WorldWideScience

Sample records for bacterial tag-encoded flx

  1. Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP.

    Directory of Open Access Journals (Sweden)

    Scot E Dowd

    Full Text Available BACKGROUND: Diabetic extremity ulcers are associated with chronic infections. Such ulcer infections are too often followed by amputation because there is little or no understanding of the ecology of such infections or how to control or eliminate this type of chronic infection. A primary impediment to the healing of chronic wounds is biofilm phenotype infections. Diabetic foot ulcers are the most common, disabling, and costly complications of diabetes. Here we seek to derive a better understanding of the polymicrobial nature of chronic diabetic extremity ulcer infections. METHODS AND FINDINGS: Using a new bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP approach we have evaluated the bacterial diversity of 40 chronic diabetic foot ulcers from different patients. The most prevalent bacterial genus associated with diabetic chronic wounds was Corynebacterium spp. Findings also show that obligate anaerobes including Bacteroides, Peptoniphilus, Fingoldia, Anaerococcus, and Peptostreptococcus spp. are ubiquitous in diabetic ulcers, comprising a significant portion of the wound biofilm communities. Other major components of the bacterial communities included commonly cultured genera such as Streptococcus, Serratia, Staphylococcus and Enterococcus spp. CONCLUSIONS: In this article, we highlight the patterns of population diversity observed in the samples and introduce preliminary evidence to support the concept of functional equivalent pathogroups (FEP. Here we introduce FEP as consortia of genotypically distinct bacteria that symbiotically produce a pathogenic community. According to this hypothesis, individual members of these communities when they occur alone may not cause disease but when they coaggregate or consort together into a FEP the synergistic effect provides the functional equivalence of well-known pathogens, such as Staphylococcus aureus, giving the biofilm community the factors necessary to maintain chronic biofilm infections

  2. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing

    OpenAIRE

    Bendele Kylie G; Guerrero Felix D; Dowd Scot E; Pérez de León Adalberto A; Andreotti Renato; Scoles Glen A

    2011-01-01

    Abstract Background Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus) microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) technique to cha...

  3. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus microplus through tag-encoded pyrosequencing

    Directory of Open Access Journals (Sweden)

    Bendele Kylie G

    2011-01-01

    Full Text Available Abstract Background Ticks are regarded as the most relevant vectors of disease-causing pathogens in domestic and wild animals. The cattle tick, Rhipicephalus (Boophilus microplus, hinders livestock production in tropical and subtropical parts of the world where it is endemic. Tick microbiomes remain largely unexplored. The objective of this study was to explore the R. microplus microbiome by applying the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP technique to characterize its bacterial diversity. Pyrosequencing was performed on adult males and females, eggs, and gut and ovary tissues from adult females derived from samples of R. microplus collected during outbreaks in southern Texas. Results Raw data from bTEFAP were screened and trimmed based upon quality scores and binned into individual sample collections. Bacteria identified to the species level include Staphylococcus aureus, Staphylococcus chromogenes, Streptococcus dysgalactiae, Staphylococcus sciuri, Serratia marcescens, Corynebacterium glutamicum, and Finegoldia magna. One hundred twenty-one bacterial genera were detected in all the life stages and tissues sampled. The total number of genera identified by tick sample comprised: 53 in adult males, 61 in adult females, 11 in gut tissue, 7 in ovarian tissue, and 54 in the eggs. Notable genera detected in the cattle tick include Wolbachia, Coxiella, and Borrelia. The molecular approach applied in this study allowed us to assess the relative abundance of the microbiota associated with R. microplus. Conclusions This report represents the first survey of the bacteriome in the cattle tick using non-culture based molecular approaches. Comparisons of our results with previous bacterial surveys provide an indication of geographic variation in the assemblages of bacteria associated with R. microplus. Additional reports on the identification of new bacterial species maintained in nature by R. microplus that may be

  4. Exploring bacterial diversity in hospital environments by GS-FLX Titanium pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Margarita Poza

    Full Text Available Understanding microbial populations in hospital environments is crucial for improving human health. Hospital-acquired infections are an increasing problem in intensive care units (ICU. In this work we present an exploration of bacterial diversity at inanimate surfaces of the ICU wards of the University Hospital A Coruña (Spain, as an example of confined hospital environment subjected to selective pressure, taking the entrance hall of the hospital, an open and crowded environment, as reference. Surface swab samples were collected from both locations and recovered DNA used as template to amplify a hypervariable region of the bacterial 16S rRNA gene. Sequencing of the amplicons was performed at the Roche 454 Sequencing Center using GS-FLX Titanium procedures. Reads were pre-processed and clustered into OTUs (operational taxonomic units, which were further classified. A total of 16 canonical bacterial phyla were detected in both locations. Members of the phyla Firmicutes (mainly Staphylococcus and Streptococcus and Actinobacteria (mainly Micrococcaceae, Corynebacteriaceae and Brevibacteriaceae were over-represented in the ICU with respect to the Hall. The phyllum Proteobacteria was also well represented in the ICU, mainly by members of the families Enterobacteriaceae, Methylobacteriaceae and Sphingomonadaceae. In the Hall sample, the phyla Proteobacteria, Bacteroidetes, Deinococcus-Thermus and Cyanobacteria were over-represented with respect to the ICU. Over-representation of Proteobacteria was mainly due to the high abundance of Enterobacteriaceae members. The presented results demonstrate that bacterial diversity differs at the ICU and entrance hall locations. Reduced diversity detected at ICU, relative to the entrance hall, can be explained by its confined character and by the existence of antimicrobial selective pressure. This is the first study using deep sequencing techniques made in hospital wards showing substantial hospital microbial

  5. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    OpenAIRE

    Min, Byeng R.; Sandra Solaiman; Raymon Shange; Jong-Su Eun

    2014-01-01

    Eighteen Kiko-cross meat goats (n=6) were used to collect gastrointestinal (GI) bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB). Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS); 0.17% condensed tannins (CT) dry matter (DM)); 15% PB and 15% WS (1.6% CT DM), and 30% PB and 0% WS (3.2% CT DM). A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucida...

  6. Black Box Chimera Check (B2C2): a Windows-Based Software for Batch Depletion of Chimeras from Bacterial 16S rRNA Gene Datasets.

    Science.gov (United States)

    Gontcharova, Viktoria; Youn, Eunseog; Wolcott, Randall D; Hollister, Emily B; Gentry, Terry J; Dowd, Scot E

    2010-01-01

    The existing chimera detection programs are not specifically designed for "next generation" sequence data. Technologies like Roche 454 FLX and Titanium have been adapted over the past years especially with the introduction of bacterial tag-encoded FLX/Titanium amplicon pyrosequencing methodologies to produce over one million 250-600 bp 16S rRNA gene reads that need to be depleted of chimeras prior to downstream analysis. Meeting the needs of basic scientists who are venturing into high-throughput microbial diversity studies such as those based upon pyrosequencing and specifically providing a solution for Windows users, the B2C2 software is designed to be able to accept files containing large multi-FASTA formatted sequences and screen for possible chimeras in a high throughput fashion. The graphical user interface (GUI) is also able to batch process multiple files. When compared to popular chimera screening software the B2C2 performed as well or better while dramatically decreasing the amount of time required generating and screening results. Even average computer users are able to interact with the Windows .Net GUI-based application and define the stringency to which the analysis should be done. B2C2 may be downloaded from http://www.researchandtesting.com/B2C2. PMID:21339894

  7. Massive parallel 16S rRNA gene pyrosequencing reveals highly diverse fecal bacterial and fungal communities in healthy dogs and cats.

    Science.gov (United States)

    Handl, Stefanie; Dowd, Scot E; Garcia-Mazcorro, Jose F; Steiner, Jörg M; Suchodolski, Jan S

    2011-05-01

    This study evaluated the fecal microbiota of 12 healthy pet dogs and 12 pet cats using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing. A total of 120,406 pyrosequencing reads for bacteria (mean 5017) and 5359 sequences (one pool each for dogs and cats) for fungi were analyzed. Additionally, group-specific 16S rRNA gene clone libraries for Bifidobacterium spp. and lactic acid-producing bacteria (LAB) were constructed. The most abundant bacterial phylum was Firmicutes, followed by Bacteroidetes in dogs and Actinobacteria in cats. The most prevalent bacterial class in dogs and cats was Clostridia, dominated by the genera Clostridium (clusters XIVa and XI) and Ruminococcus. At the genus level, 85 operational taxonomic units (OTUs) were identified in dogs and 113 OTUs in cats. Seventeen LAB and eight Bifidobacterium spp. were detected in canine feces. Ascomycota was the only fungal phylum detected in cats, while Ascomycota, Basidiomycota, Glomeromycota, and Zygomycota were identified in dogs. Nacaseomyces was the most abundant fungal genus in dogs; Saccharomyces and Aspergillus were predominant in cats. At the genus level, 33 different fungal OTUs were observed in dogs and 17 OTUs in cats. In conclusion, this study revealed a highly diverse bacterial and fungal microbiota in canine and feline feces.

  8. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India

    Directory of Open Access Journals (Sweden)

    Anjana Ghelani

    2015-06-01

    Full Text Available A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP. Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%, Proteobacteria (21.21% and unclassified bacteria (10.69%. Whereas, Peptostreptococcaceae (37.33%, Clostridiaceae (23.36%, and Enterobacteriaceae (16.37% were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%, Clostridium lituseburense (13.93% and uncultured bacterium (10.15%. Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

  9. Cultivation-independent comprehensive survey of bacterial diversity in Tulsi Shyam Hot Springs, India.

    Science.gov (United States)

    Ghelani, Anjana; Patel, Rajesh; Mangrola, Amitsinh; Dudhagara, Pravin

    2015-06-01

    A taxonomic description of bacteria was deduced from 5.78 Mb metagenomic sequence retrieved from Tulsi Shyam hot spring, India using bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). Metagenome contained 10,893 16S rDNA sequences that were analyzed by MG-RAST server to generate the comprehensive profile of bacteria. Metagenomic data are available at EBI under EBI Metagenomics database with accession no. ERP009559. Metagenome sequences represented the 98.2% bacteria origin, 1.5% of eukaryotic and 0.3% were unidentified. A total of 16 bacterial phyla demonstrating 97 families and 287 species were revealed in the hot spring metagenome. Most abundant phyla were Firmicutes (65.38%), Proteobacteria (21.21%) and unclassified bacteria (10.69%). Whereas, Peptostreptococcaceae (37.33%), Clostridiaceae (23.36%), and Enterobacteriaceae (16.37%) were highest reported families in metagenome. Ubiquitous species were Clostridium bifermentans (17.47%), Clostridium lituseburense (13.93%) and uncultured bacterium (10.15%). Our data provide new information on hot spring bacteria and shed light on their abundance, diversity, distribution and coexisting organisms.

  10. Gastrointestinal Bacterial and Methanogenic Archaea Diversity Dynamics Associated with Condensed Tannin-Containing Pine Bark Diet in Goats Using 16S rDNA Amplicon Pyrosequencing

    Directory of Open Access Journals (Sweden)

    Byeng R. Min

    2014-01-01

    Full Text Available Eighteen Kiko-cross meat goats (n=6 were used to collect gastrointestinal (GI bacteria and methanogenic archaea for diversity measures when fed condensed tannin-containing pine bark (PB. Three dietary treatments were tested: control diet (0% PB and 30% wheat straw (WS; 0.17% condensed tannins (CT dry matter (DM; 15% PB and 15% WS (1.6% CT DM, and 30% PB and 0% WS (3.2% CT DM. A 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing technique was used to characterize and elucidate changes in GI bacteria and methanogenic archaea diversity among the diets. Proteobacteria was the most dominant phylum in goats with mean relative abundance values ranging from 39.7 (30% PB to 46.5% (control and 47.1% (15% PB. Other phyla individually accounted for fewer than 25% of the relative abundance observed. Predominant methanogens were Methanobrevibacter (75, 72, and 49%, Methanosphaera (3.3, 2.3, and 3.4%, and Methanobacteriaceae (1.2, 0.6, and 0.7% population in control, 15, and 30% PB, respectively. Among methanogens, Methanobrevibacter was linearly decreased (P=0.05 with increasing PB supplementation. These results indicate that feeding PB selectively altered bacteria and methanogenic archaeal populations in the GI tract of goats.

  11. Assessment of bacterial endosymbiont diversity in Otiorhynchus spp. (Coleoptera: Curculionidae larvae using a multitag 454 pyrosequencing approach

    Directory of Open Access Journals (Sweden)

    Hirsch Jacqueline

    2012-01-01

    Full Text Available Abstract Background Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction, host-symbiont interactions, and may provide a future basis for novel pest management strategy development. Here, we used a multitag 454 pyrosequencing approach to assess the bacterial endosymbiont diversity in larvae of four economically important Otiorhynchus species. Results High-throughput tag-encoded FLX amplicon pyrosequencing of a bacterial 16S rDNA fragment was used to characterise bacterial communities associated with different Otiorhynchus spp. larvae. By sequencing a total of ~48,000 PCR amplicons, we identified 49 different operational taxonomic units (OTUs as bacterial endosymbionts in the four studied Otiorhynchus species. More than 90% of all sequence reads belonged either to the genus Rickettsia or showed homology to the phylogenetic group of “Candidatus Blochmannia” and to endosymbionts of the lice Pedicinus obtusus and P. badii. By using specific primers for the genera Rickettsia and “Candidatus Blochmannia”, we identified a new phylogenetic clade of Rickettsia as well as “Candidatus Nardonella” endosymbionts in Otiorhynchus spp. which are closely related to “Candidatus Blochmannia” bacteria. Conclusions Here, we used multitag 454 pyrosequencing for assessment of insect endosymbiotic communities in weevils. As 454 pyrosequencing generates only quite short sequences, results of such studies can be regarded as a first step towards identifying respective endosymbiotic species in insects. In the second step of our study, we analysed sequences of specific gene regions for a more detailed phylogeny of selected endosymbiont genera

  12. Evaluation of in vitro gas production and rumen bacterial populations fermenting corn milling (co)products.

    Science.gov (United States)

    Williams, W L; Tedeschi, L O; Kononoff, P J; Callaway, T R; Dowd, S E; Karges, K; Gibson, M L

    2010-10-01

    The objective of this study was to evaluate the fermentation dynamics of 2 commonly fed corn (co)products in their intact and defatted forms, using the in vitro gas production (IVGP) technique, and to investigate the shifts of the predominant rumen bacterial populations using the 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) technique. The bTEFAP technique was used to determine the bacterial profile of each fermentation time at 24 and 48 h. Bacterial populations were identified at the species level. Species were grouped by substrate affinities (guilds) for cellulose, hemicellulose, pectin, starch, sugars, protein, lipids, and lactate. The 2 (co)products were a dried distillers grain (DDG) plus solubles produced from a low-heat drying process (BPX) and a high-protein DDG without solubles (HP). Chemical analysis revealed that BPX contained about 11.4% ether extract, whereas HP contained only 3.88%. Previous studies have indicated that processing methods, as well as fat content, of corn (co)products directly affect fermentation rate and substrate availability, but little information is available regarding changes in rumen bacterial populations. Fermentation profiles of intact and defatted BPX and HP were compared with alfalfa hay as a standard profile. Defatting before incubation had no effect on total gas production in BPX or HP, but reduced lag time and the fractional rate of fermentation of BPX by at least half, whereas there was no effect for HP. The HP feed supported a greater percentage of fibrolytic and proteolytic bacteria than did BPX. Defatting both DDG increased the fibrolytic (26.8 to 38.7%) and proteolytic (26.1 to 37.2%) bacterial guild populations and decreased the lactate-utilizing bacterial guild (3.06 to 1.44%). Information regarding the fermentation kinetics and bacterial population shifts when feeding corn (co)products may lead to more innovative processing methods that improve feed quality (e.g., deoiling) and consequently

  13. Artificial duplicate reads in sequencing data of 454 Genome Sequencer FLX System

    Institute of Scientific and Technical Information of China (English)

    Hui Dong; Yangyi Chen; Yan Shen; Shengyue Wang; Guoping Zhao; Weirong Jin

    2011-01-01

    The 454 Genome Sequencer (GS) FLX System is one of the next-generation sequencing systems featured by long reads, high accuracy, and ultra-high throughput.Based on the mechanism of emulsion PCR, a unique DNA template would only generate a unique sequence read after being amplified and sequenced on GS FLX.However,biased amplification of DNA templates might occur in the process of emulsion PCR, which results in production of artificial duplicate reads.Under the condition that each DNA template is unique to another, 3.49%-18.14% of total reads in GS FLX-sequencing data were found to be artificial duplicate reads.These duplicate reads may lead to misunderstanding of sequencing data and special attention should be paid to the potential biases they introduced to the data.

  14. Interpretations of the TDxFLx calibration data of the abused drugs.

    Science.gov (United States)

    Sihn, Young-Sihn; Chung, Hee-Sun

    2003-01-01

    The useful TDxFLx calibration data was obtained for the interpretation of the interactions of the abused drugs to sheep antiserum protein. The antibody of TDxFLx calibrators was prepared from sheep antiserum. Furthermore these data can be used to interpret the abused drug-protein binding phenomena in human body and the TDxFLx screening results of the abused drugs in urine samples. TDxFLx system uses fluorescence polarization immunoassay technique that is a competitive binding immunoassay methodology to allow tracer-labeled antigen (*Drug) and patient antigen (Drug) to compete for the same binding sites on the antibody molecules of sheep antiserum. To obtain the binding parameters, binding constant (K) and number of independent binding site (n), generally, Scatchard equation is used. This Scatchard equation is expressed in the concentration terms of free drug, bound drug, and protein (antibody). The binding parameters can not be obtained by applying the TDxFLx calibration data to the Scatchard equation directly because the TDxFLx calibration data are composed of the fluorescence polarization and the total drug concentrations. To obtain the binding parameters from the TDxFLx calibration data the new useful equation which was expressed in the total concentrations of drug and fluorescence polarization should be derived. Derivation of new equation was based on the Scatchard equation. The TDxFLx calibration data was curve fitted to the derived equation using KaleidaGraph program and Macintosh computer. The binding constant (K) and the number (n(P(t))) of binding site of 11-nor-delta(9)-tetrahydrocannabinol-9-carboxylic acid (COOH.THC) on the antibody were 1.14 x 10(8)l/mole and 4.04 x 10(-7)M, respectively. The binding constant and the number (n(P(t))) of binding site of amphetamine were 5.15 x 10(5)l/mole and 2.05 x 10(6)M, respectively. In case of COOH.THC the fluorescence polarization decreased linearly with the concentration. However, in case of amphetamine or the

  15. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; Lopez, Pablo E. Martinez

    2003-01-01

    A partial evaluator is said to be Jones-optimal if the result of specializing a self-interpreter with respect to a source program is textually identical to the source program, modulo renaming. Jones optimality has already been obtained if the self-interpreter is untyped. If the selfinterpreter...... a residual program that is textually identical to the source program, modulo renaming....... is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones...

  16. Tagging, Encoding, and Jones Optimality

    DEFF Research Database (Denmark)

    Danvy, Olivier; López, Pablo Ernesto Martínes

    2003-01-01

    is typed, however, residual programs are cluttered with type tags. To obtain the original source program, these tags must be removed. A number of sophisticated solutions have already been proposed. We observe, however, that with a simple representation shift, ordinary partial evaluation is already Jones...

  17. Development of colonic microflora as assessed by pyrosequencing in dairy calves fed waste milk

    Science.gov (United States)

    The objective of the current study was to examine the effect of pasteurization of waste milk used to feed dairy calves on the bacterial diversity of their lower gut. Using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP), fecal samples from dairy calves aging from 1 week to 6 mon...

  18. Alteration of ROS Homeostasis and Decreased Lifespan in S. cerevisiae Elicited by Deletion of the Mitochondrial Translocator FLX1

    Directory of Open Access Journals (Sweden)

    Teresa Anna Giancaspero

    2014-01-01

    Full Text Available This paper deals with the control exerted by the mitochondrial translocator FLX1, which catalyzes the movement of the redox cofactor FAD across the mitochondrial membrane, on the efficiency of ATP production, ROS homeostasis, and lifespan of S. cerevisiae. The deletion of the FLX1 gene resulted in respiration-deficient and small-colony phenotype accompanied by a significant ATP shortage and ROS unbalance in glycerol-grown cells. Moreover, the flx1Δ strain showed H2O2 hypersensitivity and decreased lifespan. The impaired biochemical phenotype found in the flx1Δ strain might be justified by an altered expression of the flavoprotein subunit of succinate dehydrogenase, a key enzyme in bioenergetics and cell regulation. A search for possible cis-acting consensus motifs in the regulatory region upstream SDH1-ORF revealed a dozen of upstream motifs that might respond to induced metabolic changes by altering the expression of Flx1p. Among these motifs, two are present in the regulatory region of genes encoding proteins involved in flavin homeostasis. This is the first evidence that the mitochondrial flavin cofactor status is involved in controlling the lifespan of yeasts, maybe by changing the cellular succinate level. This is not the only case in which the homeostasis of redox cofactors underlies complex phenotypical behaviours, as lifespan in yeasts.

  19. Apples with Oranges: Comparing the GS-FLX vs Ion Torrent Platforms for 16S Metagenomics Studies

    OpenAIRE

    Paech, Sam; McDermott, Stewart; Men, Artem; McGrath, Ken

    2012-01-01

    Decreasing costs and faster turn-around times mean that next-generation platforms are more readily accessible to metagenomics researchers. We compared the suitability of the GS-FLX (XLR70) and Ion Torrent (314 with 100bp chemistry) to generate data sets that are suitable for 16S-based taxonomic metagenomics.

  20. False-Positive TDxFLx urine Amphetamine/Metamphetamine II assay from Ofloxacin

    International Nuclear Information System (INIS)

    Immunoassays are widely used in testing urine for illicit drugs. Ofloaxcin and a number of other quinolones were found to induce false-positive opiates (OP) urine immunoassays. This can result in misleading conclusions in the concept of drug abuse The aim of present study was to evaluate the effects of ofloxacin in theraputic doses on the induction of false-positive urine immunoassays for common drugs of abuse in healthy male volunteers. The study was conducted on 6 healthy male volunteers, aging between 35-45 years. Two doses of 400 mg ofloxacin each, were given orally to each volunteer at 12 hours interval and urine samples were collected before ofloaxcin administration and 5-7.5 hours after the second dose. Urine samples were subjected for OP, amphetamine/methamphetamine II (AM/MA II), cocaine and cannabinoids assays on TDxFLx analyzer. Ofloxacin produced significant increase (Pcutoff) for AM/MA II assays, were found in all volunteers after ofloaxcin administration. The study recomends strongly the confirmation of positive urine immunoassay results for drugs of abuseby a more specific methodology e.g. gas chromatography/ mass spectroscopy (GC/MS). (author)

  1. 基于 Roche 454 GS FLX 的钝吻黄盖鲽(Pleuronectes yokohamae)微卫星标记的开发%Microsatellite Loci Isolated by Roche 454 GS FLX in Pleuronectes yokohamae

    Institute of Scientific and Technical Information of China (English)

    潘婷; 张岩; 张辉; 高天翔; 肖永双; 姜云荣

    2015-01-01

    Roche 454 GS FLX, the second-generation sequencing technique, can read longer fragments accurately and isolate SSR markers, and thus has been widely used in many fields of research. In this study, we applied Roche 454 GS FLX to isolate the microsatellite loci and developed the identification of microsatellites markers in Pleuronectes yokohamae. (AC)12, (AG)12, (AAT)12, (AGG)8, (AGC)8, (AGAT)8 and (ACAG)6 were hybridized with shotgun library of DNA samples. This SSR library was constructed through magnetic beads enrichment, cleaning, elution and purification. The SSR library was then sequenced with Roche 454 GS FLX. MISA was used to search for microsatellite motifs and primer 3 was used to design the primers for P. yokohamae. FAM, HEX, and TAMRA were used to label the microsatellite primers (5′), which were used in the triplex PCR or the nested PCR to identify the genotype of the microsatellite loci. The cluster similarity comparison method was first used to analyze 5641 loci that we obtained, and 247 types of loci with high polymorphism were screened. Among these loci, 52.22% were perfect, 20.24% were imperfect and the rest 27.54% were compound. The percentage of (AC)n and (AG)n was 44% in these loci, and 87.5% of them were more than 10-time repeats. Eleven pairs of fluorescent primers were designed according to the selected loci (more than 10-time repeats) and were applied in 5 individuals. The number of alleles per locus ranged from 3 to 8 with an average value of 5. The average values of Ho, He and PIC were 0.588, 0.788 and 0.670 respectively. Four loci among 11 deviated from Hardy-Weinberg. The results of this research indicated that 454 GS FLX was an intuitive and efficient technique for microsatellite isolating. Our study provides essential information about the population genetic diversity of P. yokohamae, and helps improve the artificial breeding.%利用 Roche 454 GS FLX 平台测序技术进行了钝吻黄盖鲽微卫星引物筛选,并采用聚

  2. Microsatellite Loci Isolated by Roche 454 GS FLX in Pleuronectes yokohamae%基于 Roche 454 GS FLX 的钝吻黄盖鲽(Pleuronectes yokohamae)微卫星标记的开发

    Institute of Scientific and Technical Information of China (English)

    潘婷; 张岩; 张辉; 高天翔; 肖永双; 姜云荣

    2015-01-01

    利用 Roche 454 GS FLX 平台测序技术进行了钝吻黄盖鲽微卫星引物筛选,并采用聚类分析的方法对得到的5641个微卫星位点进行类比分析,得到247种多态性位点,其中完美型占52.22%,非完美型占20.24%,复合型占27.54%,(AC)n、(AG)n 两碱基重复类型的比例是44%,重复次数在10次以上的占总数的87.5%。随机选取11个位点的微卫星引物,采用5个野生个体,利用荧光标记和毛细管电泳进行多样性评价,4个位点偏离 Hardy-Weinberg 平衡,不同位点得到的等位基因范围为3−8,平均等位基因数为5.0。平均观望杂合度(Ho)、平均期望杂合度(He)及平均多态性信息含量(PIC)分别为0.588、0.788和0.670。结果表明,454 GS FLX 提供了一种直观、高效开发微卫星的方法。%Roche 454 GS FLX, the second-generation sequencing technique, can read longer fragments accurately and isolate SSR markers, and thus has been widely used in many fields of research. In this study, we applied Roche 454 GS FLX to isolate the microsatellite loci and developed the identification of microsatellites markers in Pleuronectes yokohamae. (AC)12, (AG)12, (AAT)12, (AGG)8, (AGC)8, (AGAT)8 and (ACAG)6 were hybridized with shotgun library of DNA samples. This SSR library was constructed through magnetic beads enrichment, cleaning, elution and purification. The SSR library was then sequenced with Roche 454 GS FLX. MISA was used to search for microsatellite motifs and primer 3 was used to design the primers for P. yokohamae. FAM, HEX, and TAMRA were used to label the microsatellite primers (5′), which were used in the triplex PCR or the nested PCR to identify the genotype of the microsatellite loci. The cluster similarity comparison method was first used to analyze 5641 loci that we obtained, and 247 types of loci with high polymorphism were screened. Among these loci, 52.22% were perfect, 20.24% were imperfect and the rest 27.54% were compound

  3. Microbiota and Metabolome Associated with Immunoglobulin A Nephropathy (IgAN)

    OpenAIRE

    De Angelis, Maria; Montemurno, Eustacchio; Piccolo, Maria; Vannini, Lucia; Lauriero, Gabriella; Maranzano, Valentina; Gozzi, Giorgia; Serrazanetti, Diana; Dalfino, Giuseppe; Gobbetti, Marco; Gesualdo, Loreto

    2014-01-01

    This study aimed at investigating the fecal microbiota, and the fecal and urinary metabolome of non progressor (NP) and progressor (P) patients with immunoglobulin A nephropathy (IgAN). Three groups of volunteers were included in the study: (i) sixteen IgAN NP patients; (ii) sixteen IgAN P patients; and (iii) sixteen healthy control (HC) subjects, without known diseases. Selective media were used to determine the main cultivable bacterial groups. Bacterial tag-encoded FLX-titanium amplicon py...

  4. High-throughput sequencing of core STR loci for forensic genetic investigations using the Roche Genome Sequencer FLX platform

    DEFF Research Database (Denmark)

    Fordyce, Sarah L; Avila-Arcos, Maria C; Rockenbauer, Eszter;

    2011-01-01

    The analysis and profiling of short tandem repeat (STR) loci is routinely used in forensic genetics. Current methods to investigate STR loci, including PCR-based standard fragment analyses and capillary electrophoresis, only provide amplicon lengths that are used to estimate the number of STR...... repeat units. These methods do not allow for the full resolution of STR base composition that sequencing approaches could provide. Here we present an STR profiling method based on the use of the Roche Genome Sequencer (GS) FLX to simultaneously sequence multiple core STR loci. Using this method...

  5. Dynamics of seawater bacterial communities in a shellfish hatchery.

    Science.gov (United States)

    Powell, S M; Chapman, C C; Bermudes, M; Tamplin, M L

    2013-08-01

    Bacterial disease is a significant issue for larviculture of several species of shellfish, including oysters. One source of bacteria is the seawater used throughout the hatchery. In this study carried out at a commercial oyster hatchery in Tasmania, Australia, the diversity of the bacterial community and its relationship with larval production outcomes were studied over a 2-year period using terminal restriction fragment length polymorphism and tag-encoded pyrosequencing. The bacterial communities were very diverse, dominated by the Alphaproteobacteria, Gammaproteobacteria, Flavobacteria and Cyanobacteria. The communities were highly variable on scales of days, weeks and seasons. The difference between the intake seawater and treated clean seawater used in the hatchery was smaller than the observed temporal differences in the seawater throughout the year. No clear correlation was observed between production outcomes and the overall bacterial community structure. However, one group of Cyanobacterial sequences was more abundant when mass mortality events occurred than when healthy spat were produced although they were always present.

  6. An efficient procedure for plant organellar genome assembly, based on whole genome data from the 454 GS FLX sequencing platform

    Directory of Open Access Journals (Sweden)

    Zhang Tongwu

    2011-11-01

    Full Text Available Abstract Motivation Complete organellar genome sequences (chloroplasts and mitochondria provide valuable resources and information for studying plant molecular ecology and evolution. As high-throughput sequencing technology advances, it becomes the norm that a shotgun approach is used to obtain complete genome sequences. Therefore, to assemble organellar sequences from the whole genome, shotgun reads are inevitable. However, associated techniques are often cumbersome, time-consuming, and difficult, because true organellar DNA is difficult to separate efficiently from nuclear copies, which have been transferred to the nucleus through the course of evolution. Results We report a new, rapid procedure for plant chloroplast and mitochondrial genome sequencing and assembly using the Roche/454 GS FLX platform. Plant cells can contain multiple copies of the organellar genomes, and there is a significant correlation between the depth of sequence reads in contigs and the number of copies of the genome. Without isolating organellar DNA from the mixture of nuclear and organellar DNA for sequencing, we retrospectively extracted assembled contigs of either chloroplast or mitochondrial sequences from the whole genome shotgun data. Moreover, the contig connection graph property of Newbler (a platform-specific sequence assembler ensures an efficient final assembly. Using this procedure, we assembled both chloroplast and mitochondrial genomes of a resurrection plant, Boea hygrometrica, with high fidelity. We also present information and a minimal sequence dataset as a reference for the assembly of other plant organellar genomes.

  7. CANGS: a user-friendly utility for processing and analyzing 454 GS-FLX data in biodiversity studies

    Directory of Open Access Journals (Sweden)

    Schlötterer Christian

    2010-01-01

    Full Text Available Abstract Background Next generation sequencing (NGS technologies have substantially increased the sequence output while the costs were dramatically reduced. In addition to the use in whole genome sequencing, the 454 GS-FLX platform is becoming a widely used tool for biodiversity surveys based on amplicon sequencing. In order to use NGS for biodiversity surveys, software tools are required, which perform quality control, trimming of the sequence reads, removal of PCR primers, and generation of input files for downstream analyses. A user-friendly software utility that carries out these steps is still lacking. Findings We developed CANGS (Cleaning and Analyzing Next Generation Sequences a flexible and user-friendly integrated software utility: CANGS is designed for amplicon based biodiversity surveys using the 454 sequencing platform. CANGS filters low quality sequences, removes PCR primers, filters singletons, identifies barcodes, and generates input files for downstream analyses. The downstream analyses rely either on third party software (e.g.: rarefaction analyses or CANGS-specific scripts. The latter include modules linking 454 sequences with the name of the closest taxonomic reference retrieved from the NCBI database and the sequence divergence between them. Our software can be easily adapted to handle sequencing projects with different amplicon sizes, primer sequences, and quality thresholds, which makes this software especially useful for non-bioinformaticians. Conclusion CANGS performs PCR primer clipping, filtering of low quality sequences, links sequences to NCBI taxonomy and provides input files for common rarefaction analysis software programs. CANGS is written in Perl and runs on Mac OS X/Linux and is available at http://i122server.vu-wien.ac.at/pop/software.html

  8. Analysis of the microbial diversity in faecal material of the endangered blue whale, Balaenoptera musculus.

    Science.gov (United States)

    Guass, Olivia; Haapanen, Lisa Meier; Dowd, Scot E; Širović, Ana; McLaughlin, Richard William

    2016-07-01

    Using bacterial and fungal tag-encoded FLX-Titanium amplicon pyrosequencing, the microbiota of the faecal material of two blue whales living in the wild off the coast of California was investigated. In both samples the most predominant bacterial phylum was the Firmicutes with Clostridium spp. being the most dominant bacteria. The most predominant fungi were members of the phylum Ascomycota with Metschnikowia spp. being the most dominant. In this study, we also preliminarily characterised the culturable anaerobic bacteria from the faecal material, using traditional culture and 16S rRNA gene sequencing approaches. In total, three bacterial species belonging to the phylum Firmicutes were identified. PMID:27108139

  9. Experimental sulfate amendment alters peatland bacterial community structure.

    Science.gov (United States)

    Strickman, R J S; Fulthorpe, R R; Coleman Wasik, J K; Engstrom, D R; Mitchell, C P J

    2016-10-01

    As part of a long-term, peatland-scale sulfate addition experiment, the impact of varying sulfate deposition on bacterial community responses was assessed using 16S tag encoded pyrosequencing. In three separate areas of the peatland, sulfate manipulations included an eight year quadrupling of atmospheric sulfate deposition (experimental), a 3-year recovery to background deposition following 5years of elevated deposition (recovery), and a control area. Peat concentrations of methylmercury (MeHg), a bioaccumulative neurotoxin, were measured, the production of which is attributable to a growing list of microorganisms, including many sulfate-reducing Deltaproteobacteria. The total bacterial and Deltaproteobacterial community structures in the experimental treatment differed significantly from those in the control and recovery treatments that were either indistinguishable or very similar to one another. Notably, the relatively rapid return (within three years) of bacterial community structure in the recovery treatment to a state similar to the control, demonstrates significant resilience of the peatland bacterial community to changes in atmospheric sulfate deposition. Changes in MeHg accumulation between sulfate treatments correlated with changes in the Deltaproteobacterial community, suggesting that sulfate may affect MeHg production through changes in the community structure of this group. PMID:27267720

  10. Characterization of Olkiluoto bacterial and archaeal communities by 454 pyrosequencing

    Energy Technology Data Exchange (ETDEWEB)

    Bomberg, M.; Nyyssoenen, M.; Itaevaara, M. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2012-06-15

    Recent advancement in sequencing technologies, 'Next Generation Sequencing', such as FLX 454 pyrosequencing has made it possible to obtain large amounts of sequence data where previously only few sequences could be obtained. This technique is especially useful for the study of community composition of uncultured microbial populations in environmental samples. In this project, the FLX 454 pyrosequencing technique was used to obtain up to 20 000 16S rRNA sequences or 10 000 mRNA sequences from each sample for identification of the microbial species composition as well as for comparison of the microbial communities between different samples. This project focused on the characterization of active microbial communities in the groundwater at the final disposal site of high radioactive wastes in Olkiluoto by FLX 454 pyrosequencing of the bacterial and archaeal ribosomal RNA as well as of the mRNA transcripts of the dsrB gene and mcrA gene of sulphate reducing bacteria and methanogenic archaea, respectively. Specific emphasis was put on studying the relationship of active and latent sulphate reducers and methanogens by qPCR due to their important roles in deep geobiochemical processes connected to copper corrosion. Seven packered boreholes were sampled anaerobically in Olkiluoto during 2009-2010. Groundwater was pumped from specific depths and the microbial cells werecollected by filtration on a membrane. Active microbial communities were studied based on RNA extracted from the membranes and translated to copy DNA, followed by sequencing by 454 Tag pyrosequencing. A total of 27 different bacterial and 17 archaeal taxonomic groups were detected.

  11. Comparative approach to capture bacterial diversity in coastal waters

    DEFF Research Database (Denmark)

    Na, Hyunsoo; Kim, Ok-Sun; Yoon, Suk-hwan;

    2011-01-01

    described here. By directly comparing the sequences obtained from cultures with those from culture-independent work, we found that only 33% of the culture sequences were identical to those from clone libraries and pyrosequences. This study presents a detailed comparison of common molecular and cultivation...... to investigate the bacterial community structure of coastal seawater collected from the Yellow Sea, Korea. For culture-independent studies, we used the latest model pyrosequencer, Roche/454 Genome Sequencer FLX Titanium. Pyrosequencing captured a total of 52 phyla including 27 candidate divisions...... from the water column, whereas the traditional cloning approach captured only 15 phyla including 2 candidate divisions. In addition, of 878 genera retrieved, 92.1% of the sequences were unique to pyrosequencing. For culture-dependent analysis, plate culturing, plate washing, enrichment, and high...

  12. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars.

    Science.gov (United States)

    La Duc, Myron T; Vaishampayan, Parag; Nilsson, Henrik R; Torok, Tamas; Venkateswaran, Kasthuri

    2012-08-01

    Spacecraft hardware and assembly cleanroom surfaces (233 m(2) in total) were sampled, total genomic DNA was extracted, hypervariable regions of the 16S rRNA gene (bacteria and archaea) and ribosomal internal transcribed spacer (ITS) region (fungi) were subjected to 454 tag-encoded pyrosequencing PCR amplification, and 203,852 resulting high-quality sequences were analyzed. Bioinformatic analyses revealed correlations between operational taxonomic unit (OTU) abundance and certain sample characteristics, such as source (cleanroom floor, ground support equipment [GSE], or spacecraft hardware), cleaning regimen applied, and location about the facility or spacecraft. National Aeronautics and Space Administration (NASA) cleanroom floor and GSE surfaces gave rise to a larger number of diverse bacterial communities (619 OTU; 20 m(2)) than colocated spacecraft hardware (187 OTU; 162 m(2)). In contrast to the results of bacterial pyrosequencing, where at least some sequences were generated from each of the 31 sample sets examined, only 13 and 18 of these sample sets gave rise to archaeal and fungal sequences, respectively. As was the case for bacteria, the abundance of fungal OTU in the GSE surface samples dramatically diminished (9× less) once cleaning protocols had been applied. The presence of OTU representative of actinobacteria, deinococci, acidobacteria, firmicutes, and proteobacteria on spacecraft surfaces suggests that certain bacterial lineages persist even following rigorous quality control and cleaning practices. The majority of bacterial OTU observed as being recurrent belonged to actinobacteria and alphaproteobacteria, supporting the hypothesis that the measures of cleanliness exerted in spacecraft assembly cleanrooms (SAC) inadvertently select for the organisms which are the most fit to survive long journeys in space.

  13. Bacterial Vaginosis

    Science.gov (United States)

    ... 586. Related Content STDs during Pregnancy Fact Sheet Pregnancy and HIV, Viral Hepatitis, and STD Prevention Pelvic Inflammatory Disease ( ... Bacterial Vaginosis (BV) Chlamydia Gonorrhea Genital Herpes Hepatitis HIV/AIDS & STDs Human Papillomavirus ... STDs See Also Pregnancy Reproductive ...

  14. Bacterial Meningitis

    Science.gov (United States)

    ... Schedules Preteen & Teen Vaccines Meningococcal Disease Sepsis Bacterial Meningitis Recommend on Facebook Tweet Share Compartir On this ... serious disease. Laboratory Methods for the Diagnosis of Meningitis This manual summarizes laboratory methods used to isolate, ...

  15. tmRNA-SmpB: a journey to the centre of the bacterial ribosome.

