WorldWideScience

Sample records for bacterial toxins

  1. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  2. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  3. Discovery of novel bacterial toxins by genomics and computational biology.

    Science.gov (United States)

    Doxey, Andrew C; Mansfield, Michael J; Montecucco, Cesare

    2018-06-01

    Hundreds and hundreds of bacterial protein toxins are presently known. Traditionally, toxin identification begins with pathological studies of bacterial infectious disease. Following identification and cultivation of a bacterial pathogen, the protein toxin is purified from the culture medium and its pathogenic activity is studied using the methods of biochemistry and structural biology, cell biology, tissue and organ biology, and appropriate animal models, supplemented by bioimaging techniques. The ongoing and explosive development of high-throughput DNA sequencing and bioinformatic approaches have set in motion a revolution in many fields of biology, including microbiology. One consequence is that genes encoding novel bacterial toxins can be identified by bioinformatic and computational methods based on previous knowledge accumulated from studies of the biology and pathology of thousands of known bacterial protein toxins. Starting from the paradigmatic cases of diphtheria toxin, tetanus and botulinum neurotoxins, this review discusses traditional experimental approaches as well as bioinformatics and genomics-driven approaches that facilitate the discovery of novel bacterial toxins. We discuss recent work on the identification of novel botulinum-like toxins from genera such as Weissella, Chryseobacterium, and Enteroccocus, and the implications of these computationally identified toxins in the field. Finally, we discuss the promise of metagenomics in the discovery of novel toxins and their ecological niches, and present data suggesting the existence of uncharacterized, botulinum-like toxin genes in insect gut metagenomes. Copyright © 2018. Published by Elsevier Ltd.

  4. Bacterial Toxins: A Hope Towards Angiogenic Ailments.

    Science.gov (United States)

    Khandia, Rekha; Munjal, Ashok; Dhama, Kuldeep; Malik, Yashpal Singh

    2017-01-01

    Angiogenesis is an essential physiological process for growth and maintenance of the body. Especially its role becomes indispendable during the embryonic development stage but lacks in adults with some exceptions like while wound repair and menstrual cycle. It is a tightly regulated process and relies on the cascade of several molecular signaling pathways with the involvement of many effectors like vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), insulin-like growth factor (IGF) etc. Related literature/ information were retrieved, analyzed and compiled from the online published resources available in Medline, Pubmed, Pubmed Central, Science Direct and other scientific databases. Excessive angiogenesis leads to disorders like tumor, atherosclerosis, rheumatoid arthritis, diabetic retinopathy, endometriosis, psoriasis, and adiposity. While, reduced angiogenesis also results in several ailments like cardiac ischemia, low capillary density in brain of Alzheimer's patients and delayed wound healing. Therefore, both angio-proliferative and anti-angiogenic approaches may be of use in developing novel therapeutics. Bacterial toxins are known for modulating the process of angiogenesis by mimicking pro-angiogenic factors and/ or competing with them. Furthermore, they inactivate the receptors or keep them in ON status, hence can be used to treat angiogenic disorders. The ease in handling, cultivation and manipulating the toxins structure has enabled the use of bacteria as an ideal choice for novel therapeutic developments. This review intends to elucidate the molecular mechanisms through which certain bacteria may alter the level of angiogenesis and consequently can work as therapeutics against angiogenic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Host defenses against bacterial pore-forming toxins

    NARCIS (Netherlands)

    Los, F.C.O.

    2011-01-01

    Pore-forming toxins (PFTs), the most common bacterial toxins, contribute to infection by perforating host cell membranes. Excessive use and lack of new development of antibiotics are causing increasing numbers of drug-resistant bacteria, like methicillin-resistant Staphylococcus aureus (MRSA) and

  6. Stealth and mimicry by deadly bacterial toxins

    DEFF Research Database (Denmark)

    Yates, S.P.; Jørgensen, Rene; Andersen, Gregers Rom

    2006-01-01

    Diphtheria toxin and exotoxin A are well-characterized members of the ADP-ribosyltransferase toxin family that serve as virulence factors in the pathogenic bacteria, Corynebacterium diphtheriae and Pseudomonas aeruginosa.  New high-resolution structural data of the Michaelis complex...

  7. Bacterial community affects toxin production by Gymnodinium catenatum.

    Directory of Open Access Journals (Sweden)

    Maria E Albinsson

    Full Text Available The paralytic shellfish toxin (PST-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01 and grown with: 1 complex bacterial communities derived from each of the two parent cultures; 2 simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3 a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell of clonal offspring (134-197 fmol STX cell(-1 was similar to the parent cultures (169-206 fmol STX cell(-1, however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1 than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1. Specific toxin production rate (fmol STX day(-1 was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1 day(-1 did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  8. Bacterial community affects toxin production by Gymnodinium catenatum.

    Science.gov (United States)

    Albinsson, Maria E; Negri, Andrew P; Blackburn, Susan I; Bolch, Christopher J S

    2014-01-01

    The paralytic shellfish toxin (PST)-producing dinoflagellate Gymnodinium catenatum grows in association with a complex marine bacterial community that is both essential for growth and can alter culture growth dynamics. Using a bacterial community replacement approach, we examined the intracellular PST content, production rate, and profile of G. catenatum cultures grown with bacterial communities of differing complexity and composition. Clonal offspring were established from surface-sterilized resting cysts (produced by sexual crosses of strain GCDE06 and strain GCLV01) and grown with: 1) complex bacterial communities derived from each of the two parent cultures; 2) simplified bacterial communities composed of the G. catenatum-associated bacteria Marinobacter sp. strain DG879 or Alcanivorax sp. strain DG881; 3) a complex bacterial community associated with an untreated, unsterilized sexual cross of the parents. Toxin content (STX-equivalent per cell) of clonal offspring (134-197 fmol STX cell(-1)) was similar to the parent cultures (169-206 fmol STX cell(-1)), however cultures grown with single bacterial types contained less toxin (134-146 fmol STX cell(-1)) than offspring or parent cultures grown with more complex mixed bacterial communities (152-176 fmol STX cell(-1)). Specific toxin production rate (fmol STX day(-1)) was strongly correlated with culture growth rate. Net toxin production rate (fmol STX cell(-1) day(-1)) did not differ among treatments, however, mean net toxin production rate of offspring was 8-fold lower than the parent cultures, suggesting that completion of the sexual lifecycle in laboratory cultures leads to reduced toxin production. The PST profiles of offspring cultures were most similar to parent GCDE06 with the exception of cultures grown with Marinobacter sp. DG879 which produced higher proportions of dcGTX2+3 and GC1+2, and lower proportions of C1+2 and C3+4. Our data demonstrate that the bacterial community can alter intracellular STX

  9. Emerging Roles of Toxin-Antitoxin Modules in Bacterial Pathogenesis

    Directory of Open Access Journals (Sweden)

    Barbara Kędzierska

    2016-06-01

    Full Text Available Toxin-antitoxin (TA cassettes are encoded widely by bacteria. The modules typically comprise a protein toxin and protein or RNA antitoxin that sequesters the toxin factor. Toxin activation in response to environmental cues or other stresses promotes a dampening of metabolism, most notably protein translation, which permits survival until conditions improve. Emerging evidence also implicates TAs in bacterial pathogenicity. Bacterial persistence involves entry into a transient semi-dormant state in which cells survive unfavorable conditions including killing by antibiotics, which is a significant clinical problem. TA complexes play a fundamental role in inducing persistence by downregulating cellular metabolism. Bacterial biofilms are important in numerous chronic inflammatory and infectious diseases and cause serious therapeutic problems due to their multidrug tolerance and resistance to host immune system actions. Multiple TAs influence biofilm formation through a network of interactions with other factors that mediate biofilm production and maintenance. Moreover, in view of their emerging contributions to bacterial virulence, TAs are potential targets for novel prophylactic and therapeutic approaches that are required urgently in an era of expanding antibiotic resistance. This review summarizes the emerging evidence that implicates TAs in the virulence profiles of a diverse range of key bacterial pathogens that trigger serious human disease.

  10. Bithionol blocks pathogenicity of bacterial toxins, ricin, and Zika virus

    Science.gov (United States)

    Disease pathways form overlapping networks, and hub proteins represent attractive targets for broad-spectrum drugs. Using bacterial toxins as a proof of concept, we describe a new approach of discovering broad-spectrum therapies capable of inhibiting host proteins that mediate multiple pathogenic pa...

  11. Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery

    Directory of Open Access Journals (Sweden)

    Philip A. Gurnev

    2014-08-01

    Full Text Available To intoxicate cells, pore-forming bacterial toxins are evolved to allow for the transmembrane traffic of different substrates, ranging from small inorganic ions to cell-specific polypeptides. Recent developments in single-channel electrical recordings, X-ray crystallography, protein engineering, and computational methods have generated a large body of knowledge about the basic principles of channel-mediated molecular transport. These discoveries provide a robust framework for expansion of the described principles and methods toward use of biological nanopores in the growing field of nanobiotechnology. This article, written for a special volume on “Intracellular Traffic and Transport of Bacterial Protein Toxins”, reviews the current state of applications of pore-forming bacterial toxins in small- and macromolecule-sensing, targeted cancer therapy, and drug delivery. We discuss the electrophysiological studies that explore molecular details of channel-facilitated protein and polymer transport across cellular membranes using both natural and foreign substrates. The review focuses on the structurally and functionally different bacterial toxins: gramicidin A of Bacillus brevis, α-hemolysin of Staphylococcus aureus, and binary toxin of Bacillus anthracis, which have found their “second life” in a variety of developing medical and technological applications.

  12. Adenylate Cyclase Toxin promotes bacterial internalisation into non phagocytic cells.

    Science.gov (United States)

    Martín, César; Etxaniz, Asier; Uribe, Kepa B; Etxebarria, Aitor; González-Bullón, David; Arlucea, Jon; Goñi, Félix M; Aréchaga, Juan; Ostolaza, Helena

    2015-09-08

    Bordetella pertussis causes whooping cough, a respiratory infectious disease that is the fifth largest cause of vaccine-preventable death in infants. Though historically considered an extracellular pathogen, this bacterium has been detected both in vitro and in vivo inside phagocytic and non-phagocytic cells. However the precise mechanism used by B. pertussis for cell entry, or the putative bacterial factors involved, are not fully elucidated. Here we find that adenylate cyclase toxin (ACT), one of the important toxins of B. pertussis, is sufficient to promote bacterial internalisation into non-phagocytic cells. After characterization of the entry route we show that uptake of "toxin-coated bacteria" proceeds via a clathrin-independent, caveolae-dependent entry pathway, allowing the internalised bacteria to survive within the cells. Intracellular bacteria were found inside non-acidic endosomes with high sphingomyelin and cholesterol content, or "free" in the cytosol of the invaded cells, suggesting that the ACT-induced bacterial uptake may not proceed through formation of late endolysosomes. Activation of Tyr kinases and toxin-induced Ca(2+)-influx are essential for the entry process. We hypothesize that B. pertussis might use ACT to activate the endocytic machinery of non-phagocytic cells and gain entry into these cells, in this way evading the host immune system.

  13. Effect of High Pressure and Heat on Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Dirk Margosch

    2005-01-01

    Full Text Available Even though the inactivation of microorganisms by high pressure treatment is a subject of intense investigations, the effect of high pressure on bacterial toxins has not been studied so far. In this study, the influence of combined pressure/temperature treatment (0.1 to 800 MPa and 5 to 121 °C on bacterial enterotoxins was determined. Therefore, heat-stable enterotoxin (STa of cholera toxin (CT from Vibrio cholerae, staphylococcal enterotoxins A-E, haemolysin BL (HBL from Bacillus cereus, and Escherichia coli (STa were subjected to different treatment schemes. Structural alterations were monitored in enzyme immunoassays (EIAs. Cytotoxicity of the pressure treated supernatant of toxigenic B. cereus DSM 4384 was investigated with Vero cells. High pressure of 200 to 800 MPa at 5 °C leads to a slight increase of the reactivity of the STa of E. coli. However, reactivity decreased at 800 MPa and 80 °C to (66±21 % after 30 min and to (44±0.3 % after 128 min. At ambient pressure no decrease in EIA reactivity could be observed after 128 min. Pressurization (0.1 to 800 MPa of heat stable monomeric staphylococcal toxins at 5 and 20 °C showed no effect. A combined heat (80 °C and pressure (0.1 to 800 MPa treatment lead to a decrease in the immuno-reactivity to 20 % of its maximum. For cholera toxin a significant loss in latex agglutination was observable only at 80 °C and 800 MPa for holding times higher than 20 min. Interestingly, the immuno-reactivity of B. cereus HBL toxin increased with the increase of pressure (182 % at 800 MPa, 30 °C, and high pressure showed only minor effects on cytotoxicity to Vero cells. Our results indicate that pressurization can increase inactivation observed by heat treatment, and combined treatments may be effective at lower temperatures and/or shorter incubation time.

  14. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  15. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications.

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-02-19

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  16. Application and Development of Biological AFM for the Study of Bacterial Toxins

    National Research Council Canada - National Science Library

    Yang, Jie

    1999-01-01

    ... with other conventional methods. These studies have also established a solid foundation for our structural elucidation of molecular level conformation of membranous bacterial toxins, such as cholera toxin and alpha-hemolysin...

  17. Nigritoxin is a bacterial toxin for crustaceans and insects.

    Science.gov (United States)

    Labreuche, Yannick; Chenivesse, Sabine; Jeudy, Alexandra; Le Panse, Sophie; Boulo, Viviane; Ansquer, Dominique; Pagès, Sylvie; Givaudan, Alain; Czjzek, Mirjam; Le Roux, Frédérique

    2017-11-01

    The Tetraconata (Pancrustacea) concept proposes that insects are more closely related to aquatic crustaceans than to terrestrial centipedes or millipedes. The question therefore arises whether insects have kept crustacean-specific genetic traits that could be targeted by specific toxins. Here we show that a toxin (nigritoxin), originally identified in a bacterial pathogen of shrimp, is lethal for organisms within the Tetraconata and non-toxic to other animals. X-ray crystallography reveals that nigritoxin possesses a new protein fold of the α/β type. The nigritoxin N-terminal domain is essential for cellular translocation and likely encodes specificity for Tetraconata. Once internalized by eukaryotic cells, nigritoxin induces apoptotic cell death through structural features that are localized in the C-terminal domain of the protein. We propose that nigritoxin will be an effective means to identify a Tetraconata evolutionarily conserved pathway and speculate that nigritoxin holds promise as an insecticidal protein.

  18. Bacterial Toxins for Oncoleaking Suicidal Cancer Gene Therapy.

    Science.gov (United States)

    Pahle, Jessica; Walther, Wolfgang

    For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.

  19. Bacterial Toxin-Triggered Drug Release from Gold Nanoparticle-Stabilized Liposomes for the Treatment of Bacterial Infection

    Science.gov (United States)

    Pornpattananangkul, Dissaya; Zhang, Li; Olson, Sage; Aryal, Santosh; Obonyo, Marygorret; Vecchio, Kenneth; Huang, Chun-Ming; Zhang, Liangfang

    2011-01-01

    We report a new approach to selectively delivering antimicrobials to the sites of bacterial infections by utilizing bacterial toxins to activate drug release from gold nanoparticle-stabilized phospholipid liposomes. The binding of chitosan modified gold nanoparticles to the surface of liposomes can effectively prevent them from fusing with one another and from undesirable payload release in regular storage or physiological environments. However, once these protected liposomes “see” bacteria that secrete toxins, the toxins will insert into the liposome membranes and form pores, through which the encapsulated therapeutic agents are released. The released drugs subsequently impose antimicrobial effects on the toxin-secreting bacteria. Using methicillin-resistant Staphycoccus aureus (MRSA) as a model bacterium and vacomycin as a model anti-MRSA antibiotic, we demonstrate that the synthesized gold nanoparticle-stabilized liposomes can completely release the encapsulated vacomycin within 24 h in the presence of MRSA bacteria and lead to inhibition of MRSA growth as effective as an equal amount of vacomycin loaded liposomes (without nanoparticle stabilizers) and free vacomycin. This bacterial toxin enabled drug release from nanoparticle-stabilized liposomes provides a new, safe and effective approach for the treatment of bacterial infections. This technique can be broadly applied to treat a variety of infections caused by bacteria that secrete pore-forming toxins. PMID:21344925

  20. Toxins

    Science.gov (United States)

    Toxins are substances created by plants and animals that are poisonous to humans. Toxins also include some medicines that are helpful in small doses, but poisonous in large amounts. Most toxins that cause problems ...

  1. Epidemiology of bacterial toxin-mediated foodborne gastroenteritis outbreaks in Australia, 2001 to 2013.

    Science.gov (United States)

    May, Fiona J; Polkinghorne, Benjamin G; Fearnley, Emily J

    2016-12-24

    Bacterial toxin-mediated foodborne outbreaks, such as those caused by Clostridium perfringens, Staphylococcus aureus and Bacillus cereus, are an important and preventable cause of morbidity and mortality. Due to the short incubation period and duration of illness, these outbreaks are often under-reported. This is the first study to describe the epidemiology of bacterial toxin-mediated outbreaks in Australia. Using data collected between 2001 and 2013, we identify high risk groups and risk factors to inform prevention measures. Descriptive analyses of confirmed bacterial toxin-mediated outbreaks between 2001 and 2013 were undertaken using data extracted from the OzFoodNet Outbreak Register, a database of all outbreaks of gastrointestinal disease investigated by public health authorities in Australia. A total of 107 laboratory confirmed bacterial toxin-mediated outbreaks were reported between 2001 and 2013, affecting 2,219 people, including 47 hospitalisations and 13 deaths. Twelve deaths occurred in residents of aged care facilities. Clostridium perfringens was the most commonly reported aetiological agent (81 outbreaks, 76%). The most commonly reported food preparation settings were commercial food preparation services (51 outbreaks, 48%) and aged care facilities (42 outbreaks, 39%). Bacterial toxin outbreaks were rarely associated with food preparation in the home (2 outbreaks, 2%). In all outbreaks, the primary factor contributing to the outbreak was inadequate temperature control of the food. Public health efforts aimed at improving storage and handling practices for pre-cooked and re-heated foods, especially in commercial food preparation services and aged care facilities, could help to reduce the magnitude of bacterial toxin outbreaks.

  2. Multivalent carbohydrate inhibitors of bacterial lectins and toxins

    NARCIS (Netherlands)

    Fu, O.

    2015-01-01

    Bacteria and their toxins often carry proteins on their surface binding to specific components of tissue cells or the extracellular matrix. In many cases the components are carbohydrate structures. The adhesion of these carbohydrate-binding proteins, named lectins, to human glycoconjugates is a

  3. Current advances in aptamer-assisted technologies for detecting bacterial and fungal toxins.

    Science.gov (United States)

    Alizadeh, N; Memar, M Y; Mehramuz, B; Abibiglou, S S; Hemmati, F; Samadi Kafil, H

    2018-03-01

    Infectious diseases are among the common leading causes of morbidity and mortality worldwide. Associated with the emergence of new infectious diseases, the increasing number of antimicrobial-resistant isolates presents a serious threat to public health and hospitalized patients. A microbial pathogen may elicit several host responses and use a variety of mechanisms to evade host defences. These methods and mechanisms include capsule, lipopolysaccharides or cell wall components, adhesions and toxins. Toxins inhibit phagocytosis, cause septic shock and host cell damages by binding to host surface receptors and invasion. Bacterial and fungal pathogens are able to apply many different toxin-dependent mechanisms to disturb signalling pathways and the structural integrity of host cells for establishing and maintaining infections Initial techniques for analysis of bacterial toxins were based on in vivo or in vitro assessments. There is a permanent demand for appropriate detection methods which are affordable, practical, careful, rapid, sensitive, efficient and economical. Aptamers are DNA or RNA oligonucleotides that are selected by systematic evolution of ligands using exponential enrichment (SELEX) methods and can be applied in diagnostic applications. This review provides an overview of aptamer-based methods as a novel approach for detecting toxins in bacterial and fungal pathogens. © 2017 The Society for Applied Microbiology.

  4. Higher-Order Structure in Bacterial VapBC Toxin-Antitoxin Complexes

    DEFF Research Database (Denmark)

    Bendtsen, Kirstine L; Brodersen, Ditlev E

    2017-01-01

    that allow auto-regulation of transcription by direct binding to promoter DNA. In this chapter, we review our current understanding of the structural characteristics of type II toxin-antitoxin complexes in bacterial cells, with a special emphasis on the staggering variety of higher-order architecture...... conditions, type II toxins are inhibited through tight protein-protein interaction with a cognate antitoxin protein. This toxin-antitoxin complex associates into a higher-order macromolecular structure, typically heterotetrameric or heterooctameric, exposing two DNA binding domains on the antitoxin...... observed among members of the VapBC family. This structural variety is a result of poor conservation at the primary sequence level and likely to have significant and functional implications on the way toxin-antitoxin expression is regulated....

  5. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Directory of Open Access Journals (Sweden)

    Alexander Harms

    2017-10-01

    Full Text Available Host-targeting type IV secretion systems (T4SS evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery domain-similar to the Bartonella effector proteins (Beps that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping

  6. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella.

    Science.gov (United States)

    Harms, Alexander; Liesch, Marius; Körner, Jonas; Québatte, Maxime; Engel, Philipp; Dehio, Christoph

    2017-10-01

    Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal-the BID (Bep intracellular delivery) domain-similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the

  7. A bacterial toxin-antitoxin module is the origin of inter-bacterial and inter-kingdom effectors of Bartonella

    Science.gov (United States)

    Liesch, Marius

    2017-01-01

    Host-targeting type IV secretion systems (T4SS) evolved from conjugative T4SS machineries that mediate interbacterial plasmid transfer. However, the origins of effectors secreted by these virulence devices have remained largely elusive. Previous work showed that some effectors exhibit homology to toxins of bacterial toxin-antitoxin modules, but the evolutionary trajectories underlying these ties had not been resolved. We previously reported that FicT toxins of FicTA toxin-antitoxin modules disrupt cellular DNA topology via their enzymatic FIC (filamentation induced by cAMP) domain. Intriguingly, the FIC domain of the FicT toxin VbhT of Bartonella schoenbuchensis is fused to a type IV secretion signal–the BID (Bep intracellular delivery) domain—similar to the Bartonella effector proteins (Beps) that are secreted into eukaryotic host cells via the host-targeting VirB T4SS. In this study, we show that the VbhT toxin is an interbacterial effector protein secreted via the conjugative Vbh T4SS that is closely related to the VirB T4SS and encoded by plasmid pVbh of B. schoenbuchensis. We therefore propose that the Vbh T4SS together with its effector VbhT represent an evolutionary missing link on a path that leads from a regular conjugation system and FicTA toxin-antitoxin modules to the VirB T4SS and the Beps. Intriguingly, phylogenetic analyses revealed that the fusion of FIC and BID domains has probably occurred independently in VbhT and the common ancestor of the Beps, suggesting parallel evolutionary paths. Moreover, several other examples of TA module toxins that are bona fide substrates of conjugative T4SS indicate that their recruitment as interbacterial effectors is prevalent and serves yet unknown biological functions in the context of bacterial conjugation. We propose that the adaptation for interbacterial transfer favors the exaptation of FicT and other TA module toxins as inter-kingdom effectors and may thus constitute an important stepping stone in the

  8. Bacterial toxins fuel disease progression in cutaneous T-cell lymphoma

    DEFF Research Database (Denmark)

    Willerslev-Olsen, Andreas; Krejsgaard, Thorbjørn; Lindahl, Lise Maria

    2013-01-01

    In patients with cutaneous T-cell lymphoma (CTCL) bacterial infections constitute a major clinical problem caused by compromised skin barrier and a progressive immunodeficiency. Indeed, the majority of patients with advanced disease die from infections with bacteria, e.g., Staphylococcus aureus....... Bacterial toxins such as staphylococcal enterotoxins (SE) have long been suspected to be involved in the pathogenesis in CTCL. Here, we review links between bacterial infections and CTCL with focus on earlier studies addressing a direct role of SE on malignant T cells and recent data indicating novel...

  9. Bacteriophage-encoded shiga toxin gene in atypical bacterial host

    Directory of Open Access Journals (Sweden)

    Casas Veronica

    2011-07-01

    Full Text Available Abstract Background Contamination from fecal bacteria in recreational waters is a major health concern since bacteria capable of causing human disease can be found in animal feces. The Dog Beach area of Ocean Beach in San Diego, California is a beach prone to closures due to high levels of fecal indicator bacteria (FIB. A potential source of these FIB could be the canine feces left behind by owners who do not clean up after their pets. We tested this hypothesis by screening the DNA isolated from canine feces for the bacteriophage-encoded stx gene normally found in the virulent strains of the fecal bacterium Escherichia coli. Results Twenty canine fecal samples were collected, processed for total and bacterial fraction DNA, and screened by PCR for the stx gene. The stx gene was detected in the total and bacterial fraction DNA of one fecal sample. Bacterial isolates were then cultivated from the stx-positive fecal sample. Eighty nine of these canine fecal bacterial isolates were screened by PCR for the stx gene. The stx gene was detected in five of these isolates. Sequencing and phylogenetic analyses of 16S rRNA gene PCR products from the canine fecal bacterial isolates indicated that they were Enterococcus and not E. coli. Conclusions The bacteriophage-encoded stx gene was found in multiple species of bacteria cultivated from canine fecal samples gathered at the shoreline of the Dog Beach area of Ocean Beach in San Diego, California. The canine fecal bacteria carrying the stx gene were not the typical E. coli host and were instead identified through phylogenetic analyses as Enterococcus. This suggests a large degree of horizontal gene transfer of exotoxin genes in recreational waters.

  10. Bacterial and fungal keratitis in Upper Egypt: In vitro screening of enzymes, toxins and antifungal activity

    Directory of Open Access Journals (Sweden)

    Abdullah A Gharamah

    2014-01-01

    Full Text Available Purpose: This work was conducted to study the ability of bacterial and fungal isolates from keratitis cases in Upper Egypt to produce enzymes, toxins, and to test the isolated fungal species sensitivity to some therapeutic agents. Materials and Methods: One hundred and fifteen patients clinically diagnosed to have microbial keratitis were investigated. From these cases, 37 bacterial isolates and 25 fungal isolates were screened for their ability to produce extra-cellular enzymes in solid media. In addition, the ability of fungal isolates to produce mycotoxins and their sensitivity to 4 antifungal agents were tested. Results: Protease, lipase, hemolysins, urease, phosphatase, and catalase were detected respectively in 48.65%, 37.84%, 59.46%, 43.24%, 67.57%, and 100% out of 37 bacterial isolates tested. Out of 25 fungal isolates tested during the present study, 80% were positive for protease, 84% for lipase and urease, 28% for blood hemolysis, and 100% for phosphatase and catalase enzymes. Thirteen fungal isolates were able to produce detectable amounts of 7 mycotoxins in culture medium (aflatoxins (B1, B2, G1, and G2, sterigmatocystin, fumagillin, diacetoxyscirpenol, zearalenone, T-2 toxin, and trichodermin. Among the antifungal agents tested in this study, terbinafine showed the highest effect against most isolates in vitro. Conclusion: In conclusion, the ability of bacterial and fungal isolates to produce extracellular enzymes and toxins may be aid in the invasion and destruction of eye tissues, which, in turn, lead to vision loss.

  11. Convergent use of RhoGAP toxins by eukaryotic parasites and bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Dominique Colinet

    2007-12-01

    Full Text Available Inactivation of host Rho GTPases is a widespread strategy employed by bacterial pathogens to manipulate mammalian cellular functions and avoid immune defenses. Some bacterial toxins mimic eukaryotic Rho GTPase-activating proteins (GAPs to inactivate mammalian GTPases, probably as a result of evolutionary convergence. An intriguing question remains whether eukaryotic pathogens or parasites may use endogenous GAPs as immune-suppressive toxins to target the same key genes as bacterial pathogens. Interestingly, a RhoGAP domain-containing protein, LbGAP, was recently characterized from the parasitoid wasp Leptopilina boulardi, and shown to protect parasitoid eggs from the immune response of Drosophila host larvae. We demonstrate here that LbGAP has structural characteristics of eukaryotic RhoGAPs but that it acts similarly to bacterial RhoGAP toxins in mammals. First, we show by immunocytochemistry that LbGAP enters Drosophila immune cells, plasmatocytes and lamellocytes, and that morphological changes in lamellocytes are correlated with the quantity of LbGAP they contain. Demonstration that LbGAP displays a GAP activity and specifically interacts with the active, GTP-bound form of the two Drosophila Rho GTPases Rac1 and Rac2, both required for successful encapsulation of Leptopilina eggs, was then achieved using biochemical tests, yeast two-hybrid analysis, and GST pull-down assays. In addition, we show that the overall structure of LbGAP is similar to that of eukaryotic RhoGAP domains, and we identify distinct residues involved in its interaction with Rac GTPases. Altogether, these results show that eukaryotic parasites can use endogenous RhoGAPs as virulence factors and that despite their differences in sequence and structure, eukaryotic and bacterial RhoGAP toxins are similarly used to target the same immune pathways in insects and mammals.

  12. [Use of monoclonal antibodies against horse immunoglobulin in an enzyme immunoassay of bacterial toxins and anatoxins].

    Science.gov (United States)

    Burkin, M A; Gal'vidis, I A; Iakovleva, I V; Sviridov, V V

    2007-01-01

    Immunization of BALB/c mice by horse antiserum against diphtheria made it possible to obtain IgG1 monoclonal antibodies (MoAbs) 2B7E4 specific for light chains of horse immunoglobulin (Ig). Unlike commercial preparations of anti-horse immunoglobulin antibodies, which are specific for the whole Ig molecule or its Fc-fragment, the peroxidase (HRP) conjugate of the MoAb, 2B7E4-HRP did not interact with human, mouse, rabbit, and sheep Igs, or horse albumin. The conjugate obtained was used with MoAbs against bacterial toxins and commercial horse anatoxins, as a universal reagent in sandwich enzyme immunoassay (ELISA) for bacterial toxins and anatoxins. The detection sensitivity of diphtheria toxin/anatoxin equaled 0.0005 Lf/ml; tetanus toxin and anatoxin were detected with sensitivities of 20 LD50/ml and 0.005 UI/ml, respectively. A similar sandwich ELISA for botulinum anatoxins (group measurement) allowed types A, B, and E to be detected at 0.02, 0.002, and 0.001 UI/ml, respectively; selective measurement was only possible in the case of type E anatoxin (0.001 UI/ml).

  13. Recent Developments in Antibody-Based Assays for the Detection of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Kui Zhu

    2014-04-01

    Full Text Available Considering the urgent demand for rapid and accurate determination of bacterial toxins and the recent promising developments in nanotechnology and microfluidics, this review summarizes new achievements of the past five years. Firstly, bacterial toxins will be categorized according to their antibody binding properties into low and high molecular weight compounds. Secondly, the types of antibodies and new techniques for producing antibodies are discussed, including poly- and mono-clonal antibodies, single-chain variable fragments (scFv, as well as heavy-chain and recombinant antibodies. Thirdly, the use of different nanomaterials, such as gold nanoparticles (AuNPs, magnetic nanoparticles (MNPs, quantum dots (QDs and carbon nanomaterials (graphene and carbon nanotube, for labeling antibodies and toxins or for readout techniques will be summarized. Fourthly, microscale analysis or minimized devices, for example microfluidics or lab-on-a-chip (LOC, which have attracted increasing attention in combination with immunoassays for the robust detection or point-of-care testing (POCT, will be reviewed. Finally, some new materials and analytical strategies, which might be promising for analyzing toxins in the near future, will be shortly introduced.

  14. Fragments of the bacterial toxin microcin B17 as gyrase poisons.

    Directory of Open Access Journals (Sweden)

    Frédéric Collin

    Full Text Available Fluoroquinolones are very important drugs in the clinical antibacterial arsenal; their success is principally due to their mode of action: the stabilisation of a gyrase-DNA intermediate (the cleavage complex, which triggers a chain of events leading to cell death. Microcin B17 (MccB17 is a modified peptide bacterial toxin that acts by a similar mode of action, but is unfortunately unsuitable as a therapeutic drug. However, its structure and mechanism could inspire the design of new antibacterial compounds that are needed to circumvent the rise in bacterial resistance to current antibiotics. Here we describe the investigation of the structural features responsible for MccB17 activity and the identification of fragments of the toxin that retain the ability to stabilise the cleavage complex.

  15. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... fermentation processes in which the escape of genetically modified cells would be considered highly risky....

  16. Cytolethal distending toxin (CDT): a bacterial weapon to control host cell proliferation?

    Science.gov (United States)

    De Rycke, J; Oswald, E

    2001-09-25

    Cytolethal distending toxins (CDT) constitute a family of genetically related bacterial protein toxins able to stop the proliferation of numerous cell lines. This effect is due to their ability to trigger in target cells a signaling pathway that normally prevents the transition between the G2 and the M phase of the cell cycle. Produced by several unrelated Gram-negative mucosa-associated bacterial species, CDTs are determined by a cluster of three adjacent genes (cdtA, cdtB, cdtC) encoding proteins whose respective role is not yet fully elucidated. The CDT-B protein presents sequence homology to several mammalian and bacterial phosphodiesterases, such as DNase I. The putative nuclease activity of CDT-B, together with the activation by CDT of a G2 cell cycle checkpoint, strongly suggests that CDT induces an as yet uncharacterized DNA alteration. However, the effective entry of CDT into cells and subsequent translocation into the nucleus have not yet been demonstrated by direct methods. The relationship between the potential DNA-damaging properties of this original family of toxins and their role as putative virulence factors is discussed.

  17. The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily

    Energy Technology Data Exchange (ETDEWEB)

    Batot, Gaëlle; Michalska, Karolina; Ekberg, Greg; Irimpan, Ervin M.; Joachimiak, Grazyna; Jedrzejczak, Robert; Babnigg, Gyorgy; Hayes, Christopher S.; Joachimiak, Andrzej; Goulding, Celia W.

    2017-04-10

    Contact-dependent growth inhibition (CDI) is an important mechanism of inter-bacterial competition found in many Gram-negative pathogens. CDI+ cells express cell-surface CdiA proteins that bind neighboring bacteria and deliver C-terminal toxin domains (CdiA-CT) to inhibit target-cell growth. CDI+ bacteria also produce CdiI immunity proteins, which specifically neutralize cognate CdiA-CT toxins to prevent self-inhibition. Here, we present the crystal structure of the CdiA-CT/CdiI(Ykris) complex from Yersinia kris-tensenii ATCC 33638. CdiA-CTYkris adopts the same fold as angiogenin and other RNase A paralogs, but the toxin does not share sequence similarity with these nucleases and lacks the characteristic disulfide bonds of the superfamily. Consistent with the structural homology, CdiA-CTYkris has potent RNase activity in vitro and in vivo. Structure-guided mutagenesis reveals that His175, Arg186, Thr276 and Tyr278 contribute to CdiA-CTYkris activity, suggesting that these residues participate in substrate binding and/or catalysis. CdiI(Ykris) binds directly over the putative active site and likely neutralizes toxicity by blocking access to RNA substrates. Significantly, CdiA-CTYkris is the first non-vertebrate protein found to possess the RNase A superfamily fold, and homologs of this toxin are associated with secretion systems in many Gram-negative and Gram-positive bacteria. These observations suggest that RNase Alike toxins are commonly deployed in inter-bacterial competition.

  18. Electrochemical characterization of pore formation by bacterial protein toxins on hybrid supported membranes.

    Science.gov (United States)

    Wilkop, Thomas; Xu, Danke; Cheng, Quan

    2008-05-20

    The interaction of pore-forming streptolysin O (SLO) with biomimetic lipid membranes has been studied by electrochemical methods. Phosphatidylcholine lipid vesicles were deposited onto gold electrodes modified with supporting layers of hexyl thioctate (HT) or thioctic acid tri(ethylene glycol) ester (TA-TEGE), and integrity and permeability of the resulting membranes were characterized by cyclic voltammetry and impedance spectroscopy. Both positively and negatively charged electrochemical probes, potassium ferrocyanide, hexaammineruthenium(III) chloride, and ferrocene carboxylic acid (FCA), were employed to evaluate their suitability to probe the membrane permeability properties, with FCA exhibiting ideal behavior and thus employed throughout the work. Fusion of vesicles incubated with SLO on the electrodes yielded membranes that showed a distinctive response pattern for FCA as a function of SLO concentration. A direct dependence of both the currents and peak separation of FCA in the cyclic voltammograms was observed over a concentration range of 0-10 hemolytic units (HU)/microL of the toxin. The interaction of SLO with preformed supported lipid membranes was also investigated, and much lower response was observed, suggesting a different extent of membrane-toxin interactions on such an interface. Nonionic surfactant Triton was found to disrupt the vesicle structure but could not completely remove a preformed membrane to fully restore the electrode response. The information reported here offers some unique insight into toxin-surface interactions on a hybrid membrane, facilitating the development of electrochemically based sensing platforms for detecting trace amounts of bacterial toxins via the perforation process.

  19. Structural insights into the inhibition mechanism of bacterial toxin LsoA by bacteriophage antitoxin Dmd.

    Science.gov (United States)

    Wan, Hua; Otsuka, Yuichi; Gao, Zeng-Qiang; Wei, Yong; Chen, Zhen; Masuda, Michiaki; Yonesaki, Tetsuro; Zhang, Heng; Dong, Yu-Hui

    2016-09-01

    Bacteria have obtained a variety of resistance mechanisms including toxin-antitoxin (TA) systems against bacteriophages (phages), whereas phages have also evolved to overcome bacterial anti-phage mechanisms. Dmd from T4 phage can suppress the toxicities of homologous toxins LsoA and RnlA from Escherichia coli, representing the first example of a phage antitoxin against multiple bacterial toxins in known TA systems. Here, the crystal structure of LsoA-Dmd complex showed Dmd is inserted into the deep groove between the N-terminal repeated domain (NRD) and the Dmd-binding domain (DBD) of LsoA. The NRD shifts significantly from a 'closed' to an 'open' conformation upon Dmd binding. Site-directed mutagenesis of Dmd revealed the conserved residues (W31 and N40) are necessary for LsoA binding and the toxicity suppression as determined by pull-down and cell toxicity assays. Further mutagenesis identified the conserved Dmd-binding residues (R243, E246 and R305) of LsoA are vital for its toxicity, and suggested Dmd and LsoB may possess different inhibitory mechanisms against LsoA toxicity. Our structure-function studies demonstrate Dmd can recognize LsoA and inhibit its toxicity by occupying the active site possibly via substrate mimicry. These findings have provided unique insights into the defense and counter-defense mechanisms between bacteria and phages in their co-evolution. © 2016 John Wiley & Sons Ltd.

  20. Quantitative Mass Spectrometry for Bacterial Protein Toxins — A Sensitive, Specific, High-Throughput Tool for Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Suzanne Kalb

    2011-03-01

    Full Text Available Matrix-assisted laser-desorption time-of-flight (MALDI-TOF mass spectrometry (MS is a valuable high-throughput tool for peptide analysis. Liquid chromatography electrospray ionization (LC-ESI tandem-MS provides sensitive and specific quantification of small molecules and peptides. The high analytic power of MS coupled with high-specificity substrates is ideally suited for detection and quantification of bacterial enzymatic activities. As specific examples of the MS applications in disease diagnosis and select agent detection, we describe recent advances in the analyses of two high profile protein toxin groups, the Bacillus anthracis toxins and the Clostridium botulinum neurotoxins. The two binary toxins produced by B. anthracis consist of protective antigen (PA which combines with lethal factor (LF and edema factor (EF, forming lethal toxin and edema toxin respectively. LF is a zinc-dependent endoprotease which hydrolyzes specific proteins involved in inflammation and immunity. EF is an adenylyl cyclase which converts ATP to cyclic-AMP. Toxin-specific enzyme activity for a strategically designed substrate, amplifies reaction products which are detected by MALDI-TOF-MS and LC-ESI-MS/MS. Pre-concentration/purification with toxin specific monoclonal antibodies provides additional specificity. These combined technologies have achieved high specificity, ultrasensitive detection and quantification of the anthrax toxins. We also describe potential applications to diseases of high public health impact, including Clostridium difficile glucosylating toxins and the Bordetella pertussis adenylyl cyclase.

  1. A novel mechanism of bacterial toxin transfer within host blood cell-derived microvesicles.

    Directory of Open Access Journals (Sweden)

    Anne-lie Ståhl

    2015-02-01

    Full Text Available Shiga toxin (Stx is the main virulence factor of enterohemorrhagic Escherichia coli, which are non-invasive strains that can lead to hemolytic uremic syndrome (HUS, associated with renal failure and death. Although bacteremia does not occur, bacterial virulence factors gain access to the circulation and are thereafter presumed to cause target organ damage. Stx was previously shown to circulate bound to blood cells but the mechanism by which it would potentially transfer to target organ cells has not been elucidated. Here we show that blood cell-derived microvesicles, shed during HUS, contain Stx and are found within patient renal cortical cells. The finding was reproduced in mice infected with Stx-producing Escherichia coli exhibiting Stx-containing blood cell-derived microvesicles in the circulation that reached the kidney where they were transferred into glomerular and peritubular capillary endothelial cells and further through their basement membranes followed by podocytes and tubular epithelial cells, respectively. In vitro studies demonstrated that blood cell-derived microvesicles containing Stx undergo endocytosis in glomerular endothelial cells leading to cell death secondary to inhibited protein synthesis. This study demonstrates a novel virulence mechanism whereby bacterial toxin is transferred within host blood cell-derived microvesicles in which it may evade the host immune system.

  2. Subversion of a lysosomal pathway regulating neutrophil apoptosis by a major bacterial toxin, pyocyanin.

    Science.gov (United States)

    Prince, Lynne R; Bianchi, Stephen M; Vaughan, Kathryn M; Bewley, Martin A; Marriott, Helen M; Walmsley, Sarah R; Taylor, Graham W; Buttle, David J; Sabroe, Ian; Dockrell, David H; Whyte, Moira K B

    2008-03-01

    Neutrophils undergo rapid constitutive apoptosis that is accelerated following bacterial ingestion as part of effective immunity, but is also accelerated by bacterial exotoxins as a mechanism of immune evasion. The paradigm of pathogen-driven neutrophil apoptosis is exemplified by the Pseudomonas aeruginosa toxic metabolite, pyocyanin. We previously showed pyocyanin dramatically accelerates neutrophil apoptosis both in vitro and in vivo, impairs host defenses, and favors bacterial persistence. In this study, we investigated the mechanisms of pyocyanin-induced neutrophil apoptosis. Pyocyanin induced early lysosomal dysfunction, shown by altered lysosomal pH, within 15 min of exposure. Lysosomal disruption was followed by mitochondrial membrane permeabilization, caspase activation, and destabilization of Mcl-1. Pharmacological inhibitors of a lysosomal protease, cathepsin D (CTSD), abrogated pyocyanin-induced apoptosis, and translocation of CTSD to the cytosol followed pyocyanin treatment and lysosomal disruption. A stable analog of cAMP (dibutyryl cAMP) impeded the translocation of CTSD and prevented the destabilization of Mcl-1 by pyocyanin. Thus, pyocyanin activated a coordinated series of events dependent upon lysosomal dysfunction and protease release, the first description of a bacterial toxin using a lysosomal cell death pathway. This may be a pathological pathway of cell death to which neutrophils are particularly susceptible, and could be therapeutically targeted to limit neutrophil death and preserve host responses.

  3. Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin

    Energy Technology Data Exchange (ETDEWEB)

    Byres, Emma; Paton, Adrienne W.; Paton, James C.; Löfling, Jonas C.; Smith, David F.; Wilce, Matthew C.J.; Talbot, Ursula M.; Chong, Damien C.; Yu, Hai; Huang, Shengshu; Chen, Xi; Varki, Nissi M.; Varki, Ajit; Rossjohn, Jamie; Beddoe, Travis (Emory-MED); (UCD); (Adelaide); (Monash)

    2009-01-30

    AB{sub 5} toxins comprise an A subunit that corrupts essential eukaryotic cell functions, and pentameric B subunits that direct target-cell uptake after binding surface glycans. Subtilase cytotoxin (SubAB) is an AB{sub 5} toxin secreted by Shiga toxigenic Escherichia coli (STEC), which causes serious gastrointestinal disease in humans. SubAB causes haemolytic uraemic syndrome-like pathology in mice through SubA-mediated cleavage of BiP/GRP78, an essential endoplasmic reticulum chaperone. Here we show that SubB has a strong preference for glycans terminating in the sialic acid N-glycolylneuraminic acid (Neu5Gc), a monosaccharide not synthesized in humans. Structures of SubB-Neu5Gc complexes revealed the basis for this specificity, and mutagenesis of key SubB residues abrogated in vitro glycan recognition, cell binding and cytotoxicity. SubAB specificity for Neu5Gc was confirmed using mouse tissues with a human-like deficiency of Neu5Gc and human cell lines fed with Neu5Gc. Despite lack of Neu5Gc biosynthesis in humans, assimilation of dietary Neu5Gc creates high-affinity receptors on human gut epithelia and kidney vasculature. This, and the lack of Neu5Gc-containing body fluid competitors in humans, confers susceptibility to the gastrointestinal and systemic toxicities of SubAB. Ironically, foods rich in Neu5Gc are the most common source of STEC contamination. Thus a bacterial toxin's receptor is generated by metabolic incorporation of an exogenous factor derived from food.

  4. The DinJ/RelE Toxin-Antitoxin System Suppresses Bacterial Proliferation and Virulence of Xylella fastidiosa in Grapevine.

    Science.gov (United States)

    Burbank, Lindsey P; Stenger, Drake C

    2017-04-01

    Xylella fastidiosa, the causal agent of Pierce's disease of grapes, is a slow-growing, xylem-limited, bacterial pathogen. Disease progression is characterized by systemic spread of the bacterium through xylem vessel networks, causing leaf-scorching symptoms, senescence, and vine decline. It appears to be advantageous to this pathogen to avoid excessive blockage of xylem vessels, because living bacterial cells are generally found in plant tissue with low bacterial cell density and minimal scorching symptoms. The DinJ/RelE toxin-antitoxin system is characterized here for a role in controlling bacterial proliferation and population size during plant colonization. The DinJ/RelE locus is transcribed from two separate promoters, allowing for coexpression of antitoxin DinJ with endoribonuclease toxin RelE, in addition to independent expression of RelE. The ratio of antitoxin/toxin expressed is dependent on bacterial growth conditions, with lower amounts of antitoxin present under conditions designed to mimic grapevine xylem sap. A knockout mutant of DinJ/RelE exhibits a hypervirulent phenotype, with higher bacterial populations and increased symptom development and plant decline. It is likely that DinJ/RelE acts to prevent excessive population growth, contributing to the ability of the pathogen to spread systemically without completely blocking the xylem vessels and increasing probability of acquisition by the insect vector.

  5. Bacterial metabolic 'toxins': a new mechanism for lactose and food intolerance, and irritable bowel syndrome.

    Science.gov (United States)

    Campbell, A K; Matthews, S B; Vassel, N; Cox, C D; Naseem, R; Chaichi, J; Holland, I B; Green, J; Wann, K T

    2010-12-30

    Lactose and food intolerance cause a wide range of gut and systemic symptoms, including gas, gut pain, diarrhoea or constipation, severe headaches, severe fatigue, loss of cognitive functions such as concentration, memory and reasoning, muscle and joint pain, heart palpitations, and a variety of allergies (Matthews and Campbell, 2000; Matthews et al., 2005; Waud et al., 2008). These can be explained by the production of toxic metabolites from gut bacteria, as a result of anaerobic digestion of carbohydrates and other foods, not absorbed in the small intestine. These metabolites include alcohols, diols such as butan 2,3 diol, ketones, acids, and aldehydes such as methylglyoxal (Campbell et al., 2005, 2009). These 'toxins' induce calcium signals in bacteria and affect their growth, thereby acting to modify the balance of microflora in the gut (Campbell et al., 2004, 2007a,b). These bacterial 'toxins' also affect signalling mechanisms in cells around the body, thereby explaining the wide range of symptoms in people with food intolerance. This new mechanism also explains the most common referral to gastroenterologists, irritable bowel syndrome (IBS), and the illness that afflicted Charles Darwin for 50 years (Campbell and Matthews, 2005a,b). We propose it will lead to a new understanding of the molecular mechanism of type 2 diabetes and some cancers. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  6. The interaction of DNA gyrase with the bacterial toxin CcdB

    DEFF Research Database (Denmark)

    Kampranis, S C; Howells, A J; Maxwell, A

    1999-01-01

    CcdB is a bacterial toxin that targets DNA gyrase. Analysis of the interaction of CcdB with gyrase reveals two distinct complexes. An initial complex (alpha) is formed by direct interaction between GyrA and CcdB; this complex can be detected by affinity column and gel-shift analysis, and has...... of this initial complex with ATP in the presence of GyrB and DNA slowly converts it to a second complex (beta), which has a lower rate of ATP hydrolysis and is unable to catalyse supercoiling. The efficiency of formation of this inactive complex is dependent on the concentrations of ATP and CcdB. We suggest...

  7. Monitoring water supplies for weaponized bacteria and bacterial toxins using rapid fluorescence-based viability and affinity assays

    Science.gov (United States)

    Van Tassell, Roger L.; Evans, Mishell

    2004-03-01

    The rapid detection of weaponized bacteria and toxins is a major problem during a biological attack. Although sensitive detection formats exist for many biowarfare agents, they often require advanced training and complex procedures. Luna has developed simple, rapid means for determining the presence of pathogens and bacterial toxins in water supplies using fluorescence-based assays that can be adapted for field use. The batteries of rapid assays are designed for i) determining cell viability and bacterial loads by exploiting metabolic markers (e.g., acid-production, redox potentials, etc) and ii) detecting bacterial toxins using fluorescent, polymerized affinity liposomes (fluorosomes). The viability assays were characterized using E. coli, S. aureus and the anthrax simulant, B. globigii. The viability assays detected bacterial loads of ~ 104 CFU/ml and with simple filtration ~ 100CFU/ml could be detected. The affinity fluorosomes were characterized using cholera toxin (CT). Affinity liposomes displaying GM1 and anti-CT antibodies could detect CT at water susceptible to sabotage could be easily monitored and confirmed for specific agents using simple, general and specific fluorescence-based detection schemes based on metabolism and ligand-target interactions.

  8. Endogenous bacterial toxins are required for the injurious action of platelet-activating factor in rats.

    Science.gov (United States)

    Sun, X M; MacKendrick, W; Tien, J; Huang, W; Caplan, M S; Hsueh, W

    1995-07-01

    Platelet-activating factor (PAF), an endogenous mediator for experimental sepsis, has been shown to induce shock and intestinal necrosis in vivo. However, it is unclear whether PAF exerts its injurious effects on the intestinal tissue directly or via synergism with other endogenous products. The aim of this study was to examine the role of endogenous bacterial products, such as endotoxin, in PAF-induced intestinal injury. PAF (3 micrograms/kg) was injected intravenously into normally colonized rats, germfree rats, and normal rats pretreated with a combination of antibiotics, and the systemic response and intestinal injury were assessed. PAF did not cause prolonged shock, leukopenia, hemoconcentration, and bowel necrosis in germfree rats. When germfree rats were primed with a low dose (0.5 mg/kg) of endotoxin, the protection was lost. Combined treatment of the normally colonized rats with neomycin, polymyxin B, and metronidazole for 7 days largely protected the animal from PAF-induced shock and intestinal necrosis. PAF does not directly induce prolonged hypotension, hemoconcentration, persistent leukopenia, and gross intestinal necrosis but causes these changes via a synergism with endogenous bacterial toxins, presumably from the gut flora.

  9. Isolation and characterization of gut bacterial proteases involved in inducing pathogenicity of Bacillus thuringiensis toxin in cotton bollworm, Helicoverpa armigera

    Directory of Open Access Journals (Sweden)

    Visweshwar Regode

    2016-10-01

    Full Text Available Bacillus thuringiensis (Bt toxin proteins are deployed in transgenic plants for pest management. The present studies were aimed at characterization of gut bacterial proteases involved in activation of inactive Cry1Ac protoxin (pro-Cry1Ac to active toxin in Helicoverpa armigera. Bacterial strains were isolated from H. armigera midgut and screened for their proteolytic activation towards pro-Cry1Ac. Among twelve gut bacterial isolates seven isolates showed proteolytic activity, and proteases from three isolates (IVS1, IVS2 and IVS3 were found to be involved in the proteolytic conversion of pro-Cry1Ac into active toxin. The proteases from IVS1, IVS2 and IVS3 isolates were purified to 11.90-, 15.50- and 17.20-fold, respectively. The optimum pH and temperature for gut bacterial protease activity was 8.0 and 40 oC. Maximum inhibition of total proteolytic activity was exerted by PMSF followed by EDTA. Fluorescence zymography revealed that proteases from IVS1, IVS2, and IVS3 were chymotrypsin-like and showing protease band at ~15, 65 and 15 kDa, respectively. Active Cry1Ac formed from processing pro-Cry1Ac by gut bacterial proteases exhibited toxicity towards H. armigera. The gut bacterial isolates IVS1, IVS2 and IVS3 showed homology with Bacillus thuringiensis (CP003763.1, Vibrio fischeri (CP000020.2 and Escherichia coli (CP011342.1, respectively. Proteases produced by midgut bacteria are involved in proteolytic processing of Bt protoxin and play a major role in inducing pathogenicity of Bt toxins in H. armigera.

  10. Steady-state levels of G-protein beta-subunit expression are regulated by treatment of cells with bacterial toxins

    International Nuclear Information System (INIS)

    Watkins, D.C.; Northup, J.K.; Malbon, C.C.

    1987-01-01

    Cultures of 3T3-L1 cells were incubated with either 10 ng/ml cholera toxin or 10 ng/ml pertussis toxin from 4 days prior to the initiation of differentiation and throughout the subsequent incubation. Toxin concentrations were sufficient to completely prevent the labelling of alpha-subunits with [ 32 P]NAD + and pertussis toxin and to prevent by more than 90% the labelling with [ 32 P]NAD + and cholera toxin in membranes prepared from these cells. Neither toxin prevented the differentiation to the adipocyte phenotype. Neither toxin prevented the increases in the relative amounts of G-proteins which occur upon differentiation. Both toxins dramatically decreased the amount of beta-subunits. As measured by quantitative immunoblotting with antisera specific for both the 35 kDa and 36 kDa beta-subunits, levels of beta-subunit were decreased by more than 50% of steady-state level of control cells. Thus, bacterial toxins which modifies G-protein alpha-subunits are capable of modulating the levels of beta-subunits in vivo. The basis for the regulation of G-protein subunit expression by bacterial toxins is under study

  11. [Immunoenzimatic detection of the Clostridium tetani bacterial toxin: an alternative to mice bioassays].

    Science.gov (United States)

    Chaves, Fernando; León, Guillermo; Hernández-Chavarría, Francisco

    2006-06-01

    Cell-free extracts from 20 strains of Clostridium tetani isolated from soil samples, were tested for tetanus toxin production using an enzyme immunoassay. All the extracts were classified as positive for the toxin presence, and eight of them showed absorbance values corresponding to tetanus toxin concentrations between 3.2 and 88 ng/ml; thus, they fell within the linear absorbance range (0.135-0.317). All dilutions of toxin used to obtain the calibration curve (0.0071 to 1.1 ng) were lethal for mice.

  12. The ARTT motif and a unified structural understanding of substraterecognition in ADP ribosylating bacterial toxins and eukaryotic ADPribosyltransferases

    Energy Technology Data Exchange (ETDEWEB)

    Han, S.; Tainer, J.A.

    2001-08-01

    ADP-ribosylation is a widely occurring and biologically critical covalent chemical modification process in pathogenic mechanisms, intracellular signaling systems, DNA repair, and cell division. The reaction is catalyzed by ADP-ribosyltransferases, which transfer the ADP-ribose moiety of NAD to a target protein with nicotinamide release. A family of bacterial toxins and eukaryotic enzymes has been termed the mono-ADP-ribosyltransferases, in distinction to the poly-ADP-ribosyltransferases, which catalyze the addition of multiple ADP-ribose groups to the carboxyl terminus of eukaryotic nucleoproteins. Despite the limited primary sequence homology among the different ADP-ribosyltransferases, a central cleft bearing NAD-binding pocket formed by the two perpendicular b-sheet core has been remarkably conserved between bacterial toxins and eukaryotic mono- and poly-ADP-ribosyltransferases. The majority of bacterial toxins and eukaryotic mono-ADP-ribosyltransferases are characterized by conserved His and catalytic Glu residues. In contrast, Diphtheria toxin, Pseudomonas exotoxin A, and eukaryotic poly-ADP-ribosyltransferases are characterized by conserved Arg and catalytic Glu residues. The NAD-binding core of a binary toxin and a C3-like toxin family identified an ARTT motif (ADP-ribosylating turn-turn motif) that is implicated in substrate specificity and recognition by structural and mutagenic studies. Here we apply structure-based sequence alignment and comparative structural analyses of all known structures of ADP-ribosyltransfeases to suggest that this ARTT motif is functionally important in many ADP-ribosylating enzymes that bear a NAD binding cleft as characterized by conserved Arg and catalytic Glu residues. Overall, structure-based sequence analysis reveals common core structures and conserved active sites of ADP-ribosyltransferases to support similar NAD binding mechanisms but differing mechanisms of target protein binding via sequence variations within the ARTT

  13. Wake me when it's over - Bacterial toxin-antitoxin proteins and induced dormancy.

    Science.gov (United States)

    Coussens, Nathan P; Daines, Dayle A

    2016-06-01

    Toxin-antitoxin systems are encoded by bacteria and archaea to enable an immediate response to environmental stresses, including antibiotics and the host immune response. During normal conditions, the antitoxin components prevent toxins from interfering with metabolism and arresting growth; however, toxin activation enables microbes to remain dormant through unfavorable conditions that might continue over millions of years. Intense investigations have revealed a multitude of mechanisms for both regulation and activation of toxin-antitoxin systems, which are abundant in pathogenic microorganisms. This minireview provides an overview of the current knowledge regarding type II toxin-antitoxin systems along with their clinical and environmental implications. © 2016 by the Society for Experimental Biology and Medicine.

  14. Influence of bacterial toxins on the GTPase activity of transducin from bovine retinal rod outer segments

    International Nuclear Information System (INIS)

    Rybin, V.O.; Gureeva, A.A.

    1986-01-01

    The action of cholera toxin, capable of ADP-ribosylation of the activator N/sub s/ protein, and pertussis toxin, capable of ADP-ribosylation of the inhibitor N/sub i/ protein of the adenylate cyclase complex, on transducin, the GTP-binding protein of the rod outer segments of the retina, was investigated. It was shown that under the action of pertussis and cholera toxins, the GTPase activity of transducin is inhibited. Pertussin toxin inhibits the GTPase of native retinal rod outer segments by 30-40%, while GTPase of homogeneous transducin produces a 70-80% inhibition. The action of toxins on transducin depends on the presence and nature of the guanylic nucleotide with which incubation is performed. On the basis of the data obtained it is suggested that pertussis toxin interacts with pretransducin and with the transducin-GDP complex, while cholera toxin ADP-ribosylates the transducin-GTP complex and does not act on transducin lacking GTP

  15. Environmental T4-Family Bacteriophages Evolve to Escape Abortive Infection via Multiple Routes in a Bacterial Host Employing "Altruistic Suicide" through Type III Toxin-Antitoxin Systems.

    Science.gov (United States)

    Chen, Bihe; Akusobi, Chidiebere; Fang, Xinzhe; Salmond, George P C

    2017-01-01

    Abortive infection is an anti-phage mechanism employed by a bacterium to initiate its own death upon phage infection. This reduces, or eliminates, production of viral progeny and protects clonal siblings in the bacterial population by an act akin to an "altruistic suicide." Abortive infection can be mediated by a Type III toxin-antitoxin system called ToxIN Pa consisting of an endoribonuclease toxin and RNA antitoxin. ToxIN Pa is a heterohexameric quaternary complex in which pseudoknotted RNA inhibits the toxicity of the toxin until infection by certain phages causes destabilization of ToxIN Pa , leading to bacteriostasis and, eventually, lethality. However, it is still unknown why only certain phages are able to activate ToxIN Pa . To try to address this issue we first introduced ToxIN Pa into the Gram-negative enterobacterium, Serratia sp. ATCC 39006 ( S 39006) and then isolated new environmental S 39006 phages that were scored for activation of ToxIN Pa and abortive infection capacity. We isolated three T4-like phages from a sewage treatment outflow point into the River Cam, each phage being isolated at least a year apart. These phages were susceptible to ToxIN Pa -mediated abortive infection but produced spontaneous "escape" mutants that were insensitive to ToxIN Pa . Analysis of these resistant mutants revealed three different routes of escaping ToxIN Pa , namely by mutating asiA (the product of which is a phage transcriptional co-activator); by mutating a conserved, yet functionally unknown, orf84 ; or by deleting a 6.5-10 kb region of the phage genome. Analysis of these evolved escape mutants may help uncover the nature of the corresponding phage product(s) involved in activation of ToxIN Pa .

