can be a useful tool for treating acute sixth nerve palsy and excessive eye deviations due to unstable Graves' disease, when surgery is not yet possible. The diagnostic injection for estimation of possible postoperative double vision also makes sense. In convergence spasms, periocular botulinum toxin injections can be a therapeutic option. Botulinum toxin is not a first line option in infantile esotropia without binocularity or in adult horizontal strabismus. Side effects include ptosis and vertical deviations. PMID:27369733

  2. Quantitative microtiter cytotoxicity assay for Shigella toxin.

    OpenAIRE

    Gentry, M. K.; Dalrymple, J M

    1980-01-01

    The cytotoxic activity of Shigella dysenteriae 1 was assayed by exposing HeLa cells in microtiter cultures to dilutions of toxin. Exposure to toxin caused either failure of cells in suspension to attach or detachment of cells from established monolayers. Estimates of toxin potency were made by staining residual cells with crystal violet and visually inspecting the stained plates. Quantitation of the cytotoxic effect was made possible by eluting and spectrophotometrically measuring the stain. ...

  3. Application of Botulinum Toxin in Pain Management

    OpenAIRE

    Sim, Woo Seog

    2011-01-01

    Botulinum toxin has been used for the treatment of many clinical disorders by producing temporary skeletal muscle relaxation. In pain management, botulinum toxin has demonstrated an analgesic effect by reducing muscular hyperactivity, but recent studies suggest this neurotoxin could have direct analgesic mechanisms different from its neuromuscular actions. At the moment, botulinum toxin is widely investigated and used in many painful diseases such as myofascial syndrome, headaches, arthritis,...

  4. Cholera toxin-like toxin released by Salmonella species in the presence of mitomycin C.

    OpenAIRE

    Molina, N C; Peterson, J W

    1980-01-01

    Several serotypes of Salmonella were shown to release increased amounts of a cholera toxin-like toxin during culture in vitro with mitomycin C (MTC). Filter-sterilized culture supernatants containing the toxin caused elongation of Chinese hamster ovary cells, which could be blocked by heating the supernatants at 100 degrees C for 15 min or by adding mixed gangliosides or monospecific cholera antitoxin. When MTC was not added to the Salmonella cultures, little or no toxin was detected in crude...

  5. Synthesis and Biology of Cyclic Imine Toxins, An Emerging Class of Potent, Globally Distributed Marine Toxins

    OpenAIRE

    Stivala, Craig E.; Benoit, Evelyne; Araoz, Romulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-01-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulat...

  6. Botulinum Toxin; Bioterror and Biomedicinal Agent

    Directory of Open Access Journals (Sweden)

    Jiri Patocka

    2006-04-01

    Full Text Available Botulinum toxin is a group of seven homologous, highly poisonous proteins isolated fromfermentation of the anaerobic bacterium Clostridium botulinum, which naturally occurs in soiland can grow on many meats and vegetables. Botulinum toxin causes neuromuscular disordercalled botulism, which is a potentially lethal disease. There are three types of botulism: Food,wound, and infant botulism. It can lead to death unless appropriate therapy is done. Due to theseverity and potency of botulinum toxin, its importance as a biological weapon is of majorconcern to public health officials. Nevertheless, botulinum toxin is also medicament.

  7. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers.

    Science.gov (United States)

    Fuchs, Hendrik; Weng, Alexander; Gilabert-Oriol, Roger

    2016-01-01

    The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments. PMID:27376327

  8. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  9. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease.

    Science.gov (United States)

    Litteljohn, Darcy; Mangano, Emily; Clarke, Melanie; Bobyn, Jessica; Moloney, Kerry; Hayley, Shawn

    2010-01-01

    Parkinson's disease (PD) has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA) neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a "sensitized" state that favors the production of proinflammatory cytokines and damaging oxidative radicals. PMID:21234362

  10. Inflammatory Mechanisms of Neurodegeneration in Toxin-Based Models of Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Darcy Litteljohn

    2011-01-01

    Full Text Available Parkinson's disease (PD has been associated with exposure to a variety of environmental agents, including pesticides, heavy metals, and organic pollutants; and inflammatory processes appear to constitute a common mechanistic link among these insults. Indeed, toxin exposure has been repeatedly demonstrated to induce the release of oxidative and inflammatory factors from immunocompetent microglia, leading to damage and death of midbrain dopamine (DA neurons. In particular, proinflammatory cytokines such as tumor necrosis factor-α and interferon-γ, which are produced locally within the brain by microglia, have been implicated in the loss of DA neurons in toxin-based models of PD; and mounting evidence suggests a contributory role of the inflammatory enzyme, cyclooxygenase-2. Likewise, immune-activating bacterial and viral agents were reported to have neurodegenerative effects themselves and to augment the deleterious impact of chemical toxins upon DA neurons. The present paper will focus upon the evidence linking microglia and their inflammatory processes to the death of DA neurons following toxin exposure. Particular attention will be devoted to the possibility that environmental toxins can activate microglia, resulting in these cells adopting a “sensitized” state that favors the production of proinflammatory cytokines and damaging oxidative radicals.

  11. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.

    Science.gov (United States)

    Bravo, Alejandra; Gill, Sarjeet S; Soberón, Mario

    2007-03-15

    Bacillus thuringiensis Crystal (Cry) and Cytolitic (Cyt) protein families are a diverse group of proteins with activity against insects of different orders--Lepidoptera, Coleoptera, Diptera and also against other invertebrates such as nematodes. Their primary action is to lyse midgut epithelial cells by inserting into the target membrane and forming pores. Among this group of proteins, members of the 3-Domain Cry family are used worldwide for insect control, and their mode of action has been characterized in some detail. Phylogenetic analyses established that the diversity of the 3-Domain Cry family evolved by the independent evolution of the three domains and by swapping of domain III among toxins. Like other pore-forming toxins (PFT) that affect mammals, Cry toxins interact with specific receptors located on the host cell surface and are activated by host proteases following receptor binding resulting in the formation of a pre-pore oligomeric structure that is insertion competent. In contrast, Cyt toxins directly interact with membrane lipids and insert into the membrane. Recent evidence suggests that Cyt synergize or overcome resistance to mosquitocidal-Cry proteins by functioning as a Cry-membrane bound receptor. In this review we summarize recent findings on the mode of action of Cry and Cyt toxins, and compare them to the mode of action of other bacterial PFT. Also, we discuss their use in the control of agricultural insect pests and insect vectors of human diseases. PMID:17198720

  12. Bidirectional effect of Wnt signaling antagonist DKK1 on the modulation of anthrax toxin uptake.

    Science.gov (United States)

    Qian, LiLi; Cai, ChangZu; Yuan, PengFei; Jeong, Sun-Young; Yang, XiaoZhou; Dealmeida, Venita; Ernst, James; Costa, Michael; Cohen, Stanley N; Wei, WenSheng

    2014-05-01

    LRP6, a co-receptor for the morphogen Wnt, aids endocytosis of anthrax complexes. Here we report that Dickkopf1 (DKK1) protein, a secreted LRP6 ligand and antagonist, is also a modulator of anthrax toxin sensitivity. shRNA-mediated gene silencing or TALEN-mediated gene knockout of DKK1 reduced sensitivity of cells to PA-dependent hybrid toxins. However, unlike the solely inhibitory effect on Wnt signaling, the effects of DKK1 overexpression on anthrax toxicity were bidirectional, depending on its endogenous expression and cell context. Fluorescence microscopy and biochemical analyses showed that DKK1 facilitates internalization of anthrax toxins and their receptors, an event mediated by DKK1-LRP6-Kremen2 complex. Monoclonal antibodies against DKK1 provided dose-dependent protection to macrophages from killing by anthrax lethal toxin (LT). Our discovery that DKK1 forms ternary structure with LRP6 and Kremen2 in promoting PA-mediated toxin internalization provides a paradigm for bacterial exploitation of mechanisms that host cells use to internalize signaling proteins. PMID:24671437

  13. A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins

    Directory of Open Access Journals (Sweden)

    Hans Sigrist

    2012-02-01

    Full Text Available Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin’s identity and concentration. The system’s performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A, Staphylococcal enterotoxin B (SEB, and the plant toxin ricin. Toxins were detectable at levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk.

  14. Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome

    Institute of Scientific and Technical Information of China (English)

    Yi Xuan ZHANG; Xiao Kui GUO; Chuan WU; Bo BI; Shuang Xi REN; Chun Fu WU; Guo Ping ZHAO

    2004-01-01

    Comparative genomic analysis of the coding sequences (CDSs) of Leptospira interrogans revealed a pair of closely linked genes homologous to the vapBC loci of many other bacteria with respect to both deduced amino acid sequences and operon organizations. Expression of single vapC gene in Escherichia coli resulted in inhibition of bacterial growth,whereas co-expression of vapBC restored the growth effectively. This phenotype is typical for three other characterized toxin-antitoxin systems of bacteria, i.e., mazEF[1], relBE[2] and chpIK[3]. The VapC proteins of bacteria and a thermophilic archeae, Solfolobus tokodaii, form a structurally distinguished group of toxin different from the other known toxins of bacteria. Phylogenetic analysis of both toxins and antitoxins of all categories indicated that although toxins were evolved from divergent sources and may or may not follow their speciation paths (as indicated by their 16s RNA sequences), co-evolution with their antitoxins was obvious.

  15. Uptake and Processing of the Cytolethal Distending Toxin by Mammalian Cells

    Directory of Open Access Journals (Sweden)

    Joseph M. DiRienzo

    2014-10-01

    Full Text Available The cytolethal distending toxin (Cdt is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER, to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus. Insight gained from these studies has the potential to contribute to the development of novel therapeutic strategies.

  16. Characterization of a novel toxin-antitoxin module, VapBC, encoded by Leptospira interrogans chromosome.

    Science.gov (United States)

    Zhang, Yi Xuan; Li, Juan; Guo, Xiao Kui; Wu, Chuan; Bi, Bo; Ren, Shuang Xi; Wu, Chun Fu; Zhao, Guo Ping

    2004-06-01

    Comparative genomic analysis of the coding sequences (CDSs) of Leptospira interrogans revealed a pair of closely linked genes homologous to the vapBC loci of many other bacteria with respect to both deduced amino acid sequences and operon organizations. Expression of single vapC gene in Escherichia coli resulted in inhibition of bacterial growth, whereas co-expression of vapBC restored the growth effectively. This phenotype is typical for three other characterized toxin-antitoxin systems of bacteria, i.e., mazEF, relBE and chpIK. The VapC proteins of bacteria and a thermophilic archeae, Solfolobus tokodaii, form a structurally distinguished group of toxin different from the other known toxins of bacteria. Phylogenetic analysis of both toxins and antitoxins of all categories indicated that although toxins were evolved from divergent sources and may or may not follow their speciation paths (as indicated by their 16s RNA sequences), co-evolution with their antitoxins was obvious. PMID:15225414

  17. The Typhoid Toxin Promotes Host Survival and the Establishment of a Persistent Asymptomatic Infection.

    Science.gov (United States)

    Del Bel Belluz, Lisa; Guidi, Riccardo; Pateras, Ioannis S; Levi, Laura; Mihaljevic, Boris; Rouf, Syed Fazle; Wrande, Marie; Candela, Marco; Turroni, Silvia; Nastasi, Claudia; Consolandi, Clarissa; Peano, Clelia; Tebaldi, Toma; Viero, Gabriella; Gorgoulis, Vassilis G; Krejsgaard, Thorbjørn; Rhen, Mikael; Frisan, Teresa

    2016-04-01

    Bacterial genotoxins, produced by several Gram-negative bacteria, induce DNA damage in the target cells. While the responses induced in the host cells have been extensively studied in vitro, the role of these effectors during the course of infection remains poorly characterized. To address this issue, we assessed the effects of the Salmonella enterica genotoxin, known as typhoid toxin, in in vivo models of murine infection. Immunocompetent mice were infected with isogenic S. enterica, serovar Typhimurium (S. Typhimurium) strains, encoding either a functional or an inactive typhoid toxin. The presence of the genotoxic subunit was detected 10 days post-infection in the liver of infected mice. Unexpectedly, its expression promoted the survival of the host, and was associated with a significant reduction of severe enteritis in the early phases of infection. Immunohistochemical and transcriptomic analysis confirmed the toxin-mediated suppression of the intestinal inflammatory response. The presence of a functional typhoid toxin further induced an increased frequency of asymptomatic carriers. Our data indicate that the typhoid toxin DNA damaging activity increases host survival and favours long-term colonization, highlighting a complex cross-talk between infection, DNA damage response and host immune response. These findings may contribute to understand why such effectors have been evolutionary conserved and horizontally transferred among Gram-negative bacteria. PMID:27055274

  18. The gene for type A streptococcal exotoxin (erythrogenic toxin) is located in bacteriophage T12.

    OpenAIRE

    Weeks, C R; Ferretti, J J

    1984-01-01

    The infection of Streptococcus pyogenes T25(3) with the temperate bacteriophage T12 results in the conversion of the nontoxigenic strain to type A streptococcal exotoxin (erythrogenic toxin) production. Although previous research has established that integration of the bacteriophage genome into the host chromosome is not essential for exotoxin production, the location of the gene on the bacteriophage or bacterial chromosome had not been determined. In the present investigation, recombinant DN...

  19. Role of 6-Gingerol in Reduction of Cholera Toxin Activity In Vitro and In Vivo

    OpenAIRE

    Saha, Pallashri; Das, Bornita; Chaudhuri, Keya

    2013-01-01

    Vibrio cholerae is one of the major bacterial pathogens responsible for the devastating diarrheal disease called cholera. Chemotherapy is often used against V. cholerae infections; however, the emergence of V. cholerae with multidrug resistance (MDR) toward the chemotherapeutic agents is a serious clinical problem. This scenario has provided us with the impetus to look into herbal remediation, especially toward blocking the action of cholera toxin (CT). Our studies were undertaken to determin...

  20. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  1. Characterization of Toxin Plasmids in Clostridium perfringens Type C Isolates▿

    OpenAIRE

    Gurjar, Abhijit; Li, Jihong; McClane, Bruce A.

    2010-01-01

    Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasm...

  2. Botulinum toxin: The Midas touch.

    Science.gov (United States)

    Shilpa, P S; Kaul, Rachna; Sultana, Nishat; Bhat, Suraksha

    2014-01-01

    Botulinum Toxin (BT) is a natural molecule produced during growth and autolysis of bacterium called Clostridium botulinum. Use of BT for cosmetic purposes has gained popularity over past two decades, and recently, other therapeutic uses of BT has been extensively studied. BT is considered as a minimally invasive agent that can be used in the treatment of various orofacial disorders and improving the quality of life in such patients. The objective of this article is to review the nature, mechanism of action of BT, and its application in various head and neck diseases. PMID:24678189

  3. Clostridial Glucosylating Toxins Enter Cells via Clathrin-Mediated Endocytosis

    OpenAIRE

    Papatheodorou, Panagiotis; Zamboglou, Constantinos; Genisyuerek, Selda; Guttenberg, Gregor; Aktories, Klaus

    2010-01-01

    Clostridium difficile toxin A (TcdA) and toxin B (TcdB), C. sordellii lethal toxin (TcsL) and C. novyi α-toxin (TcnA) are important pathogenicity factors, which represent the family of the clostridial glucosylating toxins (CGTs). Toxin A and B are associated with antibiotic-associated diarrhea and pseudomembraneous colitis. Lethal toxin is involved in toxic shock syndrome after abortion and α-toxin in gas gangrene development. CGTs enter cells via receptor-mediated endocytosis and require an ...

  4. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  5. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  6. Target-Driven Evolution of Scorpion Toxins.

    Science.gov (United States)

    Zhang, Shangfei; Gao, Bin; Zhu, Shunyi

    2015-01-01

    It is long known that peptide neurotoxins derived from a diversity of venomous animals evolve by positive selection following gene duplication, yet a force that drives their adaptive evolution remains a mystery. By using maximum-likelihood models of codon substitution, we analyzed molecular adaptation in scorpion sodium channel toxins from a specific species and found ten positively selected sites, six of which are located at the core-domain of scorpion α-toxins, a region known to interact with two adjacent loops in the voltage-sensor domain (DIV) of sodium channels, as validated by our newly constructed computational model of toxin-channel complex. Despite the lack of positive selection signals in these two loops, they accumulated extensive sequence variations by relaxed purifying selection in prey and predators of scorpions. The evolutionary variability in the toxin-bound regions of sodium channels indicates that accelerated substitutions in the multigene family of scorpion toxins is a consequence of dealing with the target diversity. This work presents an example of atypical co-evolution between animal toxins and their molecular targets, in which toxins suffered from more prominent selective pressure from the channels of their competitors. Our discovery helps explain the evolutionary rationality of gene duplication of toxins in a specific venomous species. PMID:26444071

  7. The Ins and Outs of Anthrax Toxin.

    Science.gov (United States)

    Friebe, Sarah; van der Goot, F Gisou; Bürgi, Jérôme

    2016-03-01

    Anthrax is a severe, although rather rare, infectious disease that is caused by the Gram-positive, spore-forming bacterium Bacillus anthracis. The infectious form is the spore and the major virulence factors of the bacterium are its poly-γ-D-glutamic acid capsule and the tripartite anthrax toxin. The discovery of the anthrax toxin receptors in the early 2000s has allowed in-depth studies on the mechanisms of anthrax toxin cellular entry and translocation from the endocytic compartment to the cytoplasm. The toxin generally hijacks the endocytic pathway of CMG2 and TEM8, the two anthrax toxin receptors, in order to reach the endosomes. From there, the pore-forming subunit of the toxin inserts into endosomal membranes and enables translocation of the two catalytic subunits. Insertion of the pore-forming unit preferentially occurs in intraluminal vesicles rather than the limiting membrane of the endosome, leading to the translocation of the enzymatic subunits in the lumen of these vesicles. This has important consequences that will be discussed. Ultimately, the toxins reach the cytosol where they act on their respective targets. Target modification has severe consequences on cell behavior, in particular on cells of the immune system, allowing the spread of the bacterium, in severe cases leading to host death. Here we will review the literature on anthrax disease with a focus on the structure of the toxin, how it enters cells and its immunological effects. PMID:26978402

  8. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  9. The toxin component of targeted anti-tumor toxins determines their efficacy increase by saponins.

    Science.gov (United States)

    Weng, Alexander; Thakur, Mayank; Beceren-Braun, Figen; Bachran, Diana; Bachran, Christopher; Riese, Sebastian B; Jenett-Siems, Kristina; Gilabert-Oriol, Roger; Melzig, Matthias F; Fuchs, Hendrik

    2012-06-01

    Tumor-targeting protein toxins are composed of a toxic enzyme coupled to a specific cell binding domain that targets cancer-associated antigens. The anti-tumor treatment by targeted toxins is accompanied by dose-limiting side effects. The future prospects of targeted toxins for therapeutic use in humans will be determined by reduce side effects. Certain plant secondary metabolites (saponins) were shown to increase the efficacy of a particular epidermal growth factor receptor (EGFR)-targeted toxin, paralleled by a tremendous decrease of side effects. This study was conducted in order to investigate the effects of substituting different toxin moieties fused to an EGF ligand binding domain on the augmentative ability of saponins for each against therapeutic potential of the saponin-mediated efficacy increase for different anti-tumor toxins targeting the EGFR. We designed several EGFR-targeted toxins varying in the toxic moiety. Each targeted toxin was used in combination with a purified saponin (SA1641), isolated from the ornamental plant Gypsophila paniculata L. SA1641 was characterized and the SA1641-mediated efficacy increase was investigated on EGFR-transfected NIH-3T3 cells. We observed a high dependency of the SA1641-mediated efficacy increase on the nature of toxin used for the construction of the targeted toxin, indicating high specificity. Structural alignments revealed a high homology between saporin and dianthin-30, the two toxic moieties that benefit most from the combination with SA1641. We further demonstrate that SA1641 did not influence the plasma membrane permeability, indicating an intracellular interaction of SA1641 and the toxin components of targeted toxins. Surface plasmon resonance measurements point to a transient binding of SA1641 to the toxin components of targeted toxins. PMID:22309811

  10. Polymorphic toxin systems: Comprehensive characterization of trafficking modes, processing, mechanisms of action, immunity and ecology using comparative genomics

    Directory of Open Access Journals (Sweden)

    Zhang Dapeng

    2012-06-01

    Full Text Available Abstract Background Proteinaceous toxins are observed across all levels of inter-organismal and intra-genomic conflicts. These include recently discovered prokaryotic polymorphic toxin systems implicated in intra-specific conflicts. They are characterized by a remarkable diversity of C-terminal toxin domains generated by recombination with standalone toxin-coding cassettes. Prior analysis revealed a striking diversity of nuclease and deaminase domains among the toxin modules. We systematically investigated polymorphic toxin systems using comparative genomics, sequence and structure analysis. Results Polymorphic toxin systems are distributed across all major bacterial lineages and are delivered by at least eight distinct secretory systems. In addition to type-II, these include type-V, VI, VII (ESX, and the poorly characterized “Photorhabdus virulence cassettes (PVC”, PrsW-dependent and MuF phage-capsid-like systems. We present evidence that trafficking of these toxins is often accompanied by autoproteolytic processing catalyzed by HINT, ZU5, PrsW, caspase-like, papain-like, and a novel metallopeptidase associated with the PVC system. We identified over 150 distinct toxin domains in these systems. These span an extraordinary catalytic spectrum to include 23 distinct clades of peptidases, numerous previously unrecognized versions of nucleases and deaminases, ADP-ribosyltransferases, ADP ribosyl cyclases, RelA/SpoT-like nucleotidyltransferases, glycosyltranferases and other enzymes predicted to modify lipids and carbohydrates, and a pore-forming toxin domain. Several of these toxin domains are shared with host-directed effectors of pathogenic bacteria. Over 90 families of immunity proteins might neutralize anywhere between a single to at least 27 distinct types of toxin domains. In some organisms multiple tandem immunity genes or immunity protein domains are organized into polyimmunity loci or polyimmunity proteins. Gene-neighborhood-analysis of

  11. Botulinum toxin in poststroke spasticity.

    Science.gov (United States)

    Ozcakir, Suheda; Sivrioglu, Koncuy

    2007-06-01

    Poststroke hemiparesis, together with abnormal muscle tone, is a major cause of morbidity and disability. Although most hemiparetic patients are able to reach different ambulatory levels with rehabilitation efforts, upper and lower limb spasticity can impede activities of daily living, personal hygiene, ambulation and, in some cases, functional improvement. The goals of spasticity management include increasing mobility and range of motion, attaining better hygiene, improving splint wear and other functional activities. Conservative measures, such as positioning, stretching and exercise are essential in spasticity management, but alone often are inadequate to effectively control it. Oral antispastic medications often provide limited effects with short duration and frequent unwanted systemic side effects, such as weakness, sedation and dry mouth. Therefore, neuromuscular blockade by local injections have become the first choice for the treatment of focal spasticity, particularly in stroke patients. Botulinum toxin (BTX), being one of the most potent biological toxins, acts by blocking neuromuscular transmission via inhibiting acetylcholine release. Currently, focal spasticity is being treated successfully with BTX via injecting in the spastic muscles. Two antigenically distinct serotypes of BTX are available on the market as type A and B. Clinical studies of BTX used for spastic hemiplegic patients are reviewed in this article in two major categories, upper and lower limb applications. This review addresses efficacy in terms of outcome measures, such as muscle tone reduction and functional outcome, as well as safety issues. Application modifications of dose, dilutions, site of injections and combination therapies with BTX injections are also discussed. PMID:17607049

  12. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  13. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  14. The investigation of epsilon toxin effects on different cancerous cell lines and its synergism effect with methotrexate

    OpenAIRE

    Azin Gholami Shekarsaraei; Sadegh Hasannia; Nazanin Pirooznia; Fariba Ataiee

    2014-01-01

    Background: The overall goal of this study is to use a bacterial toxin as drug delivery agents for chemotherapy drugs and overcome the development of resistance to these medicines. COR-L105 and MDA-MB 231 which are epithelial-like were used in this study. Cytotoxicity assays were performed by 3-(4, 5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) as metabolic indicator. The toxin was essential to kill 50% (CT50) and IC 50 value (inhibition growth value) for methotrexate were ...

  15. Cyanobacterial toxins: risk management for health protection

    International Nuclear Information System (INIS)

    This paper reviews the occurrence and properties of cyanobacterial toxins, with reference to the recognition and management of the human health risks which they may present. Mass populations of toxin-producing cyanobacteria in natural and controlled waterbodies include blooms and scums of planktonic species, and mats and biofilms of benthic species. Toxic cyanobacterial populations have been reported in freshwaters in over 45 countries, and in numerous brackish, coastal, and marine environments. The principal toxigenic genera are listed. Known sources of the families of cyanobacterial toxins (hepato-, neuro-, and cytotoxins, irritants, and gastrointestinal toxins) are briefly discussed. Key procedures in the risk management of cyanobacterial toxins and cells are reviewed, including derivations (where sufficient data are available) of tolerable daily intakes (TDIs) and guideline values (GVs) with reference to the toxins in drinking water, and guideline levels for toxigenic cyanobacteria in bathing waters. Uncertainties and some gaps in knowledge are also discussed, including the importance of exposure media (animal and plant foods), in addition to potable and recreational waters. Finally, we present an outline of steps to develop and implement risk management strategies for cyanobacterial cells and toxins in waterbodies, with recent applications and the integration of Hazard Assessment Critical Control Point (HACCP) principles

  16. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  17. The Enterotoxicity of Clostridium difficile Toxins

    OpenAIRE

    Hanping Feng; Tor Savidge; Xingmin Sun

    2010-01-01

    The major virulence factors of Clostridium difficile infection (CDI) are two large exotoxins A (TcdA) and B (TcdB). However, our understanding of the specific roles of these toxins in CDI is still evolving. It is now accepted that both toxins are enterotoxic and proinflammatory in the human intestine. Both purified TcdA and TcdB are capable of inducing the pathophysiology of CDI, although most studies have focused on TcdA. C. difficile toxins exert a wide array of biological activities by act...

  18. Hybrid microarray based on double biomolecular markers of DNA and carbohydrate for simultaneous genotypic and phenotypic detection of cholera toxin-producing Vibrio cholerae.

    Science.gov (United States)

    Shin, Hwa Hui; Seo, Jeong Hyun; Kim, Chang Sup; Hwang, Byeong Hee; Cha, Hyung Joon

    2016-05-15

    Life-threatening diarrheal cholera is usually caused by water or food contaminated with cholera toxin-producing Vibrio cholerae. For the prevention and surveillance of cholera, it is crucial to rapidly and precisely detect and identify the etiological causes, such as V. cholerae and/or its toxin. In the present work, we propose the use of a hybrid double biomolecular marker (DBM) microarray containing 16S rRNA-based DNA capture probe to genotypically identify V. cholerae and GM1 pentasaccharide capture probe to phenotypically detect cholera toxin. We employed a simple sample preparation method to directly obtain genomic DNA and secreted cholera toxin as target materials from bacterial cells. By utilizing the constructed DBM microarray and prepared samples, V. cholerae and cholera toxin were detected successfully, selectively, and simultaneously; the DBM microarray was able to analyze the pathogenicity of the identified V. cholerae regardless of whether the bacteria produces toxin. Therefore, our proposed DBM microarray is a new effective platform for identifying bacteria and analyzing bacterial pathogenicity simultaneously. PMID:26735874

  19. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems

    Science.gov (United States)

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I–VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  20. Keeping the Wolves at Bay: Antitoxins of Prokaryotic Type II Toxin-Antitoxin Systems.