    Science.gov (United States)

    Weis, Félix; Bron, Patrick; Giudice, Emmanuel; Rolland, Jean-Paul; Thomas, Daniel; Felden, Brice; Gillet, Reynald

    2010-11-17

    Ribosomes mediate protein synthesis by decoding the information carried by messenger RNAs (mRNAs) and catalysing peptide bond formation between amino acids. When bacterial ribosomes stall on incomplete messages, the trans-translation quality control mechanism is activated by the transfer-messenger RNA bound to small protein B (tmRNA-SmpB ribonucleoprotein complex). Trans-translation liberates the stalled ribosomes and triggers degradation of the incomplete proteins. Here, we present the cryo-electron microscopy structures of tmRNA-SmpB accommodated or translocated into stalled ribosomes. Two atomic models for each state are proposed. This study reveals how tmRNA-SmpB crosses the ribosome and how, as the problematic mRNA is ejected, the tmRNA resume codon is placed onto the ribosomal decoding site by new contacts between SmpB and the nucleotides upstream of the tag-encoding sequence. This provides a structural basis for the transit of the large tmRNA-SmpB complex through the ribosome and for the means by which the tmRNA internal frame is set for translation to resume.

  16. Bacterial carbonatogenesis

    International Nuclear Information System (INIS)

    Several series of experiments in the laboratory as well as in natural conditions teach that the production of carbonate particles by heterotrophic bacteria follows different ways. The 'passive' carbonatogenesis is generated by modifications of the medium that lead to the accumulation of carbonate and bicarbonate ions and to the precipitation of solid particles. The 'active' carbonatogenesis is independent of the metabolic pathways. The carbonate particles are produced by ionic exchanges through the cell membrane following still poorly known mechanisms. Carbonatogenesis appears to be the response of heterotrophic bacterial communities to an enrichment of the milieu in organic matter. The active carbonatogenesis seems to start first. It is followed by the passive one which induces the growth of initially produced particles. The yield of heterotrophic bacterial carbonatogenesis and the amounts of solid carbonates production by bacteria are potentially very high as compared to autotrophic or chemical sedimentation from marine, paralic or continental waters. Furthermore, the bacterial processes are environmentally very ubiquitous; they just require organic matter enrichment. Thus, apart from purely evaporite and autotrophic ones, all Ca and/or Mg carbonates must be considered as from heterotrophic bacterial origin. By the way, the carbon of carbonates comes from primary organic matter. Such considerations ask questions about some interpretations from isotopic data on carbonates. Finally, bacterial heterotrophic carbonatogenesis appears as a fundamental phase in the relationships between atmosphere and lithosphere and in the geo-biological evolution of Earth. (author)

  17. Bacterial Adhesion & Blocking Bacterial Adhesion

    DEFF Research Database (Denmark)

    Vejborg, Rebecca Munk

    2008-01-01

    tract to the microbial flocs in waste water treatment facilities. Microbial biofilms may however also cause a wide range of industrial and medical problems, and have been implicated in a wide range of persistent infectious diseases, including implantassociated microbial infections. Bacterial adhesion...... is the first committing step in biofilm formation, and has therefore been intensely scrutinized. Much however, still remains elusive. Bacterial adhesion is a highly complex process, which is influenced by a variety of factors. In this thesis, a range of physico-chemical, molecular and environmental parameters......, which influence the transition from a planktonic lifestyle to a sessile lifestyle, have been studied. Protein conditioning film formation was found to influence bacterial adhesion and subsequent biofilm formation considerable, and an aqueous extract of fish muscle tissue was shown to significantly...

  18. Bacterial lipases

    NARCIS (Netherlands)

    Jaeger, Karl-Erich; Ransac, Stéphane; Dijkstra, Bauke W.; Colson, Charles; Heuvel, Margreet van; Misset, Onno

    1994-01-01

    Many different bacterial species produce lipases which hydrolyze esters of glycerol with preferably long-chain fatty acids. They act at the interface generated by a hydrophobic lipid substrate in a hydrophilic aqueous medium. A characteristic property of lipases is called interfacial activation, mea

  19. Bacteria associated with human saliva are major microbial components of Ecuadorian indigenous beers (chicha).

    Science.gov (United States)

    Freire, Ana L; Zapata, Sonia; Mosquera, Juan; Mejia, Maria Lorena; Trueba, Gabriel

    2016-01-01

    Indigenous beers (chicha) are part of the indigenous culture in Ecuador. The fermentation process of these beers probably relies on microorganisms from fermented substrates, environment and human microbiota. We analyzed the microbiota of artisanal beers (including a type of beer produced after chewing boiled cassava) using bacterial culture and 16S ribosomal RNA (rRNA) gene-based tag-encoded FLX amplicon pyrosequencing (bTEFAP). Surprisingly, we found that Streptococcus salivarius and Streptococcus mutans (part of the human oral microbiota) were among the most abundant bacteria in chewed cassava and in non-chewed cassava beers. We also demonstrated that S. salivarius and S. mutans (isolated from these beers) could proliferate in cassava mush. Lactobacillus sp. was predominantly present in most types of Ecuadorian chicha.

  20. Bacterial Ecology

    DEFF Research Database (Denmark)

    Fenchel, Tom

    2011-01-01

    Bacterial ecology is concerned with the interactions between bacteria and their biological and nonbiological environments and with the role of bacteria in biogeochemical element cycling. Many fundamental properties of bacteria are consequences of their small size. Thus, they can efficiently exploit...... biogeochemical processes are carried exclusively by bacteria. * Bacteria play an important role in all types of habitats including some that cannot support eukaryotic life....

  1. [Bacterial vaginosis].

    Science.gov (United States)

    Romero Herrero, Daniel; Andreu Domingo, Antonia

    2016-07-01

    Bacterial vaginosis (BV) is the main cause of vaginal dysbacteriosis in the women during the reproductive age. It is an entity in which many studies have focused for years and which is still open for discussion topics. This is due to the diversity of microorganisms that cause it and therefore, its difficult treatment. Bacterial vaginosis is probably the result of vaginal colonization by complex bacterial communities, many of them non-cultivable and with interdependent metabolism where anaerobic populations most likely play an important role in its pathogenesis. The main symptoms are an increase of vaginal discharge and the unpleasant smell of it. It can lead to serious consequences for women, such as an increased risk of contracting sexually transmitted infections including human immunodeficiency virus and upper genital tract and pregnancy complications. Gram stain is the gold standard for microbiological diagnosis of BV, but can also be diagnosed using the Amsel clinical criteria. It should not be considered a sexually transmitted disease but it is highly related to sex. Recurrence is the main problem of medical treatment. Apart from BV, there are other dysbacteriosis less characterized like aerobic vaginitis of which further studies are coming slowly but are achieving more attention and consensus among specialists. PMID:27474242

  2. Bacterial indicator of agricultural management for soil under no-till crop production.

    Directory of Open Access Journals (Sweden)

    Eva L M Figuerola

    Full Text Available The rise in the world demand for food poses a challenge to our ability to sustain soil fertility and sustainability. The increasing use of no-till agriculture, adopted in many areas of the world as an alternative to conventional farming, may contribute to reduce the erosion of soils and the increase in the soil carbon pool. However, the advantages of no-till agriculture are jeopardized when its use is linked to the expansion of crop monoculture. The aim of this study was to survey bacterial communities to find indicators of soil quality related to contrasting agriculture management in soils under no-till farming. Four sites in production agriculture, with different soil properties, situated across a west-east transect in the most productive region in the Argentinean pampas, were taken as the basis for replication. Working definitions of Good no-till Agricultural Practices (GAP and Poor no-till Agricultural Practices (PAP were adopted for two distinct scenarios in terms of crop rotation, fertilization, agrochemicals use and pest control. Non-cultivated soils nearby the agricultural sites were taken as additional control treatments. Tag-encoded pyrosequencing was used to deeply sample the 16S rRNA gene from bacteria residing in soils corresponding to the three treatments at the four locations. Although bacterial communities as a whole appeared to be structured chiefly by a marked biogeographic provincialism, the distribution of a few taxa was shaped as well by environmental conditions related to agricultural management practices. A statistically supported approach was used to define candidates for management-indicator organisms, subsequently validated using quantitative PCR. We suggest that the ratio between the normalized abundance of a selected group of bacteria within the GP1 group of the phylum Acidobacteria and the genus Rubellimicrobium of the Alphaproteobacteria may serve as a potential management-indicator to discriminate between

  3. Bacterial Hydrodynamics

    Science.gov (United States)

    Lauga, Eric

    2016-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells, yet they represent the bulk of the world's biomass and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micrometer scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically complex environments. Using hydrodynamics as an organizing framework, I review the biomechanics of bacterial motility and look ahead to future challenges.

  4. Bacterial hydrodynamics

    CERN Document Server

    Lauga, Eric

    2015-01-01

    Bacteria predate plants and animals by billions of years. Today, they are the world's smallest cells yet they represent the bulk of the world's biomass, and the main reservoir of nutrients for higher organisms. Most bacteria can move on their own, and the majority of motile bacteria are able to swim in viscous fluids using slender helical appendages called flagella. Low-Reynolds-number hydrodynamics is at the heart of the ability of flagella to generate propulsion at the micron scale. In fact, fluid dynamic forces impact many aspects of bacteriology, ranging from the ability of cells to reorient and search their surroundings to their interactions within mechanically and chemically-complex environments. Using hydrodynamics as an organizing framework, we review the biomechanics of bacterial motility and look ahead to future challenges.

  5. In-depth characterization of wastewater bacterial community in response to algal growth using pyrosequencing.

    Science.gov (United States)

    Lee, Jangho; Lee, Juyoun; Lee, Tae Kwon; Woo, Sung-Geun; Baek, Gyu Seok; Park, Joonhong

    2013-10-28

    Microalgae have been regarded as a natural resource for sustainable materials and fuels, as well as for removal of nutrients and micropollutants from wastewater, and their interaction with bacteria in wastewater is a critical factor to consider because of the microbial diversity and complexity in a variety of wastewater conditions. Despite their importance, very little is known about the ecological interactions between algae and bacteria in a wastewater environment. In this study, we characterized the wastewater bacterial community in response to the growth of a Selenastrum gracile UTEX 325 population in a real municipal wastewater environment. The Roche 454 GS-FLX Titanium pyrosequencing technique was used for indepth analysis of amplicons of 16S rRNA genes from different conditions in each reactor, with and without the algal population. The algal growth reduced the bacterial diversity and affected the bacterial community structure in the wastewater. The following in-depth analysis of the deep-sequenced amplicons showed that the algal growth selectively stimulated Sphingobacteria class members, especially the Sediminibacterium genus population, in the municipal wastewater environment. PMID:23867704

  6. Effect of Dietary Protein Levels on Composition of Odorous Compounds and Bacterial Ecology in Pig Manure.

    Science.gov (United States)

    Cho, Sungback; Hwang, Okhwa; Park, Sungkwon

    2015-09-01

    This study was performed to investigate the effect of different levels of dietary crude protein (CP) on composition of odorous compounds and bacterial communities in pig manure. A total of 48 male pigs (average initial body weight 45 kg) fed diets containing three levels of dietary CP (20%, 17.5%, and 15%) and their slurry samples were collected from the pits under the floor every week for one month. Changes in composition of odorous compounds and bacterial communities were analyzed by gas chromatography and 454 FLX titanium pyrosequencing systems, respectively. Levels of phenols, indoles, short chain fatty acid and branched chain fatty acid were lowest (pp-cresol and skatole with Bacteroides, acetic acid and butyric acid with AM982595_g of Porphyromonadaceae family, and propionic acid with Tissierella. Taken together, administration of 15% CP showed less production of odorous compounds than 20% CP group and this result might be associated with the changes in bacterial communities especially whose roles in protein metabolism. PMID:26194219

  7. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation.

    Science.gov (United States)

    Hu, Ping; Hollister, Emily B; Somenahally, Anilkumar C; Hons, Frank M; Gentry, Terry J

    2014-01-01

    The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs). Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs). To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals) along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC) in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction) was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments). Bacterial populations were less impacted by ITCs, although there was a transient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms. PMID:25709600

  8. Soil bacterial and fungal communities respond differently to various isothiocyanates added for biofumigation

    Directory of Open Access Journals (Sweden)

    Ping eHu

    2015-01-01

    Full Text Available The meals from many oilseed crops have potential for biofumigation due to their release of biocidal compounds such as isothiocyanates (ITCs. Various ITCs are known to inhibit numerous pathogens; however, much less is known about how the soil microbial community responds to the different types of ITCs released from oilseed meals (SMs. To simulate applying ITC-releasing SMs to soil, we amended soil with 1% flax SM (contains no biocidal chemicals along with four types of ITCs (allyl, butyl, phenyl, and benzyl ITC in order to determine their effects on soil fungal and bacterial communities in a replicated microcosm study. Microbial communities were analyzed based on the ITS region for fungi and 16S rRNA gene for bacteria using qPCR and tag-pyrosequencing with 454 GS FLX titanium technology. A dramatic decrease in fungal populations (~85% reduction was observed after allyl ITC addition. Fungal community compositions also shifted following ITC amendments (e.g., Humicola increased in allyl and Mortierella in butyl ITC amendments. Bacterial populations were less impacted by ITCs, although there was atransient increase in the proportion of Firmicutes, related to bacteria know to be antagonistic to plant pathogens, following amendment with allyl ITC. Our results indicate that the type of ITC released from SMs can result in differential impacts on soil microorganisms. This information will aid selection and breeding of plants for biofumigation-based control of soil-borne pathogens while minimizing the impacts on non-target microorganisms.

  9. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    Management of bacterial infections is becoming increasingly difficult due to the emergence and increasing prevalence of bacterial pathogens that are resistant to available antibiotics. Conventional antibiotics generally kill bacteria by interfering with vital cellular functions, an approach that ...

  10. Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species

    Science.gov (United States)

    Lawler, Stephanie N.; Kellogg, Christina A.; France, Scott C; Clostio, Rachel W; Brooke, Sandra D.; Ross, Steve W.

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont.

  11. Coral-Associated Bacterial Diversity Is Conserved across Two Deep-Sea Anthothela Species.

    Science.gov (United States)

    Lawler, Stephanie N; Kellogg, Christina A; France, Scott C; Clostio, Rachel W; Brooke, Sandra D; Ross, Steve W

    2016-01-01

    Cold-water corals, similar to tropical corals, contain diverse and complex microbial assemblages. These bacteria provide essential biological functions within coral holobionts, facilitating increased nutrient utilization and production of antimicrobial compounds. To date, few cold-water octocoral species have been analyzed to explore the diversity and abundance of their microbial associates. For this study, 23 samples of the family Anthothelidae were collected from Norfolk (n = 12) and Baltimore Canyons (n = 11) from the western Atlantic in August 2012 and May 2013. Genetic testing found that these samples comprised two Anthothela species (Anthothela grandiflora and Anthothela sp.) and Alcyonium grandiflorum. DNA was extracted and sequenced with primers targeting the V4-V5 variable region of the 16S rRNA gene using 454 pyrosequencing with GS FLX Titanium chemistry. Results demonstrated that the coral host was the primary driver of bacterial community composition. Al. grandiflorum, dominated by Alteromonadales and Pirellulales had much higher species richness, and a distinct bacterial community compared to Anthothela samples. Anthothela species (A. grandiflora and Anthothela sp.) had very similar bacterial communities, dominated by Oceanospirillales and Spirochaetes. Additional analysis of core-conserved bacteria at 90% sample coverage revealed genus level conservation across Anthothela samples. This core included unclassified Oceanospirillales, Kiloniellales, Campylobacterales, and genus Spirochaeta. Members of this core were previously recognized for their functional capabilities in nitrogen cycling and suggest the possibility of a nearly complete nitrogen cycle within Anthothela species. Overall, many of the bacterial associates identified in this study have the potential to contribute to the acquisition and cycling of nutrients within the coral holobiont. PMID:27092120

  12. Prevention of bacterial adhesion

    DEFF Research Database (Denmark)

    Klemm, Per; Vejborg, Rebecca Munk; Hancock, Viktoria

    2010-01-01

    that imposes selection pressure for resistant bacteria. New approaches are urgently needed. Targeting bacterial virulence functions directly is an attractive alternative. An obvious target is bacterial adhesion. Bacterial adhesion to surfaces is the first step in colonization, invasion, and biofilm formation....... As such, adhesion represents the Achilles heel of crucial pathogenic functions. It follows that interference with adhesion can reduce bacterial virulence. Here, we illustrate this important topic with examples of techniques being developed that can inhibit bacterial adhesion. Some of these will become...

  13. Diversity and distribution of bacterial community in the coastal sediments of Bohai Bay, China

    Institute of Scientific and Technical Information of China (English)

    WANG Liping; ZHENG Binghui; LEI Kun

    2015-01-01

    In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA was extracted from the sediment samples, and was sequenced using a 454 GS FLX Titanium system. At 97%similarity, the sequences were assigned to 22 884 operational taxonomic units (OTUs) which belonged to 41 phyla, 84 classes, 268 genera and 789 species. At the different taxonomic levels, both the dominants and their distribution varied significantly among the six coastal sediments. Proteobacteria was the first dominant phylum across all the six coastal sediments, representing 57.52%, 60.66%, 45.10%, 60.92%, 56.63% and 56.59%, respectively. Bacteroidetes was the second dominant phylum at Stas S1, S2 and S4, while Chloroflexi was the second dominant phylum at Stas S3, S5 and S6. At class level,γ-Proteobacteria was the first dominant class at Stas S1, S2, S4 and S6, whileδ-Proteobacteria became the first dominant class at Stas S3 and S5. In addition, a large proportion of unclassified representatives have distributed at the different taxonomic levels. Canonical correspondence analysis (CCA) results indicated that the sediment texture, water depth (D), dissolved oxygen (DO), total nitrogen (TN) and nine EPA priority control polycyclic aromatic hydrocarbons (PAHs) including naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and indeno[1,2,3-cd]pyrene were the important factors in regulating the bacterial community composition. Those results are very important to further understand the roles of bacterial community in the coastal biogeochemical cycles.

  14. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions.

    Directory of Open Access Journals (Sweden)

    Heather Maughan

    Full Text Available The characterization of bacterial communities using DNA sequencing has revolutionized our ability to study microbes in nature and discover the ways in which microbial communities affect ecosystem functioning and human health. Here we describe Serial Illumina Sequencing (SI-Seq: a method for deep sequencing of the bacterial 16S rRNA gene using next-generation sequencing technology. SI-Seq serially sequences portions of the V5, V6 and V7 hypervariable regions from barcoded 16S rRNA amplicons using an Illumina short-read genome analyzer. SI-Seq obtains taxonomic resolution similar to 454 pyrosequencing for a fraction of the cost, and can produce hundreds of thousands of reads per sample even with very high multiplexing. We validated SI-Seq using single species and mock community controls, and via a comparison to cystic fibrosis lung microbiota sequenced using 454 FLX Titanium. Our control runs show that SI-Seq has a dynamic range of at least five orders of magnitude, can classify >96% of sequences to the genus level, and performs just as well as 454 and paired-end Illumina methods in estimation of standard microbial ecology diversity measurements. We illustrate the utility of SI-Seq in a pilot sample of central airway secretion samples from cystic fibrosis patients.

  15. Vimentin in Bacterial Infections

    Directory of Open Access Journals (Sweden)

    Tim N. Mak

    2016-04-01

    Full Text Available Despite well-studied bacterial strategies to target actin to subvert the host cell cytoskeleton, thus promoting bacterial survival, replication, and dissemination, relatively little is known about the bacterial interaction with other components of the host cell cytoskeleton, including intermediate filaments (IFs. IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge about the role of IFs in bacterial infections, focusing on the type III IF protein vimentin. Recent studies have revealed the involvement of vimentin in host cell defenses, acting as ligand for several pattern recognition receptors of the innate immune system. Two main aspects of bacteria-vimentin interactions are presented in this review: the role of vimentin in pathogen-binding on the cell surface and subsequent bacterial invasion and the interaction of cytosolic vimentin and intracellular pathogens with regards to innate immune signaling. Mechanistic insight is presented involving distinct bacterial virulence factors that target vimentin to subvert its function in order to change the host cell fate in the course of a bacterial infection.

  16. A Comparison between Transcriptome Sequencing and 16S Metagenomics for Detection of Bacterial Pathogens in Wildlife.

    Directory of Open Access Journals (Sweden)

    Maria Razzauti

    Full Text Available Rodents are major reservoirs of pathogens responsible for numerous zoonotic diseases in humans and livestock. Assessing their microbial diversity at both the individual and population level is crucial for monitoring endemic infections and revealing microbial association patterns within reservoirs. Recently, NGS approaches have been employed to characterize microbial communities of different ecosystems. Yet, their relative efficacy has not been assessed. Here, we compared two NGS approaches, RNA-Sequencing (RNA-Seq and 16S-metagenomics, assessing their ability to survey neglected zoonotic bacteria in rodent populations.We first extracted nucleic acids from the spleens of 190 voles collected in France. RNA extracts were pooled, randomly retro-transcribed, then RNA-Seq was performed using HiSeq. Assembled bacterial sequences were assigned to the closest taxon registered in GenBank. DNA extracts were analyzed via a 16S-metagenomics approach using two sequencers: the 454 GS-FLX and the MiSeq. The V4 region of the gene coding for 16S rRNA was amplified for each sample using barcoded universal primers. Amplicons were multiplexed and processed on the distinct sequencers. The resulting datasets were de-multiplexed, and each read was processed through a pipeline to be taxonomically classified using the Ribosomal Database Project. Altogether, 45 pathogenic bacterial genera were detected. The bacteria identified by RNA-Seq were comparable to those detected by 16S-metagenomics approach processed with MiSeq (16S-MiSeq. In contrast, 21 of these pathogens went unnoticed when the 16S-metagenomics approach was processed via 454-pyrosequencing (16S-454. In addition, the 16S-metagenomics approaches revealed a high level of coinfection in bank voles.We concluded that RNA-Seq and 16S-MiSeq are equally sensitive in detecting bacteria. Although only the 16S-MiSeq method enabled identification of bacteria in each individual reservoir, with subsequent derivation of

  17. Bacterial and eukaryotic biodiversity patterns in terrestrial and aquatic habitats in the Sør Rondane Mountains, Dronning Maud Land, East Antarctica.

    Science.gov (United States)

    Obbels, Dagmar; Verleyen, Elie; Mano, Marie-José; Namsaraev, Zorigto; Sweetlove, Maxime; Tytgat, Bjorn; Fernandez-Carazo, Rafael; De Wever, Aaike; D'hondt, Sofie; Ertz, Damien; Elster, Josef; Sabbe, Koen; Willems, Anne; Wilmotte, Annick; Vyverman, Wim

    2016-06-01

    The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations. PMID:26936447

  18. Amplicon pyrosequencing reveals the soil microbial diversity associated with invasive Japanese barberry (Berberis thunbergii DC.).

    Science.gov (United States)

    Coats, V C; Pelletreau, K N; Rumpho, M E

    2014-03-01

    The soil microbial community acts as a reservoir of microbes that directly influences the structure and composition of the aboveground plant community, promotes plant growth, increases stress tolerance and mediates local patterns of nutrient cycling. Direct interactions between plants and rhizosphere-dwelling microorganisms occur at, or near, the surface of the root. Upon introduction and establishment, invasive plants modify the soil microbial communities and soil biochemistry affecting bioremediation efforts and future plant communities. Here, we used tag-encoded FLX amplicon 454 pyrosequencing (TEFAP) to characterize the bacterial and fungal community diversity in the rhizosphere of Berberis thunbergii DC. (Japanese barberry) from invasive stands in coastal Maine to investigate effects of soil type, soil chemistry and surrounding plant cover on the soil microbial community structure. Acidobacteria, Actinobacteria, Proteobacteria and Verrucomicrobia were the dominant bacterial phyla, whereas fungal communities were comprised mostly of Ascomycota and Basidiomycota phyla members, including Agaricomycetes and Sordariomycetes. Bulk soil chemistry had more effect on the bacterial community structure than the fungal community. An effect of geographic location was apparent in the rhizosphere microbial communities, yet it was less significant than the effect of surrounding plant cover. These data demonstrate a high degree of spatial variation in the rhizosphere microbial communities of Japanese barberry with apparent effects of soil chemistry, location and canopy cover on the microbial community structure. PMID:24118303

  19. Interfering with bacterial gossip

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Givskov, Michael

    2011-01-01

    defense. Antibiotics exhibit a rather limited effect on biofilms. Furthermore, antibiotics have an ‘inherent obsolescence’ because they select for development of resistance. Bacterial infections with origin in bacterial biofilms have become a serious threat in developed countries. Pseudomonas aeruginosa...... that appropriately target bacteria in their relevant habitat with the aim of mitigating their destructive impact on patients. In this review we describe molecular mechanisms involved in “bacterial gossip” (more scientifically referred to as quorum sensing (QS) and c-di-GMP signaling), virulence, biofilm formation...

  20. Bacterial Wound Culture

    Science.gov (United States)

    ... Home Visit Global Sites Search Help? Bacterial Wound Culture Share this page: Was this page helpful? Also known as: Aerobic Wound Culture; Anaerobic Wound Culture Formal name: Culture, wound Related ...

  1. Bacterial surface adaptation

    Science.gov (United States)

    Utada, Andrew

    2014-03-01

    Biofilms are structured multi-cellular communities that are fundamental to the biology and ecology of bacteria. Parasitic bacterial biofilms can cause lethal infections and biofouling, but commensal bacterial biofilms, such as those found in the gut, can break down otherwise indigestible plant polysaccharides and allow us to enjoy vegetables. The first step in biofilm formation, adaptation to life on a surface, requires a working knowledge of low Reynolds number fluid physics, and the coordination of biochemical signaling, polysaccharide production, and molecular motility motors. These crucial early stages of biofilm formation are at present poorly understood. By adapting methods from soft matter physics, we dissect bacterial social behavior at the single cell level for several prototypical bacterial species, including Pseudomonas aeruginosa and Vibrio cholerae.

  2. Bacterial intermediate filaments

    DEFF Research Database (Denmark)

    Charbon, Godefroid; Cabeen, M.; Jacobs-Wagner, C.

    2009-01-01

    Crescentin, which is the founding member of a rapidly growing family of bacterial cytoskeletal proteins, was previously proposed to resemble eukaryotic intermediate filament (IF) proteins based on structural prediction and in vitro polymerization properties. Here, we demonstrate that crescentin...

  3. Bacterial Meningitis in Infants

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-04-01

    Full Text Available A retrospective study of 80 infantile patients (ages 30-365 days; 47 male, 33 female with culture-proven bacterial meningitis seen over a 16 year period (1986-2001 is reported from Taiwan.

  4. The bacterial lipocalins.

    Science.gov (United States)

    Bishop, R E

    2000-10-18

    The lipocalins were once regarded as a eukaryotic protein family, but new members have been recently discovered in bacteria. The first bacterial lipocalin (Blc) was identified in Escherichia coli as an outer membrane lipoprotein expressed under conditions of environmental stress. Blc is distinguished from most lipocalins by the absence of intramolecular disulfide bonds, but the presence of a membrane anchor is shared with two of its closest homologues, apolipoprotein D and lazarillo. Several common features of the membrane-anchored lipocalins suggest that each may play an important role in membrane biogenesis and repair. Additionally, Blc proteins are implicated in the dissemination of antibiotic resistance genes and in the activation of immunity. Recent genome sequencing efforts reveal the existence of at least 20 bacterial lipocalins. The lipocalins appear to have originated in Gram-negative bacteria and were probably transferred horizontally to eukaryotes from the endosymbiotic alpha-proteobacterial ancestor of the mitochondrion. The genome sequences also reveal that some bacterial lipocalins exhibit disulfide bonds and alternative modes of subcellular localization, which include targeting to the periplasmic space, the cytoplasmic membrane, and the cytosol. The relationships between bacterial lipocalin structure and function further illuminate the common biochemistry of bacterial and eukaryotic cells.

  5. Diagnosis of bacterial vaginosis

    Directory of Open Access Journals (Sweden)

    Đukić Slobodanka

    2013-01-01

    Full Text Available Bacterial vaginosis is a common, complex clinical syndrome characterized by alterations in the normal vaginal flora. When symptomatic, it is associated with a malodorous vaginal discharge and on occasion vaginal burning or itching. Under normal conditions, lactobacilli constitute 95% of the bacteria in the vagina. Bacterial vaginosis is associated with severe reduction or absence of the normal H2O2­producing lactobacilli and overgrowth of anaerobic bacteria and Gardnerella vaginalis, Atopobium vaginae, Mycoplasma hominis and Mobiluncus species. Most types of infectious disease are diagnosed by culture, by isolating an antigen or RNA/DNA from the microbe, or by serodiagnosis to determine the presence of antibodies to the microbe. Therefore, demonstration of the presence of an infectious agent is often a necessary criterion for the diagnosis of the disease. This is not the case for bacterial vaginosis, since the ultimate cause of the disease is not yet known. There are a variety of methods for the diagnosis of bacterial vaginosis but no method can at present be regarded as the best. Diagnosing bacterial vaginosis has long been based on the clinical criteria of Amsel, whereby three of four defined criteria must be satisfied. Nugent’s scoring system has been further developed and includes validation of the categories of observable bacteria structures. Up­to­date molecular tests are introduced, and better understanding of vaginal microbiome, a clear definition for bacterial vaginosis, and short­term and long­term fluctuations in vaginal microflora will help to better define molecular tests within the broader clinical context.

  6. Bacterial glycosyltransferase toxins.

    Science.gov (United States)

    Jank, Thomas; Belyi, Yury; Aktories, Klaus

    2015-12-01

    Mono-glycosylation of host proteins is a common mechanism by which bacterial protein toxins manipulate cellular functions of eukaryotic target host cells. Prototypic for this group of glycosyltransferase toxins are Clostridium difficile toxins A and B, which modify guanine nucleotide-binding proteins of the Rho family. However, toxin-induced glycosylation is not restricted to the Clostridia. Various types of bacterial pathogens including Escherichia coli, Yersinia, Photorhabdus and Legionella species produce glycosyltransferase toxins. Recent studies discovered novel unexpected variations in host protein targets and amino acid acceptors of toxin-catalysed glycosylation. These findings open new perspectives in toxin as well as in carbohydrate research.

  7. Bacterial endophytes mediate positive feedback effects of early legume termination times on the yield of subsequent durum wheat crops.

    Science.gov (United States)

    Yang, Chao; Hamel, Chantal; Gan, Yantai; Vujanovic, Vladimir

    2012-12-01

    Field crops influence the biotic properties of the soil, impacting the health and productivity of subsequent crops. Polymerase chain reaction and 454 GS FLX pyrosequencing of amplicons were used to clarify the legacy of chickpea and pea crops on the quality of the bacterial community colonizing the root endosphere of subsequent crops of wheat, in a replicated field study. Similar communities of root endosphere bacteria were formed in durum wheat grown after pea and chickpea crops when chickpea crops were terminated as early as pea (July). Termination of the chickpea crops in September led to the domination of Firmicutes in wheat root endosphere; Actinobacteria dominated the wheat root endosphere following early pulse crop termination. The architecture of wheat plants was correlated with the composition of its root endosphere community. High grain yield was associated with the production of fewer but larger wheat heads, the abundance of endospheric Actinobacteria and Acidobacteria, and the scarcity of endospheric Firmicutes. Pulse termination time affected wheat root endosphere colonization strongly in 2009 but weakly in 2010, an abnormally wet year. This study improved our understanding of the so-called "crop rotation effect" in pulse-wheat systems and showed how this system can be manipulated through agronomic decisions.

  8. Seizures Complicating Bacterial Meningitis

    Directory of Open Access Journals (Sweden)

    J Gordon Millichap

    2004-09-01

    Full Text Available The clinical data of 116 patients, 1 month to <5 years of age, admitted for bacterial meningitis, and grouped according to those with and without seizures during hospitalization, were compared in a study at Buddhist Dalin Tzu Chi General Hospital, Chang Gung Memorial Hospital and other centers in Taiwan.

  9. Bacterial extracellular lignin peroxidase

    Science.gov (United States)

    Crawford, Donald L.; Ramachandra, Muralidhara

    1993-01-01

    A newly discovered lignin peroxidase enzyme is provided. The enzyme is obtained from a bacterial source and is capable of degrading the lignin portion of lignocellulose in the presence of hydrogen peroxide. The enzyme is extracellular, oxidative, inducible by lignin, larch wood xylan, or related substrates and capable of attacking certain lignin substructure chemical bonds that are not degradable by fungal lignin peroxidases.

  10. Bacterial Skin Infections

    Science.gov (United States)

    ... or scraped, the injury should be washed with soap and water and covered with a sterile bandage. Petrolatum may be applied to open areas to keep the tissue moist and to try to prevent bacterial invasion. Doctors recommend that people do not use ...

  11. Vimentin in Bacterial Infections

    DEFF Research Database (Denmark)

    Mak, Tim N; Brüggemann, Holger

    2016-01-01

    filaments (IFs). IFs have not only roles in maintaining the structural integrity of the cell, but they are also involved in many cellular processes including cell adhesion, immune signaling, and autophagy, processes that are important in the context of bacterial infections. Here, we summarize the knowledge...

  12. Bacterial microflora of nectarines

    Science.gov (United States)

    Microflora of fruit surfaces has been the best source of antagonists against fungi causing postharvest decays of fruit. However, there is little information on microflora colonizing surfaces of fruits other than grapes, apples, and citrus fruit. We characterized bacterial microflora on nectarine f...

  13. Modeling intraocular bacterial infections.

    Science.gov (United States)

    Astley, Roger A; Coburn, Phillip S; Parkunan, Salai Madhumathi; Callegan, Michelle C

    2016-09-01

    Bacterial endophthalmitis is an infection and inflammation of the posterior segment of the eye which can result in significant loss of visual acuity. Even with prompt antibiotic, anti-inflammatory and surgical intervention, vision and even the eye itself may be lost. For the past century, experimental animal models have been used to examine various aspects of the pathogenesis and pathophysiology of bacterial endophthalmitis, to further the development of anti-inflammatory treatment strategies, and to evaluate the pharmacokinetics and efficacies of antibiotics. Experimental models allow independent control of many parameters of infection and facilitate systematic examination of infection outcomes. While no single animal model perfectly reproduces the human pathology of bacterial endophthalmitis, investigators have successfully used these models to understand the infectious process and the host response, and have provided new information regarding therapeutic options for the treatment of bacterial endophthalmitis. This review highlights experimental animal models of endophthalmitis and correlates this information with the clinical setting. The goal is to identify knowledge gaps that may be addressed in future experimental and clinical studies focused on improvements in the therapeutic preservation of vision during and after this disease. PMID:27154427

  14. Heme uptake in bacterial pathogens

    OpenAIRE

    Contreras, Heidi; Chim, Nicholas; Credali, Alfredo; Goulding, Celia W.

    2014-01-01

    Iron is an essential nutrient for the survival of organisms. Bacterial pathogens possess specialized pathways to acquire heme from their human hosts. In this review, we present recent structural and biochemical data that provide mechanistic insights into several bacterial heme uptake pathways, encompassing the sequestration of heme from human hemoproteins to secreted or membrane-associated bacterial proteins, the transport of heme across bacterial membranes, and the degradation of heme within...

  15. Bacterial chemoreceptors and chemoeffectors.

    Science.gov (United States)

    Bi, Shuangyu; Lai, Luhua

    2015-02-01

    Bacteria use chemotaxis signaling pathways to sense environmental changes. Escherichia coli chemotaxis system represents an ideal model that illustrates fundamental principles of biological signaling processes. Chemoreceptors are crucial signaling proteins that mediate taxis toward a wide range of chemoeffectors. Recently, in deep study of the biochemical and structural features of chemoreceptors, the organization of higher-order clusters in native cells, and the signal transduction mechanisms related to the on-off signal output provides us with general insights to understand how chemotaxis performs high sensitivity, precise adaptation, signal amplification, and wide dynamic range. Along with the increasing knowledge, bacterial chemoreceptors can be engineered to sense novel chemoeffectors, which has extensive applications in therapeutics and industry. Here we mainly review recent advances in the E. coli chemotaxis system involving structure and organization of chemoreceptors, discovery, design, and characterization of chemoeffectors, and signal recognition and transduction mechanisms. Possible strategies for changing the specificity of bacterial chemoreceptors to sense novel chemoeffectors are also discussed.

  16. Bacterial Colony Optimization

    Directory of Open Access Journals (Sweden)

    Ben Niu

    2012-01-01

    Full Text Available This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO. BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism is developed to simplify the bacterial optimization, which is spread over the whole optimization process. However, the other behaviors such as elimination, reproduction, and migration are implemented only when the given conditions are satisfied. Two types of interactive communication schemas: individuals exchange schema and group exchange schema are designed to improve the optimization efficiency. In the simulation studies, a set of 12 benchmark functions belonging to three classes (unimodal, multimodal, and rotated problems are performed, and the performances of the proposed algorithms are compared with five recent evolutionary algorithms to demonstrate the superiority of BCO.

  17. [Bacterial diseases of rape].

    Science.gov (United States)

    Zakharova, O M; Mel'nychuk, M D; Dankevych, L A; Patyka, V P

    2012-01-01

    Bacterial destruction of the culture was described and its agents identified in the spring and winter rape crops. Typical symptoms are the following: browning of stem tissue and its mucilagization, chlorosis of leaves, yellowing and beginning of soft rot in the place of leaf stalks affixion to stems, loss of pigmentation (violet). Pathogenic properties of the collection strains and morphological, cultural, physiological, and biochemical properties of the agents of rape's bacterial diseases isolated by the authors have been investigated. It was found that all the isolates selected by the authors are highly or moderately aggressive towards different varieties of rape. According to the complex of phenotypic properties 44% of the total number of isolates selected by the authors are related to representatives of the genus Pseudomonas, 37% - to Xanthomonas and 19% - to Pectobacterium. PMID:23293826

  18. Bacterial transformation of terpenoids

    International Nuclear Information System (INIS)

    Data on the bacterial transformation of terpenoids published in the literature in the past decade are analyzed. Possible pathways for chemo-, regio- and stereoselective modifications of terpenoids are discussed. Considerable attention is given to new technological approaches to the synthesis of terpenoid derivatives suitable for the use in the perfume and food industry and promising as drugs and chiral intermediates for fine organic synthesis. The bibliography includes 246 references

  19. Supramolecular bacterial systems

    OpenAIRE

    Sankaran, Shrikrishnan

    2015-01-01

    For nearly over a decade, a wide variety of dynamic and responsive supramolecular architectures have been investigated and developed to address biological systems. Since the non-covalent interactions between individual molecular components in such architectures are similar to the interactions found in living systems, it was possible to integrate chemically-synthesized and naturally-occurring components to create platforms with interesting bioactive properties. Bacterial cells and recombinant ...

  20. Bacterial Colony Optimization

    OpenAIRE

    Ben Niu; Hong Wang

    2012-01-01

    This paper investigates the behaviors at different developmental stages in Escherichia coli (E. coli) lifecycle and developing a new biologically inspired optimization algorithm named bacterial colony optimization (BCO). BCO is based on a lifecycle model that simulates some typical behaviors of E. coli bacteria during their whole lifecycle, including chemotaxis, communication, elimination, reproduction, and migration. A newly created chemotaxis strategy combined with communication mechanism i...

  1. tmRNA-mediated trans-translation as the major ribosome rescue system in a bacterial cell

    Directory of Open Access Journals (Sweden)

    Hyouta eHimeno

    2014-04-01

    Full Text Available tmRNA (transfer messenger RNA; also known as 10Sa RNA or SsrA RNA is a small RNA molecule that is conserved among bacteria. It has structural and functional similarities to tRNA: it has an upper half of the tRNA-like structure, its 5’ end is processed by RNase P, it has typical tRNA-specific base modifications, it is aminoacylated with alanine, it binds to EF-Tu after aminoacylation and it enters the ribosome with EF-Tu and GTP. However, tmRNA lacks an anticodon, and instead it has a coding sequence for a short peptide called tag-peptide. An elaborate interplay of actions of tmRNA as both tRNA and mRNA with the help of a tmRNA-binding protein, SmpB, facilitates trans-translation, which produces a single polypeptide from two mRNA molecules. Initially alanyl-tmRNA in complex with EF-Tu and SmpB enters the vacant A-site of the stalled ribosome like aminoacyl-tRNA but without a codon-anticodon interaction, and subsequently truncated mRNA is replaced with the tag-encoding region of tmRNA. During these processes, not only tmRNA but also SmpB structurally and functionally mimics both tRNA and mRNA. Thus trans-translation rescues the stalled ribosome, thereby allowing recycling of the ribosome. Since the tag-peptide serves as a target of AAA+ proteases, the trans-translation products are preferentially degraded so that they do not accumulate in the cell. Although alternative rescue systems have recently been revealed, trans-translation is the only system that universally exists in bacteria. Furthermore, it is unique in that it employs a small RNA and that it prevents accumulation of nonfunctional proteins from truncated mRNA in the cell. It might play the major role in rescuing the stalled translation in the bacterial cell.