  16. The Pathogenetic Effect of Natural and Bacterial Toxins on Atopic Dermatitis

    Science.gov (United States)

    Park, Kyung-Duck; Pak, Sok Cheon; Park, Kwan-Kyu

    2016-01-01

    Atopic dermatitis (AD) is a common allergic skin disease that is associated with chronic, recurrent eczematous and pruritic lesions at the flexural folds caused by interacting factors related to environmental and immune system changes. AD results in dry skin, and immunoglobulin E-mediated allergic reactions to foods and environmental allergens. While steroids and anti-histamines temporarily relieve the symptoms of AD, the possibility of side effects from pharmacological interventions remains. Despite intensive research, the underlying mechanisms for AD have not been clarified. A study of Staphylococcus aureus (S. aureus) established the role of its toxins in the pathogenesis of AD. Approximately 90% of patients with AD experience S. aureus colonization and up to 50%–60% of the colonizing S. aureus is toxin-producing. Any damage to the protective skin barrier allows for the entry of invading allergens and pathogens that further drive the pathogenesis of AD. Some natural toxins (or their components) that have therapeutic effects on AD have been studied. In addition, recent studies on inflammasomes as one component of the innate immune system have been carried out. Additionally, studies on the close relationship between the activation of inflammasomes and toxins in AD have been reported. This review highlights the literature that discusses the pathogenesis of AD, the role of toxins in AD, and the positive and negative effects of toxins on AD. Lastly, suggestions are made regarding the role of inflammasomes in AD. PMID:28025545

  17. Targeting c-kit receptor in neuroblastomas and colorectal cancers using stem cell factor (SCF)-based recombinant bacterial toxins.

    Science.gov (United States)

    Choudhary, Swati; Pardo, Alessa; Rosinke, Reinhard; Batra, Janendra K; Barth, Stefan; Verma, Rama S

    2016-01-01

    Autocrine activation of c-kit (KIT receptor tyrosine kinase) has been postulated to be a potent oncogenic driver in small cell lung cancer, neuroblastoma (NB), and poorly differentiated colorectal carcinoma (CRC). Although targeted therapy involving tyrosine kinase inhibitors (TKIs) such as imatinib mesylate is highly effective for gastrointestinal stromal tumor carrying V560G c-kit mutation, it does not show much potential for targeting wild-type KIT (WT-KIT). Our study demonstrates the role of stem cell factor (SCF)-based toxin conjugates for targeting WT-KIT-overexpressing malignancies such as NBs and CRCs. We constructed SCF-based recombinant bacterial toxins by genetically fusing mutated form of natural ligand SCF to receptor binding deficient forms of Diphtheria toxin (DT) or Pseudomonas exotoxin A (ETA') and evaluated their efficacy in vitro. Efficient targeting was achieved in all receptor-positive neuroblastoma (IMR-32 and SHSY5Y) and colon cancer cell lines (COLO 320DM, HCT 116, and DLD-1) but not in receptor-negative breast carcinoma cell line (MCF-7) thereby proving specificity. While dose- and time-dependent cytotoxicity was observed in both neuroblastoma cell lines, COLO 320DM and HCT 116 cells, only an anti-proliferative effect was observed in DLD-1 cells. We prove that these novel targeting agents have promising potential as KIT receptor tyrosine kinase targeting system.

  18. The ColM Family, Polymorphic Toxins Breaching the Bacterial Cell Wall

    Directory of Open Access Journals (Sweden)

    Maarten G. K. Ghequire

    2018-02-01

    Full Text Available Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.

  19. [Bacterial ecology and resistance to antibiotics in patients with neurogenic overactive bladder treated with intravesical botulinum toxin injections].

    Science.gov (United States)

    Levy, J; Le Breton, F; Jousse, M; Haddad, R; Verollet, D; Guinet-Lacoste, A; Amarenco, G

    2014-10-01

    For the last ten years, botulinum neurotoxin type A has become the gold standard for the treatment of neurogenic overactive detrusor. Bacterial colonization is common for these patients using clean intermittent self-catheterization, and toxin injections are at risk of urinary tract infections. The aim of our study was to determine the prevalence of different germs and their resistance to antibiotics in patients with neurogenic bladder, treated with intravesical botulinum toxin injections. This epidemiologic study took place from September to October 2012 in a urodynamic and neurourology unit in a teaching hospital in Paris, France. Eighty patients with a valid urine culture according to our protocol, were included. Fourty-four culture were positive with 45 bacteria. We found an Escherichia coli in 42.5%, a Klebsiella pneumoniae in 7.5%, a Citrobacter freundii and an enterococcus in 2.5%, and a Staphylococcus aureus in 1.25%. Penicillin resistance were found in 51.11%, 3rd generation cephalosporins in 8.89%, quinolones in 28.89% and sulfamids in 24.44%. None were resistant to fosfomycin. E. coli was the most frequent bacterium. No resistance to fosfomycin was found. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  20. Bacterial toxin's DNA vaccine serves as a strategy for the treatment of cancer, infectious and autoimmune diseases.

    Science.gov (United States)

    Behzadi, Elham; Halabian, Raheleh; Hosseini, Hamideh Mahmoodzadeh; Fooladi, Abbas Ali Imani

    2016-11-01

    DNA vaccination -a third generation vaccine-is a modern approach to stimulate humoral and cellular responses against different diseases such as infectious diseases, cancer and autoimmunity. These vaccines are composed of a gene that encodes sequences of a desired protein under control of a proper (eukaryotic or viral) promoter. Immune response following DNA vaccination is influenced by the route and the dose of injection. In addition, antigen presentation following DNA administration has three different mechanisms including antigen presentation by transfected myocytes, transfection of professional antigen presenting cells (APCs) and cross priming. Recently, it has been shown that bacterial toxins and their components can stimulate and enhance immune responses in experimental models. A study demonstrated that DNA fusion vaccine encoding the first domain (DOM) of the Fragment C (FrC) of tetanus neurotoxin (CTN) coupled with tumor antigen sequences is highly immunogenic against colon carcinoma. DNA toxin vaccines against infectious and autoimmune diseases are less studied until now. All in all, this novel approach has shown encouraging results in animal models, but it has to go through adequate clinical trials to ensure its effectiveness in human. However, it has been proven that these vaccines are safe, multifaceted and simple and can be used widely in organisms which may be of advantage to public health in the near future. This paper outlines the mechanism of the action of DNA vaccines and their possible application for targeting infectious diseases, cancer and autoimmunity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Nonmalignant T cells stimulate growth of T-cell lymphoma cells in the presence of bacterial toxins

    DEFF Research Database (Denmark)

    Woetmann, Anders; Lovato, Paola; Eriksen, Karsten W

    2007-01-01

    Bacterial toxins including staphylococcal enterotoxins (SEs) have been implicated in the pathogenesis of cutaneous T-cell lymphomas (CTCLs). Here, we investigate SE-mediated interactions between nonmalignant T cells and malignant T-cell lines established from skin and blood of CTCL patients....... The malignant CTCL cells express MHC class II molecules that are high-affinity receptors for SE. Although treatment with SE has no direct effect on the growth of the malignant CTCL cells, the SE-treated CTCL cells induce vigorous proliferation of the SE-responsive nonmalignant T cells. In turn, the nonmalignant...... T cells enhance proliferation of the malignant cells in an SE- and MHC class II-dependent manner. Furthermore, SE and, in addition, alloantigen presentation by malignant CTCL cells to irradiated nonmalignant CD4(+) T-cell lines also enhance proliferation of the malignant cells. The growth...

  2. Thermal stability and structural changes in bacterial toxins responsible for food poisoning.

    Science.gov (United States)

    Regenthal, Paulina; Hansen, Jesper S; André, Ingemar; Lindkvist-Petersson, Karin

    2017-01-01

    The staphylococcal enterotoxins (SEs) are secreted by the bacteria Staphylococcus aureus and are the most common causative agent in staphylococcal food poisoning. The staphylococcal enterotoxin A (SEA) has been associated with large staphylococcal food poisoning outbreaks, but newer identified SEs, like staphylococcal enterotoxin H (SEH) has recently been shown to be present at similar levels as SEA in food poisoning outbreaks. Thus, we set out to investigate the thermo-stability of the three-dimensional structures of SEA, SEH and staphylococcal enterotoxin E (SEE), since heat inactivation is a common method to inactivate toxins during food processing. Interestingly, the investigated toxins behaved distinctly different upon heating. SEA and SEE were more stable at slightly acidic pH values, while SEH adopted an extremely stable structure at neutral pH, with almost no effects on secondary structural elements upon heating to 95°C, and with reversible formation of tertiary structure upon subsequent cooling to room temperature. Taken together, the data suggests that the family of staphylococcal enterotoxins have different ability to withstand heat, and thus the exact profile of heat inactivation for all SEs causing food poisoning needs to be considered to improve food safety.

  3. A Bacterial Toxin with Analgesic Properties: Hyperpolarization of DRG Neurons by Mycolactone

    Directory of Open Access Journals (Sweden)

    Ok-Ryul Song

    2017-07-01

    Full Text Available Mycolactone, a polyketide molecule produced by Mycobacterium ulcerans, is the etiological agent of Buruli ulcer. This lipid toxin is endowed with pleiotropic effects, presents cytotoxic effects at high doses, and notably plays a pivotal role in host response upon colonization by the bacillus. Most remarkably, mycolactone displays intriguing analgesic capabilities: the toxin suppresses or alleviates the pain of the skin lesions it inflicts. We demonstrated that the analgesic capability of mycolactone was not attributable to nerve damage, but instead resulted from the triggering of a cellular pathway targeting AT2 receptors (angiotensin II type 2 receptors; AT2R, and leading to potassium-dependent hyperpolarization. This demonstration paves the way to new nature-inspired analgesic protocols. In this direction, we assess here the hyperpolarizing properties of mycolactone on nociceptive neurons. We developed a dedicated medium-throughput assay based on membrane potential changes, and visualized by confocal microscopy of bis-oxonol-loaded Dorsal Root Ganglion (DRG neurons. We demonstrate that mycolactone at non-cytotoxic doses triggers the hyperpolarization of DRG neurons through AT2R, with this action being not affected by known ligands of AT2R. This result points towards novel AT2R-dependent signaling pathways in DRG neurons underlying the analgesic effect of mycolactone, with the perspective for the development of new types of nature-inspired analgesics.

  4. No effect of Bt Cry1Ie toxin on bacterial diversity in the midgut of the Chinese honey bees, Apis cerana cerana (Hymenoptera, Apidae).

    Science.gov (United States)

    Jia, Hui-Ru; Dai, Ping-Li; Geng, Li-Li; Jack, Cameron J; Li, Yun-He; Wu, Yan-Yan; Diao, Qing-Yun; Ellis, James D

    2017-01-31

    Cry1Ie protein derived from Bacillus thuringiensis (Bt) has been proposed as a promising candidate for the development of a new Bt-maize variety to control maize pests in China. We studied the response of the midgut bacterial community of Apis cerana cerana to Cry1Ie toxin under laboratory conditions. Newly emerged bees were fed one of the following treatments for 15 and 30 days: three concentrations of Cry1Ie toxin (20 ng/mL, 200 ng/mL, and 20 μg/mL) in sugar syrup, pure sugar syrup as a negative control and 48 ng/mL imidacloprid as a positive control. The relative abundance of 16S rRNA genes was measured by Quantitative Polymerase Chain Reaction and no apparent differences were found among treatments for any of these counts at any time point. Furthermore, the midgut bacterial structure and compositions were determined using high-throughput sequencing targeting the V3-V4 regions of the 16S rDNA. All core honey bee intestinal bacterial genera such as Lactobacillus, Bifidobacterium, Snodgrassella, and Gilliamella were detected, and no significant changes were found in the species diversity and richness for any bacterial taxa among treatments at different time points. These results suggest that Cry1Ie toxin may not affect gut bacterial communities of Chinese honey bees.

  5. Transfer of toxin genes to alternate bacterial hosts for mosquito control

    Directory of Open Access Journals (Sweden)

    Sergio Orduz

    1995-02-01

    Full Text Available Mosquitoes are vector of serious human and animal diseases, such as malaria, dengue, yellow fever, among others. The use of biological control agents has provide an environmentally safe and highly specific alternative to the use of chemical insecticides in the control of vector borne diseases. Bacillus thuringiensis and B. sphaericus produce toxic proteins to mosquito larvae. Great progress has been made on the biochemical and molecular characterization of such proteins and the genes encoding them. Nevertheless, the low residuality of these biological insecticides is one of the major drawbacks. This article present some interesting aspects of the mosquito larvae feeding habits and review the attempts that have been made to genetically engineer microorganisms that while are used by mosquito larvae as a food source should express the Bacillus toxin genes in order to improve the residuality and stability in the mosquito breeding ponds.

  6. Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA.

    Science.gov (United States)

    Wei, Yong; Gao, Zengqiang; Zhang, Heng; Dong, Yuhui

    2016-04-15

    Toxin-antitoxin (TA) loci are widespread in bacteria plasmids and chromosomes, and target various cellular functions to regulate cell growth and death. A type II TA system RnlA-RnlB from Escherichia coli is associated with phage-resistance. After the infection of bacteriophage T4 with Dmd defection, RnlA is activated by the disappearance of RnlB, resulting in the rapid degradation of T4 mRNAs. Dmd can bind to RnlA directly and neutralize RnlA toxicity to allow phage reproduction. Dmd represent a heterogenous antitoxin of RnlA replacing antitoxin RnlB. Here, we reported two structures of Dmd from T4 phage and RB69 phage. Both Dmd structures are high similar with a compacted domain composed of a four-stranded anti-parallel β-sheet and an α-helix. Chromatography and SAXS suggest Dmd forms a dimer in solution consistent with that in crystal. Structure-based mutagenesis of Dmd reveals key residues involved in RnlA-binding. Possibility cavities in Dmd used for compounds design were modeled. Our structural study revealed the recognition and inhibition mechanism of RnlA by Dmd and providing a potential laboratory phage prevention target for drug design. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Larvicidal Activities of Indigenous Bacillus thuringiensis Isolates and Nematode Symbiotic Bacterial Toxins against the Mosquito Vector, Culex pipiens (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Ashraf M Ahmed

    2017-06-01

    Full Text Available Background: The incidence of mosquito-borne diseases and the resistance of mosquitoes to conventional pesticides have recently caused a panic to the authorities in the endemic countries. This study was conducted to identify native larvicidal biopesticides against Culex pipiens for utilization in the battle against mosquito-borne diseases.Methods: Larvicidal activities of new indigenous Bacillus thuringiensis isolates and crude toxin complexes (TCs of two nematode bacterial-symbionts, Photorhabdus luminescens akhurstii (HRM1 and Ph. luminescens akhurstii (HS1 that tested against Cx. pipiens. B. thuringiensis isolates were recovered from different environmental samples in Saudi Arabia, and the entomopathogenic nematodes, Heterorhabditis indica (HRM1 and He. sp (HS1 were iso­lated from Egypt. Larvicidal activities (LC50 and LC95 of the potentially active B. thuringiensis strains or TCs were then evaluated at 24 and 48h post-treatment.Results: Three B. thuringiensis isolates were almost as active as the reference B. thuringiensis israelensis (Bti-H14, and seven isolates were 1.6–5.4 times more toxic than Bti-H14. On the other hand, the TCs of the bacterial sym­bionts, HRM1 and HS1, showed promising larvicidal activities. HS1 showed LC50 of 2.54 folds that of HRM1 at 24h post-treatment. Moreover, histopathological examinations of the HS1-treated larvae showed deformations in midgut epithelial cells at 24h post-treatment.Conclusion: Synergistic activity and molecular characterization of these potentially active biocontrol agents are currently being investigated. These results may lead to the identification of eco-friend mosquito larvicidal product(s that could contribute to the battle against mosquito-borne diseases.

  8. Vibrio type III effector VPA1380 is related to the cysteine protease domain of large bacterial toxins.

    Directory of Open Access Journals (Sweden)

    Thomas Calder

    Full Text Available Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2, but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator.

  9. Vibrio Type III Effector VPA1380 Is Related to the Cysteine Protease Domain of Large Bacterial Toxins

    Science.gov (United States)

    Calder, Thomas; Kinch, Lisa N.; Fernandez, Jessie; Salomon, Dor; Grishin, Nick V.; Orth, Kim

    2014-01-01

    Vibrio parahaemolyticus is a Gram-negative halophilic bacterium and one of the leading causes of food-borne gastroenteritis. Its genome harbors two Type III Secretion Systems (T3SS1 and T3SS2), but only T3SS2 is required for enterotoxicity seen in animal models. Effector proteins secreted from T3SS2 have been previously shown to promote colonization of the intestinal epithelium, invasion of host cells, and destruction of the epithelial monolayer. In this study, we identify VPA1380, a T3SS2 effector protein that is toxic when expressed in yeast. Bioinformatic analyses revealed that VPA1380 is highly similar to the inositol hexakisphosphate (IP6)-inducible cysteine protease domains of several large bacterial toxins. Mutations in conserved catalytic residues and residues in the putative IP6-binding pocket abolished toxicity in yeast. Furthermore, VPA1380 was not toxic in IP6 deficient yeast cells. Therefore, our findings suggest that VPA1380 is a cysteine protease that requires IP6 as an activator. PMID:25099122

  10. Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products

    Directory of Open Access Journals (Sweden)

    B. Stephen Inbaraj

    2016-01-01

    Full Text Available Food safety draws considerable attention in the modern pace of the world owing to rapid-changing food recipes and food habits. Foodborne illnesses associated with pathogens, toxins, and other contaminants pose serious threat to human health. Besides, a large amount of money is spent on both analyses and control measures, which causes significant loss to the food industry. Conventional detection methods for bacterial pathogens and toxins are time consuming and laborious, requiring certain sophisticated instruments and trained personnel. In recent years, nanotechnology has emerged as a promising field for solving food safety issues in terms of detecting contaminants, enabling controlled release of preservatives to extend the shelf life of foods, and improving food-packaging strategies. Nanomaterials including metal oxide and metal nanoparticles, carbon nanotubes, and quantum dots are gaining a prominent role in the design of sensors and biosensors for food analysis. In this review, various nanomaterial-based sensors reported in the literature for detection of several foodborne bacterial pathogens and toxins are summarized highlighting their principles, advantages, and limitations in terms of simplicity, sensitivity, and multiplexing capability. In addition, the application through a noncross-linking method without the need for any surface modification is also presented for detection of pork adulteration in meat products.

  11. European Workshop on Bacterial Protein Toxins (4th) Held in Urbino, Italy on July 3-6, 1989

    Science.gov (United States)

    1990-02-28

    OF CELL INTOXICATION Tanarna S. Physiologlicl Role of Encdgous Mono(ADP.-rbosyl~tion of 0 Proteina ..... 211 AAfovi K. Ge Ol U., Haw ., Laux #A, Amit...bilayer, we studied the protease resistance of the toxin after its interaction with liposomes. Treatment with proteinase K of the toxin bound to liposomes...generated two protease resistant fragments of 8.5 and 9.5 kDa. Comparison of the N-terminal amino acid sequences of the proteinase K fragments with the

  12. Cytolethal distending toxin: a conserved bacterial genotoxin that blocks cell cycle progression, leading to apoptosis of a broad range of mammalian cell lineages.

    Science.gov (United States)

    Jinadasa, Rasika N; Bloom, Stephen E; Weiss, Robert S; Duhamel, Gerald E

    2011-07-01

    Cytolethal distending toxin (CDT) is a heterotrimeric AB-type genotoxin produced by several clinically important Gram-negative mucocutaneous bacterial pathogens. Irrespective of the bacterial species of origin, CDT causes characteristic and irreversible cell cycle arrest and apoptosis in a broad range of cultured mammalian cell lineages. The active subunit CdtB has structural homology with the phosphodiesterase family of enzymes including mammalian DNase I, and alone is necessary and sufficient to account for cellular toxicity. Indeed, mammalian cells treated with CDT initiate a DNA damage response similar to that elicited by ionizing radiation-induced DNA double strand breaks resulting in cell cycle arrest and apoptosis. The mechanism of CDT-induced apoptosis remains incompletely understood, but appears to involve both p53-dependent and -independent pathways. While epithelial, endothelial and fibroblast cell lines respond to CDT by undergoing arrest of cell cycle progression resulting in nuclear and cytoplasmic distension that precedes apoptotic cell death, cells of haematopoietic origin display rapid apoptosis following a brief period of cell cycle arrest. In this review, the ecology of pathogens producing CDT, the molecular biology of bacterial CDT and the molecular mechanisms of CDT-induced cytotoxicity are critically appraised. Understanding the contribution of a broadly conserved bacterial genotoxin that blocks progression of the mammalian cell cycle, ultimately causing cell death, should assist with elucidating disease mechanisms for these important pathogens.

  13. Stool C difficile toxin

    Science.gov (United States)

    ... toxin; Colitis - toxin; Pseudomembranous - toxin; Necrotizing colitis - toxin; C difficile - toxin ... be analyzed. There are several ways to detect C difficile toxin in the stool sample. Enzyme immunoassay ( ...

  14. A Cell-Based Approach for the Biosynthesis/Screening of Cyclic Peptide Libraries against Bacterial Toxins

    Energy Technology Data Exchange (ETDEWEB)

    Camarero, J A; Kimura, R; Woo, Y; Cantor, J; Steenblock, E

    2007-10-24

    Available methods for developing and screening small drug-like molecules able to knockout toxins or pathogenic microorganisms have some limitations. In order to be useful, these new methods must provide high-throughput analysis and identify specific binders in a short period of time. To meet this need, we are developing an approach that uses living cells to generate libraries of small biomolecules, which are then screened inside the cell for activity. Our group is using this new, combined approach to find highly specific ligands capable of disabling anthrax Lethal Factor (LF) as proof of principle. Key to our approach is the development of a method for the biosynthesis of libraries of cyclic peptides, and an efficient screening process that can be carried out inside the cell.

  15. CXCL1 can be regulated by IL-6 and promotes granulocyte adhesion to brain capillaries during bacterial toxin exposure and encephalomyelitis

    Directory of Open Access Journals (Sweden)

    Roy Monica

    2012-01-01

    Full Text Available Abstract Background Granulocytes generally exert protective roles in the central nervous system (CNS, but recent studies suggest that they can be detrimental in experimental autoimmune encephalomyelitis (EAE, the most common model of multiple sclerosis. While the cytokines and adhesion molecules involved in granulocyte adhesion to the brain vasculature have started to be elucidated, the required chemokines remain undetermined. Methods CXCR2 ligand expression was examined in the CNS of mice suffering from EAE or exposed to bacterial toxins by quantitative RT-PCR and in situ hybridization. CXCL1 expression was analyzed in IL-6-treated endothelial cell cultures by quantitative RT-PCR and ELISA. Granulocytes were counted in the brain vasculature after treatment with a neutralizing anti-CXCL1 antibody using stereological techniques. Results CXCL1 was the most highly expressed ligand of the granulocyte receptor CXCR2 in the CNS of mice subjected to EAE or infused with lipopolysaccharide (LPS or pertussis toxin (PTX, the latter being commonly used to induce EAE. IL-6 upregulated CXCL1 expression in brain endothelial cells by acting transcriptionally and mediated the stimulatory effect of PTX on CXCL1 expression. The anti-CXCL1 antibody reduced granulocyte adhesion to brain capillaries in the three conditions under study. Importantly, it attenuated EAE severity when given daily for a week during the effector phase of the disease. Conclusions This study identifies CXCL1 not only as a key regulator of granulocyte recruitment into the CNS, but also as a new potential target for the treatment of neuroinflammatory diseases such as multiple sclerosis.

  16. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Science.gov (United States)

    Cotton, James A; Motta, Jean-Paul; Schenck, L Patrick; Hirota, Simon A; Beck, Paul L; Buret, Andre G

    2014-01-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs) are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time that certain

  17. Giardia duodenalis infection reduces granulocyte infiltration in an in vivo model of bacterial toxin-induced colitis and attenuates inflammation in human intestinal tissue.

    Directory of Open Access Journals (Sweden)

    James A Cotton

    Full Text Available Giardia duodenalis (syn. G. intestinalis, G. lamblia is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the development of diarrheal disease and fever. Conversely, separate observations have indicated Giardia infections may enhance the severity of diarrheal disease from a co-infecting pathogen. Polymorphonuclear leukocytes or neutrophils (PMNs are granulocytic, innate immune cells characteristic of acute intestinal inflammatory responses against bacterial pathogens that contribute to the development of diarrheal disease following recruitment into intestinal tissues. Giardia cathepsin B cysteine proteases have been shown to attenuate PMN chemotaxis towards IL-8/CXCL8, suggesting Giardia targets PMN accumulation. However, the ability of Giardia infections to attenuate PMN accumulation in vivo and how in turn this effect may alter the host inflammatory response in the intestine has yet to be demonstrated. Herein, we report that Giardia infection attenuates granulocyte tissue infiltration induced by intra-rectal instillation of Clostridium difficile toxin A and B in an isolate-dependent manner. This attenuation of granulocyte infiltration into colonic tissues paralled decreased expression of several cytokines associated with the recruitment of PMNs. Giardia trophozoite isolates that attenuated granulocyte infiltration in vivo also decreased protein expression of cytokines released from inflamed mucosal biopsy tissues collected from patients with active Crohn's disease, including several cytokines associated with PMN recruitment. These results demonstrate for the first time

  18. Multicenter evaluation of the BD max enteric bacterial panel PCR assay for rapid detection of Salmonella spp., Shigella spp., Campylobacter spp. (C. jejuni and C. coli), and Shiga toxin 1 and 2 genes.

    Science.gov (United States)

    Harrington, S M; Buchan, B W; Doern, C; Fader, R; Ferraro, M J; Pillai, D R; Rychert, J; Doyle, L; Lainesse, A; Karchmer, T; Mortensen, J E

    2015-05-01

    Diarrhea due to enteric bacterial pathogens causes significant morbidity and mortality in the United States and worldwide. However, bacterial pathogens may be infrequently identified. Currently, culture and enzyme immunoassays (EIAs) are the primary methods used by clinical laboratories to detect enteric bacterial pathogens. We conducted a multicenter evaluation of the BD Max enteric bacterial panel (EBP) PCR assay in comparison to culture for the detection of Salmonella spp., Shigella spp., Campylobacter jejuni, and Campylobacter coli and an EIA for Shiga toxins 1 and 2. A total of 4,242 preserved or unpreserved stool specimens, including 3,457 specimens collected prospectively and 785 frozen, retrospective samples, were evaluated. Compared to culture or EIA, the positive percent agreement (PPA) and negative percent agreement (NPA) values for the BD Max EBP assay for all specimens combined were as follows: 97.1% and 99.2% for Salmonella spp., 99.1% and 99.7% for Shigella spp., 97.2% and 98.4% for C. jejuni and C. coli, and 97.4% and 99.3% for Shiga toxins, respectively. Discrepant results for prospective samples were resolved with alternate PCR assays and bidirectional sequencing of amplicons. Following discrepant analysis, PPA and NPA values were as follows: 97.3% and 99.8% for Salmonella spp., 99.2% and 100% for Shigella spp., 97.5% and 99.0% for C. jejuni and C. coli, and 100% and 99.7% for Shiga toxins, respectively. No differences in detection were observed for samples preserved in Cary-Blair medium and unpreserved samples. In this large, multicenter study, the BD Max EBP assay showed superior sensitivity compared to conventional methods and excellent specificity for the detection of enteric bacterial pathogens in stool specimens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Jensen, Lars S; Vogensen, Stine B

    2005-01-01

    Polyamine toxins, isolated from spiders and wasps, have been used as pharmacological tools for the study of ionotropic receptors, but their use have so far been hampered by their lack of selectivity. In this mini-review, we describe how careful synthetic modification of native polyamine toxins ha...

  20. Bacterial stress

    Indian Academy of Sciences (India)

    First page Back Continue Last page Graphics. Bacterial stress. Physicochemical and chemical parameters: temperature, pressure, pH, salt concentration, oxygen, irradiation. Nutritional depravation: nutrient starvation, water shortage. Toxic compounds: Antibiotics, heavy metals, toxins, mutagens. Interactions with other cells: ...

  1. The MqsRA Toxin-Antitoxin System from Xylella fastidiosa Plays a Key Role in Bacterial Fitness, Pathogenicity, and Persister Cell Formation

    Science.gov (United States)

    Merfa, Marcus V.; Niza, Bárbara; Takita, Marco A.; De Souza, Alessandra A.

    2016-01-01

    Through the formation of persister cells, bacteria exhibit tolerance to multidrug and other environmental stresses without undergoing genetic changes. The toxin-antitoxin (TA) systems are involved in the formation of persister cells because they are able to induce cell dormancy. Among the TA systems, the MqsRA system has been observed to be highly induced in persister cells of Xylella fastidiosa (causal agent of citrus variegated chlorosis—CVC) activated by copper stress, and has been described in Escherichia coli as related to the formation of persister cells and biofilms. Thus, we evaluated the role of this TA system in X. fastidiosa by overexpressing the MqsR toxin, and verified that the toxin positively regulated biofilm formation and negatively cell movement, resulting in reduced pathogenicity in citrus plants. The overexpression of MqsR also increased the formation of persister cells under copper stress. Analysis of the gene and protein expression showed that this system likely has an autoregulation mechanism to express the toxin and antitoxin in the most beneficial ratio for the cell to oppose stress. Our results suggest that this TA system plays a key role in the adaptation and survival of X. fastidiosa and reveal new insights into the physiology of phytopathogen-host interactions. PMID:27375608

  2. Mechanism of Shiga Toxin Clustering on Membranes

    DEFF Research Database (Denmark)

    Pezeshkian, Weria; Gao, Haifei; Arumugam, Senthil

    2017-01-01

    The bacterial Shiga toxin interacts with its cellular receptor, the glycosphingolipid globotriaosylceramide (Gb3 or CD77), as a first step to entering target cells. Previous studies have shown that toxin molecules cluster on the plasma membrane, despite the apparent lack of direct interactions...... toxin molecules. By contrast, in coarse-grained computer simulations, a correlation was found between clustering and toxin nanoparticle-driven suppression of membrane fluctuations, and experimentally we observed that clustering required the toxin molecules to be tightly bound to the membrane surface....... The most likely interpretation of these findings is that a membrane fluctuation-induced force generates an effective attraction between toxin molecules. Such force would be of similar strength to the electrostatic force at separations around 1 nm, remain strong at distances up to the size of toxin...

  3. Botulinum toxin

    Directory of Open Access Journals (Sweden)

    Nigam P

    2010-01-01

    Full Text Available Botulinum toxin, one of the most poisonous biological substances known, is a neurotoxin produced by the bacterium Clostridium botulinum. C. botulinum elaborates eight antigenically distinguishable exotoxins (A, B, C 1 , C 2 , D, E, F and G. All serotypes interfere with neural transmission by blocking the release of acetylcholine, the principal neurotransmitter at the neuromuscular junction, causing muscle paralysis. The weakness induced by injection with botulinum toxin A usually lasts about three months. Botulinum toxins now play a very significant role in the management of a wide variety of medical conditions, especially strabismus and focal dystonias, hemifacial spasm, and various spastic movement disorders, headaches, hypersalivation, hyperhidrosis, and some chronic conditions that respond only partially to medical treatment. The list of possible new indications is rapidly expanding. The cosmetological applications include correction of lines, creases and wrinkling all over the face, chin, neck, and chest to dermatological applications such as hyperhidrosis. Injections with botulinum toxin are generally well tolerated and side effects are few. A precise knowledge and understanding of the functional anatomy of the mimetic muscles is absolutely necessary to correctly use botulinum toxins in clinical practice.

  4. Environmental T4-Family Bacteriophages Evolve to Escape Abortive Infection via Multiple Routes in a Bacterial Host Employing “Altruistic Suicide” through Type III Toxin-Antitoxin Systems

    Science.gov (United States)

    Chen, Bihe; Akusobi, Chidiebere; Fang, Xinzhe; Salmond, George P. C.

    2017-01-01

    Abortive infection is an anti-phage mechanism employed by a bacterium to initiate its own death upon phage infection. This reduces, or eliminates, production of viral progeny and protects clonal siblings in the bacterial population by an act akin to an “altruistic suicide.” Abortive infection can be mediated by a Type III toxin-antitoxin system called ToxINPa consisting of an endoribonuclease toxin and RNA antitoxin. ToxINPa is a heterohexameric quaternary complex in which pseudoknotted RNA inhibits the toxicity of the toxin until infection by certain phages causes destabilization of ToxINPa, leading to bacteriostasis and, eventually, lethality. However, it is still unknown why only certain phages are able to activate ToxINPa. To try to address this issue we first introduced ToxINPa into the Gram-negative enterobacterium, Serratia sp. ATCC 39006 (S 39006) and then isolated new environmental S 39006 phages that were scored for activation of ToxINPa and abortive infection capacity. We isolated three T4-like phages from a sewage treatment outflow point into the River Cam, each phage being isolated at least a year apart. These phages were susceptible to ToxINPa-mediated abortive infection but produced spontaneous “escape” mutants that were insensitive to ToxINPa. Analysis of these resistant mutants revealed three different routes of escaping ToxINPa, namely by mutating asiA (the product of which is a phage transcriptional co-activator); by mutating a conserved, yet functionally unknown, orf84; or by deleting a 6.5–10 kb region of the phage genome. Analysis of these evolved escape mutants may help uncover the nature of the corresponding phage product(s) involved in activation of ToxINPa. PMID:28620370

  5. Environmental T4-Family Bacteriophages Evolve to Escape Abortive Infection via Multiple Routes in a Bacterial Host Employing “Altruistic Suicide” through Type III Toxin-Antitoxin Systems

    Directory of Open Access Journals (Sweden)

    Bihe Chen

    2017-05-01

    Full Text Available Abortive infection is an anti-phage mechanism employed by a bacterium to initiate its own death upon phage infection. This reduces, or eliminates, production of viral progeny and protects clonal siblings in the bacterial population by an act akin to an “altruistic suicide.” Abortive infection can be mediated by a Type III toxin-antitoxin system called ToxINPa consisting of an endoribonuclease toxin and RNA antitoxin. ToxINPa is a heterohexameric quaternary complex in which pseudoknotted RNA inhibits the toxicity of the toxin until infection by certain phages causes destabilization of ToxINPa, leading to bacteriostasis and, eventually, lethality. However, it is still unknown why only certain phages are able to activate ToxINPa. To try to address this issue we first introduced ToxINPa into the Gram-negative enterobacterium, Serratia sp. ATCC 39006 (S 39006 and then isolated new environmental S 39006 phages that were scored for activation of ToxINPa and abortive infection capacity. We isolated three T4-like phages from a sewage treatment outflow point into the River Cam, each phage being isolated at least a year apart. These phages were susceptible to ToxINPa-mediated abortive infection but produced spontaneous “escape” mutants that were insensitive to ToxINPa. Analysis of these resistant mutants revealed three different routes of escaping ToxINPa, namely by mutating asiA (the product of which is a phage transcriptional co-activator; by mutating a conserved, yet functionally unknown, orf84; or by deleting a 6.5–10 kb region of the phage genome. Analysis of these evolved escape mutants may help uncover the nature of the corresponding phage product(s involved in activation of ToxINPa.

  6. From the gastrointestinal tract (GIT) to the kidneys: live bacterial cultures (probiotics) mediating reductions of uremic toxin levels via free radical signaling.

    Science.gov (United States)

    Vitetta, Luis; Linnane, Anthony W; Gobe, Glenda C

    2013-11-07

    A host of compounds are retained in the body of uremic patients, as a consequence of progressive renal failure. Hundreds of compounds have been reported to be retention solutes and many have been proven to have adverse biological activity, and recognized as uremic toxins. The major mechanistic overview considered to contribute to uremic toxin overload implicates glucotoxicity, lipotoxicity, hexosamine, increased polyol pathway activity and the accumulation of advanced glycation end-products (AGEs). Until recently, the gastrointestinal tract (GIT) and its associated micro-biometabolome was a neglected factor in chronic disease development. A systematic underestimation has been to undervalue the contribution of GIT dysbiosis (a gut barrier-associated abnormality) whereby low-level pro-inflammatory processes contribute to chronic kidney disease (CKD) development. Gut dysbiosis provides a plausible clue to the origin of systemic uremic toxin loads encountered in clinical practice and may explain the increasing occurrence of CKD. In this review, we further expand a hypothesis that posits that environmentally triggered and maintained microbiome perturbations drive GIT dysbiosis with resultant uremia. These subtle adaptation responses by the GIT microbiome can be significantly influenced by probiotics with specific metabolic properties, thereby reducing uremic toxins in the gut. The benefit translates to a useful clinical treatment approach for patients diagnosed with CKD. Furthermore, the role of reactive oxygen species (ROS) in different anatomical locales is highlighted as a positive process. Production of ROS in the GIT by the epithelial lining and the commensal microbe cohort is a regulated process, leading to the formation of hydrogen peroxide which acts as an essential second messenger required for normal cellular homeostasis and physiological function. Whilst this critical review has focused on end-stage CKD (type 5), our aim was to build a plausible hypothesis

  7. Mixed biofilm formation by Shiga toxin-producing Escherichia coli and Salmonella enterica serovar typhimurium enhanced bacterial resistance to sanitization due to extracellular polymeric substances

    Science.gov (United States)

    Shiga toxin–producing Escherichia coli O157:H7 and Salmonella enterica serovar Typhimurium are important foodborne pathogens capable of forming single-species biofilms or coexisting in multispecies biofilm communities. Bacterial biofilm cells are usually more resistant to sanitization than their pla...

  8. Giardia duodenalis Infection Reduces Granulocyte Infiltration in an In Vivo Model of Bacterial Toxin-Induced Colitis and Attenuates Inflammation in Human Intestinal Tissue

    OpenAIRE

    Cotton, James A.; Motta, Jean-Paul; Schenck, L. Patrick; Hirota, Simon A.; Beck, Paul L.; Buret, Andre G.

    2014-01-01

    Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a predominant cause of waterborne diarrheal disease that may lead to post-infectious functional gastrointestinal disorders. Although Giardia-infected individuals could carry as much as 106 trophozoites per centimetre of gut, their intestinal mucosa is devoid of overt signs of inflammation. Recent studies have shown that in endemic countries where bacterial infectious diseases are common, Giardia infections can protect against the develo...

  9. Interplay between toxin transport and flotillin localization

    DEFF Research Database (Denmark)

    Pust, Sascha; Dyve, Anne Berit; Torgersen, Maria L

    2010-01-01

    The flotillin proteins are localized in lipid domains at the plasma membrane as well as in intracellular compartments. In the present study, we examined the importance of flotillin-1 and flotillin-2 for the uptake and transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin and we...... for flotillin-1 or -2. However, the Golgi-dependent sulfation of both toxins was significantly reduced in flotillin knockdown cells. Interestingly, when the transport of ricin to the ER was investigated, we obtained an increased mannosylation of ricin in flotillin-1 and flotillin-2 knockdown cells. The toxicity...... of both toxins was twofold increased in flotillin-depleted cells. Since BFA (Brefeldin A) inhibits the toxicity even in flotillin knockdown cells, the retrograde toxin transport is apparently still Golgi-dependent. Thus, flotillin proteins regulate and facilitate the retrograde transport of Stx and ricin....

  10. Immunotoxins: The Role of the Toxin

    Directory of Open Access Journals (Sweden)

    David FitzGerald

    2013-08-01

    Full Text Available Immunotoxins are antibody-toxin bifunctional molecules that rely on intracellular toxin action to kill target cells. Target specificity is determined via the binding attributes of the chosen antibody. Mostly, but not exclusively, immunotoxins are purpose-built to kill cancer cells as part of novel treatment approaches. Other applications for immunotoxins include immune regulation and the treatment of viral or parasitic diseases. Here we discuss the utility of protein toxins, of both bacterial and plant origin, joined to antibodies for targeting cancer cells. Finally, while clinical goals are focused on the development of novel cancer treatments, much has been learned about toxin action and intracellular pathways. Thus toxins are considered both medicines for treating human disease and probes of cellular function.

  11. Characterisation of botulinum toxins type A and B, by matrix-assisted laser desorption ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Wils, E.R.J.

    2002-01-01

    A method earlier developed for the mass spectrometric (MS) identification of tetanus toxin (TTx) was applied to botulinum toxins type A and B (BTxA and BTxB). Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent. Biologically active BTxA and BTxB

  12. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and its correlation with STEC bacterial hosts in a produce-growing area in Salinas, California.

    Science.gov (United States)

    Liao, Yen-Te; Quintela, Irwin A; Nguyen, Kimberly; Salvador, Alexandra; Cooley, Michael B; Wu, Vivian C H

    2018-01-01

    Shiga toxin-producing E. coli (STEC) causes approximately 265,000 illnesses and 3,600 hospitalizations annually and is highly associated with animal contamination due to the natural reservoir of ruminant gastrointestinal tracts. Free STEC-specific bacteriophages against STEC strains are also commonly isolated from fecal-contaminated environment. Previous studies have evaluated the correlation between the prevalence of STEC-specific bacteriophages and STEC strains to improve animal-associated environment. However, the similar information regarding free STEC-specific bacteriophages prevalence in produce growing area is lacking. Thus, the objectives of this research were to determine the prevalence of STEC-specific phages, analyze potential effects of environmental factors on the prevalence of the phages, and study correlations between STEC-specific bacteriophages and the bacterial hosts in pre-harvest produce environment. Surface water from 20 samples sites was subjected to free bacteriophage isolation using host strains of both generic E. coli and STEC (O157, six non-O157 and one O179 strains) cocktails, and isolation of O157 and non-O157 STEC strains by use of culture methods combined with PCR-based confirmation. The weather data were obtained from weather station website. Free O145- and O179-specific bacteriophages were the two most frequently isolated bacteriophages among all (O45, O145, O157 and O179) in this study. The results showed June and July had relatively high prevalence of overall STEC-specific bacteriophages with minimum isolation of STEC strains. In addition, the bacteriophages were likely isolated in the area-around or within city-with predominant human impact, whereas the STEC bacterial isolates were commonly found in agriculture impact environment. Furthermore, there was a trend that the sample sites with positive of free STEC bacteriophage did not have the specific STEC bacterial hosts. The findings of the study enable us to understand the ecology

  13. Toxin yet not toxic: Botulinum toxin in dentistry

    Directory of Open Access Journals (Sweden)

    Archana M.S.

    2016-04-01

    Full Text Available Paracelsus contrasted poisons from nonpoisons, stating that “All things are poisons, and there is nothing that is harmless; the dose alone decides that something is a poison”. Living organisms, such as plants, animals, and microorganisms, constitute a huge source of pharmaceutically useful medicines and toxins. Depending on their source, toxins can be categorized as phytotoxins, mycotoxins, or zootoxins, which include venoms and bacterial toxins. Any toxin can be harmful or beneficial. Within the last 100 years, the perception of botulinum neurotoxin (BTX has evolved from that of a poison to a versatile clinical agent with various uses. BTX plays a key role in the management of many orofacial and dental disorders. Its indications are rapidly expanding, with ongoing trials for further applications. However, despite its clinical use, what BTX specifically does in each condition is still not clear. The main aim of this review is to describe some of the unclear aspects of this potentially useful agent, with a focus on the current research in dentistry.

  14. Nanoparticle-detained toxins for safe and effective vaccination

    Science.gov (United States)

    Hu, Che-Ming J.; Fang, Ronnie H.; Luk, Brian T.; Zhang, Liangfang

    2013-12-01

    Toxoid vaccines--vaccines based on inactivated bacterial toxins--are routinely used to promote antitoxin immunity for the treatment and prevention of bacterial infections. Following chemical or heat denaturation, inactivated toxins can be administered to mount toxin-specific immune responses. However, retaining faithful antigenic presentation while removing toxin virulence remains a major challenge and presents a trade-off between efficacy and safety in toxoid development. Here, we show a nanoparticle-based toxin-detainment strategy that safely delivers non-disrupted pore-forming toxins for immune processing. Using erythrocyte membrane-coated nanoparticles and staphylococcal α-haemolysin, we demonstrate effective virulence neutralization via spontaneous particle entrapment. Compared with vaccination with heat-denatured toxin, mice vaccinated with the nanoparticle-detained toxin showed superior protective immunity against toxin-mediated adverse effects. We find that the non-disruptive detoxification approach benefited the immunogenicity and efficacy of toxoid vaccines. We anticipate that this study will open new possibilities in the preparation of antitoxin vaccines against the many virulence factors that threaten public health.

  15. Radiolabelling of cholera toxin

    International Nuclear Information System (INIS)

    Santos, R.G.; Neves, Nicoli M.J.; Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L.; Lima, M.E. de; Nicoli, J.R.

    1999-01-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na 125 I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The 125 I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author)

  16. Radiolabelling of cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Santos, R.G.; Neves, Nicoli M.J. [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, MG (Brazil); Abdalla, L.F.; Brandao, R.L.; Etchehebehere, L. [Ouro Preto Univ., MG (Brazil). Escola de Farmacia. Lab. de Fisiologia e Bioquimica de Microorganismos; Lima, M.E. de [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Bioquimica e Imunologia; Nicoli, J.R. [Minas Gerais Univ., Belo Horizonte, MG (Brazil). Inst. de Ciencias Biologicas. Dept. de Microbiologia

    1999-11-01

    Binding of cholera toxin to ganglioside receptors of enterocyte microvilli catalyzes the activation of adenylate cyclase causing a rise in cAMP which final result is a copious diarrhea. Saccharomyces boulardii, a nonpathogenic yeast has been used to prevent diarrhea. Although the antidiarrheic properties of S. boulardii are widely recognized, this yeast has been used on empirical basis, and the mechanism of this protective effect is unknown. The addition of cholera toxin to S. boulardii induces the raising of cAMP that triggers the activation of neutral trehalase. This suggests that toxin specifically binding to cells, is internalized and active the protein phosphorylation cascade. Our objective is labeling the cholera toxin to verify the presence of binding sites on yeast cell surfaces for the cholera toxin. Cholera toxin was radiolabelled with Na {sup 125} I by a chloramine-T method modified from Cuatrecasas and Griffiths et alii. The {sup 125} I-Cholera toxin showed a specific radioactivity at about 1000 cpm/fmol toxin. Biological activity of labeled cholera toxin measured by trehalase activation was similar to the native toxin. (author) 5 refs., 3 figs.; e-mail: nevesmj at urano.cdtn.br

  17. Growth factor toxin fusion proteins for the treatment of leukemia: Preclinical animal studies relevant for human acute myeloid leukemia

    NARCIS (Netherlands)

    H. Rozemuller (Henk)

    1997-01-01

    textabstractIn the development of new therapeutic agents to treat malignancies. bacterial and plant toxins are being investigated. Targeting cells with these toxins has been facilitated by chemical conjugation or genetic engineering of the toxin to proteins with cellular binding potential, such as

  18. Helicobacter pylori Vacuolating Toxin and Gastric Cancer

    Science.gov (United States)

    McClain, Mark S.; Beckett, Amber C.; Cover, Timothy L.

    2017-01-01

    Helicobacter pylori VacA is a channel-forming toxin unrelated to other known bacterial toxins. Most H. pylori strains contain a vacA gene, but there is marked variation among strains in VacA toxin activity. This variation is attributable to strain-specific variations in VacA amino acid sequences, as well as variations in the levels of VacA transcription and secretion. In this review, we discuss epidemiologic studies showing an association between specific vacA allelic types and gastric cancer, as well as studies that have used animal models to investigate VacA activities relevant to gastric cancer. We also discuss the mechanisms by which VacA-induced cellular alterations may contribute to the pathogenesis of gastric cancer. PMID:29023421

  19. Investigation of prevalence of free Shiga toxin-producing Escherichia coli (STEC)-specific bacteriophages and the correlation with STEC bacterial hosts in produce-growing area in Salinas, California

    Science.gov (United States)

    Shiga toxin-producing E. coli (STEC) strains, commensal to gastrointestinal tracts of ruminants or other animals, have been associated with serious human illnesses. Due to the natural habitats of STEC, the bacteriophages infectious against these bacteria are commonly isolated from fecal-contaminated...

  20. Differential Requirement for the Translocation of Clostridial Binary Toxins: Iota Toxin Requires a Membrane Potential Gradient

    Science.gov (United States)

    2007-02-28

    chlorpromazin (Chp), filipinIII, nigericin (Ni), con- canamycin (Con), ammonium chloride, and nocodazole were from Sig- ma. 2.2. Bacterial strains and toxin...fluid before recording the radioactivity. Results are expressed as a percentage of inhibited protein synthesis rel- ative to control preparations not...5 nM) (D) as measured by inhibition of protein synthesis in Vero cells. Data are means ± S.D. (n = 5). 10-9 10-7 0 20 40 60 80 100 C2 toxin (log M) F

  1. Microalgal toxin(s): characteristics and importance

    African Journals Online (AJOL)

    Prokaryotic and eukaryotic microalgae produce a wide array of compounds with biological activities. These include antibiotics, algicides, toxins, pharmaceutically active compounds and plant growth regulators. Toxic microalgae, in this sense, are common only among the cyanobacteria and dinoflagellates. The microalgal ...

  2. Oxidative Stress in Shiga Toxin Production by Enterohemorrhagic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Katarzyna Licznerska

    2016-01-01

    Full Text Available Virulence of enterohemorrhagic Escherichia coli (EHEC strains depends on production of Shiga toxins. These toxins are encoded in genomes of lambdoid bacteriophages (Shiga toxin-converting phages, present in EHEC cells as prophages. The genes coding for Shiga toxins are silent in lysogenic bacteria, and prophage induction is necessary for their efficient expression and toxin production. Under laboratory conditions, treatment with UV light or antibiotics interfering with DNA replication are commonly used to induce lambdoid prophages. Since such conditions are unlikely to occur in human intestine, various research groups searched for other factors or agents that might induce Shiga toxin-converting prophages. Among other conditions, it was reported that treatment with H2O2 caused induction of these prophages, though with efficiency significantly lower relative to UV-irradiation or mitomycin C treatment. A molecular mechanism of this phenomenon has been proposed. It appears that the oxidative stress represents natural conditions provoking induction of Shiga toxin-converting prophages as a consequence of H2O2 excretion by either neutrophils in infected humans or protist predators outside human body. Finally, the recently proposed biological role of Shiga toxin production is described in this paper, and the “bacterial altruism” and “Trojan Horse” hypotheses, which are connected to the oxidative stress, are discussed.

  3. Recycling old screen-printed electrodes with newly designed plastic antibodies on the wall of carbon nanotubes as sensory element for in situ detection of bacterial toxins in water

    OpenAIRE

    Queirós, Raquel B.; Guedes, A.; Marques, P.V.S.; Noronha, João P. C.; Sales, M. Goreti F.

    2012-01-01

    Using low cost portable devices that enable a single analytical step for screening environmental contaminants is today a demanding issue. This concept is here tried out by recycling screen-printed electrodes that were to be disposed of and by choosing as sensory element a low cost material offering specific response for an environmental contaminant. Microcystins (MCs) were used as target analyte, for being dangerous toxins produced by cyanobacteria released into water bodies. The ...

  4. Removal of Cholera Toxin from Aqueous Solution by Probiotic Bacteria

    Directory of Open Access Journals (Sweden)

    Jussi A. O. Meriluoto

    2012-06-01

    Full Text Available Cholera remains a serious health problem, especially in developing countries where basic hygiene standards are not met. The symptoms of cholera are caused by cholera toxin, an enterotoxin, which is produced by the bacterium Vibrio cholerae. We have recently shown that human probiotic bacteria are capable of removing cyanobacterial toxins from aqueous solutions. In the present study we investigate the ability of the human probiotic bacteria, Lactobacillus rhamnosus strain GG (ATCC 53103 and Bifidobacterium longum 46 (DSM 14583, to remove cholera toxin from solution in vitro. Lactobacillus rhamnosus strain GG and Bifidobacterium longum 46 were able to remove 68% and 59% of cholera toxin from aqueous solutions during 18 h of incubation at 37 °C, respectively. The effect was dependent on bacterial concentration and L. rhamnosus GG was more effective at lower bacterial concentrations. No significant effect on cholera toxin concentration was observed when nonviable bacteria or bacterial supernatant was used.

  5. Reevaluation of Production of Paralytic Shellfish Toxin by Bacteria Associated with Dinoflagellates of the Portuguese Coast

    Science.gov (United States)

    Martins, Claudia A.; Alvito, Paula; Tavares, Maria João; Pereira, Paulo; Doucette, Gregory; Franca, Susana

    2003-01-01

    Paralytic shellfish toxins (PSTs) are potent neurotoxins produced by certain dinoflagellate and cyanobacterial species. The autonomous production of PSTs by bacteria remains controversial. In this study, PST production by two bacterial strains, isolated previously from toxic dinoflagellates, was evaluated using biological and analytical methods. Analyses were performed under conditions determined previously to be optimal for toxin production and detection. Our data are inconsistent with autonomous bacterial PST production under these conditions, thereby challenging previous findings for the same strains. PMID:12957964

  6. Characterisation of botulinum toxins type C, D, E, and F by matrix-assisted laser desorption ionisation and electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Jong, A.L. de; Wils, E.R.J.

    2004-01-01

    In a follow-up of the earlier characterisation of botulinum toxins type A and B (BTxA and BTxB) by mass spectrometry (MS), types C, D, E, and F (BTxC, BTxD, BTxE, BTxF) were now investigated. Botulinum toxins are extremely neurotoxic bacterial toxins, likely to be used as biological warfare agent.

  7. Dinophysis Toxins: Causative Organisms, Distribution and Fate in Shellfish

    Directory of Open Access Journals (Sweden)

    Beatriz Reguera

    2014-01-01

    Full Text Available Several Dinophysis species produce diarrhoetic toxins (okadaic acid and dinophysistoxins and pectenotoxins, and cause gastointestinal illness, Diarrhetic Shellfish Poisoning (DSP, even at low cell densities (<103 cells·L−1. They are the main threat, in terms of days of harvesting bans, to aquaculture in Northern Japan, Chile, and Europe. Toxicity and toxin profiles are very variable, more between strains than species. The distribution of DSP events mirrors that of shellfish production areas that have implemented toxin regulations, otherwise misinterpreted as bacterial or viral contamination. Field observations and laboratory experiments have shown that most of the toxins produced by Dinophysis are released into the medium, raising questions about the ecological role of extracelular toxins and their potential uptake by shellfish. Shellfish contamination results from a complex balance between food selection, adsorption, species-specific enzymatic transformations, and allometric processes. Highest risk areas are those combining Dinophysis strains with high cell content of okadaates, aquaculture with predominance of mytilids (good accumulators of toxins, and consumers who frequently include mussels in their diet. Regions including pectenotoxins in their regulated phycotoxins will suffer from much longer harvesting bans and from disloyal competition with production areas where these toxins have been deregulated.

  8. The role of toxins in Clostridium difficile infection.

    Science.gov (United States)

    Chandrasekaran, Ramyavardhanee; Lacy, D Borden

    2017-11-01

    Clostridium difficile is a bacterial pathogen that is the leading cause of nosocomial antibiotic-associated diarrhea and pseudomembranous colitis worldwide. The incidence, severity, mortality and healthcare costs associated with C. difficile infection (CDI) are rising, making C. difficile a major threat to public health. Traditional treatments for CDI involve use of antibiotics such as metronidazole and vancomycin, but disease recurrence occurs in about 30% of patients, highlighting the need for new therapies. The pathogenesis of C. difficile is primarily mediated by the actions of two large clostridial glucosylating toxins, toxin A (TcdA) and toxin B (TcdB). Some strains produce a third toxin, the binary toxin C. difficile transferase, which can also contribute to C. difficile virulence and disease. These toxins act on the colonic epithelium and immune cells and induce a complex cascade of cellular events that result in fluid secretion, inflammation and tissue damage, which are the hallmark features of the disease. In this review, we summarize our current understanding of the structure and mechanism of action of the C. difficile toxins and their role in disease. Published by Oxford University Press on behalf of FEMS 2017.

  9. Comparative genomics of Shiga toxin encoding bacteriophages

    Directory of Open Access Journals (Sweden)

    Smith Darren L

    2012-07-01

    Full Text Available Abstract Background Stx bacteriophages are responsible for driving the dissemination of Stx toxin genes (stx across their bacterial host range. Lysogens carrying Stx phages can cause severe, life-threatening disease and Stx toxin is an integral virulence factor. The Stx-bacteriophage vB_EcoP-24B, commonly referred to as Ф24B, is capable of multiply infecting a single bacterial host cell at a high frequency, with secondary infection increasing the rate at which subsequent bacteriophage infections can occur. This is biologically unusual, therefore determining the genomic content and context of Ф24B compared to other lambdoid Stx phages is important to understanding the factors controlling this phenomenon and determining whether they occur in other Stx phages. Results The genome of the Stx2 encoding phage, Ф24B was sequenced and annotated. The genomic organisation and general features are similar to other sequenced Stx bacteriophages induced from Enterohaemorrhagic Escherichia coli (EHEC, however Ф24B possesses significant regions of heterogeneity, with implications for phage biology and behaviour. The Ф24B genome was compared to other sequenced Stx phages and the archetypal lambdoid phage, lambda, using the Circos genome comparison tool and a PCR-based multi-loci comparison system. Conclusions The data support the hypothesis that Stx phages are mosaic, and recombination events between the host, phages and their remnants within the same infected bacterial cell will continue to drive the evolution of Stx phage variants and the subsequent dissemination of shigatoxigenic potential.

  10. Botulinum Toxin for Rhinitis.

    Science.gov (United States)

    Ozcan, Cengiz; Ismi, Onur

    2016-08-01

    Rhinitis is a common clinical entity. Besides nasal obstruction, itching, and sneezing, one of the most important symptoms of rhinitis is nasal hypersecretion produced by nasal glands and exudate from the nasal vascular bed. Allergic rhinitis is an IgE-mediated inflammatory reaction of nasal mucosa after exposure to environmental allergens. Idiopathic rhinitis describes rhinitis symptoms that occur after non-allergic, noninfectious irritants. Specific allergen avoidance, topical nasal decongestants, nasal corticosteroids, immunotherapy, and sinonasal surgery are the main treatment options. Because the current treatment modalities are not enough for reducing rhinorrhea in some patients, novel treatment options are required to solve this problem. Botulinum toxin is an exotoxin generated by Clostridium botulinum. It disturbs the signal transmission at the neuromuscular and neuroglandular junction by inhibiting the acetylcholine release from the presynaptic nerve terminal. It has been widely used in neuromuscular, hypersecretory, and autonomic nerve system disorders. There have been a lot of published articles concerning the effect of this toxin on rhinitis symptoms. Based on the results of these reports, intranasal botulinum toxin A administration appears to be a safe and effective treatment method for decreasing rhinitis symptoms in rhinitis patients with a long-lasting effect. Botulinum toxin type A will be a good treatment option for the chronic rhinitis patients who are resistant to other treatment methods.

  11. Carbohydrate inhibitors of cholera toxin.

    Science.gov (United States)

    Kumar, Vajinder; Turnbull, W Bruce

    2018-01-01

    Cholera is a diarrheal disease caused by a protein toxin released by Vibrio cholera in the host's intestine. The toxin enters intestinal epithelial cells after binding to specific carbohydrates on the cell surface. Over recent years, considerable effort has been invested in developing inhibitors of toxin adhesion that mimic the carbohydrate ligand, with particular emphasis on exploiting the multivalency of the toxin to enhance activity. In this review we introduce the structural features of the toxin that have guided the design of diverse inhibitors and summarise recent developments in the field.

  12. The Biology of the Cytolethal Distending Toxins

    Science.gov (United States)

    Guerra, Lina; Cortes-Bratti, Ximena; Guidi, Riccardo; Frisan, Teresa

    2011-01-01

    The cytolethal distending toxins (CDTs), produced by a variety of Gram-negative pathogenic bacteria, are the first bacterial genotoxins described, since they cause DNA damage in the target cells. CDT is an A-B2 toxin, where the CdtA and CdtC subunits are required to mediate the binding on the surface of the target cells, allowing internalization of the active CdtB subunit, which is functionally homologous to the mammalian deoxyribonuclease I. The nature of the surface receptor is still poorly characterized, however binding of CDT requires intact lipid rafts, and its internalization occurs via dynamin-dependent endocytosis. The toxin is retrograde transported through the Golgi complex and the endoplasmic reticulum, and subsequently translocated into the nuclear compartment, where it exerts the toxic activity. Cellular intoxication induces DNA damage and activation of the DNA damage responses, which results in arrest of the target cells in the G1 and/or G2 phases of the cell cycle and activation of DNA repair mechanisms. Cells that fail to repair the damage will senesce or undergo apoptosis. This review will focus on the well-characterized aspects of the CDT biology and discuss the questions that still remain unanswered. PMID:22069704

  13. Possible mistranslation of Shiga toxin from pathogenic Escherichia coli as measured by MALDI-TOF and Orbitrap mass spectrometry

    Science.gov (United States)

    RATIONALE: Shiga toxin-producing Escherichia coli (STEC) are often subjected to DNA damaging antibiotics during culturing in order to elicit the bacterial SOS response and up-regulation of bacteriophage-encoded proteins including Shiga toxin (Stx). However, such antibiotic exposure and stress may al...