    Science.gov (United States)

    Chan, Wai Ting; Espinosa, Manuel; Yeo, Chew Chieng

    2016-01-01

    In their initial stages of discovery, prokaryotic toxin-antitoxin (TA) systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I-VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA antitoxins. We shall

  1. Keeping the wolves at bay: antitoxins of prokaryotic type II toxin-antitoxin systems

    Directory of Open Access Journals (Sweden)

    Wai Ting eChan

    2016-03-01

    Full Text Available In their initial stages of discovery, prokaryotic toxin-antitoxin (TA systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I – VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA

  2. Binding and uptake of diphtheria toxin by toxin-resistant Chinese hamster ovary and mouse cells.

    OpenAIRE

    Didsbury, J R; Moehring, J M; Moehring, T. J.

    1983-01-01

    We investigated two phenotypically distinct types of diphtheria toxin-resistant mutants of Chinese hamster cells and compared their resistance with that of naturally resistant mouse cells. All are resistant due to a defect in the process of internalization and delivery of toxin to its target in the cytosol, elongation factor 2. By cell hybridization studies, analysis of cross-resistance, and determination of specific binding sites for 125I-labeled diphtheria toxin, we showed that these cell s...

  3. Investigation of Various Tissue Culture Monolayers Sensitivity in Detection of Clostridium difficile Toxin

    Directory of Open Access Journals (Sweden)

    MH Salari

    2008-05-01

    Full Text Available Backround: Clostridium difficile is the most common cause of nosocomial diarrhea. It is usually a consequence of antibi­otic treatment, but sporadic cases can occur. The purpose of this study was to investigate five tissue culture monolayers sen­sitivity in detection of C. difficile-toxin. Methods: A total of 402 stool samples from patients with nosocomial diarrhea hospitalized in three hospitals of Tehran Uni­versity of Medical Sciences (TUMS were collected. The samples were cultured on a selective cycloserine cefoxitin fructose agar (CCFA and incubated in anaerobic conditions, at 37 °C for 4 days. Isolates were characterized to species level by con­ventional biochemical tests. Bacterial cytotoxicity was assayed on five tissue culture monolayers. Results: Our findings show that of the total patients, 24 toxigenic C. difficile (6% were isolated. All 24 C. difficile toxins showed cytotoxic effect at ³ 1:10 dilution on Hela, Hep2, Vero, McCoy and Mdck cells after 16, 20, 24, 24 and 30 hours, re­spectively. C. difficile toxin showed cytotoxic effect at ³ 1:100 dilutions only on Hela cell monolayer after 48 hours. Conclusion: Hela cell monolayer may be a satisfactory substitute for the detection of C. difficile toxin in clinical specimens.   

  4. The assembly dynamics of the cytolytic pore toxin ClyA

    Science.gov (United States)

    Benke, Stephan; Roderer, Daniel; Wunderlich, Bengt; Nettels, Daniel; Glockshuber, Rudi; Schuler, Benjamin

    2015-02-01

    Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition.

  5. Type II Toxin-antitoxin distribution and adaptive aspects on Xanthomonas genomes: focus on Xanthomonas citri

    Directory of Open Access Journals (Sweden)

    Paula Maria Moreira Martins

    2016-05-01

    Full Text Available Prokaryotic toxin-antitoxin (TA systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of ten Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes.

  6. Type II Toxin-Antitoxin Distribution and Adaptive Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri.

    Science.gov (United States)

    Martins, Paula M M; Machado, Marcos A; Silva, Nicholas V; Takita, Marco A; de Souza, Alessandra A

    2016-01-01

    Prokaryotic toxin-antitoxin (TA) systems were first described as being designed to prevent plasmid loss in bacteria. However, with the increase in prokaryotic genome sequencing, recently many TAs have been found in bacterial chromosomes, having other biological functions, such as environmental stress response. To date, only few studies have focused on TA systems in phytopathogens, and their possible impact on the bacterial fitness. This may be especially important for pathogens like Xanthomonas spp., which live epiphytically before entering the host. In this study, we looked for TA systems in the genomes of 10 Xanthomonas strains. We verified that citrus-infecting pathovars have, on average, 50% more TAs than other Xanthomonas spp. and no genome harbors classical toxins such as MqsR, RelB, and HicA. Only one TA system (PIN_VapC-FitB-like/SpoVT_AbrB) was conserved among the Xanthomonas genomes, suggesting adaptive aspects concerning its broad occurrence. We also detected a trend of toxin gene loss in this genus, while the antitoxin gene was preferably maintained. This study discovers the quantitative and qualitative differences among the type II TA systems present in Xanthomonas spp., especially concerning the citrus-infecting strains. In addition, the antitoxin retention in the genomes is possibly related with the resistance mechanism of further TA infections as an anti-addiction system or might also be involved in regulation of certain specific genes. PMID:27242687

  7. [Botulinum toxin in disabling dermatological diseases].

    Science.gov (United States)

    Messikh, R; Atallah, L; Aubin, F; Humbert, P

    2009-05-01

    Botulinum toxin could represent nowadays a new treatment modality especially for cutaneous conditions in course of which conventional treatments remain unsuccessful. Besides palmar and plantar hyperhidrosis, botulinum toxin has demonstrated efficacy in different conditions associated with hyperhidrosis, such as dyshidrosis, multiple eccrine hidrocystomas, hidradenitis suppurativa, Frey syndrome, but also in different conditions worsened by hyperhidrosis such as Hailey-Hailey disease, Darier disease, inversed psoriasis, aquagenic palmoplantar keratoderma, pachyonychia congenital. Moreover, different cutaneous conditions associated with sensitive disorders and/or neurological involvements could benefit from botulinum toxin, for example anal fissures, leg ulcers, lichen simplex, notalgia paresthetica, vestibulitis. Endly, a case of cutis laxa was described where the patient was improved by cutaneous injections of botulinum toxin. PMID:19576479

  8. Hemolytic anemia caused by chemicals and toxins

    Science.gov (United States)

    Anemia - hemolytic - caused by chemicals or toxins ... Possible substances that can cause hemolytic anemia include: Anti-malaria drugs (quinine compounds) Arsenic Dapsone Intravenous water infusion (not half-normal saline or normal saline) Metals (chromium/chromates, ...

  9. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2015. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  10. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2016. In this Table, provisional* cases of selected†notifiable diseases (≥1,000 cases reported during the...

  11. Anticancer potential of animal venoms and toxins.

    Science.gov (United States)

    Gomes, Antony; Bhattacharjee, Pushpak; Mishra, Roshnara; Biswas, Ajoy K; Dasgupta, Subir Chandra; Giri, Biplab

    2010-02-01

    Anticancer drug development from natural resources are ventured throughout the world. Animal venoms and toxins a potential bio resource and a therapeutic tool were known to man for centuries through folk and traditional knowledge. The biodiversity of venoms and toxins made it a unique source of leads and structural templates from which new therapeutic agents may be developed. Venoms of several animal species (snake, scorpion, toad, frog etc) and their active components (protein and non protein toxins, peptides, enzymes, etc) have shown therapeutic potential against cancer. In the present review, the anticancer potential of venoms and toxins from snakes, scorpions, toads and frogs has been discussed. Some of these molecules are in the clinical trials and may find their way towards anticancer drug development in the near future. The implications of combination therapy of natural products in cancer have been discussed. PMID:20455317

  12. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  13. Nanoanalysis of the arthropod neuro-toxins

    OpenAIRE

    Nakajima, Terumi

    2006-01-01

    Many kinds of venomous principles modulate physiological responses of mammalian signal transduction systems, on which they act selectively as enhancers, inhibitors or some other kind of effectors. These toxins become useful tools for physiological research. We have employed and characterized paralyzing toxins from the venom of spiders, insects and scorpions with a limited supply. We have developed rapid and sensitive mass spectrometric technology and applied for the identification of these to...

  14. Target-Driven Evolution of Scorpion Toxins

    OpenAIRE

    Shangfei Zhang; Bin Gao; Shunyi Zhu

    2015-01-01

    It is long known that peptide neurotoxins derived from a diversity of venomous animals evolve by positive selection following gene duplication, yet a force that drives their adaptive evolution remains a mystery. By using maximum-likelihood models of codon substitution, we analyzed molecular adaptation in scorpion sodium channel toxins from a specific species and found ten positively selected sites, six of which are located at the core-domain of scorpion α-toxins, a region known to interact wi...

  15. Toxicological Perspective on Climate Change: Aquatic Toxins.

    Science.gov (United States)

    Botana, Luis M

    2016-04-18

    In recent years, our group and several others have been describing the presence of new, not previously reported, toxins of high toxicity in vectors that may reach the human food chain. These include tetrodotoxin in gastropods in the South of Europe, ciguatoxin in fish in the South of Spain, palytoxin in mussels in the Mediterranean Sea, pinnatoxin all over Europe, and okadaic acid in the south of the U.S. There seem to be new marine toxins appearing in areas that are heavy producers of seafood, and this is a cause of concern as most of these new toxins are not included in current legislation and monitoring programs. Along with the new toxins, new chemical analogues are being reported. The same phenomenom is being recorded in freshwater toxins, such as the wide appearance of cylindrospermopsin and the large worldwide increase of microcystin. The problem that this phenomenon, which may be linked to climate warming, poses for toxicologists is very important not only because there is a lack of chronic studies and an incomplete comprehension of the mechanism driving the production of these toxins but also because the lack of a legal framework for them allows many of these toxins to reach the market. In some cases, it is very difficult to control these toxins because there are not enough standards available, they are not always certified, and there is an insufficient understanding of the toxic equivalency factors of the different analogues in each group. All of these factors have been revealed and grouped through the massive increase in the use of LC-MS as a monitoring tool, legally demanded, creating more toxicological problems. PMID:26958981

  16. Botulinum toxin treatment of hemifacial spasm.

    OpenAIRE

    Elston, J S

    1986-01-01

    Six patients with hemifacial spasm were treated with injections of botulinum toxin A into the orbicularis oculi; the abnormal movements around the eye were relieved for an average of 15 weeks. There were no systemic or significant local side effects, and in view of the risks involved in neurosurgical treatment, a trial of botulinum toxin injections is recommended in the first instance in this condition.

  17. Botulinum Toxin; Bioterror and Biomedicinal Agent

    OpenAIRE

    Jiri Patocka; Kamil Kuca; Daniel Jun

    2006-01-01

    Botulinum toxin is a group of seven homologous, highly poisonous proteins isolated fromfermentation of the anaerobic bacterium Clostridium botulinum, which naturally occurs in soiland can grow on many meats and vegetables. Botulinum toxin causes neuromuscular disordercalled botulism, which is a potentially lethal disease. There are three types of botulism: Food,wound, and infant botulism. It can lead to death unless appropriate therapy is done. Due to theseverity and potency of botulinum toxi...

  18. Normal and Pathologic Concentrations of Uremic Toxins

    OpenAIRE

    Duranton, Flore; Cohen, Gerald; De Smet, Rita; Rodriguez, Mariano; Jankowski, Joachim; Vanholder, Raymond; Argiles, Angel

    2012-01-01

    An updated review of the existing knowledge regarding uremic toxins facilitates the design of experimental studies. We performed a literature search and found 621 articles about uremic toxicity published after a 2003 review of this topic. Eighty-seven records provided serum or blood measurements of one or more solutes in patients with CKD. These records described 32 previously known uremic toxins and 56 newly reported solutes. The articles most frequently reported concentrations of β2-microgl...

  19. Plant Insecticidal Toxins in Ecological Networks

    OpenAIRE

    Sébastien Ibanez; Christiane Gallet; Laurence Després

    2012-01-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversificati...

  20. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model

    OpenAIRE

    Fernandez-Miyakawa, Mariano E.; Jost, B. Helen; Billington, Stephen J; Uzal, Francisco A.

    2007-01-01

    Epsilon-toxin (ETX) is the most important virulence factor of Clostridium perfringens type D. Two other important toxins, alpha-toxin (CPA) and perfringolysin-O (PFO), are encoded and potentially produced by most C. perfringens type D isolates. The biological effects of these toxins are dissimilar although they are all lethal. Since the possible interaction of these toxins during infection is unknown, the effects of CPA and PFO on the lethal activity of ETX were studied in a mouse model. Mice...

  1. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    125I-labelled tetanus toxin and 125I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.)

  2. Mass spectrometry-based method of detecting and distinguishing type 1 and type 2 Shiga-like toxins in human serum

    Science.gov (United States)

    Shiga-like toxins (verotoxins) are a class of AB5 holotoxins that are responsible for the virulence associated with bacterial pathogens such as Shigella dysenteriae, shigatoxigenic and enterohemorrhagic strains of Escherichia coli (STEC and EHEC), and some Enterobacter strains. The actual expression...

  3. Antibacterial activity of plant extracts on foodborne bacterial pathogens and food spoilage bacteria

    Science.gov (United States)

    Bacterial foodborne diseases are caused by consumption of foods contaminated with bacteria and/or their toxins. In this study, we evaluated antibacterial properties of twelve different extracts including turmeric, lemon and different kinds of teas against four major pathogenic foodborne bacteria inc...

  4. 9 CFR 113.100 - General requirements for inactivated bacterial products.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false General requirements for inactivated... STANDARD REQUIREMENTS Inactivated Bacterial Products § 113.100 General requirements for inactivated... reactivity, (4) Fluorescent antibody tests, (5) Serologic tests, (6) Toxin typing, (7) Somatic or...

  5. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis

    Science.gov (United States)

    Seike, Soshi; Miyamoto, Kazuaki; Kobayashi, Keiko; Takehara, Masaya; Nagahama, Masahiro

    2016-01-01

    Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2). All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis. PMID:26807591

  6. Clostridium perfringens Delta-Toxin Induces Rapid Cell Necrosis.

    Directory of Open Access Journals (Sweden)

    Soshi Seike

    Full Text Available Clostridium perfringens delta-toxin is a β-pore-forming toxin and a putative pathogenic agent of C. perfringens types B and C. However, the mechanism of cytotoxicity of delta-toxin remains unclear. Here, we investigated the mechanisms of cell death induced by delta-toxin in five cell lines (A549, A431, MDCK, Vero, and Caco-2. All cell lines were susceptible to delta-toxin. The toxin caused rapid ATP depletion and swelling of the cells. Delta-toxin bound and formed oligomers predominantly in plasma membrane lipid rafts. Destruction of the lipid rafts with methyl β-cyclodextrin inhibited delta-toxin-induced cytotoxicity and ATP depletion. Delta-toxin caused the release of carboxyfluorescein from sphingomyelin-cholesterol liposomes and formed oligomers; toxin binding to the liposomes declined with decreasing cholesterol content in the liposomes. Flow cytometric assays with annexin V and propidium iodide revealed that delta-toxin treatment induced an elevation in the population of annexin V-negative and propidium iodide-positive cells. Delta-toxin did not cause the fragmentation of DNA or caspase-3 activation. Furthermore, delta-toxin caused damage to mitochondrial membrane permeability and cytochrome c release. In the present study, we demonstrate that delta-toxin produces cytotoxic activity through necrosis.

  7. Toxin from skin of frogs of the genus Atelopus: differentiation from Dendrobatid toxins.

    Science.gov (United States)

    Fuhrman, F A; Fuhrman, G J; Mosher, H S

    1969-09-26

    A potent, dialyzable toxin (atelopidtoxin) occurs in the skin of frogs of the genus Atelopus. A concentrate of atelopidtoxin from Atelopus zeteki has an LD(50) in mice of 16 micrograms per kilogram. It differs from batrachotoxin, tetrodotoxin, and saxitoxin, the only known nonprotein substances of greater toxicity, as well as from all toxins previously isolated from amphibia. PMID:5807965

  8. Dynamic Duo-The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin.

    Science.gov (United States)

    Miller, Rachel; Wiedmann, Martin

    2016-01-01

    The cytolethal distending toxin (CDT) is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica). The CDT produced by Salmonella (S-CDT) differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typhi, lending to its classification as the "typhoid toxin." Recently, this important virulence factor has been identified and characterized in multiple nontyphoidal Salmonella (NTS) serotypes as well. The significance of S-CDT in salmonellosis with regards to the: (i) distribution of S-CDT encoding genes among NTS serotypes, (ii) contributions to pathogenicity, (iii) regulation of S-CDT expression, and (iv) the public health implication of S-CDT as it relates to disease severity, are reviewed here. PMID:27120620

  9. Dynamic Duo—The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin

    Science.gov (United States)

    Miller, Rachel; Wiedmann, Martin

    2016-01-01

    The cytolethal distending toxin (CDT) is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica). The CDT produced by Salmonella (S-CDT) differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typhi, lending to its classification as the “typhoid toxin.” Recently, this important virulence factor has been identified and characterized in multiple nontyphoidal Salmonella (NTS) serotypes as well. The significance of S-CDT in salmonellosis with regards to the: (i) distribution of S-CDT encoding genes among NTS serotypes, (ii) contributions to pathogenicity, (iii) regulation of S-CDT expression, and (iv) the public health implication of S-CDT as it relates to disease severity, are reviewed here. PMID:27120620

  10. Effect of the Food Additives Sodium Citrate and Disodium Phosphate on Shiga Toxin-Producing Escherichia coli and Production of stx-Phages and Shiga toxin.

    Science.gov (United States)

    Lenzi, Lucas J; Lucchesi, Paula M A; Medico, Lucía; Burgán, Julia; Krüger, Alejandra

    2016-01-01

    Induction and propagation of bacteriophages along the food production chain can represent a significant risk when bacteriophages carry genes for potent toxins. The aim of this study was to evaluate the effect of different compounds used in the food industry on the growth of Shiga toxin-producing Escherichia coli (STEC) and the production of stx-phage particles and Shiga toxin. We tested the in vitro effect of lactic acid, acetic acid, citric acid, disodium phosphate, and sodium citrate on STEC growth. A bacteriostatic effect was observed in most of treated cultures. The exceptions were those treated with sodium citrate and disodium phosphate in which similar growth curves to the untreated control were observed, but with reduced OD600 values. Evaluation of phage production by plaque-based assays showed that cultures treated with sodium citrate and disodium phosphate released phages in similar o lower levels than untreated cultures. However, semi-quantification of Stx revealed higher levels of extracellular Stx in STEC cultures treated with 2.5% sodium citrate than in untreated cultures. Our results reinforce the importance to evaluate if additives and other treatments used to decrease bacterial contamination in food induce stx-phage and Stx production. PMID:27446032

  11. Dynamic Duo—The Salmonella Cytolethal Distending Toxin Combines ADP-Ribosyltransferase and Nuclease Activities in a Novel Form of the Cytolethal Distending Toxin

    Directory of Open Access Journals (Sweden)

    Rachel Miller

    2016-04-01

    Full Text Available The cytolethal distending toxin (CDT is a well characterized bacterial genotoxin encoded by several Gram-negative bacteria, including Salmonella enterica (S. enterica. The CDT produced by Salmonella (S-CDT differs from the CDT produced by other bacteria, as it utilizes subunits with homology to the pertussis and subtilase toxins, in place of the traditional CdtA and CdtC subunits. Previously, S-CDT was thought to be a unique virulence factor of S. enterica subspecies enterica serotype Typhi, lending to its classification as the “typhoid toxin.” Recently, this important virulence factor has been identified and characterized in multiple nontyphoidal Salmonella (NTS serotypes as well. The significance of S-CDT in salmonellosis with regards to the: (i distribution of S-CDT encoding genes among NTS serotypes, (ii contributions to pathogenicity, (iii regulation of S-CDT expression, and (iv the public health implication of S-CDT as it relates to disease severity, are reviewed here.

  12. The axe-txe complex of Enterococcus faecium presents a multilayered mode of toxin-antitoxin gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Lidia Boss

    Full Text Available Multidrug-resistant variants of human pathogens from the genus Enterococcus represent a significant health threat as leading agents of nosocomial infections. The easy acquisition of plasmid-borne genes is intimately involved in the spread of antibiotic resistance in enterococci. Toxin-antitoxin (TA systems play a major role in both maintenance of mobile genetic elements that specify antibiotic resistance, and in bacterial persistence and virulence. Expression of toxin and antitoxin genes must be in balance as inappropriate levels of toxin can be dangerous to the host. The controlled production of toxin and antitoxin is usually achieved by transcriptional autoregulation of TA operons. One of the most prevalent TA modules in enterococcal species is axe-txe which is detected in a majority of clinical isolates. Here, we demonstrate that the axe-txe cassette presents a complex pattern of gene expression regulation. Axe-Txe cooperatively autorepress expression from a major promoter upstream of the cassette. However, an internal promoter that drives the production of a newly discovered transcript from within axe gene combined with a possible modulation in mRNA stability play important roles in the modulation of Axe:Txe ratio to ensure controlled release of the toxin.

  13. Characterization of putative cholesterol recognition/interaction amino acid consensus-like motif of Campylobacter jejuni cytolethal distending toxin C.

    Directory of Open Access Journals (Sweden)

    Chih-Ho Lai

    Full Text Available Cytolethal distending toxin (CDT produced by Campylobacter jejuni comprises a heterotrimeric complex formed by CdtA, CdtB, and CdtC. Among these toxin subunits, CdtA and CdtC function as essential proteins that mediate toxin binding to cytoplasmic membranes followed by delivery of CdtB into the nucleus. The binding of CdtA/CdtC to the cell surface is mediated by cholesterol, a major component in lipid rafts. Although the putative cholesterol recognition/interaction amino acid consensus (CRAC domain of CDT has been reported from several bacterial pathogens, the protein regions contributing to CDT binding to cholesterol in C. jejuni remain unclear. Here, we selected a potential CRAC-like region present in the CdtC from C. jejuni for analysis. Molecular modeling showed that the predicted functional domain had the shape of a hydrophobic groove, facilitating cholesterol localization to this domain. Mutation of a tyrosine residue in the CRAC-like region decreased direct binding of CdtC to cholesterol rather than toxin intermolecular interactions and led to impaired CDT intoxication. These results provide a molecular link between C. jejuni CdtC and membrane-lipid rafts through the CRAC-like region, which contributes to toxin recognition and interaction with cholesterol.

  14. Animal Toxins: How is Complexity Represented in Databases?

    Science.gov (United States)

    Jungo, Florence; Estreicher, Anne; Bairoch, Amos; Bougueleret, Lydie; Xenarios, Ioannis

    2010-02-01

    Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology. PMID:22069583

  15. Phosphatase-Dependent Regulation of Epithelial Mitogen-Activated Protein Kinase Responses to Toxin-Induced Membrane Pores

    OpenAIRE

    Aguilar, Jorge L.; Kulkarni, Ritwij; Randis, Tara M.; Soman, Sandeep; Kikuchi, Alexander; Yin, Yuxin; Ratner, Adam J.

    2009-01-01

    Diverse bacterial species produce pore-forming toxins (PFT) that can puncture eukaryotic cell membranes. Host cells respond to sublytic concentrations of PFT through conserved intracellular signaling pathways, including activation of mitogen-activated protein kinases (MAPK), which are critical to cell survival. Here we demonstrate that in respiratory epithelial cells p38 and JNK MAPK were phosphorylated within 30 min of exposure to pneumolysin, the PFT from Streptococcus pneumoniae. This acti...

  16. Differential Effects of Linezolid and Ciprofloxacin on Toxin Production by Bacillus anthracis in an In Vitro Pharmacodynamic System

    OpenAIRE

    Louie, Arnold; VanScoy, Brian D.; Heine, Henry S.; Liu, Weiguo; Abshire, Terry; Holman, Kari; Kulawy, Robert; Brown, David L.; Drusano, George L.

    2012-01-01

    Bacillus anthracis causes anthrax. Ciprofloxacin is a gold standard for the treatment of anthrax. Previously, using the non-toxin-producing ΔSterne strain of B. anthracis, we demonstrated that linezolid was equivalent to ciprofloxacin for reducing the total (vegetative and spore) bacterial population. With ciprofloxacin therapy, the total population consisted of spores. With linezolid therapy, the population consisted primarily of vegetative bacteria. Linezolid is a protein synthesis inhibito...

  17. Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS.

    Science.gov (United States)

    Albesa-Jové, David; Bertrand, Thomas; Carpenter, Elisabeth P; Swain, Gemma V; Lim, Jenson; Zhang, Jiancheng; Haire, Lesley F; Vasisht, Nishi; Braun, Veit; Lange, Anton; von Eichel-Streiber, Christoph; Svergun, Dmitri I; Fairweather, Neil F; Brown, Katherine A

    2010-03-12

    Clostridium difficile is a nosocomial bacterial pathogen causing antibiotic-associated diarrhea and fatal pseudomembranous colitis. Key virulence factors are toxin A and toxin B (TcdB), two highly related toxins that are members of the large clostridial toxin family. These large multifunctional proteins disrupt cell function using a glucosyltransferase domain that is translocated into the cytosol after vesicular internalization of intact holotoxin. Although substantial information about the biochemical mechanisms of intoxication exists, research has been hampered by limited structural information, particularly of intact holotoxin. Here, we used small-angle X-ray scattering (SAXS) methods to obtain an ab initio low-resolution structure of native TcdB, which demonstrated that this molecule is monomeric in solution and possesses a highly asymmetric shape with a maximum dimension of approximately 275 A. Combining this SAXS information with crystallographic or modeled structures of individual functional domains of TcdB reveals for the first time that the three-dimensional structure of TcdB is organized into four distinct structural domains. Structures of the N-terminal glucosyltransferase, the cysteine protease, and the C-terminal repeat region can be aligned within three domains of the SAXS envelope. A fourth domain, predicted to be involved in the translocation of the glucosyltransferase, appears as a large solvent-exposed protrusion. Knowledge of the shapes and relative orientations of toxin domains provides new insight into defining functional domain boundaries and provides a framework for understanding how potential intra-domain interactions enable conformational changes to propagate between domains to facilitate intoxication processes. PMID:20070948

  18. Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Lionel Tcatchoff

    Full Text Available Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2, and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2.