  2. First evidence for the presence of iron oxidizing zetaproteobacteria at the Levantine continental margins.

    Directory of Open Access Journals (Sweden)

    Maxim Rubin-Blum

    Full Text Available During the 2010-2011 E/V Nautilus exploration of the Levantine basin's sediments at the depth of 300-1300 m, densely patched orange-yellow flocculent mats were observed at various locations along the continental margin of Israel. Cores from the mat and the control locations were collected by remotely operated vehicle system (ROV operated by the E/V Nautilus team. Microscopic observation and phylogenetic analysis of microbial 16S and 23S rRNA gene sequences indicated the presence of zetaproteobacterial stalk forming Mariprofundus spp.-like prokaryotes in the mats. Bacterial tag-encoded FLX amplicon pyrosequencing determined that zetaproteobacterial populations were a dominant fraction of microbial community in the biofilm. We show for the first time that zetaproteobacterial may thrive at the continental margins, regardless of crustal iron supply, indicating significant fluxes of ferrous iron to the sediment-water interface. In light of this discovery, we discuss the potential bioavailability of sediment-water interface iron for organisms in the overlying water column.

  3. Spontaneous bacterial peritonitis

    Institute of Scientific and Technical Information of China (English)

    Anastasios Koulaouzidis; Shivaram Bhat; Athar A Saeed

    2009-01-01

    Since its initial description in 1964, research has transformed spontaneous bacterial peritonitis (SBP) from a feared disease (with reported mortality of 90%) to a treatable complication of decompensated cirrhosis,albeit with steady prevalence and a high recurrence rate. Bacterial translocation, the key mechanism in the pathogenesis of SBP, is only possible because of the concurrent failure of defensive mechanisms in cirrhosis.Variants of SBP should be treated. Leucocyte esterase reagent strips have managed to shorten the 'tap-toshot' time, while future studies should look into their combined use with ascitic fluid pH. Third generation cephalosporins are the antibiotic of choice because they have a number of advantages. Renal dysfunction has been shown to be an independent predictor of mortality in patients with SBP. Albumin is felt to reduce the risk of renal impairment by improving effective intravascular volume, and by helping to bind proinflammatory molecules. Following a single episode of SBP, patients should have long-term antibiotic prophylaxis and be considered for liver transplantation.

  4. Antimicrobials for bacterial bioterrorism agents.

    Science.gov (United States)

    Sarkar-Tyson, Mitali; Atkins, Helen S

    2011-06-01

    The limitations of current antimicrobials for highly virulent pathogens considered as potential bioterrorism agents drives the requirement for new antimicrobials that are suitable for use in populations in the event of a deliberate release. Strategies targeting bacterial virulence offer the potential for new countermeasures to combat bacterial bioterrorism agents, including those active against a broad spectrum of pathogens. Although early in the development of antivirulence approaches, inhibitors of bacterial type III secretion systems and cell division mechanisms show promise for the future.

  5. [Small intestine bacterial overgrowth].

    Science.gov (United States)

    Leung Ki, E L; Roduit, J; Delarive, J; Guyot, J; Michetti, P; Dorta, G

    2010-01-27

    Small intestine bacterial overgrowth (SIBO) is a condition characterised by nutrient malabsorption and excessive bacteria in the small intestine. It typically presents with diarrhea, flatulence and a syndrome of malabsorption (steatorrhea, macrocytic anemia). However, it may be asymptomatic in the eldery. A high index of suspicion is necessary in order to differentiate SIBO from other similar presenting disorders such as coeliac disease, lactose intolerance or the irritable bowel syndrome. A search for predisposing factor is thus necessary. These factors may be anatomical (stenosis, blind loop), or functional (intestinal hypomotility, achlorydria). The hydrogen breath test is the most frequently used diagnostic test although it lacks standardisation. The treatment of SIBO consists of eliminating predisposing factors and broad-spectrum antibiotic therapy. PMID:20214190

  6. Studying bacterial multispecies biofilms

    DEFF Research Database (Denmark)

    Røder, Henriette Lyng; Sørensen, Søren Johannes; Burmølle, Mette

    2016-01-01

    The high prevalence and significance of multispecies biofilms have now been demonstrated in various bacterial habitats with medical, industrial, and ecological relevance. It is highly evident that several species of bacteria coexist and interact in biofilms, which highlights the need for evaluating...... the approaches used to study these complex communities. This review focuses on the establishment of multispecies biofilms in vitro, interspecies interactions in microhabitats, and how to select communities for evaluation. Studies have used different experimental approaches; here we evaluate the benefits...... and drawbacks of varying the degree of complexity. This review aims to facilitate multispecies biofilm research in order to expand the current limited knowledge on interspecies interactions. Recent technological advances have enabled total diversity analysis of highly complex and diverse microbial communities...

  7. Bacterial proteases and virulence

    DEFF Research Database (Denmark)

    Frees, Dorte; Brøndsted, Lone; Ingmer, Hanne

    2013-01-01

    Bacterial pathogens rely on proteolysis for variety of purposes during the infection process. In the cytosol, the main proteolytic players are the conserved Clp and Lon proteases that directly contribute to virulence through the timely degradation of virulence regulators and indirectly by providing...... tolerance to adverse conditions such as those experienced in the host. In the membrane, HtrA performs similar functions whereas the extracellular proteases, in close contact with host components, pave the way for spreading infections by degrading host matrix components or interfering with host cell...... signalling to short-circuit host cell processes. Common to both intra- and extracellular proteases is the tight control of their proteolytic activities. In general, substrate recognition by the intracellular proteases is highly selective which is, in part, attributed to the chaperone activity associated...

  8. Bacterial Protein-Tyrosine Kinases

    DEFF Research Database (Denmark)

    Shi, Lei; Kobir, Ahasanul; Jers, Carsten;

    2010-01-01

    in exopolysaccharide production, virulence, DNA metabolism, stress response and other key functions of the bacterial cell. BY-kinases act through autophosphorylation (mainly in exopolysaccharide production) and phosphorylation of other proteins, which have in most cases been shown to be activated by tyrosine......Bacteria and Eukarya share essentially the same family of protein-serine/threonine kinases, also known as the Hanks-type kinases. However, when it comes to protein-tyrosine phosphorylation, bacteria seem to have gone their own way. Bacterial protein-tyrosine kinases (BY-kinases) are bacterial...... and highlighted their importance in bacterial physiology. Having no orthologues in Eukarya, BY-kinases are receiving a growing attention from the biomedical field, since they represent a particularly promising target for anti-bacterial drug design....

  9. Molecular approaches for bacterial azoreductases

    Directory of Open Access Journals (Sweden)

    Montira Leelakriangsak

    2013-12-01

    Full Text Available Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N- in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study bacterial azoreductases. The construction of the recombinant protein by cloning and the overexpression of azoreductase is described. The mechanisms and function of bacterial azoreductases can be studied by other molecular techniques discussed in this review, such as RT-PCR, southern blot analysis, western blot analysis, zymography, and muta-genesis in order to understand bacterial azoreductase properties, function and application. In addition, understanding the regulation of azoreductase gene expression will lead to the systematic use of gene manipulation in bacterial strains for new strategies in future waste remediation technologies.

  10. Positioning of bacterial chemoreceptors.

    Science.gov (United States)

    Jones, Christopher W; Armitage, Judith P

    2015-05-01

    For optimum growth, bacteria must adapt to their environment, and one way that many species do this is by moving towards favourable conditions. To do so requires mechanisms to both physically drive movement and provide directionality to this movement. The pathways that control this directionality comprise chemoreceptors, which, along with an adaptor protein (CheW) and kinase (CheA), form large hexagonal arrays. These arrays can be formed around transmembrane receptors, resulting in arrays embedded in the inner membrane, or they can comprise soluble receptors, forming arrays in the cytoplasm. Across bacterial species, chemoreceptor arrays (both transmembrane and soluble) are localised to a variety of positions within the cell; some species with multiple arrays demonstrate this variety within individual cells. In many cases, the positioning pattern of the arrays is linked to the need for segregation of arrays between daughter cells on division, ensuring the production of chemotactically competent progeny. Multiple mechanisms have evolved to drive this segregation, including stochastic self-assembly, cellular landmarks, and the utilisation of ParA homologues. The variety of mechanisms highlights the importance of chemotaxis to motile species.

  11. Evolution of Bacterial Suicide

    Science.gov (United States)

    Tchernookov, Martin; Nemenman, Ilya

    2013-03-01

    While active, controlled cellular suicide (autolysis) in bacteria is commonly observed, it has been hard to argue that autolysis can be beneficial to an individual who commits it. We propose a theoretical model that predicts that bacterial autolysis is evolutionarily advantageous to an individualand would fixate in physically structured environments for stationary phase colonies. We perform spatially resolved agent-based simulations of the model, which predict that lower mixing in the environment results in fixation of a higher autolysis rate from a single mutated cell, regardless of the colony's genetic diversity. We argue that quorum sensing will fixate as well, even if initially rare, if it is coupled to controlling the autolysis rate. The model does not predict a strong additional competitive advantage for cells where autolysis is controlled by quorum sensing systems that distinguish self from nonself. These predictions are broadly supported by recent experimental results in B. subtilisand S. pneumoniae. Research partially supported by the James S McDonnell Foundation grant No. 220020321 and by HFSP grant No. RGY0084/2011.

  12. Electromagnetism of Bacterial Growth

    Science.gov (United States)

    Ainiwaer, Ailiyasi

    2011-10-01

    There has been increasing concern from the public about personal health due to the significant rise in the daily use of electrical devices such as cell phones, radios, computers, GPS, video games and television. All of these devices create electromagnetic (EM) fields, which are simply magnetic and electric fields surrounding the appliances that simultaneously affect the human bio-system. Although these can affect the human system, obstacles can easily shield or weaken the electrical fields; however, magnetic fields cannot be weakened and can pass through walls, human bodies and most other objects. The present study was conducted to examine the possible effects of bacteria when exposed to magnetic fields. The results indicate that a strong causal relationship is not clear, since different magnetic fields affect the bacteria differently, with some causing an increase in bacterial cells, and others causing a decrease in the same cells. This phenomenon has yet to be explained, but the current study attempts to offer a mathematical explanation for this occurrence. The researchers added cultures to the magnetic fields to examine any effects to ion transportation. Researchers discovered ions such as potassium and sodium are affected by the magnetic field. A formula is presented in the analysis section to explain this effect.

  13. Bacterial Communities: Interactions to Scale

    Science.gov (United States)

    Stubbendieck, Reed M.; Vargas-Bautista, Carol; Straight, Paul D.

    2016-01-01

    In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities. PMID:27551280

  14. Bacterial Communities: Interactions to Scale

    Directory of Open Access Journals (Sweden)

    Reed M. Stubbendieck

    2016-08-01

    Full Text Available In the environment, bacteria live in complex multispecies communities. These communities span in scale from small, multicellular aggregates to billions or trillions of cells within the gastrointestinal tract of animals. The dynamics of bacterial communities are determined by pairwise interactions that occur between different species in the community. Though interactions occur between a few cells at a time, the outcomes of these interchanges have ramifications that ripple through many orders of magnitude, and ultimately affect the macroscopic world including the health of host organisms. In this review we cover how bacterial competition influences the structures of bacterial communities. We also emphasize methods and insights garnered from culture-dependent pairwise interaction studies, metagenomic analyses, and modeling experiments. Finally, we argue that the integration of multiple approaches will be instrumental to future understanding of the underlying dynamics of bacterial communities.

  15. Meningitis bacteriana Bacterial meningitis

    Directory of Open Access Journals (Sweden)

    Ana Teresa Alvarado Guevara

    2006-03-01

    causales son virales lo cual conlleva a las diferentes sub-clasificaciones. También en ciertos casos puede ser ocasionada por hongos, bacterias atípicas, micobacterias y parásitos.In Costa Rica the bacterial meningitis had turn into a high-priority subject in which to monitoring epidemiologist. It had been talked about in the last months, to dice an increase in the attention is published of this subject, due to this phenomenon it becomes necessary to make a revision of topic. Meningitis is an inflammation of leptomeninges and colonization of the subarachnoid cerebrospinal fluid (LCR due to different agents, which produces meningeal symptoms (ex. migraine, neck rigidity, and photophobia and pleocytosis in LCR. De pending on the variables to take into account is possible to group it in different classifications, taking into account the time of evolution are possible to be divided in acute or chronic, to first with few hours or days of beginning of the symptoms, whereas the chronicle also presents a silence course but of the disease of approximately 4 weeks of instauration. There is a difference according to its etiologic agent; they can be infectious and non-infectious. Examples of common non-infectious causes include medications (ex, nonsteroidal anti-inflammatory drugs, and antibiotics and carcinomatosis. A classification exists as well according to the causal agent. The acute bacterial meningitis remarks a bacterial origin of the syndrome, which characterizes by the by an acute onset of meningeal symptoms and neutrophilic pleocytosis. Each one of the bacteriological agents, parasitic or fungus finishes by characterizing the different presentations of the clinical features (ex, meningocóccica meningitis, Cryptococcus meningitis. Finally, there is also the aseptic meningitis, denominated in this form because it’s nonpyogenic cellular response caused by many types of agents. The patients show an acute beginning of symptoms, fever and lymphocytic pleocytosis. After

  16. Bacterial Culture of Neonatal Sepsis

    OpenAIRE

    AH Movahedian; R Moniri; Z Mosayebi

    2006-01-01

    Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI) broth accordi...

  17. Mast cells in bacterial infections

    OpenAIRE

    Rönnberg, Elin

    2014-01-01

    Mast cells are implicated in immunity towards bacterial infection, but the molecular mechanisms by which mast cells contribute to the host response are only partially understood. Previous studies have examined how mast cells react to purified bacterial cell wall components, such as peptidoglycan and lipopolysaccharide. To investigate how mast cells react to live bacteria we co-cultured mast cells and the gram-positive bacteria Streptococcus equi (S. equi) and Staphylococcus aureus (S. aureus)...

  18. Bacterial Alkaloids Prevent Amoebal Predation.

    Science.gov (United States)

    Klapper, Martin; Götze, Sebastian; Barnett, Robert; Willing, Karsten; Stallforth, Pierre

    2016-07-25

    Bacterial defense mechanisms have evolved to protect bacteria against predation by nematodes, predatory bacteria, or amoebae. We identified novel bacterial alkaloids (pyreudiones A-D) that protect the producer, Pseudomonas fluorescens HKI0770, against amoebal predation. Isolation, structure elucidation, total synthesis, and a proposed biosynthetic pathway for these structures are presented. The generation of P. fluorescens gene-deletion mutants unable to produce pyreudiones rendered the bacterium edible to a variety of soil-dwelling amoebae. PMID:27294402

  19. Bacterial cellulose/boehmite composites

    International Nuclear Information System (INIS)

    Composites based on bacterial cellulose membranes and boehmite were obtained. SEM results indicate that the bacterial cellulose (BC) membranes are totally covered by boehmite and obtained XRD patterns suggest structural changes due to this boehmite addition. Thermal stability is accessed through TG curves and is dependent on boehmite content. Transparency is high comparing to pure BC as can be seen through UV-vis absorption spectroscopy. (author)

  20. Pyrosequencing-based analysis of the microbiome associated with the horn fly, Haematobia irritans.

    Directory of Open Access Journals (Sweden)

    Azhahianambi Palavesam

    Full Text Available The horn fly, Haematobia irritans, is one of the most economically important pests of cattle. Insecticides have been a major element of horn fly management programs. Growing concerns with insecticide resistance, insecticide residues on farm products, and non-availability of new generation insecticides, are serious issues for the livestock industry. Alternative horn fly control methods offer the promise to decrease the use of insecticides and reduce the amount of insecticide residues on livestock products and give an impetus to the organic livestock farming segment. The horn fly, an obligatory blood feeder, requires the help of microflora to supply additional nutrients and metabolize the blood meal. Recent advancements in DNA sequencing methodologies enable researchers to examine the microflora diversity independent of culture methods. We used the bacterial 16S tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP method to carry out the classification analysis of bacterial flora in adult female and male horn flies and horn fly eggs. The bTEFAP method identified 16S rDNA sequences in our samples which allowed the identification of various prokaryotic taxa associated with the life stage examined. This is the first comprehensive report of bacterial flora associated with the horn fly using a culture-independent method. Several rumen, environmental, symbiotic and pathogenic bacteria associated with the horn fly were identified and quantified. This is the first report of the presence of Wolbachia in horn flies of USA origin and is the first report of the presence of Rikenella in an obligatory blood feeding insect.

  1. The Human Vaginal Bacterial Biota and Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Sujatha Srinivasan

    2008-01-01

    Full Text Available The bacterial biota of the human vagina can have a profound impact on the health of women and their neonates. Changes in the vaginal microbiota have been associated with several adverse health outcomes including premature birth, pelvic inflammatory disease, and acquisition of HIV infection. Cultivation-independent molecular methods have provided new insights regarding bacterial diversity in this important niche, particularly in women with the common condition bacterial vaginosis (BV. PCR methods have shown that women with BV have complex communities of vaginal bacteria that include many fastidious species, particularly from the phyla Bacteroidetes and Actinobacteria. Healthy women are mostly colonized with lactobacilli such as Lactobacillus crispatus, Lactobacillus jensenii, and Lactobacillus iners, though a variety of other bacteria may be present. The microbiology of BV is heterogeneous. The presence of Gardnerella vaginalis and Atopobium vaginae coating the vaginal epithelium in some subjects with BV suggests that biofilms may contribute to this condition.

  2. Bacterial tactic responses.

    Science.gov (United States)

    Armitage, J P

    1999-01-01

    Many, if not most, bacterial species swim. The synthesis and operation of the flagellum, the most complex organelle of a bacterium, takes a significant percentage of cellular energy, particularly in the nutrient limited environments in which many motile species are found. It is obvious that motility accords cells a survival advantage over non-motile mutants under normal, poorly mixed conditions and is an important determinant in the development of many associations between bacteria and other organisms, whether as pathogens or symbionts and in colonization of niches and the development of biofilms. This survival advantage is the result of sensory control of swimming behaviour. Although too small to sense a gradient along the length of the cell, and unable to swim great distances because of buffetting by Brownian motion and the curvature resulting from a rotating flagellum, bacteria can bias their random swimming direction towards a more favourable environment. The favourable environment will vary from species to species and there is now evidence that in many species this can change depending on the current physiological growth state of the cell. In general, bacteria sense changes in a range of nutrients and toxins, compounds altering electron transport, acceptors or donors into the electron transport chain, pH, temperature and even the magnetic field of the Earth. The sensory signals are balanced, and may be balanced with other sensory pathways such as quorum sensing, to identify the optimum current environment. The central sensory pathway in this process is common to most bacteria and most effectors. The environmental change is sensed by a sensory protein. In most species examined this is a transmembrane protein, sensing the external environment, but there is increasing evidence for additional cytoplasmic receptors in many species. All receptors, whether sensing sugars, amino acids or oxygen, share a cytoplasmic signalling domain that controls the activity of a

  3. New Treatments for Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Raymond L. M. Wong

    2012-01-01

    Full Text Available Purpose. To review the newer treatments for bacterial keratitis. Data Sources. PubMed literature search up to April 2012. Study Selection. Key words used for literature search: “infectious keratitis”, “microbial keratitis”, “infective keratitis”, “new treatments for infectious keratitis”, “fourth generation fluoroquinolones”, “moxifloxacin”, “gatifloxacin”, “collagen cross-linking”, and “photodynamic therapy”. Data Extraction. Over 2400 articles were retrieved. Large scale studies or publications at more recent dates were selected. Data Synthesis. Broad spectrum antibiotics have been the main stay of treatment for bacterial keratitis but with the emergence of bacterial resistance; there is a need for newer antimicrobial agents and treatment methods. Fourth-generation fluoroquinolones and corneal collagen cross-linking are amongst the new treatments. In vitro studies and prospective clinical trials have shown that fourth-generation fluoroquinolones are better than the older generation fluoroquinolones and are as potent as combined fortified antibiotics against common pathogens that cause bacterial keratitis. Collagen cross-linking was shown to improve healing of infectious corneal ulcer in treatment-resistant cases or as an adjunct to antibiotics treatment. Conclusion. Fourth-generation fluoroquinolones are good alternatives to standard treatment of bacterial keratitis using combined fortified topical antibiotics. Collagen cross-linking may be considered in treatment-resistant infectious keratitis or as an adjunct to antibiotics therapy.

  4. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  5. Phylogenetic organization of bacterial activity.

    Science.gov (United States)

    Morrissey, Ember M; Mau, Rebecca L; Schwartz, Egbert; Caporaso, J Gregory; Dijkstra, Paul; van Gestel, Natasja; Koch, Benjamin J; Liu, Cindy M; Hayer, Michaela; McHugh, Theresa A; Marks, Jane C; Price, Lance B; Hungate, Bruce A

    2016-09-01

    Phylogeny is an ecologically meaningful way to classify plants and animals, as closely related taxa frequently have similar ecological characteristics, functional traits and effects on ecosystem processes. For bacteria, however, phylogeny has been argued to be an unreliable indicator of an organism's ecology owing to evolutionary processes more common to microbes such as gene loss and lateral gene transfer, as well as convergent evolution. Here we use advanced stable isotope probing with (13)C and (18)O to show that evolutionary history has ecological significance for in situ bacterial activity. Phylogenetic organization in the activity of bacteria sets the stage for characterizing the functional attributes of bacterial taxonomic groups. Connecting identity with function in this way will allow scientists to begin building a mechanistic understanding of how bacterial community composition regulates critical ecosystem functions. PMID:26943624

  6. Bacterial Degradation of Aromatic Compounds

    Directory of Open Access Journals (Sweden)

    Qing X. Li

    2009-01-01

    Full Text Available Aromatic compounds are among the most prevalent and persistent pollutants in the environment. Petroleum-contaminated soil and sediment commonly contain a mixture of polycyclic aromatic hydrocarbons (PAHs and heterocyclic aromatics. Aromatics derived from industrial activities often have functional groups such as alkyls, halogens and nitro groups. Biodegradation is a major mechanism of removal of organic pollutants from a contaminated site. This review focuses on bacterial degradation pathways of selected aromatic compounds. Catabolic pathways of naphthalene, fluorene, phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene are described in detail. Bacterial catabolism of the heterocycles dibenzofuran, carbazole, dibenzothiophene, and dibenzodioxin is discussed. Bacterial catabolism of alkylated PAHs is summarized, followed by a brief discussion of proteomics and metabolomics as powerful tools for elucidation of biodegradation mechanisms.

  7. Clinical applications of bacterial glycoproteins.

    Science.gov (United States)

    Fulton, Kelly M; Smith, Jeffrey C; Twine, Susan M

    2016-01-01

    There is an ongoing race between bacterial evolution and medical advances. Pathogens have the advantages of short generation times and horizontal gene transfer that enable rapid adaptation to new host environments and therapeutics that currently outpaces clinical research. Antibiotic resistance, the growing impact of nosocomial infections, cancer-causing bacteria, the risk of zoonosis, and the possibility of biowarfare all emphasize the increasingly urgent need for medical research focussed on bacterial pathogens. Bacterial glycoproteins are promising targets for alternative therapeutic intervention since they are often surface exposed, involved in host-pathogen interactions, required for virulence, and contain distinctive glycan structures. The potential exists to exploit these unique structures to improve clinical prevention, diagnosis, and treatment strategies. Translation of the potential in this field to actual clinical impact is an exciting prospect for fighting infectious diseases. PMID:26971465

  8. Shifts of microbial community structure in soils of a photovoltaic plant observed using tag-encoded pyrosequencing of 16S rRNA.

    Science.gov (United States)

    Wu, Shijin; Li, Yuan; Wang, Penghua; Zhong, Li; Qiu, Lequan; Chen, Jianmeng

    2016-04-01

    The environmental risk of fluoride and chloride pollution is pronounced in soils adjacent to solar photovoltaic sites. The elevated levels of fluoride and chloride in these soils have had significant impacts on the population size and overall biological activity of the soil microbial communities. The microbial community also plays an essential role in remediation of these soils. Questions remain as to how the fluoride and chloride contamination and subsequent remediation at these sites have impacted the population structure of the soil microbial communities. We analyzed the microbial communities in soils collected from close to a solar photovoltaic enterprise by pyrosequencing of the 16S rRNA tag. In addition, we used multivariate statistics to identity the relationships shared between sequence diversity and heterogeneity in the soil environment. The overall microbial communities were surprisingly diverse, harboring a wide variety of taxa and sharing significant correlations with different degrees of fluoride and chloride contamination. The contaminated soils harbored abundant bacteria that were probably resistant to the high acidity, high fluoride and chloride concentration, and high osmotic pressure environment. The dominant genera were Sphingomonas, Subgroup_6_norank, Clostridium sensu stricto, Nitrospira, Rhizomicrobium, and Acidithiobacillus. The results of this study provide new information regarding a previously uncharacterized ecosystem and show the value of high-throughput sequencing in the study of complex ecosystems.

  9. Disease notes - Bacterial root rot

    Science.gov (United States)

    Bacterial root rot initiated by lactic acid bacteria, particularly Leuconostoc, occurs every year in Idaho sugarbeet fields. Hot fall weather seems to make the problem worse. Although Leuconostoc initiates the rot, other bacteria and yeast frequently invade the tissue as well. The acetic acid bac...

  10. Biotechnological applications of bacterial cellulases

    Directory of Open Access Journals (Sweden)

    Esther Menendez

    2015-08-01

    Full Text Available Cellulases have numerous applications in several industries, including biofuel production, food and feed industry, brewing, pulp and paper, textile, laundry, and agriculture.Cellulose-degrading bacteria are widely spread in nature, being isolated from quite different environments. Cellulose degradation is the result of a synergic process between an endoglucanase, an exoglucanase and a,β-glucosidase. Bacterial endoglucanases degrade ß-1,4-glucan linkages of cellulose amorphous zones, meanwhile exoglucanases cleave the remaining oligosaccharide chains, originating cellobiose, which is hydrolyzed by ß-glucanases. Bacterial cellulases (EC 3.2.1.4 are comprised in fourteen Glycosil Hydrolase families. Several advantages, such as higher growth rates and genetic versatility, emphasize the suitability and advantages of bacterial cellulases over other sources for this group of enzymes. This review summarizes the main known cellulolytic bacteria and the best strategies to optimize their cellulase production, focusing on endoglucanases, as well as it reviews the main biotechnological applications of bacterial cellulases in several industries, medicine and agriculture.

  11. A Program Against Bacterial Bioterrorism

    DEFF Research Database (Denmark)

    Kemp, Michael; Dargis, Rimtas; Andresen, Keld;

    2012-01-01

    In 2002 it was decided to establish laboratory facilities in Denmark for diagnosing agents associated with bioterrorism in order to make an immediate appropriate response to the release of such agents possible. Molecular assays for detection of specific agents and molecular and proteomic techniques...... for bacterial infections not associated with bioterrorism that are difficult to culture or identify....

  12. Molecular Mechanisms Underlying Bacterial Persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...

  13. Cognitive outcome in adults after bacterial meningitis.

    NARCIS (Netherlands)

    Hoogman, M.; Beek, D. van de; Weisfelt, M.; Gans, J. de; Schmand, B.

    2007-01-01

    OBJECTIVE: To evaluate cognitive outcome in adult survivors of bacterial meningitis. METHODS: Data from three prospective multicentre studies were pooled and reanalysed, involving 155 adults surviving bacterial meningitis (79 after pneumococcal and 76 after meningococcal meningitis) and 72 healthy c

  14. Filtration properties of bacterial cellulose membranes

    OpenAIRE

    Lehtonen, Janika

    2015-01-01

    Bacterial cellulose has the same molecular formula as cellulose from plant origin, but it is characterized by several unique properties including high purity, crystallinity and mechanical strength. These properties are dependent on parameters such as the bacterial strain used, the cultivation conditions and post-growth processing. The possibility to achieve bacterial cellulose membranes with different properties by varying these parameters could make bacterial cellulose an interesting materi...

  15. Microbiota and metabolome associated with immunoglobulin A nephropathy (IgAN.

    Directory of Open Access Journals (Sweden)

    Maria De Angelis

    Full Text Available This study aimed at investigating the fecal microbiota, and the fecal and urinary metabolome of non progressor (NP and progressor (P patients with immunoglobulin A nephropathy (IgAN. Three groups of volunteers were included in the study: (i sixteen IgAN NP patients; (ii sixteen IgAN P patients; and (iii sixteen healthy control (HC subjects, without known diseases. Selective media were used to determine the main cultivable bacterial groups. Bacterial tag-encoded FLX-titanium amplicon pyrosequencing of the 16S rDNA and 16S rRNA was carried out to determine total and metabolically active bacteria, respectively. Biochrom 30 series amino acid analyzer and gas-chromatography mass spectrometry/solid-phase microextraction (GC-MS/SPME analyses were mainly carried out for metabolomic analyses. As estimated by rarefaction, Chao and Shannon diversity index, the lowest microbial diversity was found in P patients. Firmicutes increased in the fecal samples of NP and, especially, P patients due to the higher percentages of some genera/species of Ruminococcaceae, Lachnospiraceae, Eubacteriaceae and Streptococcaeae. With a few exceptions, species of Clostridium, Enterococcus and Lactobacillus genera were found at the highest levels in HC. Bacteroidaceae, Porphyromonadaceae, Prevotellaceae and Rikenellaceae families differed among NP, P and HC subjects. Sutterellaceae and Enterobacteriaceae species were almost the highest in the fecal samples of NP and/or P patients. Compared to HC subjects, Bifidobacterium species decreased in the fecal samples of NP and P. As shown by multivariate statistical analyses, the levels of metabolites (free amino acids and organic volatile compounds from fecal and urinary samples markedly differentiated NP and, especially, P patients.

  16. Distribution of Triplet Separators in Bacterial Genomes

    Institute of Scientific and Technical Information of China (English)

    HU Rui; ZHENG Wei-Mou

    2001-01-01

    Distributions of triplet separator lengths for two bacterial complete genomes are analyzed. The theoretical distributions for the independent random sequence and the first-order Markov chain are derived and compared with the distributions of the bacterial genomes. A prominent double band structure, which does not exist in the theoretical distributions, is observed in the bacterial distributions for most triplets.``

  17. Bacterial chromosome organization and segregation.

    Science.gov (United States)

    Badrinarayanan, Anjana; Le, Tung B K; Laub, Michael T

    2015-01-01

    If fully stretched out, a typical bacterial chromosome would be nearly 1 mm long, approximately 1,000 times the length of a cell. Not only must cells massively compact their genetic material, but they must also organize their DNA in a manner that is compatible with a range of cellular processes, including DNA replication, DNA repair, homologous recombination, and horizontal gene transfer. Recent work, driven in part by technological advances, has begun to reveal the general principles of chromosome organization in bacteria. Here, drawing on studies of many different organisms, we review the emerging picture of how bacterial chromosomes are structured at multiple length scales, highlighting the functions of various DNA-binding proteins and the impact of physical forces. Additionally, we discuss the spatial dynamics of chromosomes, particularly during their segregation to daughter cells. Although there has been tremendous progress, we also highlight gaps that remain in understanding chromosome organization and segregation. PMID:26566111

  18. Bacterial streamers in curved microchannels

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard

    2009-11-01

    Biofilms, generally identified as microbial communities embedded in a self-produced matrix of extracellular polymeric substances, are involved in a wide variety of health-related problems ranging from implant-associated infections to disease transmissions and dental plaque. The usual picture of these bacterial films is that they grow and develop on surfaces. However, suspended biofilm structures, or streamers, have been found in natural environments (e.g., rivers, acid mines, hydrothermal hot springs) and are always suggested to stem from a turbulent flow. We report the formation of bacterial streamers in curved microfluidic channels. By using confocal laser microscopy we are able to directly image and characterize the spatial and temporal evolution of these filamentous structures. Such streamers, which always connect the inner corners of opposite sides of the channel, are always located in the middle plane. Numerical simulations of the flow provide evidences for an underlying hydrodynamic mechanism behind the formation of the streamers.

  19. Bacterial survival in Martian conditions

    CERN Document Server

    D'Alessandro, Giuseppe Galletta; Giulio Bertoloni; Maurizio

    2010-01-01

    We shortly discuss the observable consequences of the two hypotheses about the origin of life on Earth and Mars: the Lithopanspermia (Mars to Earth or viceversa) and the origin from a unique progenitor, that for Earth is called LUCA (the LUCA hypothesis). To test the possibility that some lifeforms similar to the terrestrial ones may survive on Mars, we designed and built two simulators of Martian environments where to perform experiments with different bacterial strains: LISA and mini-LISA. Our LISA environmental chambers can reproduce the conditions of many Martian locations near the surface trough changes of temperature, pressure, UV fluence and atmospheric composition. Both simulators are open to collaboration with other laboratories interested in performing experiments on many kind of samples (biological, minerals, electronic) in situations similar to that of the red planet. Inside LISA we have studied the survival of several bacterial strains and endospores. We verified that the UV light is the major re...

  20. Collective Functionality through Bacterial Individuality

    Science.gov (United States)

    Ackermann, Martin

    According to the conventional view, the properties of an organism are a product of nature and nurture - of its genes and the environment it lives in. Recent experiments with unicellular organisms have challenged this view: several molecular mechanisms generate phenotypic variation independently of environmental signals, leading to variation in clonal groups. My presentation will focus on the causes and consequences of this microbial individuality. Using examples from bacterial genetic model systems, I will first discuss different molecular and cellular mechanisms that give rise to bacterial individuality. Then, I will discuss the consequences of individuality, and focus on how phenotypic variation in clonal populations of bacteria can promote interactions between individuals, lead to the division of labor, and allow clonal groups of bacteria to cope with environmental uncertainty. Variation between individuals thus provides clonal groups with collective functionality.

  1. Bacterial communication and group behavior

    OpenAIRE

    Greenberg, E. Peter

    2003-01-01

    The existence of species-specific and interspecies bacterial cell-cell communication and group organization was only recently accepted. Researchers are now realizing that the ability of these microbial teams to communicate and form structures, known as biofilms, at key times during the establishment of infection significantly increases their ability to evade both host defenses and antibiotics. This Perspective series discusses the known signaling mechanisms, the roles they play in both chroni...

  2. The problem of bacterial diarrhoea.

    Science.gov (United States)

    Harries, J T

    1976-01-01

    The reported incidence of "pathogenic" bacteria, as judged by serotype, in the stools of children with acute diarrhoea has varied from 4 to 33% over the last twenty years. Techniques such as tissue culture provide a means for detecting enterotoxin-producing strains of bacteria, strains which often do not possess "pathogenic" serotypes. "Pathogenicity" requires redefinition, and the aetiological importance of bacteria in diarrhoea is probably considerably greater than previous reports have indicated. Colonization of the bowel by a pathogen will result in structural and/or mucosal abnormalities, and will depend on a series of complex interactions between the external environment, the pathogen, and the host and its resident bacterial flora. Enteropathogenic bacteria may be broadly classified as (i) invasive (e.g. Shigella, Salmonella and some Escherichia coli) which predominantly affect the distal bowel, or (ii) non-invasive (e.g. Vibrio cholerae and E. coli) which affect the proximal bowel. V. cholerae and E. coli elaborate heat-labile enterotoxins which activate adenylate cyclase and induce small intestinal secretion; the secretory effects of heat-stable E. coli and heat-labile Shigella dysenteriae enterotoxins are not accompanied by cyclase activation. The two major complications of acute diarrhoea are (i) hypernatraemic dehydration with its attendant neurological, renal and vascular lesions, and (ii) protracted diarrhoea which may lead to severe malnutrition. Deconjugation of bile salts and colonization of the small bowel with toxigenic strains of E. coli may be important in the pathophysiology of the protracted diarrhoea syndrome. The control of bacterial diarrhoea requires a corrdinated political, educational, social, public health and scientific attack. Bacterial diarrhoea is a major health problem throughout the world, and carries an appreciable morbidity and mortality. This is particularly the case during infancy, and in those developing parts of the world

  3. Bacterial survival in Martian conditions

    OpenAIRE

    Galletta, Giuseppe; Bertoloni, Giulio; D'Alessandro, Maurizio

    2010-01-01

    We shortly discuss the observable consequences of the two hypotheses about the origin of life on Earth and Mars: the Lithopanspermia (Mars to Earth or viceversa) and the origin from a unique progenitor, that for Earth is called LUCA (the LUCA hypothesis). To test the possibility that some lifeforms similar to the terrestrial ones may survive on Mars, we designed and built two simulators of Martian environments where to perform experiments with different bacterial strains: LISA and mini-LISA. ...

  4. Small intestinal bacterial overgrowth syndrome

    Institute of Scientific and Technical Information of China (English)

    Jan; Bures; Jiri; Cyrany; Darina; Kohoutova; Miroslav; Frstl; Stanislav; Rejchrt; Jaroslav; Kvetina; Viktor; Vorisek; Marcela; Kopacova

    2010-01-01

    Human intestinal microbiota create a complex polymi-crobial ecology. This is characterised by its high population density, wide diversity and complexity of interaction. Any dysbalance of this complex intestinal microbiome, both qualitative and quantitative, might have serious health consequence for a macro-organism, including small intestinal bacterial overgrowth syndrome (SIBO).SIBO is defined as an increase in the number and/or alteration in the type of bacteria in the upper gastro-intestinal tract. There...

  5. Population dynamics of bacterial persistence

    OpenAIRE

    Patra, Pintu

    2014-01-01

    The life of microorganisms is characterized by two main tasks, rapid growth under conditions permitting growth and survival under stressful conditions. The environments, in which microorganisms dwell, vary in space and time. The microorganisms innovate diverse strategies to readily adapt to the regularly fluctuating environments. Phenotypic heterogeneity is one such strategy, where an isogenic population splits into subpopulations that respond differently under identical environments. Bacteri...

  6. Immunization by a bacterial aerosol

    OpenAIRE

    Garcia-Contreras, Lucila; Wong, Yun-Ling; Muttil, Pavan; Padilla, Danielle; Sadoff, Jerry; DeRousse, Jessica; Germishuizen, Willem Andreas; Goonesekera, Sunali; Elbert, Katharina; Bloom, Barry R.; Miller, Rich; Fourie, P. Bernard; Hickey, Anthony; Edwards, David

    2008-01-01

    By manufacturing a single-particle system in two particulate forms (i.e., micrometer size and nanometer size), we have designed a bacterial vaccine form that exhibits improved efficacy of immunization. Microstructural properties are adapted to alter dispersive and aerosol properties independently. Dried “nanomicroparticle” vaccines possess two axes of nanoscale dimensions and a third axis of micrometer dimension; the last one permits effective micrometer-like physical dispersion, and the form...

  7. Rheumatoid arthritis and bacterial infections

    OpenAIRE

    N L Prokopjeva; N N Vesikova; I M Marusenko; V A Ryabkov

    2008-01-01

    To study features of bacterial infections course in pts with rheumatoid arthritis (RA) and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl) detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to ass...

  8. Molecular approaches for bacterial azoreductases

    OpenAIRE

    Montira Leelakriangsak

    2013-01-01

    Azo dyes are the dominant types of synthetic dyes, widely used in textiles, foods, leather, printing, tattooing, cosmetics, and pharmaceutical industries. Many microorganisms are able to decolorize azo dyes, and there is increasing interest in biological waste treatment methods. Bacterial azoreductases can cleave azo linkages (-N=N-) in azo dyes, forming aromatic amines. This review mainly focuses on employing molecular approaches, including gene manipulation and recombinant strains, to study...