  14. Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results

    Directory of Open Access Journals (Sweden)

    Joanna M Los

    2013-01-01

    Full Text Available Shiga toxin-producing Escherichia coli (STEC may cause bloody diarrhea and hemorrhagic colitis, with subsequent systemic disease. Since genes coding for Shiga toxins (stx genes are located on lambdoid prophages, their effective production occurs only after prophage induction. Such induction and subsequent lytic development of Shiga toxin-converting bacteriophages results not only in production of toxic proteins, but also in the lysis (and thus, the death of the host cell. Therefore, one may ask the question: what is the benefit for bacteria to produce the toxin if they die due to phage production and subsequent cell lysis? Recently, a hypothesis was proposed (simultaneously but independently by two research groups that STEC may benefit from Shiga toxin production as a result of toxin-dependent killing of eukaryotic cells such as unicellular predators or human leukocytes. This hypothesis could make sense only if we assume that prophage induction (and production of the toxin occurs only in a small fraction of bacterial cells, thus, a few members of the population are sacrificed for the benefit of the rest, providing an example of ‘bacterial altruism’. However, various reports indicating that the frequency of spontaneous induction of Shiga toxin-converting prophages is higher than that of other lambdoid prophages might seem to contradict the for-mentioned model. On the other hand, analysis of recently published results, discussed here, indicated that the efficiency of prophage excision under conditions that may likely occur in the natural habitat of STEC is sufficiently low to ensure survival of a large fraction of the bacterial host. A molecular mechanism by which partial prophage induction may occur is proposed. We conclude that the published data supports the proposed model of bacterial ‘altruism’ where prophage induction occurs at a low enough frequency to render toxin production a positive selective force on the general STEC population.

  15. Bacterial Keratitis

    Science.gov (United States)

    ... Español Eye Health / Eye Health A-Z Bacterial Keratitis Sections What Is Bacterial Keratitis? Bacterial Keratitis Symptoms ... Lens Care Bacterial Keratitis Treatment What Is Bacterial Keratitis? Leer en Español: ¿Qué Es la Queratitis Bacteriana? ...

  16. Crystal structures of an intrinsically active cholera toxin mutant yield insight into the toxin activation mechanism.

    Science.gov (United States)

    O'Neal, Claire J; Amaya, Edward I; Jobling, Michael G; Holmes, Randall K; Hol, Wim G J

    2004-04-06

    Cholera toxin (CT) is a heterohexameric bacterial protein toxin belonging to a larger family of A/B ADP-ribosylating toxins. Each of these toxins undergoes limited proteolysis and/or disulfide bond reduction to form the enzymatically active toxic fragment. Nicking and reduction render both CT and the closely related heat-labile enterotoxin from Escherichia coli (LT) unstable in solution, thus far preventing a full structural understanding of the conformational changes resulting from toxin activation. We present the first structural glimpse of an active CT in structures from three crystal forms of a single-site A-subunit CT variant, Y30S, which requires no activational modifications for full activity. We also redetermined the structure of the wild-type, proenzyme CT from two crystal forms, both of which exhibit (i) better geometry and (ii) a different A2 "tail" conformation than the previously determined structure [Zhang et al. (1995) J. Mol. Biol. 251, 563-573]. Differences between wild-type CT and active CTY30S are observed in A-subunit loop regions that had been previously implicated in activation by analysis of the structure of an LT A-subunit R7K variant [van den Akker et al. (1995) Biochemistry 34, 10996-11004]. The 25-36 activation loop is disordered in CTY30S, while the 47-56 active site loop displays varying degrees of order in the three CTY30S structures, suggesting that disorder in the activation loop predisposes the active site loop to a greater degree of flexibility than that found in unactivated wild-type CT. On the basis of these six new views of the CT holotoxin, we propose a model for how the activational modifications experienced by wild-type CT are communicated to the active site.

  17. Comparative genomics evidence that only protein toxins are tagging bad bugs

    Directory of Open Access Journals (Sweden)

    Kalliopi eGeorgiades

    2011-10-01

    Full Text Available The term toxin was introduced by Roux and Yersin and describes macromolecular substances that, when produced during infection or when introduced parenterally or orally, cause an impairment of physiological functions that lead to disease or to the death of the infected organism. Long after the discovery of toxins, early genetic studies on bacterial virulence demonstrated that removing a certain number of genes from pathogenic bacteria decreases their capacity to infect hosts. Each of the removed factors was therefore referred to as a virulence factor, and it was speculated that non-pathogenic bacteria lack such supplementary factors. However, many recent comparative studies demonstrate that the specialization of bacteria to eukaryotic hosts is associated with massive gene loss. We recently demonstrated that the only features that seem to characterize 12 epidemic bacteria are toxin-antitoxin (TA modules, which are addiction molecules in host bacteria. In this study, we investigated if protein toxins are indeed the only molecules specific to pathogenic bacteria by comparing 14 epidemic bacterial killers (bad bugs with their 14 closest non-epidemic relatives (controls. We found protein toxins in significantly more elevated numbers in all of the bad bugs. For the first time, statistical principal components analysis, including genome size, GC%, TA modules, restriction enzymes and toxins, revealed that toxins are the only proteins other than TA modules that are correlated with the pathogenic character of bacteria. Moreover, intracellular toxins appear to be more correlated with the pathogenic character of bacteria than secreted toxins. In conclusion, we hypothesize that the only truly identifiable phenomena, witnessing the convergent evolution of the most pathogenic bacteria for humans are the loss of metabolic activities, i.e., the outcome of the loss of regulatory and transcription factors and the presence of protein toxins, alone or coupled as TA

  18. Subinhibitory concentrations of LFF571 reduce toxin production by Clostridium difficile.

    Science.gov (United States)

    Sachdeva, Meena; Leeds, Jennifer A

    2015-02-01

    LFF571 is a novel semisynthetic thiopeptide antibacterial that is undergoing investigation for safety and efficacy in patients with moderate Clostridium difficile infections. LFF571 inhibits bacterial protein synthesis by interacting with elongation factor Tu (EF-Tu) and interrupting complex formation between EF-Tu and aminoacyl-tRNA. Given this mechanism of action, we hypothesized that concentrations of LFF571 below those necessary to inhibit bacterial growth would reduce steady-state toxin levels in C. difficile cultures. We investigated C. difficile growth and toxin A and B levels in the presence of LFF571, fidaxomicin, vancomycin, and metronidazole. LFF571 led to strain-dependent effects on toxin production, including decreased toxin levels after treatment with subinhibitory concentrations, and more rapid declines in toxin production than in inhibition of colony formation. Fidaxomicin, which is an RNA synthesis inhibitor, conferred a similar pattern to LFF571 with respect to toxin levels versus viable cell counts. The incubation of two toxigenic C. difficile strains with subinhibitory concentrations of vancomycin, a cell wall synthesis inhibitor, increased toxin levels in the supernatant over those of untreated cultures. A similar phenomenon was observed with one metronidazole-treated strain of C. difficile. These studies indicate that LFF571 and fidaxomicin generally result in decreased C. difficile toxin levels in culture supernatants, whereas treatment of some strains with vancomycin or metronidazole had the potential to increase toxin levels. Although the relevance of these findings remains to be studied in patients, reducing toxin levels with sub-growth-inhibitory concentrations of an antibiotic is hypothesized to be beneficial in alleviating symptoms. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  19. Lymphocyte receptors for pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Clark, C.G.; Armstrong, G.D. (Univ. of Alberta, Edmonton (Canada))

    1990-12-01

    We have investigated human T-lymphocyte receptors for pertussis toxin by affinity isolation and photoaffinity labeling procedures. T lymphocytes were obtained from peripheral human blood, surface iodinated, and solubilized in Triton X-100. The iodinated mixture was then passed through pertussis toxin-agarose, and the fractions were analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Autoradiography of the fixed, dried gels revealed several bands in the pertussis toxin-bound fraction that were not observed in fractions obtained from histone or fetuin-agarose. Further investigations employed a photoaffinity labeling reagent, sulfosuccinimidyl 2-(p-azido-salicylamido)-1,3'-dithiopropionate, to identify pertussis toxin receptors in freshly isolated peripheral blood monocytic cells, T lymphocytes, and Jurkat cells. In all three cell systems, the pertussis toxin affinity probe specifically labeled a single protein species with an apparent molecular weight of 70,000 that was not observed when the procedure was performed in the presence of excess unmodified pertussis toxin. A protein comparable in molecular weight to the one detected by the photoaffinity labeling technique was also observed among the species that bound to pertussis toxin-agarose. The results suggest that pertussis toxin may bind to a 70,000-Da receptor in human T lymphocytes.

  20. Tetrodotoxin-Producing Bacteria: Detection, Distribution and Migration of the Toxin in Aquatic Systems

    Directory of Open Access Journals (Sweden)

    Timur Yu. Magarlamov

    2017-05-01

    Full Text Available This review is devoted to the marine bacterial producers of tetrodotoxin (TTX, a potent non-protein neuroparalytic toxin. In addition to the issues of the ecology and distribution of TTX-producing bacteria, this review examines issues relating to toxin migration from bacteria to TTX-bearing animals. It is shown that the mechanism of TTX extraction from toxin-producing bacteria to the environment occur through cell death, passive/active toxin excretion, or spore germination of spore-forming bacteria. Data on TTX microdistribution in toxic organs of TTX-bearing animals indicate toxin migration from the digestive system to target organs through the transport system of the organism. The role of symbiotic microflora in animal toxicity is also discussed: despite low toxin production by bacterial strains in laboratory conditions, even minimal amounts of TTX produced by intestinal microflora of an animal can contribute to its toxicity. Special attention is paid to methods of TTX detection applicable to bacteria. Due to the complexity of toxin detection in TTX-producing bacteria, it is necessary to use several methods based on different methodological approaches. Issues crucial for further progress in detecting natural sources of TTX investigation are also considered.

  1. Binding of ATP by pertussis toxin and isolated toxin subunits

    International Nuclear Information System (INIS)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L.

    1990-01-01

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of [ 3 H]ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of [ 3 H]ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of [ 3 H]ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site

  2. Binding of ATP by pertussis toxin and isolated toxin subunits

    Energy Technology Data Exchange (ETDEWEB)

    Hausman, S.Z.; Manclark, C.R.; Burns, D.L. (Center for Biologics Evaluation and Research, Bethesda, MD (USA))

    1990-07-03

    The binding of ATP to pertussis toxin and its components, the A subunit and B oligomer, was investigated. Whereas, radiolabeled ATP bound to the B oligomer and pertussis toxin, no binding to the A subunit was observed. The binding of ({sup 3}H)ATP to pertussis toxin and the B oligomer was inhibited by nucleotides. The relative effectiveness of the nucleotides was shown to be ATP > GTP > CTP > TTP for pertussis toxin and ATP > GTP > TTP > CTP for the B oligomer. Phosphate ions inhibited the binding of ({sup 3}H)ATP to pertussis toxin in a competitive manner; however, the presence of phosphate ions was essential for binding of ATP to the B oligomer. The toxin substrate, NAD, did not affect the binding of ({sup 3}H)ATP to pertussis toxin, although the glycoprotein fetuin significantly decreased binding. These results suggest that the binding site for ATP is located on the B oligomer and is distinct from the enzymatically active site but may be located near the eukaryotic receptor binding site.

  3. Carvacrol and trans-Cinnamaldehyde Reduce Clostridium difficile Toxin Production and Cytotoxicity in Vitro

    Directory of Open Access Journals (Sweden)

    Shankumar Mooyottu

    2014-03-01

    Full Text Available Clostridium difficile is a nosocomial pathogen that causes a serious toxin-mediated enteric disease in humans. Reducing C. difficile toxin production could significantly minimize its pathogenicity and improve disease outcomes in humans. This study investigated the efficacy of two, food-grade, plant-derived compounds, namely trans-cinnamaldehyde (TC and carvacrol (CR in reducing C. difficile toxin production and cytotoxicity in vitro. Three hypervirulent C. difficile isolates were grown with or without the sub-inhibitory concentrations of TC or CR, and the culture supernatant and the bacterial pellet were collected for total toxin quantitation, Vero cell cytotoxicity assay and RT-qPCR analysis of toxin-encoding genes. The effect of CR and TC on a codY mutant and wild type C. difficile was also investigated. Carvacrol and TC substantially reduced C. difficile toxin production and cytotoxicity on Vero cells. The plant compounds also significantly down-regulated toxin production genes. Carvacrol and TC did not inhibit toxin production in the codY mutant of C. difficile, suggesting a potential codY-mediated anti-toxigenic mechanism of the plant compounds. The antitoxigenic concentrations of CR and TC did not inhibit the growth of beneficial gut bacteria. Our results suggest that CR and TC could potentially be used to control C. difficile, and warrant future studies in vivo.

  4. Cholix Toxin, a Novel ADP-ribosylating Factor from Vibrio cholerae

    Energy Technology Data Exchange (ETDEWEB)

    Jorgensen, Rene; Purdy, Alexandra E.; Fieldhouse, Robert J.; Kimber, Matthew S.; Bartlett, Douglas H.; Merrill, A. Rod (Guelph); (NIH); (UCSD)

    2008-07-15

    The ADP-ribosyltransferases are a class of enzymes that display activity in a variety of bacterial pathogens responsible for causing diseases in plants and animals, including those affecting mankind, such as diphtheria, cholera, and whooping cough. We report the characterization of a novel toxin from Vibrio cholerae, which we call cholix toxin. The toxin is active against mammalian cells (IC50 = 4.6 {+-} 0.4 ng/ml) and crustaceans (Artemia nauplii LD50 = 10 {+-} 2 {mu}g/ml). Here we show that this toxin is the third member of the diphthamide-specific class of ADP-ribose transferases and that it possesses specific ADP-ribose transferase activity against ribosomal eukaryotic elongation factor 2. We also describe the high resolution crystal structures of the multidomain toxin and its catalytic domain at 2.1- and 1.25-{angstrom} resolution, respectively. The new structural data show that cholix toxin possesses the necessary molecular features required for infection of eukaryotes by receptor-mediated endocytosis, translocation to the host cytoplasm, and inhibition of protein synthesis by specific modification of elongation factor 2. The crystal structures also provide important insight into the structural basis for activation of toxin ADP-ribosyltransferase activity. These results indicate that cholix toxin may be an important virulence factor of Vibrio cholerae that likely plays a significant role in the survival of the organism in an aquatic environment.

  5. Bile salt inhibition of host cell damage by Clostridium difficile toxins.

    Directory of Open Access Journals (Sweden)

    Charles Darkoh

    Full Text Available Virulent Clostridium difficile strains produce toxin A and/or toxin B that are the etiological agents of diarrhea and pseudomembranous colitis. Treatment of C. difficile infections (CDI has been hampered by resistance to multiple antibiotics, sporulation, emergence of strains with increased virulence, recurrence of the infection, and the lack of drugs that preserve or restore the colonic bacterial flora. As a result, there is new interest in non-antibiotic CDI treatments. The human conjugated bile salt taurocholate was previously shown in our laboratory to inhibit C. difficile toxin A and B activities in an in vitro assay. Here we demonstrate for the first time in an ex vivo assay that taurocholate can protect Caco-2 colonic epithelial cells from the damaging effects of the C. difficile toxins. Using caspase-3 and lactate dehydrogenase assays, we have demonstrated that taurocholate reduced the extent of toxin B-induced apoptosis and cell membrane damage. Confluent Caco-2 cells cultured with toxin B induced elevated caspase-3 activity. Remarkably, addition of 5 mM taurocholate reduced caspase-3 activity in cells treated with 2, 4, 6, and 12 µg/ml of toxin B by 99%, 78%, 64%, and 60%, respectively. Furthermore, spent culture medium from Caco-2 cells incubated with both toxin B and taurocholate exhibited significantly decreased lactate dehydrogenase activity compared to spent culture medium from cells incubated with toxin B only. Our results suggest that the mechanism of taurocholate-mediated inhibition functions at the level of toxin activity since taurocholate did not affect C. difficile growth and toxin production. These findings open up a new avenue for the development of non-antibiotic therapeutics for CDI treatment.

  6. Bacterial meningitis

    NARCIS (Netherlands)

    Roos, Karen L.; van de Beek, Diederik

    2010-01-01

    Bacterial meningitis is a neurological emergency. Empiric antimicrobial and adjunctive therapy should be initiated as soon as a single set of blood cultures has been obtained. Clinical signs suggestive of bacterial meningitis include fever, headache, meningismus, vomiting, photophobia, and an

  7. Food toxin detection with atomic force microscope

    Science.gov (United States)

    Externally introduced toxins or internal spoilage correlated pathogens and their metabolites are all potential sources of food toxins. To prevent and protect unsafe food, many food toxin detection techniques have been developed to detect various toxins for quality control. Although several routine m...

  8. New monoclonal antibodies against a novel subtype of Shiga toxin 1 produced by Enterobacter cloacae and their use in analysis of human serum

    Science.gov (United States)

    Shiga toxin (Stx) is a major virulence factor for several bacterial pathogens that cause potentially fatal illness, including Escherichia coli and Shigella spp. The continual emergence of new subtypes of Stxs presents challenges in clinical diagnosis of infections caused by Shiga toxin-producing org...

  9. Toxins: State of Journal Report, 2016

    Directory of Open Access Journals (Sweden)

    Vernon L. Tesh

    2015-12-01

    Full Text Available In the “Message from the Editor-in-Chief” posted on the Toxins website (see www.mdpi.com/journal/toxins/toxins-flyer.pdf, we wrote: “The editorial board and staff of Toxins are dedicated to providing a timely, peer-reviewed outlet for exciting, innovative primary research articles and concise, informative reviews from investigators in the myriad of disciplines contributing to our knowledge on toxins. [...

  10. Bio Warfare and Terrorism: Toxins and Other Mid-Spectrum Agents

    National Research Council Canada - National Science Library

    Madsen, James M

    2005-01-01

    ... counterparts are still by definition toxins. Related terms include phycotoxins (toxins from algae), mycotoxins (fungal toxins), phytotoxins (plant toxins), and venoms (toxins from animals, especially vertebrates...

  11. An Overview of Helicobacter pylori VacA Toxin Biology

    Science.gov (United States)

    Foegeding, Nora J.; Caston, Rhonda R.; McClain, Mark S.; Ohi, Melanie D.; Cover, Timothy L.

    2016-01-01

    The VacA toxin secreted by Helicobacter pylori enhances the ability of the bacteria to colonize the stomach and contributes to the pathogenesis of gastric adenocarcinoma and peptic ulcer disease. The amino acid sequence and structure of VacA are unrelated to corresponding features of other known bacterial toxins. VacA is classified as a pore-forming toxin, and many of its effects on host cells are attributed to formation of channels in intracellular sites. The most extensively studied VacA activity is its capacity to stimulate vacuole formation, but the toxin has many additional effects on host cells. Multiple cell types are susceptible to VacA, including gastric epithelial cells, parietal cells, T cells, and other types of immune cells. This review focuses on the wide range of VacA actions that are detectable in vitro, as well as actions of VacA in vivo that are relevant for H. pylori colonization of the stomach and development of gastric disease. PMID:27271669

  12. Effect of Gating Modifier Toxins on Membrane Thickness: Implications for Toxin Effect on Gramicidin and Mechanosensitive Channels

    Directory of Open Access Journals (Sweden)

    Shin-Ho Chung

    2013-02-01

    Full Text Available Various gating modifier toxins partition into membranes and interfere with the gating mechanisms of biological ion channels. For example, GsMTx4 potentiates gramicidin and several bacterial mechanosensitive channels whose gating kinetics are sensitive to mechanical properties of the membrane, whereas binding of HpTx2 shifts the voltage-activity curve of the voltage-gated potassium channel Kv4.2 to the right. The detailed process by which the toxin partitions into membranes has been difficult to probe using molecular dynamics due to the limited time scale accessible. Here we develop a protocol that allows the spontaneous assembly of a polypeptide toxin into membranes in atomistic molecular dynamics simulations of tens of nanoseconds. The protocol is applied to GsMTx4 and HpTx2. Both toxins, released in water at the start of the simulation, spontaneously bind into the lipid bilayer within 50 ns, with their hydrophobic patch penetrated into the bilayer beyond the phosphate groups of the lipids. It is found that the bilayer is about 2 Å thinner upon the binding of a GsMTx4 monomer. Such a thinning effect of GsMTx4 on membranes may explain its potentiation effect on gramicidin and mechanosensitive channels.

  13. Subinhibitory Concentrations of LFF571 Reduce Toxin Production by Clostridium difficile

    OpenAIRE

    Sachdeva, Meena; Leeds, Jennifer A.

    2014-01-01

    LFF571 is a novel semisynthetic thiopeptide antibacterial that is undergoing investigation for safety and efficacy in patients with moderate Clostridium difficile infections. LFF571 inhibits bacterial protein synthesis by interacting with elongation factor Tu (EF-Tu) and interrupting complex formation between EF-Tu and aminoacyl-tRNA. Given this mechanism of action, we hypothesized that concentrations of LFF571 below those necessary to inhibit bacterial growth would reduce steady-state toxin ...

  14. Resonance assignments of a VapC family toxin from Clostridium thermocellum.

    Science.gov (United States)

    Wang, Chen; Xuan, Jinsong; Cui, Qiu; Feng, Yingang

    2016-10-01

    Toxin-antitoxin (TA) systems widely exist in bacterial plasmids, phages, and chromosomes and play important roles in growth persistence and host-pathogen interaction. Virulence associated protein BC (VapBC) family TAs are the most abundant TAs in bacteria and many pathogens contain a large number of vapBC loci in the genome which have been extensively studied. Clostridium thermocellum, a cellulolytic anaerobic gram-positive bacterium with promising applications in biofuel production, also contains a VapBC TA in the genome. Despite the structures of several VapBC family TAs have been determined, the toxin and anti-toxin components of C. thermocellum VapBC have very low sequence identity to the proteins in PDB. Therefore, the structure and functional mechanism of this TA is largely unknown. Here we reported the NMR resonance assignments of the VapC toxin from C. thermocellum as a basis for further structural and functional studies.

  15. The 3D Structure of Some Diarrheal Causing Bacterial Toxins

    Science.gov (United States)

    1988-07-01

    with because extensive biochemical physiological, and immunological data had been published about it. The site of its centric, teratogenic , and...Mercuric iodide, potassium gold thiocyanate, thallium fluoride, sodium tungstate, p-chloromercuric phenyl sulfonic acid, dysprosium chloride and

  16. Detection of bacterial toxins by lateral flow immunoassay

    Science.gov (United States)

    Foodborne bacteria sicken over 48 million Americans each year, causing more than 200,000 hospitalizations and over 3,000 deaths. The majority of food producers operate with strict sanitation and hygiene controls throughout production to minimize the risk of product contamination. Additional consume...

  17. Oral toxicity of bacterial toxins against thrips species

    NARCIS (Netherlands)

    Gerritsen, L.J.M.; Visser, J.H.; Jongsma, M.A.

    2004-01-01

    The oral toxicity of excretion products of several Photorhabdus and Xenorhabdus strains was tested on two thrips species: Frankliniella occidentalis and Thrips tabaci. Out of 46 Photorhabdus isolates and 6 Xenorhabdus isolates only 6 North American P. temperata isolates were toxic to the thrips

  18. Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria.

    Directory of Open Access Journals (Sweden)

    Carsten Schwan

    2009-10-01

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembranous colitis by production of the Rho GTPase-glucosylating toxins A and B. Recently emerging hypervirulent Clostridium difficile strains additionally produce the binary ADP-ribosyltransferase toxin CDT (Clostridium difficile transferase, which ADP-ribosylates actin and inhibits actin polymerization. Thus far, the role of CDT as a virulence factor is not understood. Here we report by using time-lapse- and immunofluorescence microscopy that CDT and other binary actin-ADP-ribosylating toxins, including Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin, induce redistribution of microtubules and formation of long (up to >150 microm microtubule-based protrusions at the surface of intestinal epithelial cells. The toxins increase the length of decoration of microtubule plus-ends by EB1/3, CLIP-170 and CLIP-115 proteins and cause redistribution of the capture proteins CLASP2 and ACF7 from microtubules at the cell cortex into the cell interior. The CDT-induced microtubule protrusions form a dense meshwork at the cell surface, which wrap and embed bacterial cells, thereby largely increasing the adherence of Clostridia. The study describes a novel type of microtubule structure caused by less efficient microtubule capture and offers a new perspective for the pathogenetic role of CDT and other binary actin-ADP-ribosylating toxins in host-pathogen interactions.

  19. East1 toxin and its presence in a changing microbial world

    Directory of Open Access Journals (Sweden)

    C. P. Sousa

    2003-01-01

    Full Text Available This review shows the structure, mode of action, and actual epidemiological data about EAST1 toxin. It is a particularly intriguing bacterial toxin that may subvert multiple cellular processes to yield intestinal epithelial cell secretion. EAST1 toxin was first described in strains of EAggEC that were associated with persistent diarrhea primarily in developing world countries. Molecular organization, mobility, and data in literature are suggesting that EAST1 could be a transposon. The insertion sequences in Escherichia coli and some of the usual transposition mechanisms as well as regulation are reviewed. This review emphasizes the presence of the gene astA in EPEC, EAggEC, A-EPEC, ETEC, DAEC, EIEC, and in non-diarrheagenic E. coli. It also discusses here the presence of the astA gene in Salmonella spp. and future perspectives for understanding its role in diarrheal disease in both bacterial genera.

  20. Discovery of Functional Toxin/Antitoxin Systems in Bacteria by Shotgun Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Sberro, Hila; Leavitt, Azita; Kiro, Ruth; Koh, Eugene; Peleg, Yoav; Qimron, Udi; Sorek, Rotem

    2013-04-01

    Toxin-antitoxin (TA) modules, composed of a toxic protein and a counteracting antitoxin, play important roles in bacterial physiology. We examined the experimental insertion of 1.5 million genes from 388 microbial genomes into an Escherichia coli host using over 8.5 million random clones. This revealed hundreds of genes (toxins) that could only be cloned when the neighboring gene (antitoxin) was present on the same clone. Clustering of these genes revealed TA families widespread in bacterial genomes, some of which deviate from the classical characteristics previously described for such modules. Introduction of these genes into E. coli validated that the toxin toxicity is mitigated by the antitoxin. Infection experiments with T7 phage showed that two of the new modules can provide resistance against phage. Moreover, our experiments revealed an 'anti-defense' protein in phage T7 that neutralizes phage resistance. Our results expose active fronts in the arms race between bacteria and phage.

  1. Bacterial Proteasomes.

    Science.gov (United States)

    Jastrab, Jordan B; Darwin, K Heran

    2015-01-01

    Interest in bacterial proteasomes was sparked by the discovery that proteasomal degradation is required for the pathogenesis of Mycobacterium tuberculosis, one of the world's deadliest pathogens. Although bacterial proteasomes are structurally similar to their eukaryotic and archaeal homologs, there are key differences in their mechanisms of assembly, activation, and substrate targeting for degradation. In this article, we compare and contrast bacterial proteasomes with their archaeal and eukaryotic counterparts, and we discuss recent advances in our understanding of how bacterial proteasomes function to influence microbial physiology.

  2. Contribution of pertussis toxin to the pathogenesis of pertussis disease

    Science.gov (United States)

    Carbonetti, Nicholas H.

    2015-01-01

    Pertussis toxin (PT) is a multisubunit protein toxin secreted by Bordetella pertussis, the bacterial agent of the disease pertussis or whooping cough. PT in detoxified form is a component of all licensed acellular pertussis vaccines, since it is considered to be an important virulence factor for this pathogen. PT inhibits G protein-coupled receptor signaling through Gi proteins in mammalian cells, an activity that has led to its widespread use as a cell biology tool. But how does this activity of PT contribute to pertussis, including the severe respiratory symptoms of this disease? In this minireview, the contribution of PT to the pathogenesis of pertussis disease will be considered based on evidence from both human infections and animal model studies. Although definitive proof of the role of PT in humans is lacking, substantial evidence supports the idea that PT is a major contributor to pertussis pathology, including the severe respiratory symptoms associated with this disease. PMID:26394801

  3. Shiga-Like Toxin 2 of Enterohemorrhagic Escherichia Coli (EHEC): Genetic Organization and Effects of Toxin in a Murine Model of EHEC Infection

    Science.gov (United States)

    1990-04-27

    FEBS Lett. 181:377-380. 100. Yanish-Perron, C , J. Viera, and J. Messing. 1985. Improved Ml3 phage cloning vectors: nucleotide sequences of M13 mp18 and pUC 19 vectors. Gene. 33: 103-119. ...aj., 1986). Sensitive bacterial hosts that are lysogenized by such toxin- converting phages acquire the capacity to produce the corresponding toxin...The production of SLT-l and SLT-II has been shown to be determined by specific phages in certain strains of EHEC serotypes isolated from humans

  4. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium.

    Science.gov (United States)

    In, Julie; Lukyanenko, Valeriy; Foulke-Abel, Jennifer; Hubbard, Ann L; Delannoy, Michael; Hansen, Anne-Marie; Kaper, James B; Boisen, Nadia; Nataro, James P; Zhu, Chengru; Boedeker, Edgar C; Girón, Jorge A; Kovbasnjuk, Olga

    2013-01-01

    Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC) require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC) O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.

  5. Serine protease EspP from enterohemorrhagic Escherichia coli is sufficient to induce shiga toxin macropinocytosis in intestinal epithelium.

    Directory of Open Access Journals (Sweden)

    Julie In

    Full Text Available Life-threatening intestinal and systemic effects of the Shiga toxins produced by enterohemorrhagic Escherichia coli (EHEC require toxin uptake and transcytosis across intestinal epithelial cells. We have recently demonstrated that EHEC infection of intestinal epithelial cells stimulates toxin macropinocytosis, an actin-dependent endocytic pathway. Host actin rearrangement necessary for EHEC attachment to enterocytes is mediated by the type 3 secretion system which functions as a molecular syringe to translocate bacterial effector proteins directly into host cells. Actin-dependent EHEC attachment also requires the outer membrane protein intimin, a major EHEC adhesin. Here, we investigate the role of type 3 secretion in actin turnover occurring during toxin macropinocytosis. Toxin macropinocytosis is independent of EHEC type 3 secretion and intimin attachment. EHEC soluble factors are sufficient to stimulate macropinocytosis and deliver toxin into enterocytes in vitro and in vivo; intact bacteria are not required. Intimin-negative enteroaggregative Escherichia coli (EAEC O104:H4 robustly stimulate Shiga toxin macropinocytosis into intestinal epithelial cells. The apical macropinosomes formed in intestinal epithelial cells move through the cells and release their cargo at these cells' basolateral sides. Further analysis of EHEC secreted proteins shows that a serine protease EspP alone is able to stimulate host actin remodeling and toxin macropinocytosis. The observation that soluble factors, possibly serine proteases including EspP, from each of two genetically distinct toxin-producing strains, can stimulate Shiga toxin macropinocytosis and transcellular transcytosis alters current ideas concerning mechanisms whereby Shiga toxin interacts with human enterocytes. Mechanisms important for this macropinocytic pathway could suggest new potential therapeutic targets for Shiga toxin-induced disease.

  6. Bacterial adhesion

    NARCIS (Netherlands)

    Loosdrecht, van M.C.M.

    1988-01-01

    As mentioned in the introduction of this thesis bacterial adhesion has been studied from a variety of (mostly practice oriented) starting points. This has resulted in a range of widely divergent approaches. In order to elucidate general principles in bacterial adhesion phenomena, we felt it

  7. Hemolytic anemia caused by chemicals and toxins

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000590.htm Hemolytic anemia caused by chemicals and toxins To use the sharing features on this page, please enable JavaScript. Hemolytic anemia caused by chemicals and toxins is a lack ...

  8. (AJST) DETECTION AND QUANTIFICATION OF TOXINS IN ...

    African Journals Online (AJOL)

    -, hepato- and neuro-toxins ..... risk assessment of cyanobacterial toxins. In: Hester,. R.E. and Harrison, R.M. (Eds.) Agricultural chemicals and the environment. Issues in Environmental. Science and Technology 5. The Royal Society of.

  9. Toxin synergism in snake venoms

    DEFF Research Database (Denmark)

    Laustsen, Andreas Hougaard

    2016-01-01

    Synergism between venom toxins exists for a range of snake species. Synergism can be derived from both intermolecular interactions and supramolecular interactions between venom components, and can be the result of toxins targeting the same protein, biochemical pathway or physiological process. Few...... simple systematic tools and methods for determining the presence of synergism exist, but include co-administration of venom components and assessment of Accumulated Toxicity Scores. A better understanding of how to investigate synergism in snake venoms may help unravel strategies for developing novel...

  10. Comparative toxicity and efficacy of engineered anthrax lethal toxin variants with broad anti-tumor activities

    Energy Technology Data Exchange (ETDEWEB)

    Peters, Diane E. [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Program of Pharmacology and Experimental Therapeutics, Tufts University School of Medicine, Boston, MA (United States); Hoover, Benjamin [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Cloud, Loretta Grey [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Liu, Shihui [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Molinolo, Alfredo A. [Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States); Leppla, Stephen H. [Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD (United States); Bugge, Thomas H., E-mail: thomas.bugge@nih.go [Proteases and Tissue Remodeling Section, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD (United States)

    2014-09-01

    We have previously designed and characterized versions of anthrax lethal toxin that are selectively cytotoxic in the tumor microenvironment and which display broad and potent anti-tumor activities in vivo. Here, we have performed the first direct comparison of the safety and efficacy of three engineered anthrax lethal toxin variants requiring activation by either matrix-metalloproteinases (MMPs), urokinase plasminogen activator (uPA) or co-localized MMP/uPA activities. C57BL/6J mice were challenged with six doses of engineered toxins via intraperitoneal (I.P.) or intravenous (I.V.) dose routes to determine the maximum tolerated dose for six administrations (MTD6) and dose-limiting toxicities. Efficacy was evaluated using the B16-BL6 syngraft model of melanoma; mice bearing established tumors were treated with six I.P. doses of toxin and tumor measurements and immunohistochemistry, paired with terminal blood work, were used to elaborate upon the anti-tumor mechanism and relative efficacy of each variant. We found that MMP-, uPA- and dual MMP/uPA-activated anthrax lethal toxins exhibited the same dose-limiting toxicity; dose-dependent GI toxicity. In terms of efficacy, all three toxins significantly reduced primary B16-BL6 tumor burden, ranging from 32% to 87% reduction, and they also delayed disease progression as evidenced by dose-dependent normalization of blood work values. While target organ toxicity and effective doses were similar amongst the variants, the dual MMP/uPA-activated anthrax lethal toxin exhibited the highest I.P. MTD6 and was 1.5–3-fold better tolerated than the single MMP- and uPA-activated toxins. Overall, we demonstrate that this dual MMP/uPA-activated anthrax lethal toxin can be administered safely and is highly effective in a preclinical model of melanoma. This modified bacterial cytotoxin is thus a promising candidate for further clinical development and evaluation for use in treating human cancers. - Highlights: • Toxicity and anti

  11. Hydralysins, a new category of beta-pore-forming toxins in cnidaria.

    Science.gov (United States)

    Sher, Daniel; Fishman, Yelena; Zhang, Mingliang; Lebendiker, Mario; Gaathon, Ariel; Mancheño, José-Miguel; Zlotkin, Eliahu

    2005-06-17

    Cnidaria are venomous animals that produce diverse protein and polypeptide toxins, stored and delivered into the prey through the stinging cells, the nematocytes. These include pore-forming cytolytic toxins such as well studied actinoporins. In this work, we have shown that the non-nematocystic paralytic toxins, hydralysins, from the green hydra Chlorohydra viridissima comprise a highly diverse group of beta-pore-forming proteins, distinct from other cnidarian toxins but similar in activity and structure to bacterial and fungal toxins. Functional characterization of hydralysins reveals that as soluble monomers they are rich in beta-structure, as revealed by far UV circular dichroism and computational analysis. Hydralysins bind erythrocyte membranes and form discrete pores with an internal diameter of approximately 1.2 nm. The cytolytic effect of hydralysin is cell type-selective, suggesting a specific receptor that is not a phospholipid or carbohydrate. Multiple sequence alignment reveals that hydralysins share a set of conserved sequence motifs with known pore-forming toxins such as aerolysin, epsilon-toxin, alpha-toxin, and LSL and that these sequence motifs are found in and around the poreforming domains of the toxins. The importance of these sequence motifs is revealed by the cloning, expression, and mutagenesis of three hydralysin isoforms that strongly differ in their hemolytic and paralytic activities. The correlation between the paralytic and cytolytic activities of hydralysin suggests that both are a consequence of receptor-mediated pore formation. Hydralysins and their homologues exemplify the wide distribution of beta-pore formers in biology and provide a useful model for the study of their molecular mode of action.

  12. Inhibition of cholera toxin and other AB toxins by polyphenolic compounds

    Science.gov (United States)

    All AB-type protein toxins have intracellular targets despite an initial extracellular location. These toxins use different methods to reach the cytosol and have different effects on the target cell. Broad-spectrum inhibitors against AB toxins are therefore hard to develop because the toxins use dif...

  13. Toxin Mediates Sepsis Caused by Methicillin-Resistant Staphylococcus epidermidis.

    Directory of Open Access Journals (Sweden)

    Li Qin

    2017-02-01

    Full Text Available Bacterial sepsis is a major killer in hospitalized patients. Coagulase-negative staphylococci (CNS with the leading species Staphylococcus epidermidis are the most frequent causes of nosocomial sepsis, with most infectious isolates being methicillin-resistant. However, which bacterial factors underlie the pathogenesis of CNS sepsis is unknown. While it has been commonly believed that invariant structures on the surface of CNS trigger sepsis by causing an over-reaction of the immune system, we show here that sepsis caused by methicillin-resistant S. epidermidis is to a large extent mediated by the methicillin resistance island-encoded peptide toxin, PSM-mec. PSM-mec contributed to bacterial survival in whole human blood and resistance to neutrophil-mediated killing, and caused significantly increased mortality and cytokine expression in a mouse sepsis model. Furthermore, we show that the PSM-mec peptide itself, rather than the regulatory RNA in which its gene is embedded, is responsible for the observed virulence phenotype. This finding is of particular importance given the contrasting roles of the psm-mec locus that have been reported in S. aureus strains, inasmuch as our findings suggest that the psm-mec locus may exert effects in the background of S. aureus strains that differ from its original role in the CNS environment due to originally "unintended" interferences. Notably, while toxins have never been clearly implied in CNS infections, our tissue culture and mouse infection model data indicate that an important type of infection caused by the predominant CNS species is mediated to a large extent by a toxin. These findings suggest that CNS infections may be amenable to virulence-targeted drug development approaches.

  14. Shigella Sonnei and Shiga Toxin

    Centers for Disease Control (CDC) Podcasts

    2016-07-28

    Katherine Lamba, an infectious disease epidemiologist with the California Department of Public Health, discusses Shiga Toxin producing Shigella sonnei.  Created: 7/28/2016 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 7/28/2016.

  15. Risk Assessment of Shellfish Toxins

    Directory of Open Access Journals (Sweden)

    Rex Munday

    2013-11-01

    Full Text Available Complex secondary metabolites, some of which are highly toxic to mammals, are produced by many marine organisms. Some of these organisms are important food sources for marine animals and, when ingested, the toxins that they produce may be absorbed and stored in the tissues of the predators, which then become toxic to animals higher up the food chain. This is a particular problem with shellfish, and many cases of poisoning are reported in shellfish consumers each year. At present, there is no practicable means of preventing uptake of the toxins by shellfish or of removing them after harvesting. Assessment of the risk posed by such toxins is therefore required in order to determine levels that are unlikely to cause adverse effects in humans and to permit the establishment of regulatory limits in shellfish for human consumption. In the present review, the basic principles of risk assessment are described, and the progress made toward robust risk assessment of seafood toxins is discussed. While good progress has been made, it is clear that further toxicological studies are required before this goal is fully achieved.

  16. Bacterial Vaginosis

    Science.gov (United States)

    ... Archive STDs Home Page Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ( ... of getting other STDs, such as chlamydia and gonorrhea . These bacteria can sometimes cause pelvic inflammatory disease ( ...

  17. Inactivation of allergens and toxins.

    Science.gov (United States)

    Morandini, Piero

    2010-11-30

    Plants are replete with thousands of proteins and small molecules, many of which are species-specific, poisonous or dangerous. Over time humans have learned to avoid dangerous plants or inactivate many toxic components in food plants, but there is still room for ameliorating food crops (and plants in general) in terms of their allergens and toxins content, especially in their edible parts. Inactivation at the genetic rather than physical or chemical level has many advantages and classical genetic approaches have resulted in significant reduction of toxin content. The capacity, offered by genetic engineering, of turning off (inactivating) specific genes has opened up the possibility of altering the plant content in a far more precise manner than previously available. Different levels of intervention (genes coding for toxins/allergens or for enzymes, transporters or regulators involved in their metabolism) are possible and there are several tools for inactivating genes, both direct (using chemical and physical mutagens, insertion of transposons and other genetic elements) and indirect (antisense RNA, RNA interference, microRNA, eventually leading to gene silencing). Each level/strategy has specific advantages and disadvantages (speed, costs, selectivity, stability, reversibility, frequency of desired genotype and regulatory regime). Paradigmatic examples from classical and transgenic approaches are discussed to emphasize the need to revise the present regulatory process. Reducing the content of natural toxins is a trade-off process: the lesser the content of natural toxins, the higher the susceptibility of a plant to pests and therefore the stronger the need to protect plants. As a consequence, more specific pesticides like Bt are needed to substitute for general pesticides. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Structure, Function and Evolution of Clostridium botulinum C2 and C3 Toxins: Insight to Poultry and Veterinary Vaccines.

    Science.gov (United States)

    Chellapandi, Paulchamy; Prisilla, Arokiyasamy

    2017-01-01

    Clostridium botulinum group III strains are able to produce cytotoxins, C2 toxin and C3 exotoxin, along with botulinum neurotoxin types C and D. C2 toxin and C3 exotoxin produced by this organism are the most important members of bacterial ADP-ribosyltransferase superfamily. Both toxins have distinct pathophysiological functions in the avian and mammalian hosts. The members of this superfamily transfer an ADP-ribose moiety of NAD+ to specific eukaryotic target proteins. The present review describes the structure, function and evolution aspects of these toxins with a special emphasis to the development of veterinary vaccines. C2 toxin is a binary toxin that consists of a catalytic subunit (C2I) and a translocation subunit (C2II). C2I component is structurally and functionally similar to the VIP2 and iota A toxin whereas C2II component shows a significant homology with the protective antigen from anthrax toxin and iota B. Unlike C2 toxin, C3 toxin is devoid of translocation/binding subunit. Extensive studies on their sequence-structure-function link spawn additional efforts to understand the catalytic mechanisms and target recognition. Structural and functional relationships with them are often determined by using evolutionary constraints as valuable biological measures. Enzyme-deficient mutants derived from these toxins have been used as drug/protein delivery systems in eukaryotic cells. Thus, current knowledge on their molecular diversity is a well-known perspective to design immunotoxin or subunit vaccine for C. botulinum infection. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. Determination of cyanobacteria toxins (microcystins): current situation; Problematica y situacion actual de la determinacion de toxinas de cianobacterias: microcistinas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Navarro, I. M.; Pichardo Sanchez, S.; Carmean Fernandez, A. M. [Universidad de Sevilla (Spain)

    2003-07-01

    A review of the different biological and chemical methods developed to determine cyano bacterial toxins, microcystins (MC), in freshwater has been carried out. However, any of them have been accepted as a standard method by the official environmental agencies. Biological methods as the mouse bioassays, immunoassays or protein phosphatase, inhibition assays are used as screening methods to detect MC. Analytical methods as High Performance Liquid Chromatography (HPLC) or Capillary Electrophoresis (CE), with different detectors, allow to identify and quantify the individual toxins produced by different cyano bacterial species. (Author) 40 refs.

  20. Regulating Toxin-Antitoxin Expression: Controlled Detonation of Intracellular Molecular Timebombs

    Directory of Open Access Journals (Sweden)

    Finbarr Hayes

    2014-01-01

    Full Text Available Genes for toxin-antitoxin (TA complexes are widely disseminated in bacteria, including in pathogenic and antibiotic resistant species. The toxins are liberated from association with the cognate antitoxins by certain physiological triggers to impair vital cellular functions. TAs also are implicated in antibiotic persistence, biofilm formation, and bacteriophage resistance. Among the ever increasing number of TA modules that have been identified, the most numerous are complexes in which both toxin and antitoxin are proteins. Transcriptional autoregulation of the operons encoding these complexes is key to ensuring balanced TA production and to prevent inadvertent toxin release. Control typically is exerted by binding of the antitoxin to regulatory sequences upstream of the operons. The toxin protein commonly works as a transcriptional corepressor that remodels and stabilizes the antitoxin. However, there are notable exceptions to this paradigm. Moreover, it is becoming clear that TA complexes often form one strand in an interconnected web of stress responses suggesting that their transcriptional regulation may prove to be more intricate than currently understood. Furthermore, interference with TA gene transcriptional autoregulation holds considerable promise as a novel antibacterial strategy: artificial release of the toxin factor using designer drugs is a potential approach to induce bacterial suicide from within.

  1. A bioanalytical platform for simultaneous detection and quantification of biological toxins.

    Science.gov (United States)

    Weingart, Oliver G; Gao, Hui; Crevoisier, François; Heitger, Friedrich; Avondet, Marc-André; Sigrist, Hans

    2012-01-01

    Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin's identity and concentration. The system's performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A), Staphylococcal enterotoxin B (SEB), and the plant toxin ricin. Toxins were detectable at levels as low as 0.5-1 ng · mL(-1) in buffer or in raw milk.

  2. Lipid reorganization induced by Shiga toxin clustering on planar membranes.

    Directory of Open Access Journals (Sweden)

    Barbara Windschiegl

    Full Text Available The homopentameric B-subunit of bacterial protein Shiga toxin (STxB binds to the glycolipid Gb(3 in plasma membranes, which is the initial step for entering cells by a clathrin-independent mechanism. It has been suggested that protein clustering and lipid reorganization determine toxin uptake into cells. Here, we elucidated the molecular requirements for STxB induced Gb(3 clustering and for the proposed lipid reorganization in planar membranes. The influence of binding site III of the B-subunit as well as the Gb(3 lipid structure was investigated by means of high resolution methods such as fluorescence and scanning force microscopy. STxB was found to form protein clusters on homogenous 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC/cholesterol/Gb(3 (65:30:5 bilayers. In contrast, membranes composed of DOPC/cholesterol/sphingomyelin/Gb(3 (40:35:20:5 phase separate into a liquid ordered and liquid disordered phase. Dependent on the fatty acid composition of Gb(3, STxB-Gb(3 complexes organize within the liquid ordered phase upon protein binding. Our findings suggest that STxB is capable of forming a new membrane phase that is characterized by lipid compaction. The significance of this finding is discussed in the context of Shiga toxin-induced formation of endocytic membrane invaginations.

  3. The road to toxin-targeted therapeutic antibodies.

    Science.gov (United States)

    Kozel, Thomas R

    2014-07-08

    Once an infection by a toxin-producing bacterium is well established, therapies such as antibiotics that target bacterial growth may have little impact on the ultimate patient outcome. In such cases, toxin-neutralizing antibodies offer an opportunity to block key virulence factors. New work by A. K. Varshney, X. Wang, J. L. Aguilar, M. D. Scharff, and B. C. Fries [mBio 5(3):e01007-14, 2014, doi:10.1128/mBio.01007-14] highlights the role of the antibody isotype in determining the efficacy of toxin-neutralizing antibodies in vivo. Varshney et al. examined the role of antibody isotype for protection in murine models of staphylococcal enterotoxin B (SEB)-induced lethal shock and sepsis produced by SEB-producing Staphylococcus aureus. Murine antibodies of the IgG2a isotype were more protective than antibodies of the IgG1 and IgG2b isotypes that have identical variable regions and binding activity. These results add to the complexity inherent in the selection and optimization of antibodies for anti-infective passive immunization and emphasize the need to use relevant in vivo models to evaluate potential therapeutic monoclonal antibodies. Copyright © 2014 Kozel.

  4. Pasteurella multocida Toxin Interaction with Host Cells: Entry and Cellular Effects

    Science.gov (United States)

    Ho, Mengfei

    2015-01-01

    The mitogenic dermonecrotic toxin from Pasteurella multocida (PMT) is a 1285-residue multipartite protein that belongs to the A-B family of bacterial protein toxins. Through its G-protein-deamidating activity on the α subunits of heterotrimeric Gq-, Gi- and G12/13-proteins, PMT potently stimulates downstream mitogenic, calcium, and cytoskeletal signaling pathways. These activities lead to pleiotropic effects in different cell types, which ultimately result in cellular proliferation, while inhibiting cellular differentiation, and account for the myriad of physiological outcomes observed during infection with toxinogenic strains of P. multocida. PMID:22552700

  5. Exfoliative Toxins of Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Michal Bukowski

    2010-05-01

    Full Text Available Staphylococcus aureus is an important pathogen of humans and livestock. It causes a diverse array of diseases, ranging from relatively harmless localized skin infections to life-threatening systemic conditions. Among multiple virulence factors, staphylococci secrete several exotoxins directly associated with particular disease symptoms. These include toxic shock syndrome toxin 1 (TSST-1, enterotoxins, and exfoliative toxins (ETs. The latter are particularly interesting as the sole agents responsible for staphylococcal scalded skin syndrome (SSSS, a disease predominantly affecting infants and characterized by the loss of superficial skin layers, dehydration, and secondary infections. The molecular basis of the clinical symptoms of SSSS is well understood. ETs are serine proteases with high substrate specificity, which selectively recognize and hydrolyze desmosomal proteins in the skin. The fascinating road leading to the discovery of ETs as the agents responsible for SSSS and the characterization of the molecular mechanism of their action, including recent advances in the field, are reviewed in this article.

  6. BACTERIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    Payel Sarkar

    2013-01-01

    Full Text Available Petroleum aromatic hydrocarbons like benzen e, toluene, ethyl benzene and xylene, together known as BTEX, has almost the same chemical structure. These aromatic hydrocarbons are released as pollutants in th e environment. This work was taken up to develop a solvent tolerant bacterial cons ortium that could degrade BTEX compounds as they all share a common chemical structure. We have isolated almost 60 different types of bacterial strains from different petroleum contaminated sites. Of these 60 bacterial strains almost 20 microorganisms were screene d on the basis of capability to tolerate high concentration of BTEX. Ten differe nt consortia were prepared and the compatibility of the bacterial strains within the consortia was checked by gram staining and BTEX tolerance level. Four successful mi crobial consortia were selected in which all the bacterial strains concomitantly grew in presence of high concentration of BTEX (10% of toluene, 10% of benzene 5% ethyl benzene and 1% xylene. Consortium #2 showed the highest growth rate in pr esence of BTEX. Degradation of BTEX by consortium #2 was monitored for 5 days by gradual decrease in the volume of the solvents. The maximum reduction observed wa s 85% in 5 days. Gas chromatography results also reveal that could completely degrade benzene and ethyl benzene within 48 hours. Almost 90% degradation of toluene and xylene in 48 hours was exhibited by consortium #2. It could also tolerate and degrade many industrial solvents such as chloroform, DMSO, acetonitrile having a wide range of log P values (0.03–3.1. Degradation of aromatic hydrocarbon like BTEX by a solvent tolerant bacterial consortium is greatly significant as it could degrade high concentration of pollutants compared to a bacterium and also reduces the time span of degradation.

  7. Shiga Toxin Therapeutics: Beyond Neutralization

    Directory of Open Access Journals (Sweden)

    Gregory Hall

    2017-09-01

    Full Text Available Ribotoxic Shiga toxins are the primary cause of hemolytic uremic syndrome (HUS in patients infected with Shiga toxin-producing enterohemorrhagic Escherichia coli (STEC, a pathogen class responsible for epidemic outbreaks of gastrointestinal disease around the globe. HUS is a leading cause of pediatric renal failure in otherwise healthy children, resulting in a mortality rate of 10% and a chronic morbidity rate near 25%. There are currently no available therapeutics to prevent or treat HUS in STEC patients despite decades of work elucidating the mechanisms of Shiga toxicity in sensitive cells. The preclinical development of toxin-targeted HUS therapies has been hindered by the sporadic, geographically dispersed nature of STEC outbreaks with HUS cases and the limited financial incentive for the commercial development of therapies for an acute disease with an inconsistent patient population. The following review considers potential therapeutic targeting of the downstream cellular impacts of Shiga toxicity, which include the unfolded protein response (UPR and the ribotoxic stress response (RSR. Outcomes of the UPR and RSR are relevant to other diseases with large global incidence and prevalence rates, thus reducing barriers to the development of commercial drugs that could improve STEC and HUS patient outcomes.

  8. T Cell Targeting by Anthrax Toxins: Two Faces of the Same Coin

    Directory of Open Access Journals (Sweden)

    Silvia Rossi Paccani

    2011-06-01

    Full Text Available Bacillus anthracis, similar to other bacterial pathogens, has evolved effective immune evasion strategies to prolong its survival in the host, thus ensuring the unchecked spread of the infection. This function is subserved by lethal (LT and edema (ET toxins, two exotoxins produced by vegetative anthrax bacilli following germination of the spores. The structure of these toxins and the mechanism of cell intoxication are topics covered by other reviews in this issue. Here we shall discuss how B. anthracis uses LT and ET to suppress the immune defenses of the host, focusing on T lymphocytes, the key players in adaptive immunity. We shall also summarize recent findings showing that, depending on its concentration, ET has the ability not only to suppress T cell activation but also to promote the polarization of CD4+ T cells to the Th2 and Th17 subsets, highlighting the potential use of this toxin as an immunomodulator.

  9. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, Bodil; Pallesen, Lars; Jensen, Lars Bogø

    1997-01-01

    The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions...... in the fimA gene. This was carried out by introduction of new restriction sites by PCR-mediated site-directed mutagenesis of fimA in positions predicted to correspond to optimally surface-located regions of the subunit protein. Subsequently, the synthetic cholera-toxin-encoding DNA segment was inserted....... Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  10. Larvicidal activity of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus.

    Science.gov (United States)

    DE Lara, Ana Paula DE Souza Stori; Lorenzon, Lucas Bigolin; Vianna, Ana Muñoz; Santos, Francisco Denis Souza; Pinto, Luciano Silva; Aires Berne, Maria Elisabeth; Leite, Fábio Pereira Leivas

    2016-10-01

    Effective control of gastrointestinal parasites is necessary in sheep production. The development of anthelmintics resistance is causing the available chemically based anthelmintics to become less effective. Biological control strategies present an alternative to this problem. In the current study, we tested the larvicidal effects of Bacillus thuringiensis var. israelensis Cry11Aa toxin against Haemonchus contortus larvae. Bacterial suspensions [2 × 108 colony-forming units (CFU) g-1 of the feces] of B. thuringiensis var. israelensis and recombinant Escherichia coli expressing Cry11Aa toxin were added to naturally H. contortus egg-contaminated feces. The larvae were quantified, and significant reductions of 62 and 81% (P var. israelensis and recombinant E. coli expressing Cry11Aa toxin were then orally administered to lambs naturally infected with H. contortus. Twelve hours after administration, feces were collected and submitted to coprocultures. Significant larvae reductions (P var. israelensis is a promising new class of biological anthelmintics for treating sheep against H. contortus.

  11. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...

  12. Bacterial meningitis

    NARCIS (Netherlands)

    Heckenberg, Sebastiaan G. B.; Brouwer, Matthijs C.; van de Beek, Diederik

    2014-01-01

    Bacterial meningitis is a neurologic emergency. Vaccination against common pathogens has decreased the burden of disease. Early diagnosis and rapid initiation of empiric antimicrobial and adjunctive therapy are vital. Therapy should be initiated as soon as blood cultures have been obtained,

  13. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation,

  14. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    , the production and oxidation of methane, nitrate reduction and fixation of atmospheric nitrogen are exclusively carried out by different groups of bacteria. Some bacterial species – ‘extremophiles’ – thrive in extreme environments in which no eukaryotic organisms can survive with respect to temperature, salinity...

  15. Bacterial Vaginosis

    Science.gov (United States)

    ... that coats the walls of the vagina Vaginal discharge with an unpleasant or fishlike odor Vaginal pain or itching Burning during urination Doctors are unsure of the incubation period for bacterial vaginosis. How Is the Diagnosis Made? Your child’s pediatrician can make the diagnosis ...

  16. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    Diarrhetic shellfish poisoning (DSP) poses a considerable threat to food safety and to the economy of shellfish fishers and farmers in many parts of the world. Thousands of DSP intoxications have been reported, and bivalve harvesting can sometimes be closed down several months in a row. The toxins....... acuta. I grew the two species in laboratory cultures at different irradiances (7-130 μmol photons m-2 s-1) and with different food availability. The results showed that irradiance had no effects on toxin profiles, and only limited effects of the cellular toxin contents. Rather, toxin production rates...... followed growth rates, thus giving stable toxin contents. Food availability also did not change the toxin profiles of either species, but starvation did increase the cellular contents of each of the toxins present. The observation that toxin production continued for several weeks after the ciliate food...

  17. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    reduce or delay bacterial biofilm formation of a range of urinary tract infectious E.coli and Klebsiella isolates. Several other proteinaceous coatings were also found to display anti-adhesive properties, possibly providing a measure for controlling the colonization of implant materials. Several other...... components. These substances may both mediate and stabilize the bacterial biofilm. Finally, several adhesive structures were examined, and a novel physiological biofilm phenotype in E.coli biofilms was characterized, namely cell chain formation. The autotransporter protein, antigen 43, was implicated...

  18. Computational Studies of Snake Venom Toxins

    OpenAIRE

    Paola G. Ojeda; David Ramírez; Jans Alzate-Morales; Julio Caballero; Quentin Kaas; Wendy González

    2017-01-01

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics t...

  19. Detection of E. coli O157:H7 and Shigella dysenteriae toxins in clinical samples by PCR-ELISA

    Directory of Open Access Journals (Sweden)

    Jafar Amani

    2015-05-01

    Full Text Available Shiga toxin producing bacteria are potential causes of serious human disease such as hemorrhagic colitis, severe inflammations of ileocolonic regions of gastrointestinal tract, thrombocytopenia, septicemia, malignant disorders in urinary ducts, hemolytic uremic syndrome (HUS. Shiga toxin 1 (stx1, shiga toxin 2 (stx2, or a combination of both are responsible for most clinical symptoms of these diseases. A lot of methods have been developed so far to detect shiga toxins such as cell culture, ELISA, and RFPLA, but due to high costs and labor time in addition to low sensitivity, they have not received much attention. In this study, PCR-ELISA method was used to detect genes encoding shiga toxins1 and 2 (stx1 and stx2. To detect stx1 and stx2 genes, two primer pairs were designed for Multiplex-PCR then PCR-ELISA. PCR products (490 and 275, respectively were subsequently verified by sequencing. Sensitivity and specificity of PCR-ELISA method were determined by using genome serial dilution and Enterobacteria strains. PCR-ELISA method used in this study proved to be a rapid and precise approach to detect different types of shiga toxins and can be used to detect bacterial genes encoding shiga toxins.

  20. Ingested Shiga Toxin 2 (Stx2) Causes Histopathological Changes in Kidney, Spleen and Thymus Tissues and Mortality in Mice

    Science.gov (United States)

    The Shiga toxin (Stxs) producing bacterial strain, Escherichia coli O157:H7, colonizes the distal small intestine and the colon, initiating a very broad spectrum of illnesses such as hemolytic-uremic syndrome (HUS) characterized by microangiopathic hemolytic anemia, thrombocytopenia and acute renal ...

  1. Biotinylation of environmentally isolated Shiga toxin-producing Escherichia coli (STEC) – specific bacteriophages for biosensor and biocontrol applications

    Science.gov (United States)

    Like common bacteriophages, Shiga toxin-producing Escherichia coli (STEC) bacteriophages are viruses that recognize and bind to specific bacterial host (STEC) for propagation. They co-exist with STEC hosts, which cause epidemic food and waterborne illnesses, but may act as host populations limiting ...

  2. Mathematical modeling of growth of non-O157 Shiga Toxin-producing Escherichia coli in raw ground beef

    Science.gov (United States)

    The objective of this study was to investigate the growth of Shiga toxin-producing Escherichia coli (STEC, including serogroups O45, O103, O111, O121, and O145) in raw ground beef and to develop mathematical models to describe the bacterial growth under different temperature conditions. Three prima...

  3. High instability of a nematicidal Cry toxin plasmid in Bacillus thuringiensis.

    Science.gov (United States)

    Sheppard, Anna E; Nakad, Rania; Saebelfeld, Manja; Masche, Anna C; Dierking, Katja; Schulenburg, Hinrich

    2016-01-01

    In bacterial pathogens, virulence factors are often carried on plasmids and other mobile genetic elements, and as such, plasmid evolution is central in understanding pathogenicity. Bacillus thuringiensis is an invertebrate pathogen that uses plasmid-encoded crystal (Cry) toxins to establish infections inside the host. Our study aimed to quantify stability of two Cry toxin-encoding plasmids, BTI_23p and BTI_16p, under standard laboratory culturing conditions. These two plasmids are part of the genome of the B. thuringiensis strain MYBT18679, which is of particular interest because of its high pathogenicity towards nematodes. One of the plasmids, BTI_23p, was found to be highly unstable, with substantial loss occurring within a single growth cycle. Nevertheless, longer term experimental evolution in the absence of a host revealed maintenance of the plasmid at low levels in the bacterial populations. BTI_23p encodes two nematicidal Cry toxins, Cry21Aa2 and Cry14Aa1. Consistent with previous findings, loss of the plasmid abolished pathogenicity towards the nematode Caenorhabditis elegans, which could be rescued by addition of Cry21Aa2-expressing Escherichia coli. These results implicate BTI_23p as a plasmid that is required for successful infection, yet unstable when present at high frequency in the population, consistent with the role of Cry toxins as public goods. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  5. Bacterial lipases

    OpenAIRE

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, meaning a sharp increase in lipase activity observed when the substrate starts to form an emulsion, thereby presenting to the enzyme an interfacial area. As a consequence, the kinetics of a lipase rea...

  6. Structural constraints-based evaluation of immunogenic avirulent toxins from Clostridium botulinum C2 and C3 toxins as subunit vaccines.