  19. A truncated diphtheria toxin based recombinant porcine CTLA-4 fusion toxin.

    Science.gov (United States)

    Peraino, Jaclyn Stromp; Schenk, Marian; Zhang, Huiping; Li, Guoying; Hermanrud, Christina E; Neville, David M; Sachs, David H; Huang, Christene A; Duran-Struuck, Raimon; Wang, Zhirui

    2013-05-31

    Targeted cell therapies are possible through the generation of recombinant fusion proteins that combine a toxin, such as diphtheria toxin (DT), with an antibody or other molecule that confers specificity. Upon binding of the fusion protein to the cell of interest, the diphtheria toxin is internalized which results in protein synthesis inhibition and subsequent cell death. We have recently expressed and purified the recombinant soluble porcine CTLA-4 both with and without N-glycosylation in yeast Pichia pastoris for in vivo use in our preclinical swine model. The glycosylated and non-N-glycosylated versions of this recombinant protein each bind to a porcine CD80 expressing B-cell lymphoma line (LCL13271) with equal affinity (K(D)=13 nM). In this study we have linked each of the glycosylated and non-N-glycosylated soluble porcine CTLA-4 proteins to the truncated diphtheria toxin DT390 through genetic engineering yielding three versions of the porcine CTLA-4 fusion toxins: 1) monovalent glycosylated soluble porcine CTLA-4 fusion toxin; 2) monovalent non-N-glycosylated soluble porcine CTLA-4 fusion toxin and 3) bivalent non-N-glycosylated soluble porcine CTLA-4 fusion toxin. Protein synthesis inhibition analysis demonstrated that while all three fusion toxins are capable of inhibiting protein synthesis in vitro, the non-N-glycosylated porcine CTLA-4 isoforms function most efficiently. Binding analysis using flow cytometry of the porcine CTLA-4 fusion toxins to LCL13271 cells also demonstrated that the non-N-glycosylated porcine CTLA-4 isoforms bind to these cells with higher affinity compared to the glycosylated fusion toxin. The monovalent non-N-glycosylated porcine CTLA-4 fusion toxin was tested in vivo. NSG (NOD/SCID IL-2 receptor γ(-)/(-)) mice were injected with porcine CD80(+) LCL13271 tumor cells. All animals succumbed to tumors and those treated with the monovalent non-N-glycosylated porcine CTLA-4 fusion toxin survived longer based on a symptomatic scoring

  20. Further characterization of Mycobacterium ulcerans toxin.

    Science.gov (United States)

    Hockmeyer, W T; Krieg, R E; Reich, M; Johnson, R D

    1978-07-01

    Mycobacterium ulcerans produces an exotoxin in culture which, when inoculated into guinea pig skin, causes inflammation, necrosis, edema, and other histopathological changes resembling those in infections of humans. The toxin was resistant to heat and to alkalies and was moderately acid labile. Toxic activity was destroyed by Pronase, phospholipase, lipase, amylase, and glucosidase but not by trypsin, collagenase, cellulase, lysozyme, hyaluronidase, or neuraminidase. Toxic activity was resistant to treatment with 2-mercaptoethanol, urea, guanidine hydrochloride, p-chloromercuribenzoate, ethylenediaminetetraacetate, and sodium deoxycholate but was destroyed by sodium m-periodate and sodium dodecyl sulfate. The toxin was precipitated by a wide range of ammonium sulfate concentrations. Extraction with chlorofrom-methanol or petroleum ether destroyed its activity. Isopycnic density gradient ultracentrifugation in KBr produced a high-density lipoprotein layer with a 24-fold increase in specific activity. The results indicate that this toxin is a high-molecular-weight phospholipoprotein-polysaccharide complex. PMID:30694

  1. Bacterial Nail Infection (Paronychia)

    Science.gov (United States)

    ... of nail infection is often caused by a bacterial infection but may also be caused by herpes, a ... to a type of yeast called Candida , or bacterial infection, and this may lead to abnormal nail growth. ...

  2. Killing Effect and Antitoxic Activity of the Leptospira interrogans Toxin-Antitoxin System in Escherichia coli

    OpenAIRE

    Picardeau, Mathieu; Ren, Shuangxi; Saint Girons, Isabelle

    2001-01-01

    We report the first evidence of a chromosome-encoded toxin-antitoxin locus in spirochetes. This locus has been found in the pathogenic spirochete Leptospira interrogans and exhibits homologies with the pem/chp loci. The L. interrogans chp locus consists of two genes: chpK (for “killer protein”) and its upstream partner chpI (for “inhibitory protein”). Expression of ChpK in Escherichia coli results in the inhibition of bacterial growth. The coexpression of ChpI neutralizes ChpK toxicity. By So...

  3. Crystal Structures of Phd-Doc, HigA, and YeeU Establish Multiple Evolutionary Links between Microbial Growth-Regulating Toxin-Antitoxin Systems

    Energy Technology Data Exchange (ETDEWEB)

    Arbing, Mark A.; Handelman, Samuel K.; Kuzin, Alexandre P.; Verdon, Grégory; Wang, Chi; Su, Min; Rothenbacher, Francesca P.; Abashidze, Mariam; Liu, Mohan; Hurley, Jennifer M.; Xiao, Rong; Acton, Thomas; Inouye, Masayori; Montelione, Gaetano T.; Woychik, Nancy A.; Hunt, John F. (Rutgers); (Columbia); (RWJ-Med)

    2010-09-27

    Bacterial toxin-antitoxin (TA) systems serve a variety of physiological functions including regulation of cell growth and maintenance of foreign genetic elements. Sequence analyses suggest that TA families are linked by complex evolutionary relationships reflecting likely swapping of functional domains between different TA families. Our crystal structures of Phd-Doc from bacteriophage P1, the HigA antitoxin from Escherichia coli CFT073, and YeeU of the YeeUWV systems from E. coli K12 and Shigella flexneri confirm this inference and reveal additional, unanticipated structural relationships. The growth-regulating Doc toxin exhibits structural similarity to secreted virulence factors that are toxic for eukaryotic target cells. The Phd antitoxin possesses the same fold as both the YefM and NE2111 antitoxins that inhibit structurally unrelated toxins. YeeU, which has an antitoxin-like activity that represses toxin expression, is structurally similar to the ribosome-interacting toxins YoeB and RelE. These observations suggest extensive functional exchanges have occurred between TA systems during bacterial evolution.

  4. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will...

  5. Studies on the physicochemical properties of bacterial toxins by different radiation sources and utilization of modified toxin by irradiation

    International Nuclear Information System (INIS)

    This study was conducted to evaluate the feasibility of irradiation technology to induce natural immunity/resistance has been best preserved when ionizing radiation (Co-60) has been used for detoxification. The result of SDS-PAGE showed that the treatment of LPS with an ionizing radiation dose destroyed most of the minor bands, including the more intensively staining ones in the slow-moving region. Increasing radiation doses caused further destruction of the bands, eliminating first the ones with lower migration ability. In the infrared spectrum, the qualitative change of functional groups were found in LPS by irradiation, and the patterns indicate some quantitative differences between the parent endotoxin and the irradiated derivative. Furthermore, scanning endotoxin in the UV range, we found that a complex absorption pattern was changed dependent upon increasing exposure of ionizing radiation to endotoxin LPS. Our results showed dose-dependent detoxification when LPS in water is exposed to ionizing radiation at ambient temperature. The harmful effects of LPS decrease after radiation, whereas its capacity to induce tolerance, to function as an the proliferation of immune cells and their cytokine/chemokine release such as TNF-α and Nitric Oxide (NO) to protect against shock and to stimulate natural resistance are preserved to a large extent. In conclusion, the present study demonstrate that in vitro or in vivo exposure to irradiated-LPS reduces the induction of inflammatory factors in response to stimulation by a high-dose treatment of intact LPS

  6. Recent advances in the medicinal chemistry of polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, K; Andersen, K; Krogsgaard-Larsen, P;

    2001-01-01

    This review describes the recent developments in the field of polyamine toxins, with focus on structure activity relationship investigations, including studies of importance of the polyamine moiety for biological activity, photolabeling studies using polyamine toxins as templates, as well as use ...... solid phase methods for the synthesis of polyamine toxins. The review is mainly concerned with effects of polyamine toxins on nicotinic acetylcholine receptors and ionotropic glutamate receptors....

  7. Recent Insights into Clostridium perfringens Beta-Toxin

    OpenAIRE

    Masahiro Nagahama; Sadayuki Ochi; Masataka Oda; Kazuaki Miyamoto; Masaya Takehara; Keiko Kobayashi

    2015-01-01

    Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT) that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. Thes...

  8. Structural interactions of a voltage sensor toxin with lipid membranes

    OpenAIRE

    Mihailescu, Mihaela; Krepkiy, Dmitriy; Milescu, Mirela; Gawrisch, Klaus; Swartz, Kenton J.; White, Stephen

    2014-01-01

    Tarantula venom contains protein toxins that interact with diverse families of ion channels and alter their activity. A number of tarantula toxins are known to interact with membranes and are thought to bind to ion channel proteins within the lipid bilayer. In the present study, we find that tarantula toxins influence the structure and dynamics of the lipid bilayer, and that the toxin orients itself within membranes to facilitate formation of the toxin–channel complexes. Our results have impl...

  9. Natural Toxins for Use in Pest Management

    Directory of Open Access Journals (Sweden)

    Kevin K. Schrader

    2010-07-01

    Full Text Available Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin, the spinosad insecticides, and the strobilurin fungicides. These and other examples of currently marketed natural product-based pesticides, as well as natural toxins that show promise as pesticides from our own research are discussed.

  10. Positive regulation of Clostridium difficile toxins.

    OpenAIRE

    Moncrief, J S; Barroso, L A; Wilkins, T D

    1997-01-01

    The toxigenic element of Clostridium difficile VPI 10463 contains a small open reading frame (ORF) immediately upstream of the toxin B gene (G. A. Hammond and J. L. Johnson, Microb. Pathog. 19:203-213, 1995). The deduced amino acid sequence of the ORF, which we have designated txeR, encodes a 22-kDa protein which contains a helix-turn-helix motif with sequence identity to DNA binding regulatory proteins. We used a DNA fragment containing the C. difficile toxin A repeating units (ARU) as a rep...

  11. Characterisation of cholera toxin by liquid chromatography - Electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1999-01-01

    Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were inve

  12. Pichia acaciae Killer System: Genetic Analysis of Toxin Immunity▿

    OpenAIRE

    Paluszynski, John P.; Klassen, Roland; Meinhardt, Friedhelm

    2007-01-01

    The gene responsible for self-protection in the Pichia acaciae killer plasmid system was identified by heterologous expression in Saccharomyces cerevisiae. Resistance profiling and conditional toxin/immunity coexpression analysis revealed dose-independent protection by pPac1-2 ORF4 and intracellular interference with toxin function, suggesting toxin reinternalization in immune killer cells.

  13. Effect of treatment with botulinum toxin on spasticity.

    OpenAIRE

    Das, T K; Park, D M

    1989-01-01

    Botulinum toxin, a product of Clostridium botulinum, produces presynaptic neuromuscular block by preventing release of acetylcholine from nerve endings. The toxin was injected directly into the skeletal muscles of six patients with severe spasticity due to stroke-related hemiplegia. It produced both subjective and objective improvement. The toxin injections were well tolerated and no significant side effect was reported.

  14. Identification and characterization of two novel toxins expressed by the lethal honey bee pathogen Paenibacillus larvae, the causative agent of American foulbrood.

    Science.gov (United States)

    Fünfhaus, Anne; Poppinga, Lena; Genersch, Elke

    2013-11-01

    Paenibacillus larvae is a Gram-positive bacterial pathogen causing the epizootic American foulbrood in honey bee larvae. Four so-called enterobacterial repetitive intergenic consensus (ERIC) genotypes of P. larvae exist with P. larvae genotypes ERIC I and ERIC II being responsible for disease outbreaks all over the world. Very few molecular data on the pathogen, on pathogenesis or on virulence factors exist. We now identified two genomic loci in P. larvae ERIC I coding for two binary AB toxins, Plx1 and Plx2. In silico analyses revealed that Plx1 is the third member of an enigmatic family of AB toxins so far only comprising MTX1 of Lysinibacillus sphaericus and pierisin-like toxins expressed by several butterflies. Plx2 is also remarkable because the A-domain is highly similar to C3 exoenzymes, which normally are single domain proteins, while the B-domain is homologous to B-domains of C2-toxins. We constructed P. larvae mutants lacking expression of Plx1, Plx2 or both toxins and demonstrated that these toxins are important virulence factors for P. larvae ERIC I. PMID:23992535

  15. Staphylococcus hyicus exfoliative toxin: Purification and demonstration of antigenic diversity among toxins from virulent strains

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Bille-Hansen, Vivi; Wegener, Henrik Caspar

    1997-01-01

    hydrophobic interaction chromatography and successively anion exchange chromatography. The purified toxin was tested in a piglet skin assay. Weak epidermal lesions were macroscopically and microscopically similar to lesions caused by (NH4)(2)SO4-precipitated culture supernatant from the same strain. Addition...... of 0.5 mM CuSO4 to the purified toxin resulted in more intense skin alterations comparable to lesions caused by precipitated culture supernatant diluted 1:10. These results indicated that the activity of the exfoliative toxin was dependent on the presence of Cu2+. Polyclonal and monoclonal antibodies....... hyicus. These results showed antigenic diversity among exfoliative toxins produced by different strains of S. hyicus. (C) 1997 Academic Press Limited....

  16. A Cell-Based Fluorescent Assay to Detect the Activity of Shiga Toxin and Other Toxins That Inhibit Protein Synthesis

    Science.gov (United States)

    Escherichia coli O157:H7, a major cause of food-borne illness, produces Shiga toxins that block protein synthesis by inactivating the ribosome. In this chapter we describe a simple cell-based fluorescent assay to detect Shiga toxins and inhibitors of toxin activity. The assay can also be used to d...

  17. Staphylococcus hyicus exfoliative toxin: Purification and demonstration of antigenic diversity among toxins from virulent strains

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Bille-Hansen, Vivi; Wegener, Henrik Caspar

    1997-01-01

    The exfoliative toxin produced by Staphylococcus hyicus strain 1289D-88 was purified as a single protein of approximately 30 kDa. Extracellular proteins of S. hyicus grown under small scale fermentation conditions were precipitated with ammonium sulfate. Separation of proteins was performed by....... hyicus. These results showed antigenic diversity among exfoliative toxins produced by different strains of S. hyicus. (C) 1997 Academic Press Limited....

  18. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  19. Frey syndrome treatment with botulinum toxin.

    Science.gov (United States)

    Dulguerov, P; Quinodoz, D; Cosendai, G; Piletta, P; Lehmann, W

    2000-06-01

    The goal of this work is to present our results of the intradermic infiltration with botulinum toxin in patients with Frey syndrome. Sixteen hemifaces in 15 patients were studied. Gustatory stimulation was evoked by sucking on a slice of lemon while measurements were done on both hemifaces, with the normal side being used as a control. Skin temperature and color (erythema) were measured with a digital surface thermometer and a skin chromameter, respectively. Sweat quantity and surface were measured by using the previously described blotting paper and iodine-sublimated paper histogram methods, respectively. Testing was repeated 2 weeks after skin infiltration with botulinum toxin (dilution of 50 U/mL). The interinjection distances were 1 cm, and 0.1 mL (5 U) was infiltrated at each injection site. Frey syndrome complaints disappeared in all patients. Small residual amounts of sweat were measurable. The difference in sweat quantity before and after botulinum toxin infiltration was significant in every patient (P < 0.001). Skin temperature and color measurement gave inconclusive results. In conclusion, Frey syndrome treatment with botulinum toxin is an efficient and well-tolerated technique. Further work should address the optimal injection parameters. PMID:10828793

  20. Okadaic Acid: More than a Diarrheic Toxin

    Directory of Open Access Journals (Sweden)

    Josefina Méndez

    2013-10-01

    Full Text Available Okadaic acid (OA is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.

  1. Future Avenues to Decrease Uremic Toxin Concentration.

    Science.gov (United States)

    Vanholder, Raymond C; Eloot, Sunny; Glorieux, Griet L R L

    2016-04-01

    In this article, we review approaches for decreasing uremic solute concentrations in chronic kidney disease and in particular, in end-stage renal disease (ESRD). The rationale to do so is the straightforward relation between concentration and biological (toxic) effect for most toxins. The first section is devoted to extracorporeal strategies (kidney replacement therapy). In the context of high-flux hemodialysis and hemodiafiltration, we discuss increasing dialyzer blood and dialysate flows, frequent and/or extended dialysis, adsorption, bioartificial kidney, and changing physical conditions within the dialyzer (especially for protein-bound toxins). The next section focuses on the intestinal generation of uremic toxins, which in return is stimulated by uremic conditions. Therapeutic options are probiotics, prebiotics, synbiotics, and intestinal sorbents. Current data are conflicting, and these issues need further study before useful therapeutic concepts are developed. The following section is devoted to preservation of (residual) kidney function. Although many therapeutic options may overlap with therapies provided before ESRD, we focus on specific aspects of ESRD treatment, such as the risks of too-strict blood pressure and glycemic regulation and hemodynamic changes during dialysis. Finally, some recommendations are given on how research might be organized with regard to uremic toxins and their effects, removal, and impact on outcomes of uremic patients. PMID:26500179

  2. Treatment of Frontal Hyperhidrosis With Botulinum Toxin

    Directory of Open Access Journals (Sweden)

    Ayşe Esra Koku Aksu

    Full Text Available Focal hyperhidrosis is usually localized to the axillae, palms and soles. Less frequently, hyperhidrosis may be confined to the forehead and may have negative impact on patient’s quality of life. A 34-year-old man presented to our clinic with the complaint of frontal hyperhidrosis. He was treated with botulinum toxin A. Thirty points were marked over the forehead and at each injection point, 0.15 ml (3U botulinum toxin A were injected intracutaneously. Hyperhidrosis was significantly reduced and the effect lasted for 12 months. Skindex-29, a quality-of-life measure for skin disease, was administered to the patient at the beginning and at the end of second week of botulinum toxin A injection. There was a significant improvement on the Skindex-29 scale at the end of the treatment. There was no any side effect detected during and after the treatment. Botulinum toxin A treatment is considered to be effective and safe for frontal hyperhidrosis.

  3. Natural toxins for use in pest management

    Science.gov (United States)

    Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly ...

  4. Diverse distribution of Toxin-Antitoxin II systems in Salmonella enterica serovars

    Science.gov (United States)

    Di Cesare, Andrea; Losasso, Carmen; Barco, Lisa; Eckert, Ester M.; Conficoni, Daniele; Sarasini, Giulia; Corno, Gianluca; Ricci, Antonia

    2016-01-01

    Type II Toxin-Antitoxin systems (TAs), known for their presence in virulent and antibiotic resistant bacterial strains, were recently identified in Salmonella enterica isolates. However, the relationships between the presence of TAs (ccdAB and vapBC) and the epidemiological and genetic features of different non-typhoidal Salmonella serovars are largely unknown, reducing our understanding of the ecological success of different serovars. Salmonella enterica isolates from different sources, belonging to different serovars and epidemiologically unrelated according to ERIC profiles, were investigated for the presence of type II TAs, plasmid content, and antibiotic resistance. The results showed the ubiquitous presence of the vapBC gene in all the investigated Salmonella isolates, but a diverse distribution of ccdAB, which was detected in the most widespread Salmonella serovars, only. Analysis of the plasmid toxin ccdB translated sequence of four selected Salmonella isolates showed the presence of the amino acid substitution R99W, known to impede in vitro the lethal effect of CcdB toxin in the absence of its cognate antitoxin CcdA. These findings suggest a direct role of the TAs in promoting adaptability and persistence of the most prevalent Salmonella serovars, thus implying a wider eco-physiological role for these type II TAs. PMID:27357537

  5. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    Energy Technology Data Exchange (ETDEWEB)

    Kohno, Kenji (National Institute for Basic Biology, Aichi (Japan)); Hayes, H.; Mekada, Eisuke (Osaka Univ. (Japan)); Uchida, Tsuyoshi (National Institute for Basic Biology, Aichi (Japan) Osaka Univ. (Japan))

    1987-09-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 {mu}g/ml. {sup 125}I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH{sub 4}Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells.

  6. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases

    OpenAIRE

    Uzal, F. A.; J. E. Vidal; McClane, B A; Gurjar, A. A.

    2010-01-01

    Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB), epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE), and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more of these toxins. The r...

  7. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  8. Clostridium perfringens epsilon toxin inhibits the gastrointestinal transit in mice.

    Science.gov (United States)

    Losada-Eaton, D M; Fernandez-Miyakawa, M E

    2010-12-01

    Epsilon toxin produced by Clostridium perfringens type B and D is a potent toxin that is responsible for a highly fatal enterotoxemia in sheep and goats. In vitro, epsilon toxin produces contraction of the rat ileum as the result of an indirect action, presumably mediated through the autonomic nervous system. To examine the impact of epsilon toxin in the intestinal transit, gastric emptying (GE) and gastrointestinal transit (GIT) were evaluated after intravenous and oral administration of epsilon toxin in mice. Orally administered epsilon toxin produced a delay on the GIT. Inhibition of the small intestinal transit was observed as early as 1 h after the toxin was administered orally but the effects were not observed after 1 week. Epsilon toxin also produced an inhibition in GE and a delay on the GIT when relatively high toxin concentrations were given intravenously. These results indicate that epsilon toxin administered orally or intravenously to mice transitorily inhibits the GIT. The delay in the GIT induced by epsilon toxin could be relevant in the pathogenesis of C. perfringens type B and D enterotoxemia. PMID:20434186

  9. Preliminary spectroscopic characterization of six toxins from Latin American scorpions.

    Science.gov (United States)

    Possani, L; Steinmetz, W E; Dent, M A; Alagón, A C; Wüthrich, K

    1981-07-28

    This paper reports on spectroscopic studies of six toxins from the Latin American scorpions Centruroides noxius Hoffmann, Centruroides elegans Thorell and Tityus serrulatus Lutz and Mello. The isolation and purification of five of these toxins was described previously. The preparation of toxin II.9.2.2 from the venom of C. noxius is first described here. Circular dichroism and nuclear magnetic resonance spectra indicate similarities and differences between these scorpion toxins and previously characterized snake toxins. While there is evidence that the toxins from scorpions and snakes both contain extended beta-sheet secondary structures, the spectral properties of the scorpion toxins are overall of a different type from those of snake toxins. Among the six scorpion toxins those from T. serrulatus have spectral properties markedly different from those of the Centruroides species. Furthermore, thermal denaturation and amide proton exchange measurements showed that the globular structures of the Tityus toxins were markedly less stable and less rigid than those of the Centruroides toxins. PMID:7284435

  10. Mode of action of mosquitocidal Bacillus thuringiensis toxins.

    Science.gov (United States)

    Soberón, Mario; Fernández, Luisa E; Pérez, Claudia; Gill, Sarjeet S; Bravo, Alejandra

    2007-04-01

    Cry toxins from Bacillus thuringiensis (Bt) are used for insect control. Their primary action is to lyse midgut epithelial cells. In lepidopteran insects, Cry1A monomeric toxins interact with a first receptor and this interaction triggers toxin oligomerization. The oligomeric structure interacts then with a second GPI-anchored receptor that induces insertion into membrane microdomains and larvae death. In the case of mosquitocidal Bt strains, two different toxins participate, Cry and Cyt. These toxins have a synergistic effect and Cyt1Aa overcomes Cry toxin-resistance. We will summarize recent findings on the identification of Cry receptors in mosquitoes and the mechanism of synergism: Cyt1Aa synergizes or suppresses resistance to Cry toxins by functioning as a Cry membrane-bound receptor. PMID:17145072

  11. Inflammatory and Bone Remodeling Responses to the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Georgios N. Belibasakis

    2014-04-01

    Full Text Available The cytolethal distending toxins (CDTs are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.

  12. Outer membrane vesicle-mediated release of cytolethal distending toxin (CDT from Campylobacter jejuni

    Directory of Open Access Journals (Sweden)

    Uhlin Bernt

    2009-10-01

    Full Text Available Abstract Background Background: Cytolethal distending toxin (CDT is one of the well-characterized virulence factors of Campylobacter jejuni, but it is unknown how CDT becomes surface-exposed or is released from the bacterium to the surrounding environment. Results Our data suggest that CDT is secreted to the bacterial culture supernatant via outer membrane vesicles (OMVs released from the bacteria. All three subunits (the CdtA, CdtB, and CdtC proteins were detected by immunogold labeling and electron microscopy of OMVs. Subcellular fractionation of the bacteria indicated that, apart from the majority of CDT detected in the cytoplasmic compartment, appreciable amounts (20-50% of the cellular pool of CDT proteins were present in the periplasmic compartment. In the bacterial culture supernatant, we found that a majority of the extracellular CDT was tightly associated with the OMVs. Isolated OMVs could exert the cell distending effects typical of CDT on a human intestinal cell line, indicating that CDT is present there in a biologically active form. Conclusion Our results strongly suggest that the release of outer membrane vesicles is functioning as a route of C. jejuni to deliver all the subunits of CDT toxin (CdtA, CdtB, and CdtC to the surrounding environment, including infected host tissue.

  13. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2011-03-01

    Full Text Available Pseudomonas aeruginosa (P. aeruginosa is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD, pneumonia, cystic fibrosis (CF, and bronchiectasis. Cif (PA2934, a bacterial toxin secreted in outer membrane vesicles (OMV by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB, USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

  14. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    -vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial......Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate...... filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  15. Antimicrobial Nanoparticle for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya

    Liposomes are spherical lipid vesicles with bilayered membrane structure, which have been recognized as one of the most widely used carriers for delivering a myriad of pharmaceuticals. Liposomes can carry both hydrophilic and hydrophobic agents with high efficiency and protect them from undesired effects of external conditions. However, the applications of liposomes are usually limited by their instability during storage. They are inclined to fuse with one another immediately after preparation, resulting in undesired mixing, increase in size, and payload loss. To overcome this limitation, this dissertation will focus on the technology to stabilize liposomes during storage and destabilize at specific conditions in order to allow controllable therapeutic release, as well as demonstrate their application to treat one of the bacterial infection diseases, acne vulgaris. The first area of this research is stimuli-responsive liposomes development, where the liposomes are stabilized by introducing gold nanoparticles to adsorb to their surface. As a result, the liposomes are prevented from fusing with one another and undesirable payload release during storage or physiological environments. Moreover, therapeutic is controllably released depending on environment conditions, such as acidic pH and bacterial virulence factor. In case of acid-responsive liposomes, the bound gold nanoparticles can effectively prevent liposomes from fusing with one another at neutral pH value, while at acidic environment (e.g. pHbacteria themselves, such as bacterial toxin. When nanoparticle-stabilized liposomes encounter with bacteria that secrete toxin, the toxin will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. It was observed that in the presence of toxin-secreting bacteria, 100% of the encapsulated antibiotics were released from the

  16. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt-29 biosensor.