  9. Bacterial meningitis by streptococcus agalactiae

    OpenAIRE

    Villarreal-Velásquez Tatiana Paola; Cortés-Daza César Camilo

    2012-01-01

    Introduction: bacterial meningitis is an infectious disease considered a medicalemergency. The timely management has an important impact on the evolution of thedisease. Streptococcus agalactiae, a major causative agent of severe infections innewborns can colonize different tissues, including the central nervous system.Case report: Male patient 47 years old from rural areas, with work activity as amilker of cattle, referred to tertiary care, with disorientation, neck stiffness, and grandmal se...

  10. Bacterial sex in dental plaque

    Directory of Open Access Journals (Sweden)

    Ingar Olsen

    2013-06-01

    Full Text Available Genes are transferred between bacteria in dental plaque by transduction, conjugation, and transformation. Membrane vesicles can also provide a mechanism for horizontal gene transfer. DNA transfer is considered bacterial sex, but the transfer is not parallel to processes that we associate with sex in higher organisms. Several examples of bacterial gene transfer in the oral cavity are given in this review. How frequently this occurs in dental plaque is not clear, but evidence suggests that it affects a number of the major genera present. It has been estimated that new sequences in genomes established through horizontal gene transfer can constitute up to 30% of bacterial genomes. Gene transfer can be both inter- and intrageneric, and it can also affect transient organisms. The transferred DNA can be integrated or recombined in the recipient's chromosome or remain as an extrachromosomal inheritable element. This can make dental plaque a reservoir for antimicrobial resistance genes. The ability to transfer DNA is important for bacteria, making them better adapted to the harsh environment of the human mouth, and promoting their survival, virulence, and pathogenicity.

  11. Cytochemical Differences in Bacterial Glycocalyx

    Science.gov (United States)

    Krautgartner, Wolf Dietrich; Vitkov, Ljubomir; Hannig, Matthias; Pelz, Klaus; Stoiber, Walter

    2005-02-01

    To examine new cytochemical aspects of the bacterial adhesion, a strain 41452/01 of the oral commensal Streptococcus sanguis and a wild strain of Staphylococcus aureus were grown with and without sucrose supplementation for 6 days. Osmiumtetraoxyde (OsO4), uranyl acetate (UA), ruthenium red (RR), cupromeronic blue (CB) staining with critical electrolytic concentrations (CECs), and the tannic acid-metal salt technique (TAMST) were applied for electron microscopy. Cytochemically, only RR-positive fimbriae in S. sanguis were visualized. By contrast, some types of fimbriae staining were observed in S. aureus glycocalyx: RR-positive, OsO4-positive, tannophilic and CB-positive with ceasing point at 0.3 M MgCl2. The CB staining with CEC, used for the first time for visualization of glycoproteins of bacterial glycocalyx, also reveals intacellular CB-positive substances-probably the monomeric molecules, that is, subunits forming the fimbriae via extracellular assembly. Thus, glycosylated components of the biofilm matrix can be reliably related to single cells. The visualization of intracellular components by CB with CEC enables clear distinction between S. aureus and other bacteria, which do not produce CB-positive substances. The small quantities of tannophilic substances found in S. aureus makes the use of TAMST for the same purpose difficult. The present work protocol enables, for the first time, a partial cytochemical differentiation of the bacterial glycocalyx.

  12. Bacterial adhesion and biofilms on surfaces

    Institute of Scientific and Technical Information of China (English)

    Trevor Roger Garrett; Manmohan Bhakoo; Zhibing Zhang

    2008-01-01

    Bacterial adhesion has become a significant problem in industry and in the domicile,and much research has been done for deeper understanding of the processes involved.A generic biological model of bacterial adhesion and population growth called the bacterial biofilm growth cycle,has been described and modified many times.The biofilm growth cycle encompasses bacterial adhesion at all levels,starting with the initial physical attraction of bacteria to a substrate,and ending with the eventual liberation of cell dusters from the biofilm matrix.When describing bacterial adhesion one is simply describing one or more stages of biofilm development,neglecting the fact that the population may not reach maturity.This article provides an overview of bacterial adhesion.cites examples of how bac-terial adhesion affects industry and summarises methods and instrumentation used to improve our understanding of the adhesive prop-erties of bacteria.

  13. Periodontal diseases as bacterial infection

    Directory of Open Access Journals (Sweden)

    A. Bascones Martínez

    2005-12-01

    Full Text Available The periodontal disease is conformed by a group of illnesses affecting the gums and dental support structures. They are caused by certain bacteria found in the bacterial plaque. These bacteria are essential to the onset of illness; however, there are predisposing factors in both the host and the microorganisms that will have an effect on the pathogenesis of the illness. Periodontopathogenic bacterial microbiota is needed, but by itself, it is not enough to cause the illness, requiring the presence of a susceptible host. These diseases have been classified as gingivitis, when limited to the gums, and periodontitis, when they spread to deeper tissues. Classification of periodontal disease has varied over the years.The one used in this work was approved at the International Workshop for a Classification of Periodontal Diseases and Conditions, held in 1999. This study is an overview of the different periodontal disease syndromes. Later, the systematic use of antibiotic treatment consisting of amoxicillin, amoxicillinclavulanic acid, and metronidazole as first line coadjuvant treatment of these illnesses will be reviewed.

  14. Bacterial mutagenicity assays: test methods.

    Science.gov (United States)

    Gatehouse, David

    2012-01-01

    The most widely used assays for detecting chemically induced gene mutations are those employing bacteria. The plate incorporation assay using various Salmonella typhimurium LT2 and E. coli WP2 strains is a short-term bacterial reverse mutation assay specifically designed to detect a wide range of chemical substances capable of causing DNA damage leading to gene mutations. The test is used worldwide as an initial screen to determine the mutagenic potential of new chemicals and drugs.The test uses several strains of S. typhimurium which carry different mutations in various genes of the histidine operon, and E. coli which carry the same AT base pair at the critical mutation site within the trpE gene. These mutations act as hot spots for mutagens that cause DNA damage via different mechanisms. When these auxotrophic bacterial strains are grown on a minimal media agar plates containing a trace of the required amino-acid (histidine or tryptophan), only those bacteria that revert to amino-acid independence (His(+) or Tryp(+)) will grow to form visible colonies. The number of spontaneously induced revertant colonies per plate is relatively constant. However, when a mutagen is added to the plate, the number of revertant colonies per plate is increased, usually in a dose-related manner.This chapter provides detailed procedures for performing the test in the presence and absence of a metabolic activation system (S9-mix), including advice on specific assay variations and any technical problems. PMID:22147566

  15. BACTERIAL DESEASES IN SEA FISH

    Directory of Open Access Journals (Sweden)

    Ivančica Strunjak-Perović

    1997-10-01

    Full Text Available With development of the fish culturing in the sea, the interest in their health also increased. The reason for this are diseases or rather mortality that occur in such controlled cultures and cause great economic losses. By growing large quantities of fish in rather small species, natural conditions are changed, so fish is more sensitive and prone to infection agents (viruses, bacteria, parasites. Besides, a large fish density in the cultural process accelerates spreading if the diseases, but also enables a better perception of them. In wild populations sick specimen very quickly become predator’s prey, witch makes it difficult to note any pathological changes in such fish. There are lots of articles on viral, bacterial and parasitic diseases nowdays, but this work deals exclusively with bacterial deseases that occur in the controlled sea cultures (vibriosis, furunculosis, pastherelosis, nocardiosis, mycobaceriosis, edwardsielosis, yersiniosis, deseases caused by bacteria of genera Flexibacter, Pseudomonas, Aeromonas, Streptococus and bacteria nephryithis. Yet, the knowledge of these deseases vary, depending on wether a fish species is being cultured for a longer period of time or is only being introduced in the controlled culture.

  16. Bioinformatic Comparison of Bacterial Secretomes

    Institute of Scientific and Technical Information of China (English)

    Catharine Song; Aseem Kumar; Mazen Saleh

    2009-01-01

    The rapid increasing number of completed bacterial genomes provides a good op-portunity to compare their proteomes. This study was undertaken to specifically compare and contrast their secretomes-the fraction of the proteome with pre-dicted N-terminal signal sequences, both type Ⅰ and type Ⅱ. A total of 176 theoreti-cal bacterial proteomes were examined using the ExProt program. Compared with the Gram-positives, the Gram-negative bacteria were found, on average, to con-tain a larger number of potential Sec-dependent sequences. In the Gram-negative bacteria but not in the others, there was a positive correlation between proteome size and secretome size, while there was no correlation between secretome size and pathogenicity. Within the Gram-negative bacteria, intracellular pathogens were found to have the smallest secretomes. However, the secretomes of certain bacte-ria did not fit into the observed pattern. Specifically, the secretome of Borrelia burgdoferi has an unusually large number of putative lipoproteins, and the signal peptides of mycoplasmas show closer sequence similarity to those of the Gram-negative bacteria. Our analysis also suggests that even for a theoretical minimal genome of 300 open reading frames, a fraction of this gene pool (up to a maximum of 20%) may code for proteins with Sec-dependent signal sequences.

  17. Bacterial Culture of Neonatal Sepsis

    Directory of Open Access Journals (Sweden)

    AH Movahedian

    2006-08-01

    Full Text Available Neonatal bacterial sepsis is one of the major cause of morbidity and mortality in neonates. This retrospective study was performed to determine the incidence of bacterial sepsis with focus on Gram negative organisms in neonates admitted at Beheshti Hospital in Kashan, during a 3-yr period, from September 2002 to September 2005. Blood culture was performed on all neonates with risk factors or signs of suggestive sepsis. Blood samples were cultured using brain heart infusion (BHI broth according to standard method. From the 1680 neonates 36% had positive blood culture for Pseudomans aeruginosa, 20.7% for Coagulase negative Staphylococci, and 17% for Klebsiella spp. Gram-negative organisms accounted for 72.1% of all positive cultures. The overall mortality rate was 19.8% (22 /111 of whom 63.6% (14 /22 were preterm. Pseudomona aeruginosa and Klebsiella spp. showed a high degree of resistance to commonly used antibiotics (ampicillin, gentamicin as well as third generation cephalosporins. Continued local surveillance studies are urged to monitor emerging antimicrobial resistance and to guide interventions to minimize its occurrence.

  18. Immunization by a bacterial aerosol.

    Science.gov (United States)

    Garcia-Contreras, Lucila; Wong, Yun-Ling; Muttil, Pavan; Padilla, Danielle; Sadoff, Jerry; Derousse, Jessica; Germishuizen, Willem Andreas; Goonesekera, Sunali; Elbert, Katharina; Bloom, Barry R; Miller, Rich; Fourie, P Bernard; Hickey, Anthony; Edwards, David

    2008-03-25

    By manufacturing a single-particle system in two particulate forms (i.e., micrometer size and nanometer size), we have designed a bacterial vaccine form that exhibits improved efficacy of immunization. Microstructural properties are adapted to alter dispersive and aerosol properties independently. Dried "nanomicroparticle" vaccines possess two axes of nanoscale dimensions and a third axis of micrometer dimension; the last one permits effective micrometer-like physical dispersion, and the former provides alignment of the principal nanodimension particle axes with the direction of airflow. Particles formed with this combination of nano- and micrometer-scale dimensions possess a greater ability to aerosolize than particles of standard spherical isotropic shape and of similar geometric diameter. Here, we demonstrate effective application of this biomaterial by using the live attenuated tuberculosis vaccine bacille Calmette-Guérin (BCG). Prepared as a spray-dried nanomicroparticle aerosol, BCG vaccine exhibited high-efficiency delivery and peripheral lung targeting capacity from a low-cost and technically simple delivery system. Aerosol delivery of the BCG nanomicroparticle to normal guinea pigs subsequently challenged with virulent Mycobacterium tuberculosis significantly reduced bacterial burden and lung pathology both relative to untreated animals and to control animals immunized with the standard parenteral BCG. PMID:18344320

  19. Remodeling bacterial polysaccharides by metabolic pathway engineering

    OpenAIRE

    Yi, Wen; Liu, Xianwei; Li, Yanhong; Li, Jianjun; Xia, Chengfeng; Zhou, Guangyan; Zhang, Wenpeng; Zhao, Wei; Chen, Xi; Wang, Peng George

    2009-01-01

    Introducing structural modifications into biomolecules represents a powerful approach to dissect their functions and roles in biological processes. Bacterial polysaccharides, despite their rich structural information and essential roles in bacterium-host interactions and bacterial virulence, have largely been unexplored for in vivo structural modifications. In this study, we demonstrate the incorporation of a panel of monosaccharide analogs into bacterial polysaccharides in a highly homogenou...

  20. Effect of aerosolization on subsequent bacterial survival.

    OpenAIRE

    Walter, M V; Marthi, B; Fieland, V P; Ganio, L M

    1990-01-01

    To determine whether aerosolization could impair bacterial survival, Pseudomonas syringae and Erwinia herbicola were aerosolized in a greenhouse, the aerosol was sampled at various distances from the site of release by using all-glass impingers, and bacterial survival was followed in the impingers for 6 h. Bacterial survival subsequent to aerosolization of P. syringae and E. herbicola was not impaired 1 m from the site of release. P. syringae aerosolized at 3 to 15 m from the site of release ...

  1. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  2. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  3. Bacterial successions in the Broiler Gastrointestinal tract

    DEFF Research Database (Denmark)

    Ranjitkar, Samir; Lawley, Blair; Tannock, Gerald;

    2016-01-01

    of crop, gizzard, ileum and ceca in relation to the feeding strategy and age (8, 15, 22, 25, 29 and 36 days). Of the four dietary treatments, bacterial diversity was analyzed for MBF and CKMS-30 by 454-pyrosequencing of 16S rRNA gene. Since there was no significant influence of diets on bacterial...... diversity, data were pooled for downstream analysis. With increasing age, a clear succession of bacterial communities and an increased bacterial diversity was observed. Lactobacillaceae (mainly Lactobacillus) represented most of the Firmicutes at all ages and in all segments of the gut except the ceca...

  4. Effect of heavy metals on bacterial transport

    Science.gov (United States)

    Zhang, H.; Olson, M. S.

    2010-12-01

    Adsorption of metals onto bacteria and soil takes place as stormwater runoff infiltrates into the subsurface. Changes in both bacterial surfaces and soil elemental content have been observed, and may alter the attachment of bacteria to soil surfaces. In this study, scanning electron microscopy (SEM) and Energy Dispersive X-ray Spectrometry (EDS) analyses were performed on soil samples equilibrated with synthetic stormwater amended with copper, lead and zinc. The results demonstrate the presence of copper and zinc on soil surfaces. To investigate bacterial attachment behavior, sets of batch sorption experiments were conducted on Escherichia Coli (E. coli) under different chemical conditions by varying solution compositions (nutrient solution vs synthetic stormwater). The adsorption data is best described using theoretical linear isotherms. The equilibrium coefficient (Kd) of E. coli is higher in synthetic stormwater than in nutrient solution without heavy metals. The adsorption of heavy metals onto bacterial surfaces significantly decreases their negative surface charge as determined via zeta potential measurements (-17.0±5.96mv for E. coli equilibrated with synthetic stormwater vs -21.6±5.45mv for E. coli equilibrated with nutrient solution), indicating that bacterial attachment may increase due to the attachment of metals onto bacterial surfaces and their subsequent change in surface charge. The attachment efficiency (α) of bacteria was also calculated and compared for both solution chemistries. Bacterial attachment efficiency (α) in synthetic stormwater is 0.997, which is twice as high as that in nutrient solution(α 0.465). The ratio of bacterial diameter : collector diameter suggests minimal soil straining during bacterial transport. Results suggest that the presence of metals in synthetic stormwater leads to an increase in bacterial attachment to soil surfaces. In terms of designing stormwater infiltration basins, the presence of heavy metals seems to

  5. Autoproteolytic Activation of Bacterial Toxins

    Directory of Open Access Journals (Sweden)

    Aimee Shen

    2010-05-01

    Full Text Available Protease domains within toxins typically act as the primary effector domain within target cells. By contrast, the primary function of the cysteine protease domain (CPD in Multifunctional Autoprocessing RTX-like (MARTX and Clostridium sp. glucosylating toxin families is to proteolytically cleave the toxin and release its cognate effector domains. The CPD becomes activated upon binding to the eukaryotic-specific small molecule, inositol hexakisphosphate (InsP6, which is found abundantly in the eukaryotic cytosol. This property allows the CPD to spatially and temporally regulate toxin activation, making it a prime candidate for developing anti-toxin therapeutics. In this review, we summarize recent findings related to defining the regulation of toxin function by the CPD and the development of inhibitors to prevent CPD-mediated activation of bacterial toxins.

  6. Cooperative Model of Bacterial Sensing

    CERN Document Server

    Shi, Y; Shi, Yu; Duke, Thomas

    1998-01-01

    Bacterial chemotaxis is controlled by the signalling of a cluster of receptors. A cooperative model is presented, in which coupling between neighbouring receptor dimers enhances the sensitivity with which stimuli can be detected, without diminishing the range of chemoeffector concentration over which chemotaxis can operate. Individual receptor dimers have two stable conformational states: one active, one inactive. Noise gives rise to a distribution between these states, with the probability influenced by ligand binding, and also by the conformational states of adjacent receptor dimers. The two-state model is solved, based on an equivalence with the Ising model in a randomly distributed magnetic field. The model has only two effective parameters, and unifies a number of experimental findings. According to the value of the parameter comparing coupling and noise, the signal can be arbitrarily sensitive to changes in the fraction of receptor dimers to which ligand is bound. The counteracting effect of a change of...

  7. Bacterial ice crystal controlling proteins.

    Science.gov (United States)

    Lorv, Janet S H; Rose, David R; Glick, Bernard R

    2014-01-01

    Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions. PMID:24579057

  8. Unexpected versatility in bacterial riboswitches.

    Science.gov (United States)

    Mellin, J R; Cossart, Pascale

    2015-03-01

    Bacterial riboswitches are elements present in the 5'-untranslated regions (UTRs) of mRNA molecules that bind to ligands and regulate the expression of downstream genes. Riboswitches typically regulate the expression of protein-coding genes. However, mechanisms of riboswitch-mediated regulation have recently been shown to be more diverse than originally thought, with reports showing that riboswitches can regulate the expression of noncoding RNAs and control the access of proteins, such as transcription termination factor Rho and RNase E, to a nascent RNA. Riboswitches are also increasingly used in biotechnology, with advances in the engineering of synthetic riboswitches and the development of riboswitch-based sensors. In this review we address the emerging roles and mechanisms of riboswitch-mediated regulation in natura and recent progress in the development of riboswitch-based technology. PMID:25708284

  9. Use of Bacteriophages to control bacterial pathogens

    Science.gov (United States)

    Lytic bacteriophages can provide a natural method and an effective alternative to antibiotics to reduce bacterial pathogens in animals, foods, and other environments. Bacteriophages (phages) are viruses which infect bacterial cells and eventually kill them through lysis, and represent the most abun...

  10. Plant Natural Products Targeting Bacterial Virulence Factors.

    Science.gov (United States)

    Silva, Laura Nunes; Zimmer, Karine Rigon; Macedo, Alexandre José; Trentin, Danielle Silva

    2016-08-24

    Decreased antimicrobial efficiency has become a global public health issue. The paucity of new antibacterial drugs is evident, and the arsenal against infectious diseases needs to be improved urgently. The selection of plants as a source of prototype compounds is appropriate, since plant species naturally produce a wide range of secondary metabolites that act as a chemical line of defense against microorganisms in the environment. Although traditional approaches to combat microbial infections remain effective, targeting microbial virulence rather than survival seems to be an exciting strategy, since the modulation of virulence factors might lead to a milder evolutionary pressure for the development of resistance. Additionally, anti-infective chemotherapies may be successfully achieved by combining antivirulence and conventional antimicrobials, extending the lifespan of these drugs. This review presents an updated discussion of natural compounds isolated from plants with chemically characterized structures and activity against the major bacterial virulence factors: quorum sensing, bacterial biofilms, bacterial motility, bacterial toxins, bacterial pigments, bacterial enzymes, and bacterial surfactants. Moreover, a critical analysis of the most promising virulence factors is presented, highlighting their potential as targets to attenuate bacterial virulence. The ongoing progress in the field of antivirulence therapy may therefore help to translate this promising concept into real intervention strategies in clinical areas. PMID:27437994

  11. Bacterial cell division proteins as antibiotic targets

    NARCIS (Netherlands)

    T. den Blaauwen; J.M. Andreu; O. Monasterio

    2014-01-01

    Proteins involved in bacterial cell division often do not have a counterpart in eukaryotic cells and they are essential for the survival of the bacteria. The genetic accessibility of many bacterial species in combination with the Green Fluorescence Protein revolution to study localization of protein

  12. Recent advances in bacterial heme protein biochemistry

    OpenAIRE

    Mayfield, Jeffery A.; Dehner, Carolyn A.; Dubois, Jennifer L.

    2011-01-01

    Recent progress in genetics, fed by the burst in genome sequence data, has led to the identification of a host of novel bacterial heme proteins that are now being characterized in structural and mechanistic terms. The following short review highlights very recent work with bacterial heme proteins involved in the uptake, biosynthesis, degradation, and use of heme in respiration and sensing.

  13. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny;

    2006-01-01

    The aim of the study was to investigate the bacterial profile of chronic venous leg ulcers and the importance of the profile to ulcer development. Patients with persisting venous leg ulcers were included and followed for 8 weeks. Every second week, ulcer samples were collected and the bacterial s...

  14. Bacterial biofilms: prokaryotic adventures in multicellularity

    DEFF Research Database (Denmark)

    Webb, J.S.; Givskov, Michael Christian; Kjelleberg, S.

    2003-01-01

    The development of bacterial biofilms includes both the initial social behavior of undifferentiated cells, as well as cell death and differentiation in the mature biofilm, and displays several striking similarities with higher organisms. Recent advances in the field provide new insight...... into differentiation and cell death events in bacterial biofilm development and propose that biofilms have an unexpected level of multicellularity....

  15. Barriers to bacterial motility on unsaturated surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Smets, Barth F.

    2013-01-01

    and their isogenic mutants unable to express various type of motility we aimed to quantify the physical limits of bacterial motility. Our results demonstrate how hydration controls bacterial motility under unsaturated conditions. They can form the base of improved biodegradation models that include microbial...

  16. Sustainable strategies for treatment of bacterial infections

    DEFF Research Database (Denmark)

    Molin, Søren

    2014-01-01

    not in a foreseeable future develop novel approaches and strategies to combat bacterial infections, many people will be at risk of dying from even trivial infections for which we until recently had highly effective antibiotics. We have for a number of years investigated chronic bacterial lung infections in patients...

  17. A Replisome's journey through the bacterial chromosome.

    Science.gov (United States)

    Beattie, Thomas R; Reyes-Lamothe, Rodrigo

    2015-01-01

    Genome duplication requires the coordinated activity of a multi-component machine, the replisome. In contrast to the background of metabolic diversity across the bacterial domain, the composition and architecture of the bacterial replisome seem to have suffered few changes during evolution. This immutability underlines the replisome's efficiency in copying the genome. It also highlights the success of various strategies inherent to the replisome for responding to stress and avoiding problems during critical stages of DNA synthesis. Here we summarize current understanding of bacterial replisome architecture and highlight the known variations in different bacterial taxa. We then look at the mechanisms in place to ensure that the bacterial replisome is assembled appropriately on DNA, kept together during elongation, and disassembled upon termination. We put forward the idea that the architecture of the replisome may be more flexible that previously thought and speculate on elements of the replisome that maintain its stability to ensure a safe journey from origin to terminus. PMID:26097470

  18. Structural biology of bacterial RNA polymerase.

    Science.gov (United States)

    Murakami, Katsuhiko S

    2015-05-11

    Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477-42485), an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP). In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank), describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  19. Structural Biology of Bacterial RNA Polymerase

    Directory of Open Access Journals (Sweden)

    Katsuhiko S. Murakami

    2015-05-01

    Full Text Available Since its discovery and characterization in the early 1960s (Hurwitz, J. The discovery of RNA polymerase. J. Biol. Chem. 2005, 280, 42477–42485, an enormous amount of biochemical, biophysical and genetic data has been collected on bacterial RNA polymerase (RNAP. In the late 1990s, structural information pertaining to bacterial RNAP has emerged that provided unprecedented insights into the function and mechanism of RNA transcription. In this review, I list all structures related to bacterial RNAP (as determined by X-ray crystallography and NMR methods available from the Protein Data Bank, describe their contributions to bacterial transcription research and discuss the role that small molecules play in inhibiting bacterial RNA transcription.

  20. Microfluidic Approaches to Bacterial Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Hee-Deung Park

    2012-08-01

    Full Text Available Bacterial biofilms—aggregations of bacterial cells and extracellular polymeric substrates (EPS—are an important subject of research in the fields of biology and medical science. Under aquatic conditions, bacterial cells form biofilms as a mechanism for improving survival and dispersion. In this review, we discuss bacterial biofilm development as a structurally and dynamically complex biological system and propose microfluidic approaches for the study of bacterial biofilms. Biofilms develop through a series of steps as bacteria interact with their environment. Gene expression and environmental conditions, including surface properties, hydrodynamic conditions, quorum sensing signals, and the characteristics of the medium, can have positive or negative influences on bacterial biofilm formation. The influences of each factor and the combined effects of multiple factors may be addressed using microfluidic approaches, which provide a promising means for controlling the hydrodynamic conditions, establishing stable chemical gradients, performing measurement in a high-throughput manner, providing real-time monitoring, and providing in vivo-like in vitro culture devices. An increased understanding of biofilms derived from microfluidic approaches may be relevant to improving our understanding of the contributions of determinants to bacterial biofilm development.

  1. EFFECTS OF BACTERIAL VAGINOSIS ON PERINATAL OUTCOME

    Directory of Open Access Journals (Sweden)

    Rajshree

    2014-02-01

    Full Text Available NTRODUCTION: Bacterial vaginosis is a condition in which the normal lactobacillus ( predominant vaginal flora is replaced with anaerobic bacteria , gardnerella vaginalis and mycoplasma hominis . Our study was designed to find out the effects of bacterial vaginosis on fetomaternal outcome in pregnant women . MATERIAL & METHODS: A prospective study was conducted in MGMCH , Jaipur from S eptember’12 to February ’13 . 100 women attending the antenatal clinic were recruited during their antenatal visit after 20 weeks of gestation and obs erved for presence of bacterial vaginosis and followed till pregnancy outcome . Prevalence of bacterial vaginosis was determined by Nugent and Amsel criteria . Maternal and neonatal morbidity were studied accordingly . RESULT: Prevalence of bacterial vagino sis by Nugent criteria was 19% . There was a significant association between the period of gestation at which the patient delivers and Nugent scoring of her gram stain picture (p=0 . 01 . Relationship between nursery admissions of baby and bacterial vaginosi s was found to be highly significant (p=0 . 01 . Out of the 100 babies delivered , 20% had low birth weight , 2% had birth asphyxia & Apgar score < 5 , 7% delivered prematurely & 14% babies had to be transferred to neonatal care units for various causes . CONCL USION: Bacterial vaginosis was found to be significantly associated with adverse pregnancy outcome in the form of increased risk of preterm delivery , low birth weight , birth asphyxia in neonate . It was also concluded that there was a definite role of trea tment because it can prevent a considerable number of preterm deliveries .

  2. Bacterial microleakage of aged adhesive restorations

    Directory of Open Access Journals (Sweden)

    Nevin Cobanoglu

    2015-01-01

    Full Text Available Objective: The aim of this study was to investigate the marginal bacterial leakage of two self-etch adhesive systems after long-term water storage. Materials and Methods: Class V cavities were prepared on the buccal and lingual surfaces of extracted premolar teeth. After the sterilization of the teeth, four cavities were not restored for control purposes, whereas the other teeth were divided into two groups (n = 16 cavities each: Clearfil Protect Bond (CPB, Clearfil SE Bond (CSE. After the application of the bonding agent, cavities were restored with a composite resin. Then, the teeth were thermo cycled, stored in saline solution for 6 months and put into a broth culture of Streptococcus mutans. The teeth were fixed, sectioned and stained using the Gram-Colour modified method. The stained sections were then evaluated under a light microscope. The bacterial leakage was scored as: 0 - absence of stained bacteria, 1 - bacterial staining along the cavity walls, 2 - bacterial staining within the cut dentinal tubules. The data were analysed using the Kruskal-Wallis and Mann-Whitney U-test (P = 0.05. Results: The bacterial staining was detected within the cut dentinal tubules in all control cavities, in three cavities in the CSE group and one cavity in the CPB group. There were no observed statistically significant differences between the bacterial penetrations of the two bonding systems (P > 0.05. Conclusion: Both bonding systems provided acceptable prevention of marginal bacterial leakage after long-term water storage.

  3. BACTERIAL FLORA IN DIABETIC ULCER

    Directory of Open Access Journals (Sweden)

    Anitha Lavanya

    2015-04-01

    Full Text Available BACKGROUND : Diabetic foot infections are one of the most feared complications of diabetes. This study was undertaken to determine the common etiological agents of diabetic foot infections and their in vitro antibiotic susceptibility. METHODS : A prospective study was p erformed over a period of two years in a tertiary care hospital. The aerobic and anaerobic bacterial agents were isolated and their antibiotic susceptibility pattern was determined . RESULTS : One hundred patients with Diabetic ulcer were studied, of which 6 5 were males and 35 were females. Majority of patients were in the age group of 51 to 60 years (37% and polymicrobial etiology was 64 % and monomicrobial etiology was 36%. A total of 187 organisms were isolated of which 165 were aerobic and 22 were anaero bic. Most frequently isolated aerobic organisms were Pseudomonas Sp., Klebsiella Sp., E coli Sp., and Staphylococcus aureus. The common anaerobic organisms isolated were Peptostreptococcus Sp. And Bacterioids Sp. CONCLUSION : High prevalence of multi - drug r esistant pathogens was observed. Amikacin, Imipenem were active against gram - negative bacilli, while vancomycin was found to be active against gram - positive bacteria.

  4. Phenotypic plasticity in bacterial plasmids.

    Science.gov (United States)

    Turner, Paul E

    2004-01-01

    Plasmid pB15 was previously shown to evolve increased horizontal (infectious) transfer at the expense of reduced vertical (intergenerational) transfer and vice versa, a key trade-off assumed in theories of parasite virulence. Whereas the models predict that susceptible host abundance should determine which mode of transfer is selectively favored, host density failed to mediate the trade-off in pB15. One possibility is that the plasmid's transfer deviates from the assumption that horizontal spread (conjugation) occurs in direct proportion to cell density. I tested this hypothesis using Escherichia coli/pB15 associations in laboratory serial culture. Contrary to most models of plasmid transfer kinetics, my data show that pB15 invades static (nonshaking) bacterial cultures only at intermediate densities. The results can be explained by phenotypic plasticity in traits governing plasmid transfer. As cells become more numerous, the plasmid's conjugative transfer unexpectedly declines, while the trade-off between transmission routes causes vertical transfer to increase. Thus, at intermediate densities the plasmid's horizontal transfer can offset selection against plasmid-bearing cells, but at high densities pB15 conjugates so poorly that it cannot invade. I discuss adaptive vs. nonadaptive causes for the phenotypic plasticity, as well as potential mechanisms that may lead to complex transfer dynamics of plasmids in liquid environments. PMID:15166133

  5. Rheumatoid arthritis and bacterial infections

    Directory of Open Access Journals (Sweden)

    N L Prokopjeva

    2008-01-01

    Full Text Available To study features of bacterial infections course in pts with rheumatoid arthritis (RA and changes of laboratory measures after focus of infection sanation. Material and methods. 46 pts with definite rheumatoid arthritis were examined at the time of comorbid infection (Cl detection and after infection focus sanation. Bacteriological test with evaluation of flora sensitivity to antibiotics by disco-diffusion method was performed at baseline and after the course of antibacterial therapy to assess its efficacy. Hemogram, serum fibrinogen, rheumatoid factor, circulating immune complexes (CIC, C-reactive protein levels were assessed. Serum interleukin (IL 1(3, IL6 and neopterin concentrations were examined by immune-enzyme assay in a part of pts. Typical clinical features of Cl were present in only 28 (60,9% pts. 13 (28,3% pts had fever, 12 (26,0% — leukocytosis, 15 (32,6% — changes of leucocyte populations. Some laboratory measures (thrombocytes, fibrinogen, CIC, neopterin levels significantly decreased (p<0,05 after infection focus sanation without correction of disease modifying therapy. Cl quite often develop as asymptomatic processes most often in pts with high activity and can induce disturbances promoting appearance of endothelial dysfunction, atherothrombosis and reduction of life duration. So timely detection and proper sanation of infection focuses should be performed in pts with RA

  6. Bacterial binding to extracellular proteins - in vitro adhesion

    DEFF Research Database (Denmark)

    Schou, C.; Fiehn, N.-E.

    1999-01-01

    Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis......Viridans streptococci, bacterial adherence, extracellular matrix proteins, surface receptors, endocarditis...

  7. Biochemistry of Bacterial Multidrug Efflux Pumps

    Directory of Open Access Journals (Sweden)

    Sanath Kumar

    2012-04-01

    Full Text Available Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in bacterial pathogens, these active multi-drug efflux mechanisms remain a major area of intense study, so that ultimately measures may be discovered to inhibit these active multi-drug efflux pumps.

  8. Tobacco use increases susceptibility to bacterial infection

    Directory of Open Access Journals (Sweden)

    Demuth Donald R

    2008-12-01

    Full Text Available Abstract Active smokers and those exposed to secondhand smoke are at increased risk of bacterial infection. Tobacco smoke exposure increases susceptibility to respiratory tract infections, including tuberculosis, pneumonia and Legionnaires disease; bacterial vaginosis and sexually transmitted diseases, such as chlamydia and gonorrhoea; Helicobacter pylori infection; periodontitis; meningitis; otitis media; and post-surgical and nosocomial infections. Tobacco smoke compromises the anti-bacterial function of leukocytes, including neutrophils, monocytes, T cells and B cells, providing a mechanistic explanation for increased infection risk. Further epidemiological, clinical and mechanistic research into this important area is warranted.

  9. Bacterial gasotransmitters: an innate defense against antibiotics.

    Science.gov (United States)

    Luhachack, Lyly; Nudler, Evgeny

    2014-10-01

    In recent decades, there has been growing interest in the field of gasotransmitters, endogenous gaseous signaling molecules (NO, H2S, and CO), as regulators of a multitude of biochemical pathways and physiological processes. Most of the concerted effort has been on eukaryotic gasotransmitters until the subsequent discovery of bacterial counterparts. While the fundamental aspects of bacterial gasotransmitters remain undefined and necessitate further research, we will discuss a known specific role they play in defense against antibiotics. Considering the current dilemma of multidrug-resistant bacteria we consider it particularly prudent to exploring novel targets and approaches, of which the bacterial gasotransmitters, nitric oxide and hydrogen sulfide represent.

  10. Spontaneous Bacterial Peritonitis in Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Dalip Gupta

    2013-11-01

    Full Text Available Hypothyroidism is an uncommon cause of ascites. Here we describe a case of a 75 year-old female patient with spontaneous bacterial peritonitis and subclinical hypothyroidism that resolved with thyroid replacement and antibiotic therapy respectively. Ascitic fluid analysis revealed a gram-positive bacterium on gram staining. A review of the literature revealed just one other reported case of myxoedema ascites with concomitant spontaneous bacterial peritonitis and no case has till been reported of spontaneous bacterial peritonitis in subclinical hypothyroidism.

  11. Positively regulated bacterial expression systems.

    Science.gov (United States)

    Brautaset, Trygve; Lale, Rahmi; Valla, Svein

    2009-01-01

    Regulated promoters are useful tools for many aspects related to recombinant gene expression in bacteria, including for high-level expression of heterologous proteins and for expression at physiological levels in metabolic engineering applications. In general, it is common to express the genes of interest from an inducible promoter controlled either by a positive regulator or by a repressor protein. In this review, we discuss established and potentially useful positively regulated bacterial promoter systems, with a particular emphasis on those that are controlled by the AraC-XylS family of transcriptional activators. The systems function in a wide range of microorganisms, including enterobacteria, soil bacteria, lactic bacteria and streptomycetes. The available systems that have been applied to express heterologous genes are regulated either by sugars (L-arabinose, L-rhamnose, xylose and sucrose), substituted benzenes, cyclohexanone-related compounds, ε-caprolactam, propionate, thiostrepton, alkanes or peptides. It is of applied interest that some of the inducers require the presence of transport systems, some are more prone than others to become metabolized by the host and some have been applied mainly in one or a limited number of species. Based on bioinformatics analyses, the AraC-XylS family of regulators contains a large number of different members (currently over 300), but only a small fraction of these, the XylS/Pm, AraC/P(BAD), RhaR-RhaS/rhaBAD, NitR/PnitA and ChnR/Pb regulator/promoter systems, have so far been explored for biotechnological applications.

  12. Bacterial diversity associated with freshwater zooplankton

    DEFF Research Database (Denmark)

    Grossart, Hans-Peter; Dziallas, Claudia; Tang, Kam W.

    2009-01-01

    Bacterial community compositions (BCC) associated with the cladoceran Bosmina coregoni and the cyclopoid copepod Thermocyclops oithonoides in oligotrophic Lake Stechlin versus eutrophic Lake Dagow (northeastern Germany) were compared using molecular techniques. We also transplanted the zooplankton...

  13. Bacterial bioluminescence in marine pollution assessment

    Digital Repository Service at National Institute of Oceanography (India)

    Ramaiah, N.; Chandramohan, D.

    Warm water marine luminous bacterial species, particularly Vibrio harveyi, V. fischeri and Photobacterium leiognathi, are easy to isolate, maintain and handle in the laboratories without strict temperature requirements, which is an important...

  14. The Bacterial Microbiota in Inflammatory Lung Diseases

    Science.gov (United States)

    Huffnagle, Gary B.; Dickson, Robert P.

    2016-01-01

    Numerous lines of evidence, ranging from recent studies back to those in the 1920's, have demonstrated that the lungs are NOT bacteria-free during health. We have recently proposed that the entire respiratory tract should be considered a single ecosystem extending from the nasal and oral cavities to the alveoli, which includes gradients and niches that modulate microbiome dispersion, retention, survival and proliferation. Bacterial exposure and colonization of the lungs during health is most likely constant and transient, respectively. Host microanatomy, cell biology and innate defenses are altered during chronic lung disease, which in turn, alters the dynamics of bacterial turnover in the lungs and can lead to longer term bacterial colonization, as well as blooms of well-recognized respiratory bacterial pathogens. A few new respiratory colonizers have been identified by culture-independent methods, such as Pseudomonas fluorescens; however, the role of these bacteria in respiratory disease remains to be determined. PMID:26122174

  15. Bacterie oorzaak van woekerziekte in lelie

    NARCIS (Netherlands)

    Doorn, van J.; Pham, K.T.K.; Hollinger, T.C.

    2003-01-01

    PPO heeft onderzoek gedaan naar achtergronden en het optreden van bacterie in lelies. Onderzoek heeft vastgesteld dat Rhodococcus fascians verantwoordelijk is voor deze ziekte. Toetsen zijn ontwikkeld die de woekerziekte snel kunnen aantonen

  16. Rho-modifying bacterial protein toxins.

    Science.gov (United States)

    Aktories, Klaus

    2015-12-01

    Rho proteins are targets of numerous bacterial protein toxins, which manipulate the GTP-binding proteins by covalent modifications, including ADP ribosylation, glycosylation, adenylylation, proteolytic cleavage and deamidation. Bacterial toxins are important virulence factors but are also potent and efficient pharmacological tools to study the physiological functions of their eukaryotic targets. Recent studies indicate that amazing variations exist in the molecular mechanisms by which toxins attack Rho proteins, which are discussed here.

  17. Bacterial volatiles promote growth in Arabidopsis

    OpenAIRE

    Ryu, Choong-Min; Mohamed A. Farag; Hu, Chia-Hui; Reddy, Munagala S.; Wei, Han-Xun; Paré, Paul W.; Kloepper, Joseph W.

    2003-01-01

    Several chemical changes in soil are associated with plant growth-promoting rhizobacteria (PGPR). Some bacterial strains directly regulate plant physiology by mimicking synthesis of plant hormones, whereas others increase mineral and nitrogen availability in the soil as a way to augment growth. Identification of bacterial chemical messengers that trigger growth promotion has been limited in part by the understanding of how plants respond to external stimuli. With an increasing appreciation of...

  18. Biochemistry of Bacterial Multidrug Efflux Pumps

    OpenAIRE

    Sanath Kumar; Varela, Manuel F.