    Science.gov (United States)

    Prisilla, A; Prathiviraj, R; Sasikala, R; Chellapandi, P

    2016-10-01

    Clostridium botulinum (group-III) is an anaerobic bacterium producing C2 and C3 toxins in addition to botulinum neurotoxins in avian and mammalian cells. C2 and C3 toxins are members of bacterial ADP-ribosyltransferase superfamily, which modify the eukaryotic cell surface proteins by ADP-ribosylation reaction. Herein, the mutant proteins with lack of catalytic and pore forming function derived from C2 (C2I and C2II) and C3 toxins were computationally evaluated to understand their structure-function integrity. We have chosen many structural constraints including local structural environment, folding process, backbone conformation, conformational dynamic sub-space, NAD-binding specificity and antigenic determinants for screening of suitable avirulent toxins. A total of 20 avirulent mutants were identified out of 23 mutants, which were experimentally produced by site-directed mutagenesis. No changes in secondary structural elements in particular to α-helices and β-sheets and also in fold rate of all-β classes. Structural stability was maintained by reordered hydrophobic and hydrogen bonding patterns. Molecular dynamic studies suggested that coupled mutations may restrain the binding affinity to NAD(+) or protein substrate upon structural destabilization. Avirulent toxins of this study have stable energetic backbone conformation with a common blue print of folding process. Molecular docking studies revealed that avirulent mutants formed more favorable hydrogen bonding with the side-chain of amino acids near to conserved NAD-binding core, despite of restraining NAD-binding specificity. Thus, structural constraints in the avirulent toxins would determine their immunogenic nature for the prioritization of protein-based subunit vaccine/immunogens to avian and veterinary animals infected with C. botulinum. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin.

    Science.gov (United States)

    Tcatchoff, Lionel; Andersson, Sofia; Utskarpen, Audrun; Klokk, Tove Irene; Skånland, Sigrid S; Pust, Sascha; Gerke, Volker; Sandvig, Kirsten

    2012-01-01

    Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx) and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2)), and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2) activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2).

  8. A Bioanalytical Platform for Simultaneous Detection and Quantification of Biological Toxins

    Directory of Open Access Journals (Sweden)

    Hans Sigrist

    2012-02-01

    Full Text Available Prevalent incidents support the notion that toxins, produced by bacteria, fungi, plants or animals are increasingly responsible for food poisoning or intoxication. Owing to their high toxicity some toxins are also regarded as potential biological warfare agents. Accordingly, control, detection and neutralization of toxic substances are a considerable economic burden to food safety, health care and military biodefense. The present contribution describes a new versatile instrument and related procedures for array-based simultaneous detection of bacterial and plant toxins using a bioanalytical platform which combines the specificity of covalently immobilized capture probes with a dedicated instrumentation and immuno-based microarray analytics. The bioanalytical platform consists of a microstructured polymer slide serving both as support of printed arrays and as incubation chamber. The platform further includes an easy-to-operate instrument for simultaneous slide processing at selectable assay temperature. Cy5 coupled streptavidin is used as unifying fluorescent tracer. Fluorescence image analysis and signal quantitation allow determination of the toxin’s identity and concentration. The system’s performance has been investigated by immunological detection of Botulinum Neurotoxin type A (BoNT/A, Staphylococcal enterotoxin B (SEB, and the plant toxin ricin. Toxins were detectable at levels as low as 0.5–1 ng·mL−1 in buffer or in raw milk.

  9. An Interbacterial NAD(P)+ Glycohydrolase Toxin Requires Elongation Factor Tu for Delivery to Target Cells

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, John C.; Quentin, Dennis; Sawai, Shin; LeRoux, Michele; Harding, Brittany N.; Ledvina, Hannah E.; Tran, Bao Q.; Robinson, Howard; Goo, Young Ah; Goodlett, David R.; Raunser, Stefan; Mougous, Joseph D.

    2015-10-08

    Type VI secretion (T6S) influences the composition of microbial communities by catalyzing the delivery of toxins between adjacent bacterial cells. Here, we demonstrate that a T6S integral membrane toxin from Pseudomonas aeruginosa, Tse6, acts on target cells by degrading the universally essential dinucleotides NAD+ and NADP+. Structural analyses of Tse6 show that it resembles mono-ADP-ribosyltransferase proteins, such as diphtheria toxin, with the exception of a unique loop that both excludes proteinaceous ADP-ribose acceptors and contributes to hydrolysis. We find that entry of Tse6 into target cells requires its binding to an essential housekeeping protein, translation elongation factor Tu (EF-Tu). These proteins participate in a larger assembly that additionally directs toxin export and provides chaperone activity. Visualization of this complex by electron microscopy defines the architecture of a toxin-loaded T6S apparatus and provides mechanistic insight into intercellular membrane protein delivery between bacteria.

  10. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  11. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    Science.gov (United States)

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  12. Vth Pan American Symposium on Animal, Plant and Microbial Toxins

    National Research Council Canada - National Science Library

    Ownby, Charlotte

    1996-01-01

    ..., cardiotoxins, and antihemorrhagic factors. Presentations on plant and microbial toxins include work done on ricin, Clostridium perfringens enterotoxin, cone snail peptides, sea anemone toxins, proteinase inhibitors and maitotoxin...

  13. A Quantitative Electrochemiluminescence Assay for Clostridium perfringens alpha toxin

    National Research Council Canada - National Science Library

    Merrill, Gerald A; Rivera, Victor R; Neal, Dwayne D; Young, Charles; Poli, Mark A

    2006-01-01

    .... Biotinylated antibodies to C. perfringens alpha toxin bound to streptavidin paramagnetic beads specifically immunoadsorbed soluble sample alpha toxin which subsequently selectively immunoadsorbed ruthenium (Ru...

  14. Plant insecticidal toxins in ecological networks.

    Science.gov (United States)

    Ibanez, Sébastien; Gallet, Christiane; Després, Laurence

    2012-04-01

    Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects' vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  15. Plant Insecticidal Toxins in Ecological Networks

    Directory of Open Access Journals (Sweden)

    Sébastien Ibanez

    2012-04-01

    Full Text Available Plant secondary metabolites play a key role in plant-insect interactions, whether constitutive or induced, C- or N-based. Anti-herbivore defences against insects can act as repellents, deterrents, growth inhibitors or cause direct mortality. In turn, insects have evolved a variety of strategies to act against plant toxins, e.g., avoidance, excretion, sequestration and degradation of the toxin, eventually leading to a co-evolutionary arms race between insects and plants and to co-diversification. Anti-herbivore defences also negatively impact mutualistic partners, possibly leading to an ecological cost of toxin production. However, in other cases toxins can also be used by plants involved in mutualistic interactions to exclude inadequate partners and to modify the cost/benefit ratio of mutualism to their advantage. When considering the whole community, toxins have an effect at many trophic levels. Aposematic insects sequester toxins to defend themselves against predators. Depending on the ecological context, toxins can either increase insects’ vulnerability to parasitoids and entomopathogens or protect them, eventually leading to self-medication. We conclude that studying the community-level impacts of plant toxins can provide new insights into the synthesis between community and evolutionary ecology.

  16. Toxin-Antitoxin Battle in Bacteria

    DEFF Research Database (Denmark)

    Cataudella, Ilaria

    This PhD thesis consists of three research projects revolving around the common thread of investigation of the properties and biological functions of Toxin-Antitoxin loci. Toxin-Antitoxin (TA) loci are transcriptionally regulated via an auto-inhibition mechanism called conditional cooperativity, ...

  17. Botulinum toxin — therapeutic effect in cosmetology

    OpenAIRE

    Morrison A.V.; Bocharova Y.M.; Morrison V.V.

    2016-01-01

    This review presents the data from published literatures and the research works conducted by the authors about mechanisms of action of botulinum toxin and its use in the practical medicine (particularly in dermatology and cosmetology). Indications and contraindications of botulinum toxin use in cosmetology are also considered in this work.

  18. Botulinum toxin for masseter hypertrophy.

    Science.gov (United States)

    Fedorowicz, Zbys; van Zuuren, Esther J; Schoones, Jan

    2013-09-09

    Benign masseter muscle hypertrophy is an uncommon clinical phenomenon of uncertain aetiology which is characterised by a soft swelling near the angle of the mandible. The swelling may on occasion be associated with facial pain and can be prominent enough to be considered cosmetically disfiguring. Varying degrees of success have been reported for some of the treatment options for masseter hypertrophy, which range from simple pharmacotherapy to more invasive surgical reduction. Injection of botulinum toxin type A into the masseter muscle is generally considered a less invasive modality and has been advocated for cosmetic sculpting of the lower face. Botulinum toxin type A is a powerful neurotoxin which is produced by the anaerobic organism Clostridium botulinum and when injected into a muscle causes interference with the neurotransmitter mechanism producing selective paralysis and subsequent atrophy of the muscle.This review is an update of a previously published Cochrane review. To assess the efficacy and safety of botulinum toxin type A compared to placebo or no treatment, for the management of benign bilateral masseter hypertrophy. We searched the following databases from inception to April 2013: the Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE (via PubMed); EMBASE (via embase.com); Web of Science; CINAHL; Academic Search Premier (via EBSCOhost); ScienceDirect; LILACS (via BIREME); PubMed Central and Google Scholar (from 1700 to 19 April 2013). We searched two bibliographic databases of regional journals (IndMED and Iranmedex) which were expected to contain relevant trials. We also searched reference lists of relevant articles and contacted investigators to identify additional published and unpublished studies. Randomised controlled trials (RCTs) and controlled clinical trials (CCTs) comparing intra-masseteric injections of botulinum toxin versus placebo administered for cosmetic facial sculpting in individuals of any age with bilateral benign

  19. Staphylococcal β-Toxin Modulates Human Aortic Endothelial Cell and Platelet Function through Sphingomyelinase and Biofilm Ligase Activities

    Directory of Open Access Journals (Sweden)

    Alfa Herrera

    2017-03-01

    Full Text Available Staphylococcus aureus causes many infections, such as skin and soft tissue, pneumonia, osteomyelitis, and infective endocarditis (IE. IE is an endovascular infection of native and prosthetic valves and the lining of the heart; it is characterized by the formation of cauliflower-like “vegetations” composed of fibrin, platelets, other host factors, bacteria, and bacterial products. β-Toxin is an S. aureus virulence factor that contributes to the microorganism’s ability to cause IE. This cytolysin has two enzymatic activities: sphingomyelinase (SMase and biofilm ligase. Although both activities have functions in a rabbit model of IE, the mechanism(s by which β-toxin directly affects human cells and is involved in the infectious process has not been elucidated. Here, we compared the in vitro effects of purified recombinant wild-type β-toxin, SMase-deficient β-toxin (H289N, and biofilm ligase-deficient β-toxin (H162A and/or D163A on human aortic endothelial cells (HAECs and platelets. β-Toxin was cytotoxic to HAECs and inhibited the production of interleukin 8 (IL-8 from these cells by both SMase and biofilm ligase activities. β-Toxin altered HAEC surface expression of CD40 and vascular cell adhesion molecule 1 (VCAM-1. HAECs treated with β-toxin displayed granular membrane morphology not seen in treatment with the SMase-deficient mutant. The altered morphology resulted in two possibly separable activities, cell rounding and redistribution of cell membranes into granules, which were not the result of endosome production from the Golgi apparatus or lysosomes. β-Toxin directly aggregated rabbit platelets via SMase activity.

  20. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Science.gov (United States)

    Oscherwitz, Jon; Cease, Kemp B

    2015-01-01

    The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing determinant in alpha

  1. Identification and validation of a linear protective neutralizing epitope in the β-pore domain of alpha toxin.

    Directory of Open Access Journals (Sweden)

    Jon Oscherwitz

    Full Text Available The plethora of virulence factors associated with Staphylococcus aureus make this bacterium an attractive candidate for a molecularly-designed epitope-focused vaccine. This approach, which necessitates the identification of neutralizing epitopes for incorporation into a vaccine construct, is being evaluated for pathogens where conventional approaches have failed to elicit protective humoral responses, like HIV-1 and malaria, but may also hold promise for pathogens like S. aureus, where the elicitation of humoral immunity against multiple virulence factors may be required for development of an effective vaccine. Among the virulence factors employed by S. aureus, animal model and epidemiological data suggest that alpha toxin, a multimeric β-pore forming toxin like protective antigen from Bacillus anthracis, is particularly critical, yet no candidate neutralizing epitopes have been delineated in alpha toxin to date. We have previously shown that a linear determinant in the 2β2-2β3 loop of the pore forming domain of B. anthracis protective antigen is a linear neutralizing epitope. Antibody against this site is highly potent for neutralizing anthrax lethal toxin in vitro and for protection of rabbits in vivo from virulent B. anthracis. We hypothesized that sequences in the β-pore of S. aureus alpha toxin that share structural and functional homology to β-pore sequences in protective antigen would contain a similarly critical neutralizing epitope. Using an in vivo mapping strategy employing peptide immunogens, an optimized in vitro toxin neutralization assay, and an in vivo dermonecrosis model, we have now confirmed the presence of this epitope in alpha toxin, termed the pore neutralizing determinant. Antibody specific for this determinant neutralizes alpha toxin in vitro, and is highly effective for mitigating dermonecrosis and bacterial growth in a mouse model of S. aureus USA300 skin infection. The delineation of this linear neutralizing

  2. Brown spider dermonecrotic toxin directly induces nephrotoxicity

    International Nuclear Information System (INIS)

    Chaim, Olga Meiri; Sade, Youssef Bacila; Bertoni da Silveira, Rafael; Toma, Leny; Kalapothakis, Evanguedes; Chavez-Olortegui, Carlos; Mangili, Oldemir Carlos; Gremski, Waldemiro; Dietrich, Carl Peter von; Nader, Helena B.; Sanches Veiga, Silvio

    2006-01-01

    Brown spider (Loxosceles genus) venom can induce dermonecrotic lesions at the bite site and systemic manifestations including fever, vomiting, convulsions, disseminated intravascular coagulation, hemolytic anemia and acute renal failure. The venom is composed of a mixture of proteins with several molecules biochemically and biologically well characterized. The mechanism by which the venom induces renal damage is unknown. By using mice exposed to Loxosceles intermedia recombinant dermonecrotic toxin (LiRecDT), we showed direct induction of renal injuries. Microscopic analysis of renal biopsies from dermonecrotic toxin-treated mice showed histological alterations including glomerular edema and tubular necrosis. Hyalinization of tubules with deposition of proteinaceous material in the tubule lumen, tubule epithelial cell vacuoles, tubular edema and epithelial cell lysis was also observed. Leukocytic infiltration was neither observed in the glomerulus nor the tubules. Renal vessels showed no sign of inflammatory response. Additionally, biochemical analyses showed such toxin-induced changes in renal function as urine alkalinization, hematuria and azotemia with elevation of blood urea nitrogen levels. Immunofluorescence with dermonecrotic toxin antibodies and confocal microscopy analysis showed deposition and direct binding of this toxin to renal intrinsic structures. By immunoblotting with a hyperimmune dermonecrotic toxin antiserum on renal lysates from toxin-treated mice, we detected a positive signal at the region of 33-35 kDa, which strengthens the idea that renal failure is directly induced by dermonecrotic toxin. Immunofluorescence reaction with dermonecrotic toxin antibodies revealed deposition and binding of this toxin directly in MDCK epithelial cells in culture. Similarly, dermonecrotic toxin treatment caused morphological alterations of MDCK cells including cytoplasmic vacuoles, blebs, evoked impaired spreading and detached cells from each other and from

  3. Pore-forming toxins in Cnidaria.

    Science.gov (United States)

    Podobnik, Marjetka; Anderluh, Gregor

    2017-12-01

    The ancient phylum of Cnidaria contains many aquatic species with peculiar lifestyle. In order to survive, these organisms have evolved attack and defense mechanisms that are enabled by specialized cells and highly developed venoms. Pore-forming toxins are an important part of their venomous arsenal. Along some other types, the most representative are examples of four protein families that are commonly found in other kingdoms of life: actinoporins, Cry-like proteins, aerolysin-like toxins and MACPF/CDC toxins. Some of the homologues of pore-forming toxins may serve other functions, such as in food digestion, development and response against pathogenic organisms. Due to their interesting physico-chemical properties, the cnidarian pore-forming toxins may also serve as tools in medical research and nanobiotechnological applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Studies of muscarinic neurotransmission with antimuscarinic toxins.

    Science.gov (United States)

    Potter, Lincoln T; Flynn, Donna D; Liang, Jing-Sheng; McCollum, Mark H

    2004-01-01

    M1 and M4 muscarinic receptors are the most prevalent receptors for acetylcholine in the brain, and m1-toxin1 and m4-toxin are the most specific ligands yet found for their extracellular faces. Both toxins are antagonists. These toxins and their derivatives with biotin, radioiodine and fluorophores are useful for studying M1- and M4-linked neurotransmission. We have used the rat striatum for many studies because this tissue express exceptionally high concentrations of both receptors, the striatum regulates movement, and movement is altered by antimuscarinic agents, M1-knockout and M4-knockout. These toxins and their derivatives may also be used for studies of M1 and M4 receptors in the hippocampus and cortex.

  5. Crystallization of isoelectrically homogeneous cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, B.D.; Westbrook, E.M. (Argonne National Laboratory, IL (USA))

    1989-02-07

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-{angstrom} resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits.

  6. Crystallization of isoelectrically homogeneous cholera toxin

    International Nuclear Information System (INIS)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    Past difficulty in growing good crystals of cholera toxin has prevented the study of the crystal structure of this important protein. The authors have determined that failure of cholera toxin to crystallize well has been due to its heterogeneity. They have now succeeded in overcoming the problem by isolating a single isoelectric variant of this oligomeric protein (one A subunit and five B subunits). Cholera toxin purified by their procedure readily forms large single crystals. The crystal form has been described previously. They have recorded data from native crystals of cholera toxin to 3.0-angstrom resolution with our electronic area detectors. With these data, they have found the orientation of a 5-fold symmetry axis within these crystals, perpendicular to the screw dyad of the crystal. They are now determining the crystal structure of cholera toxin by a combination of multiple heavy-atom isomorphous replacement and density modification techniques, making use of rotational 5-fold averaging of the B subunits

  7. Bacterial mitosis

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Borch, Jonas; Dam, Mette

    2003-01-01

    Bacterial DNA segregation takes place in an active and ordered fashion. In the case of Escherichia coli plasmid R1, the partitioning system (par) separates paired plasmid copies and moves them to opposite cell poles. Here we address the mechanism by which the three components of the R1 par system...... movement is powered by insertional polymerization of ParM. Consistently, we find that segregating plasmids are positioned at the ends of extending ParM filaments. Thus, the process of R1 plasmid segregation in E. coli appears to be mechanistically analogous to the actin-based motility operating...

  8. Toxin-antitoxin vapBC locus participates in formation of the dormant state in Mycobacterium smegmatis.

    Science.gov (United States)

    Demidenok, Oksana I; Kaprelyants, Arseny S; Goncharenko, Anna V

    2014-03-01

    Toxin-antitoxin (TA) loci are widely spread in bacterial plasmids and chromosomes. Toxins affect important functions of bacterial cells such as translation, replication and cell-wall synthesis, whereas antitoxins are toxin inhibitors. Participation in formation of the dormant state in bacteria is suggested to be a possible function of toxins. Here we show that overexpression of VapC toxin in Mycobacterium smegmatis results in development of morphologically distinct ovoid cells. The ovoid cells were nonreplicating and revealed a low level of uracil incorporation and respiration that indicated their dormant status. To validate the role of VapBC in dormancy formation, we used a model of dormant, 'nonculturable' (NC) M. smegmatis cells obtained in potassium-limited conditions. Overexpression of VapB antitoxin prevented transition to dormancy, presumably due to a decreased level of the free VapC protein. Indeed, this effect of the VapB was neutralized by coexpression of the cognate VapC as a part of the vapBC operon. In summary, these findings reveal participation of vapBC products in formation of the dormant state in M. smegmatis. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  9. Mass Spectrometry-Based Method of Detecting and Distinguishing Type 1 and Type 2 Shiga-Like Toxins in Human Serum

    Directory of Open Access Journals (Sweden)

    Christopher J. Silva

    2015-12-01

    Full Text Available Shiga-like toxins (verotoxins are responsible for the virulence associated with a variety of foodborne bacterial pathogens. Direct detection of toxins requires a specific and sensitive technique. In this study, we describe a mass spectrometry-based method of analyzing the tryptic decapeptides derived from the non-toxic B subunits. A gene encoding a single protein that yields a set of relevant peptides upon digestion with trypsin was designed. The 15N-labeled protein was prepared by growing the expressing bacteria in minimal medium supplemented with 15NH4Cl. Trypsin digestion of the 15N-labeled protein yields a set of 15N-labeled peptides for use as internal standards to identify and quantify Shiga or Shiga-like toxins. We determined that this approach can be used to detect, quantify and distinguish among the known Shiga toxins (Stx and Shiga-like toxins (Stx1 and Stx2 in the low attomole range (per injection in complex media, including human serum. Furthermore, Stx1a could be detected and distinguished from the newly identified Stx1e in complex media. As new Shiga-like toxins are identified, this approach can be readily modified to detect them. Since intact toxins are digested with trypsin prior to analysis, the handling of intact Shiga toxins is minimized. The analysis can be accomplished within 5 h.

  10. Cationic Antimicrobial Peptides Inactivate Shiga Toxin-Encoding Bacteriophages

    Directory of Open Access Journals (Sweden)

    Manuel E. Del Cogliano

    2017-12-01

    Full Text Available Shiga toxin (Stx is the principal virulence factor during Shiga toxin-producing Escherichia coli (STEC infections. We have previously reported the inactivation of bacteriophage encoding Stx after treatment with chitosan, a linear polysaccharide polymer with cationic properties. Cationic antimicrobial peptides (cAMPs are short linear aminoacidic sequences, with a positive net charge, which display bactericidal or bacteriostatic activity against a wide range of bacterial species. They are promising novel antibiotics since they have shown bactericidal effects against multiresistant bacteria. To evaluate whether cationic properties are responsible for bacteriophage inactivation, we tested seven cationic peptides with proven antimicrobial activity as anti-bacteriophage agents, and one random sequence cationic peptide with no antimicrobial activity as a control. We observed bacteriophage inactivation after incubation with five cAMPs, but no inactivating activity was observed with the random sequence cationic peptide or with the non-alpha helical cAMP Omiganan. Finally, to confirm peptide-bacteriophage interaction, zeta potential was analyzed by following changes on bacteriophage surface charges after peptide incubation. According to our results we could propose that: (1 direct interaction of peptides with phage is a necessary step for bacteriophage inactivation, (2 cationic properties are necessary but not sufficient for bacteriophage inactivation, and (3 inactivation by cationic peptides could be sequence (or structure specific. Overall our data suggest that these peptides could be considered a new family of molecules potentially useful to decrease bacteriophage replication and Stx expression.

  11. Botulinum toxin for the treatment of bruxism.

    Science.gov (United States)

    Tinastepe, Neslihan; Küçük, Burcu Bal; Oral, Koray

    2015-10-01

    Botulinum toxin, the most potent biological toxin, has been shown to be effective for a variety of disorders in several medical conditions, when used both therapeutically and cosmetically. In recent years, there has been a rising trend in the use of this pharmacological agent to control bruxing activity, despite its reported adverse effects. The aim of this review was to provide a brief overview to clarify the underlying essential ideas for the use of botulinum toxin in bruxism based on available scientific papers. An electronic literature search was performed to identify publications related to botulinum toxin and its use for bruxism in PubMed. Hand searching of relevant articles was also made to identify additional studies. Of the eleven identified studies, only two were randomized controlled trials, compared with the effectiveness of botulinum toxins on the reduction in the frequency of bruxism events and myofascial pain after injection. The authors of these studies concluded that botulinum toxin could be used as an effective treatment for reducing nocturnal bruxism and myofascial pain in patients with bruxism. Evidence-based research was limited on this topic. More randomized controlled studies are needed to confirm that botulinum toxin is safe and reliable for routine clinical use in bruxism.

  12. Computational Studies of Snake Venom Toxins.

    Science.gov (United States)

    Ojeda, Paola G; Ramírez, David; Alzate-Morales, Jans; Caballero, Julio; Kaas, Quentin; González, Wendy

    2017-12-22

    Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  13. Computational Studies of Snake Venom Toxins

    Directory of Open Access Journals (Sweden)

    Paola G. Ojeda

    2017-12-01

    Full Text Available Most snake venom toxins are proteins, and participate to envenomation through a diverse array of bioactivities, such as bleeding, inflammation, and pain, cytotoxic, cardiotoxic or neurotoxic effects. The venom of a single snake species contains hundreds of toxins, and the venoms of the 725 species of venomous snakes represent a large pool of potentially bioactive proteins. Despite considerable discovery efforts, most of the snake venom toxins are still uncharacterized. Modern bioinformatics tools have been recently developed to mine snake venoms, helping focus experimental research on the most potentially interesting toxins. Some computational techniques predict toxin molecular targets, and the binding mode to these targets. This review gives an overview of current knowledge on the ~2200 sequences, and more than 400 three-dimensional structures of snake toxins deposited in public repositories, as well as of molecular modeling studies of the interaction between these toxins and their molecular targets. We also describe how modern bioinformatics have been used to study the snake venom protein phospholipase A2, the small basic myotoxin Crotamine, and the three-finger peptide Mambalgin.

  14. Engineering toxins for 21st century therapies.

    Science.gov (United States)

    Chaddock, John A; Acharya, K Ravi

    2011-04-01

    'Engineering Toxins for 21st Century Therapies' (9-10 September 2010) was part of the Royal Society International Seminar series held at the Kavli International Centre, UK. Participants were assembled from a range of disciplines (academic, industry, regulatory, public health) to discuss the future potential of toxin-based therapies. The meeting explored how the current structural and mechanistic knowledge of toxins could be used to engineer future toxin-based therapies. To date, significant progress has been made in the design of novel recombinant biologics based on domains of natural toxins, engineered to exhibit advantageous properties. The meeting concluded, firstly that future product development vitally required the appropriate combination of creativity and innovation that can come from the academic, biotechnology and pharma sectors. Second, that continued investigation into understanding the basic science of the toxins and their targets was essential in order to develop new opportunities for the existing products and to create new products with enhanced properties. Finally, it was concluded that the clinical potential for development of novel biologics based on toxin domains was evident. © 2011 The Authors Journal compilation © 2011 FEBS.

  15. Antibodies derived from a toxoid MEFA (multiepitope fusion antigen) show neutralizing activities against heat-labile toxin (LT), heat-stable toxins (STa, STb), and Shiga toxin 2e (Stx2e) of porcine enterotoxigenic Escherichia coli (ETEC).

    Science.gov (United States)

    Rausch, Dana; Ruan, Xiaosai; Nandre, Rahul; Duan, Qiangde; Hashish, Emad; Casey, Thomas A; Zhang, Weiping

    2017-04-01

    Enterotoxigenic Escherichia coli (ETEC) strains are the main cause of diarrhea in pigs. Pig diarrhea especially post-weaning diarrhea remains one of the most important swine diseases. ETEC bacterial fimbriae including K88, F18, 987P, K99 and F41 promote bacterial attachment to intestinal epithelial cells and facilitate ETEC colonization in pig small intestine. ETEC enterotoxins including heat-labile toxin (LT) and heat-stable toxins type Ia (porcine-type STa) and type II (STb) stimulate fluid hyper-secretion, leading to watery diarrhea. Blocking bacteria colonization and/or neutralizing enterotoxicity of ETEC toxins are considered effective prevention against ETEC diarrhea. In this study, we applied the MEFA (multiepitope fusion antigen) strategy to create toxoid MEFAs that carried antigenic elements of ETEC toxins, and examined for broad antitoxin immunogenicity in a murine model. By embedding STa toxoid STa P12F (NTFYCCELCCNFACAGCY), a STb epitope (KKDLCEHY), and an epitope of Stx2e A subunit (QSYVSSLN) into the A1 peptide of a monomeric LT toxoid (LT R192G ), two toxoid MEFAs, 'LT R192G -STb-Stx2e-STa P12F ' and 'LT R192G -STb-Stx2e-3xSTa P12F ' which carried three copies of STa P12F , were constructed. Mice intraperitoneally immunized with each toxoid MEFA developed IgG antibodies to all four toxins. Induced antibodies showed in vitro neutralizing activities against LT, STa, STb and Stx2e toxins. Moreover, suckling piglets born by a gilt immunized with 'LT R192G -STb-Stx2e-3xSTa P12F ' were protected when challenged with ETEC strains, whereas piglets born by a control gilt developed diarrhea. Results from this study showed that the toxoid MEFA induced broadly antitoxin antibodies, and suggested potential application of the toxoid MEFA for developing a broad-spectrum vaccine against ETEC diarrhea in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Cloning and molecular characterization of the beta toxin (phospholipase C) gene of Clostridium haemolyticum.

    Science.gov (United States)

    Hauer, Paul J; Yeary, Teresa J; Rosenbusch, Ricardo F

    2004-08-01

    The phospholipase C (PLPC) gene from Clostridium haemolyticum was amplified using the polymerase chain reaction. Primers were selected from a consensus sequence of closely related clostridial PLPC genes and used to amplify an 871-base pair internal segment of the gene. The internal sequence was used to design nested primers that, together with adapter-specific primers, were used to amplify upstream and downstream sequences. The sequences of upstream and downstream segments were aligned with the internal segment to obtain the entire gene sequence. Primers were selected from the aligned sequence, and the entire gene was amplified, and the PCR product was inserted by ligatation into the pCR 2.1 plasmid. An open reading frame that encodes a 399-amino acid protein, containing a 27-amino acid signal sequence, was identified (GenBank Accession Number AF525415). The molecular weight of the active protein was 42869 Da. A 16-amino acid N-terminal sequence, determined by Edman degradation, exactly matched the putative amino acid sequence of the gene product. Together, N-terminal peptide sequencing and tryptic digestion followed by MALDI-ToF mass spectroscopy verified 48% of the amino acid sequences of the active beta toxin. Comparison of the nucleotide and amino acid sequences with Gene-bank databases demonstrated that the beta toxin of C. haemolyticum exhibits high homology with other bacterial PLPCs. The N-terminal portion of the beta toxin contains zinc-binding residues common to clostridial and other bacterial PLPCs, and it shows 34% homology to the N-terminal domain of bovine arachidonate 5-lipoxygenase. The C-terminal domain of the beta toxin protein shows considerable homology with the C-terminal domains of C. novyi type A PLPC, C. perfringens alpha toxin, C. bifermentens PLPC, although the percent identity between the N-terminal regions is much higher overall than that in the C-terminal domain.

  17. Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment.

    Directory of Open Access Journals (Sweden)

    Lejla Imamovic

    Full Text Available BACKGROUND: The bacteriophage life cycle has an important role in Shiga toxin (Stx expression. The induction of Shiga toxin-encoding phages (Stx phages increases toxin production as a result of replication of the phage genome, and phage lysis of the host cell also provides a means of Stx toxin to exit the cell. Previous studies suggested that prophage induction might also occur in the absence of SOS response, independently of RecA. METHODOLOGY/PRINCIPAL FINDINGS: The influence of EDTA on RecA-independent Stx2 phage induction was assessed, in laboratory lysogens and in EHEC strains carrying Stx2 phages in their genome, by Real-Time PCR. RecA-independent mechanisms described for phage λ induction (RcsA and DsrA were not involved in Stx2 phage induction. In addition, mutations in the pathway for the stress response of the bacterial envelope to EDTA did not contribute to Stx2 phage induction. The effect of EDTA on Stx phage induction is due to its chelating properties, which was also confirmed by the use of citrate, another chelating agent. Our results indicate that EDTA affects Stx2 phage induction by disruption of the bacterial outer membrane due to chelation of Mg(2+. In all the conditions evaluated, the pH value had a decisive role in Stx2 phage induction. CONCLUSIONS/SIGNIFICANCE: Chelating agents, such as EDTA and citrate, induce Stx phages, which raises concerns due to their frequent use in food and pharmaceutical products. This study contributes to our understanding of the phenomenon of induction and release of Stx phages as an important factor in the pathogenicity of Shiga toxin-producing Escherichia coli (STEC and in the emergence of new pathogenic strains.

  18. SINGLE CHAIN VARIABLE FRAGMENTS OF ANTIBODIES AGAINST DIPHTHERIA TOXIN B-SUBUNIT ISOLATED FROM PHAGE DISPLAY HUMAN ANTIBODY LIBRARY

    Directory of Open Access Journals (Sweden)

    Oliinyk O. S.

    2014-02-01

    Full Text Available Diphtheria toxin is an exoantigen of Corynebacterium diphtheriae that inhibits protein synthesis and kills sensitive cells. The aim of this study was to obtain human recombinant single-chain variable fragment (scFv antibodies against receptor-binding B subunit of diphtheria toxin. 12 specific clones were selected after three rounds of a phage display naїve (unimmunized human antibody library against recombinant B-subunit. scFv DNA inserts from these 12 clones were digested with MvaI, and 6 unique restriction patterns were found. Single-chain antibodies were expressed in Escherichia coli XL1-blue. The recombinant proteins were characterized by immunoblotting of bacterial extracts and detection with an anti-E-tag antibody. The toxin B-subunit-binding function of the single-chain antibody was shown by ELISA. The affinity constants for different clones were found to be from 106 to 108 М–1. Due to the fact, that these antibody fragments recognized epitopes in the receptor-binding Bsubunit of diphtheria toxin, further studies are interesting to evaluate their toxin neutralization properties and potential for therapeutic applications. Obtained scFv-antibodies can also be used for detection and investigation of biological properties of diphtheria toxin.

  19. Delivery of CdiA nuclease toxins into target cells during contact-dependent growth inhibition.

    Science.gov (United States)

    Webb, Julia S; Nikolakakis, Kiel C; Willett, Julia L E; Aoki, Stephanie K; Hayes, Christopher S; Low, David A

    2013-01-01

    Bacterial contact-dependent growth inhibition (CDI) is mediated by the CdiB/CdiA family of two-partner secretion proteins. CDI systems deploy a variety of distinct toxins, which are contained within the polymorphic C-terminal region (CdiA-CT) of CdiA proteins. Several CdiA-CTs are nucleases, suggesting that the toxins are transported into the target cell cytoplasm to interact with their substrates. To analyze CdiA transfer to target bacteria, we used the CDI system of uropathogenic Escherichia coli 536 (UPEC536) as a model. Antibodies recognizing the amino- and carboxyl-termini of CdiA(UPEC536) were used to visualize transfer of CdiA from CDI(UPEC536+) inhibitor cells to target cells using fluorescence microscopy. The results indicate that the entire CdiA(UPEC536) protein is deposited onto the surface of target bacteria. CdiA(UPEC536) transfer to bamA101 mutants is reduced, consistent with low expression of the CDI receptor BamA on these cells. Notably, our results indicate that the C-terminal CdiA-CT toxin region of CdiA(UPEC536) is translocated into target cells, but the N-terminal region remains at the cell surface based on protease sensitivity. These results suggest that the CdiA-CT toxin domain is cleaved from CdiA(UPEC536) prior to translocation. Delivery of a heterologous Dickeya dadantii CdiA-CT toxin, which has DNase activity, was also visualized. Following incubation with CDI(+) inhibitor cells targets became anucleate, showing that the D.dadantii CdiA-CT was delivered intracellularly. Together, these results demonstrate that diverse CDI toxins are efficiently translocated across target cell envelopes.

  20. Cytolethal Distending Toxin From Campylobacter jejuni Requires the Cytoskeleton for Toxic Activity.

    Science.gov (United States)

    Méndez-Olvera, Estela T; Bustos-Martínez, Jaime A; López-Vidal, Yolanda; Verdugo-Rodríguez, Antonio; Martínez-Gómez, Daniel

    2016-10-01

    Campylobacter jejuni is one of the major causes of infectious diarrhea worldwide. The distending cytolethal toxin (CDT) of Campylobacter spp. interferes with normal cell cycle progression. This toxic effect is considered a result of DNase activity that produces chromosomal DNA damage. To perform this event, the toxin must be endocytosed and translocated to the nucleus. The aim of this study was to evaluate the role of the cytoskeleton in the translocation of CDT to the nucleus. Campylobacter jejuni ATCC 33291 and seven isolates donated from Instituto de Biotecnologia were used in this study. The presence of CDT genes in C. jejuni strains was determined by PCR. To evaluate the effect of CDT, HeLa cells were treated with bacterial lysate, and the damage and morphological changes were analyzed by microscopy, immunofluorescence staining, and flow cytometry. To evaluate the role of the cytoskeleton, HeLa cells were treated with either latrunculin A or by nocodazole and analyzed by microscopy, flow cytometry, and immunoquantification (ELISA). The results obtained showed that the eight strains of C. jejuni , including the reference strain, had the ability to produce the toxin. Usage of latrunculin A and nocodazole, two cytoskeletal inhibitors, blocked the toxic effect in cells treated with the toxin. This phenomenon was evident in flow cytometry analysis and immunoquantification of Cdc2-phosphorylated. This work showed that the cytotoxic activity of the C. jejuni CDT is dependent on its endocytosis. The alteration in the microtubules and actin filaments caused a blockage transit of the toxin, preventing it from reaching the nucleus of the cell, as well as preventing DNA fragmentation and alteration of the cell cycle. The CDT toxin appears to be an important element for the pathogenesis of campylobacteriosis, since all clinical isolates showed the presence of cdtA , cdtB and cdtC genes.

  1. Botulinum A toxin utilizations in obstetric palsy

    Directory of Open Access Journals (Sweden)

    Atakan Aydin

    2012-12-01

    Conclusion: We conclude that with the help of botulinum A toxin and physyotherapy, obstetrical palsy patient with cocontractions can significantly improve movements and may have less surgery. [Hand Microsurg 2012; 1(3.000: 89-94

  2. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2015. In this Table, provisional cases of selected notifiable diseases (≥1,000 cases reported during the preceding...

  3. NNDSS - Table II. Shiga toxin to Shigellosis

    Data.gov (United States)

    U.S. Department of Health & Human Services — NNDSS - Table II. Shiga toxin to Shigellosis - 2016. In this Table, provisional* cases of selected† notifiable diseases (≥1,000 cases reported during the preceding...

  4. Updates on tetanus toxin: a fundamental approach

    Directory of Open Access Journals (Sweden)

    Md. Ahaduzzaman

    2015-03-01

    Full Text Available Clostridium tetani is an anaerobic bacterium that produces second most poisonous protein toxins than any other bacteria. Tetanus in animals is sporadic in nature but difficult to combat even by using antibiotics and antiserum. It is crucial to understand the fundamental mechanisms and signals that control toxin production for advance research and medicinal uses. This review was intended for better understanding the basic patho-physiology of tetanus and neurotoxins (TeNT among the audience of related field.

  5. Toxicological Perspective on Climate Change: Aquatic Toxins.

    Science.gov (United States)

    Botana, Luis M

    2016-04-18

    In recent years, our group and several others have been describing the presence of new, not previously reported, toxins of high toxicity in vectors that may reach the human food chain. These include tetrodotoxin in gastropods in the South of Europe, ciguatoxin in fish in the South of Spain, palytoxin in mussels in the Mediterranean Sea, pinnatoxin all over Europe, and okadaic acid in the south of the U.S. There seem to be new marine toxins appearing in areas that are heavy producers of seafood, and this is a cause of concern as most of these new toxins are not included in current legislation and monitoring programs. Along with the new toxins, new chemical analogues are being reported. The same phenomenom is being recorded in freshwater toxins, such as the wide appearance of cylindrospermopsin and the large worldwide increase of microcystin. The problem that this phenomenon, which may be linked to climate warming, poses for toxicologists is very important not only because there is a lack of chronic studies and an incomplete comprehension of the mechanism driving the production of these toxins but also because the lack of a legal framework for them allows many of these toxins to reach the market. In some cases, it is very difficult to control these toxins because there are not enough standards available, they are not always certified, and there is an insufficient understanding of the toxic equivalency factors of the different analogues in each group. All of these factors have been revealed and grouped through the massive increase in the use of LC-MS as a monitoring tool, legally demanded, creating more toxicological problems.

  6. Dinoflagellate Toxins Responsible for Ciguatera Food Poisoning

    Science.gov (United States)

    1991-03-30

    Virgin Gorda Prorocu’nt~um lirna 885 Little Lameshur Bay, St. John Prorocentrum lima 838 Unknown (cold water form) Prorocontrum lima 62, 105, 142... Prorocentrum concavum, Conference on Natural Toxins from Aquatic and Marine Environments. 4. Tindall, D.R. and Miller, D.M., (1987) Two potent tox-is fiom...NO. NO. N. ACCESSION NO. 11. TITLE (iclude Security Classification) DINOFLAGELLATE TOXINS RESPONSIBLE FOR CIGUATERA POISONING 12. PERSONAL AUTHOR(S

  7. Keeping the wolves at bay: antitoxins of prokaryotic type II toxin-antitoxin systems

    Directory of Open Access Journals (Sweden)

    Wai Ting eChan

    2016-03-01

    Full Text Available In their initial stages of discovery, prokaryotic toxin-antitoxin (TA systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I – VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA

  8. Botulinum toxin for the treatment of strabismus.

    Science.gov (United States)

    Rowe, Fiona J; Noonan, Carmel P

    2017-03-02

    The use of botulinum toxin as an investigative and treatment modality for strabismus is well reported in the medical literature. However, it is unclear how effective it is in comparison to other treatment options for strabismus. The primary objective was to examine the efficacy of botulinum toxin therapy in the treatment of strabismus compared with alternative conservative or surgical treatment options. This review sought to ascertain those types of strabismus that particularly benefit from the use of botulinum toxin as a treatment option (such as small angle strabismus or strabismus with binocular potential, i.e. the potential to use both eyes together as a pair). The secondary objectives were to investigate the dose effect and complication rates associated with botulinum toxin. We searched CENTRAL (which contains the Cochrane Eyes and Vision Trials Register) (2016, Issue 6), Ovid MEDLINE, Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE Daily, Ovid OLDMEDLINE (January 1946 to July 2016), Embase (January 1980 to July 2016), Latin American and Caribbean Literature on Health Sciences (LILACS) (January 1982 to July 2016), the ISRCTN registry (www.isrctn.com/editAdvancedSearch), ClinicalTrials.gov (www.clinicaltrials.gov), and the World Health Organization (WHO) International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en). We did not use any date or language restrictions in the electronic searches for trials. We last searched the electronic databases on 11 July 2016. We handsearched the British and Irish Orthoptic Journal, Australian Orthoptic Journal, proceedings of the European Strabismological Association (ESA), International Strabismological Association (ISA) and International Orthoptic Association (IOA) (www.liv.ac.uk/orthoptics/research/search.htm) and American Academy of Paediatric Ophthalmology and Strabismus meetings (AAPOS). We contacted researchers who are active in this field for information about further

  9. BACTERIAL PLASMIDS

    Directory of Open Access Journals (Sweden)

    Marina Dinic

    2007-12-01

    Full Text Available Plasmids, extrachromosomal DNA, were identified in bacteria pertaining to family of Enterobacteriacae for the very first time. After that, they were discovered in almost every single observed strain. The structure of plasmids is made of circular double chain DNA molecules which are replicated autonomously in a host cell. Their length may vary from few up to several hundred kilobase (kb. Among the bacteria, plasmids are mostly transferred horizontally by conjugation process. Plasmid replication process can be divided into three stages: initiation, elongation, and termination. The process involves DNA helicase I, DNA gyrase, DNA polymerase III, endonuclease, and ligase.Plasmids contain genes essential for plasmid function and their preservation in a host cell (the beginning and the control of replication. Some of them possess genes whichcontrol plasmid stability. There is a common opinion that plasmids are unnecessary fora growth of bacterial population and their vital functions; thus, in many cases they can be taken up or kicked out with no lethal effects to a plasmid host cell. However,there are numerous biological functions of bacteria related to plasmids. Plasmids identification and classification are based upon their genetic features which are presented permanently in all of them, and these are: abilities to preserve themselves in a host cell and to control a replication process. In this way, plasmids classification among incompatibility groups is performed. The method of replicon typing, which is based on genotype and not on phenotype characteristics, has the same results as in compatibility grouping.

  10. [Botulinum toxin therapy for spasticity].

    Science.gov (United States)

    Masakado, Yoshihisa

    2014-09-01

    Botulinum toxin (BTX) administered as an adjunct to other interventions for spasticity can act as a useful and effective therapeutic tool for treating patients disabled by spasticity. Presence of other non-reflex motor disorders (muscle stiffness, shortness, and contracture) can complicate the clinical course and disturb rehabilitative process of patients with spasticity. Treatment of spasticity using BTX can improve paralysis by correcting muscular imbalance that follows these diseases. In patients with chronic severe spasticity, we also have to address unique and difficult-to-treat clinical conditions such as abnormal posture and movement disorders. The effectiveness of BTX in treating some of these conditions is discussed. Because patients with neurological disabilities can show complex dysfunctions, specific functional limitations, goals, and expected outcomes of treatment should be evaluated and discussed with the patient, family members, and caregivers, prior to initiating BTX therapy. BTX therapy might improve not only care, passive function, but also motor functions in these patients by supplementing intensive rehabilitation with repetitive transcranial magnetic stimulation, transcranial direct-current stimulation, peripheral electrical stimulation, muscle stretching, and other rehabilitation strategies.

  11. Microbial activity and bacterial community structure during degradation of microcystins

    DEFF Research Database (Denmark)

    Christoffersen, K.; Lyck, Susanne; Winding, A.

    2002-01-01

    experiment to evaluate the effects of organic lysates on bacterial proliferation in the absence of microcystin. An exponential decline of the dissolved toxins was observed in all cases with toxins present, and the degradation rates ranged between 0.5 and 1.0 d(-1). No lag phases were observed but slow......Degradation of realistic microcystin concentrations in lake water with indigenous bacteria was studied in laboratory and field experiments following inoculation with lysed toxic algal material containing microcystin primarily from Microcystis sp. or purified commercial microcystin-LR to microcosms....... It was hypothesised that the bacterial community from a lake with frequent occurrence of toxic cyanobacteria can degrade microcystin along with other organic compounds. The initial dissolved microcystin concentrations ranged between 10 and 136 mug 1(-1) (microcystin-LR equivalents) in the laboratory experiment, using...

  12. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.

  13. Cholera toxin subunit B-mediated intracellular trafficking of mesoporous silica nanoparticles toward the endoplasmic reticulum

    Science.gov (United States)

    Walker, William Andrew

    In recent decades, pharmaceutical research has led to the development of numerous treatments for human disease. Nanoscale delivery systems have the potential to maximize therapeutic outcomes by enabling target specific delivery of these therapeutics. The intracellular localization of many of these materials however, is poorly controlled, leading to sequestration in degradative cellular pathways and limiting the efficacy of their payloads. Numerous proteins, particularly bacterial toxins, have evolved mechanisms to subvert the degradative mechanisms of the cell. Here, we have investigated a possible strategy for shunting intracellular delivery of encapsulated cargoes from these pathways by modifying mesoporous silica nanoparticles (MSNs) with the well-characterized bacterial toxin Cholera toxin subunit B (CTxB). Using established optical imaging methods we investigated the internalization, trafficking, and subcellular localization of our modified MSNs in an in vitro animal cell model. We then attempted to demonstrate the practical utility of this approach by using CTxB-modified mesoporous silica nanoparticles to deliver propidium iodide, a membrane-impermeant fluorophore.

  14. Affinity chromatography of tetanus toxin, tetanus toxoid, and botulinum A toxin on synaptosomes, and differentiation of their acceptors

    International Nuclear Information System (INIS)

    Habermann, E.

    1976-01-01

    125 I-labelled tetanus toxin and 125 I-labelled botulinum A neurotoxin are known to be specifically bound to brain synaptosomes. In order to discriminate between active toxin and inactive admixtures present in the starting material or arising during iodination, synaptosome columns were prepared using bromacetylcellulose and/or kieselgur (Celite) as carriers. Both types of columns adsorb the toxins from low ionic strength medium and release them if the pH and ionic strength are raised. Botulinum toxin was eluted with lower ionic strength than tetanus toxin, and could be freed from nontoxic admixtures. Analysis by affinity chromatography disclosed partially toxoided tetanus toxin in both labelled and unlabelled toxin samples. High concentrations of formaldehyde (0.5%) destroyed both toxicity and affinity to the synaptosomes of tetanus toxin. Low concentrations of formaldehyde (0.05%) yielded a derivative of low toxicity which was still, however less firmly, bound to synaptosomes. Tetanus and botulinum toxin differ by their acceptors. Whereas unlabelled botulinum toxin is unable to compete with labelled tetanus toxin, unlabelled tetanus toxin slightly competes with botulinum toxin. Both labelled toxins display anomalous binding behaviour in that they cannot be displaced completely even with a large excess of unlabelled toxin. (orig.) [de

  15. Structure-function analyses of a pertussis-like toxin from pathogenicEscherichia colireveal a distinct mechanism of inhibition of trimeric G-proteins.

    Science.gov (United States)

    Littler, Dene R; Ang, Sheng Y; Moriel, Danilo G; Kocan, Martina; Kleifeld, Oded; Johnson, Matthew D; Tran, Mai T; Paton, Adrienne W; Paton, James C; Summers, Roger J; Schembri, Mark A; Rossjohn, Jamie; Beddoe, Travis

    2017-09-08

    Pertussis-like toxins are secreted by several bacterial pathogens during infection. They belong to the AB 5 virulence factors, which bind to glycans on host cell membranes for internalization. Host cell recognition and internalization are mediated by toxin B subunits sharing a unique pentameric ring-like assembly. Although the role of pertussis toxin in whooping cough is well-established, pertussis-like toxins produced by other bacteria are less studied, and their mechanisms of action are unclear. Here, we report that some extra-intestinal Escherichia coli pathogens ( i.e. those that reside in the gut but can spread to other bodily locations) encode a pertussis-like toxin that inhibits mammalian cell growth in vitro We found that this protein, Ec Plt, is related to toxins produced by both nontyphoidal and typhoidal Salmonella serovars. Pertussis-like toxins are secreted as disulfide-bonded heterohexamers in which the catalytic ADP-ribosyltransferase subunit is activated when exposed to the reducing environment in mammalian cells. We found here that the reduced Ec Plt exhibits large structural rearrangements associated with its activation. We noted that inhibitory residues tethered within the NAD + -binding site by an intramolecular disulfide in the oxidized state dissociate upon the reduction and enable loop restructuring to form the nucleotide-binding site. Surprisingly, although pertussis toxin targets a cysteine residue within the α subunit of inhibitory trimeric G-proteins, we observed that activated Ec Plt toxin modifies a proximal lysine/asparagine residue instead. In conclusion, our results reveal the molecular mechanism underpinning activation of pertussis-like toxins, and we also identified differences in host target specificity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Authentic display of a cholera toxin epitope by chimeric type 1 fimbriae: effects of insert position and host background

    DEFF Research Database (Denmark)

    Stentebjerg-Olesen, B; Pallesen, L; Jensen, LB

    1997-01-01

    The potential of the major structural protein of type 1 fimbriae as a display system for heterologous sequences was tested. As a reporter-epitope, a heterologous sequence mimicking a neutralizing epitope of the cholera toxin B chain was inserted, in one or two copies, into four different positions...... in the fimA gene. This was carried out by introduction of new restriction sites by PCR-mediated site-directed mutagenesis of fimA in positions predicted to correspond to optimally surface-located regions of the subunit protein. Subsequently, the synthetic cholera-toxin-encoding DNA segment was inserted....... Several of the chosen positions seemed amenable even for large foreign inserts; the chimeric proteins were exposed on the bacterial surface and the cholera toxin epitope was authentically displayed, i.e. it was recognized on bacteria by specific antiserum. Display of chimeric fimbriae was tested...

  17. Animal Toxins: How is Complexity Represented in Databases?

    Science.gov (United States)

    Jungo, Florence; Estreicher, Anne; Bairoch, Amos; Bougueleret, Lydie; Xenarios, Ioannis

    2010-02-01

    Peptide toxins synthesized by venomous animals have been extensively studied in the last decades. To be useful to the scientific community, this knowledge has been stored, annotated and made easy to retrieve by several databases. The aim of this article is to present what type of information users can access from each database. ArachnoServer and ConoServer focus on spider toxins and cone snail toxins, respectively. UniProtKB, a generalist protein knowledgebase, has an animal toxin-dedicated annotation program that includes toxins from all venomous animals. Finally, the ATDB metadatabase compiles data and annotations from other databases and provides toxin ontology.

  18. Mass spectrometry-based method of detecting and distinguishing type 1 and type 2 Shiga-like toxins in human serum

    Science.gov (United States)

    Shiga-like toxins (verotoxins) are a class of AB5 holotoxins that are responsible for the virulence associated with bacterial pathogens such as Shigella dysenteriae, shigatoxigenic and enterohemorrhagic strains of Escherichia coli (STEC and EHEC), and some Enterobacter strains. The actual expression...

  19. Mathematical modeling and numerical analysis of the growth of Non-O157 shiga toxin-producing Escherichia coli in spinach leaves

    Science.gov (United States)

    This study was conducted to investigate the growth of non-O157 Shiga toxin-producing Escherichia coli (STEC) in spinach leaves and to develop kinetic models to describe the bacterial growth. Six serogroups of non-O157 STEC, including O26, O45, O103, O111, O121, and O145, were used in the growth stu...

  20. Crystal structure of Clostridium difficile toxin A

    Energy Technology Data Exchange (ETDEWEB)

    Chumbler, Nicole M.; Rutherford, Stacey A.; Zhang, Zhifen; Farrow, Melissa A.; Lisher, John P.; Farquhar, Erik; Giedroc, David P.; Spiller, Benjamin W.; Melnyk, Roman A.; Lacy, D. Borden

    2016-01-11

    Clostridium difficile infection is the leading cause of hospital-acquired diarrhoea and pseudomembranous colitis. Disease is mediated by the actions of two toxins, TcdA and TcdB, which cause the diarrhoea, as well as inflammation and necrosis within the colon. The toxins are large (308 and 270 kDa, respectively), homologous (47% amino acid identity) glucosyltransferases that target small GTPases within the host. The multidomain toxins enter cells by receptor-mediated endocytosis and, upon exposure to the low pH of the endosome, insert into and deliver two enzymatic domains across the membrane. Eukaryotic inositol-hexakisphosphate (InsP6) binds an autoprocessing domain to activate a proteolysis event that releases the N-terminal glucosyltransferase domain into the cytosol. Here, we report the crystal structure of a 1,832-amino-acid fragment of TcdA (TcdA1832), which reveals a requirement for zinc in the mechanism of toxin autoprocessing and an extended delivery domain that serves as a scaffold for the hydrophobic α-helices involved in pH-dependent pore formation. A surface loop of the delivery domain whose sequence is strictly conserved among all large clostridial toxins is shown to be functionally important, and is highlighted for future efforts in the development of vaccines and novel therapeutics.

  1. Array biosensor for detection of toxins

    Science.gov (United States)

    Ligler, Frances S.; Taitt, Chris Rowe; Shriver-Lake, Lisa C.; Sapsford, Kim E.; Shubin, Yura; Golden, Joel P.

    2003-01-01

    The array biosensor is capable of detecting multiple targets rapidly and simultaneously on the surface of a single waveguide. Sandwich and competitive fluoroimmunoassays have been developed to detect high and low molecular weight toxins, respectively, in complex samples. Recognition molecules (usually antibodies) were first immobilized in specific locations on the waveguide and the resultant patterned array was used to interrogate up to 12 different samples for the presence of multiple different analytes. Upon binding of a fluorescent analyte or fluorescent immunocomplex, the pattern of fluorescent spots was detected using a CCD camera. Automated image analysis was used to determine a mean fluorescence value for each assay spot and to subtract the local background signal. The location of the spot and its mean fluorescence value were used to determine the toxin identity and concentration. Toxins were measured in clinical fluids, environmental samples and foods, with minimal sample preparation. Results are shown for rapid analyses of staphylococcal enterotoxin B, ricin, cholera toxin, botulinum toxoids, trinitrotoluene, and the mycotoxin fumonisin. Toxins were detected at levels as low as 0.5 ng mL(-1).

  2. Cyanobacterial Toxin Degrading Bacteria: Who Are They?

    Directory of Open Access Journals (Sweden)

    Konstantinos Ar. Kormas

    2013-01-01

    Full Text Available Cyanobacteria are ubiquitous in nature and are both beneficial and detrimental to humans. Benefits include being food supplements and producing bioactive compounds, like antimicrobial and anticancer substances, while their detrimental effects are evident by toxin production, causing major ecological problems at the ecosystem level. To date, there are several ways to degrade or transform these toxins by chemical methods, while the biodegradation of these compounds is understudied. In this paper, we present a meta-analysis of the currently available 16S rRNA and mlrA (microcystinase genes diversity of isolates known to degrade cyanobacterial toxins. The available data revealed that these bacteria belong primarily to the Proteobacteria, with several strains from the sphingomonads, and one from each of the Methylobacillus and Paucibacter genera. Other strains belonged to the genera Arthrobacter, Bacillus, and Lactobacillus. By combining the ecological knowledge on the distribution, abundance, and ecophysiology of the bacteria that cooccur with toxic cyanobacterial blooms and newly developed molecular approaches, it is possible not only to discover more strains with cyanobacterial toxin degradation abilities, but also to reveal the genes associated with the degradation of these toxins.

  3. Structural studies of the toxin-antitoxin proteins RelE and RelB from E. coli

    DEFF Research Database (Denmark)

    Andersen, Kasper Røjkjær; Overgaard, Martin; Gerdes, Kenn

    the special tRNA-mRNA mimic, tmRNA [1]. Questions to be addressed Many questions remain to be answered in the bacterial toxin-antitoxin system. The crystal structure of RelBE from Pyrococcus horikoshii OT3 was previously solved at 2.3Å [2]. This structure shows the molecule in an inactive state, but OT3......The bacterial toxin-antitoxin system The relBE operon in E. coli encodes two small proteins: A toxin, RelE (12 kDa) and an antitoxin, RelB (9 kDa). RelE is activated under nutritional stress and is able to inhibit protein synthesis by cleaving the mRNA in the ribosomal A-site. This stress response...... serves to down-regulate metabolism in the cell when growth conditions are limited. RelB is expressed in excess over RelE during balanced growth, and inhibits the toxicity of RelE by forming an extremely stable toxin-antitoxin complex. The activation of RelE is induced when the labile RelB protein...

  4. Effect of the Food Additives Sodium Citrate and Disodium Phosphate on Shiga Toxin-Producing Escherichia coli and Production of stx-Phages and Shiga toxin.

    Science.gov (United States)

    Lenzi, Lucas J; Lucchesi, Paula M A; Medico, Lucía; Burgán, Julia; Krüger, Alejandra

    2016-01-01

    Induction and propagation of bacteriophages along the food production chain can represent a significant risk when bacteriophages carry genes for potent toxins. The aim of this study was to evaluate the effect of different compounds used in the food industry on the growth of Shiga toxin-producing Escherichia coli (STEC) and the production of stx-phage particles and Shiga toxin. We tested the in vitro effect of lactic acid, acetic acid, citric acid, disodium phosphate, and sodium citrate on STEC growth. A bacteriostatic effect was observed in most of treated cultures. The exceptions were those treated with sodium citrate and disodium phosphate in which similar growth curves to the untreated control were observed, but with reduced OD600 values. Evaluation of phage production by plaque-based assays showed that cultures treated with sodium citrate and disodium phosphate released phages in similar o lower levels than untreated cultures. However, semi-quantification of Stx revealed higher levels of extracellular Stx in STEC cultures treated with 2.5% sodium citrate than in untreated cultures. Our results reinforce the importance to evaluate if additives and other treatments used to decrease bacterial contamination in food induce stx-phage and Stx production.

  5. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases.

    Directory of Open Access Journals (Sweden)

    Komwit Surachat

    Full Text Available Lactobacillus paracasei SD1 is a potential probiotic strain due to its ability to survive several conditions in human dental cavities. To ascertain its safety for human use, we therefore performed a comprehensive bioinformatics analysis and characterization of the bacterial protein toxins produced by this strain. We report the complete genome of Lactobacillus paracasei SD1 and its comparison to other Lactobacillus genomes. Additionally, we identify and analyze its protein toxins and antimicrobial proteins using reliable online database resources and establish its phylogenetic relationship with other bacterial genomes. Our investigation suggests that this strain is safe for human use and contains several bacteriocins that confer health benefits to the host. An in silico analysis of protein-protein interactions between the target bacteriocins and the microbial proteins gtfB and luxS of Streptococcus mutans was performed and is discussed here.

  6. Secretion of Clostridium difficile toxins A and B requires the holin-like protein TcdE.

    Directory of Open Access Journals (Sweden)

    Revathi Govind

    Full Text Available The pathogenesis of Clostridium difficile, the major cause of antibiotic-associated diarrhea, is mainly associated with the production and activities of two major toxins. In many bacteria, toxins are released into the extracellular environment via the general secretion pathways. C. difficile toxins A and B have no export signature and their secretion is not explainable by cell lysis, suggesting that they might be secreted by an unusual mechanism. The TcdE protein encoded within the C. difficile pathogenicity locus (PaLoc has predicted structural features similar to those of bacteriophage holin proteins. During many types of phage infection, host lysis is driven by an endolysin that crosses the cytoplasmic membrane through a pore formed by holin oligomerization. We demonstrated that TcdE has a holin-like activity by functionally complementing a λ phage deprived of its holin. Similar to λ holin, TcdE expressed in Escherichia coli and C. difficile formed oligomers in the cytoplamic membrane. A C. difficile tcdE mutant strain grew at the same rate as the wild-type strain, but accumulated a dramatically reduced amount of toxin proteins in the medium. However, the complemented tcdE mutant released the toxins efficiently. There was no difference in the abundance of tcdA and tcdB transcripts or of several cytoplasmic proteins in the mutant and the wild-type strains. In addition, TcdE did not overtly affect membrane integrity of C. difficile in the presence of TcdA/TcdB. Thus, TcdE acts as a holin-like protein to facilitate the release of C. difficile toxins to the extracellular environment, but, unlike the phage holins, does not cause the non-specific release of cytosolic contents. TcdE appears to be the first example of a bacterial protein that releases toxins into the environment by a phage-like system.