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host's attempt to clear bacterial toxic molecules. One of these genes, ugt-29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt-29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt-29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT-29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt-29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  17. Detection of Burkholderia pseudomallei toxin-mediated inhibition of protein synthesis using a Caenorhabditis elegans ugt–29 biosensor

    Science.gov (United States)

    Wong, Rui-Rui; Kong, Cin; Lee, Song-Hua; Nathan, Sheila

    2016-01-01

    Toxins are believed to play a crucial role in Burkholderia pseudomallei pathogenicity, however to date, only a few have been identified. The discovery of additional toxic molecules is limited by the lack of a sensitive indicator of B. pseudomallei toxicity. Previously, from a whole genome transcriptome analysis of B. pseudomallei-infected Caenorhabditis elegans, we noted significant overexpression of a number of worm genes encoding detoxification enzymes, indicating the host’s attempt to clear bacterial toxic molecules. One of these genes, ugt–29, a family member of UDP-glucuronosyltransferases, was the most robustly induced phase II detoxification gene. In this study, we show that strong induction of ugt–29 is restricted to infections by the most virulent species among the pathogens tested. We also noted that ugt–29 is activated upon disruption of host protein synthesis. Hence, we propose that UGT–29 could be a promising biosensor to detect B. pseudomallei toxins that compromise host protein synthesis. The identification of bactobolin, a polyketide-peptide hybrid molecule, as a toxic molecule of B. pseudomallei further verifies the utilization of this surveillance system to search for bacterial toxins. Hence, a ugt–29 based reporter should be useful in screening for other molecules that inhibit host protein synthesis. PMID:27273550

  18. Toxin(s), Other Than Cholera Toxin, Produced by Environmental Non O1 Non O139 Vibrio cholerae

    Institute of Scientific and Technical Information of China (English)

    Kohinur Begum; Chowdhury R. Ahsan; Mohammad Ansaruzzaman; Dilip K. Dutta; Qazi S.Ahmad; Kaisar A. Talukder

    2006-01-01

    A total of 39 Vibrio cholerae non O1 non O139 strains were isolated from surface waters of different parts of Dhaka City, Bangladesh. All these strains showed lack of ctx or zot gene, as demonstrated by the PCR analysis.Eighteen representative strains were tested for enterotoxin production using a rabbit ileal loop model, of which live cells of 8 strains and culture filtrates of 6 strains produced fluid accumulation in ileal loops. However, none of them produced heat stable toxin (ST), as detected by suckling mouse assay. On the other hand, 15% of isolates produced cytotoxin as detected by the Chinese Hamster Ovary (CHO) cell assay. Fifty times concentrated culture filtrates of the representative strains did not give any precipitin band against the anti-cholera toxin, suggesting the strains produced an enterotoxin, which is antigenically different from known cholera toxin (CT). Eighty percent of the total isolates were found to be positive for heat labile haemolysin detected by tube method, whereas, 39% were found positive by the Christie-Atkins-Munch-Petersen (CAMP) method. However, 87% of the isolates were positive for haemagglutinin/protease and all of the strains were positive for mannose-sensitive-haemagglutinin assay.

  19. Demonstrating Bacterial Flagella.

    Science.gov (United States)

    Porter, John R.; And Others

    1992-01-01

    Describes an effective laboratory method for demonstrating bacterial flagella that utilizes the Proteus mirabilis organism and a special harvesting technique. Includes safety considerations for the laboratory exercise. (MDH)

  20. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  1. Sea Anemone (Cnidaria, Anthozoa, Actiniaria Toxins: An Overview

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2012-08-01

    Full Text Available The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines, but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na+ and K+ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.

  2. Molecular composition of Clostridium botulinum type A progenitor toxins.

    Science.gov (United States)

    Inoue, K; Fujinaga, Y; Watanabe, T; Ohyama, T; Takeshi, K; Moriishi, K; Nakajima, H; Inoue, K; Oguma, K

    1996-01-01

    The molecular composition of progenitor toxins produced by a Clostridium botulinum type A strain (A-NIH) was analyzed. The strain produced three types of progenitor toxins (19 S, 16 S, and 12 S) as reported previously. Purified 19 S and 16 S toxins demonstrated the same banding profiles on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), indicating that they consist of the same protein components. The nontoxic components of the 19 S and 16 S toxins are a nontoxic non-hemagglutinin (HA) (molecular mass, 120 kDa) and HA. HA could be fractionated into five subcomponents with molecular masses of 52, 35, 20, 19, and 15 kDa in the presence of 2-mercaptoethanol. The molar ratios of neurotoxins, nontoxic non-HAs, and each HA subcomponent of the 19 S and 16 S toxins showed that only HA-35 of the 19 S toxin was approximately twice the size of that of the 16 S toxin, suggesting that the 19 S toxin is a dimer of the 16 S toxin cross-linked by the 35-kDa subcomponent. The nontoxic non-HA of the 12 S toxin, but not those of the 19 S and 16 S toxins, demonstrated two bands with molecular masses of 106 and 13 kDa on SDS-PAGE with or without 2-mercaptoethanol. It was concluded from the N-terminal amino acid sequences that 106- and 13-kDa proteins were generated by a cleavage of whole nontoxic non-HA. This may explain why the 12 S and 16 S (and 19 S) toxins exist in the same culture. We also found that the HA and its 35-kDa subcomponent exist in a free state in the culture fluid along with three types of progenitor toxins. PMID:8613365

  3. Frey syndrome treatment with botulinum toxin

    OpenAIRE

    Dulguerov, Pavel; Quinodoz, Didier François; Cosendai, Grégoire; Piletta Zanin, Pierre; Lehmann, Willy

    2000-01-01

    The goal of this work is to present our results of the intradermic infiltration with botulinum toxin in patients with Frey syndrome. Sixteen hemifaces in 15 patients were studied. Gustatory stimulation was evoked by sucking on a slice of lemon while measurements were done on both hemifaces, with the normal side being used as a control. Skin temperature and color (erythema) were measured with a digital surface thermometer and a skin chromameter, respectively. Sweat quantity and surface were me...

  4. Abstract Action Potential Models for Toxin Recognition

    OpenAIRE

    Peterson, James; Khan, Taufiquar

    2005-01-01

    In this paper, we present a robust methodology using mathematical pattern recognition schemes to detect and classify events in action potentials for recognizing toxins in biological cells. We focus on event detection in action potential via abstraction of information content into a low dimensional feature vector within the constrained computational environment of a biosensor. We use generated families of action potentials from a classic Hodgkin–Huxley model to verify our methodology and build...

  5. Natural Toxins for Use in Pest Management

    OpenAIRE

    Schrader, Kevin K.; Nurhayat Tabanca; Wedge, David E; Meepagala, Kumudini M.; Cantrell, Charles L.; Duke, Stephen O.

    2010-01-01

    Natural toxins are a source of new chemical classes of pesticides, as well as environmentally and toxicologically safer molecules than many of the currently used pesticides. Furthermore, they often have molecular target sites that are not exploited by currently marketed pesticides. There are highly successful products based on natural compounds in the major pesticide classes. These include the herbicide glufosinate (synthetic phosphinothricin), the spinosad insecticides, and the strobilurin f...

  6. Botulinum Toxin in the Treatment of Cystitis

    OpenAIRE

    Lucia Lucan; EnachDan Enache; Bodo Ors Zsombor

    2014-01-01

    Objective. This study will follow the effectiveness of treatment of chronic cystitis in menopausal women, associated with overactive bladder syndrome, performed by endoscopic injection of botulinum toxin type A to patients who previously attended drug treatment and bladder instilational treatment but with persistence of clinical manifestations.Materials and methods. We studied 43 patients, in menopause with chronic recurrent cystitis and overactive bladder. The data were statistically analyze...

  7. Why do we study animal toxins?

    OpenAIRE

    Zhang, Yun

    2015-01-01

    Venom (toxins) is an important trait evolved along the evolutionary tree of animals. Our knowledges on venoms, such as their origins and loss, the biological relevance and the coevolutionary patterns with other organisms are greatly helpful in understanding many fundamental biological questions, i.e., the environmental adaptation and survival competition, the evolution shaped development and balance of venoms, and the sophisticated correlations among venom, immunity, body power, intelligence,...

  8. Toxins for Transgenic Resistance to Hemipteran Pests

    OpenAIRE

    Bryony C. Bonning; Chougule, Nanasaheb P.

    2012-01-01

    The sap sucking insects (Hemiptera), which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt) ha...

  9. Perfringolysin O: The Underrated Clostridium perfringens Toxin?

    Directory of Open Access Journals (Sweden)

    Stefanie Verherstraeten

    2015-05-01

    Full Text Available The anaerobic bacterium Clostridium perfringens expresses multiple toxins that promote disease development in both humans and animals. One such toxin is perfringolysin O (PFO, classically referred to as θ toxin, a pore-forming cholesterol-dependent cytolysin (CDC. PFO is secreted as a water-soluble monomer that recognizes and binds membranes via cholesterol. Membrane-bound monomers undergo structural changes that culminate in the formation of an oligomerized prepore complex on the membrane surface. The prepore then undergoes conversion into the bilayer-spanning pore measuring approximately 250–300 Å in diameter. PFO is expressed in nearly all identified C. perfringens strains and harbors interesting traits that suggest a potential undefined role for PFO in disease development. Research has demonstrated a role for PFO in gas gangrene progression and bovine necrohemorrhagic enteritis, but there is limited data available to determine if PFO also functions in additional disease presentations caused by C. perfringens. This review summarizes the known structural and functional characteristics of PFO, while highlighting recent insights into the potential contributions of PFO to disease pathogenesis.

  10. Bioengineered kidney tubules efficiently excrete uremic toxins

    Science.gov (United States)

    Jansen, J.; Fedecostante, M.; Wilmer, M. J.; Peters, J. G.; Kreuser, U. M.; van den Broek, P. H.; Mensink, R. A.; Boltje, T. J.; Stamatialis, D.; Wetzels, J. F.; van den Heuvel, L. P.; Hoenderop, J. G.; Masereeuw, R.

    2016-01-01

    The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed bioengineered renal tubule capable of active uremic toxin secretion through the concerted action of essential renal transporters, viz. organic anion transporter-1 (OAT1), breast cancer resistance protein (BCRP) and multidrug resistance protein-4 (MRP4). Three-dimensional cell monolayer formation of human conditionally immortalized proximal tubule epithelial cells (ciPTEC) on biofunctionalized hollow fibers with maintained barrier function was demonstrated. Using a tailor made flow system, the secretory clearance of human serum albumin-bound uremic toxins, indoxyl sulfate and kynurenic acid, as well as albumin reabsorption across the renal tubule was confirmed. These functional bioengineered renal tubules are promising entities in renal replacement therapies and regenerative medicine, as well as in drug development programs. PMID:27242131

  11. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R.; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Tehran, Domenico Azarnia; Montecucco, Cesare; Barth, Holger

    2016-01-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins. PMID:27043629

  12. Shuffling bacterial metabolomes

    OpenAIRE

    Thomason, Brendan; Read, Timothy D.

    2006-01-01

    Horizontal gene transfer (HGT) has a far more significant role than gene duplication in bacterial evolution. This has recently been illustrated by work demonstrating the importance of HGT in the emergence of bacterial metabolic networks, with horizontally acquired genes being placed in peripheral pathways at the outer branches of the networks.

  13. Vimentin in Bacterial Infections.

    Science.gov (United States)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection. PMID:27096872

  14. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...... become valuable weapons for preventing pathogen contamination and fighting infectious diseases in the future....

  15. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  16. Recent insights into Clostridium perfringens beta-toxin.

    Science.gov (United States)

    Nagahama, Masahiro; Ochi, Sadayuki; Oda, Masataka; Miyamoto, Kazuaki; Takehara, Masaya; Kobayashi, Keiko

    2015-02-01

    Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT) that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin. PMID:25654787

  17. Cytoskeleton as an Emerging Target of Anthrax Toxins

    Directory of Open Access Journals (Sweden)

    Jean-Nicolas Tournier

    2012-02-01

    Full Text Available Bacillus anthracis, the agent of anthrax, has gained virulence through its exotoxins produced by vegetative bacilli and is composed of three components forming lethal toxin (LT and edema toxin (ET. So far, little is known about the effects of these toxins on the eukaryotic cytoskeleton. Here, we provide an overview on the general effects of toxin upon the cytoskeleton architecture. Thus, we shall discuss how anthrax toxins interact with their receptors and may disrupt the interface between extracellular matrix and the cytoskeleton. We then analyze what toxin molecular effects on cytoskeleton have been described, before discussing how the cytoskeleton may help the pathogen to corrupt general cell processes such as phagocytosis or vascular integrity.

  18. Recent Insights into Clostridium perfringens Beta-Toxin

    Directory of Open Access Journals (Sweden)

    Masahiro Nagahama

    2015-02-01

    Full Text Available Clostridium perfringens beta-toxin is a key mediator of necrotizing enterocolitis and enterotoxemia. It is a pore-forming toxin (PFT that exerts cytotoxic effect. Experimental investigation using piglet and rabbit intestinal loop models and a mouse infection model apparently showed that beta-toxin is the important pathogenic factor of the organisms. The toxin caused the swelling and disruption of HL-60 cells and formed a functional pore in the lipid raft microdomains of sensitive cells. These findings represent significant progress in the characterization of the toxin with knowledge on its biological features, mechanism of action and structure-function having been accumulated. Our aims here are to review the current progresses in our comprehension of the virulence of C. perfringens type C and the character, biological feature and structure-function of beta-toxin.

  19. Fusarial toxins: secondary metabolites of Fusarium fungi.

    Science.gov (United States)

    Nesic, Ksenija; Ivanovic, Snezana; Nesic, Vladimir

    2014-01-01

    Exposure to mycotoxins occurs worldwide, even though there are geographic and climatic differences in the amounts produced and occurrence of these substances.Mycotoxins are secondary chemical metabolites of different fungi. They are natural contaminants of cereals, so their presence is often inevitable. Among many genera that produce mycotoxins, Fusarium fungi are the most widespread in cereal-growing areas of the planet. Fusarium fungi produce a diversity of mycotoxin types, whose distributions are also diverse. What is produced and where it is produced is influenced primarily by environmental conditions, and crop production and storage methods. The amount of toxin produced depends on physical (viz., moisture, relative humidity, temperature, and mechanical damage), chemical (viz., carbon dioxide,oxygen, composition of substrate, insecticides and fungicides), and biological factors (viz., plant variety, stress, insects, spore load, etc.). Moisture and temperature have a major influence on mold growth rate and mycotoxin production.Among the most toxic and prevalent fusaria) toxins are the following: zearalenone,fumonisins, moniliformin and trichothecenes (T-2/HT-2 toxin, deoxynivalenol,diacetoxyscirpenol, nivalenol). Zearalenone (ZEA; ZON, F-2 toxin) isaphy to estrogenic compound, primarily a field contaminant, which exhibits estrogenic activity and has been implicated in numerous mycotoxicoses of farm animals,especially pigs. Recently, evidence suggests that ZEA has potential to stimulate the growth of human breast cancer cells. Fumonisins are also cancer-promoting metabolites,of which Fumonisin 8 I (FBI) is the most important. Moniliformin (MON) isalso highly toxic to both animals and humans. Trichothecenes are classified as gastrointestinal toxins, dermatotoxins, immunotoxins, hematotoxins, and gene toxins.T-2 and HT-2 toxin, and diacetoxyscirpenol (DAS, anguidine) are the most toxic mycotoxins among the trichothecene group. Deoxynivalenol (DON, vomitoxin) and

  20. Role of Toxin Functional Domains in Anthrax Pathogenesis

    OpenAIRE

    Brossier, Fabien; Weber-Levy, Martine; Mock, Michele; SIRARD, Jean-Claude

    2000-01-01

    We investigated the role of the functional domains of anthrax toxins during infection. Three proteins produced by Bacillus anthracis, the protective antigen (PA), the lethal factor (LF), and the edema factor (EF), combine in pairs to produce the lethal (PA+LF) and edema (PA+EF) toxins. A genetic strategy was developed to introduce by allelic exchange specific point mutations or in-frame deletions into B. anthracis toxin genes, thereby impairing either LF metalloprotease or EF adenylate cyclas...

  1. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  2. Military Importance of Natural Toxins and Their Analogs.

    Science.gov (United States)

    Pitschmann, Vladimír; Hon, Zdeněk

    2016-01-01

    Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots); it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks. PMID:27136512

  3. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  4. ArachnoServer: a database of protein toxins from spiders

    OpenAIRE

    Kaas Quentin; Raven Robert J; Cai Shuzhi; Miljenović Tomas; Wood David LA; Escoubas Pierre; Herzig Volker; Wilson David; King Glenn F

    2009-01-01

    Abstract Background Venomous animals incapacitate their prey using complex venoms that can contain hundreds of unique protein toxins. The realisation that many of these toxins may have pharmaceutical and insecticidal potential due to their remarkable potency and selectivity against target receptors has led to an explosion in the number of new toxins being discovered and characterised. From an evolutionary perspective, spiders are the most successful venomous animals and they maintain by far t...

  5. ATDB: a uni-database platform for animal toxins

    OpenAIRE

    He, Quan-Yuan; He, Quan-Ze; Deng, Xing-Can; Yao, Lei; Meng, Er; Liu, Zhong-Hua; Liang, Song-Ping

    2007-01-01

    Venomous animals possess an arsenal of toxins for predation and defense. These toxins have great diversity in function and structure as well as evolution and therefore are of value in both basic and applied research. Recently, toxinomics researches using cDNA library sequencing and proteomics profiling have revealed a large number of new toxins. Although several previous groups have attempted to manage these data, most of them are restricted to certain taxonomic groups and/or lack effective s...

  6. ClanTox: a classifier of short animal toxins

    OpenAIRE

    Naamati, Guy; Askenazi, Manor; Linial, Michal

    2009-01-01

    Toxins are detected in sporadic species along the evolutionary tree of the animal kingdom. Venomous animals include scorpions, snakes, bees, wasps, frogs and numerous animals living in the sea such as the stonefish, snail, jellyfish, hydra and more. Interestingly, proteins that share a common scaffold with animal toxins also exist in non-venomous species. However, due to their short length and primary sequence diversity, these, toxin-like proteins remain undetected by classical search engines...

  7. Transcriptional Stimulation of Anthrax Toxin Receptors by Anthrax Edema Toxin and Bacillus anthracis Sterne Spore

    OpenAIRE

    Xu, Qingfu; Hesek, Eric D.; Zeng, Mingtao

    2007-01-01

    We used quantitative real-time RT-PCR to not only investigate the mRNA levels of anthrax toxin receptor 1 (ANTXR1) and 2 (ANTXR2) in the murine J774A.1 macrophage cells and different tissues of mice, but also evaluate the effect of anthrax edema toxin and Bacillus anthracis Sterne spores on the expression of mRNA of these receptors. The mRNA transcripts of both receptors was detected in J774A.1 cells and mouse tissues such as the lung, heart, kidney, spleen, stomach, jejunum, brain, skeleton ...

  8. Role of receptors in Bacillus thuringiensis crystal toxin activity.

    Science.gov (United States)

    Pigott, Craig R; Ellar, David J

    2007-06-01

    Bacillus thuringiensis produces crystalline protein inclusions with insecticidal or nematocidal properties. These crystal (Cry) proteins determine a particular strain's toxicity profile. Transgenic crops expressing one or more recombinant Cry toxins have become agriculturally important. Individual Cry toxins are usually toxic to only a few species within an order, and receptors on midgut epithelial cells have been shown to be critical determinants of Cry specificity. The best characterized of these receptors have been identified for lepidopterans, and two major receptor classes have emerged: the aminopeptidase N (APN) receptors and the cadherin-like receptors. Currently, 38 different APNs have been reported for 12 different lepidopterans. Each APN belongs to one of five groups that have unique structural features and Cry-binding properties. While 17 different APNs have been reported to bind to Cry toxins, only 2 have been shown to mediate toxin susceptibly in vivo. In contrast, several cadherin-like proteins bind to Cry toxins and confer toxin susceptibility in vitro, and disruption of the cadherin gene has been associated with toxin resistance. Nonetheless, only a small subset of the lepidopteran-specific Cry toxins has been shown to interact with cadherin-like proteins. This review analyzes the interactions between Cry toxins and their receptors, focusing on the identification and validation of receptors, the molecular basis for receptor recognition, the role of the receptor in resistant insects, and proposed models to explain the sequence of events at the cell surface by which receptor binding leads to cell death. PMID:17554045

  9. Animal Toxins: How is Complexity Represented in Databases?

    OpenAIRE

    Jungo F.; Estreicher A.; Bairoch A.; Bougueleret L.; Xenarios I.

    2010-01-01

    Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated a...

  10. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  11. Tumor Targeting and Drug Delivery by Anthrax Toxin.

    Science.gov (United States)

    Bachran, Christopher; Leppla, Stephen H

    2016-01-01

    Anthrax toxin is a potent tripartite protein toxin from Bacillus anthracis. It is one of the two virulence factors and causes the disease anthrax. The receptor-binding component of the toxin, protective antigen, needs to be cleaved by furin-like proteases to be activated and to deliver the enzymatic moieties lethal factor and edema factor to the cytosol of cells. Alteration of the protease cleavage site allows the activation of the toxin selectively in response to the presence of tumor-associated proteases. This initial idea of re-targeting anthrax toxin to tumor cells was further elaborated in recent years and resulted in the design of many modifications of anthrax toxin, which resulted in successful tumor therapy in animal models. These modifications include the combination of different toxin variants that require activation by two different tumor-associated proteases for increased specificity of toxin activation. The anthrax toxin system has proved to be a versatile system for drug delivery of several enzymatic moieties into cells. This highly efficient delivery system has recently been further modified by introducing ubiquitin as a cytosolic cleavage site into lethal factor fusion proteins. This review article describes the latest developments in this field of tumor targeting and drug delivery. PMID:27376328

  12. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  13. Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins

    OpenAIRE

    1984-01-01

    Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate ...

  14. Phospholipase C Produced by Clostridium botulinum Types C and D:Comparison of Gene, Enzymatic, and Biological Activities with Those of Clostridium perfringens Alpha-toxin

    Directory of Open Access Journals (Sweden)

    Sakurai,Jun

    2013-02-01

    Full Text Available Clostridium botulinum type C and D strains recently have been found to produce PLC on egg yolk agar plates. To characterize the gene, enzymatic and biological activities of C. botulinum PLCs (Cb-PLCs, the cb-plc genes from 8 strains were sequenced, and 1 representative gene was cloned and expressed as a recombinant protein. The enzymatic and hemolytic activities of the recombinant Cb-PLC were measured and compared with those of the Clostridium perfringens alpha-toxin. Each of the eight cb-plc genes encoded a 399 amino acid residue protein preceded by a 27 residue signal peptide. The protein consists of 2 domains, the N- and C-domains, and the overall amino acid sequence identity between Cb-PLC and alpha-toxin was greater than 50%, suggesting that Cb-PLC is homologous to the alpha-toxin. The key residues in the N-domain were conserved, whereas those in the C-domain which are important in membrane interaction were different than in the alpha-toxin. As expected, Cb-PLC could hydrolyze egg yolk phospholipid, p-nitrophenylphosphorylcholine, and sphingomyelin, and also exhibited hemolytic activity;however, its activities were about 4- to over 200-fold lower than those of alpha-toxin. Although Cb-PLC showed weak enzymatic and biological activities, it is speculated that Cb-PLC might play a role in the pathogenicity of botulism or for bacterial survival.

  15. Structural and functional studies of the Mycobacterium tuberculosis VapBC30 toxin-antitoxin system: implications for the design of novel antimicrobial peptides.

    Science.gov (United States)

    Lee, In-Gyun; Lee, Sang Jae; Chae, Susanna; Lee, Ki-Young; Kim, Ji-Hun; Lee, Bong-Jin

    2015-09-01

    Toxin-antitoxin (TA) systems play important roles in bacterial physiology, such as multidrug tolerance, biofilm formation, and arrest of cellular growth under stress conditions. To develop novel antimicrobial agents against tuberculosis, we focused on VapBC systems, which encompass more than half of TA systems in Mycobacterium tuberculosis. Here, we report that theMycobacterium tuberculosis VapC30 toxin regulates cellular growth through both magnesium and manganese ion-dependent ribonuclease activity and is inhibited by the cognate VapB30 antitoxin. We also determined the 2.7-Å resolution crystal structure of the M. tuberculosis VapBC30 complex, which revealed a novel process of inactivation of the VapC30 toxin via swapped blocking by the VapB30 antitoxin. Our study on M. tuberculosis VapBC30 leads us to design two kinds of VapB30 and VapC30-based novel peptides which successfully disrupt the toxin-antitoxin complex and thus activate the ribonuclease activity of the VapC30 toxin. Our discovery herein possibly paves the way to treat tuberculosis for next generation. PMID:26150422

  16. Divergence of human and nonhuman primate lymphocyte responses to bacterial superantigens.

    Science.gov (United States)

    Bavari, S; Hunt, R E; Ulrich, R G

    1995-09-01

    We compared T cell responses of human, rhesus monkey (Macaca mulatta), and chimpanzee (Pan troglodytes) to four bacterial superantigens. When lymphocytes were cultured in media supplemented with species-specific sera, chimpanzee T cells were stimulated by lower doses of staphylococcal enterotoxin (SE) A and toxic shock syndrome toxin 1 (TSST1) than were human T cells, while chimpanzee responses to SEB and SEC1 were nearly equivalent to the human response. Interestingly, rhesus lymphocytes responded to 10,000 times lower amounts of SEA, SEB, and SEC1 and to 100 times lower concentrations of TSST1 than human cells. The greater sensitivity of rhesus T cells to these toxins was not a result of differences in class II binding affinities and was only partly attributable to the presence of anti-SE and TSST1 antibodies in human serum. These results suggest that rhesus T lymphocytes are more sensitive toward these bacterial superantigens than human T cells. PMID:7554446

  17. Importance of prophages to evolution and virulence of bacterial pathogens.

    Science.gov (United States)

    Fortier, Louis-Charles; Sekulovic, Ognjen

    2013-07-01

    Bacteriophages, or simply phages, are viruses infecting bacteria. With an estimated 10 ( 31) particles in the biosphere, phages outnumber bacteria by a factor of at least 10 and not surprisingly, they influence the evolution of most bacterial species, sometimes in unexpected ways. "Temperate" phages have the ability to integrate into the chromosome of their host upon infection, where they can reside as "quiescent" prophages until conditions favor their reactivation. Lysogenic conversion resulting from the integration of prophages encoding powerful toxins is probably the most determinant contribution of prophages to the evolution of pathogenic bacteria. We currently grasp only a small fraction of the total phage diversity. Phage biologists keep unraveling novel mechanisms developed by phages to parasitize their host. The purpose of this review is to give an overview of some of the various ways by which prophages change the lifestyle and boost virulence of some of the most dangerous bacterial pathogens. PMID:23611873

  18. Isolation and Characterization of toxin A-negative, toxin B-positive Clostridium difficile in Dublin, Ireland

    OpenAIRE

    Drudy, Denise; Harnedy, N.; Fanning, S; O’Mahony, R.; Kyne, L.

    2006-01-01

    Clostridium difficile is a major cause of infectious diarrhoea in hospitalised patients. Most pathogenic C. difficile strains produce two toxins, A and B; however, clinically relevant toxin A-negative, toxin Bpositive (A– B+ ) strains of C. difficile that cause diarrhoea and colitis in humans have been isolated worldwide. The aims of this study were to isolate and characterise A– B+ strains from two university hospitals in Dublin, Ireland. Samples positive for C. difficile were identified dai...

  19. SVM-Based Prediction of Propeptide Cleavage Sites in Spider Toxins Identifies Toxin Innovation in an Australian Tarantula

    OpenAIRE

    Wong, Emily S. W.; Hardy, Margaret C.; David Wood; Timothy Bailey; Glenn F. King

    2013-01-01

    Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin tran...

  20. The Relationship between Glycan Binding and Direct Membrane Interactions in Vibrio cholerae Cytolysin, a Channel-forming Toxin.