    2012-01-01

    Bacterial pathogens that are multi-drug resistant compromise the effectiveness of treatment when they are the causative agents of infectious disease. These multi-drug resistance mechanisms allow bacteria to survive in the presence of clinically useful antimicrobial agents, thus reducing the efficacy of chemotherapy towards infectious disease. Importantly, active multi-drug efflux is a major mechanism for bacterial pathogen drug resistance. Therefore, because of their overwhelming presence in ...

  19. Bacterial Evolution and Bak-Sneppen Model

    OpenAIRE

    Bose, Indrani; Chaudhuri, Indranath

    2002-01-01

    Recently, Lenski et al [Elena,Lenski,Travisano] have carried out several experiments on bacterial evolution. Their findings support the theory of punctuated equilibrium in biological evolution. They have further quantified the relative contributions of adaptation, chance and history to bacterial evolution. In this paper, we show that a modified $M$-trait Bak-Sneppen model can explain many of the experimental results in a qualitative manner.

  20. Enteral nutrient solutions. Limiting bacterial growth.

    Science.gov (United States)

    Paauw, J D; Fagerman, K E; McCamish, M A; Dean, R E

    1984-06-01

    Bacterial contamination of enteral nutrient solutions ( ENS ) in FFcess of food product standards is known to occur in the hospital setting. The large amounts of bacteria often given with ENS have been shown to create a reservoir for nosocomial infections, and nonpathogenic bacteria have been implicated. Patient tolerance is dependent on immune status and the bacterial load delivered to the gut. The purpose of this study was to evaluate the bacterial growth-sustaining properties of various ENS and to devise methods to limit bacterial growth. Five commercial products were prepared under sterile conditions. After inoculation with approximately 5 X 10(3) organisms/cm3 of Enterobacter cloacae, each solution was hung at room temperature for 24 hours with samples drawn at fixed intervals and plated for bacterial counts. Bacterial growth rates in Ensure, Travasorb , and Vital were markedly higher than those in Precision and Vivonex. Vivonex was noted to contain potassium sorbate (KS) used as a fungistatic agent. Recent studies have identified KS as a broad-spectrum bacteriostatic food preservative that is federally approved for this use. KS (0.03%) was added to Travasorb inoculated with 5 X 10(3) organisms/cm(3) of E. cloacae. The bacterial growth rate was reduced by 75 per cent, and the final count of 2-3 X 10(4) organisms/ml was within the federally regulated limit for milk. This study suggests that initial inoculum, growth rate, and hang time can be altered to provide a significant reduction in final bacterial counts in ENS . PMID:6428286

  1. Asynchronous exponential growth of a bacterial population

    Directory of Open Access Journals (Sweden)

    Mohamed Boulanouar

    2014-01-01

    Full Text Available In this work, we complete a study started earlier in [1,2] wherein a model of growing bacterial population has been the matter of a mathematical analysis. We show that the full model is governed by a strongly continuous semigroup. Beside the positivity and the irreducibility of the generated semigroup, we describe its asymptotic behavior in the uniform topology which leads to the asynchronous exponential growth of the bacterial population.

  2. Pattern Formation in a Bacterial Colony Model

    Directory of Open Access Journals (Sweden)

    Xinze Lian

    2014-01-01

    Full Text Available We investigate the spatiotemporal dynamics of a bacterial colony model. Based on the stability analysis, we derive the conditions for Hopf and Turing bifurcations. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by parameters in the model and find that the model dynamics exhibit a diffusion controlled formation growth to spots, holes and stripes pattern replication, which show that the bacterial colony model is useful in revealing the spatial predation dynamics in the real world.

  3. Jellyfish modulate bacterial dynamic and community structure.

    Directory of Open Access Journals (Sweden)

    Tinkara Tinta

    Full Text Available Jellyfish blooms have increased in coastal areas around the world and the outbreaks have become longer and more frequent over the past few decades. The Mediterranean Sea is among the heavily affected regions and the common bloom-forming taxa are scyphozoans Aurelia aurita s.l., Pelagia noctiluca, and Rhizostoma pulmo. Jellyfish have few natural predators, therefore their carcasses at the termination of a bloom represent an organic-rich substrate that supports rapid bacterial growth, and may have a large impact on the surrounding environment. The focus of this study was to explore whether jellyfish substrate have an impact on bacterial community phylotype selection. We conducted in situ jellyfish-enrichment experiment with three different jellyfish species. Bacterial dynamic together with nutrients were monitored to assess decaying jellyfish-bacteria dynamics. Our results show that jellyfish biomass is characterized by protein rich organic matter, which is highly bioavailable to 'jellyfish-associated' and 'free-living' bacteria, and triggers rapid shifts in bacterial population dynamics and composition. Based on 16S rRNA clone libraries and denaturing gradient gel electrophoresis (DGGE analysis, we observed a rapid shift in community composition from unculturable Alphaproteobacteria to culturable species of Gammaproteobacteria and Flavobacteria. The results of sequence analyses of bacterial isolates and of total bacterial community determined by culture independent genetic analysis showed the dominance of the Pseudoalteromonadaceae and the Vibrionaceae families. Elevated levels of dissolved proteins, dissolved organic and inorganic nutrient release, bacterial abundance and carbon production as well as ammonium concentrations characterized the degradation process. The biochemical composition of jellyfish species may influence changes in the amount of accumulated dissolved organic and inorganic nutrients. Our results can contribute insights into

  4. Bacterial Probiotic Modulation of Dendritic Cells

    OpenAIRE

    Drakes, Maureen; Blanchard, Thomas; Czinn, Steven

    2004-01-01

    Intestinal dendritic cells are continually exposed to ingested microorganisms and high concentrations of endogenous bacterial flora. These cells can be activated by infectious agents and other stimuli to induce T-cell responses and to produce chemokines which recruit other cells to the local environment. Bacterial probiotics are of increasing use against intestinal disorders such as inflammatory bowel disease. They act as nonpathogenic stimuli within the gut to regain immunologic quiescence. ...

  5. The intrinsic resistome of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Jorge Andrés Olivares Pacheco

    2013-04-01

    Full Text Available Intrinsically resistant bacteria have emerged as a relevant health problem in the last years. Those bacterial species, several of them with an environmental origin, present naturally a low-level susceptibility to several drugs. It has been proposed that intrinsic resistance is mainly the consequence of the impermeability of cellular envelopes, the activity of multidrug efflux pumps or the lack of appropriate targets for a given family of drugs. However, recently published articles indicate that the characteristic phenotype of susceptibility to antibiotics of a given bacterial species depends on the concerted activity of several elements, what has been named as intrinsic resistome. These determinants comprise not just classical resistance genes. Other elements, several of them involved in basic bacterial metabolic processes, are of relevance for the intrinsic resistance of bacterial pathogens. In the present review we analyse recent publications on the intrinsic resistomes of Escherichia coli and Pseudomonas aeruginosa. We present as well information on the role that global regulators of bacterial metabolism, as Crc from P. aeruginosa, may have on modulating bacterial susceptibility to antibiotics. Finally, we discuss the possibility of searching inhibitors of the intrinsic resistome in the aim of improving the activity of drugs currently in use for clinical practice.

  6. Bacterial carbon cycling in a subarctic fjord

    DEFF Research Database (Denmark)

    Middelboe, Mathias; Glud, Ronnie Nøhr; Sejr, M.K.

    2012-01-01

    and BGE were positively correlated with BDOC concentration, suggesting that organic carbon availability was limiting bacterial activity and carbon conversion efficiency. Viral production was low (0.8–1.8 × 104 viruses mL−1 h−1) as compared to low-latitude environments, suggesting a relatively small effect......In this seasonal study, we examined the environmental controls and quantitative importance of bacterial carbon consumption in the water column and the sediment in the subarctic Kobbefjord, Greenland. Depth-integrated bacterial production in the photic zone varied from 5.0 ± 2.7 mg C m−2 d−1...... in February to 42 ± 28 mg C m−2 d−1 in May and 34 ± 7 mg C m−2 d−1 in September, corresponding to a bacterial production to primary production ratio of 0.34 ± 0.14, 0.07 ± 0.04, and 0.08 ± 0.06, respectively. Based on measured bacterial growth efficiencies (BGEs) of 0.09–0.10, pelagic bacterial carbon...

  7. Small molecule control of bacterial biofilms.

    Science.gov (United States)

    Worthington, Roberta J; Richards, Justin J; Melander, Christian

    2012-10-01

    Bacterial biofilms are defined as a surface attached community of bacteria embedded in a matrix of extracellular polymeric substances that they have produced. When in the biofilm state, bacteria are more resistant to antibiotics and the host immune response than are their planktonic counterparts. Biofilms are increasingly recognized as being significant in human disease, accounting for 80% of bacterial infections in the body and diseases associated with bacterial biofilms include: lung infections of cystic fibrosis patients, colitis, urethritis, conjunctivitis, otitis, endocarditis and periodontitis. Additionally, biofilm infections of indwelling medical devices are of particular concern, as once the device is colonized infection is virtually impossible to eradicate. Given the prominence of biofilms in infectious diseases, there has been an increased effort toward the development of small molecules that will modulate bacterial biofilm development and maintenance. In this review, we highlight the development of small molecules that inhibit and/or disperse bacterial biofilms through non-microbicidal mechanisms. The review discuses the numerous approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. These approaches are grouped into: (1) the identification and development of small molecules that target one of the bacterial signaling pathways involved in biofilm regulation, (2) chemical library screening for compounds with anti-biofilm activity, and (3) the identification of natural products that possess anti-biofilm activity, and the chemical manipulation of these natural products to obtain analogues with increased activity. PMID:22733439

  8. Proteomics in the Study of Bacterial Keratitis

    Directory of Open Access Journals (Sweden)

    Rachida Bouhenni

    2015-12-01

    Full Text Available Bacterial keratitis is a serious ocular infection that can cause severe visual loss if treatment is not initiated at an early stage. It is most commonly caused by Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcus pneumoniae, or Serratia species. Depending on the invading organism, bacterial keratitis can progress rapidly, leading to corneal destruction and potential blindness. Common risk factors for bacterial keratitis include contact lens wear, ocular trauma, ocular surface disease, ocular surgery, lid deformity, chronic use of topical steroids, contaminated ocular medications or solutions, and systemic immunosuppression. The pathogenesis of bacterial keratitis, which depends on the bacterium-host interaction and the virulence of the invading bacterium, is complicated and not completely understood. This review highlights some of the proteomic technologies that have been used to identify virulence factors and the host response to infections of bacterial keratitis in order to understand the disease process and develop improved methods of diagnosis and treatment. Although work in this field is not abundant, proteomic technologies have provided valuable information toward our current knowledge of bacterial keratitis. More studies using global proteomic approaches are warranted because it is an important tool to identify novel targets for intervention and prevention of corneal damage caused by these virulent microorganisms.

  9. Comprehensive phylogenetic analysis of bacterial reverse transcriptases.

    Directory of Open Access Journals (Sweden)

    Nicolás Toro

    Full Text Available Much less is known about reverse transcriptases (RTs in prokaryotes than in eukaryotes, with most prokaryotic enzymes still uncharacterized. Two surveys involving BLAST searches for RT genes in prokaryotic genomes revealed the presence of large numbers of diverse, uncharacterized RTs and RT-like sequences. Here, using consistent annotation across all sequenced bacterial species from GenBank and other sources via RAST, available from the PATRIC (Pathogenic Resource Integration Center platform, we have compiled the data for currently annotated reverse transcriptases from completely sequenced bacterial genomes. RT sequences are broadly distributed across bacterial phyla, but green sulfur bacteria and cyanobacteria have the highest levels of RT sequence diversity (≤85% identity per genome. By contrast, phylum Actinobacteria, for which a large number of genomes have been sequenced, was found to have a low RT sequence diversity. Phylogenetic analyses revealed that bacterial RTs could be classified into 17 main groups: group II introns, retrons/retron-like RTs, diversity-generating retroelements (DGRs, Abi-like RTs, CRISPR-Cas-associated RTs, group II-like RTs (G2L, and 11 other groups of RTs of unknown function. Proteobacteria had the highest potential functional diversity, as they possessed most of the RT groups. Group II introns and DGRs were the most widely distributed RTs in bacterial phyla. Our results provide insights into bacterial RT phylogeny and the basis for an update of annotation systems based on sequence/domain homology.

  10. Nest Material Shapes Eggs Bacterial Environment

    Science.gov (United States)

    Ruiz-Castellano, Cristina; Tomás, Gustavo; Ruiz-Rodríguez, Magdalena; Martín-Gálvez, David; Soler, Juan José

    2016-01-01

    Selective pressures imposed by pathogenic microorganisms to embryos have selected in hosts for a battery of antimicrobial lines of defenses that includes physical and chemical barriers. Due to the antimicrobial properties of volatile compounds of green plants and of chemicals of feather degrading bacteria, the use of aromatic plants and feathers for nest building has been suggested as one of these barriers. However, experimental evidence suggesting such effects is scarce in the literature. During two consecutive years, we explored experimentally the effects of these nest materials on loads of different groups of bacteria (mesophilic bacteria, Enterobacteriaceae, Staphylococcus and Enterococcus) of eggshells in nests of spotless starlings (Sturnus unicolor) at the beginning and at the end of the incubation period. This was also explored in artificial nests without incubation activity. We also experimentally increased bacterial density of eggs in natural and artificial nests and explored the effects of nest lining treatments on eggshell bacterial load. Support for the hypothetical antimicrobial function of nest materials was mainly detected for the year and location with larger average values of eggshell bacterial density. The beneficial effects of feathers and plants were more easily detected in artificial nests with no incubation activity, suggesting an active role of incubation against bacterial colonization of eggshells. Pigmented and unpigmented feathers reduced eggshell bacterial load in starling nests and artificial nest boxes. Results from artificial nests allowed us to discuss and discard alternative scenarios explaining the detected association, particularly those related to the possible sexual role of feathers and aromatic plants in starling nests. All these results considered together confirm the antimicrobial functionality mainly of feathers but also of plants used as nest materials, and highlight the importance of temporally and geographically

  11. Acute Bacterial Prostatitis: Diagnosis and Management.

    Science.gov (United States)

    Coker, Timothy J; Dierfeldt, Daniel M

    2016-01-15

    Acute bacterial prostatitis is an acute infection of the prostate gland that causes pelvic pain and urinary tract symptoms, such as dysuria, urinary frequency, and urinary retention, and may lead to systemic symptoms, such as fevers, chills, nausea, emesis, and malaise. Although the true incidence is unknown, acute bacterial prostatitis is estimated to comprise approximately 10% of all cases of prostatitis. Most acute bacterial prostatitis infections are community acquired, but some occur after transurethral manipulation procedures, such as urethral catheterization and cystoscopy, or after transrectal prostate biopsy. The physical examination should include abdominal, genital, and digital rectal examination to assess for a tender, enlarged, or boggy prostate. Diagnosis is predominantly made based on history and physical examination, but may be aided by urinalysis. Urine cultures should be obtained in all patients who are suspected of having acute bacterial prostatitis to determine the responsible bacteria and its antibiotic sensitivity pattern. Additional laboratory studies can be obtained based on risk factors and severity of illness. Radiography is typically unnecessary. Most patients can be treated as outpatients with oral antibiotics and supportive measures. Hospitalization and broad-spectrum intravenous antibiotics should be considered in patients who are systemically ill, unable to voluntarily urinate, unable to tolerate oral intake, or have risk factors for antibiotic resistance. Typical antibiotic regimens include ceftriaxone and doxycycline, ciprofloxacin, and piperacillin/tazobactam. The risk of nosocomial bacterial prostatitis can be reduced by using antibiotics, such as ciprofloxacin, before transrectal prostate biopsy. PMID:26926407

  12. Microbial Degradation of Aniline by Bacterial Consortium

    Institute of Scientific and Technical Information of China (English)

    JIAN-LONG WANG; ZE-YU MAO; WEI-ZHONG WU

    2003-01-01

    Objective To investigate the characteristics of microbial degradation of aniline by a stable bacterial consortium. Methods The bacterial consortium was isolated from activated sludge treating chemical wastewater using aniline as the sole source of carbon and nitrogen by enrichment and isolation technique. The biomass was measured as optical density (OD) at 510 nm using a spectrophotometer. Aniline concentrations were determined by spectrophotometer. The intermediates of aniline degradation were identified by GC/MS method. Results The bacterial consortium could grow at a range of aniline concentrations between 50 and 500 mg/L. The optimal pH and temperature for aniline degradation were determined to be 7.0 and 30, respectively. The presence of NH4NO3 as an additional nitrogen source (100-500 mg/L) had no adverse effect on bacterial growth and aniline degradation. The presence of heavy metal ions, such as Co2+, Zn2+, Ni2+, Mn2+ and Cu2+ had an inhibitory effect on aniline degradation. Conclusions The isolated bacterial consortium candegrade aniline up to 500 mg/L effectively and tolerate some heavy metal ions that commonly exist in chemical wastewater. It has a potential to be applied in the practical treatment of aniline-containingwastewater.

  13. Bacterial coinfections in children with viral wheezing.

    Science.gov (United States)

    Lehtinen, P; Jartti, T; Virkki, R; Vuorinen, T; Leinonen, M; Peltola, V; Ruohola, A; Ruuskanen, O

    2006-07-01

    Bacterial coinfections occur in respiratory viral infections, but the attack rates and the clinical profile are not clear. The aim of this study was to determine bacterial coinfections in children hospitalized for acute expiratory wheezing with defined viral etiology. A total of 220 children aged 3 months to 16 years were investigated. The viral etiology of wheezing was confirmed by viral culture, antigen detection, serologic investigation, and/or PCR. Specific antibodies to common respiratory bacteria were measured from acute and convalescent serum samples. All children were examined clinically for acute otitis media, and subgroups of children were examined radiologically for sinusitis and pneumonia. Rhinovirus (32%), respiratory syncytial virus (31%), and enteroviruses (31%) were the most common causative viruses. Serologic evidence of bacterial coinfection was found in 18% of the children. Streptococcus pneumoniae (8%) and Mycoplasma pneumoniae (5%) were the most common causative bacteria. Acute otitis media was diagnosed in 44% of the children. Chest radiographs showed alveolar infiltrates in 10%, and paranasal radiographs and clinical signs showed sinusitis in 17% of the older children studied. Leukocyte counts and serum C-reactive protein levels were low in a great majority of patients. Viral lower respiratory tract infection in children is often associated with bacterial-type upper respiratory tract infections. However, coexisting bacterial lower respiratory tract infections that induce systemic inflammatory response are seldom detected.

  14. Emerging bacterial pathogens: the past and beyond.

    Science.gov (United States)

    Vouga, M; Greub, G

    2016-01-01

    Since the 1950s, medical communities have been facing with emerging and reemerging infectious diseases, and emerging pathogens are now considered to be a major microbiologic public health threat. In this review, we focus on bacterial emerging diseases and explore factors involved in their emergence as well as future challenges. We identified 26 major emerging and reemerging infectious diseases of bacterial origin; most of them originated either from an animal and are considered to be zoonoses or from water sources. Major contributing factors in the emergence of these bacterial infections are: (1) development of new diagnostic tools, such as improvements in culture methods, development of molecular techniques and implementation of mass spectrometry in microbiology; (2) increase in human exposure to bacterial pathogens as a result of sociodemographic and environmental changes; and (3) emergence of more virulent bacterial strains and opportunistic infections, especially affecting immunocompromised populations. A precise definition of their implications in human disease is challenging and requires the comprehensive integration of microbiological, clinical and epidemiologic aspects as well as the use of experimental models. It is now urgent to allocate financial resources to gather international data to provide a better understanding of the clinical relevance of these waterborne and zoonotic emerging diseases.

  15. Mesoscopic modeling of bacterial flagellar microhydrodynamics.

    Science.gov (United States)

    Gebremichael, Yeshitila; Ayton, Gary S; Voth, Gregory A

    2006-11-15

    A particle-based hybrid method of elastic network model and smooth-particle hydrodynamics has been employed to describe the propulsion of bacterial flagella in a viscous hydrodynamic environment. The method explicitly models the two aspects of bacterial propulsion that involve flagellar flexibility and long-range hydrodynamic interaction of low-Reynolds-number flow. The model further incorporates the molecular organization of the flagellar filament at a coarse-grained level in terms of the 11 protofilaments. Each of these protofilaments is represented by a collection of material points that represent the flagellin proteins. A computational model of a single flexible helical segment representing the filament of a bacterial flagellum is presented. The propulsive dynamics and the flow fields generated by the motion of the model filament are examined. The nature of flagellar deformation and the influence of hydrodynamics in determining the shape of deformations are examined based on the helical filament.

  16. Counterimmunoelectrophoresis in the diagnosis of bacterial meningitis

    DEFF Research Database (Denmark)

    Colding, H; Lind, I

    1977-01-01

    The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens of cerebros......The aim of the present study was to investigate whether counterimmunoelectrophoresis (CIE) would facilitate the rapid, etiological diagnosis of bacterial meningitis when used in parallel with other routine methods in a medical bacteriological laboratory. Of 3,674 consecutive specimens....../139) of the culture-negative specimens. CSF specimens from 21 patients with bacterial meningitis caused by other species were all negative in CIE, except four, three of which contained Escherichia coli antigen reacting with antiserum to N. meningitidis group B and one E. coli antigen reacting with antiserum to H...

  17. Endolymphatic sac involvement in bacterial meningitis

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Brandt, Christian; Østergaard, Christian;

    2015-01-01

    The commonest sequelae of bacterial meningitis are related to the inner ear. Little is known about the inner ear immune defense. Evidence suggests that the endolymphatic sac provides some protection against infection. A potential involvement of the endolymphatic sac in bacterial meningitis...... is largely unaccounted for, and thus the object of the present study. A well-established adult rat model of Streptococcus pneumoniae meningitis was employed. Thirty adult rats were inoculated intrathecally with Streptococcus pneumoniae and received no additional treatment. Six rats were sham...... days. Bacteria invaded the inner ear through the cochlear aquaduct. On days 5-6, the bacteria invaded the endolymphatic sac through the endolymphatic duct subsequent to invasion of the vestibular endolymphatic compartment. No evidence of direct bacterial invasion of the sac through the meninges...

  18. Evaluation of silicon oil on bacterial growth

    Directory of Open Access Journals (Sweden)

    Fabio Adams

    2012-04-01

    Full Text Available PURPOSE: To analyze the antimicrobial properties of silicon oil (Óleo de Silicone®, Ophthalmos, Brazil on in vitro bacterial growth of different microorganisms related to endophthalmitis. METHODS: The following microorganisms were analyzed: (1 Pseudomonas aeruginosa (ATCC 27583; (2 Escherichia coli (ATCC 25922; (3 Staphylococcus aureus (ATCC 25923; (4 Staphylococcus epidermidis (ATCC 12228; (5 Candida albicans (ATCC 10231; (6 Klebsiella pneumoniae (ATCC 13883; and (7 Streptococcus pneumoniae (ATCC 49619. The plates were incubated at 35 ± 2ºC and its growth examined after 24 hours. An empty disk was placed in the center of each plate as a control. RESULTS: No inhibition halos were verified in any of the plates containing the four different concentrations of the bacterial inocula. CONCLUSIONS: The silicon oil 1000 cps does not have any effect on bacterial growth of any of the studied microrganisms.

  19. Citrobacter rodentium mouse model of bacterial infection.

    Science.gov (United States)

    Crepin, Valerie F; Collins, James W; Habibzay, Maryam; Frankel, Gad

    2016-10-01

    Infection of mice with Citrobacter rodentium is a robust model to study bacterial pathogenesis, mucosal immunology, the health benefits of probiotics and the role of the microbiota during infection. C. rodentium was first isolated by Barthold from an outbreak of mouse diarrhea in Yale University in 1972 and was 'rediscovered' by Falkow and Schauer in 1993. Since then the use of the model has proliferated, and it is now the gold standard for studying virulence of the closely related human pathogens enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively). Here we provide a detailed protocol for various applications of the model, including bacterial growth, site-directed mutagenesis, mouse inoculation (from cultured cells and after cohabitation), monitoring of bacterial colonization, tissue extraction and analysis, immune responses, probiotic treatment and microbiota analysis. The main protocol, from mouse infection to clearance and analysis of tissues and host responses, takes ∼5 weeks to complete. PMID:27606775

  20. Comprehensive characterization of indoor airborne bacterial profile

    Institute of Scientific and Technical Information of China (English)

    P.L.Chan; P.H.F.Yu; Y.W.Cheng; C.Y.Chan; P.K.Wong

    2009-01-01

    This is the first detailed characterization of the air-borne bacterial profiles in indoor environments and two restaurants were selected for this study.Fifteen genera of bacteria were isolated from each restaurant and identified by three different bacterial identification systems including MIDI, Biolog and Riboprinter?.The dominant bacteria of both restaurants were Gram-positive bacteria in which Micrococcus and Bacillus species were the most abundant species.Most bacteria identified were representative species of skin and respiratory tract of human, and soil.Although the bacterial levels in these restaurants were below the limit of the Hong Kong Indoor Air Quality Objective (HKIAQO) Level 1 standard (i.e., < 500 cfu/m3), the majority of these bacteria were opportunistic pathogens.These results suggested that the identity of airborne bacteria should also be included in the IAQ to ensure there is a safety guideline for the public.

  1. Liver Cirrhosis and Intestinal Bacterial Translocation

    Institute of Scientific and Technical Information of China (English)

    2014-01-01

    Intestinal barrier dysfunction, facilitating translocation of bacteria and bacterial products, plays an important role in the pathophysiology of liver cirrhosis and its complications. Intestinal defense system including microbial barrier, immunologic barrier, mechanical barrier, chemical barrier, plays an important role in the maintenance of intestinal function. Under normal circumstances, the intestinal barrier can prevent intestinal bacteria through the intestinal wall from spreading to the body. Severe infection, trauma, shock, cirrhosis, malnutrition, immune suppression conditions, intestinal bacteria and endotoxin translocation, can lead to multiple organ dysfunction. The intestinal microlfora is not only involved in the digestion of nutrients, but also in local immunity, forming a barrier against pathogenic microorganisms. The derangement of the gut microlfora may lead to microbial translocation, deifned as the passage of viable microorganisms or bacterial products from the intestinal lumen to the mesenteric lymph nodes and other extraintestinal sites. In patients with cirrhosis, primary and intestinal lfora imbalance, intestinal bacterial overgrowth, intestinal mucosal barrier dysfunction, endotoxemia is associated with weakened immunity.

  2. Strategy of control for bacterial biofilm processes

    Directory of Open Access Journals (Sweden)

    A. N. Mayansky

    2012-01-01

    Full Text Available Main directions of the modern search of the antibiofilm preparations aimed at adhesive bacterial reactions, control of QS-systems, influence over bis-(3’-5’-cyclic dimeric guanosine monophosphate (cdi-GMP, and secretory bacterial processes are analysed. Approaches for biofilm dispersal and increasing the sensitivity of biofilm bacteria to antimicrobial drugs are discussed. It is underlined that the majority of inhibitor molecules were studied in vitro or in infected mice experiments. It is prognosed that in future there will appear medical preparations which will help for fighting bacterial biofilms preventing their development and spreading in the host organism.

  3. Biofilms: an emergent form of bacterial life.

    Science.gov (United States)

    Flemming, Hans-Curt; Wingender, Jost; Szewzyk, Ulrich; Steinberg, Peter; Rice, Scott A; Kjelleberg, Staffan

    2016-08-11

    Bacterial biofilms are formed by communities that are embedded in a self-produced matrix of extracellular polymeric substances (EPS). Importantly, bacteria in biofilms exhibit a set of 'emergent properties' that differ substantially from free-living bacterial cells. In this Review, we consider the fundamental role of the biofilm matrix in establishing the emergent properties of biofilms, describing how the characteristic features of biofilms - such as social cooperation, resource capture and enhanced survival of exposure to antimicrobials - all rely on the structural and functional properties of the matrix. Finally, we highlight the value of an ecological perspective in the study of the emergent properties of biofilms, which enables an appreciation of the ecological success of biofilms as habitat formers and, more generally, as a bacterial lifestyle. PMID:27510863

  4. Bacterial responses to reactive chlorine species.

    Science.gov (United States)

    Gray, Michael J; Wholey, Wei-Yun; Jakob, Ursula

    2013-01-01

    Hypochlorous acid (HOCl), the active ingredient of household bleach, is the most common disinfectant in medical, industrial, and domestic use and plays an important role in microbial killing in the innate immune system. Given the critical importance of the antimicrobial properties of chlorine to public health, it is surprising how little is known about the ways in which bacteria sense and respond to reactive chlorine species (RCS). Although the literature on bacterial responses to reactive oxygen species (ROS) is enormous, work addressing bacterial responses to RCS has begun only recently. Transcriptomic and proteomic studies now provide new insights into how bacteria mount defenses against this important class of antimicrobial compounds. In this review, we summarize the current knowledge, emphasizing the overlaps between RCS stress responses and other more well-characterized bacterial defense systems, and identify outstanding questions that represent productive avenues for future research. PMID:23768204

  5. Bacterial degradation of monocyclic aromatic amines

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-08-01

    Full Text Available Aromatic amines are an important group of industrial chemicals, which are widely used for manufacturing of dyes, pesticides, drugs, pigments, and other industrial products. These compounds have been considered highly toxic to human beings due to their carcinogenic nature. Three groups of aromatic amines have been recognized: monocyclic, polycyclic and heterocyclic aromatic amines. Bacterial degradation of several monocyclic aromatic compounds has been studied in a variety of bacteria, which utilizes monocyclic aromatic amines as their sole source of carbon and energy. Several degradation pathways have been proposed and the related enzymes and genes have also been characterized. Many reviews have been reviewed toxicity of monocyclic aromatic amines; however, there is lack of review on biodegradation of monocyclic aromatic amines. The aim of this review is to summarize bacterial degradation of monocyclic aromatic amines. This review will increase our current understanding of biochemical and molecular basis of bacterial degradation of monocyclic aromatic amines.

  6. MAT-FLX: a simplified code for computing material balances in fuel cycle

    International Nuclear Information System (INIS)

    This work illustrates a calculation code designed to provide a materials balance for the electro nuclear fuel cycle. The calculation method is simplified but relatively precise and employs a progressive tabulated data approach

  7. Transcriptome sequencing and de novo analysis of the copepod Calanus sinicus using 454 GS FLX.

    Directory of Open Access Journals (Sweden)

    Juan Ning

    Full Text Available BACKGROUND: Despite their species abundance and primary economic importance, genomic information about copepods is still limited. In particular, genomic resources are lacking for the copepod Calanus sinicus, which is a dominant species in the coastal waters of East Asia. In this study, we performed de novo transcriptome sequencing to produce a large number of expressed sequence tags for the copepod C. sinicus. RESULTS: Copepodid larvae and adults were used as the basic material for transcriptome sequencing. Using 454 pyrosequencing, a total of 1,470,799 reads were obtained, which were assembled into 56,809 high quality expressed sequence tags. Based on their sequence similarity to known proteins, about 14,000 different genes were identified, including members of all major conserved signaling pathways. Transcripts that were putatively involved with growth, lipid metabolism, molting, and diapause were also identified among these genes. Differentially expressed genes related to several processes were found in C. sinicus copepodid larvae and adults. We detected 284,154 single nucleotide polymorphisms (SNPs that provide a resource for gene function studies. CONCLUSION: Our data provide the most comprehensive transcriptome resource available for C. sinicus. This resource allowed us to identify genes associated with primary physiological processes and SNPs in coding regions, which facilitated the quantitative analysis of differential gene expression. These data should provide foundation for future genetic and genomic studies of this and related species.

  8. Roche genome sequencer FLX based high-throughput sequencing of ancient DNA

    DEFF Research Database (Denmark)

    Alquezar-Planas, David E; Fordyce, Sarah Louise

    2012-01-01

    Since the development of so-called "next generation" high-throughput sequencing in 2005, this technology has been applied to a variety of fields. Such applications include disease studies, evolutionary investigations, and ancient DNA. Each application requires a specialized protocol to ensure tha...

  9. [Chemotherapy of severe bacterial infections in pediatrics].

    Science.gov (United States)

    Guggenbichler, J P

    1983-01-01

    Bacterial infections are frequent events in premature and newborn infants. The reason is a defective specific and nonspecific defence of bacterial organisms. Some immunoglobulins like IgM and IgA including secretory IgA are absent. Premature infants also show a decreased level of IgG. Cellular immunity is anatomically intact but functionally defective. A number of complement factors are lacking, the activation of the alternative pathway is impaired. Newborn infants with perinatal problems like asphyxia or difficult delivery, show defects of leucocyte function like decreased deformability, defective chemotaxis and defective killing of ingested bacteria. Certain diseases, like hypoxia and malformations of immature organ functions in this age group (decreased acid production in the stomach), facilitate bacterial colonization of surface epithelia and the invasion of tissues. Consequences of these pathogenetic mechanisms are an unimpaired propagation of bacterial organisms into the blood and meninges without localization of the infecting organisms at the entry site. Bacterial meningitis is not considered a separate disease entity but a complication of bacteremia and sepsis. Clinical symptoms are nonspecific at the onset of the infection. Fever is frequently absent; decreased appetite, vomiting, a bloated abdomen, diarrhea, tachycardia, tachypnea are early signs of a bacterial infection, a grey mottled appearance, cyanosis, jaundice, petechiae, apneic spells, seizure activity and a metabolic acidosis are symptoms of advanced infection. Successful treatment at this stage is often not possible. Every sign of a decreased well being of a newborn of premature infant warrants laboratory and bacteriologic work up for septicemia.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6316669

  10. Inhibiting bacterial toxins by channel blockage.

    Science.gov (United States)

    Bezrukov, Sergey M; Nestorovich, Ekaterina M

    2016-03-01

    Emergent rational drug design techniques explore individual properties of target biomolecules, small and macromolecule drug candidates, and the physical forces governing their interactions. In this minireview, we focus on the single-molecule biophysical studies of channel-forming bacterial toxins that suggest new approaches for their inhibition. We discuss several examples of blockage of bacterial pore-forming and AB-type toxins by the tailor-made compounds. In the concluding remarks, the most effective rationally designed pore-blocking antitoxins are compared with the small-molecule inhibitors of ion-selective channels of neurophysiology.

  11. Glucocorticosteroids: as Adjuvant Therapy for Bacterial Infections

    Directory of Open Access Journals (Sweden)

    WONDIM MELKAM

    2015-01-01

    Full Text Available Glucocorticoids (GCs, synthetic analogues of the natural steroid hormones, are well known for their antiinflammatory and immunosuppressive properties in the periphery. They are widely and successfully used in the treatment of autoimmune diseases, chronic inflammation, and transplant rejection. Nowadays, GCs are claimed to have a beneficial role being as adjunct therapy in various infections. Different studies have been conducted to investigate their use as adjuvant therapy for different bacterial infection. This review, therefore, summarizes various bacterial infections for which glucocorticoids are reported to be used as adjuvant therapy, strategies for administration of glucocorticoids, and challenges of using glucocorticoids as adjuvant therapy.

  12. Bacterial Association with Particles: Aggregation to Dissolution

    Digital Repository Service at National Institute of Oceanography (India)

    DeSouza, M.J.B.D.

    , G.H., Hamilton, I.R., 1989. Competition between Streptococcus mutans and Lactobacillus caseii in mixed continuous culture. Oral Microbiol. Immunol. 4, 57-64. Bowen, J.D., Stolzenbach, D., Chisholm, S.W., 1993. Simulating bacterial clustering around... stream_size 68898 stream_content_type text/plain stream_name Judith_chap06.pdf.txt stream_source_info Judith_chap06.pdf.txt Content-Encoding ISO-8859-1 Content-Type text/plain; charset=ISO-8859-1 6. Bacterial Association...

  13. Production of bacterial cellulose from alternate feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    D. N. Thompson; M. A. Hamilton

    2000-05-07

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS and HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  14. Production of Bacterial Cellulose from Alternate Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, David Neil; Hamilton, Melinda Ann

    2000-05-01

    Production of bacterial cellulose by Acetobacter xylinum ATCC 10821 and 23770 in static cultures was tested from unamended food process effluents. Effluents included low- and high-solids potato effluents (LS & HS), cheese whey permeate (CW), and sugar beet raffinate (CSB). Strain 23770 produced 10% less cellulose from glucose than did 10821, and diverted more glucose to gluconate. Unamended HS, CW, and CSB were unsuitable for cellulose production by either strain, while LS was unsuitable for production by 10821. However, 23770 produced 17% more cellulose from LS than from glucose, indicating unamended LS could serve as a feedstock for bacterial cellulose.

  15. Horizontal gene transfer and bacterial diversity

    Indian Academy of Sciences (India)

    Chitra Dutta; Archana Pan

    2002-02-01

    Bacterial genomes are extremely dynamic and mosaic in nature. A substantial amount of genetic information is inserted into or deleted from such genomes through the process of horizontal transfer. Through the introduction of novel physiological traits from distantly related organisms, horizontal gene transfer often causes drastic changes in the ecological and pathogenic character of bacterial species and thereby promotes microbial diversification and speciation. This review discusses how the recent influx of complete chromosomal sequences of various microorganisms has allowed for a quantitative assessment of the scope, rate and impact of horizontally transmitted information on microbial evolution.

  16. Neurosonographic findings of bacterial meningitis in Infants

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Moon Chul; Lee, Sung Sik; Lee, Hong Kue; Lee, Soon Il [Sowa Children' s Hospital, Seoul (Korea, Republic of)

    1989-02-15

    44 infants under 1 year were studied retrospectively during these illness and follow up after 1 week intervals. The spectrum of sonographic features of bacterial meningitis in acute stage included normal scan (20 patients), echogenic sulci (10 patients), echogenic lining of epandymas (8 patients), Abnormal parenchymal echogenecity (6 patients). On follow up examination with 1 week intervals, variety of complications was found in 14 patients (32%) of the infants. There were ventriculomegaly in 7 patients, extraaxial fluid collection in 4 patients, brain abscess in 2 patients and poor encephalic cyst in 1 patient. We conclude that ultrasound was an effective method for evaluation of progression and complications of bacterial meningitis.

  17. CT scan of bacterial and aseptic meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Takemoto, Kazumasa; Saiwai, Shigeo; Tamaoka, Koichi (Kobe Central Municipal Hospital (Japan))

    1983-01-01

    CT scans of the patients with aseptic and bacterial meningitis were reviewed and compared to previous reports. In aseptic meningitis, no abnormal CT findings were observed. In bacterial meningitis, CT findings were ventricular dilatation, subdural fluid collection, parenchymal low density, intracerebral hematoma and meningeal enhancement after contrast injection. Three patients among 48 suffered from status epileptics during the course of the illness. All of the 3 patients developed parenchymal inhomogeneous low density and progressive ventricular dilatation which did not improve after ventricular peritoneal shunt surgery. We believe that these changes are most likely due to hypoxic hypoxemia during epileptic seizure and meningitis itself seems to play a little role.

  18. Effect of isolate of ruminal fibrolytic bacterial culture supplementation on fibrolytic bacterial population and survivability of inoculated bacterial strain in lactating Murrah buffaloes

    Directory of Open Access Journals (Sweden)

    Brishketu Kumar

    2013-02-01

    Full Text Available Aim: The present study was conducted to evaluate the effect of bacterial culture supplementation on ruminal fibrolytic bacterial population as well as on survivability of inoculated bacterial strain in lactating Murrah buffaloes kept on high fibre diet. Materials and Methods: Fibrolytic bacterial strains were isolated from rumen liquor of fistulated Murrah buffaloes and live bacterial culture were supplemented orally in treatment group of lactating Murrah buffaloes fed on high fibre diet to see it's effect on ruminal fibrolytic bacterial population as well as to see the effect of survivability of the inoculated bacterial strain at three different time interval in comparison to control group. Results: It has been shown by real time quantification study that supplementation of bacterial culture orally increases the population of major fibre degrading bacteria i.e. Ruminococcus flavefaciens, Ruminococcus albus as well as Fibrobacter succinogenes whereas there was decrease in secondary fibre degrading bacterial population i.e. Butyrivibrio fibrisolvens over the different time periods. However, the inoculated strain of Ruminococcus flavefaciens survived significantly over the period of time, which was shown in stability of increased inoculated bacterial population. Conclusion: The isolates of fibrolytic bacterial strains are found to be useful in increasing the number of major ruminal fibre degrading bacteria in lactating buffaloes and may act as probiotic in large ruminants on fibre-based diets. [Vet World 2013; 6(1.000: 14-17

  19. The 'Swiss cheese' instability of bacterial biofilms

    CERN Document Server

    Jang, Hongchul; Stocker, Roman

    2012-01-01

    We demonstrate a novel pattern that results in bacterial biofilms as a result of the competition between hydrodynamic forces and adhesion forces. After the passage of an air plug, the break up of the residual thin liquid film scrapes and rearranges bacteria on the surface, such that a Swiss cheese pattern of holes is left in the residual biofilm.