  7. Mtx toxins synergize Bacillus sphaericus and Cry11Aa against susceptible and insecticide-resistant Culex quinquefasciatus larvae.

    Science.gov (United States)

    Wirth, Margaret C; Yang, Yangkun; Walton, William E; Federici, Brian A; Berry, Colin

    2007-10-01

    Two mosquitocidal toxins (Mtx) of Bacillus sphaericus, which are produced during vegetative growth, were investigated for their potential to increase toxicity and reduce the expression of insecticide resistance through their interactions with other mosquitocidal proteins. Mtx-1 and Mtx-2 were fused with glutathione S-transferase and produced in Escherichia coli, after which lyophilized powders of these fusions were assayed against Culex quinquefasciatus larvae. Both Mtx proteins showed a high level of activity against susceptible C. quinquefasciatus mosquitoes, with 50% lethal concentrations (LC(50)) of Mtx-1 and Mtx-2 of 0.246 and 4.13 microg/ml, respectively. The LC(50)s were 0.406 to 0.430 microg/ml when Mtx-1 or Mtx-2 was mixed with B. sphaericus, and synergy improved activity and reduced resistance levels. When the proteins were combined with a recombinant Bacillus thuringiensis strain that produces Cry11Aa, the mixtures were highly active against Cry11A-resistant larvae and resistance was also reduced. The mixture of two Mtx toxins and B. sphaericus was 10 times more active against susceptible mosquitoes than B. sphaericus alone, demonstrating the influence of relatively low concentrations of these toxins. These results show that, similar to Cyt toxins from B. thuringiensis subsp. israelensis, Mtx toxins can increase the toxicity of other mosquitocidal proteins and may be useful for both increasing the activity of commercial bacterial larvicides and managing potential resistance to these substances among mosquito populations.

  8. Annexin A1 and A2: roles in retrograde trafficking of Shiga toxin.

    Directory of Open Access Journals (Sweden)

    Lionel Tcatchoff

    Full Text Available Annexins constitute a family of calcium and membrane binding proteins. As annexin A1 and A2 have previously been linked to various membrane trafficking events, we initiated this study to investigate the role of these annexins in the uptake and intracellular transport of the bacterial Shiga toxin (Stx and the plant toxin ricin. Once endocytosed, both toxins are retrogradely transported from endosomes to the Golgi apparatus and the endoplasmic reticulum before being targeted to the cytosol where they inhibit protein synthesis. This study was performed to obtain new information both about toxin transport and the function of annexin A1 and annexin A2. Our data show that depletion of annexin A1 or A2 alters the retrograde transport of Stx but not ricin, without affecting toxin binding or internalization. Knockdown of annexin A1 increases Golgi transport of Stx, whereas knockdown of annexin A2 slightly decreases the same transport step. Interestingly, annexin A1 was found in proximity to cytoplasmic phospholipase A2 (cPLA(2, and the basal as well as the increased Golgi transport of Stx upon annexin A1 knockdown is dependent on cPLA(2 activity. In conclusion, annexin A1 and A2 have different roles in Stx transport to the trans-Golgi network. The most prominent role is played by annexin A1 which normally works as a negative regulator of retrograde transport from the endosomes to the Golgi network, most likely by complex formation and inhibition of cPLA(2.

  9. Surface proteins from Lactobacillus kefir antagonize in vitro cytotoxic effect of Clostridium difficile toxins.

    Science.gov (United States)

    Carasi, Paula; Trejo, Fernando M; Pérez, Pablo F; De Antoni, Graciela L; Serradell, María de los Angeles

    2012-02-01

    In this work, the ability of S-layer proteins from kefir-isolated Lactobacillus kefir strains to antagonize the cytophatic effects of toxins from Clostridium difficile (TcdA and TcdB) on eukaryotic cells in vitro was tested by cell detachment assay. S-layer proteins from eight different L. kefir strains were able to inhibit the damage induced by C. difficile spent culture supernatant to Vero cells. Besides, same protective effect was observed by F-actin network staining. S-layer proteins from aggregating L. kefir strains (CIDCA 83115, 8321, 8345 and 8348) showed a higher inhibitory ability than those belonging to non-aggregating ones (CIDCA 83111, 83113, JCM 5818 and ATCC 8007), suggesting that differences in the structure could be related to the ability to antagonize the effect of clostridial toxins. Similar results were obtained using purified TcdA and TcdB. Protective effect was not affected by proteases inhibitors or heat treatment, thus indicating that proteolytic activity is not involved. Only preincubation with specific anti-S-layer antibodies significantly reduced the inhibitory effect of S-layer proteins, suggesting that this could be attributed to a direct interaction between clostridial toxins and L. kefir S-layer protein. Interestingly, the interaction of toxins with S-layer carrying bacteria was observed by dot blot and fluorescence microscopy with specific anti-TcdA or anti-TcdB antibodies, although L. kefir cells did not show protective effects. We hypothesize that the interaction between clostridial toxins and soluble S-layer molecules is different from the interaction with S-layer on the surface of the bacteria thus leading a different ability to antagonize cytotoxic effect. This is the first report showing the ability of S-layer proteins from kefir lactobacilli to antagonize biological effects of bacterial toxins. These results encourage further research on the role of bacterial surface molecules to the probiotic properties of L. kefir and could

  10. Clostridium perfringens delta toxin is sequence related to beta toxin, NetB, and Staphylococcus pore-forming toxins, but shows functional differences.

    Directory of Open Access Journals (Sweden)

    Maria Manich

    Full Text Available Clostridium perfringens produces numerous toxins, which are responsible for severe diseases in man and animals. Delta toxin is one of the three hemolysins released by a number of C. perfringens type C and possibly type B strains. Delta toxin was characterized to be cytotoxic for cells expressing the ganglioside G(M2 in their membrane. Here we report the genetic characterization of Delta toxin and its pore forming activity in lipid bilayers. Delta toxin consists of 318 amino acids, its 28 N-terminal amino acids corresponding to a signal peptide. The secreted Delta toxin (290 amino acids; 32619 Da is a basic protein (pI 9.1 which shows a significant homology with C. perfringens Beta toxin (43% identity, with C. perfringens NetB (40% identity and, to a lesser extent, with Staphylococcus aureus alpha toxin and leukotoxins. Recombinant Delta toxin showed a preference for binding to G(M2, in contrast to Beta toxin, which did not bind to gangliosides. It is hemolytic for sheep red blood cells and cytotoxic for HeLa cells. In artificial diphytanoyl phosphatidylcholine membranes, Delta and Beta toxin formed channels. Conductance of the channels formed by Delta toxin, with a value of about 100 pS to more than 1 nS in 1 M KCl and a membrane potential of 20 mV, was higher than those formed by Beta toxin and their distribution was broader. The results of zero-current membrane potential measurements and single channel experiments suggest that Delta toxin forms slightly anion-selective channels, whereas the Beta toxin channels showed a preference for cations under the same conditions. C. perfringens Delta toxin shows a significant sequence homolgy with C. perfringens Beta and NetB toxins, as well as with S. aureus alpha hemolysin and leukotoxins, but exhibits different channel properties in lipid bilayers. In contrast to Beta toxin, Delta toxin recognizes G(M2 as receptor and forms anion-selective channels.

  11. Marine toxins and their toxicological significance: An overview

    Digital Repository Service at National Institute of Oceanography (India)

    Sarkar, A.

    This article presents an overview of various types of marine toxins and their toxicological significance in the context of biotechnological research and development. The characteristics and toxic potentials of different marine toxins highlighted...

  12. Vth Pan American Symposium on Animal, Plant and Microbial Toxins

    National Research Council Canada - National Science Library

    Ownby, Charlotte

    1996-01-01

    .... Presentations on arthropod toxins included work on scorpion neurotoxins, K+ channel-blocking peptides, lice and wasp proteins, stinging insect venom allergens and Australian funnel-web spider toxins...

  13. Regulation of Toxin Production in Clostridium perfringens

    Directory of Open Access Journals (Sweden)

    Kaori Ohtani

    2016-07-01

    Full Text Available The Gram-positive anaerobic bacterium Clostridium perfringens is widely distributed in nature, especially in soil and the gastrointestinal tracts of humans and animals. C. perfringens causes gas gangrene and food poisoning, and it produces extracellular enzymes and toxins that are thought to act synergistically and contribute to its pathogenesis. A complicated regulatory network of toxin genes has been reported that includes a two-component system for regulatory RNA and cell-cell communication. It is necessary to clarify the global regulatory system of these genes in order to understand and treat the virulence of C. perfringens. We summarize the existing knowledge about the regulatory mechanisms here.

  14. Studies on the physicochemical properties of bacterial toxins by different radiation sources and utilization of modified toxin by irradiation

    International Nuclear Information System (INIS)

    Yoo, Y. C.; Kim, S. J.; Kim, S. S.; Yang, H. S.; Kim, S. Y.

    2009-02-01

    This study was conducted to evaluate the feasibility of irradiation technology to induce natural immunity/resistance has been best preserved when ionizing radiation (Co-60) has been used for detoxification. The result of SDS-PAGE showed that the treatment of LPS with an ionizing radiation dose destroyed most of the minor bands, including the more intensively staining ones in the slow-moving region. Increasing radiation doses caused further destruction of the bands, eliminating first the ones with lower migration ability. In the infrared spectrum, the qualitative change of functional groups were found in LPS by irradiation, and the patterns indicate some quantitative differences between the parent endotoxin and the irradiated derivative. Furthermore, scanning endotoxin in the UV range, we found that a complex absorption pattern was changed dependent upon increasing exposure of ionizing radiation to endotoxin LPS. Our results showed dose-dependent detoxification when LPS in water is exposed to ionizing radiation at ambient temperature. The harmful effects of LPS decrease after radiation, whereas its capacity to induce tolerance, to function as an the proliferation of immune cells and their cytokine/chemokine release such as TNF-α and Nitric Oxide (NO) to protect against shock and to stimulate natural resistance are preserved to a large extent. In conclusion, the present study demonstrate that in vitro or in vivo exposure to irradiated-LPS reduces the induction of inflammatory factors in response to stimulation by a high-dose treatment of intact LPS

  15. Cellular Entry of Clostridium perfringens Iota-Toxin and Clostridium botulinum C2 Toxin

    Directory of Open Access Journals (Sweden)

    Masaya Takehara

    2017-08-01

    Full Text Available Clostridium perfringens iota-toxin and Clostridium botulinum C2 toxin are composed of two non-linked proteins, one being the enzymatic component and the other being the binding/translocation component. These latter components recognize specific receptors and oligomerize in plasma membrane lipid-rafts, mediating the uptake of the enzymatic component into the cytosol. Enzymatic components induce actin cytoskeleton disorganization through the ADP-ribosylation of actin and are responsible for cell rounding and death. This review focuses upon the recent advances in cellular internalization of clostridial binary toxins.

  16. Staphylococcus hyicus exfoliative toxin: Purification and demonstration of antigenic diversity among toxins from virulent strains

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Bille-Hansen, Vivi; Wegener, Henrik Caspar

    1997-01-01

    The exfoliative toxin produced by Staphylococcus hyicus strain 1289D-88 was purified as a single protein of approximately 30 kDa. Extracellular proteins of S. hyicus grown under small scale fermentation conditions were precipitated with ammonium sulfate. Separation of proteins was performed...... of 0.5 mM CuSO4 to the purified toxin resulted in more intense skin alterations comparable to lesions caused by precipitated culture supernatant diluted 1:10. These results indicated that the activity of the exfoliative toxin was dependent on the presence of Cu2+. Polyclonal and monoclonal antibodies...

  17. Characterisation of cholera toxin by liquid chromatography - Electrospray mass spectrometry

    NARCIS (Netherlands)

    Baar, B.L.M. van; Hulst, A.G.; Wils, E.R.J.

    1999-01-01

    Cholera toxin, one of the toxins that may be generated by various strains of the bacterium Vibrio cholerae, can be considered as a substance possibly used in biological warfare. The possibilities of characterising the toxin by liquid chromatography electrospray mass spectrometry (LC-ES-MS) were

  18. 77 FR 9888 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2012-02-21

    ... Toxin-Producing Escherichia coli in Certain Raw Beef Products AGENCY: Food Safety and Inspection Service... toxin-producing Escherichia coli (STEC) serogroups (O26, O45, O103, O111, O121, and O145). This new date..., that are contaminated with Shiga toxin-producing Escherichia coli (STEC) O26, O45, O103, O111, O121...

  19. EFFECTS OF MARINE ALGAL TOXINS ON THERMOREGULATION IN MICE.

    Science.gov (United States)

    Hypothermia is often seen in mice and rats exposed acutely to marine algal toxins, but the mechanism of action of these toxins on thermoregulation is not well understood. Our laboratory has assessed the thermoregulatory mechanisms of two marine algal toxins, maitotoxin and brevet...

  20. Regulations for marine microalgal toxins: Towards harmonization of ...

    African Journals Online (AJOL)

    However, there are disparities in current regulations regarding methods and applied limits for toxin control. Inconsistencies are especially evident for Diarrhetic Shellfish Poisoning (DSP) toxins. Epidemiological and toxicological data are necessary to assess risk, and to establish safe limits for the different groups of toxins.

  1. NMR resonance assignments of NarE, a putative ADP-ribosylating toxin from Neisseria meningitidis

    OpenAIRE

    Carlier, Ludovic; Koehler, Christian; Veggi, Daniele; Pizza, Mariagrazia; Soriani, Marco; Boelens, Rolf; Bonvin, Alexandre M. J. J.

    2010-01-01

    NarE is a 16 kDa protein identified from Neisseria meningitidis, one of the bacterial pathogens responsible for meningitis. NarE belongs to the ADP-ribosyltransferase family and catalyses the transfer of ADP-ribose moieties to arginine residues in target protein acceptors. Many pathogenic bacteria utilize ADP-ribosylating toxins to modify and alter essential functions of eukaryotic cells. NarE was proposed to bind iron through a Fe–S center which is supposed to be implied in catalysis. We hav...

  2. Bioengineered kidney tubules efficiently excrete uremic toxins

    NARCIS (Netherlands)

    Jansen, Jitske; Fedecostante, M.; Wilmer, M.; Peters, J.G.; Kreuser, U.M.; Broek, P.H.; Mensink, R.A.; Boltje, T.J.; Stamatialis, Dimitrios; Wetzels, J.F.; van der Heuvel, L.P.; Hoenderop, J.G.; Masereeuw, R.

    2016-01-01

    The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed

  3. Botulinum Toxin in Neurogenic Detrusor Overactivity

    Directory of Open Access Journals (Sweden)

    Carlos Arturo Levi D'Ancona

    2012-09-01

    Full Text Available Purpose To evaluate the effects of botulinum toxin on urodynamic parameters and quality of life in patients with neurogenic detrusor overactivity. Methods Thirty four adult patients with spinal cord injury and detrusor overactivity were selected. The patients received 300 units of botulinum toxin type A. The endpoints evaluated with the episodes of urinary incontinence and measured the maximum cystometric capacity, maximum amplitude of detrusor pressure and bladder compliance at the beginning and end of the study (24 weeks and evaluated the quality of life by applying the Qualiveen questionnaire. Results A significant decrease in the episodes of urinary incontinence was observed. All urodynamic parameters presented a significant improvement. The same was observed in the quality of life index and the specific impact of urinary problems scores from the Qualiveen questionnaire. Six patients did not complete the study, two due to incomplete follow-up, and four violated protocol and were excluded from the analyses. No systemic adverse events of botulinum toxin type A were reported. Conclusions A botulinum toxin type A showed a significantly improved response in urodynamics parameters and specific and general quality of life.

  4. Surgery and botulinum toxin in congenital esotropia.

    Science.gov (United States)

    Ruiz, Miguel F; Alvarez, María T; Sánchez-Garrido, Carmen M; Hernáez, José M; Rodríguez, José M

    2004-10-01

    In a previous study we investigated the advantages and drawbacks of early and delayed injection of botulinum toxin as primary treatment of infantile esotropia with nystagmus in abduction (IENA). We carried out a further study to investigate the role and efficacy of surgery in this condition and to determine the possible effect of previous injection of both medial recti with botulinum toxin in patients requiring a final horizontal surgical correction. Review of the records of 44 patients (24 girls and 20 boys) with IENA seen between 1979 and 1998 who had undergone at least one horizontal surgical procedure. The outcomes in the 16 patients who had previously received botulinum toxin were compared with those in the 28 patients for whom surgery was the primary treatment. There was a negative correlation between the pretreatment esotropic angle and age (Pearson's r = -0.45, p IENA with delayed diagnosis and in cases associated with unsteadiness of binocular vision or with nonhorizontal deviations. Initial treatment with botulinum toxin, injected into both medial recti, is effective, reducing the amount of further horizontal surgery and favouring postoperative stability, except in children under 18 months, in whom injection of 5 units induces unbalanced dissociated vertical deviation.

  5. Shiga toxin-producing Escherichia coli

    DEFF Research Database (Denmark)

    Pedersen, Rune Micha; Nielsen, Marc Trunjer Kusk; Möller, Sören

    2018-01-01

    OBJECTIVES: Shiga toxin-producing Escherichia coli (STEC) causes diarrhoeal disease, bloody diarrhoea and haemolytic uraemic syndrome. The aim of this study was to describe the incidence of STEC and the clinical features of STEC patients from a well-defined Danish population in which all fecal...

  6. Immunogenicity of toxins during Staphylococcus aureus infection

    NARCIS (Netherlands)

    N.J. Verkaik (Nelianne); O. Dauwalder (Olivier); K. Antri (Kenza); I. Boubekri (Ilhem); C.P. de Vogel (Corné); C. Badiou (Cédric); M. Bes (Michèle); F. Vandenesch (François); M. Tazir (Mohammed); H. Hooijkaas (Herbert); H.A. Verbrugh (Henri); A.F. van Belkum (Alex); J. Etienne (Jerome); G. Lina (Gérard); N. Ramdani-Bouguessa (Nadjia); W.J.B. van Wamel (Willem)

    2010-01-01

    textabstractAB - BACKGROUND: Toxins are important Staphylococcus aureus virulence factors, but little is known about their immunogenicity during infection. Here, additional insight is generated. METHODS: Serum samples from 206 S. aureus-infected patients and 201 hospital-admitted control subjects

  7. Toxins and antimicrobial peptides: interactions with membranes

    Science.gov (United States)

    Schlamadinger, Diana E.; Gable, Jonathan E.; Kim, Judy E.

    2009-08-01

    The innate immunity to pathogenic invasion of organisms in the plant and animal kingdoms relies upon cationic antimicrobial peptides (AMPs) as the first line of defense. In addition to these natural peptide antibiotics, similar cationic peptides, such as the bee venom toxin melittin, act as nonspecific toxins. Molecular details of AMP and peptide toxin action are not known, but the universal function of these peptides to disrupt cell membranes of pathogenic bacteria (AMPs) or a diverse set of eukaryotes and prokaryotes (melittin) is widely accepted. Here, we have utilized spectroscopic techniques to elucidate peptide-membrane interactions of alpha-helical human and mouse AMPs of the cathelicidin family as well as the peptide toxin melittin. The activity of these natural peptides and their engineered analogs was studied on eukaryotic and prokaryotic membrane mimics consisting of <200-nm bilayer vesicles composed of anionic and neutral lipids as well as cholesterol. Vesicle disruption, or peptide potency, was monitored with a sensitive fluorescence leakage assay. Detailed molecular information on peptidemembrane interactions and peptide structure was further gained through vibrational spectroscopy combined with circular dichroism. Finally, steady-state fluorescence experiments yielded insight into the local environment of native or engineered tryptophan residues in melittin and human cathelicidin embedded in bilayer vesicles. Collectively, our results provide clues to the functional structures of the engineered and toxic peptides and may impact the design of synthetic antibiotic peptides that can be used against the growing number of antibiotic-resistant pathogens.

  8. Okadaic Acid: More than a Diarrheic Toxin

    Directory of Open Access Journals (Sweden)

    Josefina Méndez

    2013-10-01

    Full Text Available Okadaic acid (OA is one of the most frequent and worldwide distributed marine toxins. It is easily accumulated by shellfish, mainly bivalve mollusks and fish, and, subsequently, can be consumed by humans causing alimentary intoxications. OA is the main representative diarrheic shellfish poisoning (DSP toxin and its ingestion induces gastrointestinal symptoms, although it is not considered lethal. At the molecular level, OA is a specific inhibitor of several types of serine/threonine protein phosphatases and a tumor promoter in animal carcinogenesis experiments. In the last few decades, the potential toxic effects of OA, beyond its role as a DSP toxin, have been investigated in a number of studies. Alterations in DNA and cellular components, as well as effects on immune and nervous system, and even on embryonic development, have been increasingly reported. In this manuscript, results from all these studies are compiled and reviewed to clarify the role of this toxin not only as a DSP inductor but also as cause of alterations at the cellular and molecular levels, and to highlight the relevance of biomonitoring its effects on human health. Despite further investigations are required to elucidate OA mechanisms of action, toxicokinetics, and harmful effects, there are enough evidences illustrating its toxicity, not related to DSP induction, and, consequently, supporting a revision of the current regulation on OA levels in food.

  9. Mutant with diphtheria toxin receptor and acidification function but defective in entry of toxin

    International Nuclear Information System (INIS)

    Kohno, Kenji; Hayes, H.; Mekada, Eisuke; Uchida, Tsuyoshi

    1987-01-01

    A mutant of Chinese hamster ovary cells, GE1, that is highly resistant to diphtheria toxin was isolated. The mutant contains 50% ADP-ribosylatable elongation factor 2, but its protein synthesis was not inhibited by the toxin even at concentrations above 100 μg/ml. 125 I-labeled diphtheria toxin was associated with GE1 cells as well as with the parent cells but did not block protein synthesis of GE1 cells even when the cells were exposed to low pH in the presence or absence of NH 4 Cl. The infections of GE1 cells and the parent cells by vesicular stomatitis virus were similar. GE1 cells were cross-resistant to Pseudomonas aeruginosa exotoxin A and so were about 1,000 times more resistant to this toxin than the parent cells. Hybrids of GE1 cells and the parent cells or mutant cells lacking a functional receptor were more sensitive to diphtheria toxin than GE1 cells. These results suggest that entry of diphtheria toxin into cells requires a cellular factor(s) in addition to those involved in receptor function and acidification of endosomes and that GE1 cells do not express this cellular factor. This character is recessive in GE1 cells

  10. Characterization of Hemagglutinin Negative Botulinum Progenitor Toxins

    Directory of Open Access Journals (Sweden)

    Suzanne R. Kalb

    2017-06-01

    Full Text Available Botulism is a disease involving intoxication with botulinum neurotoxins (BoNTs, toxic proteins produced by Clostridium botulinum and other clostridia. The 150 kDa neurotoxin is produced in conjunction with other proteins to form the botulinum progenitor toxin complex (PTC, alternating in size from 300 kDa to 500 kDa. These progenitor complexes can be classified into hemagglutinin positive or hemagglutinin negative, depending on the ability of some of the neurotoxin-associated proteins (NAPs to cause hemagglutination. The hemagglutinin positive progenitor toxin complex consists of BoNT, nontoxic non-hemagglutinin (NTNH, and three hemagglutinin proteins; HA-70, HA-33, and HA-17. Hemagglutinin negative progenitor toxin complexes contain BoNT and NTNH as the minimally functional PTC (M-PTC, but not the three hemagglutinin proteins. Interestingly, the genome of hemagglutinin negative progenitor toxin complexes comprises open reading frames (orfs which encode for three proteins, but the existence of these proteins has not yet been extensively demonstrated. In this work, we demonstrate that these three proteins exist and form part of the PTC for hemagglutinin negative complexes. Several hemagglutinin negative strains producing BoNT/A, /E, and /F were found to contain the three open reading frame proteins. Additionally, several BoNT/A-containing bivalent strains were examined, and NAPs from both genes, including the open reading frame proteins, were associated with BoNT/A. The open reading frame encoded proteins are more easily removed from the botulinum complex than the hemagglutinin proteins, but are present in several BoNT/A and /F toxin preparations. These are not easily removed from the BoNT/E complex, however, and are present even in commercially-available purified BoNT/E complex.

  11. Identification and characterization of an RTX toxin in the emerging pathogen Kingella kingae.

    Science.gov (United States)

    Kehl-Fie, Thomas E; St Geme, Joseph W

    2007-01-01

    Kingella kingae is an emerging bacterial pathogen that is increasingly recognized as the causative agent of a variety of pediatric diseases, including septic arthritis and osteomyelitis. The pathogenesis of K. kingae disease is believed to begin with colonization of the upper respiratory tract. In the present study, we examined interactions between K. kingae and cultured respiratory epithelial cells and observed potent cytotoxicity, detected by both microscopy and lactic acid dehydrogenase (LDH) release assays. Experiments with synovial and macrophage cell lines revealed cytotoxicity for these cell types as well. Using mariner mutagenesis and a screen for loss of cytotoxicity, a genetic locus encoding an RTX toxin system was identified. Disruption of the K. kingae RTX locus resulted in a loss of cytotoxicity for respiratory epithelial, synovial, and macrophage cell lines. DNA sequence analysis demonstrated that the RTX locus is flanked by insertion elements and has a reduced G+C content compared to that of the whole genome. Two relatively less invasive Kingella species, K. oralis and K. denitrificans, were found to be noncytotoxic and to lack the RTX region, as determined by LDH release assays and Southern blotting. We concluded that K. kingae expresses an RTX toxin that has wide cellular specificity and was likely acquired horizontally. The possible roles for this toxin in the pathogenesis of K. kingae disease include breaching of the epithelial barrier and destruction of target tissues, such as synovium (joint lining).

  12. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  13. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Tobias Dörr

    2010-02-01

    Full Text Available Bacteria induce stress responses that protect the cell from lethal factors such as DNA-damaging agents. Bacterial populations also form persisters, dormant cells that are highly tolerant to antibiotics and play an important role in recalcitrance of biofilm infections. Stress response and dormancy appear to represent alternative strategies of cell survival. The mechanism of persister formation is unknown, but isolated persisters show increased levels of toxin/antitoxin (TA transcripts. We have found previously that one or more components of the SOS response induce persister formation after exposure to a DNA-damaging antibiotic. The SOS response induces several TA genes in Escherichia coli. Here, we show that a knockout of a particular SOS-TA locus, tisAB/istR, had a sharply decreased level of persisters tolerant to ciprofloxacin, an antibiotic that causes DNA damage. Step-wise administration of ciprofloxacin induced persister formation in a tisAB-dependent manner, and cells producing TisB toxin were tolerant to multiple antibiotics. TisB is a membrane peptide that was shown to decrease proton motive force and ATP levels, consistent with its role in forming dormant cells. These results suggest that a DNA damage-induced toxin controls production of multidrug tolerant cells and thus provide a model of persister formation.

  14. Active Shiga-Like Toxin Produced by Some Aeromonas spp., Isolated in Mexico City.

    Science.gov (United States)

    Palma-Martínez, Ingrid; Guerrero-Mandujano, Andrea; Ruiz-Ruiz, Manuel J; Hernández-Cortez, Cecilia; Molina-López, José; Bocanegra-García, Virgilio; Castro-Escarpulli, Graciela

    2016-01-01

    Shiga-like toxins (Stx) represent a group of bacterial toxins involved in human and animal diseases. Stx is produced by enterohemorrhagic Escherichia coli, Shigella dysenteriae type 1, Citrobacter freundii , and Aeromonas spp.; Stx is an important cause of bloody diarrhea and hemolytic uremic syndrome (HUS). The aim of this study was to identify the stx 1 /stx 2 genes in clinical strains and outer membrane vesicles (OMVs) of Aeromonas spp., 66 strains were isolated from children who live in Mexico City, and Stx effects were evaluated in Vero cell cultures. The capacity to express active Stx1 and Stx2 toxins was determined in Vero cell cultures and the concentration of Stx was evaluated by 50% lethal dose (LD 50 ) assays, observing inhibition of damaged cells by specific monoclonal antibodies. The results obtained in this study support the hypothesis that the stx gene is another putative virulence factor of Aeromonas , and since this gene can be transferred horizontally through OMVs this genus should be included as a possible causal agents of gastroenteritis and it should be reported as part of standard health surveillance procedures. Furthermore, these results indicate that the Aeromonas genus might be a potential causative agent of HUS.

  15. General synthesis of β-alanine-containing spider polyamine toxins and discovery of nephila polyamine toxins 1 and 8 as highly potent inhibitors of ionotropic glutamate receptors

    DEFF Research Database (Denmark)

    Lucas, Simon; Poulsen, Mette H; Nørager, Niels G

    2012-01-01

    Certain spiders contain large pools of polyamine toxins, which are putative pharmacological tools awaiting further discovery. Here we present a general synthesis strategy for this class of toxins and prepare five structurally varied polyamine toxins. Electrophysiological testing at three ionotrop...

  16. Inflammatory and Bone Remodeling Responses to the Cytolethal Distending Toxins

    Directory of Open Access Journals (Sweden)

    Georgios N. Belibasakis

    2014-04-01

    Full Text Available The cytolethal distending toxins (CDTs are a family of exotoxins produced by a wide range of Gram-negative bacteria. They are known for causing genotoxic stress to the cell, resulting in growth arrest and eventually apoptotic cell death. Nevertheless, there is evidence that CDTs can also perturb the innate immune responses, by regulating inflammatory cytokine production and molecular mediators of bone remodeling in various cell types. These cellular and molecular events may in turn have an effect in enhancing local inflammation in diseases where CDT-producing bacteria are involved, such as Aggregatibacter actinomycetemcomitans, Haemophilus ducreyi, Campylobacter jejuni and Helicobacter hepaticus. One special example is the induction of pathological bone destruction in periodontitis. The opportunistic oral pathogen Aggregatibatcer actinoycemetemcomitans, which is involved in the aggressive form of the disease, can regulate the molecular mechanisms of bone remodeling in a manner that favors bone resorption, with the potential involvement of its CDT. The present review provides an overview of all known to-date inflammatory or bone remodeling responses of CDTs produced by various bacterial species, and discusses their potential contribution to the pathogenesis of the associated diseases.

  17. Type VI Secretion System Toxins Horizontally Shared between Marine Bacteria.

    Directory of Open Access Journals (Sweden)

    Dor Salomon

    2015-08-01

    Full Text Available The type VI secretion system (T6SS is a widespread protein secretion apparatus used by Gram-negative bacteria to deliver toxic effector proteins into adjacent bacterial or host cells. Here, we uncovered a role in interbacterial competition for the two T6SSs encoded by the marine pathogen Vibrio alginolyticus. Using comparative proteomics and genetics, we identified their effector repertoires. In addition to the previously described effector V12G01_02265, we identified three new effectors secreted by T6SS1, indicating that the T6SS1 secretes at least four antibacterial effectors, of which three are members of the MIX-effector class. We also showed that the T6SS2 secretes at least three antibacterial effectors. Our findings revealed that many MIX-effectors belonging to clan V are "orphan" effectors that neighbor mobile elements and are shared between marine bacteria via horizontal gene transfer. We demonstrated that a MIX V-effector from V. alginolyticus is a functional T6SS effector when ectopically expressed in another Vibrio species. We propose that mobile MIX V-effectors serve as an environmental reservoir of T6SS effectors that are shared and used to diversify antibacterial toxin repertoires in marine bacteria, resulting in enhanced competitive fitness.

  18. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach...... that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  19. Toxins for Transgenic Resistance to Hemipteran Pests

    Directory of Open Access Journals (Sweden)

    Bryony C. Bonning

    2012-06-01

    Full Text Available The sap sucking insects (Hemiptera, which include aphids, whiteflies, plant bugs and stink bugs, have emerged as major agricultural pests. The Hemiptera cause direct damage by feeding on crops, and in some cases indirect damage by transmission of plant viruses. Current management relies almost exclusively on application of classical chemical insecticides. While the development of transgenic crops expressing toxins derived from the bacterium Bacillus thuringiensis (Bt has provided effective plant protection against some insect pests, Bt toxins exhibit little toxicity against sap sucking insects. Indeed, the pest status of some Hemiptera on Bt-transgenic plants has increased in the absence of pesticide application. The increased pest status of numerous hemipteran species, combined with increased prevalence of resistance to chemical insecticides, provides impetus for the development of biologically based, alternative management strategies. Here, we provide an overview of approaches toward transgenic resistance to hemipteran pests.

  20. A Pseudomonas aeruginosa toxin that hijacks the host ubiquitin proteolytic system.

    Directory of Open Access Journals (Sweden)

    Jennifer M Bomberger

    2011-03-01

    Full Text Available Pseudomonas aeruginosa (P. aeruginosa is an opportunistic pathogen chronically infecting the lungs of patients with chronic obstructive pulmonary disease (COPD, pneumonia, cystic fibrosis (CF, and bronchiectasis. Cif (PA2934, a bacterial toxin secreted in outer membrane vesicles (OMV by P. aeruginosa, reduces CFTR-mediated chloride secretion by human airway epithelial cells, a key driving force for mucociliary clearance. The aim of this study was to investigate the mechanism whereby Cif reduces CFTR-mediated chloride secretion. Cif redirected endocytosed CFTR from recycling endosomes to lysosomes by stabilizing an inhibitory effect of G3BP1 on the deubiquitinating enzyme (DUB, USP10, thereby reducing USP10-mediated deubiquitination of CFTR and increasing the degradation of CFTR in lysosomes. This is the first example of a bacterial toxin that regulates the activity of a host DUB. These data suggest that the ability of P. aeruginosa to chronically infect the lungs of patients with COPD, pneumonia, CF, and bronchiectasis is due in part to the secretion of OMV containing Cif, which inhibits CFTR-mediated chloride secretion and thereby reduces the mucociliary clearance of pathogens.

  1. Crystal structure of the toxin Msmeg_6760, the structural homolog of Mycobacterium tuberculosis Rv2035, a novel type II toxin involved in the hypoxic response

    Energy Technology Data Exchange (ETDEWEB)

    Bajaj, R. Alexandra; Arbing, Mark A.; Shin, Annie; Cascio, Duilio; Miallau, Linda (UCLA)

    2016-11-19

    The structure of Msmeg_6760, a protein of unknown function, has been determined. Biochemical and bioinformatics analyses determined that Msmeg_6760 interacts with a protein encoded in the same operon, Msmeg_6762, and predicted that the operon is a toxin–antitoxin (TA) system. Structural comparison of Msmeg_6760 with proteins of known function suggests that Msmeg_6760 binds a hydrophobic ligand in a buried cavity lined by large hydrophobic residues. Access to this cavity could be controlled by a gate–latch mechanism. The function of the Msmeg_6760 toxin is unknown, but structure-based predictions revealed that Msmeg_6760 and Msmeg_6762 are homologous to Rv2034 and Rv2035, a predicted novel TA system involved inMycobacterium tuberculosislatency during macrophage infection. The Msmeg_6760 toxin fold has not been previously described for bacterial toxins and its unique structural features suggest that toxin activation is likely to be mediated by a novel mechanism.

  2. Update on bacterial pathogenesis in BRD.

    Science.gov (United States)

    Confer, Anthony W

    2009-12-01

    Mannheimia haemolytica, Pasteurella multocida, Histophilus somni, Mycoplasma bovis and Arcanobacterium pyogenes are all frequently implicated in bovine respiratory disease (BRD). M. haemolytica is considered the most important of the group. These bacteria are commensals in the nasopharynx and establish infection in the lungs of cattle that are subjected to a variety of stresses. Factors that permit adherence to and proliferation in the lungs and factors that cause tissue destruction and inflammation have been identified as having major roles in pathogenesis. These virulence factors include protein adhesins, capsular polysaccharide, outer membrane proteins, iron-binding proteins, lipopolysacharide or lipooligosaccharide, enzymes and toxins. These bacterial products function to evade the immune system, damage the immune system and induce a severe inflammatory response.

  3. Insecticidal toxins from black widow spider venom.

    Science.gov (United States)

    Rohou, A; Nield, J; Ushkaryov, Y A

    2007-03-15

    The biological effects of Latrodectus spider venom are similar in animals from different phyla, but these symptoms are caused by distinct phylum-specific neurotoxins (collectively called latrotoxins) with molecular masses ranging from 110 to 140 kDa. To date, the venom has been found to contain five insecticidal toxins, termed alpha, beta, gamma, delta and epsilon-latroinsectotoxins (LITs). There is also a vertebrate-specific neurotoxin, alpha-latrotoxin (alpha-LTX), and one toxin affecting crustaceans, alpha-latrocrustatoxin (alpha-LCT). These toxins stimulate massive release of neurotransmitters from nerve terminals and act (1) by binding to specific receptors, some of which mediate an exocytotic signal, and (2) by inserting themselves into the membrane and forming ion-permeable pores. Specific receptors for LITs have yet to be identified, but all three classes of vertebrate receptors known to bind alpha-LTX are also present in insects. All LTXs whose structures have been elucidated (alpha-LIT, delta-LIT, alpha-LTX and alpha-LCT) are highly homologous and have a similar domain architecture, which consists of a unique N-terminal sequence and a large domain composed of 13-22 ankyrin repeats. Three-dimensional (3D) structure analysis, so far done for alpha-LTX only, has revealed its dimeric nature and an ability to form symmetrical tetramers, a feature probably common to all LTXs. Only tetramers have been observed to insert into membranes and form pores. A preliminary 3D reconstruction of a delta-LIT monomer demonstrates the spatial similarity of this toxin to the monomer of alpha-LTX.

  4. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  5. Sea Anemone (Cnidaria, Anthozoa, Actiniaria Toxins: An Overview

    Directory of Open Access Journals (Sweden)

    Agostinho Antunes

    2012-08-01

    Full Text Available The Cnidaria phylum includes organisms that are among the most venomous animals. The Anthozoa class includes sea anemones, hard corals, soft corals and sea pens. The composition of cnidarian venoms is not known in detail, but they appear to contain a variety of compounds. Currently around 250 of those compounds have been identified (peptides, proteins, enzymes and proteinase inhibitors and non-proteinaceous substances (purines, quaternary ammonium compounds, biogenic amines and betaines, but very few genes encoding toxins were described and only a few related protein three-dimensional structures are available. Toxins are used for prey acquisition, but also to deter potential predators (with neurotoxicity and cardiotoxicity effects and even to fight territorial disputes. Cnidaria toxins have been identified on the nematocysts located on the tentacles, acrorhagi and acontia, and in the mucous coat that covers the animal body. Sea anemone toxins comprise mainly proteins and peptides that are cytolytic or neurotoxic with its potency varying with the structure and site of action and are efficient in targeting different animals, such as insects, crustaceans and vertebrates. Sea anemones toxins include voltage-gated Na+ and K+ channels toxins, acid-sensing ion channel toxins, Cytolysins, toxins with Kunitz-type protease inhibitors activity and toxins with Phospholipase A2 activity. In this review we assessed the phylogentic relationships of sea anemone toxins, characterized such toxins, the genes encoding them and the toxins three-dimensional structures, further providing a state-of-the-art description of the procedures involved in the isolation and purification of bioactive toxins.

  6. Bioengineered kidney tubules efficiently excrete uremic toxins.

    Science.gov (United States)

    Jansen, J; Fedecostante, M; Wilmer, M J; Peters, J G; Kreuser, U M; van den Broek, P H; Mensink, R A; Boltje, T J; Stamatialis, D; Wetzels, J F; van den Heuvel, L P; Hoenderop, J G; Masereeuw, R

    2016-05-31

    The development of a biotechnological platform for the removal of waste products (e.g. uremic toxins), often bound to proteins in plasma, is a prerequisite to improve current treatment modalities for patients suffering from end stage renal disease (ESRD). Here, we present a newly designed bioengineered renal tubule capable of active uremic toxin secretion through the concerted action of essential renal transporters, viz. organic anion transporter-1 (OAT1), breast cancer resistance protein (BCRP) and multidrug resistance protein-4 (MRP4). Three-dimensional cell monolayer formation of human conditionally immortalized proximal tubule epithelial cells (ciPTEC) on biofunctionalized hollow fibers with maintained barrier function was demonstrated. Using a tailor made flow system, the secretory clearance of human serum albumin-bound uremic toxins, indoxyl sulfate and kynurenic acid, as well as albumin reabsorption across the renal tubule was confirmed. These functional bioengineered renal tubules are promising entities in renal replacement therapies and regenerative medicine, as well as in drug development programs.

  7. EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin.

    Science.gov (United States)

    Schnell, Leonie; Mittler, Ann-Katrin; Sadi, Mirko; Popoff, Michel R; Schwan, Carsten; Aktories, Klaus; Mattarei, Andrea; Azarnia Tehran, Domenico; Montecucco, Cesare; Barth, Holger

    2016-04-01

    The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components via endosomes into the cytosol. Here, the A components ADP-ribosylate G-actin, resulting in depolymerization of F-actin, cell-rounding and eventually death. In the present study, we demonstrate that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone (EGA), a compound that protects cells from multiple toxins and viruses, also protects different mammalian epithelial cells from all three binary actin ADP-ribosylating toxins. In contrast, EGA did not inhibit the intoxication of cells with Clostridium difficile toxins A and B, indicating a possible different entry route for this toxin. EGA does not affect either the binding of the C2 toxin to the cells surface or the enzyme activity of the A components of CDT, iota and C2, suggesting that this compound interferes with cellular uptake of the toxins. Moreover, for C2 toxin, we demonstrated that EGA inhibits the pH-dependent transport of the A component across cell membranes. EGA is not cytotoxic, and therefore, we propose it as a lead compound for the development of novel pharmacological inhibitors against clostridial binary actin ADP-ribosylating toxins.

  8. [Botulinum toxin: An important complement for facial rejuvenation surgery].

    Science.gov (United States)

    Le Louarn, C

    2017-10-01

    The improved understanding of the functional anatomy of the face and of the action of the botulinum toxin A leads us to determine a new injection procedure which consequently decreases the risk of eyebrow and eyelid ptosis and increases the toxin's injection possibilities and efficiencies. With less units of toxin, the technique herein described proposes to be more efficient on more muscles: variable toxin injections concentration adapted to each injected muscle are used. Thanks to a new procedure in the upper face, toxin A injection can be quite close to an endoscopic surgical action. In addition, interesting results are achievable to rejuvenate the lateral canthus with injection on the upper lateral tarsus, to rejuvenate the nose with injection at the alar base, the jawline and the neck region. Lastly, a smoothing effect on the skin (meso botox) is obtained by the anticholinergic action of the toxin A on the dermal receptors. Copyright © 2017. Published by Elsevier Masson SAS.

  9. Overview of Scorpion Species from China and Their Toxins

    Directory of Open Access Journals (Sweden)

    Zhijian Cao

    2014-02-01

    Full Text Available Scorpions are one of the most ancient groups of terrestrial animals. They have maintained a steady morphology over more than 400 million years of evolution. Their venom arsenals for capturing prey and defending against predators may play a critical role in their ancient and conservative appearance. In the current review, we present the scorpion fauna of China: 53 species covering five families and 12 genera. We also systematically list toxins or genes from Chinese scorpion species, involving eight species covering four families. Furthermore, we review the diverse functions of typical toxins from Chinese scorpion species, involving Na+ channel modulators, K+ channel blockers, antimicrobial peptides and protease inhibitors. Using scorpion species and their toxins from China as an example, we build the bridge between scorpion species and their toxins, which helps us to understand the molecular and functional diversity of scorpion venom arsenal, the dynamic and functional evolution of scorpion toxins, and the potential relationships of scorpion species and their toxins.

  10. Antibiotic Resistance and Toxin Production of Clostridium difficile Isolates from the Hospitalized Patients in a Large Hospital in Florida.

    Science.gov (United States)

    Peng, Zhong; Addisu, Anteneh; Alrabaa, Sally; Sun, Xingmin

    2017-01-01

    Clostridium difficile is an important cause of nosocomial acquired antibiotic-associated diarrhea causing an estimated 453,000 cases with 29,000 deaths yearly in the U.S. Both antibiotic resistance and toxin expression of C. difficile correlate with the severity of C. difficile infection (CDI). In this report, a total of 139 C. difficile isolates from patients diagnosed with CDI in Tampa General Hospital (Florida) in 2016 were studied for antibiotic resistance profiles of 12 types of antibiotics and toxin production. Antibiotic resistance determined by broth microdilution method showed that strains resistant to multi-antibiotics are common. Six strains (4.32%) showed resistance to six types of antibiotics. Twenty strains (14.39%) showed resistance to five types of antibiotics. Seventeen strains (12.24%) showed resistance to four types of antibiotics. Thirty-nine strains (28.06%) showed resistance to three types of antibiotic. Thirty-four strains (24.46%) showed resistance to two types of antibiotics. While, all isolates were susceptible to metronidazole, and rifaximin, we found that one isolate (0.72%) displayed resistance to vancomycin (MIC ≥ 8 μg/ml), and another one was resistant to fidaxomicin (MIC >1 μg/ml). The percentage of isolates resistant to cefoxitin, ceftriaxone, chloramphenicol, ampicillin, clindamycin, erythromycin, gatifloxacin, and moxifloxacin was 75.54, 10.79, 5.76, 67.63, 82.70, 45.32, 28.06, and 28.78%, respectively. Toxin profiling by PCR showed the isolates include 101 (72.66%) A+B+CDT-strains, 23 (16.55%) A+B+CDT+ strains, 3 (2.16%) A-B+CDT+ strains, 1 (0.72%) A-B+CDT-strains, and 11 (7.91%) A-B-CDT-strains. Toxin production determined by ELISA using supernatants of bacterial culture harvested at 12, 24, 48, and 72 h of post inoculation (hpi) showed that the toxins were mainly produced between 48 and 72 hpi, and toxin B (TcdB) was produced faster than toxin A (TcdA) during the experimental time (72 hpi). In addition, the binary

  11. Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation.

    Science.gov (United States)

    Kloos, Bianca; Chakraborty, Sushmita; Lindner, Sonja G; Noack, Katrin; Harre, Ulrike; Schett, Georg; Krämer, Oliver H; Kubatzky, Katharina F

    2015-09-14

    Pasteurella multocida toxin (PMT) is a potent inducer of osteoclast formation. Pigs suffering from an infection with toxigenic Pasteurella multocida strains develop atrophic rhinitis characterised by a loss of turbinate bones and conchae. However, on the molecular level the process of bone loss remains largely uncharacterised. Recently it was found that PMT activates the serine/threonine kinase mammalian target of rapamycin (mTOR) in fibroblasts. Using RAW264.7 macrophages, we investigated the role of the mTOR complex 1 (mTORC1) in PMT-mediated osteoclast formation. PMT induces the differentiation of RAW264.7 macrophages into multinucleated, tartrate resistant acid phosphatase (TRAP) positive osteoclasts that are capable to resorb bone. In the presence of the mTORC1 inhibitor rapamycin, PMT was significantly less able to induce the formation of TRAP-positive osteoclasts. Accordingly, the resulting resorption of bone was strongly reduced. A major target of mTOR is the 70 kDa ribosomal protein S6 kinase 1 (p70 S6K1). Activated p70 S6K1 decreases the expression of programmed cell death protein 4 (PDCD4), a negative transcriptional regulator of osteoclastogenesis, at the protein and gene level. Ultimately this results in the activation of c-Jun, a component of the activator protein 1 (AP-1) complex, which is a major transcription factor for the induction of osteoclast-specific genes. We now demonstrate that c-Jun and its downstream target, the osteoclast-specific bone degrading protease cathepsin K, are upregulated upon PMT treatment in an mTOR-dependent manner. Activation of mTOR signalling plays a central role in the formation of osteoclasts through the bacterial toxin PMT. On the molecular level, PMT-induced activation of mTOR leads to down regulation of PDCD4, a known repressor of AP-1 complex, culminating in the activation of c-Jun, an essential transcription factor for triggering osteoclastogenesis.

  12. Real-Time Fluorescence PCR Assays for Detection and Characterization of Shiga Toxin, Intimin, and Enterohemolysin Genes from Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    Reischl, Udo; Youssef, Mohammad T.; Kilwinski, Jochen; Lehn, Norbert; Zhang, Wen Lan; Karch, Helge; Strockbine, Nancy A.

    2002-01-01

    PCR assays have proved useful for detecting and characterizing Shiga toxin-producing Escherichia coli (STEC). Recent advances in PCR technology have facilitated the development of real-time fluorescence PCR assays with greatly reduced amplification times and improved methods for the detection of amplified target sequences. We developed and evaluated two such assays for the LightCycler instrument: one that simultaneously detects the genes for Shiga toxins 1 and 2 (stx1 and stx2) and another that simultaneously detects the genes for intimin (eae) and enterohemolysin (E-hly). Amplification and sequence-specific detection of the two target genes were completed within 60 min. Findings from the testing of 431 STEC isolates of human and animal origin, 73 isolates of E. coli negative for stx genes, and 118 isolates of other bacterial species with the LightCycler PCR (LC-PCR) assays were compared with those obtained by conventional block cycler PCR analysis. The sensitivities and specificities of the LC-PCR assays were each 100% for the stx1, eae, and E-hly genes and 96 and 100%, respectively, for the stx2 gene. No stx2 genes were detected from 10 stx2f-positive isolates because of significant nucleotide differences in their primer annealing regions. Melting curve analyses of the amplified Shiga toxin genes revealed sequence variation within each of the tested genes that correlated with described and novel gene variants. The performance characteristics of the LC-PCR assays, such as their speed, detection method, and the potential subtyping information available from melting curve analyses, make them attractive alternatives to block cycler PCR assays for detecting and characterizing STEC strains. PMID:12089277

  13. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    , but the identity and significance of interspecies bacterial interactions is neglected in these analyses. There is therefore an urgent need for bridging the gap between metagenomic analysis and in vitro models suitable for studies of bacterial interactions.Bacterial interactions and coadaptation are important......The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...

  14. Beneficial effects of botulinum toxin type A in trigeminal neuralgia

    OpenAIRE

    Zúñiga,Carlos; Díaz,Sergio; Piedimonte,Fabián; Micheli,Federico

    2008-01-01

    Botulinum toxin has been thoroughly studied as a potential tool in the treatment of several pain syndromes. Therefore, we assessed the clinical effects of botulinum toxin type A injections in 12 patients with otherwise unresponsive idiopathic trigeminal neuralgia. Patients were infiltrated with 20-50 units of botulinum toxin in trigger zones. Those who presented with mandibular involvement were also infiltrated in the masseter muscle. The patients were assessed on a weekly basis using the Vis...

  15. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Science.gov (United States)

    Berube, Bryan J.; Bubeck Wardenburg, Juliane

    2013-01-01

    Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host. PMID:23888516

  16. Staphylococcus aureus α-Toxin: Nearly a Century of Intrigue

    Directory of Open Access Journals (Sweden)

    Bryan J. Berube

    2013-06-01

    Full Text Available Staphylococcus aureus secretes a number of host-injurious toxins, among the most prominent of which is the small β-barrel pore-forming toxin α-hemolysin. Initially named based on its properties as a red blood cell lytic toxin, early studies suggested a far greater complexity of α-hemolysin action as nucleated cells also exhibited distinct responses to intoxication. The hemolysin, most aptly referred to as α-toxin based on its broad range of cellular specificity, has long been recognized as an important cause of injury in the context of both skin necrosis and lethal infection. The recent identification of ADAM10 as a cellular receptor for α-toxin has provided keen insight on the biology of toxin action during disease pathogenesis, demonstrating the molecular mechanisms by which the toxin causes tissue barrier disruption at host interfaces lined by epithelial or endothelial cells. This review highlights both the historical studies that laid the groundwork for nearly a century of research on α-toxin and key findings on the structural and functional biology of the toxin, in addition to discussing emerging observations that have significantly expanded our understanding of this toxin in S. aureus disease. The identification of ADAM10 as a proteinaceous receptor for the toxin not only provides a greater appreciation of truths uncovered by many historic studies, but now affords the opportunity to more extensively probe and understand the role of α-toxin in modulation of the complex interaction of S. aureus with its human host.

  17. ClanTox: a classifier of short animal toxins

    OpenAIRE

    Naamati, Guy; Askenazi, Manor; Linial, Michal

    2009-01-01

    Toxins are detected in sporadic species along the evolutionary tree of the animal kingdom. Venomous animals include scorpions, snakes, bees, wasps, frogs and numerous animals living in the sea such as the stonefish, snail, jellyfish, hydra and more. Interestingly, proteins that share a common scaffold with animal toxins also exist in non-venomous species. However, due to their short length and primary sequence diversity, these, toxin-like proteins remain undetected by classical search engines...

  18. Military Importance of Natural Toxins and Their Analogs

    Directory of Open Access Journals (Sweden)

    Vladimír Pitschmann

    2016-04-01

    Full Text Available Toxin weapon research, development, production and the ban on its uses is an integral part of international law, with particular attention paid to the protection against these weapons. In spite of this, hazards associated with toxins cannot be completely excluded. Some of these hazards are also pointed out in the present review. The article deals with the characteristics and properties of natural toxins and synthetic analogs potentially constituting the basis of toxin weapons. It briefly describes the history of military research and the use of toxins from distant history up to the present age. With respect to effective disarmament conventions, it mentions certain contemporary concepts of possible toxin applications for military purposes and the protection of public order (suppression of riots; it also briefly refers to the question of terrorism. In addition, it deals with certain traditional as well as modern technologies of the research, synthesis, and use of toxins, which can affect the continuing development of toxin weapons. These are, for example, cases of new toxins from natural sources, their chemical synthesis, production of synthetic analogs, the possibility of using methods of genetic engineering and modern biotechnologies or the possible applications of nanotechnology and certain pharmaceutical methods for the effective transfer of toxins into the organism. The authors evaluate the military importance of toxins based on their comparison with traditional chemical warfare agents. They appeal to the ethics of the scientific work as a principal condition for the prevention of toxin abuse in wars, military conflicts, as well as in non-military attacks.

  19. Botulinum toxin for treatment of glandular hypersecretory disorders.

    LENUS (Irish Health Repository)

    Laing, T A

    2012-02-03

    SUMMARY: The use of botulinum toxin to treat disorders of the salivary glands is increasing in popularity in recent years. Recent reports of the use of botulinum toxin in glandular hypersecretion suggest overall favourable results with minimal side-effects. However, few randomised clinical trials means that data are limited with respect to candidate suitability, treatment dosages, frequency and duration of treatment. We report a selection of such cases from our own department managed with botulinum toxin and review the current data on use of the toxin to treat salivary gland disorders such as Frey\\'s syndrome, excessive salivation (sialorrhoea), focal and general hyperhidrosis, excessive lacrimation and chronic rhinitis.

  20. Gene therapy for carcinoma of the breast: Genetic toxins

    International Nuclear Information System (INIS)

    Vassaux, Georges; Lemoine, Nick R

    2000-01-01

    Gene therapy was initially envisaged as a potential treatment for genetically inherited, monogenic disorders. The applications of gene therapy have now become wider, however, and include cardiovascular diseases, vaccination and cancers in which conventional therapies have failed. With regard to oncology, various gene therapy approaches have been developed. Among them, the use of genetic toxins to kill cancer cells selectively is emerging. Two different types of genetic toxins have been developed so far: the metabolic toxins and the dominant-negative class of toxins. This review describes these two different approaches, and discusses their potential applications in cancer gene therapy

  1. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins

    Directory of Open Access Journals (Sweden)

    Evanthia Mantzouki

    2018-04-01

    Full Text Available Insight into how environmental change determines the production and distribution of cyanobacterial toxins is necessary for risk assessment. Management guidelines currently focus on hepatotoxins (microcystins. Increasing attention is given to other classes, such as neurotoxins (e.g., anatoxin-a and cytotoxins (e.g., cylindrospermopsin due to their potency. Most studies examine the relationship between individual toxin variants and environmental factors, such as nutrients, temperature and light. In summer 2015, we collected samples across Europe to investigate the effect of nutrient and temperature gradients on the variability of toxin production at a continental scale. Direct and indirect effects of temperature were the main drivers of the spatial distribution in the toxins produced by the cyanobacterial community, the toxin concentrations and toxin quota. Generalized linear models showed that a Toxin Diversity Index (TDI increased with latitude, while it decreased with water stability. Increases in TDI were explained through a significant increase in toxin variants such as MC-YR, anatoxin and cylindrospermopsin, accompanied by a decreasing presence of MC-LR. While global warming continues, the direct and indirect effects of increased lake temperatures will drive changes in the distribution of cyanobacterial toxins in Europe, potentially promoting selection of a few highly toxic species or strains.

  2. 9 CFR 121.4 - Overlap select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ...; Brucella abortus; Brucella melitensis; Brucella suis; Burkholderia mallei; Burkholderia pseudomallei... toxins must be reported within 24 hours by telephone, facsimile, or e-mail: Bacillus anthracis, Brucella...

  3. Decrease in Shiga toxin expression using a minimal inhibitory concentration of rifampicin followed by bactericidal gentamicin treatment enhances survival of Escherichia coli O157:H7-infected BALB/c mice

    Directory of Open Access Journals (Sweden)

    Abdelnoor Alexander M

    2011-09-01

    Full Text Available Abstract Background Treatment of Escherichia coli O157:H7 infections with antimicrobial agents is controversial due to an association with potentially fatal sequelae. The production of Shiga toxins is believed to be central to the pathogenesis of this organism. Therefore, decreasing the expression of these toxins prior to bacterial eradication may provide a safer course of therapy. Methods The utility of decreasing Shiga toxin gene expression in E. coli O157:H7 with rifampicin prior to bacterial eradication with gentamicin was evaluated in vitro using real-time reverse-transcription polymerase chain reaction. Toxin release from treated bacterial cells was assayed for with reverse passive latex agglutination. The effect of this treatment on the survival of E. coli O157:H7-infected BALB/c mice was also monitored. Results Transcription of Shiga toxin-encoding genes was considerably decreased as an effect of treating E. coli O157:H7 in vitro with the minimum inhibitory concentration (MIC of rifampicin followed by the minimum bactericidal concentration (MBC of gentamicin (> 99% decrease compared to treatment with gentamicin alone (50-75% decrease. The release of Shiga toxins from E. coli O157:H7 incubated with the MIC of rifampicin followed by addition of the MBC of gentamicin was decreased as well. On the other hand, the highest survival rate in BALB/c mice infected with E. coli O157:H7 was observed in those treated with the in vivo MIC equivalent dose of rifampicin followed by the in vivo MBC equivalent dose of gentamicin compared to mice treated with gentamicin or rifampicin alone. Conclusions The use of non-lethal expression-inhibitory doses of antimicrobial agents prior to bactericidal ones in treating E. coli O157:H7 infection is effective and may be potentially useful in human infections with this agent in addition to other Shiga toxin producing E. coli strains.

  4. Entry of diphtheria toxin into cells: possible existence of cellular factor(s) for entry of diphtheria toxin into cells was studied in somatic cell hybrids and hybrid toxins

    OpenAIRE

    1984-01-01

    Ehrlich ascites tumor cells were found to be very insensitive to diphtheria toxin. We formed 37 hybrids from Ehrlich tumor cells and diphtheria toxin-sensitive human fibroblasts. The effects of diphtheria toxin on protein synthesis in those hybrids were examined. The hybrids were divided into three groups on the basis of toxin sensitivity. Group A hybrids were as sensitive to diphtheria toxin as human fibroblasts, Group C were as resistant as Ehrlich tumor cells, and Group B had intermediate ...

  5. An Investigation of Toxic Shock Syndrome Toxin-1 Gene in Methicillin-Resistant Clinical Strains of Staphylococcus aureus using Multiplex PCR Method

    Directory of Open Access Journals (Sweden)

    mohammad bokaiean

    2017-03-01

    Full Text Available Background and Objectives: Toxins produced by the bacteria are one of the most common cases, which can, together with other bacterial pathogens, cause or aggravate the disease. One of the diseases caused by bacterial toxins, is toxic shock syndrome. The tst gene encodes this toxin that can be easily transferred between different strains of Staphylococcus aureus. In this study, toxic shock syndrome toxin-1 gene was investigated in methicillin-resistant clinical strains of Staphylococcus aureus using multiplex PCR method. Methods: This study is a cross-sectional study, during a 9 month period, 470 samples were collected from patients hospitalized in different wards of treatment centers of Zahedan University of Medical Sciences in 2015. Phenotypic method was used for isolation and initial screening. Oxacillin and Cefoxitin discs were used. After isolation of resistant strains, femA and mecA genes and tst gene were investigated using phenotypic method and multiplex PCR method, respectively. Results: Of 170 clinical isolates of Staphylococcus aureus, 93 isolates were phenotypically methicillin-resistant, among which 89 isolates had mecA gene and 14 isolates had tst gene. Conclusion: The results indicated that the prevalence of methicillin-resistant strains and the strains carrying causative gene for TSST1, is high in Zahedan. Also, circulation of these isolates can lead to much more severe effects in individuals with weak immune system.