    Science.gov (United States)

    De, Swastik; Bubnys, Adele; Alonzo, Francis; Hyun, Jinsol; Lary, Jeffrey W; Cole, James L; Torres, Victor J; Olson, Rich

    2015-11-20

    Bacterial pore-forming toxins (PFTs) are structurally diverse pathogen-secreted proteins that form cell-damaging channels in the membranes of host cells. Most PFTs are released as water-soluble monomers that first oligomerize on the membrane before inserting a transmembrane channel. To modulate specificity and increase potency, many PFTs recognize specific cell surface receptors that increase the local toxin concentration on cell membranes, thereby facilitating channel formation. Vibrio cholerae cytolysin (VCC) is a toxin secreted by the human pathogen responsible for pandemic cholera disease and acts as a defensive agent against the host immune system. Although it has been shown that VCC utilizes specific glycan receptors on the cell surface, additional direct contacts with the membrane must also play a role in toxin binding. To better understand the nature of these interactions, we conducted a systematic investigation of the membrane-binding surface of VCC to identify additional membrane interactions important in cell targeting. Through cell-based assays on several human-derived cell lines, we show that VCC is unlikely to utilize high affinity protein receptors as do structurally similar toxins from Staphylococcus aureus. Next, we identified a number of specific amino acid residues that greatly diminish the VCC potency against cells and investigated the interplay between glycan binding and these direct lipid contacts. Finally, we used model membranes to parse the importance of these key residues in lipid and cholesterol binding. Our study provides a complete functional map of the VCC membrane-binding surface and insights into the integration of sugar, lipid, and cholesterol binding interactions. PMID:26416894

  1. Bacterial intoxication evokes cellular senescence with persistent DNA damage and cytokine signalling

    Czech Academy of Sciences Publication Activity Database

    Blažková, Hana; Krejčíková, Kateřina; Moudrý, Pavel; Frisan, T.; Hodný, Zdeněk; Bartek, Jiří

    2009-01-01

    Roč. 14, 1-2 (2009), s. 357-367. ISSN 1582-1838 R&D Projects: GA AV ČR IAA500390501; GA ČR GA204/08/1418; GA ČR GA301/08/0353 Institutional research plan: CEZ:AV0Z50520514 Keywords : cellular senescence * DNA damage response * bacterial toxins Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.228, year: 2009

  2. Shared Binding Sites in Lepidoptera for Bacillus thuringiensis Cry1Ja and Cry1A Toxins

    OpenAIRE

    Herrero, Salvador; González-Cabrera, Joel; Tabashnik, Bruce E; Ferré, Juan

    2001-01-01

    Bacillus thuringiensis toxins act by binding to specific target sites in the insect midgut epithelial membrane. The best-known mechanism of resistance to B. thuringiensis toxins is reduced binding to target sites. Because alteration of a binding site shared by several toxins may cause resistance to all of them, knowledge of which toxins share binding sites is useful for predicting cross-resistance. Conversely, cross-resistance among toxins suggests that the toxins share a binding site. At lea...

  3. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins...

  4. Tetanus toxin : primary structure, expression in E. coli, and homology with botulinum toxins

    NARCIS (Netherlands)

    Eisel, Ulrich; Jarausch, Wolfgang; Goretzki, Karin; Henschen, Agnes; Engels, Joachim; Weller, Ulrich; Hudel, Martina; Habermann, Ernst; Niemann, Heiner; Rott, R.

    1986-01-01

    A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a

  5. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  6. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Stephen Vadia

    2011-11-01

    Full Text Available Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2. Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.

  7. Prevention, control and detection of Fusarial toxins

    Directory of Open Access Journals (Sweden)

    Nešić Ksenija D.

    2013-01-01

    Full Text Available The past couple of decades have provided considerable details on fungi and the toxins that they produce, as well on the mechanism of toxin action, toxicity and effects on animal and human health. But, since they are natural contaminants, their presence is often inevitable. Fusaria are widespread in all cereal-growing territories of the world, but they are especially common in our geographic area. Therefore, special attention is paid to the prevention and control, and also to the improvement of methods for their detection. Although all collected data were critical for understanding this worldwide problem, managing the impact of these toxins on the feed and food safety is still great practical challenge. There are a number of approaches that can be taken to minimize mycotoxin contamination in this chain: prevention of fungal growth and thus mycotoxin formation, strategies to reduce or eliminate mycotoxins from contaminated feedstuffs or diverting the contaminated products to low risk uses. A control program for mycotoxins from field to table should in­volve the criteria of an HACCP (Hazard Analysis Critical Control Points approach. It requires an understanding of the important aspects of the interactions of the toxigenic fungi with crop plants, the on-farm production and harvest methods for crops, the production of livestock using grains and processed feeds, including diagnostic capabilities for mycotoxicoses, and all the way to the development of processed foods for human consumption, as well as understanding the marketing and trade channels including storage and delivery of foods to the consumer’s table. A good testing protocol for mycotoxins is necessary to manage all of the control points and in order to be able to ensure a food supply free of toxic levels of mycotoxins for the consumer. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  8. Glycolipid binding preferences of Shiga toxin variants.

    Directory of Open Access Journals (Sweden)

    Sayali S Karve

    Full Text Available The major virulence factor of Shiga toxin producing E. coli, is Shiga toxin (Stx, an AB5 toxin that consists of a ribosomal RNA-cleaving A-subunit surrounded by a pentamer of receptor-binding B subunits. The two major isoforms, Stx1 and Stx2, and Stx2 variants (Stx2a-h significantly differ in toxicity. The exact reason for this toxicity difference is unknown, however different receptor binding preferences are speculated to play a role. Previous studies used enzyme linked immunosorbent assay (ELISA to study binding of Stx1 and Stx2a toxoids to glycolipid receptors. Here, we studied binding of holotoxin and B-subunits of Stx1, Stx2a, Stx2b, Stx2c and Stx2d to glycolipid receptors globotriaosylceramide (Gb3 and globotetraosylceramide (Gb4 in the presence of cell membrane components such as phosphatidylcholine (PC, cholesterol (Ch and other neutral glycolipids. In the absence of PC and Ch, holotoxins of Stx2 variants bound to mixtures of Gb3 with other glycolipids but not to Gb3 or Gb4 alone. Binding of all Stx holotoxins significantly increased in the presence of PC and Ch. Previously, Stx2a has been shown to form a less stable B-pentamer compared to Stx1. However, its effect on glycolipid receptor binding is unknown. In this study, we showed that even in the absence of the A-subunit, the B-subunits of both Stx1 and Stx2a were able to bind to the glycolipids and the more stable B-pentamer formed by Stx1 bound better than the less stable pentamer of Stx2a. B-subunit mutant of Stx1 L41Q, which shows similar stability as Stx2a B-subunits, lacked glycolipid binding, suggesting that pentamerization is more critical for binding of Stx1 than Stx2a.

  9. Overview of Botulinum Toxins for Aesthetic Uses.

    Science.gov (United States)

    Gart, Michael S; Gutowski, Karol A

    2016-07-01

    Botulinum toxin type A (BTA) can be used for facial aesthetics. The 3 currently available BTA types include onabotulinumtoxinA (Botox; Botox Cosmetic, Allergan, Irvine, CA), abobotulinumtoxinA (Dysport; Ipsen, Ltd, Berkshire, UK), and incobotulinumtoxinA (Xeomin; Merz Pharmaceuticals, Frankfurt, Germany). The mechanism of action and clinical uses for treatment of dynamic lines of the forehead, brow, glabella, lateral orbit, nose, and lips are presented, as well as treatment of masseter hypertrophy, platysmal bands, and improvements of the perioral region. Specific BTA injection sites and suggested doses are presented. PMID:27363760

  10. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  11. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  12. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  13. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  14. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    Science.gov (United States)

    Genth, Harald; Schelle, Ilona; Just, Ingo

    2016-01-01

    Lethal Toxin from Clostridium sordellii (TcsL) and Toxin B from Clostridium difficile (TcdB) belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA)—is causative for the pseudomembranous colitis (PMC). Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+). Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+) in mammalian target cells. PMID:27089365

  15. Metal Ion Activation of Clostridium sordellii Lethal Toxin and Clostridium difficile Toxin B

    Directory of Open Access Journals (Sweden)

    Harald Genth

    2016-04-01

    Full Text Available Lethal Toxin from Clostridium sordellii (TcsL and Toxin B from Clostridium difficile (TcdB belong to the family of the “Large clostridial glycosylating toxins.” These toxins mono-O-glucosylate low molecular weight GTPases of the Rho and Ras families by exploiting UDP-glucose as a hexose donor. TcsL is casually involved in the toxic shock syndrome and the gas gangrene. TcdB—together with Toxin A (TcdA—is causative for the pseudomembranous colitis (PMC. Here, we present evidence for the in vitro metal ion activation of the glucosyltransferase and the UDP-glucose hydrolysis activity of TcsL and TcdB. The following rating is found for activation by divalent metal ions: Mn2+ > Co2+ > Mg2+ >> Ca2+, Cu2+, Zn2+. TcsL and TcdB thus require divalent metal ions providing an octahedral coordination sphere. The EC50 values for TcsL were estimated at about 28 µM for Mn2+ and 180 µM for Mg2+. TcsL and TcdB further require co-stimulation by monovalent K+ (not by Na+. Finally, prebound divalent metal ions were dispensible for the cytopathic effects of TcsL and TcdB, leading to the conclusion that TcsL and TcdB recruit intracellular metal ions for activation of the glucosyltransferase activity. With regard to the intracellular metal ion concentrations, TcsL and TcdB are most likely activated by K+ and Mg2+ (rather than Mn2+ in mammalian target cells.

  16. Distribution of the Toxin following Medial Rectus Muscular Injection of Botulinum Toxin Gel in Rabbits

    Institute of Scientific and Technical Information of China (English)

    Jingchang Chen; Guanghuan Mai; Xinping Yu; Huanyuan Yu; Heping Wu; Xiaoming Lin; Daming Deng; Ying Kang

    2005-01-01

    Purpose: To determine the distribution of the toxin among individual muscles after intramuscular injection of botulinum toxin gel.Methods: One eye of 7 New Zealand white rabbits was randomized into group A, and the contralateral eye was into group B. Eyes in group A received medial rectus intramuscular injection of 2.5 IU of 125I-BTX-A gel in 0.1 ml, and those in group B received equivalent amount of 125I-BTX-A solution by medial rectus intramuscular injection. Four rectus muscles and the levator palpebrae superioris were harvested and the radioactivity of muscles was measured 16 hours after the injection.Results: In group A, the radioactivity of per gram medial rectus was significantly higher than that of other muscles (P < 0.01), and there was no statistically significant difference in the radioactivity of per gram muscles among other muscles (P > 0.05). In group B, the radioactivity of per gram medial rectus and levator palpebrae superioris was significantly higher than that of other muscles respectively(P < 0.05), and the difference in the radioactivity of per gram muscles between medial rectus and levator palpebrae superioris was not statistically significant (P > 0.05). The radioactivity of per gram medial rectus in group A was higher than that in group B (t=3.731 ,P=0.01), and there was no significant difference in the radioactivity of per gram muscles among other homonymous muscles (P > 0.05).Conclusion: The toxin dispersed principally in the injected muscle and the local concentration of the toxin was much high following intramuscular injection of botulinum toxin gel.

  17. Diarrhetic Shellfish Toxins and Other Lipophilic Toxins of Human Health Concern in Washington State

    Directory of Open Access Journals (Sweden)

    Bich-Thuy L. Eberhart

    2013-05-01

    Full Text Available The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 μg okadaic acid (OA + dinophysistoxins (DTXs/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1 with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2 and yessotoxin (YTX with azaspiracid-2 (AZA-2 also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1 and azaspiracid-3 (AZA-3 were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS. A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.

  18. Calibrating bacterial evolution

    OpenAIRE

    Ochman, Howard; Elwyn, Susannah; Moran, Nancy A

    1999-01-01

    Attempts to calibrate bacterial evolution have relied on the assumption that rates of molecular sequence divergence in bacteria are similar to those of higher eukaryotes, or to those of the few bacterial taxa for which ancestors can be reliably dated from ecological or geological evidence. Despite similarities in the substitution rates estimated for some lineages, comparisons of the relative rates of evolution at different classes of nucleotide sites indicate no basis for their universal appl...

  19. Binding sites of mosquitocidal toxins of Pseudomonas fluorescens and Bacillus subtilis on pupae and larvae of Culex quinquefasciatus.

    Science.gov (United States)

    Mary, K Athisaya; Paily, K P; Hoti, S L; Balaraman, K

    2015-01-01

    Two of the potential bacterial isolates, viz., Pseudomonas fluorescens (VCRC B-426) and Bacillus subtilis (VCRC B-471) whose toxins kill the mosquito pupae/larvae have been identified at our center. As the mode of action of these bacteria are not known, an attempt was made to find out the binding sites of the toxic proteins through immunological methods. Antibodies were raised in BALB/c mice and egg yolk system of chicken layers against the mosquitocidal proteins. The antibodies showed specific binding on to the cephalic and thoracic cuticle of the pupae as well as the paddles of the larvae, indicating the binding of the mosquitocidal proteins. PMID:24624898

  20. A VapBC Toxin-Antitoxin Module Is a Posttranscriptional Regulator of Metabolic Flux in Mycobacteria

    OpenAIRE

    McKenzie, Joanna L.; Robson, Jennifer; Berney, Michael; Smith, Tony C.; Ruthe, Alaine; Gardner, Paul P.; Vickery L Arcus; Cook, Gregory M.

    2012-01-01

    The largest family of toxin-antitoxin (TA) modules are encoded by the vapBC operons, but their roles in bacterial physiology remain enigmatic. Microarray analysis in Mycobacterium smegmatis overexpressing VapC/VapBC revealed a high percentage of downregulated genes with annotated roles in carbon transport and metabolism, suggesting that VapC was targeting specific metabolic mRNA transcripts. To validate this hypothesis, purified VapC was used to identify the RNA cleavage site in vitro. VapC h...

  1. Materials used in toxin detection, from A to Z

    Science.gov (United States)

    Whether it is during extraction, isolation, or detection the analysis of toxins invariably entails the interactions with materials that can bind to or otherwise interact with the toxin or the matrix in which it is lodged. As a result an enormous variety of materials have been developed to facilitate...

  2. An alternative treatment approach in tetanus: Botulinum toxin.

    Science.gov (United States)

    Demir, Nazlim Aktug; Sumer, Sua; Ural, Onur; Ozturk, Serefnur; Celik, Jale Bengi

    2015-01-01

    Tetanus is a preventable infectious disease caused by tetanus toxin (tetanospasmin) produced by Clostridium tetani. Tetanus is still an important health problem in low- and middle-income countries (LMICs). Botulinum toxin administration is a treatment approach that has been used in recent years to reduce rigidity and spasms in tetanus patients. This case report focuses on its efficacy. PMID:25234426

  3. Regulation of toxin gene expression in Clostridium perfringens.

    Science.gov (United States)

    Ohtani, Kaori; Shimizu, Tohru

    2015-05-01

    The Gram-positive, anaerobic, spore-forming, rod-shaped Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tract of humans and animals. C. perfringens causes clostridial myonecrosis (or gas gangrene), enteritis and enterotoxemia in humans and livestock by producing numerous extracellular toxins and enzymes. The toxin gene expression is regulated by a two-component regulatory system and regulatory RNA VirR/VirS-VR-RNA cascade. The VirR/VirS system was originally found in a type A strain, but a recent report showed that it is also important for the toxin gene regulation in other types of strains. Two types of cell-cell signaling, i.e., agr-system and AI-2 signaling, are also important for the regulation of toxin genes. Several regulatory systems independent from the VirR/VirS system, including virX, the orphan histidine kinase ReeS and orphan response regulator RevR, are also involved in the regulation of toxin genes. In addition, the expression of toxin genes is upregulated after contact with Caco-2 cells. C. perfringens has a complex regulatory network for toxin gene expression and thus the coordination of toxin gene expression is important for the process of infection. PMID:25303832

  4. 42 CFR 73.4 - Overlap select agents and toxins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Overlap select agents and toxins. 73.4 Section 73.4 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION... toxins listed in this section have the potential to pose a severe threat to public health and safety,...

  5. 9 CFR 121.4 - Overlap select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ....4 Section 121.4 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT... agents and toxins listed in this section have the potential to pose a severe threat to public health and safety, to animal health, or to animal products. (b) Overlap select agents and toxins: Bacillus...

  6. 42 CFR 73.3 - HHS select agents and toxins.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false HHS select agents and toxins. 73.3 Section 73.3 Public Health PUBLIC HEALTH SERVICE, DEPARTMENT OF HEALTH AND HUMAN SERVICES QUARANTINE, INSPECTION... toxins listed in this section have the potential to pose a severe threat to public health and safety....

  7. Detection of shiga toxins by lateral flow assay

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) produce Shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript we report ...

  8. Anthrax Toxin Delivers a One-Two Punch

    OpenAIRE

    Bradley, Kenneth A; LeVine, Steven M

    2010-01-01

    Although identified as a major Bacillus anthracis virulence factor over 50 years ago, defining the physiologically relevant targets of anthrax toxin has been challenging. Liu et al. demonstrate that intoxication of myeloid-derived cells contributes to establishing infection, but is not required for mortality resulting from high toxin concentrations associated with end-stage disease.

  9. Serum Antibody Response to Clostridium botulinum Toxin in Infant Botulism

    OpenAIRE

    Rubin, Lorry G.; Dezfulian, Manuchehr; Yolken, Robert H.

    1982-01-01

    A serum antibody response has not been previously demonstrated after infection with Clostridium botulinum. We developed an enzyme immunoassay for measuring serum antibody to C. botulinum toxins A, B, and E. This assay system detected a specific immunoglobulin G and immunoglobulin M antibody response to C. botulinum toxin in two patients with infant botulism.

  10. Semiautomated Metabolic Staining Assay for Bacillus cereus Emetic Toxin

    OpenAIRE

    Finlay, W. J. J.; Logan, N A; Sutherland, A. D.

    1999-01-01

    This paper describes a specific, sensitive, semiautomated, and quantitative Hep-2 cell culture-based 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay for Bacillus cereus emetic toxin. Of nine Bacillus, Brevibacillus, and Paenibacillus species assessed for emetic toxin production, only B. cereus was cytotoxic.

  11. Treatment of Gastrointestinal Sphincters Spasms with Botulinum Toxin A

    Directory of Open Access Journals (Sweden)

    Giuseppe Brisinda

    2015-05-01

    Full Text Available Botulinum toxin A inhibits neuromuscular transmission. It has become a drug with many indications. The range of clinical applications has grown to encompass several neurological and non-neurological conditions. One of the most recent achievements in the field is the observation that botulinum toxin A provides benefit in diseases of the gastrointestinal tract. Although toxin blocks cholinergic nerve endings in the autonomic nervous system, it has also been shown that it does not block non-adrenergic non-cholinergic responses mediated by nitric oxide. This has promoted further interest in using botulinum toxin A as a treatment for overactive smooth muscles and sphincters. The introduction of this therapy has made the treatment of several clinical conditions easier, in the outpatient setting, at a lower cost and without permanent complications. This review presents current data on the use of botulinum toxin A in the treatment of pathological conditions of the gastrointestinal tract.

  12. Engineered nanoparticles mimicking cell membranes for toxin neutralization.

    Science.gov (United States)

    Fang, Ronnie H; Luk, Brian T; Hu, Che-Ming J; Zhang, Liangfang

    2015-08-01

    Protein toxins secreted from pathogenic bacteria and venomous animals rely on multiple mechanisms to overcome the cell membrane barrier to inflict their virulence effect. A promising therapeutic concept toward developing a broadly applicable anti-toxin platform is to administer cell membrane mimics as decoys to sequester these virulence factors. As such, lipid membrane-based nanoparticulates are an ideal candidate given their structural similarity to cellular membranes. This article reviews the virulence mechanisms employed by toxins at the cell membrane interface and highlights the application of cell-membrane mimicking nanoparticles as toxin decoys for systemic detoxification. In addition, the implication of particle/toxin nanocomplexes in the development of toxoid vaccines is discussed. PMID:25868452

  13. Interaction of Botulinum Toxin with the Epithelial Barrier

    Directory of Open Access Journals (Sweden)

    Yukako Fujinaga

    2010-01-01

    Full Text Available Botulinum neurotoxin (BoNT is a protein toxin (~150 kDa, which possesses a metalloprotease activity. Food-borne botulism is manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex and the interaction of these toxins with the epithelial barrier.

  14. Toxin activity assays, devices, methods and systems therefor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  15. Microplate receptor assays: tools for monitoring seafood toxins

    International Nuclear Information System (INIS)

    Global increase in toxic algal blooms and the resultant increase in the incidence of human illness, many seafood monitoring program have been established worldwide to determine the presence of algal toxins, and one of the standard method of detection for algal toxins is the mouse bioassay. Receptor assay are appropriate for those toxin classes that interact with membrane receptors including the voltage dependent sodium channel and the glutamate receptor and most of algal toxins in seafood occur that possess different toxic potencies and are present in contaminated seafood. Receptor assays are particularly applicable for measuring total toxic potency since, within a toxin class, all congeners bind to the same receptor and relative binding affinities correlate well with their relative toxic potencies

  16. The Biochemical Toxin Arsenal from Ant Venoms.

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  17. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  18. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses. PMID:26812904

  19. Towards an understanding of the role of Clostridium perfringens toxins in human and animal disease

    Science.gov (United States)

    Uzal, Francisco A; Freedman, John C; Shrestha, Archana; Theoret, James R; Garcia, Jorge; Awad, Milena M; Adams, Vicki; Moore, Robert J; Rood, Julian I; McClane, Bruce A

    2014-01-01

    Clostridium perfringens uses its arsenal of >16 toxins to cause histotoxic and intestinal infections in humans and animals. It has been unclear why this bacterium produces so many different toxins, especially since many target the plasma membrane of host cells. However, it is now established that C. perfringens uses chromosomally encoded alpha toxin (a phospholipase C) and perfringolysin O (a pore-forming toxin) during histotoxic infections. In contrast, this bacterium causes intestinal disease by employing toxins encoded by mobile genetic elements, including C. perfringens enterotoxin, necrotic enteritis toxin B-like, epsilon toxin and beta toxin. Like perfringolysin O, the toxins with established roles in intestinal disease form membrane pores. However, the intestinal disease-associated toxins vary in their target specificity, when they are produced (sporulation vs vegetative growth), and in their sensitivity to intestinal proteases. Producing many toxins with diverse characteristics likely imparts virulence flexibility to C. perfringens so it can cause an array of diseases. PMID:24762309

  20. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation.

    Directory of Open Access Journals (Sweden)

    Jessica Huyet

    Full Text Available Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB cytotoxicity from that of the staphylococcal pore-forming toxins.

  1. Characterization of toxin plasmids in Clostridium perfringens type C isolates.

    Science.gov (United States)

    Gurjar, Abhijit; Li, Jihong; McClane, Bruce A

    2010-11-01

    Clostridium perfringens type C isolates cause enteritis necroticans in humans or necrotizing enteritis and enterotoxemia in domestic animals. Type C isolates always produce alpha toxin and beta toxin but often produce additional toxins, e.g., beta2 toxin or enterotoxin. Since plasmid carriage of toxin-encoding genes has not been systematically investigated for type C isolates, the current study used Southern blot hybridization of pulsed-field gels to test whether several toxin genes are plasmid borne among a collection of type C isolates. Those analyses revealed that the surveyed type C isolates carry their beta toxin-encoding gene (cpb) on plasmids ranging in size from ∼65 to ∼110 kb. When present in these type C isolates, the beta2 toxin gene localized to plasmids distinct from the cpb plasmid. However, some enterotoxin-positive type C isolates appeared to carry their enterotoxin-encoding cpe gene on a cpb plasmid. The tpeL gene encoding the large clostridial cytotoxin was localized to the cpb plasmids of some cpe-negative type C isolates. The cpb plasmids in most surveyed isolates were found to carry both IS1151 sequences and the tcp genes, which can mediate conjugative C. perfringens plasmid transfer. A dcm gene, which is often present near C. perfringens plasmid-borne toxin genes, was identified upstream of the cpb gene in many type C isolates. Overlapping PCR analyses suggested that the toxin-encoding plasmids of the surveyed type C isolates differ from the cpe plasmids of type A isolates. These findings provide new insight into plasmids of proven or potential importance for type C virulence. PMID:20823204

  2. Botulinum Toxin and Muscle Atrophy: A Wanted or Unwanted Effect.

    Science.gov (United States)

    Durand, Paul D; Couto, Rafael A; Isakov, Raymond; Yoo, Donald B; Azizzadeh, Babak; Guyuron, Bahman; Zins, James E

    2016-04-01

    While the facial rejuvenating effect of botulinum toxin type A is well known and widespread, its use in body and facial contouring is less common. We first describe its use for deliberate muscle volume reduction, and then document instances of unanticipated and undesirable muscle atrophy. Finally, we investigate the potential long-term adverse effects of botulinum toxin-induced muscle atrophy. Although the use of botulinum toxin type A in the cosmetic patient has been extensively studied, there are several questions yet to be addressed. Does prolonged botulinum toxin treatment increase its duration of action? What is the mechanism of muscle atrophy and what is the cause of its reversibility once treatment has stopped? We proceed to examine how prolonged chemodenervation with botulinum toxin can increase its duration of effect and potentially contribute to muscle atrophy. Instances of inadvertent botulinum toxin-induced atrophy are also described. These include the "hourglass deformity" secondary to botulinum toxin type A treatment for migraine headaches, and a patient with atrophy of multiple facial muscles from injections for hemifacial spasm. Numerous reports demonstrate that muscle atrophy after botulinum toxin type A treatment occurs and is both reversible and temporary, with current literature supporting the notion that repeated chemodenervation with botulinum toxin likely responsible for both therapeutic and incidental temporary muscle atrophy. Furthermore, duration of response may be increased with subsequent treatments, thus minimizing frequency of reinjection. Practitioners should be aware of the temporary and reversible effect of botulinum toxin-induced muscle atrophy and be prepared to reassure patients on this matter. PMID:26780946

  3. Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis.