  20. Bacterial proteases: targets for diagnostics and therapy

    NARCIS (Netherlands)

    W.E. Kaman; J.P. Hays; H.P. Endtz; F.J. Bikker

    2014-01-01

    Proteases are essential for the proliferation and growth of bacteria, and are also known to contribute to bacterial virulence. This makes them interesting candidates as diagnostic and therapeutic targets for infectious diseases. In this review, the authors discuss the most recent developments and po

  1. Bacterial community reconstruction using compressed sensing.

    Science.gov (United States)

    Amir, Amnon; Zuk, Or

    2011-11-01

    Bacteria are the unseen majority on our planet, with millions of species and comprising most of the living protoplasm. We propose a novel approach for reconstruction of the composition of an unknown mixture of bacteria using a single Sanger-sequencing reaction of the mixture. Our method is based on compressive sensing theory, which deals with reconstruction of a sparse signal using a small number of measurements. Utilizing the fact that in many cases each bacterial community is comprised of a small subset of all known bacterial species, we show the feasibility of this approach for determining the composition of a bacterial mixture. Using simulations, we show that sequencing a few hundred base-pairs of the 16S rRNA gene sequence may provide enough information for reconstruction of mixtures containing tens of species, out of tens of thousands, even in the presence of realistic measurement noise. Finally, we show initial promising results when applying our method for the reconstruction of a toy experimental mixture with five species. Our approach may have a potential for a simple and efficient way for identifying bacterial species compositions in biological samples. All supplementary data and the MATLAB code are available at www.broadinstitute.org/?orzuk/publications/BCS/.

  2. Multiple bacterial species reside in chronic wounds

    DEFF Research Database (Denmark)

    Gjødsbøl, Kristine; Christensen, Jens Jørgen; Karlsmark, Tonny;

    2006-01-01

    species present were identified. More than one bacterial species were detected in all the ulcers. The most common bacteria found were Staphylococcus aureus (found in 93.5% of the ulcers), Enterococcus faecalis (71.7%), Pseudomonas aeruginosa (52.2%), coagulase-negative staphylococci (45.7%), Proteus...

  3. Respiratory bacterial infections in cystic fibrosis

    DEFF Research Database (Denmark)

    Ciofu, Oana; Hansen, Christine R; Høiby, Niels

    2013-01-01

    PURPOSE OF REVIEW: Bacterial respiratory infections are the main cause of morbidity and mortality in patients with cystic fibrosis (CF). Pseudomonas aeruginosa remains the main pathogen in adults, but other Gram-negative bacteria such as Achromobacter xylosoxidans and Stenotrophomonas maltophilia...... respiratory tract (nasal sampling) should be investigated and both infection sites should be treated....

  4. Model for Mutation in Bacterial Populations

    Science.gov (United States)

    Donangelo, R.; Fort, H.

    2002-07-01

    We describe the evolution of E. coli populations through a Bak-Sneppen-type model which incorporates random mutations. We show that, for a value of the mutation level which coincides with the one estimated from experiments, this model reproduces the measures of mean fitness relative to that of a common ancestor, performed for over 10 000 bacterial generations.

  5. A model for mutation in bacterial populations

    OpenAIRE

    Donangelo, R.; Fort, H.

    2002-01-01

    We describe the evolution of $E.coli$ populations through a Bak-Sneppen type model which incorporates random mutations. We show that, for a value of the mutation level which coincides with the one estimated from experiments, this model reproduces the measures of mean fitness relative to that of a common ancestor, performed for over 10,000 bacterial generations.

  6. Punctuated equilibrium in an evolving bacterial population

    OpenAIRE

    Chaudhuri, Indranath; Bose, Indrani

    1999-01-01

    Recently, Lenski et al have carried out an experiment on bacterial evolution. Their findings support the theory of punctuated equilibrium in biological evolution. We show that the M=2 Bak-Sneppen model can explain some of the experimental results in a qualitative manner.

  7. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes.

  8. A study of bacterial gene regulatory mechanisms

    DEFF Research Database (Denmark)

    Hansen, Sabine

    of GRNs this thesis also provided the first evidence of the sensor histidine kinase VC1831 being an additional player in the Vibrio cholerae quorum sensing (QS) GRN. Bacteria use a process of cell-cell communication called QS which enable the bacterial cells to collectively control their gene expression...

  9. Removal of triphenylmethane dyes by bacterial consortium.

    Science.gov (United States)

    Cheriaa, Jihane; Khaireddine, Monia; Rouabhia, Mahmoud; Bakhrouf, Amina

    2012-01-01

    A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila)-(CM-4) was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L) and malachite green (50 mg/L) dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD) removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  10. Bacterial enzymes involved in lignin degradation.

    Science.gov (United States)

    de Gonzalo, Gonzalo; Colpa, Dana I; Habib, Mohamed H M; Fraaije, Marco W

    2016-10-20

    Lignin forms a large part of plant biomass. It is a highly heterogeneous polymer of 4-hydroxyphenylpropanoid units and is embedded within polysaccharide polymers forming lignocellulose. Lignin provides strength and rigidity to plants and is rather resilient towards degradation. To improve the (bio)processing of lignocellulosic feedstocks, more effective degradation methods of lignin are in demand. Nature has found ways to fully degrade lignin through the production of dedicated ligninolytic enzyme systems. While such enzymes have been well thoroughly studied for ligninolytic fungi, only in recent years biochemical studies on bacterial enzymes capable of lignin modification have intensified. This has revealed several types of enzymes available to bacteria that enable them to act on lignin. Two major classes of bacterial lignin-modifying enzymes are DyP-type peroxidases and laccases. Yet, recently also several other bacterial enzymes have been discovered that seem to play a role in lignin modifications. In the present review, we provide an overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignin-derived products. PMID:27544286

  11. Meningococcal Disease (Bacterial Meningitis) Vaccine and Pregnancy

    Science.gov (United States)

    Meningococcal Disease (Bacterial meningitis) Vaccine and Pregnancy In every pregnancy, a woman starts out with a 3-5% chance of having a baby ... advice from your health care provider. What is meningitis? Meningitis is an infection of the lining that ...

  12. Bacterial flora of the sigmoid neovagina

    NARCIS (Netherlands)

    T.A. Toolenaar; I. Freundt (Ingrid); J.H. Wagenvoort; F.J. Huikeshoven (Frans); M. Vogel; J. Jeekel (Hans); A.C. Drogendijk

    1993-01-01

    textabstractThe bacterial microbiota of 15 sigmoid neovaginas, created in patients with congenital vaginal aplasia or male transsexualism, was studied. No specimen was sterile, and only normal inhabitants of the colon were cultured. The total counts of bacteria were low

  13. Bacterial vaginosis with special reference to anaerobes

    Directory of Open Access Journals (Sweden)

    Sumati A

    2009-01-01

    Full Text Available Aims: This study was undertaken to assess the prevalence of bacterial vaginosis (BV and to estimate the prevalence of anaerobic organisms in vaginal discharge of women suffering from bacterial vaginosis. Settings and Design: Patients attending the Obstetrics and Gynecology Department of a Medical College Hospital. A one year cross-sectional study. Methods and Materials: High vaginal swabs taken from 174 female patients complaining of abnormal vaginal discharge. BV was diagnosed by clinical composite criteria and by gram stain. Anaerobes were isolated and identified from the discharge. Statistical Analysis Used: Chi square test, with level of significance set at a value of P< 0.05. Results: BV was diagnosed in 68.39% of the cases by using clinical composite criteria and in 58.4% of the cases by gram stain. Anaerobic culture isolation of vaginal swabs revealed that out of 174 cases 143 (82.65% were culture positive for anaerobes. Bacteroides were significantly raised in BV as compared with non bacterial vaginosis (NBV; < 0.05%. Conclusions: Anaerobic bacteria are important pathogens in the causation of bacterial vaginosis along with other aerobic organisms. Bacteroides and peptostreptococci are significantly raised in BV.

  14. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation.

  15. Bacterial cell biology outside the streetlight.

    Science.gov (United States)

    Bulgheresi, Silvia

    2016-09-01

    As much as vertical transmission of microbial symbionts requires their deep integration into the host reproductive and developmental biology, symbiotic lifestyle might profoundly affect bacterial growth and proliferation. This review describes the reproductive oddities displayed by bacteria associated - more or less intimately - with multicellular eukaryotes. PMID:27306428

  16. Corticosteroids for acute adult bacterial meningitis

    NARCIS (Netherlands)

    D. van de Beek

    2009-01-01

    Bacterial meningitis in adults is a severe disease, with high fatality and morbidity rates. Experimental studies showed that the inflammatory response in the subarachnoid space is associated with unfavorable outcome. In these experiments, corticosteroids, and in particular dexamethasone, were able t

  17. Bacterial meningitis: Mechanisms of disease and therapy

    NARCIS (Netherlands)

    R.F. Kornelisse (René); R. de Groot (Ronald); H.J. Neijens (Herman)

    1995-01-01

    textabstractBacterial meningitis continues to be a serious infectious disease with a high morbidity and mortality in young children. Early recognition and initiation of adequate treatment are the major determinants for a good outcome. Recent advances in our understanding of the host inflammatory res

  18. Field determination of bacterial disappearance in seawater

    DEFF Research Database (Denmark)

    Harremoës, Poul

    1970-01-01

    The article presents two approaches to field determination of disappearance of viable, fecal bacteria after discharge with sewage into a marine environment. The first approach is based on simultaneous sampling for bacterial counting and monitoring of dilution using a conservative tracer, which...

  19. Bacterial ice nucleation: significance and molecular basis.

    Science.gov (United States)

    Gurian-Sherman, D; Lindow, S E

    1993-11-01

    Several bacterial species are able to catalyze ice formation at temperatures as warm as -2 degrees C. These microorganisms efficiently catalyze ice formation at temperatures much higher than most organic or inorganic substances. Because of their ubiquity on the surfaces of frost-sensitive plants, they are responsible for initiating ice formation, which results in frost injury. The high temperature of ice catalysis conferred by bacterial ice nuclei makes them useful in ice nucleation-limited processes such as artificial snow production, the freezing of some food products, and possibly in future whether modification schemes. The rarity of other ice nuclei active at high subfreezing temperature, and the ease and sensitivity with which ice nuclei can be quantified, have made the use of a promoterless bacterial ice nucleation gene valuable as a reporter of transcription. Target genes to which this promoter is fused can be used in cells in natural habitats. Warm-temperature ice nucleation sites have also been extensively studied at a molecular level. Nucleation sites active at high temperatures (above -5 degrees C) are probably composed of bacterial ice nucleation protein molecules that form functionally aligned aggregates. Models of ice nucleation proteins predict that they form a planar array of hydrogen binding groups that closely complement that of an ice crystal face. Moreover, interdigitation of these molecules may produce a large contiguous template for ice formation. PMID:8224607

  20. Enzymatic removal and disinfection of bacterial biofilms

    DEFF Research Database (Denmark)

    Johansen, Charlotte; Falholt, Per; Gram, Lone

    1997-01-01

    -coated hydroxyapatite. The activity of enzymes against bacterial cells in biofilm was measured by fluorescence microscopy and an indirect conductance test in which evolution of carbon dioxide was measured. Glucose oxidase combined with lactoperoxidase was bactericidal against biofilm bacteria but did not remove...

  1. Bacterial Acclimation Inside an Aqueous Battery.

    Directory of Open Access Journals (Sweden)

    Dexian Dong

    Full Text Available Specific environmental stresses may lead to induced genomic instability in bacteria, generating beneficial mutants and potentially accelerating the breeding of industrial microorganisms. The environmental stresses inside the aqueous battery may be derived from such conditions as ion shuttle, pH gradient, free radical reaction and electric field. In most industrial and medical applications, electric fields and direct currents are used to kill bacteria and yeast. However, the present study focused on increasing bacterial survival inside an operating battery. Using a bacterial acclimation strategy, both Escherichia coli and Bacillus subtilis were acclimated for 10 battery operation cycles and survived in the battery for over 3 days. The acclimated bacteria changed in cell shape, growth rate and colony color. Further analysis indicated that electrolyte concentration could be one of the major factors determining bacterial survival inside an aqueous battery. The acclimation process significantly improved the viability of both bacteria E. coli and B. subtilis. The viability of acclimated strains was not affected under battery cycle conditions of 0.18-0.80 mA cm(-2 and 1.4-2.1 V. Bacterial addition within 1.0×10(10 cells mL(-1 did not significantly affect battery performance. Because the environmental stress inside the aqueous battery is specific, the use of this battery acclimation strategy may be of great potential for the breeding of industrial microorganisms.

  2. Removal of Triphenylmethane Dyes by Bacterial Consortium

    Directory of Open Access Journals (Sweden)

    Jihane Cheriaa

    2012-01-01

    Full Text Available A new consortium of four bacterial isolates (Agrobacterium radiobacter; Bacillus spp.; Sphingomonas paucimobilis, and Aeromonas hydrophila-(CM-4 was used to degrade and to decolorize triphenylmethane dyes. All bacteria were isolated from activated sludge extracted from a wastewater treatment station of a dyeing industry plant. Individual bacterial isolates exhibited a remarkable color-removal capability against crystal violet (50 mg/L and malachite green (50 mg/L dyes within 24 h. Interestingly, the microbial consortium CM-4 shows a high decolorizing percentage for crystal violet and malachite green, respectively, 91% and 99% within 2 h. The rate of chemical oxygen demand (COD removal increases after 24 h, reaching 61.5% and 84.2% for crystal violet and malachite green, respectively. UV-Visible absorption spectra, FTIR analysis and the inspection of bacterial cells growth indicated that color removal by the CM-4 was due to biodegradation. Evaluation of mutagenicity by using Salmonella typhimurium test strains, TA98 and TA100 studies revealed that the degradation of crystal violet and malachite green by CM-4 did not lead to mutagenic products. Altogether, these results demonstrated the usefulness of the bacterial consortium in the treatment of the textile dyes.

  3. Discovery of inhibitors of bacterial histidine kinases

    NARCIS (Netherlands)

    Velikova, N.R.

    2014-01-01

    Discovery of Inhibitors of Bacterial Histidine Kinases

    Summary

    The thesis is on novel antibacterial drug discovery (http://youtu.be/NRMWOGgeysM). Using structure-based and fragment-based dru

  4. Bacterial Sphingomyelinases and Phospholipases as Virulence Factors.

    Science.gov (United States)

    Flores-Díaz, Marietta; Monturiol-Gross, Laura; Naylor, Claire; Alape-Girón, Alberto; Flieger, Antje

    2016-09-01

    Bacterial sphingomyelinases and phospholipases are a heterogeneous group of esterases which are usually surface associated or secreted by a wide variety of Gram-positive and Gram-negative bacteria. These enzymes hydrolyze sphingomyelin and glycerophospholipids, respectively, generating products identical to the ones produced by eukaryotic enzymes which play crucial roles in distinct physiological processes, including membrane dynamics, cellular signaling, migration, growth, and death. Several bacterial sphingomyelinases and phospholipases are essential for virulence of extracellular, facultative, or obligate intracellular pathogens, as these enzymes contribute to phagosomal escape or phagosomal maturation avoidance, favoring tissue colonization, infection establishment and progression, or immune response evasion. This work presents a classification proposal for bacterial sphingomyelinases and phospholipases that considers not only their enzymatic activities but also their structural aspects. An overview of the main physiopathological activities is provided for each enzyme type, as are examples in which inactivation of a sphingomyelinase- or a phospholipase-encoding gene impairs the virulence of a pathogen. The identification of sphingomyelinases and phospholipases important for bacterial pathogenesis and the development of inhibitors for these enzymes could generate candidate vaccines and therapeutic agents, which will diminish the impacts of the associated human and animal diseases. PMID:27307578

  5. Bacterial DNA delays human eosinophil apoptosis

    OpenAIRE

    Ilmarinen, Pinja; Hasala, Hannele; Sareila, Outi; Moilanen, Eeva; Kankaanranta, Hannu

    2009-01-01

    Bacterial DNA delays human eosinophil apoptosis correspondance: Corresponding author. Tel.: +358 3 3551 6687; fax: +358 3 3551 8082. (Ilmarinen, Pinja) (Ilmarinen, Pinja) The Immunopharmacology Research Group--> , Medical School--> , University of Tampere and Research Unit--> , Tampere University Hospital--> , Tampere--> - FINLAND (Ilmarinen, Pinja) The Immunopharmacology ...

  6. Vancomycin prophylaxis of experimental Streptococcus sanguis. Inhibition of bacterial adherence rather than bacterial killing.

    OpenAIRE

    Bernard, J. P.; Francioli, P.; Glauser, M P

    1981-01-01

    Using a strain of Streptococcus sanguis tolerant to vancomycin to infect aortic vegetations in rats, we found that prophylactic intravenous vancomycin given 30 min before bacterial challenge decreased the incidence of endocarditis from 88 to 8% (P less than 10(-5)). Because peak vancomycin serum levels were below the minimal bactericidal concentration, mechanisms of protection other than bacterial killing were investigated. S. sanguis were incubated with inhibitory concentration of vancomycin...

  7. Biomechanics of bacterial walls: studies of bacterial thread made from Bacillus subtilis.

    OpenAIRE

    Thwaites, J J; Mendelson, N H

    1985-01-01

    Bacterial threads of up to 1 m in length have been produced from filaments of separation-suppressed mutants of Bacillus subtilis. Individual threads may contain 20,000 cellular filaments in parallel alignment. The tensile properties of bacterial threads have been examined by using conventional textile engineering techniques. The kinetics of elongation at constant load are indicative of a viscoelastic material. Both Young's modulus and breaking stress are highly dependent upon relative humidit...

  8. A study of bacterial contamination of rattlesnake venom

    Directory of Open Access Journals (Sweden)

    E. Garcia-Lima

    1987-03-01

    Full Text Available The authors studied the bacterial contamination of rattlesnake venom isolated from snakes in captivity and wild snakes caught recently. The captive snakes showed a relatively high incidence of bacterial contamination of their venom.

  9. Bacterial adhesion of porphyromonas gingivalis on provisional fixed prosthetic materials

    Directory of Open Access Journals (Sweden)

    Mustafa Zortuk

    2010-01-01

    Conclusion : The quantity of bacterial adhesion and surface roughness differed among the assessed provisional fixed prosthodontic materials. The light-polymerized provisional material Revotek LC had rougher surface and more bacterial adhesion compared with the others.

  10. A simple technique to assess bacterial attachment to metal surfaces

    Digital Repository Service at National Institute of Oceanography (India)

    Sonak, S.; Bhosle, N.B.

    There are several methods to assess bacterial adhesion to metal surfaces. Although these methods are sensitive, they are time consuming and need expensive chemicals and instruments. Hence, their use in assessing bacterial adhesion is limited...

  11. Cholinesterase modulations in patients with acute bacterial meningitis

    DEFF Research Database (Denmark)

    Berg, Ronan M G; Ofek, Keren; Qvist, Tavs;

    2011-01-01

    The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis.......The circulating cholinesterases acetyl- and butyrylcholinesterase may be suppressed and subsequently released from the brain in acute bacterial meningitis....

  12. Risk of Bacterial Meningitis in Children with Cochlear Implants

    Science.gov (United States)

    ... Information For... Media Policy Makers Risk of Bacterial Meningitis in Children with Cochlear Implants Language: English Español ( ... Compartir 2002 Study of the Risk of Bacterial Meningitis in Children with Cochlear Implants Many people have ...

  13. Targeted imaging of bacterial infections : advances, hurdles and hopes

    NARCIS (Netherlands)

    van Oosten, Marleen; Hahn, Markus; Crane, Lucia M. A.; Pleijhuis, Rick G.; Francis, Kevin P.; van Dijl, Jan Maarten; van Dam, Gooitzen M.

    2015-01-01

    Bacterial infections represent an increasing problem in modern health care, in particular due to ageing populations and accumulating bacterial resistance to antibiotics. Diagnosis is rarely straightforward and consequently treatment is often delayed or indefinite. Therefore, novel tools that can be

  14. Hyperglycemia in bacterial meningitis: a prospective cohort study

    NARCIS (Netherlands)

    E.S. Schut; W.F. Westendorp; J. de Gans; N.D. Kruyt; L. Spanjaard; J.B. Reitsma; D. van de Beek

    2009-01-01

    ABSTRACT: BACKGROUND: Hyperglycemia has been associated with unfavorable outcome in several disorders, but few data are available in bacterial meningitis. We assessed the incidence and significance of hyperglycemia in adults with bacterial meningitis. METHODS: We collected data prospectively between

  15. New methods to assess bacterial injury in water.

    OpenAIRE

    Zaske, S K; Dockins, W S; Schillinger, J. E.; McFeters, G A

    1980-01-01

    Two methods are described for measurement of bacterial injury in water. Laboratory time preceding cell division measured with slide cultures and spheroplast formation after lysozyme treatment were accurate and rapid measurements of bacterial damage.

  16. Bacterial melanin promotes recovery after sciatic nerve injury in rats

    OpenAIRE

    Gevorkyan, Olga. V.; Meliksetyan, Irina B.; Petrosyan, Tigran R.; Hovsepyan, Anichka S.

    2015-01-01

    Bacterial melanin, obtained from the mutant strain of Bacillus Thuringiensis, has been shown to promote recovery after central nervous system injury. It is hypothesized, in this study, that bacterial melanin can promote structural and functional recovery after peripheral nerve injury. Rats subjected to sciatic nerve transection were intramuscularly administered bacterial melanin. The sciatic nerve transected rats that did not receive intramuscular administration of bacterial melanin served as...

  17. Estimating Bacterial Loadings to Surface Waters from Agricultural Watersheds

    OpenAIRE

    Panhorst, Kimberly A.

    2002-01-01

    Fecal bacteria and pathogens are a major source of surface water impairment. In Virginia alone, approximately 73% of impaired waters are impaired due to fecal coliforms (FC). Because bacteria are a significant cause of water body impairment and existing bacterial models are predominantly based upon laboratory-derived information, bacterial models are needed that describe bacterial die-off and transport processes under field conditions. Before these bacterial models can be developed, more f...

  18. New Class of Competitive Inhibitor of Bacterial Histidine Kinases

    OpenAIRE

    Gilmour, Raymond; Foster, J. Estelle; Sheng, Qin; McClain, Jonathan R.; Riley, Anna; Sun, Pei-Ming; Ng, Wai-Leung; Yan, Dalai; Nicas, Thalia I.; Henry, Kenneth; Winkler, Malcolm E.

    2005-01-01

    Bacterial histidine kinases have been proposed as targets for the discovery of new antibiotics, yet few specific inhibitors of bacterial histidine kinases have been reported. We report here a novel thienopyridine (TEP) compound that inhibits bacterial histidine kinases competitively with respect to ATP but does not comparably inhibit mammalian serine/threonine kinases. Although it partitions into membranes and does not inhibit the growth of bacterial or mammalian cells, TEP could serve as a s...

  19. Discovery of New Substrates for LuxAB Bacterial Bioluminescence.

    Science.gov (United States)

    Jiang, Tianyu; Wang, Weishan; Wu, Xingkang; Wu, Wenxiao; Bai, Haixiu; Ma, Zhao; Shen, Yuemao; Yang, Keqian; Li, Minyong

    2016-08-01

    In this article, four novel substrates with long halftime have been designed and synthesized successfully for luxAB bacterial bioluminescence. After in vitro and in vivo biological evaluation, these molecules can emit obvious bioluminescence emission with known bacterial luciferase, thus indicating a new promising approach to developing the bacterial bioluminescent system. PMID:26896339

  20. Discovery of New Substrates for LuxAB Bacterial Bioluminescence.

    Science.gov (United States)

    Jiang, Tianyu; Wang, Weishan; Wu, Xingkang; Wu, Wenxiao; Bai, Haixiu; Ma, Zhao; Shen, Yuemao; Yang, Keqian; Li, Minyong

    2016-08-01

    In this article, four novel substrates with long halftime have been designed and synthesized successfully for luxAB bacterial bioluminescence. After in vitro and in vivo biological evaluation, these molecules can emit obvious bioluminescence emission with known bacterial luciferase, thus indicating a new promising approach to developing the bacterial bioluminescent system.

  1. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils

    OpenAIRE

    Kobayashi, Scott D.; Braughton, Kevin R.; Whitney, Adeline R.; Voyich, Jovanka M.; Schwan, Tom G.; Musser, James M.; DeLeo, Frank R.

    2003-01-01

    Human polymorphonuclear leukocytes (PMNs or neutrophils) are essential to the innate immune response against bacterial pathogens. Recent evidence suggests that PMN apoptosis facilitates resolution of inflammation during bacterial infection. Although progress has been made toward understanding apoptosis in neutrophils, very little is known about transcriptional regulation of this process during bacterial infection. To gain insight into the molecular processes that facilitate resolution of infe...

  2. Bacterial protein toxins : tools to study mammalian molecular cell biology

    NARCIS (Netherlands)

    Wüthrich, I.W.

    2014-01-01

    Bacterial protein toxins are genetically encoded proteinaceous macromolecules that upon exposure causes perturbation of cellular metabolism in a susceptible host. A bacterial toxin can work at a distance from the site of infection, and has direct and quantifiable actions. Bacterial protein toxins ca

  3. Electrical conductivity measurements of bacterial nanowires from Pseudomonas aeruginosa

    Science.gov (United States)

    Maruthupandy, Muthusamy; Anand, Muthusamy; Maduraiveeran, Govindhan; Sait Hameedha Beevi, Akbar; Jeeva Priya, Radhakrishnan

    2015-12-01

    The extracellular appendages of bacteria (flagella) that transfer electrons to electrodes are called bacterial nanowires. This study focuses on the isolation and separation of nanowires that are attached via Pseudomonas aeruginosa bacterial culture. The size and roughness of separated nanowires were measured using transmission electron microscopy (TEM) and atomic force microscopy (AFM), respectively. The obtained bacterial nanowires indicated a clear image of bacterial nanowires measuring 16 nm in diameter. The formation of bacterial nanowires was confirmed by microscopic studies (AFM and TEM) and the conductivity nature of bacterial nanowire was investigated by electrochemical techniques. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), which are nondestructive voltammetry techniques, suggest that bacterial nanowires could be the source of electrons—which may be used in various applications, for example, microbial fuel cells, biosensors, organic solar cells, and bioelectronic devices. Routine analysis of electron transfer between bacterial nanowires and the electrode was performed, providing insight into the extracellular electron transfer (EET) to the electrode. CV revealed the catalytic electron transferability of bacterial nanowires and electrodes and showed excellent redox activities. CV and EIS studies showed that bacterial nanowires can charge the surface by producing and storing sufficient electrons, behave as a capacitor, and have features consistent with EET. Finally, electrochemical studies confirmed the development of bacterial nanowires with EET. This study suggests that bacterial nanowires can be used to fabricate biomolecular sensors and nanoelectronic devices.

  4. 21 CFR 1210.16 - Method of bacterial count.

    Science.gov (United States)

    2010-04-01

    ... FEDERAL IMPORT MILK ACT Inspection and Testing § 1210.16 Method of bacterial count. The bacterial count of milk and cream refers to the number of viable bacteria as determined by the standard plate method of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Method of bacterial count. 1210.16 Section...

  5. Bacterial protein toxins in human cancers.

    Science.gov (United States)

    Rosadi, Francesca; Fiorentini, Carla; Fabbri, Alessia

    2016-02-01

    Many bacteria causing persistent infections produce toxins whose mechanisms of action indicate that they could have a role in carcinogenesis. Some toxins, like CDT and colibactin, directly attack the genome by damaging DNA whereas others, as for example CNF1, CagA and BFT, impinge on key eukaryotic processes, such as cellular signalling and cell death. These bacterial toxins, together with other less known toxins, mimic carcinogens and tumour promoters. The aim of this review is to fulfil an up-to-date analysis of toxins with carcinogenic potential that have been already correlated to human cancers. Bacterial toxins-induced carcinogenesis represents an emerging aspect in bacteriology, and its significance is increasingly recognized.

  6. Discrete modelling of bacterial conjugation dynamics

    CERN Document Server

    Goni-Moreno, Angel

    2012-01-01

    In bacterial populations, cells are able to cooperate in order to yield complex collective functionalities. Interest in population-level cellular behaviour is increasing, due to both our expanding knowledge of the underlying biological principles, and the growing range of possible applications for engineered microbial consortia. Researchers in the field of synthetic biology - the application of engineering principles to living systems - have, for example, recently shown how useful decision-making circuits may be distributed across a bacterial population. The ability of cells to interact through small signalling molecules (a mechanism known as it quorum sensing) is the basis for the majority of existing engineered systems. However, horizontal gene transfer (or conjugation) offers the possibility of cells exchanging messages (using DNA) that are much more information-rich. The potential of engineering this conjugation mechanism to suit specific goals will guide future developments in this area. Motivated by a l...

  7. Bacterial Zoonoses Transmitted by Household Pets

    DEFF Research Database (Denmark)

    Damborg, Peter Panduro; Broens, E.M.; Chomel, B.B.;

    2016-01-01

    The close contact between household pets and people offers favourable conditions for bacterial transmission. In this article, the aetiology, prevalence, transmission, impact on human health and preventative measures are summarized for selected bacterial zoonoses transmissible by household pets. Six...... zoonoses representing distinct transmission routes were selected arbitrarily based on the available information on incidence and severity of pet-associated disease caused by zoonotic bacteria: bite infections and cat scratch disease (physical injuries), psittacosis (inhalation), leptospirosis (contact...... with urine), and campylobacteriosis and salmonellosis (faecal–oral ingestion). Antimicrobial resistance was also included due to the recent emergence of multidrug-resistant bacteria of zoonotic potential in dogs and cats. There is a general lack of data on pathogen prevalence in the relevant pet population...

  8. Bursting the bubble on bacterial biofilms

    DEFF Research Database (Denmark)

    Crusz, Shanika A; Popat, Roman; Rybtke, Morten Theil;

    2012-01-01

    The flow cell biofilm system is an important and widely used tool for the in vitro cultivation and evaluation of bacterial biofilms under hydrodynamic conditions of flow. This paper provides an introduction to the background and use of such systems, accompanied by a detailed guide to the assembly...... of the apparatus including the description of new modifications which enhance its performance. As such, this is an essential guide for the novice biofilm researcher as well as providing valuable trouble-shooting techniques for even the most experienced laboratories. The adoption of a common and reliable...... methodology amongst researchers would enable findings to be shared and replicated amongst the biofilm research community, with the overall aim of advancing understanding and management of these complex and widespread bacterial communities....

  9. Metabolism links bacterial biofilms and colon carcinogenesis.

    Science.gov (United States)

    Johnson, Caroline H; Dejea, Christine M; Edler, David; Hoang, Linh T; Santidrian, Antonio F; Felding, Brunhilde H; Ivanisevic, Julijana; Cho, Kevin; Wick, Elizabeth C; Hechenbleikner, Elizabeth M; Uritboonthai, Winnie; Goetz, Laura; Casero, Robert A; Pardoll, Drew M; White, James R; Patti, Gary J; Sears, Cynthia L; Siuzdak, Gary

    2015-06-01

    Bacterial biofilms in the colon alter the host tissue microenvironment. A role for biofilms in colon cancer metabolism has been suggested but to date has not been evaluated. Using metabolomics, we investigated the metabolic influence that microbial biofilms have on colon tissues and the related occurrence of cancer. Patient-matched colon cancers and histologically normal tissues, with or without biofilms, were examined. We show the upregulation of polyamine metabolites in tissues from cancer hosts with significant enhancement of N(1), N(12)-diacetylspermine in both biofilm-positive cancer and normal tissues. Antibiotic treatment, which cleared biofilms, decreased N(1), N(12)-diacetylspermine levels to those seen in biofilm-negative tissues, indicating that host cancer and bacterial biofilm structures contribute to the polyamine metabolite pool. These results show that colonic mucosal biofilms alter the cancer metabolome to produce a regulator of cellular proliferation and colon cancer growth potentially affecting cancer development and progression.

  10. The clinical impact of bacterial biofilms

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Johansen, Helle Krogh;

    2011-01-01

    Bacteria survive in nature by forming biofilms on surfaces and probably most, if not all, bacteria (and fungi) are capable of forming biofilms. A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and extracellular DNA....... Bacterial biofilms are resistant to antibiotics, disinfectant chemicals and to phagocytosis and other components of the innate and adaptive inflammatory defense system of the body. It is known, for example, that persistence of staphylococcal infections related to foreign bodies is due to biofilm formation....... Likewise, chronic Pseudomonas aeruginosa lung infections in cystic fibrosis patients are caused by biofilm growing mucoid strains. Gradients of nutrients and oxygen exist from the top to the bottom of biofilms and the bacterial cells located in nutrient poor areas have decreased metabolic activity...

  11. Procalcitonin in sepsis and bacterial infections

    Directory of Open Access Journals (Sweden)

    Abhijit Chaudhury

    2013-10-01

    Full Text Available The differentiation of sepsis and systemic bacterial infections from other causes of systemic inflammatory response is crucial from the therapeutic point of view. The clinical signs and symptoms are non-specific and traditional biomarkers like white cell count, erythrocyte sedimentation rate and C-reactive protein are not sufficiently sensitive or specific to guide therapeutic decisions. Procalcitonin (PCT is considered a reliable marker for the diagnosis and prognosis of moderate to severe bacterial infections, and it has also been evaluated to guide the clinicians in the rational usage of antibiotics. This review describes the diagnostic and prognostic role of PCT as a biomarker in various clinical settings along with the laboratory aspects and its usefulness in risk stratification and antibiotic stewardship.

  12. Effects of hydrodynamic interactions in bacterial swimming.

    Science.gov (United States)

    Chattopadhyay, Suddhashil; Lun Wu, Xiao

    2008-03-01

    The lack of precise experimental data has prevented the investigation of the effects of long range hydrodynamic interactions in bacterial swimming. We perform measurements on various strains of bacteria with the aid of optical tweezers to shed light on this aspect of bacterial motility. Geometrical parameters recorded by fluorescence microscopy are used with theories which model flagella propulsion (Resistive force theory & Lighthill's formulation which includes long range interactions). Comparison of the predictions of these theories with experimental data, observed directly from swimming bacterium, led to the conclusion that while long range inetractions were important for single polar flagellated strains (Vibrio Alginolyticus & Caulobacter Crescentus), local force theory was adequate to describe the swimming of multi-flagellated Esherichia Coli. We performed additional measurements on E. Coli minicells (miniature cells with single polar flagellum) to try and determine the cause of this apparent effect of shielding of long range interactions in multiple flagellated bacteria.

  13. Bacterial Toxins as Pathogen Weapons Against Phagocytes.

    Science.gov (United States)

    do Vale, Ana; Cabanes, Didier; Sousa, Sandra

    2016-01-01

    Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favor microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signaling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  14. ANTIMICROBIAL ACTIVITY OF LACTIC ACID BACTERIAL ISOLATES

    Directory of Open Access Journals (Sweden)

    Utkarsha S. Shivsharan

    2013-08-01

    Full Text Available Micro-organisms have tendency to produce antimicrobial substances which show biological activity against other kind of micro-organisms. This phenomenon of bacterial antagonism is observed in lactic acid bacteria with competitive advantages. The lactic acid bacteria are commonly present in many fermented products, fruits and milk products. The variety of antimicrobial substances produced by lactic acid bacteria showing good inhibition capacity include production of lactic acid, acetic acid, hydrogen peroxide, carbon dioxide, diacetyl and bacteriocin. Bacteriocins produced by lactic acid bacteria are the subject of intense research because of their antimicrobial activity against food born bacteria such as Listeria monocytogenes, staphylococcus aureus, Bacillus cereus, Clostridium botulinum and several others .Bacteriocins may be bacteriostatic or bactericidal with narrow or broad range of activity. The main of the study was to study the antimicrobial activity of such lactic acid bacterial isolates.

  15. Bacterial microbiome of lungs in COPD.

    Science.gov (United States)

    Sze, Marc A; Hogg, James C; Sin, Don D

    2014-01-01

    Chronic obstructive pulmonary disease (COPD) is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease.

  16. Bacterial toxins as pathogen weapons against phagocytes

    Directory of Open Access Journals (Sweden)

    Ana edo Vale

    2016-02-01

    Full Text Available Bacterial toxins are virulence factors that manipulate host cell functions and take over the control of vital processes of living organisms to favour microbial infection. Some toxins directly target innate immune cells, thereby annihilating a major branch of the host immune response. In this review we will focus on bacterial toxins that act from the extracellular milieu and hinder the function of macrophages and neutrophils. In particular, we will concentrate on toxins from Gram-positive and Gram-negative bacteria that manipulate cell signalling or induce cell death by either imposing direct damage to the host cells cytoplasmic membrane or enzymatically modifying key eukaryotic targets. Outcomes regarding pathogen dissemination, host damage and disease progression will be discussed.

  17. Future of Bacterial Therapy of Cancer.

    Science.gov (United States)

    Hoffman, Robert M

    2016-01-01

    Bacterial therapy of cancer has a centuries-long history and was first-line therapy at the hospital in New York City that would become Memorial Sloan-Kettering Cancer Center, under Dr. William B. Coley. However, after Coley's death in 1936, bacterial therapy of cancer ceased in the clinic until the present century. Clinical trials have been recently carried out for strains of the obligate anaerobe Clostridium novyi with the toxin gene deleted, and on an attenuated strain of Salmonella typhimurium (S. typhimurium), which is a facultative anaerobe that can grow in viable, as well as necrotic, areas of tumors, unlike Clostridium, which can only grow in the hypoxic areas. Our laboratory has developed the novel strain S. typhimurium A1-R that is effective against all tumor types in clinically-relevant mouse models, including patient-derived orthotopic xenograft (PDOX) mouse models. This chapter suggests future clinical applications for S. typhimurium A1-R.

  18. Within-host evolution of bacterial pathogens

    Science.gov (United States)

    Didelot, Xavier; Walker, A. Sarah; Peto, Tim E.; Crook, Derrick W.; Wilson, Daniel J.

    2016-01-01

    Whole genome sequencing has opened the way to investigating the dynamics and genomic evolution of bacterial pathogens during colonization and infection of humans. The application of this technology to the longitudinal study of adaptation in the infected host — in particular, the evolution of drug resistance and host adaptation in patients chronically infected with opportunistic pathogens — has revealed remarkable patterns of convergent evolution, pointing to an inherent repeatability of evolution. In this Review, we describe how these studies have advanced our understanding of the mechanisms and principles of within-host genome evolution, and we consider the consequences of findings such as a potent adaptive potential for pathogenicity. Finally, we discuss the possibility that genomics may be used in the future to predict the clinical progression of bacterial infections, and to suggest the best treatment option. PMID:26806595

  19. Structure and operation of bacterial tripartite pumps.

    Science.gov (United States)

    Hinchliffe, Philip; Symmons, Martyn F; Hughes, Colin; Koronakis, Vassilis

    2013-01-01

    In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition. PMID:23808339

  20. Formaldehyde stress responses in bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Nathan Houqian Chen

    2016-03-01

    Full Text Available Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed.

  1. Novel Nitrocellulose Made from Bacterial Cellulose

    Science.gov (United States)

    Sun, Dong-Ping; Ma, Bo; Zhu, Chun-Lin; Liu, Chang-Sheng; Yang, Jia-Zhi

    2010-04-01

    Nitrocellulose (NC) is useful in several industrial segments, especially in the production of gun, rocket, and missile propellants. The conventional way to prepare NC is done through the nitration of plant cellulose with nitric acid. In this work, bacterial cellulose nitrate (NBC) is synthesized by bacterial cellulose (BC) and nitro-sulfric acid under heterogeneous conditions. NBC with the degree of substitution (DS) of 1-2.85 was obtained, and the effects of sulfuric to nitric ratio, reaction temperature, and reaction time on the value of DS of NBC are discussed. The samples are also characterized by elemental analysis, thermal analysis, Fourier transform infrared (FT-IR) spectroscopy, and X-ray diffraction.