  6. Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E-coli (STEC) infections in the Netherlands, January 2008 to December 2011

    NARCIS (Netherlands)

    Friesema, I.; van der Zwaluw, K.; Schuurman, T.; Kooistra-Smid, M.; Franz, E.; van Duynhoven, Y.; van Pelt, W.

    2014-01-01

    The Shiga toxins of Shiga toxin-producing Escherichia coli (STEC) can be divided into Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2) with several sub-variants. Variant Stx(2f) is one of the latest described, but has been rarely associated with symptomatic human infections. In the enhanced STEC

  7. Ultrasound-guided botulinum toxin injections

    Directory of Open Access Journals (Sweden)

    S. E. Khatkova

    2016-01-01

    Full Text Available One of the key conditions for achieving the desirable result during botulinum toxin therapy for muscular dystonia, spasticity, and other diseases accompanied by spasm, pain, and autonomic dysfunction (dystonias, spasticity, etc. is the proper administration of the agent into the muscles directly involved in the pathological process. The exact entry of botulinum toxin into the target muscles is essential for successful and safe treatment because its injection into a normal muscle may cause side effects. The most common errors are the incorrect depth and incorrect direction of a needle on insertion. Therefore, the exact injection of the agent particularly into the shallow and deep muscles is a difficult task even for an experienced specialist and requires the use of controlling methods.The European Consensus on Botulinum Toxin Therapy points out that various injection techniques are needed for the better identification of necessary muscles. However, there are currently no reports on the clear advantage of any technique. In our country, injections using palpation and anatomical landmarks have been widely used in routine practice so far; electromyographic monitoring and electrostimulation have been less frequently applied. In recent years, the new method ultrasound-guided injection has continued to grow more popular. This effective, accessible, and easy-to-use method makes it possible to manage a real-time injection process and to ensure the exact entry of the agent into the muscle. This paper is dedicated to a comparative analysis of different injection methods and to a description of the ultrasound-guided technique and its advantages over others. 

  8. Prevention, control and detection of Fusarial toxins

    Directory of Open Access Journals (Sweden)

    Nešić Ksenija D.

    2013-01-01

    Full Text Available The past couple of decades have provided considerable details on fungi and the toxins that they produce, as well on the mechanism of toxin action, toxicity and effects on animal and human health. But, since they are natural contaminants, their presence is often inevitable. Fusaria are widespread in all cereal-growing territories of the world, but they are especially common in our geographic area. Therefore, special attention is paid to the prevention and control, and also to the improvement of methods for their detection. Although all collected data were critical for understanding this worldwide problem, managing the impact of these toxins on the feed and food safety is still great practical challenge. There are a number of approaches that can be taken to minimize mycotoxin contamination in this chain: prevention of fungal growth and thus mycotoxin formation, strategies to reduce or eliminate mycotoxins from contaminated feedstuffs or diverting the contaminated products to low risk uses. A control program for mycotoxins from field to table should in­volve the criteria of an HACCP (Hazard Analysis Critical Control Points approach. It requires an understanding of the important aspects of the interactions of the toxigenic fungi with crop plants, the on-farm production and harvest methods for crops, the production of livestock using grains and processed feeds, including diagnostic capabilities for mycotoxicoses, and all the way to the development of processed foods for human consumption, as well as understanding the marketing and trade channels including storage and delivery of foods to the consumer’s table. A good testing protocol for mycotoxins is necessary to manage all of the control points and in order to be able to ensure a food supply free of toxic levels of mycotoxins for the consumer. [Projekat Ministarstva nauke Republike Srbije, br. III 46009

  9. Tetanus toxin : primary structure, expression in E. coli, and homology with botulinum toxins

    NARCIS (Netherlands)

    Eisel, Ulrich; Jarausch, Wolfgang; Goretzki, Karin; Henschen, Agnes; Engels, Joachim; Weller, Ulrich; Hudel, Martina; Habermann, Ernst; Niemann, Heiner; Rott, R.

    1986-01-01

    A pool of synthetic oligonucleotides was used to identify the gene encoding tetanus toxin on a 75-kbp plasmid from a toxigenic non-sporulating strain of Clostridium tetani. The nucleotide sequence contained a single open reading frame coding for 1315 amino acids corresponding to a polypeptide with a

  10. Staphylococcus hyicus exfoliative toxin: Purification and demonstration of antigenic diversity among toxins from virulent strains

    DEFF Research Database (Denmark)

    Andresen, Lars Ole; Bille-Hansen, Vivi; Wegener, Henrik Caspar

    1997-01-01

    The exfoliative toxin produced by Staphylococcus hyicus strain 1289D-88 was purified as a single protein of approximately 30 kDa. Extracellular proteins of S. hyicus grown under small scale fermentation conditions were precipitated with ammonium sulfate. Separation of proteins was performed...

  11. Analysis of bacterial-surface-specific antibodies in body fluids using bacterial flow cytometry.

    Science.gov (United States)

    Moor, Kathrin; Fadlallah, Jehane; Toska, Albulena; Sterlin, Delphine; Balmer, Maria L; Macpherson, Andrew J; Gorochov, Guy; Larsen, Martin; Slack, Emma

    2016-08-01

    Antibacterial antibody responses that target surfaces of live bacteria or secreted toxins are likely to be relevant in controlling bacterial pathogenesis. The ability to specifically quantify bacterial-surface-binding antibodies is therefore highly attractive as a quantitative correlate of immune protection. Here, binding of antibodies from various body fluids to pure-cultured live bacteria is made visible with fluorophore-conjugated secondary antibodies and measured by flow cytometry. We indicate the necessary controls for excluding nonspecific binding and also demonstrate a cross-adsorption technique for determining the extent of cross-reactivity. This technique has numerous advantages over standard ELISA and western blotting techniques because of its independence from scaffold binding, exclusion of cross-reactive elements from lysed bacteria and ability to visualize bacterial subpopulations. In addition, less than 10(5) bacteria and less than 10 μg of antibody are required per sample. The technique requires 3-4 h of hands-on experimentation and analysis. Moreover, it can be combined with automation and mutliplexing for high-throughput applications.

  12. Binding of diphtheria toxin to phospholipids in liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-01-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine/cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  13. Binding of Diphtheria Toxin to Phospholipids in Liposomes

    Science.gov (United States)

    Alving, Carl R.; Iglewski, Barbara H.; Urban, Katharine A.; Moss, Joel; Richards, Roberta L.; Sadoff, Jerald C.

    1980-04-01

    Diphtheria toxin bound to the phosphate portion of some, but not all, phospholipids in liposomes. Liposomes consisting of dimyristoyl phosphatidylcholine and cholesterol did not bind toxin. Addition of 20 mol% (compared to dimyristoyl phosphatidylcholine) of dipalmitoyl phosphatidic acid, dicetyl phosphate, phosphatidylinositol phosphate, cardiolipin, or phosphatidylserine in the liposomes resulted in substantial binding of toxin. Inclusion of phosphatidylinositol in dimyristol phosphatidylcholine / cholesterol liposomes did not result in toxin binding. The calcium salt of dipalmitoyl phosphatidic acid was more effective than the sodium salt, and the highest level of binding occurred with liposomes consisting only of dipalmitoyl phosphatidic acid (calcium salt) and cholesterol. Binding of toxin to liposomes was dependent on pH, and the pattern of pH dependence varied with liposomes having different compositions. Incubation of diphtheria toxin with liposomes containing dicetyl phosphate resulted in maximal binding at pH 3.6, whereas binding to liposomes containing phosphatidylinositol phosphate was maximal above pH 7. Toxin did not bind to liposomes containing 20 mol% of a free fatty acid (palmitic acid) or a sulfated lipid (3-sulfogalactosylceramide). Toxin binding to dicetyl phosphate or phosphatidylinositol phosphate was inhibited by UTP, ATP, phosphocholine, or p-nitrophenyl phosphate, but not by uracil. We conclude that (a) diphtheria toxin binds specifically to the phosphate portion of certain phospholipids, (b) binding to phospholipids in liposomes is dependent on pH, but is not due only to electrostatic interaction, and (c) binding may be strongly influenced by the composition of adjacent phospholipids that do not bind toxin. We propose that a minor membrane phospholipid (such as phosphatidylinositol phosphate or phosphatidic acid), or that some other phosphorylated membrane molecule (such as a phosphoprotein) may be important in the initial binding of

  14. The HigB/HigA Toxin/Antitoxin System of Pseudomonas aeruginosa Influences the Virulence Factors Pyochelin, Pyocyanin, and Biofilm Formation

    Science.gov (United States)

    2016-08-24

    resistance of uropathogenic Escherichia coli. PLoS Pathog. 8:e1002954. Ogura, T., and S. Hiraga. 1983. Mini- F plasmid genes that couple host cell division...chronic infections including those associated with cystic fibrosis (CF) (Moker et al. 2010), burn wound infections, bacterial keratitis, and urinary...Furthermore, the expression of the toxin genes are induced under stress conditions (Aizenman et al. 1996; Sat et al. 2001; Hazan et al. 2004), and

  15. Multiplex detection of protein toxins using MALDI-TOF-TOF tandem mass spectrometry: application in unambiguous toxin detection from bioaerosol.

    Science.gov (United States)

    Alam, Syed Imteyaz; Kumar, Bhoj; Kamboj, Dev Vrat

    2012-12-04

    Protein toxins, such as botulinum neurotoxins (BoNTs), Clostridium perfringens epsilon toxin (ETX), staphylococcal enterotoxin B (SEB), shiga toxin (STX), and plant toxin ricin, are involved in a number of diseases and are considered as potential agents for bioterrorism and warfare. From a bioterrorism and warfare perspective, these agents are likely to cause maximum damage to a civilian or military population through an inhalational route of exposure and aerosol is considered the envisaged mode of delivery. Unambiguous detection of toxin from aerosol is of paramount importance, both for bringing mitigation protocols into operation and for implementation of effective medical countermeasures, in case a "biological cloud" is seen over a population. A multiplex, unambiguous, and qualitative detection of protein toxins is reported here using tandem mass spectrometry with MALDI-TOF-TOF. The methodology involving simple sample processing steps was demonstrated to identify toxins (ETX, Clostridium perfringes phospholipase C, and SEB) from blind spiked samples. The novel directed search approach using a list of unique peptides was used to identify toxins from a complex protein mixture. The bioinformatic analysis of seven protein toxins for elucidation of unique peptides with conservation status across all known sequences provides a high confidence for detecting toxins originating from any geographical location and source organism. Use of tandem MS data with peptide sequence information increases the specificity of the method. A prototype for generation of aerosol using a nebulizer and collection using a cyclone collector was used to provide a proof of concept for unambiguous detection of toxin from aerosol using precursor directed tandem mass spectrometry combined with protein database searching. ETX prototoxin could be detected from aerosol at 0.2 ppb concentration in aerosol.

  16. Liquid Chromatographic Determination of Alternaria Toxins in Carrots

    NARCIS (Netherlands)

    Solfrizzo, M.; Girolamo, De A.; Vitti, C.; Bulk, van den R.W.

    2004-01-01

    A liquid chromatographic (LC) method was developed for the determination of Alternaria radicina and A. alternata toxins in carrots. Toxins were extracted from carrot with an acidified mixture of water¿methanol¿acetonitrile. The filtered extract was divided in 2 parts that were purified by

  17. Recent advances in the medicinal chemistry of polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, K; Andersen, K; Krogsgaard-Larsen, P

    2001-01-01

    This review describes the recent developments in the field of polyamine toxins, with focus on structure activity relationship investigations, including studies of importance of the polyamine moiety for biological activity, photolabeling studies using polyamine toxins as templates, as well as use ...

  18. EFFECT OF MARINE TOXINS ON THERMOREGULATION IN MICE.

    Science.gov (United States)

    Marine algal toxins are extremely toxic and can represent a major health problem to humans and animals. Temperature regulation is one of many processes to be affected by exposure to these toxins. Mice and rats become markedly hypothermic when subjected to acute exposure to the ma...

  19. Short inventory of EU legislation on plant toxins in food

    NARCIS (Netherlands)

    Nijs, de M.; Noordam, M.Y.; Mol, H.G.J.

    2017-01-01

    Plant toxins, secondary metabolites that are not essential for the survival of the organism itself but are toxic to human health, are produced by many plants. Plant toxins can be present as inherent metabolites in daily foods such as potatoes, herbs and spices or in herbal preparations. Plant

  20. 76 FR 58157 - Shiga Toxin-Producing Escherichia coli

    Science.gov (United States)

    2011-09-20

    ... disorders. Shiga toxin is the same toxin as is produced by Shigella, the bacteria that cause dysentery. In... addition, FSIS will conduct a for-cause food safety assessment (FSA) for every positive sample, as it does... conduct sample testing, follow-up testing and for-cause FSAs, the total cost to the Agency is about $454...

  1. Physiological effect of the toxin from Xanthomonas retroflexus on ...

    African Journals Online (AJOL)

    Physiological effect of the toxin from Xanthomonas retroflexus on redroot pigweed (Amaranthus retroflexus). Z Sun, M Li, J Chen, Y Li. Abstract. A new toxin from Xanthomonas retroflexus could cause a series of physiological responses on seedlings of redroot pigweed. The experimental results revealed that respiratory ratio ...

  2. Nutrients and toxin producing phytoplankton control algal blooms ...

    Indian Academy of Sciences (India)

    Unknown

    poral dissipative pattern formation in a deterministic and noisy environment, respectively. The overall carrying capacity for the ... fact that the rate of toxin production by toxin producing phytoplankton (TPP) plays an important role for con- trolling oscillations in the .... Examples of these diverse models of impact were given by ...

  3. Physiological effect of the toxin from Xanthomonas retroflexus on ...

    African Journals Online (AJOL)

    user

    mitotic indices appeared not to be affected by the toxin. Ultrastructure observation indicated that the thylakoids of chloroplast and cristae of mitochondria swelled, when the leaves were placed in the toxin for 2 h. After treatment with the phototoxin for 3 h, the cell membrane was disrupted, the chloroplasts disintegrated and ...

  4. Cholera toxin stimulation of human mammary epithelial cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Stampfer, M.R.

    1982-06-01

    Addition of cholera toxin to human mammary epithelial cultures derived from reduction mammoplasties and primary carcinomas greatly stimulated cell growth and increased the number of times the cells could be successfully subcultured. Other agents known to increase intracellular cAMP levels were also growth stimulatory. The increased growth potential conferred by cholera toxin enhances the usefulness of this cell culture system.

  5. ClanTox: a classifier of short animal toxins.

    Science.gov (United States)

    Naamati, Guy; Askenazi, Manor; Linial, Michal

    2009-07-01

    Toxins are detected in sporadic species along the evolutionary tree of the animal kingdom. Venomous animals include scorpions, snakes, bees, wasps, frogs and numerous animals living in the sea such as the stonefish, snail, jellyfish, hydra and more. Interestingly, proteins that share a common scaffold with animal toxins also exist in non-venomous species. However, due to their short length and primary sequence diversity, these, toxin-like proteins remain undetected by classical search engines and genome annotation tools. We construct a toxin classification machine and web server called ClanTox (Classifier of Animal Toxins) that is based on the extraction of sequence-driven features from the primary protein sequence followed by the application of a classification system trained on known animal toxins. For a given input list of sequences, from venomous or non-venomous settings, the ClanTox system predicts whether each sequence is toxin-like. ClanTox provides a ranked list of positively predicted candidates according to statistical confidence. For each protein, additional information is presented including the presence of a signal peptide, the number of cysteine residues and the associated functional annotations. ClanTox is a discovery-prediction tool for a relatively overlooked niche of toxin-like cell modulators, many of which are therapeutic agent candidates. The ClanTox web server is freely accessible at http://www.clantox.cs.huji.ac.il.

  6. Short Toxin-like Proteins Abound in Cnidaria Genomes

    Directory of Open Access Journals (Sweden)

    Michal Linial

    2012-11-01

    Full Text Available Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.

  7. Short toxin-like proteins abound in Cnidaria genomes.

    Science.gov (United States)

    Tirosh, Yitshak; Linial, Itai; Askenazi, Manor; Linial, Michal

    2012-11-16

    Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone) and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emphasized in training ClanTox include cysteines and their spacing along the sequences. Among the 83,000 proteins derived from Cnidaria representatives, we found 170 candidates that fulfill the properties of toxin-like-proteins, the vast majority of which were previously unrecognized as toxins. An additional 394 short proteins exhibit characteristics of toxin-like proteins at a moderate degree of confidence. Remarkably, only 11% of the predicted toxin-like proteins were previously classified as toxins. Based on our prediction methodology and manual annotation, we inferred functions for over 400 of these proteins. Such functions include protease inhibitors, membrane pore formation, ion channel blockers and metal binding proteins. Many of the proteins belong to small families of paralogs. We conclude that the evolutionary expansion of toxin-like proteins in Cnidaria contributes to their fitness in the complex environment of the aquatic ecosystem.

  8. Solid-phase synthesis of polyamine toxin analogues

    DEFF Research Database (Denmark)

    Kromann, Hasse; Krikstolaityte, Sonata; Andersen, Anne J

    2002-01-01

    The wasp toxin philanthotoxin-433 (PhTX-433) is a nonselective and noncompetitive antagonist of ionotropic receptors, such as ionotropic glutamate receptors and nicotinic acetylcholine receptors. Polyamine toxins are extensively used for the characterization of subtypes of ionotropic glutamate re...

  9. Effect of Cryphonectria parasitica toxin on lipid peroxidation and ...

    African Journals Online (AJOL)

    In order to clarify the responses of different chestnut cultivars to Cp-toxin stress, the effect of Cp-toxin from Cryphonectria parasitica (Murr.) Barr on Castanea mollissima Blume, especially on its cell structure, was examined. Chestnut shoots of both resistant (Beiyu No. 2) and susceptible (Hongguang) cultivars were treated ...

  10. Effect of Cryphonectria parasitica toxin on lipid peroxidation and ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... In order to clarify the responses of different chestnut cultivars to Cp-toxin stress, the effect of Cp-toxin from Cryphonectria parasitica (Murr.) Barr on Castanea mollissima Blume, especially on its cell structure, was examined. Chestnut shoots of both resistant (Beiyu No. 2) and susceptible (Hongguang).

  11. Detection of shiga toxins by lateral flow assay

    Science.gov (United States)

    Shiga toxin-producing Escherichia coli (STEC) produce Shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript we report ...

  12. Retrograde transport of protein toxins through the Golgi apparatus

    DEFF Research Database (Denmark)

    Sandvig, Kirsten; Skotland, Tore; van Deurs, Bo

    2013-01-01

    at the cell surface, and they are endocytosed both by clathrin-dependent and clathrin-independent mechanisms. Sorting to the Golgi and retrograde transport to the endoplasmic reticulum (ER) are common to these toxins, but the exact mechanisms turn out to be toxin and cell-type dependent. In the ER...

  13. Recent advances in the medicinal chemistry of polyamine toxins

    DEFF Research Database (Denmark)

    Strømgaard, K; Andersen, K; Krogsgaard-Larsen, P

    2001-01-01

    This review describes the recent developments in the field of polyamine toxins, with focus on structure activity relationship investigations, including studies of importance of the polyamine moiety for biological activity, photolabeling studies using polyamine toxins as templates, as well as use...

  14. Lactobacillus bulgaricus mutants decompose uremic toxins.

    Science.gov (United States)

    Bai, Yun-Huan; Jiang, Ya-Fen; Jiang, Yun-Sheng

    2014-06-01

    We aim to obtain a probiotic strain from Lactobacillus bulgaricus by testing its capability to decompose uremic toxins to provide new intestinal bacteria for the treatment of chronic renal failure. Original L. bulgaricus was cultured with the serum of uremic patients and then mutated by physical (ultraviolet) and chemical (diethyl sulfate) methods repeatedly. Using creatinine decomposition rate as an observed index, we selected the best strains which decreased the most concentration of the creatinine. We then tested its ability to decompose urea, uric acid, serum phosphate, parathyroid hormone, and homocysteine and its genetic stability. After inductive and mutagenic treatment, DUC3-17 was selected. Its decomposition rate of creatinine, urea nitrogen, uric acid, phosphorus, parathyroid hormone, and homocysteine were 17.23%, 36.02%, 9.84%, 15.73%, 78.26%, and 12.69%, respectively. The degrading capacity was sustained over five generations. After directional induction and compound mutation, L. bulgaricus has greater capacity to decompose uremic toxins, with a stable inheritance.

  15. The Biochemical Toxin Arsenal from Ant Venoms

    Directory of Open Access Journals (Sweden)

    Axel Touchard

    2016-01-01

    Full Text Available Ants (Formicidae represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents.

  16. Cardiovascular-Active Venom Toxins: An Overview.

    Science.gov (United States)

    Rebello Horta, Carolina Campolina; Chatzaki, Maria; Rezende, Bruno Almeida; Magalhães, Bárbara de Freitas; Duarte, Clara Guerra; Felicori, Liza Figueiredo; Ribeiro Oliveira-Mendes, Bárbara Bruna; do Carmo, Anderson Oliveira; Chávez-Olórtegui, Carlos; Kalapothakis, Evanguedes

    2016-01-01

    Animal venoms are a mixture of bioactive compounds produced as weapons and used primarily to immobilize and kill preys. As a result of the high potency and specificity for various physiological targets, many toxins from animal venoms have emerged as possible drugs for the medication of diverse disorders, including cardiovascular diseases. Captopril, which inhibits the angiotensin-converting enzyme (ACE), was the first successful venom-based drug and a notable example of rational drug design. Since captopril was developed, many studies have discovered novel bradykinin-potentiating peptides (BPPs) with actions on the cardiovascular system. Natriuretic peptides (NPs) have also been found in animal venoms and used as template to design new drugs with applications in cardiovascular diseases. Among the anti-arrhythmic peptides, GsMTx-4 was discovered to be a toxin that selectively inhibits the stretch-activated cation channels (SACs), which are involved in atrial fibrillation. The present review describes the main components isolated from animal venoms that act on the cardiovascular system and presents a brief summary of venomous animals and their venom apparatuses.

  17. The Biochemical Toxin Arsenal from Ant Venoms

    Science.gov (United States)

    Touchard, Axel; Aili, Samira R.; Fox, Eduardo Gonçalves Paterson; Escoubas, Pierre; Orivel, Jérôme; Nicholson, Graham M.; Dejean, Alain

    2016-01-01

    Ants (Formicidae) represent a taxonomically diverse group of hymenopterans with over 13,000 extant species, the majority of which inject or spray secretions from a venom gland. The evolutionary success of ants is mostly due to their unique eusociality that has permitted them to develop complex collaborative strategies, partly involving their venom secretions, to defend their nest against predators, microbial pathogens, ant competitors, and to hunt prey. Activities of ant venom include paralytic, cytolytic, haemolytic, allergenic, pro-inflammatory, insecticidal, antimicrobial, and pain-producing pharmacologic activities, while non-toxic functions include roles in chemical communication involving trail and sex pheromones, deterrents, and aggregators. While these diverse activities in ant venoms have until now been largely understudied due to the small venom yield from ants, modern analytical and venomic techniques are beginning to reveal the diversity of toxin structure and function. As such, ant venoms are distinct from other venomous animals, not only rich in linear, dimeric and disulfide-bonded peptides and bioactive proteins, but also other volatile and non-volatile compounds such as alkaloids and hydrocarbons. The present review details the unique structures and pharmacologies of known ant venom proteinaceous and alkaloidal toxins and their potential as a source of novel bioinsecticides and therapeutic agents. PMID:26805882

  18. [Spontaneous bacterial peritonitis].

    Science.gov (United States)

    Strauss, Edna; Caly, Wanda Regina

    2003-01-01

    Spontaneous bacterial peritonitis occurs in 30% of patients with ascites due to cirrhosis leading to high morbidity and mortality rates. The pathogenesis of spontaneous bacterial peritonitis is related to altered host defenses observed in end-stage liver disease, overgrowth of microorganisms, and bacterial translocation from the intestinal lumen to mesenteric lymph nodes. Clinical manifestations vary from severe to slight or absent, demanding analysis of the ascitic fluid. The diagnosis is confirmed by a number of neutrophils over 250/mm3 associated or not to bacterial growth in culture of an ascites sample. Enterobacteriae prevail and Escherichia coli has been the most frequent bacterium reported. Mortality rates decreased markedly in the last two decades due to early diagnosis and prompt antibiotic treatment. Third generation intravenous cephalosporins are effective in 70% to 95% of the cases. Recurrence of spontaneous bacterial peritonitis is common and can be prevented by the continuous use of oral norfloxacin. The development of bacterial resistance demands the search for new options in the prophylaxis of spontaneous bacterial peritonitis; probiotics are a promising new approach, but deserve further evaluation. Short-term antibiotic prophylaxis is recommended for patients with cirrhosis and ascites shortly after an acute episode of gastrointestinal bleeding.

  19. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes.

    Directory of Open Access Journals (Sweden)

    Stephen Vadia

    2011-11-01

    Full Text Available Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2. Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.

  20. The pore-forming toxin listeriolysin O mediates a novel entry pathway of L. monocytogenes into human hepatocytes.

    Science.gov (United States)

    Vadia, Stephen; Arnett, Eusondia; Haghighat, Anne-Cécile; Wilson-Kubalek, Elisabeth M; Tweten, Rodney K; Seveau, Stephanie

    2011-11-01

    Intracellular pathogens have evolved diverse strategies to invade and survive within host cells. Among the most studied facultative intracellular pathogens, Listeria monocytogenes is known to express two invasins-InlA and InlB-that induce bacterial internalization into nonphagocytic cells. The pore-forming toxin listeriolysin O (LLO) facilitates bacterial escape from the internalization vesicle into the cytoplasm, where bacteria divide and undergo cell-to-cell spreading via actin-based motility. In the present study we demonstrate that in addition to InlA and InlB, LLO is required for efficient internalization of L. monocytogenes into human hepatocytes (HepG2). Surprisingly, LLO is an invasion factor sufficient to induce the internalization of noninvasive Listeria innocua or polystyrene beads into host cells in a dose-dependent fashion and at the concentrations produced by L. monocytogenes. To elucidate the mechanisms underlying LLO-induced bacterial entry, we constructed novel LLO derivatives locked at different stages of the toxin assembly on host membranes. We found that LLO-induced bacterial or bead entry only occurs upon LLO pore formation. Scanning electron and fluorescence microscopy studies show that LLO-coated beads stimulate the formation of membrane extensions that ingest the beads into an early endosomal compartment. This LLO-induced internalization pathway is dynamin-and F-actin-dependent, and clathrin-independent. Interestingly, further linking pore formation to bacteria/bead uptake, LLO induces F-actin polymerization in a tyrosine kinase-and pore-dependent fashion. In conclusion, we demonstrate for the first time that a bacterial pathogen perforates the host cell plasma membrane as a strategy to activate the endocytic machinery and gain entry into the host cell.

  1. Milling technological experiments to reduce Fusarium toxin contamination in wheat

    Directory of Open Access Journals (Sweden)

    Véha A.

    2015-01-01

    Full Text Available We examine 4 different DON-toxin-containing (0.74 - 1.15 - 1.19 - 2.14 mg/kg winter wheat samples: they were debranned and undebranned, and we investigated the flour’s and the by-products’ (coarse, fine bran toxin content changes. SATAKE lab-debranner was used for debranning and BRABENDER lab-mill for the milling process. Without debranning, two sample flours were above the DON toxin limit (0.75 mg/kg, which are waste. By minimum debranning (and minimum debranning mass loss; 6-8%, our experience with whole flour is that the multi-stage debranning measurement significantly reduces the content of the flour’s DON toxin, while the milling by-products, only after careful consideration and DON toxin measurements, may be produced for public consumption and for feeding.

  2. Toxin activity assays, devices, methods and systems therefor

    Science.gov (United States)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  3. Interaction of Botulinum Toxin with the Epithelial Barrier

    Directory of Open Access Journals (Sweden)

    Yukako Fujinaga

    2010-01-01

    Full Text Available Botulinum neurotoxin (BoNT is a protein toxin (~150 kDa, which possesses a metalloprotease activity. Food-borne botulism is manifested when BoNT is absorbed from the digestive tract to the blood stream and enters the peripheral nerves, where the toxin cleaves core proteins of the neuroexocytosis apparatus and elicits the inhibition of neurotransmitter release. The initial obstacle to orally ingested BoNT entering the body is the epithelial barrier of the digestive tract. Recent cell biology and molecular biology studies are beginning to elucidate the mechanism by which this large protein toxin crosses the epithelial barrier. In this review, we provide an overview of the structural features of botulinum toxins (BoNT and BoNT complex and the interaction of these toxins with the epithelial barrier.

  4. Mucosal delivery of antigens using adsorption to bacterial spores.

    Science.gov (United States)

    Huang, Jen-Min; Hong, Huynh A; Van Tong, Hoang; Hoang, Tran H; Brisson, Alain; Cutting, Simon M

    2010-01-22

    The development of new-generation vaccines has followed a number of strategic avenues including the use of live recombinant bacteria. Of these, the use of genetically engineered bacterial spores has been shown to offer promise as both a mucosal as well as a heat-stable vaccine delivery system. Spores of the genus Bacillus are currently in widespread use as probiotics enabling a case to be made for their safety. In this work we have discovered that the negatively charged and hydrophobic surface layer of spores provides a suitable platform for adsorption of protein antigens. Binding can be promoted under conditions of low pH and requires a potent combination of electrostatic and hydrophobic interactions between spore and immunogen. Using appropriately adsorbed spores we have shown that mice immunised mucosally can be protected against challenge with tetanus toxin, Clostridium perfringens alpha toxin and could survive challenge with anthrax toxin. In some cases protection is actually greater than using a recombinant vaccine. Remarkably, killed or inactivated spores appear equally effective as live spores. The spore appears to present a bound antigen in its native conformation promoting a cellular (T(h)1-biased) response coupled with a strong antibody response. Spores then, should be considered as mucosal adjuvants, most similar to particulate adjuvants, by enhancing responses against soluble antigens. The broad spectrum of immune responses elicited coupled with the attendant benefits of safety suggest that spore adsorption could be appropriate for improving the immunogenicity of some vaccines as well as the delivery of biotherapeutic molecules.

  5. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation......, resistance and QS inhibition as future antimicrobial targets, in particular those that would work to minimize selection pressures for the development of resistant bacteria....

  6. Structural Insights into Clostridium perfringens Delta Toxin Pore Formation.

    Directory of Open Access Journals (Sweden)

    Jessica Huyet

    Full Text Available Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB cytotoxicity from that of the staphylococcal pore-forming toxins.

  7. Cholera toxin but not pertussis toxin inhibits angiotensin II-enhanced contractions in the rat portal vein

    NARCIS (Netherlands)

    Zhang, J.; van Meel, J. C.; Pfaffendorf, M.; van Zwieten, P. A.

    1993-01-01

    Angiotensin II (Ang II)-enhanced phasic contractions in the rat portal vein were concentration dependently inhibited by cholera toxin (0.1-10 micrograms/ml) and dibutyryl cyclic AMP (0.1-1 mM), but not by pertussis toxin (1 micrograms/ml), which suggests that Gi is not involved in the Ang II signal

  8. Binding sites of mosquitocidal toxins of Pseudomonas fluorescens and Bacillus subtilis on pupae and larvae of Culex quinquefasciatus.

    Science.gov (United States)

    Mary, K Athisaya; Paily, K P; Hoti, S L; Balaraman, K

    2015-01-01

    Two of the potential bacterial isolates, viz., Pseudomonas fluorescens (VCRC B-426) and Bacillus subtilis (VCRC B-471) whose toxins kill the mosquito pupae/larvae have been identified at our center. As the mode of action of these bacteria are not known, an attempt was made to find out the binding sites of the toxic proteins through immunological methods. Antibodies were raised in BALB/c mice and egg yolk system of chicken layers against the mosquitocidal proteins. The antibodies showed specific binding on to the cephalic and thoracic cuticle of the pupae as well as the paddles of the larvae, indicating the binding of the mosquitocidal proteins.

  9. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  10. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  11. Factitious Bacterial Meningitis Revisited

    Science.gov (United States)

    Peterson, E.; Thrupp, L.; Uchiyama, N.; Hawkins, B.; Wolvin, B.; Greene, G.

    1982-01-01

    Nonviable gram-negative bacilli were seen in smears of cerebrospinal fluid from eight infants in whom bacterial meningitis was ruled out. Tubes from commercial kits were the source of the factitious organisms. PMID:7153328

  12. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...... about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria......-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial...

  13. Botulinum toxin injection in laryngeal dyspnea.

    Science.gov (United States)

    Woisard, Virginie; Liu, Xuelai; Bes, Marie Christine Arné; Simonetta-Moreau, Marion

    2017-02-01

    Data, regarding the use of botulinum toxin (BT-A) in laryngeal dyspnea, are scarce, coming from some cases reports in the literature, including Vocal fold paralysis, laryngeal dystonia, vocal cord dysfunction also called paradoxical motion of the vocal fold (PMVF), and post-neuroleptic laryngeal dyskinesia. There is no consensus regarding the muscles and the doses to inject. The aim of this study is to present a retrospective review of patients treated in our ENT Department by BT-A injection in this indication. This study is a retrospective study describing patients who underwent an injection of botulinum toxin for laryngeal dyspnea in the ENT Department from 2005 to 2015 years. The inclusion criteria were a dyspnea associated with a laryngeal dysfunction, confirmed by flexible fiberoptic nasopharyngolaryngoscopy. Information concerning the causes of the dyspnea, the botulinum toxin BT-A injections procedure, post-injection follow-up, and respiratory outcome were collected for all patients included. In the group of 13 patients included, the main cause identified as principal factor linked with the short breath was: a bilateral VF paralysis (Patel et al., Otolaryngol Head Neck Surg 130:686-689, 7), laryngeal dystonia (Balkissoon and Kenn, Semin Respir Crit Care Med 33:595-605, 2), Anxiety syndrome associated with unilateral vocal fold paralysis or asthma (Marcinow et al., Laryngoscope 124:1425-1430, 3), and an isolated asthma (Zwirner et al., Eur Arch Otorhinolaryngol 254:242-245, 1). Nine out of the thirteen patients were improved by the injections. A BT-A-induced stable benefit for four patients led them to stop the injections in the follow-up. Good outcome was observed in five other patients (main cause: bilateral VP paralysis), allowing a progressive lengthening of the delay between BT-A injections. Four patients did not report a positive risk/benefit ratio after BT-A injections; two of them (with bilateral VF paralysis), because of respiratory side effects and

  14. Foodborne toxins of marine origin: ciguatera.

    Science.gov (United States)

    Juranovic, L R; Park, D L

    1991-01-01

    Ciguatera poisoning has long been recognized as a serious problem in the tropical and subtropical regions of the world. Due to international and interstate commerce and tourist travel the phenomenon is spreading to other parts of the globe. Various species of fish (surgeonfish, snapper, grouper, barracuda, jack, amberjack among others) have been implicated in this type of poisoning. These fish accumulate toxins in their flesh and viscera through the consumption of smaller fish that have been previously contaminated by feeding on toxic dinoflagellates. The most probable source of ciguatera is thought to be the benthic microorganism, Gambierdiscus toxicus, which produces both CTX and MTX, but other species of dinoflagellates such as Prorocentrum lima may also contribute with secondary toxins associated with the disease. Potentially ciguatoxic dinoflagellates have been isolated, cultured under laboratory conditions and dinoflagellate growth requirements as well as some factors affecting toxin production have been determined. Also, data from their ecological environment have been accumulated in an attempt to reveal a relationship with the epidemiology of ciguatera outbreaks. Several bioassays have been employed to determine the ciguatoxicity of fish. Cats have been used due to their sensitivity, but regurgitation has made dosage information difficult to obtain. Mongooses have also been used but they often carry parasitic and other type of diseases which complicate the bioassay. Mice have been used more commonly; they offer a more reliable model, can be easily housed, readily are dosed in several ways, and manifest diverse symptoms similar to human intoxications; but the amount of toxic extract needed, time consumed, complicated extraction techniques, and instrumentation involved limit the use of this assay commercially. Other bioassays have been explored including the brine shrimp, chicken, mosquito, crayfish nerve cord, guinea pig ileum, guinea pig atrium, and other

  15. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua.

    NARCIS (Netherlands)

    Herrero, S.; Ansems, M.; Oers, M.M. van; Vlak, J.M.; Bakker, P.L.; Maagd, R.A. de

    2007-01-01

    Insect larvae spend most of their time eating and the digestive tract is the most crucial barrier for the entrance of many pathogens. In our study, suppression subtractive hybridization (SSH) was used to compare Spodoptera exigua midgut gene expression between larvae exposed to the Bacillus

  16. REPAT, a new family of proteins induced by bacterial toxins and baculovirus infection in Spodoptera exigua

    NARCIS (Netherlands)

    Herrero, S.; Ansems, M.; Oers, van M.M.; Vlak, J.M.; Bakker, P.L.; Maagd, de R.A.

    2007-01-01

    Insect larvae spend most of their time eating and the digestive tract is the most crucial barrier for the entrance of many pathogens. In our study, suppression subtractive hybridization (SSH) was used to compare Spodoptera exigua midgut gene expression between larvae exposed to the Bacillus

  17. Structural determinants for activity and specificity of the bacterial toxin LlpA.

    Directory of Open Access Journals (Sweden)

    Maarten G K Ghequire

    2013-02-01

    Full Text Available Lectin-like bacteriotoxic proteins, identified in several plant-associated bacteria, are able to selectively kill closely related species, including several phytopathogens, such as Pseudomonas syringae and Xanthomonas species, but so far their mode of action remains unrevealed. The crystal structure of LlpABW, the prototype lectin-like bacteriocin from Pseudomonas putida, reveals an architecture of two monocot mannose-binding lectin (MMBL domains and a C-terminal β-hairpin extension. The C-terminal MMBL domain (C-domain adopts a fold very similar to MMBL domains from plant lectins and contains a binding site for mannose and oligomannosides. Mutational analysis indicates that an intact sugar-binding pocket in this domain is crucial for bactericidal activity. The N-terminal MMBL domain (N-domain adopts the same fold but is structurally more divergent and lacks a functional mannose-binding site. Differential activity of engineered N/C-domain chimers derived from two LlpA homologues with different killing spectra, disclosed that the N-domain determines target specificity. Apparently this bacteriocin is assembled from two structurally similar domains that evolved separately towards dedicated functions in target recognition and bacteriotoxicity.

  18. [Diagnosis of bacterial vaginosis].

    Science.gov (United States)

    Djukić, Slobodanka; Ćirković, Ivana; Arsić, Biljana; Garalejić, Eliana

    2013-01-01

    Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2-producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent's scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up-to-date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short-term and long-term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  19. SVM-based prediction of propeptide cleavage sites in spider toxins identifies toxin innovation in an Australian tarantula.

    Directory of Open Access Journals (Sweden)

    Emily S W Wong

    Full Text Available Spider neurotoxins are commonly used as pharmacological tools and are a popular source of novel compounds with therapeutic and agrochemical potential. Since venom peptides are inherently toxic, the host spider must employ strategies to avoid adverse effects prior to venom use. It is partly for this reason that most spider toxins encode a protective proregion that upon enzymatic cleavage is excised from the mature peptide. In order to identify the mature toxin sequence directly from toxin transcripts, without resorting to protein sequencing, the propeptide cleavage site in the toxin precursor must be predicted bioinformatically. We evaluated different machine learning strategies (support vector machines, hidden Markov model and decision tree and developed an algorithm (SpiderP for prediction of propeptide cleavage sites in spider toxins. Our strategy uses a support vector machine (SVM framework that combines both local and global sequence information. Our method is superior or comparable to current tools for prediction of propeptide sequences in spider toxins. Evaluation of the SVM method on an independent test set of known toxin sequences yielded 96% sensitivity and 100% specificity. Furthermore, we sequenced five novel peptides (not used to train the final predictor from the venom of the Australian tarantula Selenotypus plumipes to test the accuracy of the predictor and found 80% sensitivity and 99.6% 8-mer specificity. Finally, we used the predictor together with homology information to predict and characterize seven groups of novel toxins from the deeply sequenced venom gland transcriptome of S. plumipes, which revealed structural complexity and innovations in the evolution of the toxins. The precursor prediction tool (SpiderP is freely available on ArachnoServer (http://www.arachnoserver.org/spiderP.html, a web portal to a comprehensive relational database of spider toxins. All training data, test data, and scripts used are available from

  20. ACTIN-DIRECTED TOXIN. ACD toxin-produced actin oligomers poison formin-controlled actin polymerization.

    Science.gov (United States)

    Heisler, David B; Kudryashova, Elena; Grinevich, Dmitry O; Suarez, Cristian; Winkelman, Jonathan D; Birukov, Konstantin G; Kotha, Sainath R; Parinandi, Narasimham L; Vavylonis, Dimitrios; Kovar, David R; Kudryashov, Dmitri S

    2015-07-31

    The actin cross-linking domain (ACD) is an actin-specific toxin produced by several pathogens, including life-threatening spp. of Vibrio cholerae, Vibrio vulnificus, and Aeromonas hydrophila. Actin cross-linking by ACD is thought to lead to slow cytoskeleton failure owing to a gradual sequestration of actin in the form of nonfunctional oligomers. Here, we found that ACD converted cytoplasmic actin into highly toxic oligomers that potently "poisoned" the ability of major actin assembly proteins, formins, to sustain actin polymerization. Thus, ACD can target the most abundant cellular protein by using actin oligomers as secondary toxins to efficiently subvert cellular functions of actin while functioning at very low doses. Copyright © 2015, American Association for the Advancement of Science.

  1. An Emulsion Based Microarray Method to Detect the Toxin Genes of Toxin-Producing Organisms

    Directory of Open Access Journals (Sweden)

    Yunfei Bai

    2011-08-01

    Full Text Available Toxins produced by bacteria and fungi are one of the most important factors which may cause food contamination. The study of detection methods with high sensitivity and throughput is significant for the protection of food safety. In the present study, we coupled microarray with emulsion PCR and developed a high throughput detection method. Thirteen different gene sites which encode the common toxins of several bacteria and fungi were assayed in parallel in positive and maize samples. Conventional PCR assays were carried out for comparison. The results showed that the developed microarray method had high specificity and sensitivity. Two zearalenone-related genes were investigated in one of the ten maize samples obtained with this present method. The results indicated that the emulsion based microarray detection method was developed successfully and suggested its potential application in multiple gene site detection.

  2. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  3. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  4. New developments in vaccines, inhibitors of anthrax toxins, and antibiotic therapeutics for Bacillus anthracis.

    Science.gov (United States)

    Beierlein, J M; Anderson, A C

    2011-01-01

    Bacillus anthracis, the causative agent responsible for anthrax infections, poses a significant biodefense threat. There is a high mortality rate associated with untreated anthrax infections; specifically, inhalation anthrax is a particularly virulent form of infection with mortality rates close to 100%, even with aggressive treatment. Currently, a vaccine is not available to the general public and few antibiotics have been approved by the FDA for the treatment of inhalation anthrax. With the threat of natural or engineered bacterial resistance to antibiotics and the limited population for whom the current drugs are approved, there is a clear need for more effective treatments against this deadly infection. A comprehensive review of current research in drug discovery is presented in this article, including efforts to improve the purity and stability of vaccines, design inhibitors targeting the anthrax toxins, and identify inhibitors of novel enzyme targets. High resolution structural information for the anthrax toxins and several essential metabolic enzymes has played a significant role in aiding the structure-based design of potent and selective antibiotics.

  5. A Nanocoaxial-Based Electrochemical Sensor for the Detection of Cholera Toxin

    Science.gov (United States)

    Archibald, Michelle; Rizal, Binod; Connolly, Timothy; Burns, Michael J.; Naughton, Michael J.; Chiles, Thomas C.; Biology; Physics Collaboration

    We report a nanocoax-based electrochemical sensor for the detection of bacterial toxins using an electrochemical enzyme-linked immunosorbent assay (ELISA) and differential pulse voltammetry (DPV). The device architecture is composed of vertically-oriented, nanoscale coaxial electrodes, with coax cores and shields serving as integrated working and counter electrodes, respectively. Proof-of-concept was demonstrated for the detection of cholera toxin (CT), with a linear dynamic range of detection was 10 ng/ml - 1 µg/ml, and a limit of detection (LOD) of 2 ng/ml. This level of sensitivity is comparable to the standard optical ELISA used widely in clinical applications. The nanocoax array thus matches the detection profile of the standard ELISA while providing a simple electrochemical readout and a miniaturized platform with multiplexing capabilities, toward point-of-care (POC) implementation. In addition, next generation nanocoax devices with extended cores are currently under development, which would provide a POC platform amenable for biofunctionalization of ELISA receptor proteins directly onto the device. This work was supported by the National Institutes of Health (National Cancer Institute Award No. CA137681 and National Institute of Allergy and Infectious Diseases Award No. AI100216).

  6. Identification of a Botulinum Neurotoxin-like Toxin in a Commensal Strain of Enterococcus faecium.

    Science.gov (United States)

    Zhang, Sicai; Lebreton, Francois; Mansfield, Michael J; Miyashita, Shin-Ichiro; Zhang, Jie; Schwartzman, Julia A; Tao, Liang; Masuyer, Geoffrey; Martínez-Carranza, Markel; Stenmark, Pål; Gilmore, Michael S; Doxey, Andrew C; Dong, Min

    2018-02-14

    Botulinum neurotoxins (BoNTs), produced by various Clostridium strains, are a family of potent bacterial toxins and potential bioterrorism agents. Here we report that an Enterococcus faecium strain isolated from cow feces carries a BoNT-like toxin, designated BoNT/En. It cleaves both VAMP2 and SNAP-25, proteins that mediate synaptic vesicle exocytosis in neurons, at sites distinct from known BoNT cleavage sites on these two proteins. Comparative genomic analysis determines that the E. faecium strain carrying BoNT/En is a commensal type and that the BoNT/En gene is located within a typical BoNT gene cluster on a 206 kb putatively conjugative plasmid. Although the host species targeted by BoNT/En remains to be determined, these findings establish an extended member of BoNTs and demonstrate the capability of E. faecium, a commensal organism ubiquitous in humans and animals and a leading cause of hospital-acquired multi-drug-resistant (MDR) infections, to horizontally acquire, and possibly disseminate, a unique BoNT gene cluster. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Antibody Microarray for E. coli O157:H7 and Shiga Toxin in Microtiter Plates

    Directory of Open Access Journals (Sweden)

    Andrew G. Gehring

    2015-12-01

    Full Text Available Antibody microarray is a powerful analytical technique because of its inherent ability to simultaneously discriminate and measure numerous analytes, therefore making the technique conducive to both the multiplexed detection and identification of bacterial analytes (i.e., whole cells, as well as associated metabolites and/or toxins. We developed a sandwich fluorescent immunoassay combined with a high-throughput, multiwell plate microarray detection format. Inexpensive polystyrene plates were employed containing passively adsorbed, array-printed capture antibodies. During sample reaction, centrifugation was the only strategy found to significantly improve capture, and hence detection, of bacteria (pathogenic Escherichia coli O157:H7 to planar capture surfaces containing printed antibodies. Whereas several other sample incubation techniques (e.g., static vs. agitation had minimal effect. Immobilized bacteria were labeled with a red-orange-fluorescent dye (Alexa Fluor 555 conjugated antibody to allow for quantitative detection of the captured bacteria with a laser scanner. Shiga toxin 1 (Stx1 could be simultaneously detected along with the cells, but none of the agitation techniques employed during incubation improved detection of the relatively small biomolecule. Under optimal conditions, the assay had demonstrated limits of detection of ~5.8 × 105 cells/mL and 110 ng/mL for E. coli O157:H7 and Stx1, respectively, in a ~75 min total assay time.

  8. Treatment diary for botulinum toxin spasticity treatment

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Iversen, Helle K; Frederiksen, Inge M S

    2017-01-01

    The aim of this study is to develop a treatment diary for patients receiving spasticity treatment including botulinum toxin injection and physiotherapy and/or occupational therapy. The diary focuses on problems triggered by skeletal muscle overactivity; agreed goals for treatment and the patient......'s self-evaluation of achievement on the Goal Attainment Scale; which skeletal muscles were injected; physiotherapists' and occupational therapists' evaluation of the patients' achievement of objectives on the Goal Attainment Scale; and proposals for optimization of treatment and changing goals....... The evaluation included a satisfaction questionnaire and the WHO-QoL BREF and WHO-5 well-being score. Overall, 10 patients were enrolled in the pilot study. The patients were generally satisfied with the diary, found that it involved them more in their treatment and made it easier to set personal goals...

  9. Treatment diary for botulinum toxin spasticity treatment

    DEFF Research Database (Denmark)

    Biering-Sørensen, Bo; Iversen, Helle K; Frederiksen, Inge M S

    2017-01-01

    's self-evaluation of achievement on the Goal Attainment Scale; which skeletal muscles were injected; physiotherapists' and occupational therapists' evaluation of the patients' achievement of objectives on the Goal Attainment Scale; and proposals for optimization of treatment and changing goals......The aim of this study is to develop a treatment diary for patients receiving spasticity treatment including botulinum toxin injection and physiotherapy and/or occupational therapy. The diary focuses on problems triggered by skeletal muscle overactivity; agreed goals for treatment and the patient....... The evaluation included a satisfaction questionnaire and the WHO-QoL BREF and WHO-5 well-being score. Overall, 10 patients were enrolled in the pilot study. The patients were generally satisfied with the diary, found that it involved them more in their treatment and made it easier to set personal goals...

  10. Botulinum toxin drugs: brief history and outlook.

    Science.gov (United States)

    Dressler, D

    2016-03-01

    The global botulinum toxin (BT) market is currently undergoing rapid changes: this may be the time to review the history and the future of BT drug development. Since the early 1990s Botox(®) and Dysport(®) dominated the international BT market. Later, Myobloc(®)/NeuroBloc(®), a liquid BT type B drug, came out, but failed. Xeomin(®) is the latest major BT drug. It features removal of complexing proteins and improved neurotoxin purity. Several new BT drugs are coming out of Korea, China and Russia. Scientific challenges for BT drug development include modification of BT's duration of action, its transdermal transport and the design of BT hybrid drugs for specific target tissues. The increased competition will change the global BT market fundamentally and a re-organisation according to large indication groups, such as therapeutic and cosmetic applications, might occur.

  11. [Botulinum toxin and facial palsy. Our experience].

    Science.gov (United States)

    Navarrete Alvaro, María Luisa; Junyent, Josefina; Torrent, Luisa

    2010-01-01

    Therapeutic indication of peripheral facial paralysis depends on the degree of nerve injury. Severe facial palsy (electroneuronographic study less than or equal to 10%) leads to healing with sequelae. The sequelae of facial paralysis are contractures, hemifacial spasm and synkinesis.Our purpose was to demonstrate that these patients could benefit from rehabilitation treatment. We present a study of 48 patients with severe peripheral facial paralysis. They were treated from the beginning of reinnervation with botulinum toxin and facial exercises according to the Wisconsin School. The subjective efficacy of rehabilitation is high. Rehabilitation treatment can inform patients about their chances of recovery, give them control over and quality of facial expression and help to achieve greater facial symmetry. These factors provide better functionality and quality of life. Copyright 2009 Elsevier España, S.L. All rights reserved.

  12. Anthrax Toxin Receptor 2–Dependent Lethal Toxin Killing In Vivo

    Science.gov (United States)

    Scobie, Heather M; Wigelsworth, Darran J; Marlett, John M; Thomas, Diane; Rainey, G. Jonah A; Lacy, D. Borden; Manchester, Marianne; Collier, R. John; Young, John A. T

    2006-01-01

    Anthrax toxin receptors 1 and 2 (ANTXR1 and ANTXR2) have a related integrin-like inserted (I) domain which interacts with a metal cation that is coordinated by residue D683 of the protective antigen (PA) subunit of anthrax toxin. The receptor-bound metal ion and PA residue D683 are critical for ANTXR1-PA binding. Since PA can bind to ANTXR2 with reduced affinity in the absence of metal ions, we reasoned that D683 mutant forms of PA might specifically interact with ANTXR2. We show here that this is the case. The differential ability of ANTXR1 and ANTXR2 to bind D683 mutant PA proteins was mapped to nonconserved receptor residues at the binding interface with PA domain 2. Moreover, a D683K mutant form of PA that bound specifically to human and rat ANTXR2 mediated killing of rats by anthrax lethal toxin, providing strong evidence for the physiological importance of ANTXR2 in anthrax disease pathogenesis. PMID:17054395

  13. Algal toxins alter copepod feeding behavior.

    Directory of Open Access Journals (Sweden)

    Jiarong Hong

    Full Text Available Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod's feeding appendages-a "sampling beating" that has short durations (<100 ms and involves little fluid entrainment and a longer duration "grazing beating" that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod's grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod's feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods.

  14. Polycystic ovary syndrome and environmental toxins.

    Science.gov (United States)

    Rutkowska, Aleksandra Zofia; Diamanti-Kandarakis, Evanthia

    2016-09-15

    Polycystic ovary syndrome (PCOS) is the most common, heterogeneous, and multifactorial endocrine disorder in premenopausal women. The pathophysiology of this endocrinopathy is still unclear; however, the heterogeneity of its features within ethnic races, geographic location, and families suggests that environment and lifestyle are of prime importance. This work is mainly focused on the possible role of the most common and studied environmental toxins for this syndrome in the pathogenesis of PCOS. Plasticizers, such as bisphenol A (BPA) or phthalates, which belong to the categories of endocrine disrupting chemicals (EDCs) and advanced glycation end products (AGEs), affect humans' health in everyday, industrialized life; therefore special attention should be paid to such exposure. Timing of exposure to EDCs is crucial for the intensity of adverse health effects. It is now evident that fetuses, infants, and/or young children are the most susceptible groups, especially in the early development periods. Prenatal exposure to EDCs that mimic endogenous hormones may contribute to the altered fetal programming and in consequence lead to PCOS and other adverse health effects, potentially transgenerationally. Acute or prolonged exposure to EDCs and AGEs through different life cycle stages may result in destabilization of the hormonal homeostasis and lead to disruption of reproductive functions. They may also interfere with metabolic alterations such as obesity, insulin resistance, and compensatory hyperinsulinemia that can exacerbate the PCOS phenotype and contribute to PCOS consequences such as type 2 diabetes and cardiovascular disease. Since wide exposure to environmental toxins and their role in the pathophysiology of PCOS are supported by extensive data derived from diverse scientific models, protective strategies and strong recommendations should be considered to reduce human exposure to protect present and future generations from their adverse health effects. Copyright

  15. Antibody-based magneto-elastic biosensors: potential devices for detection of pathogens and associated toxins.

    Science.gov (United States)

    Menti, C; Henriques, J A P; Missell, F P; Roesch-Ely, M

    2016-07-01

    This work describes the design and development process of an immunosensor. The creation of such devices goes through various steps, which complement each other, and choosing an efficient immobilization method that binds to a specific target is essential to achieve satisfactory diagnostic results. In this perspective, the emphasis here is on developing biosensors based on binding antigens/antibodies on particular surfaces of magneto-elastic sensors. Different aspects leading to the improvement of these sensors, such as the antibody structure, the chemical functionalization of the surface, and cross-linking antibody reticulation were summarized and discussed. This paper deals with the progress of magneto-elastic immunosensors to detect bacterial pathogens and associated toxins. Biologically modified surface characterization methods are further considered. Thus, research opportunities and trends of future development in these areas are finally discussed.

  16. ACTION OF DIPHTHERIA TOXIN IN THE GUINEA PIG

    Science.gov (United States)

    Baseman, Joel B.; Pappenheimer, A. M.; Gill, D. M.; Harper, Annabel A.

    1970-01-01

    The blood clearance and distribution in the tissues of 125I after intravenous injection of small doses (1.5–5 MLD or 0.08–0.25 µg) of 125I-labeled diphtheria toxin has been followed in guinea pigs and rabbits and compared with the fate of equivalent amounts of injected 125I-labeled toxoid and bovine serum albumin. Toxoid disappeared most rapidly from the blood stream and label accumulated and was retained in liver, spleen, and especially in kidney. Both toxin and BSA behaved differently. Label was found widely distributed among all the organs except the nervous system and its rate of disappearance from the tissues paralleled its disappearance from the circulation. There was no evidence for any particular affinity of toxin for muscle tissue or for a "target" organ. Previous reports by others that toxin causes specific and selective impairment of protein synthesis in muscle tissue were not confirmed. On the contrary, both in guinea pigs and rabbits, a reduced rate of protein synthesis was observed in all tissues that had taken up the toxin label. In tissues removed from intoxicated animals of both species there was an associated reduction in aminoacyl transferase 2 content. It is concluded that the primary action of diphtheria toxin in the living animal is to effect the inactivation of aminoacyl transferase 2. The resulting inhibition in rate of protein synthesis leads to morphologic damage in all tissues reached by the toxin and ultimately to death of the animal. PMID:5511567

  17. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Science.gov (United States)

    Xu, Chengchen; Wang, Bi-Cheng; Yu, Ziniu; Sun, Ming

    2014-01-01

    Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs) structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively. PMID:25229189

  18. Synthesis of protein in intestinal cells exposed to cholera toxin

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-11-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in (/sup 3/H) leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of (/sup 35/S) methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed.

  19. Structural Insights into Bacillus thuringiensis Cry, Cyt and Parasporin Toxins

    Directory of Open Access Journals (Sweden)

    Chengchen Xu

    2014-09-01

    Full Text Available Since the first X-ray structure of Cry3Aa was revealed in 1991, numerous structures of B. thuringiensis toxins have been determined and published. In recent years, functional studies on the mode of action and resistance mechanism have been proposed, which notably promoted the developments of biological insecticides and insect-resistant transgenic crops. With the exploration of known pore-forming toxins (PFTs structures, similarities between PFTs and B. thuringiensis toxins have provided great insights into receptor binding interactions and conformational changes from water-soluble to membrane pore-forming state of B. thuringiensis toxins. This review mainly focuses on the latest discoveries of the toxin working mechanism, with the emphasis on structural related progress. Based on the structural features, B. thuringiensis Cry, Cyt and parasporin toxins could be divided into three categories: three-domain type α-PFTs, Cyt toxin type β-PFTs and aerolysin type β-PFTs. Structures from each group are elucidated and discussed in relation to the latest data, respectively.

  20. Synthesis of protein in intestinal cells exposed to cholera toxin

    International Nuclear Information System (INIS)

    Peterson, J.W.; Berg, W.D. Jr.; Coppenhaver, D.H.

    1987-01-01

    The mechanism by which cyclic adenosine monophosphate (AMP), formed by intestinal epithelial cells in response to cholera toxin, ultimately results in alterations in water and electrolyte transport is poorly understood. Several studies have indicated that inhibitors of transcription or translation block much of the transport of ions and water in the intestine and edema formation in tissue elicited by cholera toxin. Data presented in this study confirmed the inhibitory effects of cycloheximide on cholera toxin-induced fluid accumulation in the rabbit intestinal loop model. Neither cycloheximide nor actinomycin D altered the amount of cyclic AMP that accumulated in intestinal cells and Chinese hamster ovary cells exposed to cholera toxin. An increase in [ 3 H] leucine incorporation was readily demonstrable in intestinal epithelial cells from rabbits challenged with Vibrio cholerae. Similarly, intestinal epithelial cells incubated with cholera toxin for 4 hr synthesized substantially more protein than controls as determined by relative incorporation of [ 35 S] methionine. Most of the new protein synthesized in response to cholera toxin was membrane associated and of high molecular weight. The possible significance of the toxin-induced protein relative to cholera pathogenesis was discussed

  1. Three dimensional structure of the MqsR:MqsA complex: a novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties.

    Directory of Open Access Journals (Sweden)

    Breann L Brown

    2009-12-01

    Full Text Available One mechanism by which bacteria survive environmental stress is through the formation of bacterial persisters, a sub-population of genetically identical quiescent cells that exhibit multidrug tolerance and are highly enriched in bacterial toxins. Recently, the Escherichia coli gene mqsR (b3022 was identified as the gene most highly upregulated in persisters. Here, we report multiple individual and complex three-dimensional structures of MqsR and its antitoxin MqsA (B3021, which reveal that MqsR:MqsA form a novel toxin:antitoxin (TA pair. MqsR adopts an alpha/beta fold that is homologous with the RelE/YoeB family of bacterial ribonuclease toxins. MqsA is an elongated dimer that neutralizes MqsR toxicity. As expected for a TA pair, MqsA binds its own promoter. Unexpectedly, it also binds the promoters of genes important for E. coli physiology (e.g., mcbR, spy. Unlike canonical antitoxins, MqsA is also structured throughout its entire sequence, binds zinc and coordinates DNA via its C- and not N-terminal domain. These studies reveal that TA systems, especially the antitoxins, are significantly more diverse than previously recognized and provide new insights into the role of toxins in maintaining the persister state.

  2. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    International Nuclear Information System (INIS)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-01-01

    Cholera toxin catalyzes transfer of radiolabel from [ 32 P]NAD + to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and [ 32 P]NAD + caused radiolabeling of purified microtubule and intermediate filament proteins

  3. Health Risk Assessment for Cyanobacterial Toxins in Seafood

    Directory of Open Access Journals (Sweden)

    Andrew Humpage

    2012-03-01

    Full Text Available Cyanobacteria (blue-green algae are abundant in fresh, brackish and marine waters worldwide. When toxins produced by cyanobacteria are present in the aquatic environment, seafood harvested from these waters may present a health hazard to consumers. Toxicity hazards from seafood have been internationally recognised when the source is from marine algae (dinoflagellates and diatoms, but to date few risk assessments for cyanobacterial toxins in seafood have been presented. This paper estimates risk from seafood contaminated by cyanobacterial toxins, and provides guidelines for safe human consumption.