    Science.gov (United States)

    Papatheodorou, Panagiotis; Zamboglou, Constantinos; Genisyuerek, Selda; Guttenberg, Gregor; Aktories, Klaus

    2010-01-01

    Clostridium difficile toxin A (TcdA) and toxin B (TcdB), C. sordellii lethal toxin (TcsL) and C. novyi alpha-toxin (TcnA) are important pathogenicity factors, which represent the family of the clostridial glucosylating toxins (CGTs). Toxin A and B are associated with antibiotic-associated diarrhea and pseudomembraneous colitis. Lethal toxin is involved in toxic shock syndrome after abortion and alpha-toxin in gas gangrene development. CGTs enter cells via receptor-mediated endocytosis and require an acidified endosome for translocation of the catalytic domain into the cytosol. Here we studied the endocytic processes that mediate cell internalization of the CGTs. Intoxication of cells was monitored by analyzing cell morphology, status of Rac glucosylation in cell lysates and transepithelial resistance of cell monolayers. We found that the intoxication of cultured cells by CGTs was strongly delayed when cells were preincubated with dynasore, a cell-permeable inhibitor of dynamin, or chlorpromazine, an inhibitor of the clathrin-dependent endocytic pathway. Additional evidence about the role of clathrin in the uptake of the prototypical CGT family member toxin B was achieved by expression of a dominant-negative inhibitor of the clathrin-mediated endocytosis (Eps15 DN) or by siRNA against the clathrin heavy chain. Accordingly, cells that expressed dominant-negative caveolin-1 were not protected from toxin B-induced cell rounding. In addition, lipid rafts impairment by exogenous depletion of sphingomyelin did not decelerate intoxication of HeLa cells by CGTs. Taken together, our data indicate that the endocytic uptake of the CGTs involves a dynamin-dependent process that is mainly governed by clathrin. PMID:20498856

  4. A single-point mutation enhances dual functionality of a scorpion toxin.

    Science.gov (United States)

    Wang, Xueli; Gao, Bin; Zhu, Shunyi

    2016-01-01

    Scorpion venom represents a tremendous, hitherto partially explored peptide library that has been proven to be useful not only for understanding ion channels but also for drug design. MeuTXKα3 is a functionally unknown scorpion toxin-like peptide. Here we describe new transcripts of this gene arising from alternative polyadenylation and its biological function as well as a mutant with a single-point substitution at site 30. Native-like MeuTXKα3 and its mutant were produced in Escherichia coli and their toxic function against Drosophila Shaker K(+) channel and its mammalian counterparts (rKv1.1-rKv1.3) were assayed by two-electrode voltage clamp technique. The results show that MeuTXKα3 is a weak toxin with a wide-spectrum of activity on both Drosophila and mammalian K(+) channels. The substitution of a proline at site 30 by an asparagine, an evolutionarily conserved functional residue in the scorpion α-KTx family, led to an increased activity on rKv1.2 and rKv1.3 but a decreased activity on the Shaker channel without changing the potency on rKv1.1, suggesting a key role of this site in species selectivity of scorpion toxins. MeuTXKα3 was also active on a variety of bacteria with lethal concentrations ranging from 4.66 to 52.01μM and the mutant even had stronger activity on some of these bacterial species. To the best of our knowledge, this is the first report on a bi-functional short-chain peptide in the lesser Asian scorpion venom. Further extensive mutations of MeuTXKα3 at site 30 could help improve its K(+) channel-blocking and antibacterial functions. PMID:26358403

  5. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties.

    Directory of Open Access Journals (Sweden)

    Breann L Brown

    2009-12-01

    Full Text Available One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022 was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021, which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA pair. MqsR adopts an alpha/beta fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy. Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state.

  6. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties.

    Science.gov (United States)

    Brown, Breann L; Grigoriu, Simina; Kim, Younghoon; Arruda, Jennifer M; Davenport, Andrew; Wood, Thomas K; Peti, Wolfgang; Page, Rebecca

    2009-12-01

    One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an alpha/beta fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state. PMID:20041169

  7. Three Dimensional Structure of the MqsR:MqsA Complex: a Novel TA Pair Comprised of a Toxin Homologous to RelE and an Antitoxin with Unique Properties

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.; Grigoriu, S; Kim, Y; Arruda, J; Davenport, A; wood, T; Peti, W; Page, R

    2009-01-01

    One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022) was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021), which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA) pair. MqsR adopts an alpha/beta fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy). Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state.

  8. Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates

    Directory of Open Access Journals (Sweden)

    Andrew G. Gehring

    2015-12-01

    Full Text Available Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins. We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7 to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555 conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1 could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 105 cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.

  9. Recombinant production of bacterial toxins and their derivatives in the methylotrophic yeast Pichia pastoris

    OpenAIRE

    Gurkan Cemal; Ellar David J

    2005-01-01

    Abstract The methylotrophic yeast Pichia pastoris is a popular heterologous expression host for the recombinant production of a variety of prokaryotic and eukaryotic proteins. The rapid emergence of P. pastoris as a robust heterologous expression host was facilitated by the ease with which it can be manipulated and propagated, which is comparable to that of Escherichia coli and Saccharomyces cerevisiae. P. pastoris offers further advantages such as the tightly-regulated alcohol oxidase promot...

  10. Functional Analysis of the Role of Toxin-Antitoxin (TA) Loci in Bacterial Persistence.

    Science.gov (United States)

    Butt, Aaron T; Titball, Richard W

    2016-01-01

    We have developed a method to analyze the functionality of putative TA loci by expressing them in Escherichia coli. Here, we describe the procedure for cloning recombinant TA genes into inducible plasmids and expressing these in E. coli. Following expression, toxicity, resuscitation of growth, and changes in persister cell formation are assayed. This can confirm whether predicted TA loci are active in E. coli and whether expression can affect persister cell formation. PMID:26468105

  11. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  12. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Science.gov (United States)

    Wong, Emily S W; Hardy, Margaret C; Wood, David; Bailey, Timothy; King, Glenn F

    2013-01-01

    Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree) and developed an algorithm (SpiderP) for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM) framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor) from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP) is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html), a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from the Spider

  13. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  14. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  15. Hemorrhagic toxin from the venom of Agkistrodon bilineatus (common cantil).

    Science.gov (United States)

    Imai, K; Nikai, T; Sugihara, H; Ownby, C L

    1989-01-01

    1. Hemorrhagic toxin was isolated from Agkistrodon bilineatus (Common cantil) venom using a three-step purification procedure to obtain 32.8 mg of purified hemorrhagic toxin from 700 mg of crude venom. 2. The purified toxin was homogeneous by disc polyacrylamide gel electrophoresis at pH 8.3, and by isoelectric focusing. 3. Hemorrhagic toxin possessed lethal, hemorrhagic and proteolytic activities. These activities of this toxin were inhibited by ethylenediaminetetraacetic acid (EDTA) and ethyleneglycol-bis-(beta-aminoethylether)N,N'-tetraacetic acid (EGTA), but not by cysteine or soybean trypsin inhibitor (SBTI). 4. Its molecular weight was approximately 48 kDa and the isoelectric point was 4.2. 5. Purified preparation hydrolyzed the Asn(3)--Gln(4), His(10)--Leu(11), Ala(14)--Leu(15), Tyr(16)--Leu(17), Arg(22)--Gly(23) and Phe(24)--Phe(25) bonds of oxidized insulin B. chain. 6. The A alpha chain of fibrinogen was first split and B beta chain was cleaved later by this toxin. 7. Hemorrhagic toxin contains 1 mol of zinc and 2 mol of calcium per mol of protein. PMID:2676645

  16. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [3H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [35S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  17. VapC from the Leptospiral VapBC Toxin-Antitoxin Module Displays Ribonuclease Activity on the Initiator tRNA

    Science.gov (United States)

    Lopes, Alexandre P. Y.; Lopes, Luana M.; Fraga, Tatiana R.; Chura-Chambi, Rosa M.; Sanson, André L.; Cheng, Elisabeth; Nakajima, Erika; Morganti, Ligia; Martins, Elizabeth A. L.

    2014-01-01

    The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation. PMID:25047537

  18. Human intoxication with paralytic shellfish toxins: clinical parameters and toxin analysis in plasma and urine.

    Science.gov (United States)

    García, Carlos; Lagos, Marcelo; Truan, Dominique; Lattes, Karinna; Véjar, Omar; Chamorro, Beatriz; Iglesias, Verónica; Andrinolo, Darío; Lagos, Néstor

    2005-01-01

    This study reports the data recorded from four patients intoxicated with shellfish during the summer 2002, after consuming ribbed mussels (Aulacomya ater) with paralytic shellfish toxin contents of 8,066 +/- 61.37 microg/100 gr of tissue. Data associated with clinical variables and paralytic shellfish toxins analysis in plasma and urine of the intoxicated patients are shown. For this purpose, the evolution of respiratory frequency, arterial blood pressure and heart rate of the poisoned patients were followed and recorded. The clinical treatment to reach a clinically stable condition and return to normal physiological parameters was a combination of hydration with saline solution supplemented with Dobutamine (vasoactive drug), Furosemide (diuretic) and Ranitidine (inhibitor of acid secretion). The physiological condition of patients began to improve after four hours of clinical treatment, and a stable condition was reached between 12 to 24 hours. The HPLC-FLD analysis showed only the GTX3/GTX2 epimers in the blood and urine samples. Also, these epimers were the only paralytic shellfish toxins found in the shellfish extract sample. PMID:16238098

  19. Anthrax toxin receptor 2 determinants that dictate the pH threshold of toxin pore formation.

    Directory of Open Access Journals (Sweden)

    Heather M Scobie

    Full Text Available The anthrax toxin receptors, ANTXR1 and ANTXR2, act as molecular clamps to prevent the protective antigen (PA toxin subunit from forming pores until exposure to low pH. PA forms pores at pH approximately 6.0 or below when it is bound to ANTXR1, but only at pH approximately 5.0 or below when it is bound to ANTXR2. Here, structure-based mutagenesis was used to identify non-conserved ANTXR2 residues responsible for this striking 1.0 pH unit difference in pH threshold. Residues conserved between ANTXR2 and ANTXR1 that influence the ANTXR2-associated pH threshold of pore formation were also identified. All of these residues contact either PA domain 2 or the neighboring edge of PA domain 4. These results provide genetic evidence for receptor release of these regions of PA as being necessary for the protein rearrangements that accompany anthrax toxin pore formation.

  20. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria.......Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...

  1. Botulinum toxin drugs: brief history and outlook.

    Science.gov (United States)

    Dressler, D

    2016-03-01

    The global botulinum toxin (BT) market is currently undergoing rapid changes: this may be the time to review the history and the future of BT drug development. Since the early 1990s Botox(®) and Dysport(®) dominated the international BT market. Later, Myobloc(®)/NeuroBloc(®), a liquid BT type B drug, came out, but failed. Xeomin(®) is the latest major BT drug. It features removal of complexing proteins and improved neurotoxin purity. Several new BT drugs are coming out of Korea, China and Russia. Scientific challenges for BT drug development include modification of BT's duration of action, its transdermal transport and the design of BT hybrid drugs for specific target tissues. The increased competition will change the global BT market fundamentally and a re-organisation according to large indication groups, such as therapeutic and cosmetic applications, might occur. PMID:26559824

  2. Toxin-Antitoxin Systems in Clinical Pathogens

    Science.gov (United States)

    Fernández-García, Laura; Blasco, Lucia; Lopez, Maria; Bou, German; García-Contreras, Rodolfo; Wood, Thomas; Tomas, María

    2016-01-01

    Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens. PMID:27447671

  3. Acrylamide inhibits nerve sprouting induced by botulinum toxin type A

    Institute of Scientific and Technical Information of China (English)

    Hong Jiang; Yi Xiang; Xingyue Hu; Huaying Cai

    2014-01-01

    Botulinum toxin type A is a potent muscle relaxant that blocks the transmission and release of acetylcholine at the neuromuscular junction. Intramuscular injection of botulinum toxin type A has served as an effective and safe therapy for strabismus and focal dystonia. However, muscular weakness is temporary and after 3-4 months, muscle strength usually recovers because function-al recovery is mediated by nerve sprouting and reconstruction of the neuromuscular junction. Acrylamide may produce neurotoxic substances that cause retrograde necrotizing neuropathy and inhibit nerve sprouting caused by botulinum toxin type A. This study investigated whether acrylamide inhibits nerve sprouting after intramuscular injection of botulinum toxin type A. A tibial nerve sprouting model was established through local injection of botulinum toxin type A into the right gastrocnemius muscle of Sprague-Dawley rats. Following intramuscular injection, rats were given intraperitoneal injection of 3%acrylamide every 3 days for 21 days. Nerve sprout-ing appeared 2 weeks after intramuscular injection of botulinum toxin type A and single-fiber electromyography revealed abnormal conduction at the neuromuscular junction 1 week after intra-muscular injection of botulinum toxin type A. Following intraperitoneal injection of acrylamide, the peak muscle ifber density decreased. Electromyography jitter value were restored to normal levels 6 weeks after injection. This indicates that the maximal decrease in ifber density and the time at which functional conduction of neuromuscular junction was restored were delayed. Addition-ally, the increase in tibial nerve ifbers was reduced. Acrylamide inhibits nerve sprouting caused by botulinum toxin type A and may be used to prolong the clinical dosage of botulinum toxin type A.

  4. Anthrax Toxins in Context of Bacillus anthracis Spores and Spore Germination

    OpenAIRE

    Cote, Christopher K.; Susan L. Welkos

    2015-01-01

    The interaction of anthrax toxin or toxin components with B. anthracis spores has been demonstrated. Germinating spores can produce significant amounts of toxin components very soon after the initiation of germination. In this review, we will summarize the work performed that has led to our understanding of toxin and spore interactions and discuss the complexities associated with these interactions.

  5. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  6. Algal toxins alter copepod feeding behavior.

    Science.gov (United States)

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A; Waggett, Rebecca J; Place, Allen R

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms) and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  7. Clostridium Perfringens Toxins Involved in Mammalian Veterinary Diseases.

    Science.gov (United States)

    Uzal, F A; Vidal, J E; McClane, B A; Gurjar, A A

    2010-01-01

    Clostridium perfringens is a gram-positive anaerobic rod that is classified into 5 toxinotypes (A, B, C, D, and E) according to the production of 4 major toxins, namely alpha (CPA), beta (CPB), epsilon (ETX) and iota (ITX). However, this microorganism can produce up to 16 toxins in various combinations, including lethal toxins such as perfringolysin O (PFO), enterotoxin (CPE), and beta2 toxin (CPB2). Most diseases caused by this microorganism are mediated by one or more of these toxins. The role of CPA in intestinal disease of mammals is controversial and poorly documented, but there is no doubt that this toxin is essential in the production of gas gangrene of humans and several animal species. CPB produced by C. perfringens types B and C is responsible for necrotizing enteritis and enterotoxemia mainly in neonatal individuals of several animal species. ETX produced by C. perfringens type D is responsible for clinical signs and lesions of enterotoxemia, a predominantly neurological disease of sheep and goats. The role of ITX in disease of animals is poorly understood, although it is usually assumed that the pathogenesis of intestinal diseases produced by C. perfringens type E is mediated by this toxin. CPB2, a necrotizing and lethal toxin that can be produced by all types of C. perfringens, has been blamed for disease in many animal species, but little information is currently available to sustain or rule out this claim. CPE is an important virulence factor for C. perfringens type A gastrointestinal disease in humans and dogs; however, the data implicating CPE in other animal diseases remains ambiguous. PFO does not seem to play a direct role as the main virulence factor for animal diseases, but it may have a synergistic role with CPA-mediated gangrene and ETX-mediated enterotoxemia. The recent improvement of animal models for C. perfringens infection and the use of toxin gene knock-out mutants have demonstrated the specific pathogenic role of several toxins of C

  8. Biosecurity reference : CFR-listed agent and toxin summaries.

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, Natalie Beth

    2003-09-01

    This reference document provides summary information on the animal, plant, zoonotic, and human pathogens and toxins regulated and categorized by 9 CFR 331 and 7 CFR 121, 'Agricultural Bioterrorism Protection Act of 2002; Possession, Use and Transfer of Biological Agents and Toxins,' and 42 CFR 73, 'Possession, Use, and Transfer of Select Agents and Toxins.' Summary information includes, at a minimum, a description of the agent and its associated symptoms; often additional information is provided on the diagnosis, treatment, geographic distribution, transmission, control and eradication, and impacts on public health.

  9. Health Risk Assessment for Cyanobacterial Toxins in Seafood

    Directory of Open Access Journals (Sweden)

    Andrew Humpage

    2012-03-01

    Full Text Available Cyanobacteria (blue-green algae are abundant in fresh, brackish and marine waters worldwide. When toxins produced by cyanobacteria are present in the aquatic environment, seafood harvested from these waters may present a health hazard to consumers. Toxicity hazards from seafood have been internationally recognised when the source is from marine algae (dinoflagellates and diatoms, but to date few risk assessments for cyanobacterial toxins in seafood have been presented. This paper estimates risk from seafood contaminated by cyanobacterial toxins, and provides guidelines for safe human consumption.

  10. Cosmetic Effect of Botulinum Toxin In Focal Hyperhydrosis

    Directory of Open Access Journals (Sweden)

    Jain S

    2005-01-01

    Full Text Available Hyperhydrosis of axillae, palm and sole is not a very uncommon problem. It leads to great embarrassment and considerable emotional stress to the individuals. Botulinum toxins prevent the release of acetylcholine at nerve terminals, therefore, reduces sweat secretion. Six patients of axillary and 4 patients of palmer and planter hyperhydrosis were treated with botulinum toxin. All patients experienced relatively satisfactory reduction of hyperhydrosis for period ranging between 4-7 months. No adverse effects were observed. Botulinum toxin therefore can be considered as an effective treatment in focal hyperhydrosis.

  11. Innovative Solutions to Sticky Situations: Antiadhesive Strategies for Treating Bacterial Infections.

    Science.gov (United States)

    Cusumano, Zachary T; Klein, Roger D; Hultgren, Scott J

    2016-04-01

    Bacterial adherence to host tissue is an essential process in pathogenesis, necessary for invasion and colonization and often required for the efficient delivery of toxins and other bacterial effectors. As existing treatment options for common bacterial infections dwindle, we find ourselves rapidly approaching a tipping point in our confrontation with antibiotic-resistant strains and in desperate need of new treatment options. Bacterial strains defective in adherence are typically avirulent and unable to cause infection in animal models. The importance of this initial binding event in the pathogenic cascade highlights its potential as a novel therapeutic target. This article seeks to highlight a variety of strategies being employed to treat and prevent infection by targeting the mechanisms of bacterial adhesion. Advancements in this area include the development of novel antivirulence therapies using small molecules, vaccines, and peptides to target a variety of bacterial infections. These therapies target bacterial adhesion through a number of mechanisms, including inhibition of pathogen receptor biogenesis, competition-based strategies with receptor and adhesin analogs, and the inhibition of binding through neutralizing antibodies. While this article is not an exhaustive description of every advancement in the field, we hope it will highlight several promising examples of the therapeutic potential of antiadhesive strategies. PMID:27227305

  12. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  13. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  14. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  15. Factors affecting the production of eremofortin C and PR toxin in Penicillium roqueforti.

    OpenAIRE

    Chang, S. C.; Wei, Y H; Wei, D L; Chen, Y. Y.; Jong, S C

    1991-01-01

    Eremofortin C (EC) and PR toxin are secondary metabolites of Penicillium roqueforti. Of 17 strains from the American Type Culture Collection that were studied for their ability to produce EC and PR toxin, 13 produced these metabolites. Toxin production by strains grown in solid media (10 cereals and 8 other agricultural products) was also investigated. Production of EC and PR toxin by fungi grown on cereals was greater than production of EC and PR toxin by fungi grown on legumes; fungi grown ...

  16. Sensitivity to Alternaria alternata toxin in citrus because of altered mitochondrial RNA processing

    OpenAIRE

    Ohtani, Kouhei; Yamamoto, Hiroyuki; Akimitsu, Kazuya

    2002-01-01

    Specificity in the interaction between rough lemon (Citrus jambhiri Lush.) and the fungal pathogen Alternaria alternata rough lemon pathotype is determined by a host-selective toxin, ACR-toxin. Mitochondria from rough lemon are sensitive to ACR-toxin whereas mitochondria from resistant plants, including other citrus species, are resistant. We have identified a C. jambhiri mitochondrial DNA sequence, designated ACRS (ACR-toxin sensitivity gene), that confers toxin sensitivity to Escherichia co...

  17. Autoradiographic assay of mutants resistant to diphtheria toxin in mammalian cells in vitro.

    OpenAIRE

    A. Ronen; Gingerich, J D; Duncan, A. M.; Heddle, J A

    1984-01-01

    Diphtheria toxin kills mammalian cells by ribosylating elongation factor 2, a protein factor necessary for protein synthesis. The frequency of cells able to form colonies in the presence of the toxin can be used as an assay for mutation to diphtheria toxin resistance. We report here that resistance to diphtheria toxin can also be detected autoradiographically in cells exposed to [3H]leucine after treatment with the toxin. In cultures of Chinese hamster ovary cells, the frequency of such resis...

  18. The entry of diphtheria toxin into the mammalian cell cytoplasm: evidence for lysosomal involvement

    OpenAIRE

    1980-01-01

    Lysosomotropic amines, such as ammonium chloride, are known to protect cells from the cytotoxic effects of diphtheria toxin. These drugs are believed to inhibit the transport of the toxin from a receptor at the cell exterior into the cytoplasm where a fragment of the toxin arrests protein synthesis. We studied the effects of lysosomotropic agents on the cytotoxic process to better understand how the toxin enters the cytoplasm. The cytotoxic effects of diphtheria toxin were not inhibited by an...

  19. The Early Humoral Immune Response to Bacillus anthracis Toxins in Patients Infected with Cutaneous Anthrax

    OpenAIRE

    Doganay, Mehmet; Brenneman, Karen E.; Akmal, Arya; Goldman, Stanley; Galloway, Darrell R.; Mateczun, Alfred J; Cross, Alan S.; Baillie, Leslie W.

    2011-01-01

    Bacillus anthracis, the causative agent of anthrax, elaborates a tripartite toxin composed of two enzymatically active subunits, lethal factor (LF) and edema factor (EF) which, when associated with a cell-binding component, protective antigen (PA), form lethal toxin (LT) and edema toxin (ET), respectively. In this preliminary study we characterised the toxin-specific antibody responses observed in 17 individuals infected with cutaneous anthrax. The majority of the toxin-specific antibody resp...

  20. Evidence that diphtheria toxin and modeccin enter the cytosol from different vesicular compartments

    OpenAIRE

    1984-01-01

    Inhibition of protein synthesis in Vero cells was measured at different periods of time after treatment with diphtheria toxin and the related plant toxin modeccin. Diphtheria toxin acted much more rapidly than modeccin. Cells were protected against both toxins with antiserum as well as with agents like NH4Cl, procaine, and the ionophores monensin, FCCP, and CCCP, which increase the pH of intracellular vesicles. Antiserum, which is supposed to inactivate toxin only at the cell surface, protect...

  1. Tracking bacterial virulence: global modulators as indicators

    Science.gov (United States)

    Prieto, Alejandro; Urcola, Imanol; Blanco, Jorge; Dahbi, Ghizlane; Muniesa, Maite; Quirós, Pablo; Falgenhauer, Linda; Chakraborty, Trinad; Hüttener, Mário; Juárez, Antonio

    2016-01-01

    The genomes of Gram-negative bacteria encode paralogues and/or orthologues of global modulators. The nucleoid-associated H-NS and Hha proteins are an example: several enterobacteria such as Escherichia coli or Salmonella harbor H-NS, Hha and their corresponding paralogues, StpA and YdgT proteins, respectively. Remarkably, the genome of the pathogenic enteroaggregative E. coli strain 042 encodes, in addition to the hha and ydgT genes, two additional hha paralogues, hha2 and hha3. We show in this report that there exists a strong correlation between the presence of these paralogues and the virulence phenotype of several E. coli strains. hha2 and hha3 predominate in some groups of intestinal pathogenic E. coli strains (enteroaggregative and shiga toxin-producing isolates), as well as in the widely distributed extraintestinal ST131 isolates. Because of the relationship between the presence of hha2/hha3 and some virulence factors, we have been able to provide evidence for Hha2/Hha3 modulating the expression of the antigen 43 pathogenic determinants. We show that tracking global modulators or their paralogues/orthologues can be a new strategy to identify bacterial pathogenic clones and propose PCR amplification of hha2 and hha3 as a virulence indicator in environmental and clinical E. coli isolates. PMID:27169404

  2. Shellfish Toxins Targeting Voltage-Gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Fan Zhang

    2013-11-01

    Full Text Available Voltage-gated sodium channels (VGSCs play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryotic cyanobacteria and eukaryotic dinoflagellates in both marine and fresh water systems, which can accumulate in marine animals via the food chain. Consumption of shellfish toxin-contaminated seafood may result in potentially fatal human shellfish poisoning. This article provides an overview of the structure, bioactivity, and pharmacology of shellfish toxins that act on VGSCs, along with a brief discussion on their pharmaceutical potential for pain management.

  3. Botulinum Toxin Injection for Spastic Scapular Dyskinesia After Stroke

    Science.gov (United States)

    Hou, Saiyun; Ivanhoe, Cindy; Li, Sheng

    2015-01-01

    Abstract Spastic scapular dyskinesia after stroke is rare, which causes impaired shoulder active range of motion (ROM). To date, there has been no report about botulinum toxin injection to spastic periscapular muscles. This study presents botulinum toxin A injection for management of spastic periscapular muscles after stroke in 2 cases. This is a retrospective study of 2 cases of spastic scapular dyskinesia after stroke. Spasticity of periscapular muscles including rhomboid and lower trapezius was diagnosed by physical examination and needle electromyographic study. Botulinum toxin was injected into the spastic periscapular muscles under ultrasound imaging guidance. During the 3-week follow-up visit after injection, both patients showed increased shoulder active ROM, without any sign of scapular destabilization. The results suggest that botulinum toxin injection to spastic periscapular muscles can increase shoulder active ROM without causing scapular destabilization in patients with poststroke spastic scapular dyskinesia. PMID:26266368

  4. Clostridium difficile Toxin as a Confounding Factor in Enterovirus Isolation

    OpenAIRE

    Schmidt, Nathalie J.; Ho, Helen H.; Dondero, Marjorie E.

    1980-01-01

    A peculiar cytotoxic effect, occasionally encountered in the course of inoculating cell cultures with fecal specimens for routine enterovirus isolation attempts, was shown to be produced by Clostridium difficile toxin.

  5. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  6. Acrylamide inhibits nerve sprouting induced by botulinum toxin type A

    OpenAIRE

    Jiang, Hong; Xiang, Yi; Hu, XingYue; Cai, Huaying

    2014-01-01

    Botulinum toxin type A is a potent muscle relaxant that blocks the transmission and release of acetylcholine at the neuromuscular junction. Intramuscular injection of botulinum toxin type A has served as an effective and safe therapy for strabismus and focal dystonia. However, muscular weakness is temporary and after 3–4 months, muscle strength usually recovers because functional recovery is mediated by nerve sprouting and reconstruction of the neuromuscular junction. Acrylamide may produce n...

  7. Toxin Synthesis by Clostridium difficile Is Regulated through Quorum Signaling

    OpenAIRE

    Darkoh, Charles; DuPont, Herbert L.; Norris, Steven J; Heidi B Kaplan

    2015-01-01

    ABSTRACT Clostridium difficile infection (CDI) is dramatically increasing as a cause of antibiotic- and hospital-associated diarrhea worldwide. C. difficile, a multidrug-resistant pathogen, flourishes in the colon after the gut microbiota has been altered by antibiotic therapy. Consequently, it produces toxins A and B that directly cause disease. Despite the enormous public health problem posed by this pathogen, the molecular mechanisms that regulate production of the toxins, which are direct...

  8. Shellfish Toxins Targeting Voltage-Gated Sodium Channels

    OpenAIRE

    Fan Zhang; Xunxun Xu; Tingting Li; Zhonghua Liu

    2013-01-01

    Voltage-gated sodium channels (VGSCs) play a central role in the generation and propagation of action potentials in excitable neurons and other cells and are targeted by commonly used local anesthetics, antiarrhythmics, and anticonvulsants. They are also common targets of neurotoxins including shellfish toxins. Shellfish toxins are a variety of toxic secondary metabolites produced by prokaryotic cyanobacteria and eukaryotic dinoflagellates in both marine and fresh water systems, which can acc...