  2. Immunization of newborns with bacterial conjugate vaccines.

    Science.gov (United States)

    van den Biggelaar, Anita H J; Pomat, William S

    2013-05-17

    Bacterial conjugate vaccines are based on the principle of coupling immunogenic bacterial capsular polysaccharides to a carrier protein to facilitate the induction of memory T-cell responses. Following the success of Haemophilus influenzae type b conjugate vaccines in the 1980s, conjugate vaccines for Streptococcus pneumoniae and Neisseria meningitidis infections were developed and proven to be effective in protecting children against invasive disease. In this review, the use of conjugate vaccines in human newborns is discussed. Neonatal Haemophilus influenzae type b and pneumococcal conjugate vaccination schedules have been trialed and proven to be safe, with the majority of studies demonstrating no evidence for the induction of immune tolerance. Whether their neonatal administration also results in an earlier induction of clinical protection in the first 2-3 critical months of life is still to be demonstrated. PMID:22728221

  3. Bacterial consortia for crude oil spill remediation

    International Nuclear Information System (INIS)

    Oil spills generate enormous public concern and highlight the need for cost effective ad environmentally acceptable mitigation technologies. Physico-chemical methods are not completely effective after a spill. Hence, there is a need for improved and alternative technologies. Bioremediation is the most environmentally sound technology for clean up. This report intends to determine the potential of a bacterial consortium for degradation of Gulf and Bombay High crude oil. A four membered consortium was designed that could degrade 70% of the crude oil. A member of consortium produced a biosurfactant, rhamnolipid, that emulsified crude oil efficiently for effective degradation by the other members of consortium. The wide range of hydrocarbonoclastic capabilities of the selected members of bacterial consortium leads to the degradation of both aromatic and aliphatic fractions of crude oil in 72 hours. (Author)

  4. The Bacterial Microflora of Fish, Revised

    Directory of Open Access Journals (Sweden)

    B. Austin

    2006-01-01

    Full Text Available The results of numerous studies indicate that fish possess bacterial populations on or in their skin, gills, digestive tract, and light-emitting organs. In addition, the internal organs (kidney, liver, and spleen of healthy fish may contain bacteria, but there is debate about whether or not muscle is actually sterile. Using traditional culture-dependent techniques, the numbers and taxonomic composition of the bacterial populations generally reflect those of the surrounding water. More modern culture-independent approaches have permitted the recognition of previously uncultured bacteria. The role of the organisms includes the ability to degrade complex molecules (therefore exercising a potential benefit in nutrition, to produce vitamins and polymers, and to be responsible for the emission of light by the light-emitting organs of deep-sea fish. Taxa, including Pseudomonas, may contribute to spoilage by the production of histamines in fish tissue.

  5. Bacterial Modulation of Plant Ethylene Levels.

    Science.gov (United States)

    Gamalero, Elisa; Glick, Bernard R

    2015-09-01

    A focus on the mechanisms by which ACC deaminase-containing bacteria facilitate plant growth.Bacteria that produce the enzyme 1-aminocyclopropane-1-carboxylate (ACC) deaminase, when present either on the surface of plant roots (rhizospheric) or within plant tissues (endophytic), play an active role in modulating ethylene levels in plants. This enzyme activity facilitates plant growth especially in the presence of various environmental stresses. Thus, plant growth-promoting bacteria that express ACC deaminase activity protect plants from growth inhibition by flooding and anoxia, drought, high salt, the presence of fungal and bacterial pathogens, nematodes, and the presence of metals and organic contaminants. Bacteria that express ACC deaminase activity also decrease the rate of flower wilting, promote the rooting of cuttings, and facilitate the nodulation of legumes. Here, the mechanisms behind bacterial ACC deaminase facilitation of plant growth and development are discussed, and numerous examples of the use of bacteria with this activity are summarized. PMID:25897004

  6. Formaldehyde Stress Responses in Bacterial Pathogens.

    Science.gov (United States)

    Chen, Nathan H; Djoko, Karrera Y; Veyrier, Frédéric J; McEwan, Alastair G

    2016-01-01

    Formaldehyde is the simplest of all aldehydes and is highly cytotoxic. Its use and associated dangers from environmental exposure have been well documented. Detoxification systems for formaldehyde are found throughout the biological world and they are especially important in methylotrophic bacteria, which generate this compound as part of their metabolism of methanol. Formaldehyde metabolizing systems can be divided into those dependent upon pterin cofactors, sugar phosphates and those dependent upon glutathione. The more prevalent thiol-dependent formaldehyde detoxification system is found in many bacterial pathogens, almost all of which do not metabolize methane or methanol. This review describes the endogenous and exogenous sources of formaldehyde, its toxic effects and mechanisms of detoxification. The methods of formaldehyde sensing are also described with a focus on the formaldehyde responsive transcription factors HxlR, FrmR, and NmlR. Finally, the physiological relevance of detoxification systems for formaldehyde in bacterial pathogens is discussed. PMID:26973631

  7. Influenza and bacterial pneumonia - constant companions

    OpenAIRE

    Wunderink, Richard G.

    2010-01-01

    Sequential or concomitant influenza and bacterial pneumonia are two common syndromes seen in community-acquired pneumonia. Inadequacies of diagnostic testing make separating simple pneumonia with either bacteria or influenza from concomitant or sequential influenza with both microorganisms difficult, although the novel 2009 H1N1 epidemic may improve the availability of molecular testing for viruses. Given the frequency of viral pneumonia and diagnostic limitations, empirical antivirals may be...

  8. Diffusion of an ellipsoid in bacterial suspensions

    OpenAIRE

    Peng, Yi; Lai, Lipeng; Tai, Yi-Shu; Zhang, Kechun; Xu, Xinliang; Cheng, Xiang

    2015-01-01

    Active matter such as swarming bacteria and motile colloids exhibits exotic properties different from conventional equilibrium materials. Among these properties, the enhanced diffusion of tracer particles is generally deemed as a hallmark of active matter. Here, rather than spherical tracers, we investigate the diffusion of isolated ellipsoids in quasi-two-dimensional bacterial bath. Our study reveals a nonlinear enhancement of both translational and rotational diffusions. More importantly, w...

  9. Bacterial Plasmids in Antarctic Natural Microbial Assemblages

    OpenAIRE

    Kobori, Hiromi; Sullivan, Cornelius W.; Shizuya, Hiroaki

    1984-01-01

    Samples of psychrophilic and psychrotrophic bacteria were collected from sea ice, seawater, sediments, and benthic or ice-associated animals in McMurdo Sound, Antarctica. A total of 155 strains were isolated and tested for the presence of plasmids by DNA agarose gel electrophoresis. Thirty-one percent of the isolates carried at least one kind of plasmid. Bacterial isolates taken from sediments showed the highest plasmid incidence (42%), and isolates from seawater showed the lowest plasmid inc...

  10. Bacterial small RNAs in the Genus Rickettsia

    OpenAIRE

    Schroeder, Casey L. C.; Narra, Hema P.; Rojas, Mark; Sahni, Abha; Patel, Jignesh; Khanipov, Kamil; Wood, Thomas G.; Fofanov, Yuriy; Sahni, Sanjeev K.

    2015-01-01

    Background Rickettsia species are obligate intracellular Gram-negative pathogenic bacteria and the etiologic agents of diseases such as Rocky Mountain spotted fever (RMSF), Mediterranean spotted fever, epidemic typhus, and murine typhus. Genome sequencing revealed that R. prowazekii has ~25 % non-coding DNA, the majority of which is thought to be either “junk DNA” or pseudogenes resulting from genomic reduction. These characteristics also define other Rickettsia genomes. Bacterial small RNAs,...

  11. Spontaneous bacterial peritonitis: Few additional points

    Institute of Scientific and Technical Information of China (English)

    Pankaj Jain

    2009-01-01

    Spontaneous bacterial peritonitis (SBP) is a treatable complication of decompensated cirrhosis. Coagulopathy with evidence of hyperfibrinolysis or clinically evident disseminated intravascular coagulation precludes paracentesis. Alcoholic hepatitis with fever, leucocytosis and abdominal pain should be evaluated for SBP. Oral ofloxacin is as effective as parenteral cefotaxime in treatment of SBP except for inpatients with vomiting,encephalopathy, or renal failure. Albumin is superior to hydroxyethyl starch in treatment of SBP.

  12. Intermittency measurement in two dimensional bacterial turbulence

    CERN Document Server

    Qiu, Xiang; Huang, Yongxiang; Chen, Ming; Lu, Zhiming; Liu, Yulu; Zhou, Quan

    2016-01-01

    In this paper, an experimental velocity database of a bacterial collective motion , e.g., \\textit{B. subtilis}, in turbulent phase with volume filling fraction $84\\%$ provided by Professor Goldstein at the Cambridge University UK, was analyzed to emphasize the scaling behavior of this active turbulence system. This was accomplished by performing a Hilbert-based methodology analysis to retrieve the scaling property without the $\\beta-$limitation. A dual-power-law behavior separated by the viscosity scale $\\ell_{\

  13. Factors influencing bacterial adhesion to contact lenses

    OpenAIRE

    Dutta, Debarun; Cole, Nerida; Willcox, Mark

    2012-01-01

    The process of any contact lens related keratitis generally starts with the adhesion of opportunistic pathogens to contact lens surface. This article focuses on identifying the factors which have been reported to affect bacterial adhesion to contact lenses. Adhesion to lenses differs between various genera/species/strains of bacteria. Pseudomonas aeruginosa, which is the predominant causative organism, adheres in the highest numbers to both hydrogel and silicone hydrogel lenses in vitro. The ...

  14. Dielectrophoretic assay of bacterial resistance to antibiotics

    Energy Technology Data Exchange (ETDEWEB)

    Johari, Juliana [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Huebner, Yvonne [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hull, Judith C [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Dale, Jeremy W [School of Biomedical and Life Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom); Hughes, Michael P [School of Engineering, University of Surrey, Guildford, Surrey, GU2 7XH, UK (United Kingdom)

    2003-07-21

    The dielectrophoretic collection spectra of antibiotic-sensitive and antibiotic-resistant strains of Staphylococcus epidermidis have been determined. These indicate that in the absence of antibiotic treatment there is a strong similarity between the dielectric properties of sensitive and resistant strains, and that there is a significant difference between the sensitive strains before and after treatment with the antibiotic streptomycin after 24 h exposure. This method offers possibilities for the assessment of bacterial resistance to antibiotics. (note)

  15. Mathematical description of bacterial traveling pulses

    OpenAIRE

    Bournaveas, Nikolaos; Buguin, Axel; Calvez, Vincent; Perthame, Benoît; Saragosti, Jonathan; Silberzan, Pascal

    2009-01-01

    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on {\\em E. coli} have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-t...

  16. Mathematical Description of Bacterial Traveling Pulses

    OpenAIRE

    Saragosti, Jonathan; Calvez, Vincent; Bournaveas, Nikolaos; Buguin, Axel; Silberzan, Pascal; Perthame, Benoît

    2010-01-01

    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on Escherichia coli have shown the precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at the macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic ...

  17. Mathematical description of bacterial traveling pulses

    OpenAIRE

    Bournaveas, Nikolaos; Buguin, Axel; Calvez, Vincent; Perthame, Benoît; Saragosti, Jonathan; Silberzan, Pascal

    2010-01-01

    The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on E. coli have shown precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at a macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble ...

  18. Xylella Genomics and Bacterial Pathogenicity to Plants

    OpenAIRE

    Dow, J. M.; Daniels, M J

    2000-01-01

    Xylella fastidiosa, a pathogen of citrus, is the first plant pathogenic bacterium for which the complete genome sequence has been published. Inspection of the sequence reveals high relatedness to many genes of other pathogens, notably Xanthomonas campestris. Based on this, we suggest that Xylella possesses certain easily testable properties that contribute to pathogenicity. We also present some general considerations for deriving information on pathogenicity from bacterial genomics.

  19. Biomineralization and magnetism of bacterial magnetosomes

    Institute of Scientific and Technical Information of China (English)

    PAN Yongxin; DENG Chenglong; LIU Qingsong; Nikolai Petersen; ZHU Rixiang

    2004-01-01

    Magnetosomes of magnetotactic bacteria are of great interest in understanding biomineralization and possible links between organisms and geomagnetic field. Fossil magnetosomes are ubiquitous in marine and lake sediments and may significantly contribute to magnetic signals. In this review, we firstly introduce some characteristics of magnetotactic bacteria, followed by considering recent progress in magnetosome formation, magnetic measurements, and identification of bacterial magnetites in bulk sediments as well as their paleoenvironmental implications. Finally, we briefly discuss potential future breakthroughs in magnetosome studies and its applications.

  20. Small Intestinal Bacterial Overgrowth: A Comprehensive Review

    OpenAIRE

    Dukowicz, Andrew C.; Lacy, Brian E.; Levine, Gary M

    2007-01-01

    Small intestinal bacterial overgrowth (SIBO), defined as excessive bacteria in the small intestine, remains a poorly understood disease. Initially thought to occur in only a small number of patients, it is now apparent that this disorder is more prevalent than previously thought. Patients with SIBO vary in presentation, from being only mildly symptomatic to suffering from chronic diarrhea, weight loss, and malabsorption. A number of diagnostic tests are currently available, although the optim...

  1. BACTERIAL INFECTIONS IN RECIPIENTS OF RENAL ALLOGRAFT

    Directory of Open Access Journals (Sweden)

    A. V. Vatazin

    2012-01-01

    Full Text Available The study is devoted to analysis of microflora spectrum in various biological materials in patients after renal transplantation. The character of the flora is strongly dependent on the infectious process localization. Gram- positive and gram-negative bacteria are found in approximately equal proportions with a slight predominance of gram-positive flora. Isolated bacteria in most cases had pronounced polyvalent antibiotic resistance. The performed analysis substantiated recommendations for rational antibiotic therapy of various bacterial infections. 

  2. Bacterial Enhancement of Vinyl Fouling by Algae

    OpenAIRE

    Holmes, Paul E.

    1986-01-01

    The role of bacteria in the development of algae on low-density vinyl was investigated. Unidentified bacterial contaminants in unialgal stock cultures of Phormidium faveolarum and Pleurochloris pyrenoidosa enhanced, by 1 to 2 orders of magnitude, colonization of vinyl by these algae, as determined by epifluorescence microscopy counts and chlorophyll a in extracts of colonized vinyl. Colonization by bacteria always preceded that by algae. Scanning electron microscopy of the colonized Phormidiu...

  3. Bacterial Community Development in Experimental Gingivitis

    OpenAIRE

    Kistler, James O; Veronica Booth; Bradshaw, David J.; Wade, William G.

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygi...

  4. Biocompatibility of Bacterial Cellulose Based Biomaterials

    OpenAIRE

    Omar P. Troncoso; Solene Commeaux; Torres, Fernando G.

    2012-01-01

    Some bacteria can synthesize cellulose when they are cultivated under adequate conditions. These bacteria produce a mat of cellulose on the top of the culture medium, which is formed by a three-dimensional coherent network of pure cellulose nanofibers. Bacterial cellulose (BC) has been widely used in different fields, such as the paper industry, electronics and tissue engineering due to its remarkable mechanical properties, conformability and porosity. Nanocomposites based on BC have received...

  5. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    OpenAIRE

    Houssni El-Saied; Ahmed I. El-Diwany; Altaf H. Bast; Nagwa A. Atwa; Dina E. El-Ghwas

    2008-01-01

    The present study investigates the economical production of bacterial cellulose (BC) by Gluconacetobacter subsp. Xylinus (ATCC 10245) in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL), which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as colo...

  6. Diagnosis of bacterial hepatic abscess by CT

    Institute of Scientific and Technical Information of China (English)

    Cheng-Lin Wang; Xue-Jun Guo; Shui-Bo Qiu; Yi Lei; Zhi-Dong Yuan; Han-Bin Dong; Hui-An Liu

    2007-01-01

    BACKGROUND: Bacterial hepatic abscess usually is acute and progressive, often resulting in sepsis, impairment of liver function and disseminated intravascular coagulation. The mortality rate was as high as 80%in the past. For the purpose of early diagnosis and differential diagnosis of this disease, we probed the imaging manifestations and their characteristics in bacterial hepatic abscesses by CT scan. METHODS:Twenty-four lesions from 21 patients with bacterial hepatic abscesses that were conifrmed by clinical features, puncture and culture were reviewed for CT manifestations. Fourteen patients were male and 7 were female, with an average age of 56.2 years. All lesions underwent CT plain scan and three-phase enhanced scan and 15 patients underwent delayed-phase imaging. Three senior radiologists read the iflms in accordance with a standard. RESULTS: Among 24 lesions, 18 (75%) were situated in the right liver with diameters of 1.4-9.3 cm (average 4.5 cm). Nineteen (79.2%) lesions were round or sub-round in shape, and 22 (91.7%) had smooth, uninterrupted and sharp edges. All lesions showed low attenuation of less than 20 Hu. Twenty-two enhanced lesions (91.7%) had rim-shaped enhancement in the abscess wall, and 13 (54.2%) showed single or double-ring signs. Eighteen (75%) displayed honeycomb-like, grid-like or strip-like enhancement. Eighteen (75%) were regionally enhanced in the surroundings or upper or lower layers. Only 2 (8.3%) displayed a gas-liquid surface sign. CONCLUSIONS:  The CT ifndings of bacterial hepatic abscess are usually typical, and the diagnosis of the abscess is not dififcult. To precisely diagnose atypical cases, it is necessary to combine CT with clinical observations and follow-up.

  7. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    OpenAIRE

    Kumaran Narayanan; Qingwen Chen

    2011-01-01

    Gene expression from bacterial artificial chromosome (BAC) clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented...

  8. Collective decision making in bacterial viruses.

    Science.gov (United States)

    Weitz, Joshua S; Mileyko, Yuriy; Joh, Richard I; Voit, Eberhard O

    2008-09-15

    For many bacterial viruses, the choice of whether to kill host cells or enter a latent state depends on the multiplicity of coinfection. Here, we present a mathematical theory of how bacterial viruses can make collective decisions concerning the fate of infected cells. We base our theory on mechanistic models of gene regulatory dynamics. Unlike most previous work, we treat the copy number of viral genes as variable. Increasing the viral copy number increases the rate of transcription of viral mRNAs. When viral regulation of cell fate includes nonlinear feedback loops, very small changes in transcriptional rates can lead to dramatic changes in steady-state gene expression. Hence, we prove that deterministic decisions can be reached, e.g., lysis or latency, depending on the cellular multiplicity of infection within a broad class of gene regulatory models of viral decision-making. Comparisons of a parameterized version of the model with molecular studies of the decision structure in the temperate bacteriophage lambda are consistent with our conclusions. Because the model is general, it suggests that bacterial viruses can respond adaptively to changes in population dynamics, and that features of collective decision-making in viruses are evolvable life history traits.

  9. Patterning bacterial communities on epithelial cells.

    Directory of Open Access Journals (Sweden)

    Mohammed Dwidar

    Full Text Available Micropatterning of bacteria using aqueous two phase system (ATPS enables the localized culture and formation of physically separated bacterial communities on human epithelial cell sheets. This method was used to compare the effects of Escherichia coli strain MG1655 and an isogenic invasive counterpart that expresses the invasin (inv gene from Yersinia pseudotuberculosis on the underlying epithelial cell layer. Large portions of the cell layer beneath the invasive strain were killed or detached while the non-invasive E. coli had no apparent effect on the epithelial cell layer over a 24 h observation period. In addition, simultaneous testing of the localized effects of three different bacterial species; E. coli MG1655, Shigella boydii KACC 10792 and Pseudomonas sp DSM 50906 on an epithelial cell layer is also demonstrated. The paper further shows the ability to use a bacterial predator, Bdellovibriobacteriovorus HD 100, to selectively remove the E. coli, S. boydii and P. sp communities from this bacteria-patterned epithelial cell layer. Importantly, predation and removal of the P. Sp was critical for maintaining viability of the underlying epithelial cells. Although this paper focuses on a few specific cell types, the technique should be broadly applicable to understand a variety of bacteria-epithelial cell interactions.

  10. Acute otitis media and acute bacterial sinusitis.

    Science.gov (United States)

    Wald, Ellen R

    2011-05-01

    Acute otitis media and acute bacterial sinusitis are 2 of the most common indications for antimicrobial agents in children. Together, they are responsible for billions of dollars of health care expenditures. The pathogenesis of the 2 conditions is identical. In the majority of children with each condition, a preceding viral upper respiratory tract infection predisposes to the development of the acute bacterial complication. It has been shown that viral upper respiratory tract infection predisposes to the development of acute otitis media in 37% of cases. Currently, precise microbiologic diagnosis of acute otitis media and acute bacterial sinusitis requires performance of tympanocentesis in the former and sinus aspiration in the latter. The identification of a virus from the nasopharynx in either case does not obviate the need for antimicrobial therapy. Furthermore, nasal and nasopharyngeal swabs are not useful in predicting the results of culture of the middle ear or paranasal sinus. However, it is possible that a combination of information regarding nasopharyngeal colonization with bacteria and infection with specific viruses may inform treatment decisions in the future.

  11. Carbon nanotubes as in vivo bacterial probes

    Science.gov (United States)

    Bardhan, Neelkanth M.; Ghosh, Debadyuti; Belcher, Angela M.

    2014-09-01

    With the rise in antibiotic-resistant infections, non-invasive sensing of infectious diseases is increasingly important. Optical imaging, although safer and simpler, is less developed than other modalities such as radioimaging, due to low availability of target-specific molecular probes. Here we report carbon nanotubes (SWNTs) as bacterial probes for fluorescence imaging of pathogenic infections. We demonstrate that SWNTs functionalized using M13 bacteriophage (M13-SWNT) can distinguish between F‧-positive and F‧-negative bacterial strains. Moreover, through one-step modification, we attach an anti-bacterial antibody on M13-SWNT, making it easily tunable for sensing specific F‧-negative bacteria. We illustrate detection of Staphylococcus aureus intramuscular infections, with ~3.4 × enhancement in fluorescence intensity over background. SWNT imaging presents lower signal spread ~0.08 × and higher signal amplification ~1.4 × , compared with conventional dyes. We show the probe offers greater ~5.7 × enhancement in imaging of S. aureus infective endocarditis. These biologically functionalized, aqueous-dispersed, actively targeted, modularly tunable SWNT probes offer new avenues for exploration of deeply buried infections.

  12. Bacterial Chemotaxis with a Moving Target

    Science.gov (United States)

    Dominick, Corey

    2015-03-01

    Most chemotaxis studies so far have been conducted in a quiescent fluid with a well-defined chemical gradient. Such experiments may be appropriate for studying enteric bacteria, such as Escherichia coli, but the environment it provides is very different from that typically encountered by marine bacteria. Herein we describe an experiment in which marine bacterium Vibrio alginolyticusis subject to stimulation by a small moving target. A micropipette of the tip size <1 ?m is used to slowly release a chemoattractant, serine, at different concentrations. The pipette is made to move with different patterns and speeds, ranging from 0 to 100 ?m/s; the latter is about twice the bacterial swimming speed. We found that if the pipette is moved slowly, with 1/4 of bacterial swimming speed, cells accumulate near the tip region but when it is moved with speed greater than 1/2 the bacterial swimming speed, cells trail behind the pipette over a large distance. The behaviors observed in V. alginolyticusare significantly different from E. coli, suggesting that the former is a better chemotaxer in a changing environment.

  13. Bacterial Contamination of Iranian Paper Currency

    Directory of Open Access Journals (Sweden)

    Mir-Hassan Moosavy

    2013-09-01

    Full Text Available Background: Transmission of human pathogens can be occurred via inert objects. Paper currency is a further common contact surface whereby pathogens can be transferred within a population although the significance remains unknown. Hence, the aim of the present study was to investigate microbial populations associated with Iranian paper currency.Methods: This study was carried out by getting 108 samples of the Iranian currency notes (1000, 2000, 5000, 10000, 20000 and 50000 RIALS from food-related shops that included food service outlets, greengrocery, supermarket, bakery, confectionary and poultry meat retail outlets. All currency notes were examined for total bacterial count and identification of pathogenic bacteria.Results: The average total bacterial count that was recovered from currency notes was found to be 3.27±0.31 colony forming unites. 2000R had the highest total bacterial count, followed by 5000R, 10000R and the lowest in 50000R. In this study, the isolated bacteria recovered were Bacillus cereus (8.33%, E. coli (48.14%, Staphylococcus aureus (28.7%, Salmonella (0.92%, Listeria monocytogenes (0.92%, Yersinia entrocolitica (6.48%. It was revealed that all the pathogens screened for where encountered on currency notes were recovered from one sample. There were no significant (P>0.05 correlations between the carriage of pathogens/fecal indicator bacteria and currency note condition.Conclusion: Our findings demonstrate that Iranian currency notes represent a significant vehicle for human pathogens.

  14. Bacterial microbiome of lungs in COPD

    Directory of Open Access Journals (Sweden)

    Sze MA

    2014-02-01

    Full Text Available Marc A Sze,1 James C Hogg,2 Don D Sin1 1Department of Medicine, 2Department of Pathology and Laboratory Medicine, The James Hogg Research Centre, Providence Heart-Lung Institute, St Paul's Hospital, University of British Columbia, Vancouver, BC, Canada Abstract: Chronic obstructive pulmonary disease (COPD is currently the third leading cause of death in the world. Although smoking is the main risk factor for this disease, only a minority of smokers develop COPD. Why this happens is largely unknown. Recent discoveries by the human microbiome project have shed new light on the importance and richness of the bacterial microbiota at different body sites in human beings. The microbiota plays a particularly important role in the development and functional integrity of the immune system. Shifts or perturbations in the microbiota can lead to disease. COPD is in part mediated by dysregulated immune responses to cigarette smoke and other environmental insults. Although traditionally the lung has been viewed as a sterile organ, by using highly sensitive genomic techniques, recent reports have identified diverse bacterial communities in the human lung that may change in COPD. This review summarizes the current knowledge concerning the lung microbiota in COPD and its potential implications for pathogenesis of the disease. Keywords: chronic obstructive pulmonary disease, bacterial microbiome, lungs

  15. Insights from genomics into bacterial pathogen populations.

    Directory of Open Access Journals (Sweden)

    Daniel J Wilson

    2012-09-01

    Full Text Available Bacterial pathogens impose a heavy burden of disease on human populations worldwide. The gravest threats are posed by highly virulent respiratory pathogens, enteric pathogens, and HIV-associated infections. Tuberculosis alone is responsible for the deaths of 1.5 million people annually. Treatment options for bacterial pathogens are being steadily eroded by the evolution and spread of drug resistance. However, population-level whole genome sequencing offers new hope in the fight against pathogenic bacteria. By providing insights into bacterial evolution and disease etiology, these approaches pave the way for novel interventions and therapeutic targets. Sequencing populations of bacteria across the whole genome provides unprecedented resolution to investigate (i within-host evolution, (ii transmission history, and (iii population structure. Moreover, advances in rapid benchtop sequencing herald a new era of real-time genomics in which sequencing and analysis can be deployed within hours in response to rapidly changing public health emergencies. The purpose of this review is to highlight the transformative effect of population genomics on bacteriology, and to consider the prospects for answering abiding questions such as why bacteria cause disease.

  16. Carbon and phosphorus regulating bacterial metabolism in oligotrophic boreal lakes

    DEFF Research Database (Denmark)

    Vidal, L. O.; Graneli, W.; Daniel, C. B.;

    2011-01-01

    -P and glucose-C alone or in combination (0.01 and 0.3 mg L(-1), respectively) was added to 1.0 mu m filtered lake water and incubated in darkness at 20 degrees C. Additions of glucose (C) and phosphorus (P) alone did not lead to changes in the rates of bacterial metabolic processes, whereas bacterial...... respiration and bacterial production responded positively to C + P enrichment for most of the lakes sampled. Bacterial growth efficiency showed a wide range (2.5-28.7%) and low mean value (12%). These variations were not correlated with the DOC concentration. Our results show that heterotrophic bacterial...

  17. Bacterial melanin promotes recovery after sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    Olga V Gevorkyan; Irina B Meliksetyan; Tigran R Petrosyan; Anichka S Hovsepyan

    2015-01-01

    Bacterial melanin, obtained from the mutant strain ofBacillus Thuringiensis, has been shown to promote recovery after central nervous system injury. It is hypothesized, in this study, that bacterial melanin can promote structural and functional recovery after peripheral nerve injury. Rats subjected to sciatic nerve transection were intramuscularly administered bacterial melanin. The sciatic nerve transected rats that did not receive intramuscular administration of bacterial melanin served as controls. Behavior tests showed that compared to control rats, the time taken for instrumental conditioned relfex recovery was signiifcantly shorter and the ability to keep the balance on the rotating bar was signiifcantly better in bacterial melanin-treated rats. Histomor-phological tests showed that bacterial melanin promoted axon regeneration after sciatic nerve injury. These ifndings suggest that bacterial melanin exhibits neuroprotective effects on injured sciatic nerve, contributes to limb motor function recovery, and therefore can be used for rehabil-itation treatment of peripheral nerve injury.

  18. Tracking bacterial growth in liquid media and a new bacterial life model

    Institute of Scientific and Technical Information of China (English)

    刘实

    1999-01-01

    By increasing viscosity of liquid media above 8.4 centipoise (cp) i.e. 0.084 g·cm-1·S-1 individual growth and family formation of Escherichia coli was continuously observed in real-time for up to 6 h. The observations showed primarily unidirectional growth and reproduction of E. coli and suggested more than one reproduction in the observed portion of E. coli life span. A new bacterial life model is proposed: each bacterium has a stable cell polarity that ultimately transforms into two bacteria of different generations; the life cycle of a bacterium can contain more than one reproduction cycle; and the age of a bacterium should be defined by its experienced chronological time. This new bacterial life model differs from the dominant concepts of bacterial life but complies with all basic life principles based on direct observation of macroorganisms.

  19. Antimicrobial effect against different bacterial strains and bacterial adaptation to essential oils used as feed additives.

    Science.gov (United States)

    Melo, Antonio Diego Brandão; Amaral, Amanda Figueiredo; Schaefer, Gustavo; Luciano, Fernando Bittencourt; de Andrade, Carla; Costa, Leandro Batista; Rostagno, Marcos Horácio

    2015-10-01

    The aim of this study was to evaluate the antimicrobial activity and determine the minimum bactericidal concentration (MBC) of the essential oils derived from Origanum vulgare (oregano), Melaleuca alternifolia (tea tree), Cinnamomum cassia (cassia), and Thymus vulgaris (white thyme) against Salmonella Typhimurium, Salmonella Enteritidis, Escherichia coli, Staphylococcus aureus and Enterococcus faecalis. The study also investigated the ability of these different bacterial strains to develop adaptation after repetitive exposure to sub-lethal concentrations of these essential oils. The MBC of the essential oils studied was determined by disc diffusion and broth dilution methods. All essential oils showed antimicrobial effect against all bacterial strains. In general, the development of adaptation varied according to the bacterial strain and the essential oil (tea tree > white thyme > oregano). Therefore, it is important to use essential oils at efficient bactericidal doses in animal feed, food, and sanitizers, since bacteria can rapidly develop adaptation when exposed to sub-lethal concentrations of these oils. PMID:26424908

  20. Scabies mites alter the skin microbiome and promote growth of opportunistic pathogens in a porcine model.

    Directory of Open Access Journals (Sweden)

    Pearl M Swe

    Full Text Available BACKGROUND: The resident skin microbiota plays an important role in restricting pathogenic bacteria, thereby protecting the host. Scabies mites (Sarcoptes scabiei are thought to promote bacterial infections by breaching the skin barrier and excreting molecules that inhibit host innate immune responses. Epidemiological studies in humans confirm increased incidence of impetigo, generally caused by Staphylococcus aureus and Streptococcus pyogenes, secondary to the epidermal infestation with the parasitic mite. It is therefore possible that mite infestation could alter the healthy skin microbiota making way for the opportunistic pathogens. A longitudinal study to test this hypothesis in humans is near impossible due to ethical reasons. In a porcine model we generated scabies infestations closely resembling the disease manifestation in humans and investigated the scabies associated changes in the skin microbiota over the course of a mite infestation. METHODOLOGY/PRINCIPAL FINDINGS: In a 21 week trial, skin scrapings were collected from pigs infected with S. scabies var. suis and scabies-free control animals. A total of 96 skin scrapings were collected before, during infection and after acaricide treatment, and analyzed by bacterial 16S rDNA tag-encoded FLX-titanium amplicon pyrosequencing. We found significant changes in the epidermal microbiota, in particular a dramatic increase in Staphylococcus correlating with the onset of mite infestation in animals challenged with scabies mites. This increase persisted beyond treatment from mite infection and healing of skin. Furthermore, the staphylococci population shifted from the commensal S. hominis on the healthy skin prior to scabies mite challenge to S. chromogenes, which is increasingly recognized as being pathogenic, coinciding with scabies infection in pigs. In contrast, all animals in the scabies-free cohort remained relatively free of Staphylococcus throughout the trial. CONCLUSIONS

  1. Bacterial invasion reconstructed molecule by molecule

    Energy Technology Data Exchange (ETDEWEB)

    Werner, James H [Los Alamos National Laboratory

    2009-01-01

    We propose to visualize the initial stages of bacterial infection of a human host cell with unmatched spatial and temporal resolution. This work will develop a new capability for the laboratory (super-resolution optical imaging), will test unresolved scientific hypotheses regarding host-pathogen interaction dynamics, and leverages state of the art 3D molecular tracking instrumentation developed recently by our group. There is much to be gained by applying new single molecule tools to the important and familiar problem of pathogen entry into a host cell. For example, conventional fluorescence microscopy has identified key host receptors, such as CD44 and {alpha}5{beta}1 integrin, that aggregate near the site of Salmonella typhimurium infection of human cells. However, due to the small size of the bacteria ({approx} 2 {micro}m) and the diffraction of the emitted light, one just sees a fluorescent 'blob' of host receptors that aggregate at the site of attachment, making it difficult to determine the exact number of receptors present or whether there is any particular spatial arrangement of the receptors that facilitates bacterial adhesion/entry. Using newly developed single molecule based super-resolution imaging methods, we will visualize how host receptors are directed to the site of pathogen adhesion and whether host receptors adopt a specific spatial arrangement for successful infection. Furthermore, we will employ our 3D molecular tracking methods to follow the injection of virulence proteins, or effectors, into the host cell by the pathogen Type III secretion system (TTSS). We expect these studies to provide mechanistic insights into the early events of pathogen infection that have here-to-fore been technically beyond our reach. Our Research Goals are: Goal 1--Construct a super-resolution fluorescence microscope and use this new capability to image the spatial distribution of different host receptors (e.g. CD44, as {alpha}5{beta}1 integrin) at the

  2. Water Microbiology. Bacterial Pathogens and Water

    Directory of Open Access Journals (Sweden)

    João P. S. Cabral

    2010-10-01

    Full Text Available Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water—cholera, typhoid fever and bacillary dysentery—is presented, focusing on the biology and ecology of the causal agents and on the diseases’ characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers. Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  3. Water microbiology. Bacterial pathogens and water.

    Science.gov (United States)

    Cabral, João P S

    2010-10-01

    Water is essential to life, but many people do not have access to clean and safe drinking water and many die of waterborne bacterial infections. In this review a general characterization of the most important bacterial diseases transmitted through water-cholera, typhoid fever and bacillary dysentery-is presented, focusing on the biology and ecology of the causal agents and on the diseases' characteristics and their life cycles in the environment. The importance of pathogenic Escherichia coli strains and emerging pathogens in drinking water-transmitted diseases is also briefly discussed. Microbiological water analysis is mainly based on the concept of fecal indicator bacteria. The main bacteria present in human and animal feces (focusing on their behavior in their hosts and in the environment) and the most important fecal indicator bacteria are presented and discussed (focusing on the advantages and limitations of their use as markers). Important sources of bacterial fecal pollution of environmental waters are also briefly indicated. In the last topic it is discussed which indicators of fecal pollution should be used in current drinking water microbiological analysis. It was concluded that safe drinking water for all is one of the major challenges of the 21st century and that microbiological control of drinking water should be the norm everywhere. Routine basic microbiological analysis of drinking water should be carried out by assaying the presence of Escherichia coli by culture methods. Whenever financial resources are available, fecal coliform determinations should be complemented with the quantification of enterococci. More studies are needed in order to check if ammonia is reliable for a preliminary screening for emergency fecal pollution outbreaks. Financial resources should be devoted to a better understanding of the ecology and behavior of human and animal fecal bacteria in environmental waters.

  4. Sensitive, Rapid Detection of Bacterial Spores

    Science.gov (United States)

    Kern, Roger G.; Venkateswaran, Kasthuri; Chen, Fei; Pickett, Molly; Matsuyama, Asahi

    2009-01-01

    A method of sensitive detection of bacterial spores within delays of no more than a few hours has been developed to provide an alternative to a prior three-day NASA standard culture-based assay. A capability for relatively rapid detection of bacterial spores would be beneficial for many endeavors, a few examples being agriculture, medicine, public health, defense against biowarfare, water supply, sanitation, hygiene, and the food-packaging and medical-equipment industries. The method involves the use of a commercial rapid microbial detection system (RMDS) that utilizes a combination of membrane filtration, adenosine triphosphate (ATP) bioluminescence chemistry, and analysis of luminescence images detected by a charge-coupled-device camera. This RMDS has been demonstrated to be highly sensitive in enumerating microbes (it can detect as little as one colony-forming unit per sample) and has been found to yield data in excellent correlation with those of culture-based methods. What makes the present method necessary is that the specific RMDS and the original protocols for its use are not designed for discriminating between bacterial spores and other microbes. In this method, a heat-shock procedure is added prior to an incubation procedure that is specified in the original RMDS protocols. In this heat-shock procedure (which was also described in a prior NASA Tech Briefs article on enumerating sporeforming bacteria), a sample is exposed to a temperature of 80 C for 15 minutes. Spores can survive the heat shock, but nonspore- forming bacteria and spore-forming bacteria that are not in spore form cannot survive. Therefore, any colonies that grow during incubation after the heat shock are deemed to have originated as spores.

  5. Novel receptors for bacterial protein toxins.

    Science.gov (United States)

    Schmidt, Gudula; Papatheodorou, Panagiotis; Aktories, Klaus

    2015-02-01

    While bacterial effectors are often directly introduced into eukaryotic target cells by various types of injection machines, toxins enter the cytosol of host cells from endosomal compartments or after retrograde transport via Golgi from the ER. A first crucial step of toxin-host interaction is receptor binding. Using optimized protocols and new methods novel toxin receptors have been identified, including metalloprotease ADAM 10 for Staphylococcus aureus α-toxin, laminin receptor Lu/BCAM for Escherichia coli cytotoxic necrotizing factor CNF1, lipolysis stimulated lipoprotein receptor (LSR) for Clostridium difficile transferase CDT and low-density lipoprotein receptor-related protein (LRP) 1 for Clostridium perfringens TpeL toxin.

  6. The Carboxysome and Other Bacterial Microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Kerfeld, Cheryl A.; Greenleaf, William B.; Kinney, James N.

    2010-06-23

    - Carboxysomes are part of the carbon concentrating mechanism in cyanobacteria and chemoautotrophs. - Carboxysomes are a subclass of bacterial microcompartments (BMCs); BMCs can encapsulate a range of metabolic processes. - Like some viral particles, the carboxysome can be modeled as an icosahedron-in its case, having 4,000-5,000 hexameric shell subunits and 12 surface pentamers to generate curvature. - The threefold axis of symmetry of the CsoS1D protein in carboxysomes forms a pore that can open and close, allowing for selective diffusion. - Genetic modules encoding BMC shell proteins and the enzymes that they encapsulate are horizontally transferable, suggesting they enable bacteria to adapt to diverse environments.

  7. Bacterial Motion in Quasi Two Dimensions

    Science.gov (United States)

    Wu, X. L.; Libchaber, Albert

    2000-03-01

    We study the effect of bacterial motion on micron-scale beads in a freely suspended soap film. Given the size of bacteria and beads, the geometry of the experiment is quasi-two-dimensional. Large positional fluctuations are observed for beads as large as 10 um in diameter, and the mean-square displacements, measured using video imaging, indicate superdiffusion on short times and normal diffusion on long times. Though the phenomenon is similar to Brownian motion of small particles, its physical origin is different and can be attributed to collective dynamics of bacteria.