  4. Secondary metabolite toxins and nutrition of plant pathogenic fungi.

    Science.gov (United States)

    Howlett, Barbara J

    2006-08-01

    Fungal pathogens derive nutrition from the plants they invade. Some fungi can subvert plant defence responses such as programmed cell death to provide nutrition for their growth and colonisation. Secondary metabolite toxins produced by fungi often play a role in triggering these responses. Knowledge of the biosynthesis of these toxins, and the availability of fungal genome sequences and gene disruption techniques, allows the development of tools for experiments aimed at discovering the role of such toxins in triggering plant cell death and plant disease.

  5. From Toxins Targeting Ligand Gated Ion Channels to Therapeutic Molecules

    Directory of Open Access Journals (Sweden)

    Antoine Taly

    2011-03-01

    Full Text Available Ligand-gated ion channels (LGIC play a central role in inter-cellular communication. This key function has two consequences: (i these receptor channels are major targets for drug discovery because of their potential involvement in numerous human brain diseases; (ii they are often found to be the target of plant and animal toxins. Together this makes toxin/receptor interactions important to drug discovery projects. Therefore, toxins acting on LGIC are presented and their current/potential therapeutic uses highlighted.

  6. Small RNA-mediated Cry toxin silencing allows Bacillus thuringiensis to evade Caenorhabditis elegans avoidance behavioral defenses

    Science.gov (United States)

    Peng, Donghai; Luo, Xiaoxia; Zhang, Ni; Guo, Suxia; Zheng, Jinshui; Chen, Ling

    2018-01-01

    Abstract Pathogen avoidance behavior protects animal hosts against microbial pathogens. Pathogens have evolved specific strategies during coevolution in response to such host defenses. However, these strategies for combatting host avoidance behavioral defenses remain poorly understood. Here, we used Caenorhabditis elegans and its bacterial pathogen Bacillus thuringiensis as a model and determined that small RNA (sRNA)-mediated Cry toxin silencing allowed pathogens to evade host avoidance behavioral defenses. The B. thuringiensis strain YBT-1518, which encodes three nematicidal cry genes, is highly toxic to C. elegans. However, the expression of the most potent toxin, Cry5Ba, was silenced in this strain when YBT-1518 was outside the host. Cry5Ba silencing was due to the sRNA BtsR1, which bound to the RBS site of the cry5Ba transcript via direct base pairing and inhibited Cry5Ba expression. Upon ingestion by C. elegans, Cry5Ba was expressed in vivo by strain YBT-1518. Cry5Ba silencing may allow B. thuringiensis to avoid nematode behavioral defenses and then express toxins once ingested to kill the host and gain a survival advantage. Our work describes a novel model of sRNA-mediated regulation to aid pathogens in combating host avoidance behavioral defenses. PMID:29069426

  7. Identification and Characterization of Novel Compounds Blocking Shiga Toxin Expression in Escherichia coli O157:H7

    Directory of Open Access Journals (Sweden)

    Alejandro Huerta-Uribe

    2016-11-01

    Full Text Available Infections caused by Shiga toxin-producing E. coli strains constitute a health problem, as they are problematic to treat. Shiga toxin (Stx production is a key virulence factor associated with the pathogenicity of enterohaemorrhagic E. coli (EHEC and can result in the development of haemolytic uremic syndrome in infected patients. The genes encoding Stx are located on temperate lysogenic phages integrated into the bacterial chromosome and expression of the toxin is generally coupled to phage induction through the SOS response. We aimed to find new compounds capable of blocking expression of Stx type 2 (Stx2 as this subtype of Stx is more strongly associated with human disease. High-throughput screening of a small-molecule library identified a lead compound that reduced Stx2 expression in a dose-dependent manner. We show that the optimised compound interferes with the SOS response by directly affecting the activity and oligomerisation of RecA, thus limiting phage activation and Stx2 expression. Our work suggests that RecA is highly susceptible to inhibition and that targeting this protein is a viable approach to limiting production of Stx2 by EHEC. This type of approach has the potential to limit production and transfer of other phage induced and transduced determinants.

  8. Damage of eukaryotic cells by the pore-forming toxin sticholysin II: Consequences of the potassium efflux.

    Science.gov (United States)

    Cabezas, Sheila; Ho, Sylvia; Ros, Uris; Lanio, María E; Alvarez, Carlos; van der Goot, F Gisou

    2017-05-01

    Pore-forming toxins (PFTs) form holes in membranes causing one of the most catastrophic damages to a target cell. Target organisms have evolved a regulated response against PFTs damage including cell membrane repair. This ability of cells strongly depends on the toxin concentration and the properties of the pores. It has been hypothesized that there is an inverse correlation between the size of the pores and the time required to repair the membrane, which has been for long a non-intuitive concept and far to be completely understood. Moreover, there is a lack of information about how cells react to the injury triggered by eukaryotic PFTs. Here, we investigated some molecular events related with eukaryotic cells response against the membrane damage caused by sticholysin II (StII), a eukaryotic PFT produced by a sea anemone. We evaluated the change in the cytoplasmic potassium, identified the main MAPK pathways activated after pore-formation by StII, and compared its effect with those from two well-studied bacterial PFTs: aerolysin and listeriolysin O (LLO). Strikingly, we found that membrane recovery upon StII damage takes place in a time scale similar to LLO in spite of the fact that they form pores by far different in size. Furthermore, our data support a common role of the potassium ion, as well as MAPKs in the mechanism that cells use to cope with these toxins injury. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Bacterial Cell Mechanics.

    Science.gov (United States)

    Auer, George K; Weibel, Douglas B

    2017-07-25

    Cellular mechanical properties play an integral role in bacterial survival and adaptation. Historically, the bacterial cell wall and, in particular, the layer of polymeric material called the peptidoglycan were the elements to which cell mechanics could be primarily attributed. Disrupting the biochemical machinery that assembles the peptidoglycan (e.g., using the β-lactam family of antibiotics) alters the structure of this material, leads to mechanical defects, and results in cell lysis. Decades after the discovery of peptidoglycan-synthesizing enzymes, the mechanisms that underlie their positioning and regulation are still not entirely understood. In addition, recent evidence suggests a diverse group of other biochemical elements influence bacterial cell mechanics, may be regulated by new cellular mechanisms, and may be triggered in different environmental contexts to enable cell adaptation and survival. This review summarizes the contributions that different biomolecular components of the cell wall (e.g., lipopolysaccharides, wall and lipoteichoic acids, lipid bilayers, peptidoglycan, and proteins) make to Gram-negative and Gram-positive bacterial cell mechanics. We discuss the contribution of individual proteins and macromolecular complexes in cell mechanics and the tools that make it possible to quantitatively decipher the biochemical machinery that contributes to bacterial cell mechanics. Advances in this area may provide insight into new biology and influence the development of antibacterial chemotherapies.

  10. Resistance to Bacillus thuringiensis Mediated by an ABC Transporter Mutation Increases Susceptibility to Toxins from Other Bacteria in an Invasive Insect

    Science.gov (United States)

    Zhang, Dandan; Gong, Lingling; He, Fei; Soberón, Mario; Bravo, Alejandra; Tabashnik, Bruce E.; Wu, Kongming

    2016-01-01

    Evolution of pest resistance reduces the efficacy of insecticidal proteins from the gram-positive bacterium Bacillus thuringiensis (Bt) used widely in sprays and transgenic crops. Recent efforts to delay pest adaptation to Bt crops focus primarily on combinations of two or more Bt toxins that kill the same pest, but this approach is often compromised because resistance to one Bt toxin causes cross-resistance to others. Thus, integration of Bt toxins with alternative controls that do not exhibit such cross-resistance is urgently needed. The ideal scenario of negative cross-resistance, where selection for resistance to a Bt toxin increases susceptibility to alternative controls, has been elusive. Here we discovered that selection of the global crop pest, Helicoverpa armigera, for >1000-fold resistance to Bt toxin Cry1Ac increased susceptibility to abamectin and spineotram, insecticides derived from the soil bacteria Streptomyces avermitilis and Saccharopolyspora spinosa, respectively. Resistance to Cry1Ac did not affect susceptibility to the cyclodiene, organophospate, or pyrethroid insecticides tested. Whereas previous work demonstrated that the resistance to Cry1Ac in the strain analyzed here is conferred by a mutation disrupting an ATP-binding cassette protein named ABCC2, the new results show that increased susceptibility to abamectin is genetically linked with the same mutation. Moreover, RNAi silencing of HaABCC2 not only decreased susceptibility to Cry1Ac, it also increased susceptibility to abamectin. The mutation disrupting ABCC2 reduced removal of abamectin in live larvae and in transfected Hi5 cells. The results imply that negative cross-resistance occurs because the wild type ABCC2 protein plays a key role in conferring susceptibility to Cry1Ac and in decreasing susceptibility to abamectin. The negative cross-resistance between a Bt toxin and other bacterial insecticides reported here may facilitate more sustainable pest control. PMID:26872031

  11. Bacterial meningitis in children

    International Nuclear Information System (INIS)

    Marji, S.

    2007-01-01

    To demonstrate the epidemiology, clinical manifestations and bacteriological profile of bacterial meningitis in children beyond the neonatal period in our hospital. This was a retrospective descriptive study conducted at Prince Rashid Hospital in Irbid, Jordan. The medical records of 50 children with the diagnosis of bacterial meningitis during 4 years period, were reviewed. The main cause of infection was streptococcus pneumoniae, followed by Haemophilus influenza and Niesseria meningitides. Mortality was higher in infants and meningococcal infection, while complications were more encountered in cases of streptococcus pneumoniae. Cerebrospinal fluid culture was positive in 11 cases and Latex agglutination test in 39. There is a significant reduction of the numbers of bacterial meningitis caused by Haemophilus influenza type B species. (author)

  12. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    Biofilm resilience poses major challenges to the development of novel antimicrobial agents. Biofilm bacteria can be considered small groups of “Special Forces” capable of infiltrating the host and destroying important components of the cellular defense system with the aim of crippling the host...... defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  13. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  14. 7 CFR 331.3 - PPQ select agents and toxins.

    Science.gov (United States)

    2010-01-01

    ...) Select agents and toxins listed in paragraph (b) of this section that have been genetically modified. (d... variegated chlorosis strain). (c) Genetic elements, recombinant nucleic acids, and recombinant organisms: (1...

  15. 42 CFR 73.3 - HHS select agents and toxins.

    Science.gov (United States)

    2010-10-01

    ... have been genetically modified. (d) HHS select agents or toxins that meet any of the following criteria..., and Recombinant Organisms: (1) Nucleic acids that can produce infectious forms of any of the select...

  16. Occurrence and sequestration of toxins in food chains.

    Science.gov (United States)

    Mebs, D

    1998-11-01

    Animals may acquire toxicity by absorbing toxic compounds from their food, e.g. from plants or other animals. Sequestration and accumulation of toxins may provide protection from predators, which learn to avoid this prey because of unpleasant experiences such as bitter taste. This is a common phenomenon in marine as well as in terrestrial ecosystems. Moreover, toxins may enter food chains where they accumulate reaching high, often lethal concentrations. Palytoxin which had been primarily detected in marine zoanthids (Palythoa sp.), occurs also in a wide range of other animals, e.g. in sponges, corals, shellfish, polychaetes and crustaceans, but also in fish, which feed on crustaceans and zoanthids as well. These animals exhibit a high resistance to the toxin's action. The mechanisms which protect the Na+, K+-ATPase of their cell membranes, the primary target of palytoxin, is unknown. Sequestration of the toxin by other animals may cause health problems due to food poisoning.

  17. Conformational Changes in Small Ligands Upon Tetanus Toxin Binding

    National Research Council Canada - National Science Library

    Henderson, Terry J; Gitti, Rossitza K

    2008-01-01

    ... A upon binding to tetanus toxin. C13 T1 measurements suggested that to a first approximation, the conformational behavior of doxorubicin in solution appears to be a composite of a rigid aromatic ring system, ring librations...

  18. Adult bacterial meningitis

    DEFF Research Database (Denmark)

    Meyer, C N; Samuelsson, I S; Galle, M

    2004-01-01

    Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin susceptibi......Episodes of adult bacterial meningitis (ABM) at a Danish hospital in 1991-2000 were identified from the databases of the Department of Clinical Microbiology, and compared with data from the Danish National Patient Register and the Danish National Notification System. Reduced penicillin...

  19. Bacterial blight of cotton

    Directory of Open Access Journals (Sweden)

    Aïda JALLOUL

    2015-04-01

    Full Text Available Bacterial blight of cotton (Gossypium ssp., caused by Xanthomonas citri pathovar malvacearum, is a severe disease occurring in all cotton-growing areas. The interactions between host plants and the bacteria are based on the gene-for-gene concept, representing a complex resistance gene/avr gene system. In light of the recent data, this review focuses on the understanding of these interactions with emphasis on (1 the genetic basis for plant resistance and bacterial virulence, (2 physiological mechanisms involved in the hypersensitive response to the pathogen, including hormonal signaling, the oxylipin pathway, synthesis of antimicrobial molecules and alteration of host cell structures, and (3 control of the disease.

  20. Bacterial meningitis in infants.

    Science.gov (United States)

    Ku, Lawrence C; Boggess, Kim A; Cohen-Wolkowiez, Michael

    2015-03-01

    Neonatal bacterial meningitis is uncommon but devastating. Morbidity among survivors remains high. The types and distribution of pathogens are related to gestational age, postnatal age, and geographic region. Confirming the diagnosis is difficult. Clinical signs are often subtle, lumbar punctures are frequently deferred, and cerebrospinal fluid (CSF) cultures can be compromised by prior antibiotic exposure. Infants with bacterial meningitis can have negative blood cultures and normal CSF parameters. Promising tests such as the polymerase chain reaction require further study. Prompt treatment with antibiotics is essential. Clinical trials investigating a vaccine for preventing neonatal Group B Streptococcus infections are ongoing. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Directory of Open Access Journals (Sweden)

    Mukesh Meena

    2017-08-01

    Full Text Available Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs and non-host specific toxins (nHSTs which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs. The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future.

  2. Alternaria Toxins: Potential Virulence Factors and Genes Related to Pathogenesis

    Science.gov (United States)

    Meena, Mukesh; Gupta, Sanjay K.; Swapnil, Prashant; Zehra, Andleeb; Dubey, Manish K.; Upadhyay, Ram S.

    2017-01-01

    Alternaria is an important fungus to study due to their different life style from saprophytes to endophytes and a very successful fungal pathogen that causes diseases to a number of economically important crops. Alternaria species have been well-characterized for the production of different host-specific toxins (HSTs) and non-host specific toxins (nHSTs) which depend upon their physiological and morphological stages. The pathogenicity of Alternaria species depends on host susceptibility or resistance as well as quantitative production of HSTs and nHSTs. These toxins are chemically low molecular weight secondary metabolites (SMs). The effects of toxins are mainly on different parts of cells like mitochondria, chloroplast, plasma membrane, Golgi complex, nucleus, etc. Alternaria species produce several nHSTs such as brefeldin A, tenuazonic acid, tentoxin, and zinniol. HSTs that act in very low concentrations affect only certain plant varieties or genotype and play a role in determining the host range of specificity of plant pathogens. The commonly known HSTs are AAL-, AK-, AM-, AF-, ACR-, and ACT-toxins which are named by their host specificity and these toxins are classified into different family groups. The HSTs are differentiated on the basis of bio-statistical and other molecular analyses. All these toxins have different mode of action, biochemical reactions and signaling mechanisms to cause diseases. Different species of Alternaria produced toxins which reveal its biochemical and genetic effects on itself as well as on its host cells tissues. The genes responsible for the production of HSTs are found on the conditionally dispensable chromosomes (CDCs) which have been well characterized. Different bio-statistical methods like basic local alignment search tool (BLAST) data analysis used for the annotation of gene prediction, pathogenicity-related genes may provide surprising knowledge in present and future. PMID:28848500

  3. Short Toxin-like Proteins Abound in Cnidaria Genomes

    OpenAIRE

    Tirosh, Yitshak; Linial, Itai; Askenazi, Manor; Linial, Michal

    2012-01-01

    Cnidaria is a rich phylum that includes thousands of marine species. In this study, we focused on Anthozoa and Hydrozoa that are represented by the Nematostella vectensis (Sea anemone) and Hydra magnipapillata genomes. We present a method for ranking the toxin-like candidates from complete proteomes of Cnidaria. Toxin-like functions were revealed using ClanTox, a statistical machine-learning predictor trained on ion channel inhibitors from venomous animals. Fundamental features that were emph...

  4. Detection of Shiga Toxins by Lateral Flow Assay

    OpenAIRE

    Ching, Kathryn H.; He, Xiaohua; Stanker, Larry H.; Lin, Alice V.; McGarvey, Jeffery A.; Hnasko, Robert

    2015-01-01

    Shiga toxin-producing Escherichia coli (STEC) produce shiga toxins (Stxs) that can cause human disease and death. The contamination of food products with STEC represents a food safety problem that necessitates rapid and effective detection strategies to mitigate risk. In this manuscript, we report the development of a colorimetric lateral flow assay (LFA) for the rapid detection of Stxs in <10 min using a pair of monoclonal antibodies that bind epitopes common to Stx1 and six Stx2 variants...

  5. Lipoproteins/peptides are sepsis-inducing toxins from bacteria that can be neutralized by synthetic anti-endotoxin peptides.

    Science.gov (United States)

    Martinez de Tejada, Guillermo; Heinbockel, Lena; Ferrer-Espada, Raquel; Heine, Holger; Alexander, Christian; Bárcena-Varela, Sergio; Goldmann, Torsten; Correa, Wilmar; Wiesmüller, Karl-Heinz; Gisch, Nicolas; Sánchez-Gómez, Susana; Fukuoka, Satoshi; Schürholz, Tobias; Gutsmann, Thomas; Brandenburg, Klaus

    2015-09-22

    Sepsis, a life-threatening syndrome with increasing incidence worldwide, is triggered by an overwhelming inflammation induced by microbial toxins released into the bloodstream during infection. A well-known sepsis-inducing factor is the membrane constituent of Gram-negative bacteria, lipopolysaccharide (LPS), signalling via Toll-like receptor-4. Although sepsis is caused in more than 50% cases by Gram-positive and mycoplasma cells, the causative compounds are still poorly described. In contradicting investigations lipoproteins/-peptides (LP), lipoteichoic acids (LTA), and peptidoglycans (PGN), were made responsible for eliciting this pathology. Here, we used human mononuclear cells from healthy donors to determine the cytokine-inducing activity of various LPs from different bacterial origin, synthetic and natural, and compared their activity with that of natural LTA and PGN. We demonstrate that LP are the most potent non-LPS pro-inflammatory toxins of the bacterial cell walls, signalling via Toll-like receptor-2, not only in vitro, but also when inoculated into mice: A synthetic LP caused sepsis-related pathological symptoms in a dose-response manner. Additionally, these mice produced pro-inflammatory cytokines characteristic of a septic reaction. Importantly, the recently designed polypeptide Aspidasept(®) which has been proven to efficiently neutralize LPS in vivo, inhibited cytokines induced by the various non-LPS compounds protecting animals from the pro-inflammatory activity of synthetic LP.

  6. A cocktail of humanized anti-pertussis toxin antibodies limits disease in murine and baboon models of whooping cough.

    Science.gov (United States)

    Nguyen, Annalee W; Wagner, Ellen K; Laber, Joshua R; Goodfield, Laura L; Smallridge, William E; Harvill, Eric T; Papin, James F; Wolf, Roman F; Padlan, Eduardo A; Bristol, Andy; Kaleko, Michael; Maynard, Jennifer A

    2015-12-02

    Despite widespread vaccination, pertussis rates are rising in industrialized countries and remain high worldwide. With no specific therapeutics to treat disease, pertussis continues to cause considerable infant morbidity and mortality. The pertussis toxin is a major contributor to disease, responsible for local and systemic effects including leukocytosis and immunosuppression. We humanized two murine monoclonal antibodies that neutralize pertussis toxin and expressed them as human immunoglobulin G1 molecules with no loss of affinity or in vitro neutralization activity. When administered prophylactically to mice as a binary cocktail, antibody treatment completely mitigated the Bordetella pertussis-induced rise in white blood cell counts and decreased bacterial colonization. When administered therapeutically to baboons, antibody-treated, but not untreated control animals, experienced a blunted rise in white blood cell counts and accelerated bacterial clearance rates. These preliminary findings support further investigation into the use of these antibodies to treat human neonatal pertussis in conjunction with antibiotics and supportive care. Copyright © 2015, American Association for the Advancement of Science.

  7. Plant toxins that affect nicotinic acetylcholine receptors: a review.

    Science.gov (United States)

    Green, Benedict T; Welch, Kevin D; Panter, Kip E; Lee, Stephen T

    2013-08-19

    Plants produce a wide variety of chemical compounds termed secondary metabolites that are not involved in basic metabolism, photosynthesis, or reproduction. These compounds are used as flavors, fragrances, insecticides, dyes, hallucinogens, nutritional supplements, poisons, and pharmaceutical agents. However, in some cases these secondary metabolites found in poisonous plants perturb biological systems. Ingestion of toxins from poisonous plants by grazing livestock often results in large economic losses to the livestock industry. The chemical structures of these compounds are diverse and range from simple, low molecular weight toxins such as oxalate in halogeton to the highly complex norditerpene alkaloids in larkspurs. While the negative effects of plant toxins on people and the impact of plant toxins on livestock producers have been widely publicized, the diversity of these toxins and their potential as new pharmaceutical agents for the treatment of diseases in people and animals has also received widespread interest. Scientists are actively screening plants from all regions of the world for bioactivity and potential pharmaceuticals for the treatment or prevention of many diseases. In this review, we focus the discussion to those plant toxins extensively studied at the USDA Poisonous Plant Research Laboratory that affect the nicotinic acetylcholine receptors including species of Delphinium (Larkspurs), Lupinus (Lupines), Conium (poison hemlock), and Nicotiana (tobaccos).

  8. Doc toxin is a kinase that inactivates elongation factor Tu.

    Science.gov (United States)

    Cruz, Jonathan W; Rothenbacher, Francesca P; Maehigashi, Tatsuya; Lane, William S; Dunham, Christine M; Woychik, Nancy A

    2014-03-14

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site.

  9. Doc Toxin Is a Kinase That Inactivates Elongation Factor Tu*

    Science.gov (United States)

    Cruz, Jonathan W.; Rothenbacher, Francesca P.; Maehigashi, Tatsuya; Lane, William S.; Dunham, Christine M.; Woychik, Nancy A.

    2014-01-01

    The Doc toxin from bacteriophage P1 (of the phd-doc toxin-antitoxin system) has served as a model for the family of Doc toxins, many of which are harbored in the genomes of pathogens. We have shown previously that the mode of action of this toxin is distinct from the majority derived from toxin-antitoxin systems: it does not cleave RNA; in fact P1 Doc expression leads to mRNA stabilization. However, the molecular triggers that lead to translation arrest are not understood. The presence of a Fic domain, albeit slightly altered in length and at the catalytic site, provided a clue to the mechanism of P1 Doc action, as most proteins with this conserved domain inactivate GTPases through addition of an adenylyl group (also referred to as AMPylation). We demonstrated that P1 Doc added a single phosphate group to the essential translation elongation factor and GTPase, elongation factor (EF)-Tu. The phosphorylation site was at a highly conserved threonine, Thr-382, which was blocked when EF-Tu was treated with the antibiotic kirromycin. Therefore, we have established that Fic domain proteins can function as kinases. This distinct enzymatic activity exhibited by P1 Doc also solves the mystery of the degenerate Fic motif unique to the Doc family of toxins. Moreover, we have established that all characterized Fic domain proteins, even those that phosphorylate, target pivotal GTPases for inactivation through a post-translational modification at a single functionally critical acceptor site. PMID:24448800

  10. Toxin studies using an integrated biophysical and structural biology approach.

    Energy Technology Data Exchange (ETDEWEB)

    Last, Julie A.; Schroeder, Anne E.; Slade, Andrea Lynn; Sasaki, Darryl Yoshio; Yip, Christopher M. (University of Toronto, Toronto, Ontario, Canada); Schoeniger, Joseph S. (Sandia National Laboratories, Livermore, CA)

    2005-03-01

    Clostridial neurotoxins, such as botulinum and tetanus, are generally thought to invade neural cells through a process of high affinity binding mediated by gangliosides, internalization via endosome formation, and subsequent membrane penetration of the catalytic domain activated by a pH drop in the endosome. This surface recognition and internalization process is still not well understood with regard to what specific membrane features the toxins target, the intermolecular interactions between bound toxins, and the molecular conformational changes that occur as a result of pH lowering. In an effort to elucidate the mechanism of tetanus toxin binding and permeation through the membrane a simple yet representative model was developed that consisted of the ganglioside G{sub tlb} incorporated in a bilayer of cholesterol and DPPC (dipalmitoylphosphatidyl choline). The bilayers were stable over time yet sensitive towards the binding and activity of whole toxin. A liposome leakage study at constant pH as well as with a pH gradient, to mimic the processes of the endosome, was used to elucidate the effect of pH on the toxin's membrane binding and permeation capability. Topographic imaging of the membrane surface, via in situ tapping mode AFM, provided nanoscale characterization of the toxin's binding location and pore formation activity.

  11. Persistence of Upper Blepharoptosis After Cosmetic Botulinum Toxin Type A.

    Science.gov (United States)

    Steinsapir, Kenneth D; Groth, Michael J; Boxrud, Cynthia A

    2015-07-01

    Upper eyelid ptosis after cosmetic botulinum toxin is generally considered short-lived and responsive to apraclonidine ophthalmic drops. The authors present a series with persistent ptosis. To report a series of patients with persistent upper eyelid ptosis after cosmetic botulinum toxin. A retrospective case review series of 7 patients referred for management after developing visually significant upper eyelid ptosis after cosmetic botulinum toxin type A treatment. Patients in this series experienced persistent visually significant ptosis after cosmetic botulinum toxin lasting from 6 weeks to 13 months. Six of the 7 patients were treated with apraclonidine ophthalmic solution. Apraclonidine drops appeared to be clinically effective within 4 to 6 weeks of the resolution of ptosis. Upper eyelid ptosis after cosmetic botulinum toxin can persist for many months after treatment. Based on this series, the authors propose that apraclonidine drops can be used at the time of initial assessment to predict the relative longevity of ptosis after cosmetic botulinum toxin treatment (Level 4 evidence recommendation). After a 1-week trial, responders can be advised that ptosis is likely to resolve in 4 to 6 weeks. Nonresponders should be counseled that resolution may take longer than 6 weeks.

  12. Botulinum toxin A for the Treatment of Overactive Bladder

    Directory of Open Access Journals (Sweden)

    Po-Fan Hsieh

    2016-02-01

    Full Text Available The standard treatment for overactive bladder starts with patient education and behavior therapies, followed by antimuscarinic agents. For patients with urgency urinary incontinence refractory to antimuscarinic therapy, currently both American Urological Association (AUA and European Association of Urology (EAU guidelines suggested that intravesical injection of botulinum toxin A should be offered. The mechanism of botulinum toxin A includes inhibition of vesicular release of neurotransmitters and the axonal expression of capsaicin and purinergic receptors in the suburothelium, as well as attenuation of central sensitization. Multiple randomized, placebo-controlled trials demonstrated that botulinum toxin A to be an effective treatment for patients with refractory idiopathic or neurogenic detrusor overactivity. The urinary incontinence episodes, maximum cystometric capacity, and maximum detrusor pressure were improved greater by botulinum toxin A compared to placebo. The adverse effects of botulinum toxin A, such as urinary retention and urinary tract infection, were primarily localized to the lower urinary tract. Therefore, botulinum toxin A offers an effective treatment option for patients with refractory overactive bladder.

  13. Pufferfish mortality associated with novel polar marine toxins in Hawaii

    Science.gov (United States)

    Work, Thierry M.; Moeller, Perer D. R.; Beauchesne, Kevin R.; Dagenais, Julie; Breeden, Renee; Rameyer, Robert; Walsh, Willliam A.; Abecassis, Melanie; Kobayashi, Donald R.; Conway, Carla M.; Winton, James

    2017-01-01

    Fish die-offs are important signals in tropical marine ecosystems. In 2010, a mass mortality of pufferfish in Hawaii (USA) was dominated by Arothron hispidus showing aberrant neurological behaviors. Using pathology, toxinology, and field surveys, we implicated a series of novel, polar, marine toxins as a likely cause of this mass mortality. Our findings are striking in that (1) a marine toxin was associated with a kill of a fish species that is itself toxic; (2) we provide a plausible mechanism to explain clinical signs of affected fish; and (3) this epizootic likely depleted puffer populations. Whilst our data are compelling, we did not synthesize the toxin de novo, and we were unable to categorically prove that the polar toxins caused mortality or that they were metabolites of an undefined parent compound. However, our approach does provide a template for marine fish kill investigations associated with marine toxins and inherent limitations of existing methods. Our study also highlights the need for more rapid and cost-effective tools to identify new marine toxins, particularly small, highly polar molecules.

  14. Cinnamon Oil Inhibits Shiga Toxin Type 2 Phage Induction and Shiga Toxin Type 2 Production in Escherichia coli O157:H7.

    Science.gov (United States)

    Sheng, Lina; Rasco, Barbara; Zhu, Mei-Jun

    2016-11-15

    This study evaluated the inhibitory effect of cinnamon oil against Escherichia coli O157:H7 Shiga toxin (Stx) production and further explored the underlying mechanisms. The MIC and minimum bactericidal concentration (MBC) of cinnamon oil against E. coli O157:H7 were 0.025% and 0.05% (vol/vol), respectively. Cinnamon oil significantly reduced Stx2 production and the stx 2 mRNA expression that is associated with diminished Vero cell cytotoxicity. Consistently, induction of the Stx-converting phage where the stx 2 gene is located, along with the total number of phages, decreased proportionally to cinnamon oil concentration. In line with decreased Stx2 phage induction, cinnamon oil at 0.75× and 1.0× MIC eliminated RecA, a key mediator of SOS response, polynucleotide phosphorylase (PNPase), and poly(A) polymerase (PAP I), which positively regulate Stx-converting phages, contributing to reduced Stx-converting phage induction and Stx production. Furthermore, cinnamon oil at 0.75× and 1.0× MIC strongly inhibited the qseBC and luxS expression associated with decreased AI-2 production, a universal quorum sensing signaling molecule. However, the expression of oxidative stress response genes oxyR, soxR, and rpoS was increased in response to cinnamon oil at 0.25× or 0.5× MIC, which may contribute to stunted bacterial growth and reduced Stx2 phage induction and Stx2 production due to the inhibitory effect of OxyR on prophage activation. Collectively, cinnamon oil inhibits Stx2 production and Stx2 phage induction in E. coli O157:H7 in multiple ways. This study reports the inhibitory effect of cinnamon oil on Shiga toxin 2 phage induction and Shiga toxin 2 production. Subinhibitory concentrations (concentrations below the MIC) of cinnamon oil reduced Stx2 production, stx 2 mRNA expression, and cytotoxicity on Vero cells. Subinhibitory concentrations of cinnamon oil also dramatically reduced both the Stx2 phage and total phage induction in E. coli O157:H7, which may be due to

  15. Lipophilic Toxins in WA - Clear and present danger: monitoring and management of lipophilic shellfish toxins in Washington State

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Lipophilic shellfish toxins comprise an extensive suite of compounds including those associated with the human syndromes known as diarrhetic shellfish poisoning...

  16. Toxin production in Dinophysis and the fate of these toxins in marine mussels

    DEFF Research Database (Denmark)

    Nielsen, Lasse Tor

    . The ecological roles of OA/DTX and PTX are currently unknown, but our results accentuate the potential for extracellular functions. I also took advantage of the recent insights into Dinophysis culturing to produce the first study on accumulation of DSP toxins from Dinophysis in a bivalve species. Our results...... in relation to harmful algal blooms, the two species are also of great evolutionary interest due to their ability to sequester and utilize the plastids from their ingested prey. The phenomenon is especially interesting in Dinophysis spp., since the chloroplasts undergo remarkable changes in ultrastructure...

  17. Immunochromatographic Strip Test for Rapid Detection of Diphtheria Toxin: Description and Multicenter Evaluation in Areas of Low and High Prevalence of Diphtheria

    Science.gov (United States)

    Engler, K. H.; Efstratiou, A.; Norn, D.; Kozlov, R. S.; Selga, I.; Glushkevich, T. G.; Tam, M.; Melnikov, V. G.; Mazurova, I. K.; Kim, V. E.; Tseneva, G. Y.; Titov, L. P.; George, R. C.

    2002-01-01

    An immunochromatographic strip (ICS) test was developed for the detection of diphtheria toxin by using an equine polyclonal antibody as the capture antibody and colloidal gold-labeled monoclonal antibodies specific for fragment A of the diphtheria toxin molecule as the detection antibody. The ICS test has been fully optimized for the detection of toxin from bacterial cultures; the limit of detection was approximately 0.5 ng of diphtheria toxin per ml within 10 min. In a comparative study with 915 pure clinical isolates of Corynebacterium spp., the results of the ICS test were in complete agreement with those of the conventional Elek test. The ICS test was also evaluated for its ability to detect toxigenicity from clinical specimens (throat swabs) in two field studies conducted within areas of the former USSR where diphtheria is epidemic. Eight hundred fifty throat swabs were examined by conventional culture and by use of directly inoculated broth cultures for the ICS test. The results showed 99% concordance (848 of 850 specimens), and the sensitivity and specificity of the ICS test were 98% (95% confidence interval, 91 to 99%) and 99% (95% confidence interval, 99 to 100%), respectively. PMID:11773096

  18. The Bacterial Growth Curve.

    Science.gov (United States)

    Paulton, Richard J. L.

    1991-01-01

    A procedure that allows students to view an entire bacterial growth curve during a two- to three-hour student laboratory period is described. Observations of the lag phase, logarithmic phase, maximum stationary phase, and phase of decline are possible. A nonpathogenic, marine bacterium is used in the investigation. (KR)

  19. Bacterial fingerprints across Europe

    NARCIS (Netherlands)

    Glasner, Corinna

    2014-01-01

    Bacterial pathogens, such as Staphylococcus aureus and carbapenemase-producing Enterobacteriaceae (CPE), impose major threats to human health worldwide. Both have a ‘Jekyll & Hyde’ character, since they can be present as human commensals, but can also become harmful invasive pathogens especially

  20. [Bacterial biofilms and infection].

    Science.gov (United States)

    Lasa, I; Del Pozo, J L; Penadés, J R; Leiva, J

    2005-01-01

    In developed countries we tend to think of heart disease and the numerous forms of cancer as the main causes of mortality, but on a global scale infectious diseases come close, or may even be ahead: 14.9 million deaths in 2002 compared to cardiovascular diseases (16.9 million deaths) and cancer (7.1 million deaths) (WHO report 2004). The infectious agents responsible for human mortality have evolved as medical techniques and hygienic measures have changed. Modern-day acute infectious diseases caused by specialized bacterial pathogens such as diphtheria, tetanus, cholera, plague, which represented the main causes of death at the beginning of XX century, have been effectively controlled with antibiotics and vaccines. In their place, more than half of the infectious diseases that affect mildly immunocompromised patients involve bacterial species that are commensal with the human body; these can produce chronic infections, are resistant to antimicrobial agents and there is no effective vaccine against them. Examples of these infections are the otitis media, native valve endocarditis, chronic urinary infections, bacterial prostatitis, osteomyelitis and all the infections related to medical devices. Direct analysis of the surface of medical devices or of tissues that have been foci of chronic infections shows the presence of large numbers of bacteria surrounded by an exopolysaccharide matrix, which has been named the "biofilm". Inside the biofilm, bacteria grow protected from the action of the antibodies, phagocytic cells and antimicrobial treatments. In this article, we describe the role of bacterial biofilms in human persistent infections.

  1. EDITORIAL SPONTANEOUS BACTERIAL PERITONITIS ...

    African Journals Online (AJOL)

    hi-tech

    Spontaneous bacterial peritonitis (SBP) frequent]y occurs in patients with liver cirrhosis and ascites. It is defined as an infection of previously sterile ascitic fluid without any demonstrable intrabdominal source of infection. It is now internationally agreed that a polymorphonuclear (PMN) cell count in the ascitic fluid of over 250 ...

  2. Bacterial membrane proteomics.

    Science.gov (United States)

    Poetsch, Ansgar; Wolters, Dirk

    2008-10-01

    About one quarter to one third of all bacterial genes encode proteins of the inner or outer bacterial membrane. These proteins perform essential physiological functions, such as the import or export of metabolites, the homeostasis of metal ions, the extrusion of toxic substances or antibiotics, and the generation or conversion of energy. The last years have witnessed completion of a plethora of whole-genome sequences of bacteria important for biotechnology or medicine, which is the foundation for proteome and other functional genome analyses. In this review, we discuss the challenges in membrane proteome analysis, starting from sample preparation and leading to MS-data analysis and quantification. The current state of available proteomics technologies as well as their advantages and disadvantages will be described with a focus on shotgun proteomics. Then, we will briefly introduce the most abundant proteins and protein families present in bacterial membranes before bacterial membrane proteomics studies of the last years will be presented. It will be shown how these works enlarged our knowledge about the physiological adaptations that take place in bacteria during fine chemical production, bioremediation, protein overexpression, and during infections. Furthermore, several examples from literature demonstrate the suitability of membrane proteomics for the identification of antigens and different pathogenic strains, as well as the elucidation of membrane protein structure and function.

  3. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  4. Diagnosis of bacterial infection

    African Journals Online (AJOL)

    rapid and easy-to-use test for bacterial infections. Clearly, this is a very ... detect antigens or specific antibodies, e.g. group A streptococcal antigen testing can be employed to reduce antibiotic use. Culture-based tests are often ... White blood cell count 12 000 cells/mm³; or the presence of >10% ...

  5. Bacterial Meningitis Outcome

    OpenAIRE

    J Gordon Millichap

    1995-01-01

    The neurologic, psychological, and educational outcomes of bacterial meningitis in 130 children evaluated at a mean age of 8 years, and 6 years after their meningitis, are reported from the Department of Paediatrics and Clinical Epidemiology and Biostatistics Unit, University of Melbourne, and the Royal Children’s Hospital, Victoria, Australia.

  6. Botulinum toxin treatment of lower extremity spasticity

    Directory of Open Access Journals (Sweden)

    S. E. Khat’kova

    2017-01-01

    Full Text Available The article reviews the current concept of lower extremity spasticity, which is a frequent disabling consequence of stroke. Gait biomechanics, step cycle and main pathologic patterns of lower extremity are described (hip adduction, knee flexion, knee extension, foot plantar flexion, equinovarus foot position, toes flexion, hallux extension, including muscles involved in the pathological process. Additionally the article contains detailed information on pathologic principles of lower extremity spasticity development. Special focus is given to sarcomeregenesis as an essential element of the development of potential conditions for muscle tissue adaptation to a new state and restoration of muscle length and strength. At present Botulinum toxin A (BTA is used in a complex spasticity management programs. The results of clinical studies performed in the last decade supporting the efficacy of Botox® (Onabotulinumtoxin A in the treatment of spasticity are reviewed. Effective BTA doses are proposed. Authors came to the conclusion that BTA as a part of complex rehabilitation in patients with poststroke spasticity of lower extremity promotes treatment efficacy due to a decrease of muscle tone and increase of range of movements in the joints. BTA should be regarded as an essential part of standard rehabilitation programs. Further studies to define optimal muscles for intervention, BTA doses and rehabilitation schemes are still needed. 

  7. Peptide Toxins in Solitary Wasp Venoms

    Directory of Open Access Journals (Sweden)

    Katsuhiro Konno

    2016-04-01

    Full Text Available Solitary wasps paralyze insects or spiders with stinging venom and feed the paralyzed preys to their larva. Accordingly, the venoms should contain a variety of constituents acting on nervous systems. However, only a few solitary wasp venoms have been chemically studied despite thousands of species inhabiting the planet. We have surveyed bioactive substances in solitary wasp venoms found in Japan and discovered a variety of novel bioactive peptides. Pompilidotoxins (PMTXs, in the venoms of the pompilid wasps Anoplius samariensis and Batozonellus maculifrons, are small peptides consisting of 13 amino acids without a disulfide bond. PMTXs slowed Na+ channel inactivation, in particular against neuronal type Na+ channels, and were rather selective to the Nav1.6 channel. Mastoparan-like cytolytic and antimicrobial peptides are the major components of eumenine wasp venoms. They are rich in hydrophobic and basic amino acids, adopting a α-helical secondary structure, and showing mast cell degranulating, antimicrobial and hemolytic activities. The venom of the spider wasp Cyphononyx fulvognathus contained four bradykinin-related peptides. They are hyperalgesic and, dependent on the structure, differently associated with B1 or B2 receptors. Further survey led to the isolation of leucomyosuppressin-like FMRFamide peptides from the venoms of the digger wasps Sphex argentatus and Isodontia harmandi. These results of peptide toxins in solitary wasp venoms from our studies are summarized.

  8. Why do females use botulinum toxin injections?

    Directory of Open Access Journals (Sweden)

    Carter Singh

    2015-01-01

    Full Text Available Background: Botulinum toxin (BT use for enhancing the facial features has become a commonly accepted form of aesthetic intervention. This study conducted a self-report survey of female BT users in order to explore the motivating factors in its use (cost-benefit analysis. Settings and Design: This is a cross-sectional exploratory pilot study. Materials and Methods: Self-report questionnaires were administered to 41 consecutive clients attending an independent medical practice for BT injections for cosmetic purposes. All the participants were females and represented a range of age groups from the 20s to above 60s. Items in the nonstandardized questionnaire elicited questions relating to the reasons for and against BT use. Statistical Analysis Used: Descriptive analysis was used rather than inferential statistics, and involved ranking the responses according to the most likely reasons for using BT and disadvantages of its use. Results: In general, the primary motivating factor for BT use was to improve self-esteem, and the greatest disadvantage involved financial costs associated with the procedure. Conclusions: The main findings of this study suggest that females who use BT for aesthetic purposes are motivated by personal psychological gains (intrapersonal attributes rather than social gains (interpersonal factors. In other words, they do not believe that having BT will equate to being treated any better by other people but would rather provide them with confidence and satisfaction regarding their self-image.

  9. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  10. Identification of a functional toxin-antitoxin system located in the genomic island PYG1 of piezophilic hyperthermophilic archaeon Pyrococcus yayanosii.

    Science.gov (United States)

    Li, Zhen; Song, Qinghao; Wang, Yinzhao; Xiao, Xiang; Xu, Jun

    2018-01-15

    Toxin-antitoxin (TA) system is bacterial or archaeal genetic module consisting of toxin and antitoxin gene that be organized as a bicistronic operon. TA system could elicit programmed cell death, which is supposed to play important roles for the survival of prokaryotic population under various physiological stress conditions. The phage abortive infection system (AbiE family) belongs to bacterial type IV TA system. However, no archaeal AbiE family TA system has been reported so far. In this study, a putative AbiE TA system (PygAT), which is located in a genomic island PYG1 in the chromosome of Pyrococcus yayanosii CH1, was identified and characterized. In Escherichia coli, overexpression of the toxin gene pygT inhibited its growth while the toxic effect can be suppressed by introducing the antitoxin gene pygA in the same cell. PygAT also enhances the stability of shuttle plasmids with archaeal plasmid replication protein Rep75 in E. coli. In P. yayanosii, disruption of antitoxin gene pygA cause a significantly growth delayed under high hydrostatic pressure (HHP). The antitoxin protein PygA can specifically bind to the PygAT promoter region and regulate the transcription of pygT gene in vivo. These results show that PygAT is a functional TA system in P. yayanosii, and also may play a role in the adaptation to HHP environment.

  11. Corticosteroids for Bacterial Keratitis

    Science.gov (United States)

    Srinivasan, Muthiah; Mascarenhas, Jeena; Rajaraman, Revathi; Ravindran, Meenakshi; Lalitha, Prajna; Glidden, David V.; Ray, Kathryn J.; Hong, Kevin C.; Oldenburg, Catherine E.; Lee, Salena M.; Zegans, Michael E.; McLeod, Stephen D.; Lietman, Thomas M.; Acharya, Nisha R.

    2013-01-01

    Objective To determine whether there is a benefit in clinical outcomes with the use of topical corticosteroids as adjunctive therapy in the treatment of bacterial corneal ulcers. Methods Randomized, placebo-controlled, double-masked, multicenter clinical trial comparing prednisolone sodium phosphate, 1.0%, to placebo as adjunctive therapy for the treatment of bacterial corneal ulcers. Eligible patients had a culture-positive bacterial corneal ulcer and received topical moxifloxacin for at least 48 hours before randomization. Main Outcome Measures The primary outcome was best spectacle-corrected visual acuity (BSCVA) at 3 months from enrollment. Secondary outcomes included infiltrate/scar size, reepithelialization, and corneal perforation. Results Between September 1, 2006, and February 22, 2010, 1769 patients were screened for the trial and 500 patients were enrolled. No significant difference was observed in the 3-month BSCVA (−0.009 logarithm of the minimum angle of resolution [logMAR]; 95% CI, −0.085 to 0.068; P = .82), infiltrate/scar size (P = .40), time to reepithelialization (P = .44), or corneal perforation (P > .99). A significant effect of corticosteroids was observed in subgroups of baseline BSCVA (P = .03) and ulcer location (P = .04). At 3 months, patients with vision of counting fingers or worse at baseline had 0.17 logMAR better visual acuity with corticosteroids (95% CI, −0.31 to −0.02; P = .03) compared with placebo, and patients with ulcers that were completely central at baseline had 0.20 logMAR better visual acuity with corticosteroids (−0.37 to −0.04; P = .02). Conclusions We found no overall difference in 3-month BSCVA and no safety concerns with adjunctive corticosteroid therapy for bacterial corneal ulcers. Application to Clinical Practice Adjunctive topical corticosteroid use does not improve 3-month vision in patients with bacterial corneal ulcers. PMID:21987582

  12. Effects of Tedizolid Phosphate on Survival Outcomes and Suppression of Production of Staphylococcal Toxins in a Rabbit Model of Methicillin-Resistant Staphylococcus aureus Necrotizing Pneumonia.

    Science.gov (United States)

    Le, Vien T M; Le, Hoan N; Pinheiro, Marcos Gabriel; Hahn, Kenneth J; Dinh, Mary L; Larson, Kajal B; Flanagan, Shawn D; Badiou, Cedric; Lina, Gerard; Tkaczyk, Christine; Sellman, Bret R; Diep, Binh An

    2017-04-01

    The protective efficacy of tedizolid phosphate, a novel oxazolidinone that potently inhibits bacterial protein synthesis, was compared to those of linezolid, vancomycin, and saline in a rabbit model of Staphylococcus aureus necrotizing pneumonia. Tedizolid phosphate was administered to rabbits at 6 mg/kg of body weight intravenously twice daily, which yielded values of the 24-h area under the concentration-time curve approximating those found in humans. The overall survival rate was 83% for rabbits treated with 6 mg/kg tedizolid phosphate twice daily and 83% for those treated with 50 mg/kg linezolid thrice daily ( P = 0.66 by the log-rank test versus the results obtained with tedizolid phosphate). These survival rates were significantly greater than the survival rates of 17% for rabbits treated with 30 mg/kg vancomycin twice daily ( P = 0.003) and 17% for rabbits treated with saline ( P = 0.002). The bacterial count in the lungs of rabbits treated with tedizolid phosphate was significantly decreased compared to that in the lungs of rabbits treated with saline, although it was not significantly different from that in the lungs of rabbits treated with vancomycin or linezolid. The in vivo bacterial production of alpha-toxin and Panton-Valentine leukocidin, two key S. aureus -secreted toxins that play critical roles in the pathogenesis of necrotizing pneumonia, in the lungs of rabbits treated with tedizolid phosphate and linezolid was significantly inhibited compared to that in the lungs of rabbits treated with vancomycin or saline. Taken together, these results indicate that tedizolid phosphate is superior to vancomycin for the treatment of S. aureus necrotizing pneumonia because it inhibits the bacterial production of lung-damaging toxins at the site of infection. Copyright © 2017 American Society for Microbiology.

  13. A toxin-binding alkaline phosphatase fragment synergizes Bt toxin Cry1Ac against susceptible and resistant Helicoverpa armigera.

    Directory of Open Access Journals (Sweden)

    Wenbo Chen

    Full Text Available Evolution of resistance by insects threatens the continued success of pest control using insecticidal crystal (Cry proteins from the bacterium Bacillus thuringiensis (Bt in sprays and transgenic plants. In this study, laboratory selection with Cry1Ac yielded five strains of cotton bollworm, Helicoverpa armigera, with resistance ratios at the median lethal concentration (LC50 of activated Cry1Ac ranging from 22 to 1700. Reduced activity and reduced transcription of an alkaline phosphatase protein that binds Cry1Ac was associated with resistance to Cry1Ac in the four most resistant strains. A Cry1Ac-binding fragment of alkaline phosphatase from H. armigera (HaALP1f was not toxic by itself, but it increased mortality caused by Cry1Ac in a susceptible strain and in all five resistant strains. Although synergism of Bt toxins against susceptible insects by toxin-binding fragments of cadherin and aminopeptidase N has been reported previously, the results here provide the first evidence of synergism of a Bt toxin by a toxin-binding fragment of alkaline phosphatase. The results here also provide the first evidence of synergism of a Bt toxin by any toxin-binding peptide against resistant insects.

  14. A family of indoles regulate virulence and Shiga toxin production in pathogenic E. coli.

    Directory of Open Access Journals (Sweden)

    Bettina Bommarius

    Full Text Available Enteropathogenic Escherichia coli (EPEC, enterohemorrhagic E. coli (EHEC and enteroaggregative E. coli (EAEC are intestinal pathogens that cause food and water-borne disease in humans. Using biochemical methods and NMR-based comparative metabolomics in conjunction with the nematode Caenorhabditis elegans, we developed a bioassay to identify secreted small molecules produced by these pathogens. We identified indole, indole-3-carboxaldehyde (ICA, and indole-3-acetic acid (IAA, as factors that only in combination are sufficient to kill C. elegans. Importantly, although lethal to C. elegans, these molecules downregulate several bacterial processes important for pathogenesis in mammals. These include motility, biofilm formation and production of Shiga toxins. Some pathogenic E. coli strains are known to contain a Locus of Enterocyte Effacement (LEE, which encodes virulence factors that cause "attaching and effacing" (A/E lesions in mammals, including formation of actin pedestals. We found that these indole derivatives also downregulate production of LEE virulence factors and inhibit pedestal formation on mammalian cells. Finally, upon oral administration, ICA inhibited virulence and promoted survival in a lethal mouse infection model. In summary, the C. elegans model in conjunction with metabolomics has facilitated identification of a family of indole derivatives that broadly regulate physiology in E. coli, and virulence in pathogenic strains. These molecules may enable development of new therapeutics that interfere with bacterial small-molecule signaling.

  15. Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N.

    Science.gov (United States)

    Yaoi, K; Nakanishi, K; Kadotani, T; Imamura, M; Koizumi, N; Iwahana, H; Sato, R

    1999-12-17

    The Bacillus thuringiensis Cry1Aa toxin-binding region of Bombyx mori aminopeptidase N (APN) was analyzed, to better understand the molecular mechanism of susceptibility to the toxin and the development of resistance in insects. APN was digested with lysylendopeptidase and the ability of the resulting fragments to bind to Cry1Aa and 1Ac toxins was examined. The binding abilities of the two toxins to these fragments were different. The Cry1Aa toxin bound to the fragment containing 40-Asp to 313-Lys, suggesting that the Cry1Aa toxin-binding site is located in the region between 40-Asp and 313-Lys, while Cry1Ac toxin bound exclusively to mature APN. Next, recombinant APN of various lengths was expressed in Escherichia coli cells and its ability to bind to Cry1Aa toxin was examined. The results localized the Cry1Aa toxin binding to the region between 135-Ile and 198-Pro.

  16. Proteomic Identification of Novel Secreted Antibacterial Toxins of the Serratia marcescens Type VI Secretion System*

    Science.gov (United States)

    Fritsch, Maximilian J.; Trunk, Katharina; Diniz, Juliana Alcoforado; Guo, Manman; Trost, Matthias; Coulthurst, Sarah J.

    2013-01-01

    It has recently become apparent that the Type VI secretion system (T6SS) is a complex macromolecular machine used by many bacterial species to inject effector proteins into eukaryotic or bacterial cells, with significant implications for virulence and interbacterial competition. “Antibacterial” T6SSs, such as the one elaborated by the opportunistic human pathogen, Serratia marcescens, confer on the secreting bacterium the ability to rapidly and efficiently kill rival bacteria. Identification of secreted substrates of the T6SS is critical to understanding its role and ability to kill other cells, but only a limited number of effectors have been reported so far. Here we report the successful use of label-free quantitative mass spectrometry to identify at least eleven substrates of the S. marcescens T6SS, including four novel effector proteins which are distinct from other T6SS-secreted proteins reported to date. These new effectors were confirmed as antibacterial toxins and self-protecting immunity proteins able to neutralize their cognate toxins were identified. The global secretomic study also unexpectedly revealed that protein phosphorylation-based post-translational regulation of the S. marcescens T6SS differs from that of the paradigm, H1-T6SS of Pseudomonas aeruginosa. Combined phosphoproteomic and genetic analyses demonstrated that conserved PpkA-dependent threonine phosphorylation of the T6SS structural component Fha is required for T6SS activation in S. marcescens and that the phosphatase PppA can reverse this modification. However, the signal and mechanism of PpkA activation is distinct from that observed previously and does not appear to require cell–cell contact. Hence this study has not only demonstrated that new and species-specific portfolios of antibacterial effectors are secreted by the T6SS, but also shown for the first time that PpkA-dependent post-translational regulation of the T6SS is tailored to fit the needs of different bacterial

  17. Botulinum toxin A treatment of Raynaud's phenomenon: a review.

    Science.gov (United States)

    Iorio, Matthew L; Masden, Derek L; Higgins, James P

    2012-02-01

    Botulinum toxin A has conventionally been used in the upper extremity to treat spasticity resulting from stroke, paraplegia, and dystonia. Recently, it has been used to relieve symptoms of vasospasm in Raynaud's phenomenon. This review summarizes the current literature on botulinum toxin A in the treatment of Raynaud's phenomenon and examines the proposed mechanisms of action, suggested techniques of administration, and clinical efficacy. An Ovid MEDLINE search from 1950 to September 2010 was performed to identify any reports on the use of Botulinum toxin in the treatment of Raynaud's disease or associated vasoconstrictive disorders. All studies pertaining to "Raynaud's disease," "Raynaud's," or "vasoconstriction" were queried and meshed with a secondary search of studies pertaining to "botox" or "botulinum toxin type A." These reports were meshed and subsequently limited to human studies. All studies that met criteria were included and their outcomes evaluated and summarized. Since 2004, there have been 5 studies that have evaluated the use of Botulinum Toxin A for the treatment of Raynaud's. In each study, patients received a range of botulinum toxin injections (10-100 units) in their fingers and hands. The studies have many limitations (lack of controls, variable severity of disease, variability of dosing) but all report favorable clinical results. All showed overall improvement in patient pain as well as a reduction in soft tissue ulceration. Initial reports on the use of botulinum toxin A for Raynaud's phenomenon are promising. Larger controlled trials with improved study design are warranted. A better understanding of the mechanism of action, appropriate dose and dose frequency, and the efficacy relative to other medical and surgical treatments requires investigation. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Identification of bacterial antigens and super antigens in synovial fluid of patients with arthritis: a cross sectional study

    Directory of Open Access Journals (Sweden)

    Samileh Noorbakhsh

    2013-02-01

    Full Text Available  Abstract Background: An accurate and prompt diagnosis of bacterial arthritis is essential for earlier treatment and a good outcome. Superantigens produced by Staph. Aureus are among the most lethal toxins. The paper objective was Identification of common bacterial antigens and S.aureus superantigens in synovial fluid (SF of children with negative culture and direct smear for other bacteria except for S.aureus. Methods: In this cross-sectional study a total of 62 patients with a mean age of 11 ± 3.8 years (range: 5 months- 16 years with acute arthritis in pediatric and orthopedic wards of Rasoul hospital (2008-2010 were studied. Three common bacterial antigens (e.g. S.Pneumonia, H.influenza, N. meningitis using LPA (latex particle antigen and Staphylococcal superantigens (TSST1; Enterotoxin A; B; C using ELISA method (ABcam; USA were identified in 60 adequate SF samples with negative culture and negative direct smears (for other bacteria except for S.aureus. Staphylococcal superantigens were compared with S.aureus infection (positive culture or direct smear. Results: Positive bacterial antigens (LPA test were found in 4 cases including two S. Pneumonia, one N.meningitis, and one H.influenza. S.aureus was diagnosed in 7 cases including 4 positive cultures and 3 positive smears. Staphylococcal superantigens (toxins were found in 73% of SF samples. Some cases had 2 or 3 types of toxins. S.aureus toxins were reported in 47% of culture negative SF samples. Positive TSST1, Enterotoxin B, Enterotoxin A, and Enterotoxin C were found in 47% (n= 28, 18% (n= 10, 39% (n= 22, and 39% (n=21 of cases respectively. The most common type of superantigens was TSST1; and Enterotoxin A was the less common type. Except for Enterotoxin A, no relation between positive S.aureus culture and positive tests for superantigens in SF was found. Conclusion: S.aureus has a prominent role in septic arthritis. S.aureus toxins might have a prominent role in arthritis with

  19. Radiometric detection of bacterial metabolism

    International Nuclear Information System (INIS)

    Camargo, E.E.; Wagner Junior, H.N.

    1979-01-01

    The measurement of 14 CO 2 produced by the bacterial oxidation of labelled compounds is discussed as a means of evaluating the bacterial metabolism. The following items are discussed:automated radiometric detection, types of graphs, clinical applications of the radiometric system and influential factors. Complementary studies on bacterial assimilation of substances are presented. (M.A.) [pt

  20. Bacterial genotoxin functions as immune-modulator and promotes host survival

    Directory of Open Access Journals (Sweden)

    Riccardo Guidi

    2016-07-01

    Full Text Available Bacterial genotoxins are effectors that cause DNA damage in target cells. Many aspects of the biology of these toxins have been characterised in vitro, such as structure, cellular internalisation pathways and effects on the target cells. However, little is known about their function in vivo. Salmonella enterica serovar Typhi (S. Typhi is a Gram-negative, intracellular bacterium that causes typhoid fever, a debilitating disease infecting more than 20 million people every year. S. Typhi produce a genotoxin named typhoid toxin (TT, but its role in the contest of host infection is poorly characterized. The major obstacle in addressing this issue is that S. Typhi is exclusively a human pathogen. To overcome this limitation, we have used as model bacterium S. Typhimurium, and engineered it to produce endogenous levels of an active and inactive typhoid toxin, hereby named as TT (or genotoxic and cdtB (or control, respectively. To our surprise, infection with the genotoxin strain strongly suppressed intestinal inflammation, leading to a better survival of the host during the acute phase of infection, suggesting typhoid toxin may exert a protective role. The presence of a functional genotoxin was also associated with an increased frequency of asymptomatic carriers.

  1. Conformation of protein secreted across bacterial outer membranes: a study of enterotoxin translocation from Vibrio cholerae

    International Nuclear Information System (INIS)

    Hirst, T.R.; Holmgren, J.

    1987-01-01

    The secretion of enterotoxin by Vibrio cholerae is punctuated by the transient entry of the toxin subunits into the periplasm. In this paper, the authors show that the subunits oligomerize into an assembled holotoxin within the periplasm prior to their secretion across the outer membrane. The rate of toxin assembly was studied by pulse-labeling cells with [ 35 S]-methionine and then monitoring the turnover of radiolabeled subunits as they assembled within the periplasm. The subunits entered the periplasm as monomers and assembled into oligomers with a half-time of ≅ 1 min. Since assembly was a rapid event compared to the rate of toxin efflux from the periplasm, which had a half-time of ≅ 13 min, they conclude that all of the subunits that pass through the periplasm assemble before they traverse the outer membrane. The average concentration of subunit monomers and assembled holotoxin within the periplasm was calculated to be ≅ 20 and ≅ 260 μg/ml, respectively. This indicates that the periplasm is a suitably concentrated milieu where spontaneous toxin assembly can occur. These findings suggest that protein movement across bacterial outer membranes, in apparent contrast to export across other biological membranes, involves translocation of polypeptides that have already folded into tertiary and even quaternary conformations

  2. Toxins not neutralized by brown snake antivenom

    International Nuclear Information System (INIS)

    Judge, Roopwant K.; Henry, Peter J.; Mirtschin, Peter; Jelinek, George; Wilce, Jacqueline A.