  9. Toxin content and cytotoxicity of algal dietary supplements

    OpenAIRE

    Heussner, Alexandra H.; Mazija, Lorena; Fastner, Jutta; Dietrich, Daniel R.

    2012-01-01

    Blue-green algae (Spirulina sp., Aphanizomenon flos-aquae) and Chlorella sp. are commercially distributed as organic algae dietary supplements. Cyanobacterial dietary products in particular have raised serious concerns, as they appeared to be contaminated with toxins e.g. microcystins (MCs) and consumers repeatedly reported adverse health effects following consumption of these products. The aim of this study was to determine the toxin contamination and the in vitro cytotoxicity of algae dieta...

  10. Production and characterization of yeast killer toxin monoclonal antibodies

    OpenAIRE

    Polonelli, L; Morace, G

    1987-01-01

    Monoclonal antibodies were obtained after fusion of mouse myeloma cells with spleen cells isolated from mice primed with a crude extract of yeast killer toxin produced by a strain of Hansenula anomala. Hybridomas were selected by specific immunoassay reaction of their fluid with crude yeast killer toxin extract. Among the monoclonal antibodies, which were characterized by the Western blot technique, one (designated KT4) proved to have precipitating properties, thus permitting the neutralizati...

  11. Botulinum Toxin Injection for Spastic Scapular Dyskinesia After Stroke

    OpenAIRE

    Hou, Saiyun; Ivanhoe, Cindy; Li, Sheng

    2015-01-01

    Abstract Spastic scapular dyskinesia after stroke is rare, which causes impaired shoulder active range of motion (ROM). To date, there has been no report about botulinum toxin injection to spastic periscapular muscles. This study presents botulinum toxin A injection for management of spastic periscapular muscles after stroke in 2 cases. This is a retrospective study of 2 cases of spastic scapular dyskinesia after stroke. Spasticity of periscapular muscles including rhomboid and lower trapeziu...

  12. Recent Advances in Research on Widow Spider Venoms and Toxins

    OpenAIRE

    Shuai Yan; Xianchun Wang

    2015-01-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom...

  13. Tarantula toxins interacting with voltage sensors in potassium channels

    OpenAIRE

    Swartz, Kenton J.

    2006-01-01

    Voltage-activated ion channels open and close in response to changes in membrane voltage, a process that is crucial for electrical signaling in the nervous system. The venom from many poisonous creatures contains a diverse array of small protein toxins that bind to voltage-activated channels and modify the gating mechanism. Hanatoxin and a growing number of related tarantula toxins have been shown to inhibit activation of voltage-activated potassium (Kv) channels by interacting with their vol...

  14. Properties of dermonecrotic toxin prepared from sonic extracts Bordetella bronchiseptica.

    OpenAIRE

    Kume, K.; Nakai, T.; Samejima, Y; Sugimoto, C

    1986-01-01

    A toxin with dermonecrotic activity (DNT) was purified from sonic extracts of Bordetella bronchiseptica L3 of pig origin at phase I by chromatographic and electrophoretic methods. The purification procedure was one developed for obtaining the Pasteurella multocida DNT from sonic extracts with some modifications. Dermonecrotizing activity of B. bronchiseptica-purified DNT was increased by 600-fold compared with that of the crude extract, and the average yield was about 3%. The toxin was homoge...

  15. The host response to anthrax lethal toxin: unexpected observations

    OpenAIRE

    Prince, Alice S.

    2003-01-01

    Bacillus anthracis, the causative agent of anthrax, is believed to induce disease and death in humans in an endotoxic shock–like manner. A comprehensive study of the effects of anthrax toxin in mice demonstrates that toxin-induced death is mediated not by cytokine release, as previously thought, but by hypoxia-induced liver failure. The study strongly suggests that the therapies developed for treatment of cytokine-mediated septic shock will not be appropriate for the treatment of anthrax.

  16. Botulinum toxin type A for the management of glabellar rhytids

    OpenAIRE

    Tremaine, Anne Marie

    2010-01-01

    Anne Marie Tremaine, Jerry L McCulloughDepartment of Dermatology, University of California, Irvine, CA, USAAbstract: There is an increasing demand for minimally-invasive cosmetic procedures to arrest the aging process. Botulinum toxin type A injections are the most commonly used nonsurgical cosmetic procedures in the United States. There has been research spanning over two decades dedicated to safety, efficacy, dosing, and complications of botulinum toxin type A. There are now two Food and Dr...

  17. Botulinum Toxin Physiology in Focal Hand and Cranial Dystonia

    OpenAIRE

    Barbara Illowsky Karp

    2012-01-01

    The safety and efficacy of botulinum toxin for the treatment of focal hand and cranial dystonias are well-established. Studies of these adult-onset focal dystonias reveal both shared features, such as the dystonic phenotype of muscle hyperactivity and overflow muscle contraction and divergent features, such as task specificity in focal hand dystonia which is not a common feature of cranial dystonia. The physiologic effects of botulinum toxin in these 2 disorders also show both similarities an...

  18. Enzyme-linked immunosorbent assay for shigella toxin.

    OpenAIRE

    Donohue-Rolfe, A; Kelley, M A; Bennish, M; Keusch, G T

    1986-01-01

    An enzyme-linked immunosorbent assay (ELISA) was developed for the detection of shigella toxin. For the assay, a mouse monoclonal antibody against the B subunit of the toxin and a rabbit polyclonal antibody against the holotoxin were employed. The monoclonal antibody was used to coat wells of a microtiter plate, and the polyclonal antibody preparation was used as the detecting antibody. The amount of bound polyclonal antibody was determined by using a goat anti-rabbit immunoglobulin G-alkalin...

  19. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [35S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  20. Evolutionary transitions in bacterial symbiosis

    OpenAIRE

    Sachs, Joel L.; Skophammer, Ryan G.; Regus, John U.

    2011-01-01

    Diverse bacterial lineages form beneficial infections with eukaryotic hosts. The origins, evolution, and breakdown of these mutualisms represent important evolutionary transitions. To examine these key events, we synthesize data from diverse interactions between bacteria and eukaryote hosts. Five evolutionary transitions are investigated, including the origins of bacterial associations with eukaryotes, the origins and subsequent stable maintenance of bacterial mutualism with hosts, the captur...

  1. Pathogenesis of Shigella diarrhea. XVI. Selective targetting of Shiga toxin to villus cells of rabbit jejunum explains the effect of the toxin on intestinal electrolyte transport.

    OpenAIRE

    Kandel, G; Donohue-Rolfe, A; Donowitz, M; Keusch, G T

    1989-01-01

    To examine the mechanism by which Shiga toxin alters intestinal water and electrolyte transport, ligated loops of rabbit jejunum were incubated in vivo with purified toxin and then studied in vivo by single pass perfusion and in vitro by the Ussing chamber voltage-clamp technique. Toxin exposure led to accumulation of water in the jejunal lumen, associated with decreased active basal NaCl absorption. Glucose- and alanine-stimulated Na absorption were also reduced, while toxin had no effect on...

  2. Naturally acquired antibodies against Clostridium perfringens epsilon toxin in goats.

    Science.gov (United States)

    Veschi, Josir Laine A; Bruzzone, Octavio A; Losada-Eaton, Daniela M; Dutra, Iveraldo S; Fernandez-Miyakawa, Mariano E

    2008-09-15

    Clostridium perfringens type D-producing epsilon toxin is a common cause of death in sheep and goats worldwide. Although anti-epsilon toxin serum antibodies have been detected in healthy non-vaccinated sheep, the information regarding naturally acquired antibodies in ruminants is scanty. The objective of the present report was to characterize the development of naturally acquired antibodies against C. perfringens epsilon toxin in goats. The levels of anti-epsilon toxin antibodies in blood serum of goat kids from two different herds were examined continuously for 14 months. Goats were not vaccinated against any clostridial disease and received heterologous colostrums from cows that were not vaccinated against any clostridial disease. During the survey one of these flocks suffered an unexpectedly severe C. perfringens type D enterotoxemia outbreak. The results showed that natural acquired antibodies against C. perfringens epsilon toxin can appear as early as 6 weeks in young goats and increase with the age without evidence of clinical disease. The enterotoxemia outbreak was coincident with a significant increase in the level of anti-epsilon toxin antibodies. PMID:18538416

  3. Continuous evolution of Bacillus thuringiensis toxins overcomes insect resistance.

    Science.gov (United States)

    Badran, Ahmed H; Guzov, Victor M; Huai, Qing; Kemp, Melissa M; Vishwanath, Prashanth; Kain, Wendy; Nance, Autumn M; Evdokimov, Artem; Moshiri, Farhad; Turner, Keith H; Wang, Ping; Malvar, Thomas; Liu, David R

    2016-05-01

    The Bacillus thuringiensis δ-endotoxins (Bt toxins) are widely used insecticidal proteins in engineered crops that provide agricultural, economic, and environmental benefits. The development of insect resistance to Bt toxins endangers their long-term effectiveness. Here we have developed a phage-assisted continuous evolution selection that rapidly evolves high-affinity protein-protein interactions, and applied this system to evolve variants of the Bt toxin Cry1Ac that bind a cadherin-like receptor from the insect pest Trichoplusia ni (TnCAD) that is not natively bound by wild-type Cry1Ac. The resulting evolved Cry1Ac variants bind TnCAD with high affinity (dissociation constant Kd = 11-41 nM), kill TnCAD-expressing insect cells that are not susceptible to wild-type Cry1Ac, and kill Cry1Ac-resistant T. ni insects up to 335-fold more potently than wild-type Cry1Ac. Our findings establish that the evolution of Bt toxins with novel insect cell receptor affinity can overcome insect Bt toxin resistance and confer lethality approaching that of the wild-type Bt toxin against non-resistant insects. PMID:27120167

  4. Adsorption of T-2 toxin by natural mineral adsorbents

    Directory of Open Access Journals (Sweden)

    Stojanović Ana I.

    2008-01-01

    Full Text Available The contamination of animal feed with mycotoxins represents a worldwide problem leading to economic losses in animal production. According to the Food and Agriculture Organization (FAO, 25% of the world's cereal grain production is contaminated with mycotoxins. The most common mycotoxins found in grains are the aflatoxins, ochratoxins, fumonisins, trichothecenes, zearalenone and the ergopeptine alkaloids. Trichothecenes, constitute the largest group of Fusarium mycotoxins. Among others, T-2 toxin is the most acute toxic trichothecene. In this paper, adsorption of T-2 toxin by natural mineral adsorbents zeolite-clinop-tilolite and smectite minerals - bentonite and hectorite, at pH 3 was investigated. The highest adsorption index was achieved for hectorite (95%, while clinoptilolite and bentonite showed low adsorption index for T-2 toxin, 8% and 13%, respectively. Results of T-2 toxin adsorption on hectorite, at different amount of solid phase in suspension, and at pH 3, 7 and 9, showed that toxin adsorption indexes increased with increase of adsorbent concentration in suspension, at all investigated pH values. No significant differences in T-2 toxin adsorption by hectorite, at pH 3, 7 and 9 were observed.

  5. Toxin studies using an integrated biophysical and structural biology approach.

    Energy Technology Data Exchange (ETDEWEB)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  6. Toxin gene determination and evolution in scorpaenoid fish.

    Science.gov (United States)

    Chuang, Po-Shun; Shiao, Jen-Chieh

    2014-09-01

    In this study, we determine the toxin genes from both cDNA and genomic DNA of four scorpaenoid fish and reconstruct their evolutionary relationship. The deduced protein sequences of the two toxin subunits in Sebastapistes strongia, Scorpaenopsis oxycephala, and Sebastiscus marmoratus are about 700 amino acid, similar to the sizes of the stonefish (Synanceia horrida, and Synanceia verrucosa) and lionfish (Pterois antennata and Pterois volitans) toxins previously published. The intron positions are highly conserved among these species, which indicate the applicability of gene finding by using genomic DNA template. The phylogenetic analysis shows that the two toxin subunits were duplicated prior to the speciation of Scorpaenoidei. The precedence of the gene duplication over speciation indicates that the toxin genes may be common to the whole family of Scorpaeniform. Furthermore, one additional toxin gene has been determined in the genomic DNA of Dendrochirus zebra. The phylogenetic analysis suggests that an additional gene duplication occurred before the speciation of the lionfish (Pteroinae) and a pseudogene may be generally present in the lineage of lionfish. PMID:24950049

  7. Lipophilic Toxins in WA - Clear and present danger: monitoring and management of lipophilic shellfish toxins in Washington State

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Lipophilic shellfish toxins comprise an extensive suite of compounds including those associated with the human syndromes known as diarrhetic shellfish poisoning...

  8. Toxin-screening and identification of bacteria isolated from highly toxic marine gastropod Nassarius semiplicatus.

    Science.gov (United States)

    Wang, Xiao-Jie; Yu, Ren-Cheng; Luo, Xuan; Zhou, Ming-Jiang; Lin, Xiang-Tian

    2008-07-01

    Bacteria isolated from a highly toxic sample of gastropod Nassarius semiplicatus in Lianyungang, Jiangsu Province in July 2007, were studied to probe into the relationship between bacteria and toxicity of nassariid gastropod. The toxicity of the gastropod sample was 2 x 10(2)mouse unit (MU) per gram of tissue (wet weight). High concentration of tetrodotoxin (TTX) and its analogues (TTXs) were found in the digestive gland and muscle of the gastropod, using high performance liquid chromatography coupled with mass chromatography (LC-MS). Bacterial strains isolated from the digestive gland were cultured and screened for TTX with a competitive ELISA method. Tetrodotoxin was detected in a proportion of bacterial strains, but the toxin content was low. Partial 16S ribosomal DNA (rDNA) of the TTX-producing strains was then sequenced and compared with those published in the GenBank to tentatively identify the toxic strains. It was found that most of the toxic strains were closely affiliated with genus Vibrio, and the others were related to genus Shewanella, Marinomonas, Tenacibaculum and Aeromonas. These findings suggest that tetrodotoxin-producing bacteria might play an important role in tetrodotoxin accumulation/production in N. semiplicatus. PMID:18573274

  9. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction.

    Science.gov (United States)

    Gupta, Pragya; Ahammad, S Z; Sreekrishnan, T R

    2016-09-01

    Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent. PMID:27179200

  10. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury

    Science.gov (United States)

    Whidbey, Christopher; Vornhagen, Jay; Gendrin, Claire; Boldenow, Erica; Samson, Jenny Mae; Doering, Kenji; Ngo, Lisa; Ezekwe, Ejiofor A D; Gundlach, Jens H; Elovitz, Michal A; Liggitt, Denny; Duncan, Joseph A; Adams Waldorf, Kristina M; Rajagopal, Lakshmi

    2015-01-01

    Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K+ efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth. PMID:25750210

  11. A streptococcal lipid toxin induces membrane permeabilization and pyroptosis leading to fetal injury.

    Science.gov (United States)

    Whidbey, Christopher; Vornhagen, Jay; Gendrin, Claire; Boldenow, Erica; Samson, Jenny Mae; Doering, Kenji; Ngo, Lisa; Ezekwe, Ejiofor A D; Gundlach, Jens H; Elovitz, Michal A; Liggitt, Denny; Duncan, Joseph A; Adams Waldorf, Kristina M; Rajagopal, Lakshmi

    2015-04-01

    Group B streptococci (GBS) are Gram-positive bacteria that cause infections in utero and in newborns. We recently showed that the GBS pigment is hemolytic and increased pigment production promotes bacterial penetration of human placenta. However, mechanisms utilized by the hemolytic pigment to induce host cell lysis and the consequence on fetal injury are not known. Here, we show that the GBS pigment induces membrane permeability in artificial lipid bilayers and host cells. Membrane defects induced by the GBS pigment trigger K(+) efflux leading to osmotic lysis of red blood cells or pyroptosis in human macrophages. Macrophages lacking the NLRP3 inflammasome recovered from pigment-induced cell damage. In a murine model of in utero infection, hyperpigmented GBS strains induced fetal injury in both an NLRP3 inflammasome-dependent and NLRP3 inflammasome-independent manner. These results demonstrate that the dual mechanism of action of the bacterial pigment/lipid toxin leading to hemolysis or pyroptosis exacerbates fetal injury and suggest that preventing both activities of the hemolytic lipid is likely critical to reduce GBS fetal injury and preterm birth. PMID:25750210

  12. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli.

    Directory of Open Access Journals (Sweden)

    Bettina Bommarius

    Full Text Available Enteropathogenic Escherichia coli (EPEC, enterohemorrhagic E. coli (EHEC and enteroaggregative E. coli (EAEC are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA, and indole-3-acetic acid (IAA, as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE, which encodes virulence factors that cause "attaching and effacing" (A/E lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.

  13. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  14. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... cell. These extracellular proteases are activated in complex cascades involving auto-processing and proteolytic maturation. Thus, proteolysis has been adopted by bacterial pathogens at multiple levels to ensure the success of the pathogen in contact with the human host....

  15. Rifaximin Does Not Induce Toxin Production or Phage-Mediated Lysis of Shiga Toxin-Producing Escherichia coli▿

    OpenAIRE

    Ochoa, Theresa J.; Chen, Jane; Walker, Christopher M.; Gonzales, Elsa; Cleary, Thomas G.

    2007-01-01

    Diarrhea in children is often caused by enteropathogen infections that might benefit from early empirical antibiotic therapy. However, when the definition of the pathogen requires sophisticated laboratory studies, the etiology of enteritis is not known early in illness. Empirical therapy may be dangerous if the child is infected with a Shiga toxin-producing Escherichia coli (STEC) strain because antimicrobials may increase Shiga toxin (Stx) release, resulting in increased risk of microangiopa...

  16. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  17. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  18. Plasma bacterial and mitochondrial DNA distinguish bacterial sepsis from sterile systemic inflammatory response syndrome and quantify inflammatory tissue injury in nonhuman primates.

    Science.gov (United States)

    Sursal, Tolga; Stearns-Kurosawa, Deborah J; Itagaki, Kiyoshi; Oh, Sun-Young; Sun, Shiqin; Kurosawa, Shinichiro; Hauser, Carl J

    2013-01-01

    Systemic inflammatory response syndrome (SIRS) is a fundamental host response common to bacterial infection and sterile tissue injury. Systemic inflammatory response syndrome can cause organ dysfunction and death, but its mechanisms are incompletely understood. Moreover, SIRS can progress to organ failure or death despite being sterile or after control of the inciting infection. Biomarkers discriminating between sepsis, sterile SIRS, and postinfective SIRS would therefore help direct care. Circulating mitochondrial DNA (mtDNA) is a damage-associated molecular pattern reflecting cellular injury. Circulating bacterial 16S DNA (bDNA) is a pathogen-associated pattern (PAMP) reflecting ongoing infection. We developed quantitative polymerase chain reaction assays to quantify these markers, and predicting their plasma levels might help distinguish sterile injury from infection. To study these events in primates, we assayed banked serum from Papio baboons that had undergone a brief challenge of intravenous Bacillus anthracis delta Sterne (modified to remove toxins) followed by antibiotics (anthrax) that causes organ failure and death. To investigate the progression of sepsis to "severe" sepsis and death, we studied animals where anthrax was pretreated with drotrecogin alfa (activated protein C), which attenuates sepsis in baboons. We also contrasted lethal anthrax bacteremia against nonlethal E. coli bacteremia and against sterile tissue injury from Shiga-like toxin 1. Bacterial DNA and mtDNA levels in timed samples were correlated with blood culture results and assays of organ function. Sterile injury by Shiga-like toxin 1 increased mtDNA, but bDNA was undetectable: consistent with the absence of infection. The bacterial challenges caused parallel early bDNA and mtDNA increases, but bDNA detected pathogens even after bacteria were undetectable by culture. Sublethal E. coli challenge only caused transient rises in mtDNA consistent with a self-limited injury. In lethal

  19. Do the A subunits contribute to the differences in the toxicity of Shiga toxin 1 and Shiga toxin 2?

    Science.gov (United States)

    Basu, Debaleena; Tumer, Nilgun E

    2015-05-01

    Shiga toxin producing Escherichia coli O157:H7 (STEC) is one of the leading causes of food-poisoning around the world. Some STEC strains produce Shiga toxin 1 (Stx1) and/or Shiga toxin 2 (Stx2) or variants of either toxin, which are critical for the development of hemorrhagic colitis (HC) or hemolytic uremic syndrome (HUS). Currently, there are no therapeutic treatments for HC or HUS. E. coli O157:H7 strains carrying Stx2 are more virulent and are more frequently associated with HUS, which is the most common cause of renal failure in children in the US. The basis for the increased potency of Stx2 is not fully understood. Shiga toxins belong to the AB5 family of protein toxins with an A subunit, which depurinates a universally conserved adenine residue in the α-sarcin/ricin loop (SRL) of the 28S rRNA and five copies of the B subunit responsible for binding to cellular receptors. Recent studies showed differences in the structure, receptor binding, dependence on ribosomal proteins and pathogenicity of Stx1 and Stx2 and supported a role for the B subunit in differential toxicity. However, the current data do not rule out a potential role for the A1 subunits in the differential toxicity of Stx1 and Stx2. This review highlights the recent progress in understanding the differences in the A1 subunits of Stx1 and Stx2 and their role in defining toxicity. PMID:25938272

  20. Three toxins, two receptors, one mechanism: Mode of action of Cry1A toxins from Bacillus thuringiensis in Heliothis virescens.

    Science.gov (United States)

    Bretschneider, Anne; Heckel, David G; Pauchet, Yannick

    2016-09-01

    Insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) are highly active against Lepidoptera. However, field-evolved resistance to Bt toxins is on the rise. The 12-cadherin domain protein HevCaLP and the ABC transporter HevABCC2 are both genetically linked to Cry toxin resistance in Heliothis virescens. We investigated their interaction using stably expressing non-lytic clonal Sf9 cell lines expressing either protein or both together. Untransfected Sf9 cells are innately sensitive to Cry1Ca toxin, but not to Cry1A toxins; and quantitative PCR revealed negligible expression of genes involved in Cry1A toxicity such as cadherin, ABCC2, alkaline phosphatase (ALP) and aminopeptidase N (APN). Cry1Aa, Cry1Ab or Cry1Ac caused swelling of Sf9 cells expressing HevABCC2, and caused faster swelling, lysis and up to 86% mortality in cells expressing both proteins. No such effect was observed in control Sf9 cells or in cells expressing only HevCaLP. The results of a mixing experiment demonstrated that both proteins need to be expressed within the same cell for high cytotoxicity, and suggest a novel role for HevCaLP. Binding assays showed that the toxin-receptor interaction is specific. Our findings confirm that HevABCC2 is the central target in Cry1A toxin mode of action, and that HevCaLP plays a supporting role in increasing Cry1A toxicity. PMID:27456115

  1. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  2. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  3. [Treatment of blepharospasm with botulinum toxin].

    Science.gov (United States)

    Pikielny, R T; Micheli, F E; Fernández Pardal, M M; Casas Parera, I; Giannaula, R J; Gatto, M

    1990-01-01

    Blepharospasm is a relatively frequent cranial dystonia which may be seen either alone or related to orofacial-mandibular dystonia (Meige's syndrome). In its maximum degree it can cause functional blindness.Twelve patients with blepharospasm (4 essential and 8 Meige's syndrome) who had been previously treated unsuccessfully with drugs (trihexyphenidyl, biperiden, carbamazepine, lithium, baclofen, lisuride, imipramine, clonazepam and butyrophenones) were treated for 12 months with periocular injections of botulinum toxin (BOTOX). A "low" dose of 12,5 U per eye was employed. With this dose, eleven out of twelve patients experienced significant improvement which lasted from five to fifteen weeks. The only nonresponder obtained complete relief upon duplicating the dose. The only side effect was uni or bilateral ptosis in six patients which improved completely in seven to twenty one days. One patient developed a peripheral facial palsy with complete remission in nineteen days. No systemic side effects were noted. There was only one desertion from this study due to depression enhanced by prolonged (21 days) ptosis. All patients (including the deserter) agreed that treatment with BOTOX provided more relief than any other previous therapeutic method. Our results confirm those obtained by others but a more prolonged study is needed to better evaluate long term effects. PMID:2101846

  4. Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N.

    Science.gov (United States)

    Yaoi, K; Nakanishi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-12-17

    The Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different. The Cry1Aa toxin bound to the fragment containing 40-Asp to 313-Lys, suggesting that the Cry1Aa toxin-binding site is located in the region between 40-Asp and 313-Lys, while Cry1Ac toxin bound exclusively to mature APN. Next, recombinant APN of various lengths was expressed in Escherichia coli cells and its ability to bind to Cry1Aa toxin was examined. The results localized the Cry1Aa toxin binding to the region between 135-Ile and 198-Pro. PMID:10606725

  5. Comparison of the BD MAX® Enteric Bacterial Panel assay with conventional diagnostic procedures in diarrheal stool samples.

    Science.gov (United States)

    Knabl, L; Grutsch, I; Orth-Höller, D

    2016-01-01

    Although infectious diarrhea is one of the most predominant diseases around the world, the identification of the causative microorganism is still challenging. The aim of this study was the evaluation of the BD MAX® Enteric Bacterial Panel assay in comparison to conventional diagnostic procedures concerning the detection of the enteric pathogens Salmonella spp., Campylobacter spp., Shigella spp., and Shiga toxin-producing Escherichia coli. For this purpose, 971 prospectively collected stool samples were evaluated. Utilization of the BD MAX Enteric Bacterial Panel elevated the overall detection rate from 5.26 % to 8.06 %. The positive percent agreement of the BD MAX Enteric Bacterial Panel assay and stool culture or enzyme immunoassay was 0.97 for Campylobacter spp., 0.75 for Salmonella spp., 1.00 for Shigella spp., and 0.88 for Shiga toxins. Furthermore, a negative percent agreement of 0.98 for Campylobacter spp., 0.99 for Salmonella spp., 0.99 for Shigella spp., and 0.99 for Shiga toxins has been demonstrated. This study highlighted the superior detection rate of molecular assays compared to conventional diagnostic procedures. PMID:26563899

  6. Committee on Natural Toxins and Food Allergens. Marine and freshwater toxins.

    Science.gov (United States)

    Hungerford, James M

    2005-01-01

    There have been major developments this past year in the Marine and Freshwater Toxins topic area (formerly Phycotoxins). These include AOAC approval and inauguration of a new AOAC Presidential Task Force on Marine and Freshwater Toxins to accelerate methods validation, and the appointment of several new Topic Advisors. A joint FAO/IOC/WHO group addressing biotoxins in molluscan bivalves is also relevant to this report and to the new Task Force. The AOAC Presidential Task Force on Marine and Freshwater Toxins is an international group that, in late November 2004, consisted of 90 world experts and stakeholders. Chaired by this General Referee, the group establishes methods priorities based on analytical methods criteria, determines fitness for purpose, identifies and reviews available methodologies, recommends methodologies for validation, and identifies complementary analytical tools. Once appropriate analytical methodology has been identified or developed, the Task Force is able to identify financial and technical resources necessary to validate the methods. The first two formal meetings of the Task Force were held in Bethesda, MD, on May 19, 2004 and in St. Louis, MO, on September 22, 2004. These meetings were held in conjunction with the XI International IUPAC Symposium on Mycotoxins and Phycotoxins and the 118th AOAC INTERNATIONAL Annual Meeting and Exposition, respectively. The Bethesda meeting served to introduce members of the group to the AOAC Community/Task Force model and to discuss objectives, concerns, general workings, and communications. The meeting concluded on an encouraging note, with a commitment from AOAC to help provide financial resources for the review of nonproprietary methods deemed high priority by the Task Force. This development was seen as an important step toward reaching methods validation objectives. The terms of reference for the Task Force were approved by the AOAC Board of Directors in late June, 2004. They described the Task Force

  7. In silico, in vitro and in vivo analysis of binding affinity between N and C-domains of Clostridium perfringens alpha toxin.

    Directory of Open Access Journals (Sweden)

    Siva Ramakrishna Uppalapati

    Full Text Available Clostridium perfringens alpha toxin/phospholipase C (CP-PLC is one of the most potent bacterial toxins known to cause soft tissue infections like gas gangrene in humans and animals. It is the first bacterial toxin demonstrated to be an enzyme with phospholipase, sphingomyelinase and lecithinase activities. The toxin is comprised of an enzymatic N-domain and a binding C-domain interconnected by a flexible linker. The N-domain alone is non-toxic to mammalian cells, but incubation with C-domain restores the toxicity, the mechanism of which is still not elucidated. The objectives of the current study were to investigate the formation of a stable N and C-domain complex, to determine possible interactions between the two domains in silico and to characterize the in vitro and in vivo correlates of the interaction. To establish the existence of a stable N and C-domain hybrid, in vitro pull down assay and dot-Far Western blotting assays were employed, where it was clearly revealed that the two domains bound to each other to form an intermediate. Using bioinformatics tools like MetaPPISP, PatchDock and FireDock, we predicted that the two domains may interact with each other through electrostatic interactions between at least six pairs of amino acids. This N and C-domains interacted with each other in 1:1 ratio and the hybrid lysed mouse erythrocytes in a slower kinetics when compared with wild type native Cp-PLC. BALB/c mice when challenged with N and C-domain hybrid demonstrated severe myonecrosis at the site of injection while no death was observed. Our results provide further insight into better understanding the mechanism for the toxicity of Cp-PLC N and C-domain mixture.

  8. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    Science.gov (United States)

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening

  9. Extremity and Truncal Dystonias: Botulinum Toxin Applications

    Directory of Open Access Journals (Sweden)

    Nurten UZUN ADATEPE

    2010-12-01

    Full Text Available Extremity dystonia (ED is a disabling condition that may represent an isolated focal symptom or may be part of generalized dystonia. It may develop secondary to any process affecting the contralateral basal ganglia or may be idiopathic. Diffuse or severe dystonia generally improves by administration of various medications and only in rare cases, stereotaxic surgery may be needed. Idiopathic forms or focal symptoms frequently respond to botulinum toxin (BoNT injections. BoNT type A injection decreases pain and spasms in more than 80% of cases and results in 50-66% functional improvement in daily living activities and motor performance. Furthermore, BoNT injection also provides improvement in some symptoms of generalized dystonia and relieves disabling posture, skin lacerations and pain in more than 80% of patients. BoNT may also be used to accelerate recovery in the postoperative period for a short time since it prevents the spasms.Truncal dystonia frequently accompanies segmental or generalized dystonia and it rarely presents as an isolated form. Axial involvement is mostly seen in neuroleptic use. This form of truncal dystonia is often severely painful and disabling and rarely responds to oral medications. BoNT is the treatment of choice in truncal dystonia, similar to the other focal dystonias. Clinical status improves dramatically by targeting proper muscles and using appropriate doses. In case of failure of BoNT treatment, the first alternative should be oral medications and, physiotherapy may additionally decrease the symptoms. Continuous intrathecal baclofen pump is known to be beneficial, while the effect of epidural spinal electrostimulation is still unclear and surgery should be the last option. (Archives of Neuropsychiatry 2010; 47 Supplement: 19-26

  10. Crystal structure of Staphylococcus aureus exfoliative toxin D-like protein: Structural basis for the high specificity of exfoliative toxins.

    Science.gov (United States)

    Mariutti, Ricardo B; Souza, Tatiana A C B; Ullah, Anwar; Caruso, Icaro P; de Moraes, Fábio R; Zanphorlin, Leticia M; Tartaglia, Natayme R; Seyffert, Nubia; Azevedo, Vasco A; Le Loir, Yves; Murakami, Mário T; Arni, Raghuvir K

    2015-11-01

    Exfoliative toxins are serine proteases secreted by Staphylococcus aureus that are associated with toxin-mediated staphylococcal syndromes. To date, four different serotypes of exfoliative toxins have been identified and 3 of them (ETA, ETB, and ETD) are linked to human infection. Among these toxins, only the ETD structure remained unknown, limiting our understanding of the structural determinants for the functional differentiation between these toxins. We recently identified an ETD-like protein associated to S. aureus strains involved in mild mastitis in sheep. The crystal structure of this ETD-like protein was determined at 1.95 Å resolution and the structural analysis provide insights into the oligomerization, stability and specificity and enabled a comprehensive structural comparison with ETA and ETB. Despite the highly conserved molecular architecture, significant differences in the composition of the loops and in both the N- and C-terminal α-helices seem to define ETD-like specificity. Molecular dynamics simulations indicate that these regions defining ET specificity present different degrees of flexibility and may undergo conformational changes upon substrate recognition and binding. DLS and AUC experiments indicated that the ETD-like is monomeric in solution whereas it is present as a dimer in the asymmetric unit indicating that oligomerization is not related to functional differentiation among these toxins. Differential scanning calorimetry and circular dichroism assays demonstrated an endothermic transition centered at 52 °C, and an exothermic aggregation in temperatures up to 64 °C. All these together provide insights about the mode of action of a toxin often secreted in syndromes that are not associated with either ETA or ETB. PMID:26299923

  11. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  12. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte; Kruse, Torben; Nordström, Kurt

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the P......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  13. Bacterial terpene cyclases.

    Science.gov (United States)

    Dickschat, Jeroen S

    2016-01-01

    Covering: up to 2015. This review summarises the accumulated knowledge about characterised bacterial terpene cyclases. The structures of identified products and of crystallised enzymes are included, and the obtained insights into enzyme mechanisms are discussed. After a summary of mono-, sesqui- and diterpene cyclases the special cases of the geosmin and 2-methylisoborneol synthases that are both particularly widespread in bacteria will be presented. A total number of 63 enzymes that have been characterised so far is presented, with 132 cited references. PMID:26563452

  14. Bacteriophage-mediated toxin gene regulation in Clostridium difficile.

    Science.gov (United States)

    Govind, Revathi; Vediyappan, Govindsamy; Rolfe, Rial D; Dupuy, Bruno; Fralick, Joe A

    2009-12-01

    Clostridium difficile has been identified as the most important single identifiable cause of nosocomial antibiotic-associated diarrhea and colitis. Virulent strains of C. difficile produce two large protein toxins, toxin A and toxin B, which are involved in pathogenesis. In this study, we examined the effect of lysogeny by PhiCD119 on C. difficile toxin production. Transcriptional analysis demonstrated a decrease in the expression of pathogenicity locus (PaLoc) genes tcdA, tcdB, tcdR, tcdE, and tcdC in PhiCD119 lysogens. During this study we found that repR, a putative repressor gene of PhiCD119, was expressed in C. difficile lysogens and that its product, RepR, could downregulate tcdA::gusA and tcdR::gusA reporter fusions in Escherichia coli. We cloned and purified a recombinant RepR containing a C-terminal six-His tag and documented its binding to the upstream regions of tcdR in C. difficile PaLoc and in repR upstream region in PhiCD119 by gel shift assays. DNA footprinting experiments revealed similarities between the RepR binding sites in tcdR and repR upstream regions. These findings suggest that presence of a CD119-like temperate phage can influence toxin gene regulation in this nosocomially important pathogen. PMID:19776116

  15. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  16. Toxin-Induced Experimental Models of Learning and Memory Impairment

    Directory of Open Access Journals (Sweden)

    Sandeep Vasant More

    2016-09-01

    Full Text Available Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson’s disease dementia and Alzheimer’s disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  17. Recent Advances in Research on Widow Spider Venoms and Toxins.

    Science.gov (United States)

    Yan, Shuai; Wang, Xianchun

    2015-12-01

    Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species. PMID:26633495

  18. Proteomics study of anthrax lethal toxin-treated murine macrophages.

    Science.gov (United States)

    Kuhn, Jeffrey F; Hoerth, Patric; Hoehn, Silvia T; Preckel, Tobias; Tomer, Kenneth B

    2006-04-01

    The anthrax lethal toxin (LeTx) is composed of two proteins, protective antigen and lethal factor, which bind and enter the cell through a host receptor termed the anthrax toxin receptor (ATR). In the cell, LeTx targets p38, part of the MAP kinase signaling pathway. The toxin appears to initiate an apoptotic pathway in infected cells, indicating additional downstream targets of the toxin. We have applied a proteomics approach to investigate these downstream targets and the affected processes. In this study we have used an improved strategy for fractionation based on protein pI, off-gel electrophoresis, employed in conjunction with relative quantitation using the mass labeling approach. In our survey, 67 proteins were observed and quantified from the cytosol of RAW 264.7 cells with respect to control versus toxin-treated cells. Many of these proteins are involved in the oxidative stress response, as well as apoptosis, and thus likely to be relevant to the effects of anthrax in infected cells. Our results indicate that the tumor necrosis factor-alpha-mediated pathway is compromised in intoxicated cells. The knowledge of such changes and the pathways leading to the changes should be of great value in understanding and combating this disease. PMID:16609935

  19. Reporter Gene Assay for Detection of Shellfish Toxins

    Institute of Scientific and Technical Information of China (English)

    WEI-DONG YANG; MIN-YI WU; JIE-SHENG LIU; XI-CHUN PENG; HONG-YE LI

    2009-01-01

    Objective To explore the potential reporter gene assay for the detection of sodium channel-specific toxins in shellfish as an alternative for screening harmful algal bloom (HAB) toxins, considering the fact that the existing methods including HPLC and bioassay are inappropriate for identifying HAB toxins which poses a serious problem on human health and shellfish industry. Methods A reporter plasmid pEGFP-c-fos containing c-fos promoter and EGFP was constructed and transfected into T24 cells using LipofectAMINE 2000. Positive transfectants were screened by G418 to produce a pEGFP-c-fos-T24 cell line. After addition of increasing neurotoxic shellfish poison (NSP) or GTX2,3, primary components of paralytic shellfish poison (PSP), changes in expression of EGFP in the cell line were observed under a laser scanning confocal microscope and quantified with Image-pro Plus software. Results Dose-dependent changes in the intensity of green fluorescence were observed for NSP in a range from 0 to 10 ng/mL and for GTX 2,3 from 0 to 16 ng/mL. Conclusion pEGFP-c-fos-T24 can be applied in detecting HAB toxins, and cell-based assay can be used as an alternative for screening sodium channel-specific HAB toxins.

  20. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-01-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders. PMID:27598124

  1. Adsorption and Insecticidal Activity of Toxin from Bacillus thuringiensis on Rectorite

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xue-Yong; HUANG Qiao-Yun; CAI Peng; YU Zi-Niu

    2007-01-01

    The adsorption and desorption of the toxin from Bacillus thuringiensis strain WG-001 on rectorite were studied at different toxin and/or rectorite concentrations, pH values and temperatures. The insecticidal activity of the adsorbed toxin was evaluated by determining the lethal concentration to kill 50% of the larvae of Heliothis armigera (Lcso). The adsorption of the toxin on rectorite in sodium carbonate buffer (pH 9) reached equilibrium within 0.5-1.0 h and the adsorption isotherm of the toxin followed the Langmuir equation (R2>0.99). In the pH range from 9 to 11 (carbonate buffer), the adsorbed toxin decreased with increasing pH. The adsorption amounts decreased with increasing rectoritettoxin ratio. The adsorption was not significantly affected by the temperature between 10 and 50 °C. The X-ray diffraction analysis indicated occurrence of the intercalation of the rectorite by the toxin. The infrared absorption spectrum showed that the binding of the toxin did not alter its structure. The Lcgo values of the adsorbed toxin were smaller than those of the free toxin. The rectorite protected the toxin from ultraviolet irradiation damage. The desorption of the adsorbed toxin in water ranged from 37.5% to 56.4% and from 27.4% to 41.8% in a carbonate buffer. The desorption percentage also decreased with increasing rectorite:toxin ratio.

  2. Alternaria toxin-induced resistance in rose plants against rose aphid (Macrosiphum rosivorum): effect of tenuazonic acid*

    OpenAIRE

    Yang, Fa-zhong; Yang, Bin; Li, Bei-Bei; Xiao, Chun

    2015-01-01

    Many different types of toxins are produced by the fungus, Alternaria alternata (Fr.) Keissler. Little is known, however, regarding the influence of these toxins on insects. In this study, we investigated the toxin-induced inhibitory effects of the toxin produced by A. alternata on the rose aphid, Macrosiphum rosivorum, when the toxin was applied to leaves of the rose, Rosa chinensis. The results demonstrated that the purified crude toxin was non-harmful to rose plants and rose aphids, but ha...

  3. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans.

    Directory of Open Access Journals (Sweden)

    Audrey Bellier

    2009-12-01

    Full Text Available Pore-forming toxins (PFTs are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions-Caenorhabditis elegans intoxication by Crystal (Cry protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC, whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to

  4. Bacterial contamination of enteral diets.

    OpenAIRE

    de Leeuw, I H; Vandewoude, M F

    1986-01-01

    Enteral feeding solutions can be contaminated by bacterial micro-organisms already present in the ingredients, or introduced during preparation or transport, or in the hospital ward. During jejunostomy feeding without pump or filter, ascending bacterial invasion of the feeding bag is possible. In patients with lowered immune response contaminated feedings can cause serious septic clinical problems. The progressive loss of the nutritional value of the enteral feeding solution by bacterial cont...

  5. Transport powered by bacterial turbulence

    OpenAIRE

    Kaiser, Andreas; Peshkov, Anton; Sokolov, Andrey; ten Hagen, Borge; Löwen, Hartmut; Aranson, Igor S.

    2014-01-01

    We demonstrate that collective turbulent-like motion in a bacterial bath can power and steer directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedge-like "bulldozer" draws energy from a bacterial bath of varied density. We obtain that a maximal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp regi...

  6. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets.

    Directory of Open Access Journals (Sweden)

    Rembert Pieper

    Full Text Available Shiga toxin (Stx-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects.Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029 and outer membrane (OM assembly (LptD, MlaA, MlaC suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3 with the bacterial cell envelope.Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM

  7. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  8. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M;

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...... susceptibility occurred in 21 (23%) of 92 cases of known aetiology, compared to an estimated 6% in nationally notified cases (p <0.001). Ceftriaxone plus penicillin as empirical treatment was appropriate in 97% of ABM cases in the study population, and in 99.6% of nationally notified cases. The notification rate...... was 75% for penicillin-susceptible episodes, and 24% for penicillin-non-susceptible episodes (p <0.001). Cases involving staphylococci, Pseudomonas spp. and Enterobacteriaceae were under-reported. Among 51 ABM cases with no identified risk factors, nine of 11 cases with penicillin...

  9. [Endogenous bacterial endophthalmitis].

    Science.gov (United States)

    Cornut, P-L; Chiquet, C

    2011-01-01

    Endogenous bacterial endophthalmitis, also called metastatic bacterial endophthalmitis, remains a diagnostic and therapeutic challenge. It is a rare and potentially sight-threatening ocular infection that occurs when bacteria reach the eye via the bloodstream, cross the blood-ocular barrier, and multiply within the eye. It usually affects immunocompromised patients and those suffering from diabetes mellitus, malignancy, or cardiac disease, but has also been reported after invasive procedures or in previously healthy people. In most cases, the ocular symptoms occur after the diagnosis of septicemia or systemic infection. Ocular symptoms include decreased vision, redness, discharge, pain, and floaters. The ocular inflammatory signs may be anterior and/or posterior. Bilateral involvement occurs in nearly 25% of cases. A wide range of microorganisms are involved, with differences in their frequency according to geography as well as the patient's age and past medical history, because of variations in the predisposing conditions and the source of the sepsis. The majority of patients are initially misdiagnosed, and ophthalmologists should be aware of this because prompt local and general management is required to save the eye and/or the patient's life. PMID:21145128

  10. Controlled multivalent interactions in the inhibition of toxins via well-designed glycopolypeptides

    Science.gov (United States)

    Maheshwari, Ronak

    Many critical recognition events in biology are mediated via multivalent interactions between multiple saccharide ligands and their protein receptors. These proteincarbohydrate interactions are therefore important and being extensively investigated as they play a crucial role in several processes including pathogen recognition, inflammation, cell signaling, differentiation, and adhesion of various bacterial toxins. Multiple research groups have investigated these interactions by developing multivalent polymeric antagonists for carbohydrate binding proteins. In our work, we have selected cholera toxin (CT) as a model example to study these multivalent bindings by developing multivalent inhibitors. Various investigations have employed diverse guidelines that are believed to govern multivalency in the design of inhibitors for CT-GM1 interactions. Although successful in many respects, they are limited by certain architectural features such as a lack of synthetic versatility, significant polydispersity, and uncontrolled density and arrangement of saccharide ligands. Thus the mechanism by which multivalency is functioning in these systems is impractical to analyze and control. A more detailed understanding of multivalent binding by polymeric materials therefore requires the development of well-designed glycopolymers in which architectural features are well defined and controlled. Our approach aims to develop polymers via protein engineering methods and to equip these polypeptides with multivalent sugar ligands via chemical methods, to competitively bind with such toxins and neutralize them. This method allows control over architectural features such as number and spacing of saccharide ligands on the polymer, precise placement of charges and conformation of the polymer backbone. Such control over the architectural features allows for more purposeful design of polymers for inhibition of the multivalent binding event. Polypeptides with chemically reactive natural or non

  11. Periodic growth of bacterial colonies

    Science.gov (United States)

    Yamazaki, Yoshihiro; Ikeda, Takemasa; Shimada, Hirotoshi; Hiramatsu, Fumiko; Kobayashi, Naoki; Wakita, Jun-ichi; Itoh, Hiroto; Kurosu, Sayuri; Nakatsuchi, Michio; Matsuyama, Tohey; Matsushita, Mitsugu

    2005-06-01

    The formation of concentric ring colonies by bacterial species Bacillus subtilis and Proteus mirabilis has been investigated experimentally, focusing our attention on the dependence of local cell density upon the bacterial motility. It has been confirmed that these concentric ring colonies reflect the periodic change of the bacterial motility between motile cell state and immotile cell state. We conclude that this periodic change is macroscopically determined neither by biological factors (i.e., biological clock) nor by chemical factors (chemotaxis as inhibitor). And our experimental results strongly suggest that the essential factor for the change of the bacterial motility during concentric ring formation is the local cell density.

  12. Lethal effects of Clostridium perfringens epsilon toxin are potentiated by alpha and perfringolysin-O toxins in a mouse model.

    Science.gov (United States)

    Fernandez-Miyakawa, Mariano E; Jost, B Helen; Billington, Stephen J; Uzal, Francisco A

    2008-03-18

    Epsilon toxin (ETX) is the most important virulence factor of Clostridium perfringens type D. Two other important toxins, alpha toxin (CPA) and perfringolysin-O (PFO), are encoded and potentially produced by most C. perfringens type D isolates. The biological effects of these toxins are dissimilar although they are all lethal. Since the possible interaction of these toxins during infection is unknown, the effects of CPA and PFO on the lethal activity of ETX were studied in a mouse model. Mice were injected intravenously or intragastrically with CPA or PFO with or without ETX. Sublethal doses of CPA or PFO did not affect the lethality of ETX when either was injected together with the latter intravenously. However, sublethal or lethal doses of CPA or PFO resulted in reduction of the survival time of mice injected simultaneously with ETX when compared with the intravenous effect of ETX injected alone. When PFO was inoculated intragastrically with ETX, a reduction of the survival time was observed. CPA did not alter the survival time when inoculated intragastrically with ETX. The results of the present study suggest that both CPA and PFO have the potential to enhance the ETX lethal effects during enterotoxemia in natural hosts such as sheep and goats. PMID:17997054

  13. Intraoral administration of botulinum toxin for trigeminal neuropathic pain.

    Science.gov (United States)

    Herrero Babiloni, Alberto; Kapos, Flavia P; Nixdorf, Donald R

    2016-06-01

    This article presents 2 cases of different neuropathic trigeminal pain conditions treated with intraoral botulinum toxin injections. There is a growing body of evidence to support the use of this substance when administered subcutaneously in the treatment of neuropathic pain, such as in extraoral injections for trigeminal neuralgia. However, reports of intraoral submucosal administration are still lacking. In the 2 cases presented here, neuropathic pain was refractory to treatment with an important intraoral peripheral component, so onabotulinum toxin A was introduced as an adjuvant therapy. The technique, doses, and dilution are discussed. The patients reported significant reductions in pain frequency and intensity, with minimal side effects of temporary mucosal dryness and smile droopiness. The analgesic benefits of botulinum toxin may be utilized to address intraoral neuropathic pain. Further studies are needed to confirm safety and effectiveness in larger samples. PMID:27181448

  14. Fibrinogenolytic toxin from Indian monocled cobra (Naja kaouthia) venom

    Indian Academy of Sciences (India)

    C Chandra Sekhar; Dibakar Chakrabarty

    2011-06-01

    A fibrinogenolytic toxin of molecular weight 6.5 kDa has been purified from the venom of Indian monocled cobra (Naja kaouthia) by repeated cation exchange chromatography on CM-sephadex C-50. The purified toxin did not show any phospholipase activity but was mildly hemolytic on human erythrocytes. This toxin, called Lahirin, cleaved fibrinogen in a dose- and time-dependent manner. The digestion process apparently started with the A chain, and gradually other lower-molecular-weight chains were also cleaved to low-molecular-weight peptides. The fibrinolytic activity was completely lost after treatment with ethylene di-amine tetra acetic acid (EDTA). However, exposure to 100°C for 1 min or pre-treatment with phenyl methyl sulfonyl fluoride (PMSF) did not affect the fibrinolytic activity. Cleavage of di-sulphide bonds by -mercaptoethanol or unfolding the protein with 4 M urea caused complete loss of activity of pure Lahirin.

  15. Pro and antiinflammatory properties of toxins from animal venoms.

    Science.gov (United States)

    Farsky, Sandra H P; Antunes, Edson; Mello, Suzana B V

    2005-06-01

    Accidents evoked by venomous animals are common in tropical regions. In Brazil, envenomation evoked by snakes, spiders and scorpions are an important public health problem. Their venoms are composed of a great number of toxins, which are capable of acting on tissue and plasma components with consequent toxic and pharmacological effects. On the other hand, the diversity of venom composition makes them important source of toxins that can be employed as scientific tools. Here we describe the mechanisms of anti and pro-inflammatory properties of toxins of Bothrops and Crotalus genus snakes and Loxosceles and Phoneutria genus spider venoms. The emphasis was to summarise, both in vivo and in vitro, studies that focused on the action of phospholipases, metalloproteinases and sphingomyelinase D on vascular and cellular aspects of the process as well as the complex network of chemical mediators involved. PMID:16101549

  16. Treatment of displaced mandibular condylar fracture with botulinum toxin A.

    Science.gov (United States)

    Akbay, Ercan; Cevik, Cengiz; Damlar, Ibrahim; Altan, Ahmet

    2014-04-01

    The aim of this case report is to discuss the effect on condylar reduction of botulinum toxin A treatment used in a child with displaced fracture at condylar neck of mandible. A 3-years old boy was admitted to our clinic for incomplete fracture of mandibular symphysis and displaced condylar fracture at the left side. An asymmetrical occlusal splint with intermaxillary fixation was used instead of open reduction and internal fixation because of incomplete fracture of symphysis and possible complications of condyle surgery. However, it was observed that condylar angulation persisted despite this procedure. Thus, botulinum toxin A was administered to masseter, temporalis and pterygoideus medialis muscles. At the end of first month, it was seen that mandibular condyle was almost completely recovered and that fusion was achieved. In conclusion, Botulinum A toxin injection aiming the suppression of masticatory muscle strength facilitates the reduction in the conservative management of displaced condyle in pediatric patients. PMID:24156980

  17. Announcing the 2016 Toxins Travel Awards for Post-Doctoral Fellows and Ph.D. Students

    OpenAIRE

    Tesh, Vernon L.

    2016-01-01

    With the goal of promoting the development of early career investigators in the field of toxinology, Toxins welcomed applications for the 2016 Toxins Travel Awards for post-doctoral fellows and Ph.D. students. [...

  18. Announcing the 2016 Toxins Travel Awards for Post-Doctoral Fellows and Ph.D. Students

    Directory of Open Access Journals (Sweden)

    Vernon L. Tesh

    2016-02-01

    Full Text Available With the goal of promoting the development of early career investigators in the field of toxinology, Toxins welcomed applications for the 2016 Toxins Travel Awards for post-doctoral fellows and Ph.D. students. [...

  19. Conditional cooperativity of toxin - antitoxin regulation can mediate bistability between growth and dormancy.

    Directory of Open Access Journals (Sweden)

    Ilaria Cataudella

    Full Text Available Many toxin-antitoxin operons are regulated by the toxin/antitoxin ratio by mechanisms collectively coined "conditional cooperativity". Toxin and antitoxin form heteromers with different stoichiometric ratios, and the complex with the intermediate ratio works best as a transcription repressor. This allows transcription at low toxin level, strong repression at intermediate toxin level, and then again transcription at high toxin level. Such regulation has two interesting features; firstly, it provides a non-monotonous response to the concentration of one of the proteins, and secondly, it opens for ultra-sensitivity mediated by the sequestration of the functioning heteromers. We explore possible functions of conditional regulation in simple feedback motifs, and show that it can provide bistability for a wide range of parameters. We then demonstrate that the conditional cooperativity in toxin-antitoxin systems combined with the growth-inhibition activity of free toxin can mediate bistability between a growing state and a dormant state.

  20. Conditional cooperativity of toxin - antitoxin regulation can mediate bistability between growth and dormancy.

    Science.gov (United States)

    Cataudella, Ilaria; Sneppen, Kim; Gerdes, Kenn; Mitarai, Namiko

    2013-01-01

    Many toxin-antitoxin operons are regulated by the toxin/antitoxin ratio by mechanisms collectively coined "conditional cooperativity". Toxin and antitoxin form heteromers with different stoichiometric ratios, and the complex with the intermediate ratio works best as a transcription repressor. This allows transcription at low toxin level, strong repression at intermediate toxin level, and then again transcription at high toxin level. Such regulation has two interesting features; firstly, it provides a non-monotonous response to the concentration of one of the proteins, and secondly, it opens for ultra-sensitivity mediated by the sequestration of the functioning heteromers. We explore possible functions of conditional regulation in simple feedback motifs, and show that it can provide bistability for a wide range of parameters. We then demonstrate that the conditional cooperativity in toxin-antitoxin systems combined with the growth-inhibition activity of free toxin can mediate bistability between a growing state and a dormant state. PMID:24009488