    2006-01-01

    The Australian snakes of the genus Pseudonaja (dugite, gwardar and common brown) account for the majority of snake bite related deaths in Australia. Without antivenom treatment, the risk of mortality is significant. There is an accumulating body of evidence to suggest that the efficacy of the antivenom is limited. The current study investigates the protein constituents recognized by the antivenom using 2-DE, immuno-blot techniques and rat tracheal organ bath assays. The 2-DE profiles for all three snake venoms were similar, with major species visualized at 78-132 kDa, 32-45 kDa and 6-15 kDa. Proteins characterized by LC-MS/MS revealed a coagulant toxin (∼42 kDa) and coagulant peptide (∼6 kDa), as well as two PLA 2 (∼14 kDa). Peptides isolated from ∼78 kDa and 15-32 kDa protein components showed no similarity to known protein sequences. Protein recognition by the antivenom occurred predominantly for the higher molecular weight components with little recognition of 6-32 kDa MW species. The ability of antivenom to neutralize venom activity was also investigated using rat tracheal organ bath assays. The venoms of Pseudonaja affinis affinis and Pseudonaja nuchalis incited a sustained, significant contraction of the trachea. These contractions were attributed to PLA 2 enzymatic activity as pre-treatment with the PLA 2 inhibitor 4-BPB attenuated the venom-induced contractions. The venom of Pseudonaja textilis incited tracheal contractility through a non-PLA 2 enzymatic activity. Neither activity was attenuated by the antivenom treatment. These results represent the first proteomic investigation of the venoms from the snakes of the genus Pseudonaja, revealing a possible limitation of the brown snake antivenom in binding to the low MW protein components

  3. Bacterial Cell Wall Components

    Science.gov (United States)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  4. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of EnteropathogenicEscherichia coliLeads to NF-κB p65 Cleavage.

    Science.gov (United States)

    Stolle, Anne-Sophie; Norkowski, Stefanie; Körner, Britta; Schmitz, Jürgen; Lüken, Lena; Frankenberg, Maj; Rüter, Christian; Schmidt, M Alexander

    2017-01-01

    Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which-in contrast to the direct cytoplasmic injection of T3SS effector proteins-are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida ( Phdp ). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders.

  5. T3SS-Independent Uptake of the Short-Trip Toxin-Related Recombinant NleC Effector of Enteropathogenic Escherichia coli Leads to NF-κB p65 Cleavage

    Science.gov (United States)

    Stolle, Anne-Sophie; Norkowski, Stefanie; Körner, Britta; Schmitz, Jürgen; Lüken, Lena; Frankenberg, Maj; Rüter, Christian; Schmidt, M. Alexander

    2017-01-01

    Effector proteins secreted by the type 3 secretion system (T3SS) of pathogenic bacteria have been shown to precisely modulate important signaling cascades of the host for the benefit of the pathogens. Among others, the non-LEE encoded T3SS effector protein NleC of enteropathogenic Escherichia coli (EPEC) is a Zn-dependent metalloprotease and suppresses innate immune responses by directly targeting the NF-κB signaling pathway. Many pathogenic bacteria release potent bacterial toxins of the A-B type, which—in contrast to the direct cytoplasmic injection of T3SS effector proteins—are released first into the environment. In this study, we found that NleC displays characteristics of bacterial A-B toxins, when applied to eukaryotic cells as a recombinant protein. Although lacking a B subunit, that typically mediates the uptake of toxins, recombinant NleC (rNleC) induces endocytosis via lipid rafts and follows the endosomal-lysosomal pathway. The conformation of rNleC is altered by low pH to facilitate its escape from acidified endosomes. This is reminiscent of the homologous A-B toxin AIP56 of the fish pathogen Photobacterium damselae piscicida (Phdp). The recombinant protease NleC is functional inside eukaryotic cells and cleaves p65 of the NF-κB pathway. Here, we describe the endocytic uptake mechanism of rNleC, characterize its intracellular trafficking and demonstrate that its specific activity of cleaving p65 requires activation of host cells e.g., by IL1β. Further, we propose an evolutionary link between some T3SS effector proteins and bacterial toxins from apparently unrelated bacteria. In summary, these properties might suggest rNleC as an interesting candidate for future applications as a potential therapeutic against immune disorders. PMID:28451521

  6. Bacterial meningitis in Nottingham.

    OpenAIRE

    Ispahani, P.

    1983-01-01

    Records of 171 cases of bacterial meningitis admitted to Nottingham hospitals from January 1974 to June 1980 were reviewed. The distribution of organisms producing meningitis and the factors influencing mortality in different age groups were assessed. Neisseria meningitidis, Haemophilus influenzae and Streptococcus pneumoniae accounted for 69% of all proven cases. The overall mortality was 26% being lowest in patients with meningococcal meningitis (0%) and highest in those with pneumococcal m...

  7. Neglected bacterial zoonoses.

    Science.gov (United States)

    Chikeka, I; Dumler, J S

    2015-05-01

    Bacterial zoonoses comprise a group of diseases in humans or animals acquired by direct contact with or by oral consumption of contaminated animal materials, or via arthropod vectors. Among neglected infections, bacterial zoonoses are among the most neglected given emerging data on incidence and prevalence as causes of acute febrile illness, even in areas where recognized neglected tropical diseases occur frequently. Although many other bacterial infections could also be considered in this neglected category, five distinct infections stand out because they are globally distributed, are acute febrile diseases, have high rates of morbidity and case fatality, and are reported as commonly as malaria, typhoid or dengue virus infections in carefully designed studies in which broad-spectrum diagnoses are actively sought. This review will focus attention on leptospirosis, relapsing fever borreliosis and rickettsioses, including scrub typhus, murine typhus and spotted fever group rickettsiosis. Of greatest interest is the lack of distinguishing clinical features among these infections when in humans, which confounds diagnosis where laboratory confirmation is lacking, and in regions where clinical diagnosis is often attributed to one of several perceived more common threats. As diseases such as malaria come under improved control, the real impact of these common and under-recognized infections will become evident, as will the requirement for the strategies and allocation of resources for their control. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  8. Bacterial growth kinetics

    International Nuclear Information System (INIS)

    Boonkitticharoen, V.; Ehrhardt, J.C.; Kirchner, P.T.

    1989-01-01

    Quantitative measurement of bacterial growth may be made using a radioassay technique. This method measures, by scintillation counting, the 14 CO 2 derived from the bacterial metabolism of a 14 C-labeled substrate. Mathematical growth models may serve as reliable tools for estimation of the generation rate constant (or slope of the growth curve) and provide a basis for evaluating assay performance. Two models, i.e., exponential and logistic, are proposed. Both models yielded an accurate fit to the data from radioactive measurement of bacterial growth. The exponential model yielded high precision values of the generation rate constant, with an average relative standard deviation of 1.2%. Under most conditions the assay demonstrated no changes in the slopes of growth curves when the number of bacteria per inoculation was changed. However, the radiometric assay by scintillation method had a growth-inhibiting effect on a few strains of bacteria. The source of this problem was thought to be hypersensitivity to trace amounts of toluene remaining on the detector

  9. Biooxidation of Ciguatoxins Leads to Species-Specific Toxin Profiles.

    Science.gov (United States)

    Ikehara, Tsuyoshi; Kuniyoshi, Kyoko; Oshiro, Naomasa; Yasumoto, Takeshi

    2017-06-29

    Ciguatoxins (CTXs) contaminate fish worldwide and cause the foodborne illness ciguatera. In the Pacific, these toxins are produced by the dinoflagellate Gambierdiscus toxicus , which accumulates in fish through the food chain and undergoes oxidative modification, giving rise to numerous analogs. In this study, we examined the oxidation of CTXs in vitro with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis using reference toxins, and found that CTX4A, CTX4B, and CTX3C, which are produced by the alga, are oxidized to the analogs found in fish, namely CTX1B, 52- epi -54-deoxyCTX1B, 54-deoxyCTX1B, 2-hydroxyCTX3C, and 2,3-dihydroxyCTX3C. This oxidation was catalyzed by human CYP3A4, fish liver S9 fractions, and microsomal fractions prepared from representative ciguateric fishes ( Lutjanus bohar , L. monostigumus , and Oplegnathus punctatus ). In addition, fish liver S9 fractions prepared from non-ciguateric fishes ( L. gibbus and L. fulviflamma ) in Okinawa also converted CTX4A and CTX4B to CTX1B, 54-deoxyCTX1B, and 52- epi -54-deoxyCTX1B in vitro. This is the first study to demonstrate the enzymatic oxidation of these toxins, and provides insight into the mechanism underlying the development of species-specific toxin profiles and the fate of these toxins in humans and fish.

  10. Treatment of palatal myoclonus with botulinum toxin injection.

    Science.gov (United States)

    Anis, Mursalin M; Pollak, Natasha

    2013-01-01

    Palatal myoclonus is a rare cause of pulsatile tinnitus in patients presenting to the otolaryngology office. Rhythmic involuntary contractions of the palatal muscles produce the pulsatile tinnitus in these patients. Treatment of this benign but distressing condition with anxiolytics, anticonvulsants, and surgery has been largely unsuccessful. A few investigators have obtained promising results with botulinum toxin injection into the palatal muscles. We present a patient with palatal myoclonus who failed conservative treatment with anxiolytics. Unilateral injection of botulinum toxin into her tensor veli palatini muscle under electromyographic guidance resolved pulsatile tinnitus in her ipsilateral ear and unmasked pulsatile tinnitus in the contralateral ear. A novel method of following transient postinjection symptoms using a diary is presented in this study. Botulinum toxin dose must be titrated to achieve optimal results in each individual patient, analogous to titrations done for spasmodic dysphonia. Knowledge of the temporal onset of postinjection side effects and symptomatic relief may aid physicians in dose titration and surveillance. We present suggestions on titrating the botulinum toxin dose to optimal levels. A review of the literature on the use of botulinum toxin for palatal myoclonus and some common complications are discussed.

  11. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Science.gov (United States)

    Martin-Verstraete, Isabelle; Peltier, Johann; Dupuy, Bruno

    2016-01-01

    The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection. PMID:27187475

  12. Isolation of isoelectrically pure cholera toxin for crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, B.D.; Westbrook, E.M.

    1989-01-01

    We have determined that the failure of cholera toxin to crystallize well results from its isoelectric heterogeneity, which is probably due to a post-translational process such as deamidation of its B subunit. Every sample of cholera toxin we have examined from commercial or academic suppliers has been heterogeneous; heterogeneous cholera toxin does not crystallize satisfactorily. We have overcome this problem by using ion-exchange fast protein liquid chromatography (FPLC) to obtain an isoelectrically homogeneous species of cholera toxin. Homogeneous cholera toxin crystallizes readily, forming single, nonmosaic crystals suitable for x-ray diffraction studies. For this process, protein was applied to a MonoQ ion-exchange column, then eluted with an isocratic low salt buffer followed by a linear salt gradient (0-100 mM NaCl). Column fractions were analyzed on isoelectric focusing gels, and those fractions containing the desired homogeneous species were pooled and concentrated. Crystals formed within 24 to 48 hours in a MOPS/PEG buffer, which made use of slow isoelectric precipitation to induce crystallization. 23 refs., 6 figs.

  13. Modification of opiate agonist binding by pertussis toxin

    Energy Technology Data Exchange (ETDEWEB)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-03-05

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in /sup 3/(H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding.

  14. Recent Advances in Research on Widow Spider Venoms and Toxins

    Directory of Open Access Journals (Sweden)

    Shuai Yan

    2015-11-01

    Full Text Available Widow spiders have received much attention due to the frequently reported human and animal injures caused by them. Elucidation of the molecular composition and action mechanism of the venoms and toxins has vast implications in the treatment of latrodectism and in the neurobiology and pharmaceutical research. In recent years, the studies of the widow spider venoms and the venom toxins, particularly the α-latrotoxin, have achieved many new advances; however, the mechanism of action of the venom toxins has not been completely clear. The widow spider is different from many other venomous animals in that it has toxic components not only in the venom glands but also in other parts of the adult spider body, newborn spiderlings, and even the eggs. More recently, the molecular basis for the toxicity outside the venom glands has been systematically investigated, with four proteinaceous toxic components being purified and preliminarily characterized, which has expanded our understanding of the widow spider toxins. This review presents a glance at the recent advances in the study on the venoms and toxins from the Latrodectus species.

  15. Toxin-Induced Experimental Models of Learning and Memory Impairment.

    Science.gov (United States)

    More, Sandeep Vasant; Kumar, Hemant; Cho, Duk-Yeon; Yun, Yo-Sep; Choi, Dong-Kug

    2016-09-01

    Animal models for learning and memory have significantly contributed to novel strategies for drug development and hence are an imperative part in the assessment of therapeutics. Learning and memory involve different stages including acquisition, consolidation, and retrieval and each stage can be characterized using specific toxin. Recent studies have postulated the molecular basis of these processes and have also demonstrated many signaling molecules that are involved in several stages of memory. Most insights into learning and memory impairment and to develop a novel compound stems from the investigations performed in experimental models, especially those produced by neurotoxins models. Several toxins have been utilized based on their mechanism of action for learning and memory impairment such as scopolamine, streptozotocin, quinolinic acid, and domoic acid. Further, some toxins like 6-hydroxy dopamine (6-OHDA), 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and amyloid-β are known to cause specific learning and memory impairment which imitate the disease pathology of Parkinson's disease dementia and Alzheimer's disease dementia. Apart from these toxins, several other toxins come under a miscellaneous category like an environmental pollutant, snake venoms, botulinum, and lipopolysaccharide. This review will focus on the various classes of neurotoxin models for learning and memory impairment with their specific mechanism of action that could assist the process of drug discovery and development for dementia and cognitive disorders.

  16. The Regulatory Networks That Control Clostridium difficile Toxin Synthesis

    Directory of Open Access Journals (Sweden)

    Isabelle Martin-Verstraete

    2016-05-01

    Full Text Available The pathogenic clostridia cause many human and animal diseases, which typically arise as a consequence of the production of potent exotoxins. Among the enterotoxic clostridia, Clostridium difficile is the main causative agent of nosocomial intestinal infections in adults with a compromised gut microbiota caused by antibiotic treatment. The symptoms of C. difficile infection are essentially caused by the production of two exotoxins: TcdA and TcdB. Moreover, for severe forms of disease, the spectrum of diseases caused by C. difficile has also been correlated to the levels of toxins that are produced during host infection. This observation strengthened the idea that the regulation of toxin synthesis is an important part of C. difficile pathogenesis. This review summarizes our current knowledge about the regulators and sigma factors that have been reported to control toxin gene expression in response to several environmental signals and stresses, including the availability of certain carbon sources and amino acids, or to signaling molecules, such as the autoinducing peptides of quorum sensing systems. The overlapping regulation of key metabolic pathways and toxin synthesis strongly suggests that toxin production is a complex response that is triggered by bacteria in response to particular states of nutrient availability during infection.

  17. Modification of opiate agonist binding by pertussis toxin

    International Nuclear Information System (INIS)

    Abood, M.E.; Lee, N.M.; Loh, H.H.

    1986-01-01

    Opiate agonist binding is decreased by GTP, suggesting the possible involvement of GTP binding proteins in regulation of opiate receptor binding. This possibility was addressed by asking whether pertussis toxin treatment, which results in ADP-ribosylation and modification of G proteins, would alter opiate agonist binding. The striatum was chosen for the initial brain area to be studied, since regulation of opiate action in this area had been shown to be modified by pertussis toxin. Treatment of striatal membranes with pertussis toxin results in up to a 55% decrease in 3 (H)-DADLE binding as compared with membranes treated identically without toxin. This corresponds to a near complete ADP-ribosylation of both G proteins in the striatal membrane. The decrease in agonist binding appears to be due to an altered affinity of the receptor for agonist as opposed to a decrease in the number of sites. This effect of pertussis toxin on opiate agonist binding demonstrates the actual involvement of G proteins in regulation of opiate receptor binding

  18. Identification of euglenophycin--a toxin found in certain euglenoids.

    Science.gov (United States)

    Zimba, Paul V; Moeller, Peter D; Beauchesne, Kevin; Lane, Hannah E; Triemer, Richard E

    2010-01-01

    Currently cyanoprokaryotic algae, diatoms, haptophytes, dinoflagellates, euglenoids, and rhaphidophytes are known to produce algal toxins. A previous study by the authors reported euglenoid algae producing toxin(s) in aquaculture ponds, with confirmation based on positive fish bioassays following exposure to the isolated clonal algal cultures. Toxicity was observed in euglenoid culture isolates obtained from the pond as well as a clonal, culture collection taxon. Here we provide conclusive evidence for euglenoid toxin production, including HPLC/MS, MS/MS, and NMR analyses of a clonal (non-axenic) isolate of Euglena sanguinea grown in batch culture. Following wet chemical serial fractionation, toxic activity was identified in both the methanol and hexane extracts. These extracts were then purified using HPLC. Bioassay-guided HPLC fractionation of these two extracts demonstrated that a single class of toxic compounds, identical in mass and similar in molecular structure, was produced by this organism. The toxic compounds exhibited a maximal UV absorbance at 238nm and gave diagnostic mass peaks at 306 (MH(+)) and 288 (MH(+)-H(2)O). Unambiguous molecular structural determination was carried out by high field NMR analysis operating in 1- and 2-dimensions. Though a predominant isomer represented the bulk of the toxin, several stereo- and structural isomers were evidenced by NMR, and HPLC/MS. This compound is an alkaloid similar in structure to fire ant venom. The compound exhibits ichthyotoxic, herbicidal and anticancer activity at low ppm to ppb dosages.

  19. Reactions with Antisera and Pathological Effects of Staphylococcus aureus Gamma-Toxin in the Cornea.

    Science.gov (United States)

    Bierdeman, Michael A; Torres, Angela M; Caballero, Armando R; Tang, Aihua; O'Callaghan, Richard J

    2017-08-01

    This study analyzed the toxicity of purified gamma-toxin from Staphylococcus aureus and the protectiveness of antisera to gamma-toxin in the rabbit cornea. Gamma-toxin was purified from cultures of alpha-toxin deficient S. aureus strain Newman Δhla. Antisera to native gamma-toxin (Hlg) were produced in rabbits. These antisera and a commercial polyclonal antibody to recombinant HlgB (rHlgB) were analyzed for specificity and toxin neutralization. Heat-inactivated gamma-toxin, active gamma-toxin either alone or with antisera or with commercial antibody to rHlgB, was injected into the rabbit cornea to observe the pathological effects using slit lamp examination scoring (SLE) and histological analyses. Eyes with intrastromal injection of gamma-toxin developed SLE scores that were significantly higher than eyes injected with heat-inactivated gamma-toxin (p ≤ 0.003). Slit lamp and histological examination of eyes revealed that gamma-toxin injected into the cornea mediated conjunctival injection and chemosis, iritis, fibrin accumulation in the anterior chamber, and polymorphonuclear neutrophil infiltration of the cornea and iris. Also, eyes injected with gamma-toxin plus antisera to native whole gamma-toxin or HlgB, but not with commercial antibody to rHlgB, yielded significantly lower SLE scores than eyes injected with gamma-toxin alone (p ≤ 0.003). This study illustrates that S. aureus gamma-toxin is capable of causing significant corneal pathology. Furthermore, the use of polyclonal antisera specific for native gamma-toxin was found to inhibit the damaging effects of the toxin in the rabbit cornea.

  20. 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile.

    Science.gov (United States)

    Roth, Braden M; Godoy-Ruiz, Raquel; Varney, Kristen M; Rustandi, Richard R; Weber, David J

    2016-04-01

    Clostridium difficile is a bacterial pathogen and is the most commonly reported source of nosocomial infection in industrialized nations. Symptoms of C. difficile infection (CDI) include antibiotic-associated diarrhea, pseudomembranous colitis, sepsis and death. Over the last decade, rates and severity of hospital infections in North America and Europe have increased dramatically and correlate with the emergence of a hypervirulent strain of C. difficile characterized by the presence of a binary toxin, CDT (C. difficile toxin). The binary toxin consists of an enzymatic component (CDTa) and a cellular binding component (CDTb) that together form the active binary toxin complex. CDTa harbors a pair of structurally similar but functionally distinct domains, an N-terminal domain (residues 1-215; (1-215)CDTa) that interacts with CDTb and a C-terminal domain (residues 216-420; (216-420)CDTa) that harbors the intact ADP-ribosyltransferase (ART) active site. Reported here are the (1)H, (13)C, and (15)N backbone resonance assignments of the 23 kDa, 205 amino acid C-terminal enzymatic domain of CDTa, termed (216-420)CDTa. These NMR resonance assignments for (216-420)CDTa represent the first for a family of ART binary toxins and provide the framework for detailed characterization of the solution-state protein structure determination, dynamic studies of this domain, as well as NMR-based drug discovery efforts.

  1. H-NS Mutation-Mediated CRISPR-Cas Activation Inhibits Phage Release and Toxin Production ofEscherichia coliStx2 Phage Lysogen.

    Science.gov (United States)

    Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe

    2017-01-01

    Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.

  2. Insect Resistance to Bacillus thuringiensis Toxin Cry2Ab Is Conferred by Mutations in an ABC Transporter Subfamily A Protein.

    Directory of Open Access Journals (Sweden)

    Wee Tek Tay

    2015-11-01

    Full Text Available The use of conventional chemical insecticides and bacterial toxins to control lepidopteran pests of global agriculture has imposed significant selection pressure leading to the rapid evolution of insecticide resistance. Transgenic crops (e.g., cotton expressing the Bt Cry toxins are now used world wide to control these pests, including the highly polyphagous and invasive cotton bollworm Helicoverpa armigera. Since 2004, the Cry2Ab toxin has become widely used for controlling H. armigera, often used in combination with Cry1Ac to delay resistance evolution. Isolation of H. armigera and H. punctigera individuals heterozygous for Cry2Ab resistance in 2002 and 2004, respectively, allowed aspects of Cry2Ab resistance (level, fitness costs, genetic dominance, complementation tests to be characterised in both species. However, the gene identity and genetic changes conferring this resistance were unknown, as was the detailed Cry2Ab mode of action. No cross-resistance to Cry1Ac was observed in mutant lines. Biphasic linkage analysis of a Cry2Ab-resistant H. armigera family followed by exon-primed intron-crossing (EPIC marker mapping and candidate gene sequencing identified three independent resistance-associated INDEL mutations in an ATP-Binding Cassette (ABC transporter gene we named HaABCA2. A deletion mutation was also identified in the H. punctigera homolog from the resistant line. All mutations truncate the ABCA2 protein. Isolation of further Cry2Ab resistance alleles in the same gene from field H. armigera populations indicates unequal resistance allele frequencies and the potential for Bt resistance evolution. Identification of the gene involved in resistance as an ABC transporter of the A subfamily adds to the body of evidence on the crucial role this gene family plays in the mode of action of the Bt Cry toxins. The structural differences between the ABCA2, and that of the C subfamily required for Cry1Ac toxicity, indicate differences in the

  3. Cholera toxin can catalyze ADP-ribosylation of cytoskeletal proteins

    Energy Technology Data Exchange (ETDEWEB)

    Kaslow, H.R.; Groppi, V.E.; Abood, M.E.; Bourne, H.R.

    1981-11-01

    Cholera toxin catalyzes transfer of radiolabel from (/sup 32/P)NAD/sup +/ to several peptides in particulate preparations of human foreskin fibroblasts. Resolution of these peptides by two-dimensional gel electrophoresis allowed identification of two peptides of M/sub r/ = 42,000 and 52,000 as peptide subunits of a regulatory component of adenylate cyclase. The radiolabeling of another group of peptides (M/sub r/ = 50,000 to 65,000) suggested that cholera toxin could catalyze ADP-ribosylation of cytoskeletal proteins. This suggestion was confirmed by showing that incubation with cholera toxin and (/sup 32/P)NAD/sup +/ caused radiolabeling of purified microtubule and intermediate filament proteins.

  4. Botulinum Toxin for the Treatment of Tremor and Tics.

    Science.gov (United States)

    Lotia, Mitesh; Jankovic, Joseph

    2016-02-01

    The therapeutic applications of botulinum toxin (BoNT) have grown manifold since its initial approval in 1989 by the U.S. Food and Drug Administration for the treatment of strabismus, blepharospasm, and other facial spasms. Although it is the most potent biologic toxin known to man, long-term studies have established its safety in the treatment of a variety of neurologic and nonneurologic disorders. Despite a paucity of randomized controlled trials, BoNT has been found to be beneficial in treating a variety of tremors and tics when used by clinicians skilled in the administration of the drug for these hyperkinetic movement disorders. Botulinum toxin injections can provide meaningful improvement in patients with localized tremors and tics; in some cases, they may be an alternative to other treatments with more undesirable adverse effects. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. Application of Botulinum toxin Type A: An arsenal in dentistry

    Directory of Open Access Journals (Sweden)

    Lakshmana B Rao

    2011-01-01

    Full Text Available An extremely effective way of preventing damage to and enhancing treatment of dental hard tissues and restorations would be to ′′de-programme′′ the muscles responsible for excessive destructive forces and other gnathological-related diseases. The new paradigm is the intramuscular injection of Botulinum toxin type A (BOTOX into the affected muscles. It is a natural protein produced by anaerobic bacterium, Clostridium botulinum. The toxin inhibits the release of acetylcholine (ACH, a neurotransmitter responsible for the activation of muscle contraction and glandular secretion, and its administration results in reduction of tone in the injected muscle. There are seven distinct serotypes of Botulinum toxin, viz., A, B, C, D, E, F, and G, which differ in their potency, duration of action, and cellular target sites. This paper describes the different applications of BOTOX in dentistry.

  6. Gut microbes of mammalian herbivores facilitate intake of plant toxins.

    Science.gov (United States)

    Kohl, Kevin D; Weiss, Robert B; Cox, James; Dale, Colin; Dearing, M Denise

    2014-10-01

    The foraging ecology of mammalian herbivores is strongly shaped by plant secondary compounds (PSCs) that defend plants against herbivory. Conventional wisdom holds that gut microbes facilitate the ingestion of toxic plants; however, this notion lacks empirical evidence. We investigated the gut microbiota of desert woodrats (Neotoma lepida), some populations of which specialise on highly toxic creosote bush (Larrea tridentata). Here, we demonstrate that gut microbes are crucial in allowing herbivores to consume toxic plants. Creosote toxins altered the population structure of the gut microbiome to facilitate an increase in abundance of genes that metabolise toxic compounds. In addition, woodrats were unable to consume creosote toxins after the microbiota was disrupted with antibiotics. Last, ingestion of toxins by naïve hosts was increased through microbial transplants from experienced donors. These results demonstrate that microbes can enhance the ability of hosts to consume PSCs and therefore expand the dietary niche breadth of mammalian herbivores. © 2014 John Wiley & Sons Ltd/CNRS.

  7. Use of botulinum toxin for voiding dysfunction

    Science.gov (United States)

    Dasgupta, Prokar

    2017-01-01

    The use of botulinum toxin A (BoNT-A) has expanded across a range of lower urinary tract conditions. This review provides an overview of the current indications for BoNT-A in the lower urinary tract and critically evaluates the published evidence within each area. The classic application of BoNT-A has been in the management of refractory neurogenic detrusor overactivity (NDO) and overactive bladder (OAB). There is a large volume of high-quality evidence, including numerous randomized placebo-controlled trials, which demonstrate the efficacy of BoNT-A over a long follow-up period. The culmination of this robust evidence-base has led to onabotulinumtoxin A (onaBoNT-A) receiving regulatory approval as a second-line treatment for NDO at a dose of 200 U and OAB at dose of 100 U. Other applications for BoNT-A are used on an off-license basis and include interstitial cystitis/bladder pain syndrome (IC/BPS), benign prostatic hyperplasia (BPH), and detrusor sphincter dyssynergia (DSD). These applications are associated with a less mature evidence-base although the literature is rapidly evolving. At present, the results for painful bladder syndrome (PBS) are promising and BoNT-A injections are recommended as a fourth line option in recent international guidelines, although larger randomized study with longer follow-up are required to confirm the initial findings. As a treatment for DSD, BoNT-A injections have shown potential but only in a small number of trials of limited quality. No definite recommendation can be made based on the current evidence. Finally, the results for the treatment of BPH have been variable and recent high quality randomized controlled trials (RCTs) have suggested no benefit over placebo so at present it cannot be recommended for routine clinical practice. Future advances of BoNT-A include liposome encapsulated formulations which are being developed as an alternative to intravesical injections. PMID:28540231

  8. Strain-Level Discrimination of Shiga Toxin-Producing Escherichia coli in Spinach Using Metagenomic Sequencing.

    Directory of Open Access Journals (Sweden)

    Susan R Leonard

    Full Text Available Consumption of fresh bagged spinach contaminated with Shiga toxin-producing Escherichia coli (STEC has led to severe illness and death; however current culture-based methods to detect foodborne STEC are time consuming. Since not all STEC strains are considered pathogenic to humans, it is crucial to incorporate virulence characterization of STEC in the detection method. In this study, we assess the comprehensiveness of utilizing a shotgun metagenomics approach for detection and strain-level identification by spiking spinach with a variety of genomically disparate STEC strains at a low contamination level of 0.1 CFU/g. Molecular serotyping, virulence gene characterization, microbial community analysis, and E. coli core gene single nucleotide polymorphism (SNP analysis were performed on metagenomic sequence data from enriched samples. It was determined from bacterial community analysis that E. coli, which was classified at the phylogroup level, was a major component of the population in most samples. However, in over half the samples, molecular serotyping revealed the presence of indigenous E. coli which also contributed to the percent abundance of E. coli. Despite the presence of additional E. coli strains, the serotype and virulence genes of the spiked STEC, including correct Shiga toxin subtype, were detected in 94% of the samples with a total number of reads per sample averaging 2.4 million. Variation in STEC abundance and/or detection was observed in replicate spiked samples, indicating an effect from the indigenous microbiota during enrichment. SNP analysis of the metagenomic data correctly placed the spiked STEC in a phylogeny of related strains in cases where the indigenous E. coli did not predominate in the enriched sample. Also, for these samples, our analysis demonstrates that strain-level phylogenetic resolution is possible using shotgun metagenomic data for determining the genomic relatedness of a contaminating STEC strain to other

  9. Hypoxia and the hypoxic response pathway protect against pore-forming toxins in C. elegans.

    Directory of Open Access Journals (Sweden)

    Audrey Bellier

    2009-12-01

    Full Text Available Pore-forming toxins (PFTs are by far the most abundant bacterial protein toxins and are important for the virulence of many important pathogens. As such, cellular responses to PFTs critically modulate host-pathogen interactions. Although many cellular responses to PFTs have been recorded, little is understood about their relevance to pathological or defensive outcomes. To shed light on this important question, we have turned to the only genetic system for studying PFT-host interactions-Caenorhabditis elegans intoxication by Crystal (Cry protein PFTs. We mutagenized and screened for C. elegans mutants resistant to a Cry PFT and recovered one mutant. Complementation, sequencing, transgenic rescue, and RNA interference data demonstrate that this mutant eliminates a gene normally involved in repression of the hypoxia (low oxygen response pathway. We find that up-regulation of the C. elegans hypoxia pathway via the inactivation of three different genes that normally repress the pathway results in animals resistant to Cry PFTs. Conversely, mutation in the central activator of the hypoxia response, HIF-1, suppresses this resistance and can result in animals defective in PFT defenses. These results extend to a PFT that attacks mammals since up-regulation of the hypoxia pathway confers resistance to Vibrio cholerae cytolysin (VCC, whereas down-regulation confers hypersusceptibility. The hypoxia PFT defense pathway acts cell autonomously to protect the cells directly under attack and is different from other hypoxia pathway stress responses. Two of the downstream effectors of this pathway include the nuclear receptor nhr-57 and the unfolded protein response. In addition, the hypoxia pathway itself is induced by PFT, and low oxygen is protective against PFT intoxication. These results demonstrate that hypoxia and induction of the hypoxia response protect cells against PFTs, and that the cellular environment can be modulated via the hypoxia pathway to

  10. Assessing the Structure and Stability of Transmembrane Oligomeric Intermediates of an α-Helical Toxin.

    Science.gov (United States)

    Desikan, Rajat; Maiti, Prabal K; Ayappa, K Ganapathy

    2017-10-24

    Protein membrane interactions play an important role in our understanding of diverse phenomena ranging from membrane-assisted protein aggregation to oligomerization and folding. Pore-forming toxins (PFTs) are the primary vehicle for infection by several strains of bacteria. These proteins which are expressed in a water-soluble form (monomers) bind to the target membrane and conformationally transform (protomers) and self-assemble to form a multimer transmembrane pore complex through a process of oligomerization. On the basis of the structure of the transmembrane domains, PFTs are broadly classified into β or α toxins. In contrast to β-PFTs, the paucity of available crystal structures coupled with the amphipathic nature of the transmembrane domains has hindered our understanding of α-PFT pore formation. In this article, we use molecular dynamics (MD) simulations to examine the process of pore formation of the bacterial α-PFT, cytolysin A from Escherichia coli (ClyA) in lipid bilayer membranes. Using atomistic MD simulations ranging from 50 to 500 ns, we show that transmembrane oligomeric intermediates or "arcs" form stable proteolipidic complexes consisting of protein arcs with toroidal lipids lining the free edges. By creating initial conditions where the lipids are contained within the arcs, we study the dynamics of spontaneous lipid evacuation and toroidal edge formation. This process occurs on the time scale of tens of nanoseconds, suggesting that once protomers oligomerize, transmembrane arcs are rapidly stabilized to form functional water channels capable of leakage. Using umbrella sampling with a coarse-grained molecular model, we obtain the free energy of insertion of a single protomer into the membrane. A single inserted protomer has a stabilization free energy of -52.9 ± 1.2 kJ/mol and forms a stable transmembrane water channel capable of leakage. Our simulations reveal that arcs are stable and viable intermediates that can occur during the pore

  11. Brown Spider (Loxosceles genus Venom Toxins: Tools for Biological Purposes

    Directory of Open Access Journals (Sweden)

    Andrea Senff-Ribeiro

    2011-03-01

    Full Text Available Venomous animals use their venoms as tools for defense or predation. These venoms are complex mixtures, mainly enriched of proteic toxins or peptides with several, and different, biological activities. In general, spider venom is rich in biologically active molecules that are useful in experimental protocols for pharmacology, biochemistry, cell biology and immunology, as well as putative tools for biotechnology and industries. Spider venoms have recently garnered much attention from several research groups worldwide. Brown spider (Loxosceles genus venom is enriched in low molecular mass proteins (5–40 kDa. Although their venom is produced in minute volumes (a few microliters, and contain only tens of micrograms of protein, the use of techniques based on molecular biology and proteomic analysis has afforded rational projects in the area and permitted the discovery and identification of a great number of novel toxins. The brown spider phospholipase-D family is undoubtedly the most investigated and characterized, although other important toxins, such as low molecular mass insecticidal peptides, metalloproteases and hyaluronidases have also been identified and featured in literature. The molecular pathways of the action of these toxins have been reported and brought new insights in the field of biotechnology. Herein, we shall see how recent reports describing discoveries in the area of brown spider venom have expanded biotechnological uses of molecules identified in these venoms, with special emphasis on the construction of a cDNA library for venom glands, transcriptome analysis, proteomic projects, recombinant expression of different proteic toxins, and finally structural descriptions based on crystallography of toxins.

  12. Effects and mechanisms of Bacillus thuringiensis crystal toxins for mosquito larvae.

    Science.gov (United States)

    Zhang, Qi; Hua, Gang; Adang, Michael J

    2017-10-01

    Bacillus thuringiensis is a Gram-positive aerobic bacterium that produces insecticidal crystalline inclusions during sporulation phases of the mother cell. The virulence factor, known as parasporal crystals, is composed of Cry and Cyt toxins. Most Cry toxins display a common 3-domain topology. Cry toxins exert intoxication through toxin activation, receptor binding and pore formation in a suitable larval gut environment. The mosquitocidal toxins of Bt subsp. israelensis (Bti) were found to be highly active against mosquito larvae and are widely used for vector control. Bt subsp. jegathesan is another strain which possesses high potency against broad range of mosquito larvae. The present review summarizes characterized receptors for Cry toxins in mosquito larvae, and will also discuss the diversity and effects of 3-D mosquitocidal Cry toxin and the ongoing research for Cry toxin mechanisms generated from investigations of lepidopteran and dipteran larvae. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  13. 75 FR 40719 - Viruses, Serums, Toxins, and Analogous Products and Patent Term Restoration; Nonsubstantive...

    Science.gov (United States)

    2010-07-14

    ... Inspection Service 9 CFR Parts 102, 103, 104, 108, 112, 113, 114, 116, and 124 Viruses, Serums, Toxins, and...-20773.) The direct final rule notified the public of our intention to amend the Virus-Serum-Toxin Act...

  14. 42 CFR 73.10 - Restricting access to select agents and toxins; security risk assessments.

    Science.gov (United States)

    2010-10-01

    ... have access at any point in time if the individual has possession of a select agent or toxin (e.g., ability to carry, use, or manipulate) or the ability to gain possession of a select agent or toxin. (c...

  15. Radiation resistance of paralytic shellfish poison (PSP) toxins

    International Nuclear Information System (INIS)

    San Juan, Edith M.

    2000-04-01

    Radiation resistance of paralytic shellfish poison (PSP) toxins, obtained from Pyrodinium bahamense var. compressum in shellstocks of green mussels, was determined by subjecting the semi-purified toxin extract as well as the shellstocks of green mussels to high doses of ionizing radiation of 5, 10, 15 and 20 kGy. The concentration of the PSP toxins was determined by the Standard Mouse Bioassay (SMB) method. The radiation assistance of the toxins was determined by plotting the PSP toxin concentration versus applied dose in a semilog paper. The D 10 value or decimal reduction dose was obtained from the straight line which is the dose required to reduce the toxicity level by 90%. The effects of irradiation on the quality of green mussels in terms of its physico-chemical, microbiological and sensory attributes were also conducted. The effect of irradiation on the fatty acid components of green mussels was determined by gas chromatography. Radiation resistance of the PSP toxins was determined to be lower in samples with initially high toxicity level as compared with samples with initially low toxicity level. The D 10 values of samples with initially high PSP level were 28.5 kGy in shellstocks of green musssels and 17.5 kGy in the semi-purified toxin extract. When the PSP level was low initially, the D 10 values were as high as 57.5 and 43.5 kGy in shellstocks of green mussels for the two trials, and 43.0 kGy in semi-purified toxin extract. The microbial load of the irradiated mussels was remarkably reduced. No differnce in color and odor characteristics were observed in the mussel samples subjected to varying doses of ionizing radiation. There was darkening in the color of mussel meat and its juice. The concentration of the fatty acid components in the fresh green mussels were considerably higher as compared with those present in the irradiated mussels, though some volatile fatty acids were detected as a result of irradiation. (Author)

  16. Signaling Cascades of Pasteurella multocida Toxin in Immune Evasion

    Science.gov (United States)

    Kubatzky, Katharina F.; Kloos, Bianca; Hildebrand, Dagmar

    2013-01-01

    Pasteurella multocida toxin (PMT) is a protein toxin found in toxigenic strains of Pasteurella multocida. PMT is the causative agent for atrophic rhinitis in pigs, a disease characterized by loss of nasal turbinate bones due to an inhibition of osteoblast function and an increase in osteoclast activity and numbers. Apart from this, PMT acts as a strong mitogen, protects from apoptosis and has an impact on the differentiation and function of immune cells. Many signaling pathways have been elucidated, however, the effect of these signaling cascades as a means to subvert the host’s immune system are just beginning to unravel. PMID:24064721

  17. Palytoxin: a new marine toxin from a coelenterate.

    Science.gov (United States)

    Moore, R E; Scheuer, P J

    1971-04-30

    Palytoxin has been isolated from the zoanthids "limu-make-o-Hana" (Tentatively identified as Palythoa sp.) as a noncrystalline, chromatographically pure entity. Apart from polypeptide and protein toxins, it is the most highly toxic substance known, with a lethal dose (LD(59)) in mice of 0.15 microgram per kilogram by intravenous injection. Unlike the potent toxins batrachotoxin, saxitoxin, and tetrodotoxin which have molecular weights of 500 or less, palytoxin has an estimated molecular weight of 3300 and contains no repetitive amino acid or sugar units.

  18. Discovery Of Human Antibodies Against Spitting Cobra Toxins

    DEFF Research Database (Denmark)

    Bojsen-Møller, Laura; Lohse, Brian; Harrison, Robert

    Current snakebite envenoming treatment options consist of animal-derived antisera and are associated with severe adverse reactions due to the heterologous nature of the animal-derived antibodies present in these antisera, and the presence of therapeutically irrelevant antibodies. The African...... spitting cobras are among the most medically important snakes in sub-Saharan regions due to the severity of the clinical outcomes caused by their cytotoxic venom, which is derived from cytotoxins of the 3FTx toxin family and PLA2. Here we report the results of our progress in identifying human antibodies...... targeting relevant toxins from the venom of the black necked spitting cobra (Naja nigricolis)....

  19. Staphylococcus hyicus exfoliative toxins selectively digest porcine desmoglein 1

    DEFF Research Database (Denmark)

    Fudaba, Y.; Nishifuji, K.; Andresen, Lars Ole

    2005-01-01

    Virulent strains of Staphylococcus hyicus can cause exudative epidermitis in pigs. The major symptom of this disease is exfoliation of the skin in the upper stratum spinosum. Exfoliation of the skin is strongly associated with exfoliative toxin including ExhA, ExhB, ExhC, ExhD, SHETA, and SHETB. ......, injection of ExhA and ExhC at high concentration caused superficial blisters in neonatal mice. These findings strongly suggest that Exhs cause blister formation of porcine skin by digesting porcine desmoglein I in a similar fashion to exfoliative toxins from S. aureus....

  20. The Yersinia pseudotuberculosis and Yersinia pestis toxin complex is active against cultured mammalian cells.

    Science.gov (United States)

    Hares, Michelle C; Hinchliffe, Stewart J; Strong, Philippa C R; Eleftherianos, Ioannis; Dowling, Andrea J; ffrench-Constant, Richard H; Waterfield, Nick

    2008-11-01

    The toxin complex (Tc) genes were first identified in the insect pathogen Photorhabdus luminescens and encode approximately 1 MDa protein complexes which are toxic to insect pests. Subsequent genome sequencing projects have revealed the presence of tc orthologues in a range of bacterial pathogens known to be associated with insects. Interestingly, members of the mammalian-pathogenic yersiniae have also been shown to encode Tc orthologues. Studies in Yersinia enterocolitica have shown that divergent tc loci either encode insect-active toxins or play a role in colonization of the gut in gastroenteritis models of rats. So far little is known about the activity of the Tc proteins in the other mammalian-pathogenic yersiniae. Here we present work to suggest that Tc proteins in Yersinia pseudotuberculosis and Yersinia pestis are not insecticidal toxins but have evolved for mammalian pathogenicity. We show that Tc is secreted by Y. pseudotuberculosis strain IP32953 during growth in media at 28 degrees C and 37 degrees C. We also demonstrate that oral toxicity of strain IP32953 to Manduca sexta larvae is not due to Tc expression and that lysates of Escherichia coli BL21 expressing the Yersinia Tc proteins are not toxic to Sf9 insect cells but are toxic to cultured mammalian cell lines. Cell lysates of E. coli BL21 expressing the Y. pseudotuberculosis Tc proteins caused actin ruffles, vacuoles and multi-nucleation in cultured human gut cells (Caco-2); similar morphology was observed after application of a lysate of E. coli BL21 expressing the Y. pestis Tc proteins to mouse fibroblast NIH3T3 cells, but not Caco-2 cells. Finally, transient expression of the individual Tc proteins in Caco-2 and NIH3T3 cell lines reproduced the actin and nuclear rearrangement observed with the topical applications. Together these results add weight to the growing hypothesis that the Tc proteins in Y. pseudotuberculosis and Y. pestis have been adapted for mammalian pathogenicity. We further

  1. Radiology of bacterial pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, Jose E-mail: vilar_jlu@gva.es; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-08-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings.

  2. Radiology of bacterial pneumonia

    International Nuclear Information System (INIS)

    Vilar, Jose; Domingo, Maria Luisa; Soto, Cristina; Cogollos, Jonathan

    2004-01-01

    Bacterial pneumonia is commonly encountered in clinical practice. Radiology plays a prominent role in the evaluation of pneumonia. Chest radiography is the most commonly used imaging tool in pneumonias due to its availability and excellent cost benefit ratio. CT should be used in unresolved cases or when complications of pneumonia are suspected. The main applications of radiology in pneumonia are oriented to detection, characterisation and follow-up, especially regarding complications. The classical classification of pneumonias into lobar and bronchial pneumonia has been abandoned for a more clinical classification. Thus, bacterial pneumonias are typified into three main groups: Community acquired pneumonia (CAD), Aspiration pneumonia and Nosocomial pneumonia (NP).The usual pattern of CAD is that of the previously called lobar pneumonia; an air-space consolidation limited to one lobe or segment. Nevertheless, the radiographic patterns of CAD may be variable and are often related to the causative agent. Aspiration pneumonia generally involves the lower lobes with bilateral multicentric opacities. Nosocomial Pneumonia (NP) occurs in hospitalised patients. The importance of NP is related to its high mortality and, thus, the need to obtain a prompt diagnosis. The role of imaging in NP is limited but decisive. The most valuable information is when the chest radiographs are negative and rule out pneumonia. The radiographic patterns of NP are very variable, most commonly showing diffuse multifocal involvement and pleural effusion. Imaging plays also an important role in the detection and evaluation of complications of bacterial pneumonias. In many of these cases, especially in hospitalised patients, chest CT must be obtained in order to better depict these associate findings

  3. Bacterial Degradation of Pesticides

    DEFF Research Database (Denmark)

    Knudsen, Berith Elkær

    This PhD project was carried out as part of the Microbial Remediation of Contaminated Soil and Water Resources (MIRESOWA) project, funded by the Danish Council for Strategic Research (grant number 2104-08-0012). The environment is contaminated with various xenobiotic compounds e.g. pesticides......D student, to construct fungal-bacterial consortia in order to potentially stimulate pesticide degradation thereby increasing the chance of successful bioaugmentation. The results of the project are reported in three article manuscripts, included in this thesis. In manuscript I, the mineralization of 2...

  4. Bacterial mitotic machineries

    DEFF Research Database (Denmark)

    Gerdes, Kenn; Møller-Jensen, Jakob; Ebersbach, Gitte

    2004-01-01

    Here, we review recent progress that yields fundamental new insight into the molecular mechanisms behind plasmid and chromosome segregation in prokaryotic cells. In particular, we describe how prokaryotic actin homologs form mitotic machineries that segregate DNA before cell division. Thus, the Par......M protein of plasmid R1 forms F actin-like filaments that separate and move plasmid DNA from mid-cell to the cell poles. Evidence from three different laboratories indicate that the morphogenetic MreB protein may be involved in segregation of the bacterial chromosome....

  5. Changes in bacterial meningitis.

    OpenAIRE

    Carter, P E; Barclay, S M; Galloway, W H; Cole, G F

    1990-01-01

    In 1964, one of us (WHG) undertook a retrospective study of bacterial meningitis in childhood in the north east of Scotland during the period 1946-61. We have recently carried out a similar review of cases occurring during 1971-86, to compare the incidence, mortality, and bacteriological patterns. During the earlier period 285 cases occurred, a total incidence of 16.9/100,000 children per year. In the later period 274 children were affected, an annual incidence of 17.8/100,000. The overall mo...

  6. Proteomic View of Interactions of Shiga Toxin-Producing Escherichia coli with the Intestinal Environment in Gnotobiotic Piglets.

    Directory of Open Access Journals (Sweden)

    Rembert Pieper

    Full Text Available Shiga toxin (Stx-producing Escherichia coli cause severe intestinal infections involving colonization of epithelial Peyer's patches and formation of attachment/effacement (A/E lesions. These lesions trigger leukocyte infiltration followed by inflammation and intestinal hemorrhage. Systems biology, which explores the crosstalk of Stx-producing Escherichia coli with the in vivo host environment, may elucidate novel molecular pathogenesis aspects.Enterohemorrhagic E. coli strain 86-24 produces Shiga toxin-2 and belongs to the serotype O157:H7. Bacterial cells were scrapped from stationary phase cultures (the in vitro condition and used to infect gnotobiotic piglets via intestinal lavage. Bacterial cells isolated from the piglets' guts constituted the in vivo condition. Cell lysates were subjected to quantitative 2D gel and shotgun proteomic analyses, revealing metabolic shifts towards anaerobic energy generation, changes in carbon utilization, phosphate and ammonia starvation, and high activity of a glutamate decarboxylase acid resistance system in vivo. Increased abundance of pyridine nucleotide transhydrogenase (PntA and PntB suggested in vivo shortage of intracellular NADPH. Abundance changes of proteins implicated in lipopolysaccharide biosynthesis (LpxC, ArnA, the predicted acyltransferase L7029 and outer membrane (OM assembly (LptD, MlaA, MlaC suggested bacterial cell surface modulation in response to activated host defenses. Indeed, there was evidence for interactions of innate immunity-associated proteins secreted into the intestines (GP340, REG3-γ, resistin, lithostathine, and trefoil factor 3 with the bacterial cell envelope.Proteomic analysis afforded insights into system-wide adaptations of strain 86-24 to a hostile intestinal milieu, including responses to limited nutrients and cofactor supplies, intracellular acidification, and reactive nitrogen and oxygen species-mediated stress. Protein and lipopolysaccharide compositions of the OM

  7. Cytopathological effects of Bacillus sphaericus Cry48Aa/Cry49Aa toxin on binary toxin-susceptible and -resistant Culex quinquefasciatus larvae.

    Science.gov (United States)

    de Melo, Janaina Viana; Jones, Gareth Wyn; Berry, Colin; Vasconcelos, Romero Henrique Teixeira; de Oliveira, Cláudia Maria Fontes; Furtado, André Freire; Peixoto, Christina Alves; Silva-Filha, Maria Helena Neves Lobo

    2009-07-01

    The Cry48Aa/Cry49Aa mosquitocidal two-component toxin was recently characterized from Bacillus sphaericus strain IAB59 and is uniquely composed of a three-domain Cry protein toxin (Cry48Aa) and a binary (Bin) toxin-like protein (Cry49Aa). Its mode of action has not been elucidated, but a remarkable feature of this protein is the high toxicity against species from the Culex complex, besides its capacity to overcome Culex resistance to the Bin toxin, the major insecticidal factor in B. sphaericus-based larvicides. The goal of this work was to investigate the ultrastructural effects of Cry48Aa/Cry49Aa on midgut cells of Bin-toxin-susceptible and -resistant Culex quinquefasciatus larvae. The major cytopathological effects observed after Cry48Aa/Cry49Aa treatment were intense mitochondrial vacuolation, breakdown of endoplasmic reticulum, production of cytoplasmic vacuoles, and microvillus disruption. These effects were similar in Bin-toxin-susceptible and -resistant larvae and demonstrated that Cry48Aa/Cry49Aa toxin interacts with and displays toxic effects on cells lacking receptors for the Bin toxin, while B. sphaericus IAB59-resistant larvae did not show mortality after treatment with Cry48Aa/Cry49Aa toxin. The cytopathological alterations in Bin-toxin-resistant larvae provoked by Cry48Aa/Cry49Aa treatment were similar to those observed when larvae were exposed to a synergistic mixture of Bin/Cry11Aa toxins. Such effects seemed to result from a combined action of Cry-like and Bin-like toxins. The complex effects caused by Cry48Aa/Cry49Aa provide evidence for the potential of these toxins as active ingredients of a new generation of biolarvicides that conjugate insecticidal factors with distinct sites of action, in order to manage mosquito resistance.

  8. [Clinical aspects of streptococcal and staphylococcal toxinic diseases].

    Science.gov (United States)

    Floret, D

    2001-09-01

    Staphylococcus aureus and Streptococcus pyogenes produce a lot of toxins, some of them responsible for specific diseases. Staphylococcal food poisoning is due to ingestion of enterotoxin containing food. Seven toxins have been isolated so far. Generalized exfoliative syndrome is related to exfoliatin. Young children are particularly affected. The disease consists in a cutaneous exfoliation usually limited with a favourable outcome. The mucus membranes are not involved. The nose or pharynx are the most usual portal of entry. Staphylococcus aureus is not grown from the bullae. Severe extensive forms have been observed particularly in neonates (Ritter's disease). Bullous impetigo is also due to exfoliatin. It consists in the presence of a restricted number of cloudy bullae, from which staphylococcus can be grown. It is a mild disease with a favourable outcome within a few days. Scarlet fever is related to the streptococcal erythrogenic toxins. The classic form of the disease is presently rare. This disease may be related to staphylococcus as a complication of arthritis, osteomyelitis or wound super-infection. Bacteremia is usual. Staphylococcal scarlet fever is not related to exfoliatin as previously believed, but to enterotoxins or TSST-1, so it seems to be an abortive form of toxic shock syndrome. Toxic shock syndrome is defined as a multi organ failure syndrome with a rapid onset, fever, rash followed by desquamation, vomiting and diarrhea, hypotension, conjunctivitis and strawberry tongue. The disease is related to an infection or colonisation with a toxin (TSST-1) producing strain of Staphylococcus aureus. Enterotoxins (mainly C) may be involved. The disease may occur in childhood, sometimes after superinfection of varicella. The mortality is low (5%) and mainly due to ARDS or cardiac problems. Erythrogenic toxins produced by Streptococcus pyogenes are involved in a streptococcal form of toxic shock syndrome with a quite similar presentation. In most cases

  9. Toxin-mediated effects on the innate mucosal defenses: implications for enteric vaccines

    DEFF Research Database (Denmark)

    Glenn, Gregory M; Francis, David H; Danielsen, E Michael

    2009-01-01

    unexpectedly broad protective effects against LT(+) ETEC and mixed infections when using a toxin-based enteric vaccine. If toxins truly exert barrier-disruptive effects as a key step in pathogenesis, then a return to classic toxin-based vaccine strategies for enteric disease is warranted and can be expected...... to have unexpectedly broad protective effects....

  10. Structure–Activity Relationship Study of Spider Polyamine Toxins as Inhibitors of Ionotropic Glutamate Receptors

    DEFF Research Database (Denmark)

    Xiong, Xiaofeng; Poulsen, Mette H; Hussein, Rama A

    2014-01-01

    The spider polyamine toxins Joro spider toxin-3 (JSTX-3) and Nephila polyamine toxins-1 and -8 (NPTX-1 and NPTX-8) are isolated from the venom of the orb-weaver spider Nephila clavata (Joro spider). They share a high degree of structural resemblance, their aromatic head groups being the only...

  11. A high-throughput, precipitating colorimetric sandwich ELISA microarray for shiga toxins

    Science.gov (United States)

    Shiga toxins 1 and 2 (Stx1 and Stx2) from Shiga toxin-producing E. coli (STEC) bacteria were simultaneously detected with a newly developed, high-throughput antibody microarray platform. The proteinaceous toxins were immobilized and sandwiched between biorecognition elements (monoclonal antibodies)...

  12. Development of a quail embryo model for the detection of botulinum toxin type A activity

    Science.gov (United States)

    Clostridium botulinum is a ubiquitous microorganism which under certain anaerobic conditions can produce botulinum toxins. Due to concerns in regards to both food-borne illness and the potential use of botulinum toxin as a biological weapon, the capability to assess the amount of toxin in a food or...

  13. 75 FR 20771 - Viruses, Serums, Toxins, and Analogous Products and Patent Term Restoration; Nonsubstantive...

    Science.gov (United States)

    2010-04-21

    ... Inspection Service 9 CFR Parts 102, 103, 104, 108, 112, 113, 114, 116, and 124 Viruses, Serums, Toxins, and... Inspection Service, USDA. ACTION: Direct final rule. SUMMARY: We are amending the Virus-Serum-Toxin Act... to below as the regulations), contain provisions implementing the Virus-Serum-Toxin Act, as amended...

  14. Tetanus Toxin Action : Inhibition of Neurotransmitter Release Linked to Synaptobrevin Proteolysis

    NARCIS (Netherlands)

    Link, Egenhard; Edelmann, Lambert; Chou, Judy H.; Binz, Thomas; Yamasaki, Shinji; Eisel, Uli; Baumert, Marion; Südhof, Thomas C.; Niemann, Heiner; Jahn, Reinhard

    1992-01-01

    Tetanus toxin is a potent neurotoxin that inhibits the release of neurotransmitters from presynaptic nerve endings. The mature toxin is composed of a heavy and a light chain that are linked via a disulfide bridge. After entry of tetanus toxin into the cytoplasm, the released light chain causes block

  15. Differences in Shiga toxin and phage production among stx2g-positive STEC strains

    Directory of Open Access Journals (Sweden)

    Claudia Viviana Granobles Velandia

    2012-06-01

    Full Text Available Shigatoxigenic E. coli (STEC are characterized by the production of Shiga toxins (Stx encoded by temperate bacteriophages. Stx production is linked to the induction of the phage lytic cycle. Several stx variants have been described and differentially associated with the risk of developing severe illness.The variant named stx2g was first identified in a STEC strain isolated from the faeces of healthy cattle. Analysis of stx2g-positive strains isolated from humans, animals and environmental sources have shown that they have a close relationship. In this study, stx2g-positive STEC isolated from cattle were analyzed for phage and Stx production, with the aim to relate the results to differences observed in cytotoxicity.The presence of inducible phages was assessed by analyzing the bacterial growth/lysis curves and also by plaque assay. Bacterial growth curves in the absence of induction were similar for all isolates, however, notably differed among induced cultures. The two strains that clearly evidenced bacteriolysis under this condition also showed higher phage titers in plaque assays. However, only the phage plaques produced by one of these strains (FB 62 hybridized with a stx2-probe. Furthermore, the production of Stx was evaluated by EIA and Western immunoblotting in overnight supernatants. By EIA, we detected Stx only in supernatants of FB 62, with a higher signal with induced than in uninduced cultures. By immunoblotting, Stx2 could be detected after induction in all stx2g-positive isolates, but with lower amounts of Stx2B subunit in those supernatants where phages could not be detected.Taking into account all the results, several differences could be found among stx2g-positive strains. The strain with the highest cytotoxic titer showed higher levels of stx2-phages and toxin production by EIA, and the opposite was observed for strains that previously showed low cytotoxic titers, confirming that in stx2g-positive strains Stx production is

  16. Animal Models of Bacterial Keratitis

    Science.gov (United States)

    Marquart, Mary E.

    2011-01-01

    Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades. PMID:21274270

  17. Highly affine and selective aptamers against cholera toxin as capture elements in magnetic bead-based sandwich ELAA.

    Science.gov (United States)

    Frohnmeyer, Esther; Frisch, Farina; Falke, Sven; Betzel, Christian; Fischer, Markus

    2018-03-10

    Aptamers are single-stranded DNA or RNA oligonucleotides, which have been emerging as recognition elements in disease diagnostics and food control, including the detection of bacterial toxins. In this study, we employed the semi-automated just in time-selection to identify aptamers that bind to cholera toxin (CT) with high affinity and specificity. CT is the main virulence factor of Vibrio cholerae and the causative agent of the eponymous disease. For the selected aptamers, dissociation constants in the low nanomolar range (23-56 nM) were determined by fluorescence-based affinity chromatography and cross-reactivity against related proteins was evaluated by direct enzyme-linked aptamer assay (ELAA). Aptamer CT916 has a dissociation constant of 48.5 ± 0.5 nM and shows negligible binding to Shiga-like toxin 1B, protein A and BSA. This aptamer was chosen to develop a sandwich ELAA for the detection of CT from binding buffer and local tap water. Amine-C6- or biotin-modified CT916 was coupled to magnetic beads to serve as the capture element. Using an anti-CT polyclonal antibody as the reporter, detection limits of 2.1 ng/ml in buffer and 2.4 ng/ml in tap water, with a wide log-linear dynamic range from 1 ng/ml to 1000 ng/ml and 500 ng/ml, respectively, were achieved. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Prevalence and antimicrobial sensitivity of Shiga-toxin-producing ...

    African Journals Online (AJOL)

    Nyambura

    provision of safe water, health education together with improvements in sanitation and personal hygiene ... available using a sterile well mouthed dry, leak proofs-plastic container (Neomedic Limited, China). Samples were .... and STEC O104 chromogenic agar media for detection of Shiga toxin-producing Escherichia.

  19. Susceptibility of Phelipanche and Orobanche species to AAL-toxin.

    Science.gov (United States)

    de Zélicourt, Axel; Montiel, Grégory; Pouvreau, Jean-Bernard; Thoiron, Séverine; Delgrange, Sabine; Simier, Philippe; Delavault, Philippe

    2009-10-01

    Fusarium and Alternaria spp. are phytopathogenic fungi which are known to be virulent on broomrapes and to produce sphinganine-analog mycotoxins (SAMs). AAL-toxin is a SAM produced by Alternaria alternata which causes the inhibition of sphinganine N-acyltransferase, a key enzyme in sphingolipid biosynthesis, leading to accumulation of sphingoid bases. These long chain bases (LCBs) are determinant in the occurrence of programmed cell death (PCD) in susceptible plants. We showed that broomrapes are sensitive to AAL-toxin, which is not common plant behavior, and that AAL-toxin triggers cell death at the apex of the radicle as well as LCB accumulation and DNA laddering. We also demonstrated that three Lag1 homologs, encoding components of sphinganine N-acyltransferase in yeast, are present in the Orobanche cumana genome and two of them are mutated leading to an enhanced susceptibility to AAL-toxin. We therefore propose a model for the molecular mechanism governing broomrape susceptibility to the fungus Alternaria alternata.

  20. Bordetella adenylate cyclase toxin: a swift saboteur of host defense

    Czech Academy of Sciences Publication Activity Database

    Vojtová, Jana; Kamanová, Jana; Šebo, Peter

    2006-01-01

    Roč. 9, - (2006), s. 1-7 ISSN 1369-5274 R&D Projects: GA AV ČR IAA5020406; GA MŠk 1M0506 Institutional research plan: CEZ:AV0Z50200510 Keywords : cyaa * scanning electron microscopy * cyclase toxin Subject RIV: EE - Microbiology, Virology Impact factor: 7.445, year: 2006