  8. Russian vaccines against especially dangerous bacterial pathogens

    Science.gov (United States)

    Feodorova, Valentina A; Sayapina, Lidiya V; Corbel, Michael J; Motin, Vladimir L

    2014-01-01

    In response to the epidemiological situation, live attenuated or killed vaccines against anthrax, brucellosis, cholera, glanders, plague and tularemia were developed and used for immunization of at-risk populations in the Former Soviet Union. Certain of these vaccines have been updated and currently they are used on a selective basis, mainly for high risk occupations, in the Russian Federation. Except for anthrax and cholera these vaccines currently are the only licensed products available for protection against the most dangerous bacterial pathogens. Development of improved formulations and new products is ongoing. PMID:26038506

  9. Field determination of bacterial disappearance in seawater

    DEFF Research Database (Denmark)

    Harremoës, Poul

    1970-01-01

    The article presents two approaches to field determination of disappearance of viable, fecal bacteria after discharge with sewage into a marine environment. The first approach is based on simultaneous sampling for bacterial counting and monitoring of dilution using a conservative tracer, which is...... released continuously with the sewage. The second approach uses an abrupt release of tracer for determination of both dilution and residence time in the sewage field. In both cases, the disappearance rate is best determined by comparison of fluxes of two bacteria and of tracer through cross-sections of the...

  10. The Laboratory Diagnosis of Bacterial Vaginosis

    Directory of Open Access Journals (Sweden)

    Deborah Money

    2005-01-01

    Full Text Available Bacterial vaginosis (BV is an extremely common health problem for women. In addition to the troublesome symptoms often associated with a disruption in the balance of vaginal flora, BV is associated with adverse gynecological and pregnancy outcomes. Although not technically a sexually transmitted infection, BV is a sexually associated condition. Diagnostic tests include real-time clinical/microbiological diagnosis, and the current gold standard, the standardized evaluation of morphotypes on Gram stain analysis. The inappropriate use of vaginal culture can be misleading. Future developments into molecular-based diagnostics will be important to further understand this complex endogenous flora disruption.

  11. The role of metabolism in bacterial persistence

    Directory of Open Access Journals (Sweden)

    Stephanie M. Amato

    2014-03-01

    Full Text Available Bacterial persisters are phenotypic variants with extraordinary tolerances toward antibiotics. Persister survival has been attributed to inhibition of essential cell functions during antibiotic stress, followed by reversal of the process and resumption of growth upon removal of the antibiotic. Metabolism plays a critical role in this process, since it participates in the entry, maintenance, and exit from the persister phenotype. Here, we review the experimental evidence that demonstrates the importance of metabolism to persistence, highlight the successes and potential for targeting metabolism in the search for anti-persister therapies, and discuss the current methods and challenges to understand persister physiology.

  12. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication. PMID:22099187

  13. [Cerebral salt wasting syndrome in bacterial meningitis].

    Science.gov (United States)

    Attout, H; Guez, S; Seriès, C

    2007-10-01

    Subarachnoid hemorrhage is the most common cause of cerebral salt wasting syndrome. There are few reports of this condition in infectious meningitis. We describe a patient with hyponatremia and bacterial meningitis. Hyponatremia rapidly improved after administration of sodium chloride. The purpose of this report is to alert clinicians to the fact that hyponatremic patients with central nervous system disease do not necessarily have a syndrome of inappropriate secretion of antidiuretic hormone (SIADH), but may have cerebral salt wasting syndrome. By contrast with SIADH, the treatment requires saline administration.

  14. Experimental assessment of bacterial storage yield

    DEFF Research Database (Denmark)

    Karahan-Gül, Ö.; Artan, N.; Orhon, D.;

    2002-01-01

    An experimental procedure was developed for the respirometric determination of bacterial storage yield as defined in the Activated Sludge Model No. 3. The proposed approach is based on the oxygen utilization rate (OUR) profile obtained from a batch test and correlates the area under the OUR curve...... to the amount of oxygen associated with substrate storage. Model simulation was used to evaluate the procedure for different initial experimental conditions. The procedure was tested on acetate. The same storage yield value of 0.76 gCOD/gCOD was calculated for two experiments, starting with different...

  15. The enzymes of bacterial census and censorship.

    Science.gov (United States)

    Fast, Walter; Tipton, Peter A

    2012-01-01

    N-Acyl-L-homoserine lactones (AHLs) are a major class of quorum-sensing signals used by Gram-negative bacteria to regulate gene expression in a population-dependent manner, thereby enabling group behavior. Enzymes capable of generating and catabolizing AHL signals are of significant interest for the study of microbial ecology and quorum-sensing pathways, for understanding the systems that bacteria have evolved to interact with small-molecule signals, and for their possible use in therapeutic and industrial applications. The recent structural and functional studies reviewed here provide a detailed insight into the chemistry and enzymology of bacterial communication.

  16. The early prognosis at the bacterial meningitis

    OpenAIRE

    Yu. V. Lobzin; V. V. Pilipenko; M. V. Rezvansev

    2011-01-01

    On the basis of the studying of clinical and laboratory sings of 150 cases of bacterial meningitis (BM) with the use of various statistical methods, including multivariate logistical regression analysis, the early prognostic criteria of the maximum risk and the relation of chances of the maximum risk of an acyclic (severe, complicated, including lethal) variant of a diseases were estimated. These criteria are: age of the patient ≥ 55 years, late hospitalisation (≥3 days of disease), the expre...

  17. A field study of ovine bacterial meningoencephalitis.

    Science.gov (United States)

    Scott, P R; Sargison, N D; Penny, C D; Pirie, R S

    1994-08-13

    Bacterial meningoencephalitis most commonly affected lambs two to four weeks old (median three weeks, range three days to six months) with clinical signs of episcleral congestion, lack of suck reflex, weakness, altered gait and depression extending to stupor, but hyperaesthesia to auditory and tactile stimuli. Opisthotonos was observed during the agonal stages of the disease. Analysis of lumbosacral cerebrospinal fluid revealed a highly significant increase in protein concentration (P sheep, control measures should ensure an adequate transfer of passive antibody, repeated treatments of the navel, and hygienic conditions in the lambing and rearing environments. PMID:7985344

  18. Cryo-electron tomography of bacterial viruses

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero-Ferreira, Ricardo C. [Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children' s Healthcare of Atlanta, Atlanta, GA 30322 (United States); Wright, Elizabeth R., E-mail: erwrigh@emory.edu [Division of Pediatric Infectious Diseases, Emory University School of Medicine, Children' s Healthcare of Atlanta, Atlanta, GA 30322 (United States)

    2013-01-05

    Bacteriophage particles contain both simple and complex macromolecular assemblages and machines that enable them to regulate the infection process under diverse environmental conditions with a broad range of bacterial hosts. Recent developments in cryo-electron tomography (cryo-ET) make it possible to observe the interactions of bacteriophages with their host cells under native-state conditions at unprecedented resolution and in three-dimensions. This review describes the application of cryo-ET to studies of bacteriophage attachment, genome ejection, assembly and egress. Current topics of investigation and future directions in the field are also discussed.

  19. Increasing complexity of the bacterial cytoskeleton

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Löwe, Jan

    2005-01-01

    Bacteria contain cytoskeletal elements involved in major cellular processes including DNA segregation and cell morphogenesis and division. Distant bacterial homologues of tubulin (FtsZ) and actin (MreB and ParM) not only resemble their eukaryotic counterparts structurally but also show similar...... functional characteristics, assembling into filamentous structures in a nucleotide-dependent fashion. Recent advances in fluorescence microscopic imaging have revealed that FtsZ and MreB form highly dynamic helical structures that encircle the cells along the inside of the cell membrane. With the discovery...

  20. Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates.

    Directory of Open Access Journals (Sweden)

    E Charlotte E Kvennefors

    Full Text Available BACKGROUND: Coral-associated bacteria are increasingly considered to be important in coral health, and altered bacterial community structures have been linked to both coral disease and bleaching. Despite this, assessments of bacterial communities on corals rarely apply sufficient replication to adequately describe the natural variability. Replicated data such as these are crucial in determining potential roles of bacteria on coral. METHODOLOGY/PRINCIPAL FINDINGS: Denaturing Gradient Gel Electrophoresis (DGGE of the V3 region of the 16S ribosomal DNA was used in a highly replicated approach to analyse bacterial communities on both healthy and diseased corals. Although site-specific variations in the bacterial communities of healthy corals were present, host species-specific bacterial associates within a distinct cluster of gamma-proteobacteria could be identified, which are potentially linked to coral health. Corals affected by "White Syndrome" (WS underwent pronounced changes in their bacterial communities in comparison to healthy colonies. However, the community structure and bacterial ribotypes identified in diseased corals did not support the previously suggested theory of a bacterial pathogen as the causative agent of the syndrome. CONCLUSIONS/SIGNIFICANCE: This is the first study to employ large numbers of replicated samples to assess the bacterial communities of healthy and diseased corals, and the first culture-independent assessment of bacterial communities on WS affected Acroporid corals on the GBR. Results indicate that a minimum of 6 replicate samples are required in order to draw inferences on species, spatial or health-related changes in community composition, as a set of clearly distinct bacterial community profiles exist in healthy corals. Coral bacterial communities may be both site and species specific. Furthermore, a cluster of gamma-proteobacterial ribotypes may represent a group of specific common coral and marine

  1. Algal-bacterial interactions in metal contaminated floodplain sediments

    Energy Technology Data Exchange (ETDEWEB)

    Boivin, M.E.Y. [National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Animal Ecology, IES, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Greve, G.D. [National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Department of Animal Ecology, IES, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam (Netherlands); Garcia-Meza, J.V. [Department of Aquatic Ecology and Ecotoxicology, IBED, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam (Netherlands); Massieux, B. [Netherlands Institute of Ecology, Centre for Limnology, Rijkstraatweg 6, 3631 AC Nieuwersluis (Netherlands); Sprenger, W. [Department of Aquatic Ecology and Ecotoxicology, IBED, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam (Netherlands); Kraak, M.H.S. [Department of Aquatic Ecology and Ecotoxicology, IBED, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam (Netherlands)]. E-mail: castella@science.uva.nl; Breure, A.M. [National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Rutgers, M. [National Institute for Public Health and the Environment, P.O. Box 1, 3720 BA Bilthoven (Netherlands); Admiraal, W. [Department of Aquatic Ecology and Ecotoxicology, IBED, University of Amsterdam, Kruislaan 320, 1098 SM Amsterdam (Netherlands)

    2007-02-15

    The aim of the present study was to investigate algal-bacterial interactions in a gradient of metal contaminated natural sediments. By means of multivariate techniques, we related the genetic structure (denaturing gradient gel electrophoresis, DGGE) and the physiological structure (community-level physiological profiling, CLPP) of the bacterial communities to the species composition of the algal communities and to the abiotic environmental variables, including metal contamination. The results revealed that genetic and physiological structure of the bacterial communities correlated with the species composition of the algal community, but hardly to the level of metal pollution. This must be interpreted as an indication for a strong and species-specific linkage of algal and bacterial species in floodplain sediments. Metals were, however, not proven to affect either the algal or the bacterial communities of the Dutch river floodplains. - Algal and bacterial communities in floodplain sediments are interlinked, but are not affected by metal pollution.

  2. Next Generation Sequencing of Classical Swine Fever Virus and Border Disease virus cloned in Bacterial Artificial Chromosomes

    DEFF Research Database (Denmark)

    Fahnøe, Ulrik; Höper, Dirk; Beer, martin;

    2012-01-01

    be rescued only from some of our BAC constructs whereas others are not replication competent. To further analyze this discrepancy we have completely sequenced selected pestivirus BAC DNAs using a 454 Genome Sequencer FLX to evaluate the number/kind of deviations in the cloned genome sequences. In addition......, we have sequenced the full genome cDNA fragments used for the BACs by the same approach. This enables us to evaluate in more detail the nature of nucleotide changes in the pestivirus BACs that lead to lack of replicationcompetence and/or virus rescue. Additionally, detailed knowledge of the genomic...

  3. Value of a newly sequenced bacterial genome.

    Science.gov (United States)

    Barbosa, Eudes Gv; Aburjaile, Flavia F; Ramos, Rommel Tj; Carneiro, Adriana R; Le Loir, Yves; Baumbach, Jan; Miyoshi, Anderson; Silva, Artur; Azevedo, Vasco

    2014-05-26

    Next-generation sequencing (NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft (partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information. PMID:24921006

  4. The bacterial contamination of surgical scrubs.

    Science.gov (United States)

    Krueger, Chad A; Murray, Clinton K; Mende, Katrin; Guymon, Charles H; Gerlinger, Tad L

    2012-05-01

    To our knowledge, no study has examined the bacterial profile of residents' scrubs. The goal of this investigation was to determine the bacterial profile of worn and unworn resident scrubs. Thirty pairs of scrubs were swabbed in 10 predetermined locations both prior to and after being worn continuously by the on-call resident. All swabs were screened for aerobic gram-positive and gram-negative bacteria. Bacteria underwent antimicrobial resistance testing and genetic relatedness by pulsed-field gel electrophoresis. Forty-one percent (123) of unworn scrub samples yielded bacteria, compared with 89% (268) of post-call scrub samples. On unworn scrubs, the most common organisms were coagulase-negative Staphylococcus (CNS; 94), gram positive rods (GPR; 34) and Streptococcus viridians (8). On post-call scrubs, the most common bacteria were CNS (271), micrococcus (51), Staphylococcus aureus (33), and GPR (28). All S. aureus were methicillin susceptible. There were different species, pulse-field types and antibiotic resistance profiles found amongst the CNS identified. No scrubs were found to harbor multidrug-resistant (MDR) organisms. This study found that unworn scrubs harbored normal skin flora and scrubs worn for at least 24 hours have a higher burden of bacteria than unworn scrubs but not an increased incidence of contamination with MDR organisms. PMID:22715444

  5. Clostridium difficile is an autotrophic bacterial pathogen.

    Directory of Open Access Journals (Sweden)

    Michael Köpke

    Full Text Available During the last decade, Clostridium difficile infection showed a dramatic increase in incidence and virulence in the Northern hemisphere. This incessantly challenging disease is the leading cause of antibiotic-associated and nosocomial infectious diarrhea and became life-threatening especially among elderly people. It is generally assumed that all human bacterial pathogens are heterotrophic organisms, being either saccharolytic or proteolytic. So far, this has not been questioned as colonization of the human gut gives access to an environment, rich in organic nutrients. Here, we present data that C. difficile (both clinical and rumen isolates is also able to grow on CO2+H2 as sole carbon and energy source, thus representing the first identified autotrophic bacterial pathogen. Comparison of several different strains revealed high conservation of genes for autotrophic growth and showed that the ability to use gas mixtures for growth decreases or is lost upon prolonged culturing under heterotrophic conditions. The metabolic flexibility of C. difficile (heterotrophic growth on various substrates as well as autotrophy could allow the organism in the gut to avoid competition by niche differentiation and contribute to its survival when stressed or in unfavorable conditions that cause death to other bacteria. This may be an important trait for the pathogenicity of C. difficile.

  6. Bacterial signaling and motility: Sure bets

    Energy Technology Data Exchange (ETDEWEB)

    Zhulin, Igor B [University of Tennessee, Knoxville (UTK) & Oak Ridge National Laboratory (ORNL)

    2008-01-01

    The IX International Conference on Bacterial Locomotion and Signal Transduction (BLAST IX) was held from 14 to 19 January 2007 in Laughlin, NV, a town in the Mojave Desert on the Nevada-Arizona border near old Route 66 and along the banks of the Colorado River. This area is a home to rattlesnakes, sagebrush, abandoned gold mines, and compulsive gamblers. What better venue could scientists possibly dream of for a professional meeting? So there they were, about 190 scientists gathered in the Aquarius Casino Resort, the largest hotel and casino in Laughlin, discussing the latest advances in the field. Aside from a brief excursion to an abandoned gold mine and a dinner cruise on the Colorado River, the scientists focused on nothing but their data and hypotheses, in spirited arguments and rebuttals, and outlined their visions and future plans in a friendly and open environment. The BLAST IX program was dense, with nearly 50 talks and over 90 posters. For that reason, this meeting report will not attempt to be comprehensive; instead it will first provide general background information on the central topics of the meeting and then highlight only a few talks that were of special interest to us and hopefully to the wider scientific community. We will also attempt to articulate some of the future directions or perspectives to the best of our abilities. The best known and understood bacterial motility mechanism is swimming powered by flagella. The rotation of bacterial flagella drives this form of bacterial movement in an aqueous environment. A bacterial flagellum consists of a helical filament attached to the cell body through a complex structure known as the hook-basal body, which drives flagellar rotation. The essential components of the basal body are the MotA-MotB motor-stator proteins bound to the cytoplasmic membrane. These stator proteins interact with proteins that comprise the supramembrane and cytoplasmic rings, which are components of the motor imbedded in the

  7. Midgut bacterial dynamics in Aedes aegypti.

    Science.gov (United States)

    Terenius, Olle; Lindh, Jenny M; Eriksson-Gonzales, Karolina; Bussière, Luc; Laugen, Ane T; Bergquist, Helen; Titanji, Kehmia; Faye, Ingrid

    2012-06-01

    In vector mosquitoes, the presence of midgut bacteria may affect the ability to transmit pathogens. We have used a laboratory colony of Aedes aegypti as a model for bacterial interspecies competition and show that after a blood meal, the number of species (culturable on Luria-Bertani agar) that coexist in the midgut is low and that about 40% of the females do not harbor any cultivable bacteria. We isolated species belonging to the genera Bacillus, Elizabethkingia, Enterococcus, Klebsiella, Pantoea, Serratia, and Sphingomonas, and we also determined their growth rates, antibiotic resistance, and ex vivo inhibition of each other. To investigate the possible existence of coadaptation between midgut bacteria and their host, we fed Ae. aegypti cohorts with gut bacteria from human, a frog, and two mosquito species and followed the bacterial population growth over time. The dynamics of the different species suggests coadaptation between host and bacteria, and interestingly, we found that Pantoea stewartii isolated from Ae. aegypti survive better in Ae. aegypti as compared to P. stewartii isolated from the malaria mosquito Anopheles gambiae. PMID:22283178

  8. A NEW APPROACH TO BACTERIAL VACCINES.

    Science.gov (United States)

    GREENBERG, L

    1963-08-31

    Immunizing antigens against only 10 bacterial diseases-cholera, diphtheria, paratyphoid, pertussis, plague, scarlet fever, staphylococcal disease, tetanus, tuberculosis and typhoid-have been licensed for sale in Canada and the United States. Convincing evidence of efficacy is available for only four of these-diphtheria and tetanus toxoids, and pertussis and typhoid vaccines.The principles which determine the efficacy of different immunizing antigens are not always the same. Toxoids, for example, stimulate the formation of antitoxin-producing mechanisms which can neutralize toxins produced by invading organisms, thereby rendering them harmless. Conversely, vaccines stimulate the formation of antibacterial mechanisms which stop the growth of organisms before they can produce disease.Use of enzyme-lysed vaccines for prevention of staphylococcal disease represents a new approach in vaccine research. Animal tests have shown lysed vaccines to be 10 to 100 times less toxic, and about eight times more effective, than whole bacterial vaccines. Studies with lysed vaccines for other diseases are now in progress.

  9. The dynamics in the bacterial chemosensory arrays

    Science.gov (United States)

    Vaknin, Ady

    2014-08-01

    Bacterial chemoreceptors form two-dimensional sensory arrays on the cell membrane. These sensory arrays, which contain thousands of molecules, detect chemical changes in the environment of the bacterial cell and accordingly control its swimming behaviour, allowing these bacteria to track chemical gradients. It was recently demonstrated that stimulus, by ligand binding, alters the physical organization of these arrays, with dynamics that follow an apparent logarithmic time dependence. Such non-exponential dynamics is often observed in glass-like systems in which the internal dynamics slow down exponentially as the system approaches its equilibrium state. In a few of these `glassy' systems it was also demonstrated that after altering the equilibrium state of the system for a certain time tw the ensuing relaxation scales with tw. Here, we examined the relaxation of the receptor arrays in the bacterium E. coli after a perturbation by ligand binding for varying periods of times. We find that changing the time tw, during which the stimulus was present, affects mostly the deviation of the receptor arrays from equilibrium, but the dynamics of the relaxation seem to be independent of tw. A possible interpretation is discussed.

  10. Bacterial Enzymes and Antibiotic Resistance- Oral Presentation

    Energy Technology Data Exchange (ETDEWEB)

    Maltz, Lauren [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-08-25

    By using protein crystallography and X-ray diffraction, structures of bacterial enzymes were solved to gain a better understanding of how enzymatic modification acts as an antibacterial resistance mechanism. Aminoglycoside phosphotransferases (APHs) are one of three aminoglycoside modifying enzymes that confer resistance to the aminoglycoside antibiotics via enzymatic modification, rendering many drugs obsolete. Specifically, the APH(2”) family vary in their substrate specificities and also in their preference for the phosphate donor (ADP versus GDP). By solving the structures of members of the APH(2”) family of enzymes, we can see how domain movements are important to their substrate specificity. Our structure of the ternary complex of APH(2”)-IIIa with GDP and kanamycin, when compared to the known structures of APH(2”)-IVa, reveals that there are real physical differences between these two enzymes, a structural finding that explains why the two enzymes differ in their preferences for certain aminoglycosides. Another important group of bacterial resistance enzymes are the Class D β-lactamases. Oxacillinase carbapenemases (OXAs) are part of this enzyme class and have begun to confer resistance to ‘last resort’ drugs, most notably carbapenems. Our structure of OXA-143 shows that the conformational flexibility of a conserved hydrophobic residue in the active site (Val130) serves to control the entry of a transient water molecule responsible for a key step in the enzyme’s mechanism. Our results provide insight into the structural mechanisms of these two different enzymes.

  11. PRODUCTION AND CHARACTERIZATION OF ECONOMICAL BACTERIAL CELLULOSE

    Directory of Open Access Journals (Sweden)

    Houssni El-Saied

    2008-11-01

    Full Text Available The present study investigates the economical production of bacterial cellulose (BC by Gluconacetobacter subsp. Xylinus (ATCC 10245 in 250 ml Erlenmeyer flasks cultivated under static conditions. The fermentation media used contained food industrial by-product liquors, such as black strap molasses solution and corn steep liquor (CSL, which represents some of the most economical carbon and nitrogen sources. However, because of the presence of undesirable components in molasses (such as coloring substances, heavy metals, and other compounds that may act as inhibitors, and in order to eliminate them, crude molasses has been treated with an acid, as an attempt to increase BC productivity. The amount of BC produced using these carbon and nitrogen sources was determined and compared to that produced using previously reported fermentation media. The characterizations of the bacterial cellulose (BC pellicles obtained using either conventional or by-product media were studied by thermal and spectral techniques and compared to those of plant-derived cellulose such as cotton linter, viscose pulp, and microcrystalline cellulose.

  12. Mucin dynamics in intestinal bacterial infection.

    Directory of Open Access Journals (Sweden)

    Sara K Lindén

    Full Text Available BACKGROUND: Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract. METHODOLOGY/PRINCIPAL FINDINGS: Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17 in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05. Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon. CONCLUSION: Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.

  13. Resonant activation: a strategy against bacterial persistence

    International Nuclear Information System (INIS)

    A bacterial colony may develop a small number of cells genetically identical to, but phenotypically different from, other normally growing bacteria. These so-called persister cells keep themselves in a dormant state and thus are insensitive to antibiotic treatment, resulting in serious problems of drug resistance. In this paper, we proposed a novel strategy to 'kill' persister cells by triggering them to switch, in a fast and synchronized way, into normally growing cells that are susceptible to antibiotics. The strategy is based on resonant activation (RA), a well-studied phenomenon in physics where the internal noise of a system can constructively facilitate fast and synchronized barrier crossings. Through stochastic Gilliespie simulation with a generic toggle switch model, we demonstrated that RA exists in the phenotypic switching of a single bacterium. Further, by coupling single cell level and population level simulations, we showed that with RA, one can greatly reduce the time and total amount of antibiotics needed to sterilize a bacterial population. We suggest that resonant activation is a general phenomenon in phenotypic transition, and can find other applications such as cancer therapy

  14. Bacterial phylogeny structures soil resistomes across habitats

    Science.gov (United States)

    Forsberg, Kevin J.; Patel, Sanket; Gibson, Molly K.; Lauber, Christian L.; Knight, Rob; Fierer, Noah; Dantas, Gautam

    2014-05-01

    Ancient and diverse antibiotic resistance genes (ARGs) have previously been identified from soil, including genes identical to those in human pathogens. Despite the apparent overlap between soil and clinical resistomes, factors influencing ARG composition in soil and their movement between genomes and habitats remain largely unknown. General metagenome functions often correlate with the underlying structure of bacterial communities. However, ARGs are proposed to be highly mobile, prompting speculation that resistomes may not correlate with phylogenetic signatures or ecological divisions. To investigate these relationships, we performed functional metagenomic selections for resistance to 18 antibiotics from 18 agricultural and grassland soils. The 2,895 ARGs we discovered were mostly new, and represent all major resistance mechanisms. We demonstrate that distinct soil types harbour distinct resistomes, and that the addition of nitrogen fertilizer strongly influenced soil ARG content. Resistome composition also correlated with microbial phylogenetic and taxonomic structure, both across and within soil types. Consistent with this strong correlation, mobility elements (genes responsible for horizontal gene transfer between bacteria such as transposases and integrases) syntenic with ARGs were rare in soil by comparison with sequenced pathogens, suggesting that ARGs may not transfer between soil bacteria as readily as is observed between human pathogens. Together, our results indicate that bacterial community composition is the primary determinant of soil ARG content, challenging previous hypotheses that horizontal gene transfer effectively decouples resistomes from phylogeny.

  15. The Human Microbiome during Bacterial Vaginosis.

    Science.gov (United States)

    Onderdonk, Andrew B; Delaney, Mary L; Fichorova, Raina N

    2016-04-01

    Bacterial vaginosis (BV) is the most commonly reported microbiological syndrome among women of childbearing age. BV is characterized by a shift in the vaginal flora from the dominant Lactobacillus to a polymicrobial flora. BV has been associated with a wide array of health issues, including preterm births, pelvic inflammatory disease, increased susceptibility to HIV infection, and other chronic health problems. A number of potential microbial pathogens, singly and in combinations, have been implicated in the disease process. The list of possible agents continues to expand and includes members of a number of genera, including Gardnerella, Atopobium, Prevotella, Peptostreptococcus, Mobiluncus, Sneathia, Leptotrichia, Mycoplasma, and BV-associated bacterium 1 (BVAB1) to BVAB3. Efforts to characterize BV using epidemiological, microscopic, microbiological culture, and sequenced-based methods have all failed to reveal an etiology that can be consistently documented in all women with BV. A careful analysis of the available data suggests that what we term BV is, in fact, a set of common clinical signs and symptoms that can be provoked by a plethora of bacterial species with proinflammatory characteristics, coupled to an immune response driven by variability in host immune function. PMID:26864580

  16. Steps in the bacterial flagellar motor.

    Directory of Open Access Journals (Sweden)

    Thierry Mora

    2009-10-01

    Full Text Available The bacterial flagellar motor is a highly efficient rotary machine used by many bacteria to propel themselves. It has recently been shown that at low speeds its rotation proceeds in steps. Here we propose a simple physical model, based on the storage of energy in protein springs, that accounts for this stepping behavior as a random walk in a tilted corrugated potential that combines torque and contact forces. We argue that the absolute angular position of the rotor is crucial for understanding step properties and show this hypothesis to be consistent with the available data, in particular the observation that backward steps are smaller on average than forward steps. We also predict a sublinear speed versus torque relationship for fixed load at low torque, and a peak in rotor diffusion as a function of torque. Our model provides a comprehensive framework for understanding and analyzing stepping behavior in the bacterial flagellar motor and proposes novel, testable predictions. More broadly, the storage of energy in protein springs by the flagellar motor may provide useful general insights into the design of highly efficient molecular machines.

  17. Value of a newly sequenced bacterial genome

    Institute of Scientific and Technical Information of China (English)

    Eudes; GV; Barbosa; Flavia; F; Aburjaile; Rommel; TJ; Ramos; Adriana; R; Carneiro; Yves; Le; Loir; Jan; Baumbach; Anderson; Miyoshi; Artur; Silva; Vasco; Azevedo

    2014-01-01

    Next-generation sequencing(NGS) technologies have made high-throughput sequencing available to medium- and small-size laboratories, culminating in a tidal wave of genomic information. The quantity of sequenced bacterial genomes has not only brought excitement to the field of genomics but also heightened expectations that NGS would boost antibacterial discovery and vaccine development. Although many possible drug and vaccine targets have been discovered, the success rate of genome-based analysis has remained below expectations. Furthermore, NGS has had consequences for genome quality, resulting in an exponential increase in draft(partial data) genome deposits in public databases. If no further interests are expressed for a particular bacterial genome, it is more likely that the sequencing of its genome will be limited to a draft stage, and the painstaking tasks of completing the sequencing of its genome and annotation will not be undertaken. It is important to know what is lost when we settle for a draft genome and to determine the "scientific value" of a newly sequenced genome. This review addresses the expected impact of newly sequenced genomes on antibacterial discovery and vaccinology. Also, it discusses the factors that could be leading to the increase in the number of draft deposits and the consequent loss of relevant biological information.

  18. The neglected intrinsic resistome of bacterial pathogens.

    Directory of Open Access Journals (Sweden)

    Alicia Fajardo

    Full Text Available Bacteria with intrinsic resistance to antibiotics are a worrisome health problem. It is widely believed that intrinsic antibiotic resistance of bacterial pathogens is mainly the consequence of cellular impermeability and activity of efflux pumps. However, the analysis of transposon-tagged Pseudomonas aeruginosa mutants presented in this article shows that this phenotype emerges from the action of numerous proteins from all functional categories. Mutations in some genes make P. aeruginosa more susceptible to antibiotics and thereby represent new targets. Mutations in other genes make P. aeruginosa more resistant and therefore define novel mechanisms for mutation-driven acquisition of antibiotic resistance, opening a new research field based in the prediction of resistance before it emerges in clinical environments. Antibiotics are not just weapons against bacterial competitors, but also natural signalling molecules. Our results demonstrate that antibiotic resistance genes are not merely protective shields and offer a more comprehensive view of the role of antibiotic resistance genes in the clinic and in nature.

  19. Mathematical description of bacterial traveling pulses.

    Directory of Open Access Journals (Sweden)

    Jonathan Saragosti

    Full Text Available The Keller-Segel system has been widely proposed as a model for bacterial waves driven by chemotactic processes. Current experiments on Escherichia coli have shown the precise structure of traveling pulses. We present here an alternative mathematical description of traveling pulses at the macroscopic scale. This modeling task is complemented with numerical simulations in accordance with the experimental observations. Our model is derived from an accurate kinetic description of the mesoscopic run-and-tumble process performed by bacteria. This can account for recent experimental observations with E. coli. Qualitative agreements include the asymmetry of the pulse and transition in the collective behaviour (clustered motion versus dispersion. In addition, we can capture quantitatively the traveling speed of the pulse as well as its characteristic length. This work opens several experimental and theoretical perspectives since coefficients at the macroscopic level are derived from considerations at the cellular scale. For instance, the particular response of a single cell to chemical cues turns out to have a strong effect on collective motion. Furthermore, the bottom-up scaling allows us to perform preliminary mathematical analysis and write efficient numerical schemes. This model is intended as a predictive tool for the investigation of bacterial collective motion.

  20. Measurement of Behavioral Evolution in Bacterial Populations

    Science.gov (United States)

    Austin, Robert

    2013-03-01

    A curious aspect of bacterial behavior under stress is the induction of filamentation: the anomalous growth of certain bacteria in which cells continue to elongate but do not divide into progeny. We show that E.coli under the influence of the genotoxic antibiotic ciprofloxacin have robust filamentous growth, which provides individual bacteria a mesoscopic niche for evolution until resistant progeny can bud off and propagate. Hence, filamentation is a form of genomic amplification where even a single, isolated bacteria can have access to multiple genomes. We propose a model that predicts that the first arrival time of the normal sized progeny should follow a Gompertz distribution with the mean first arrival time proportional to the elongation rate of filament. These predictions agree with our experimental measurements. Finally, we suggest bacterial filament growth and budding has many similarities to tumor growth and metastasis and can serve as a simpler model to study those complicated processes. Sponsored by the NCI/NIH Physical Sciences Oncology Centers

  1. Bacterial respiration of arsenic and selenium

    Science.gov (United States)

    Stolz, J.F.; Oremland, R.S.

    1999-01-01

    Oxyanions of arsenic and selenium can be used in microbial anaerobic respiration as terminal electron acceptors. The detection of arsenate and selenate respiring bacteria in numerous pristine and contaminated environments and their rapid appearance in enrichment culture suggest that they are widespread and metabolically active in nature. Although the bacterial species that have been isolated and characterized are still few in number, they are scattered throughout the bacterial domain and include Gram- positive bacteria, beta, gamma and epsilon Proteobacteria and the sole member of a deeply branching lineage of the bacteria, Chrysiogenes arsenatus. The oxidation of a number of organic substrates (i.e. acetate, lactate, pyruvate, glycerol, ethanol) or hydrogen can be coupled to the reduction of arsenate and selenate, but the actual donor used varies from species to species. Both periplasmic and membrane-associated arsenate and selenate reductases have been characterized. Although the number of subunits and molecular masses differs, they all contain molybdenum. The extent of the environmental impact on the transformation and mobilization of arsenic and selenium by microbial dissimilatory processes is only now being fully appreciated.

  2. Bacterial Cellular Materials as Precursors of Chloroform

    Science.gov (United States)

    Wang, J.; Ng, T.; Zhang, Q.; Chow, A. T.; Wong, P.

    2011-12-01

    The environmental sources of chloroform and other halocarbons have been intensively investigated because their effects of stratospheric ozone destruction and environmental toxicity. It has been demonstrated that microorganisms could facilitate the biotic generation of chloroform from natural organic matters in soil, but whether the cellular materials itself also serves as an important precursor due to photo-disinfection is poorly known. Herein, seven common pure bacterial cultures (Acinetobacter junii, Aeromonas hydrophila, Bacillus cereus, Bacillus substilis, Escherichia coli, Shigella sonnei, Staphylococcus sciuri) were chlorinated to evaluate the yields of chloroform, dibromochloromethane, dichlorobromomethane, and bromoform. The effects of bromide on these chemical productions and speciations were also investigated. Results showed that, on average, 5.64-36.42 μg-chloroform /mg-C were generated during the bacterial chlorination, in similar order of magnitude to that generated by humic acid (previously reported as 78 μg-chloroform/mg-C). However, unlike humic acid in water chlorination, chloroform concentration did not simply increase with the total organic carbon in water mixture. In the presence of bromide, the yield of brominated species responded linearly to the bromide concentration. This study provides useful information to understand the contributions of chloroform from photodisinfection processes in coastal environments.

  3. Antibiotic resistance in ocular bacterial pathogens

    Directory of Open Access Journals (Sweden)

    S Sharma

    2011-01-01

    Full Text Available Bacterial infections of the eye are common and ophthalmologists are spoilt for choice with a variety of antibiotics available in the market. Antibiotics can be administered in the eye by a number of routes; topical, subconjunctival, subtenon and intraocular. Apart from a gamut of eye drops available, ophthalmologists also have the option of preparing fortified eye drops from parenteral formulations, thereby, achieving high concentrations; often much above the minimum inhibitory concentration (MIC, of antibiotics in ocular tissues during therapy. Antibiotic resistance among ocular pathogens is increasing in parallel with the increase seen over the years in bacteria associated with systemic infections. Although it is believed that the rise in resistant ocular bacterial isolates is linked to the rise in resistant systemic pathogens, recent evidence has correlated the emergence of resistant bacteria in the eye to prior topical antibiotic therapy. One would like to believe that either of these contributes to the emergence of resistance to antibiotics among ocular pathogens. Until recently, ocular pathogens resistant to fluoroquinolones have been minimal but the pattern is currently alarming. The new 8-fluoroquinolone on the scene-besifloxacin, is developed exclusively for ophthalmic use and it is hoped that it will escape the selective pressure for resistance because of lack of systemic use. In addition to development of new antibacterial agents, the strategies to halt or control further development of resistant ocular pathogens should always include judicious use of antibiotics in the treatment of human, animal or plant diseases.

  4. Bacterial production of the biodegradable plastics polyhydroxyalkanoates.

    Science.gov (United States)

    Urtuvia, Viviana; Villegas, Pamela; González, Myriam; Seeger, Michael

    2014-09-01

    Petroleum-based plastics constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is of increasing interest. Microbial polyesters known as polyhydroxyalkanoates (PHAs) are biodegradable plastics. Life cycle assessment indicates that PHB is more beneficial than petroleum-based plastics. In this report, bacterial production of PHAs and their industrial applications are reviewed and the synthesis of PHAs in Burkholderia xenovorans LB400 is described. PHAs are synthesized by a large number of microorganisms during unbalanced nutritional conditions. These polymers are accumulated as carbon and energy reserve in discrete granules in the bacterial cytoplasm. 3-hydroxybutyrate and 3-hydroxyvalerate are two main PHA units among 150 monomers that have been reported. B. xenovorans LB400 is a model bacterium for the degradation of polychlorobiphenyls and a wide range of aromatic compounds. A bioinformatic analysis of LB400 genome indicated the presence of pha genes encoding enzymes of pathways for PHA synthesis. This study showed that B. xenovorans LB400 synthesize PHAs under nutrient limitation. Staining with Sudan Black B indicated the production of PHAs by B. xenovorans LB400 colonies. The PHAs produced were characterized by GC-MS. Diverse substrates for the production of PHAs in strain LB400 were analyzed.

  5. Application of Sub-Micrometer Vibrations to Mitigate Bacterial Adhesion

    OpenAIRE

    Will R. Paces; Holmes, Hal R.; Eli Vlaisavljevich; Snyder, Katherine L.; Ee Lim Tan; Rajachar, Rupak M.; Keat Ghee Ong

    2014-01-01

    As a prominent concern regarding implantable devices, eliminating the threat of opportunistic bacterial infection represents a significant benefit to both patient health and device function. Current treatment options focus on chemical approaches to negate bacterial adhesion, however, these methods are in some ways limited. The scope of this study was to assess the efficacy of a novel means of modulating bacterial adhesion through the application of vibrations using magnetoelastic materials. M...

  6. A Survey of Bacterial Infections in Bone Marrow Transplant Recipients

    OpenAIRE

    Shirazi MH; R Ranjbar; A. Ghasemi; S Paktarigh; N Sadeghifard; Pourmand MR

    2007-01-01

    "nBackground: Bone marrow transplant (BMT) recipients are prone to bacterial, viral and fungal infections. Bacterial infec­tion is considered as one of the common and serious complications in bone marrow transplant recipients. The aim of this study was to determine the rate of bacterial infections in bone marrow transplant recipients."nMethods: Fifty-two blood and 25 catheter samples were obtained from 23 patients who were hospitalized in bone marrow trans­plantation...

  7. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    OpenAIRE

    Paula Blanco; Sara Hernando-Amado; Jose Antonio Reales-Calderon; Fernando Corona; Felipe Lira; Manuel Alcalde-Rico; Alejandra Bernardini; Maria Blanca Sanchez; Jose Luis Martinez

    2016-01-01

    Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of ant...

  8. Procalcitonin for detecting community-acquired bacterial pneumonia

    OpenAIRE

    Devi Gusmaiyanto; Finny Fitry Yani; Efrida Efrida; Rizanda Machmud

    2016-01-01

    Background Pneumonia is a major cause of morbidity andmortality in children under five years of age. Pneumonia can be ofbacterial or viral origin. It is difficult to distinguish between thesetwo agents based on clinical manifestations, as well as radiologicaland laboratory examinations. Furthermore, bacterial cultures taketime to incubate and positive results may only be found in 10-30%of bacterial pneumonia cases. Procalcitonin has been used as amarker to distinguish etiologies, as bacterial...

  9. Bacterial adhesion to worn silicone hydrogel contact lenses

    OpenAIRE

    Santos, Lívia; Rodrigues, Diana Alexandra Ferreira; Lira, Madalena; Oliveira, M. Elisabete; Oliveira, Rosário; Yebra-Pimentel Vilar, Eva; Azeredo, Joana

    2008-01-01

    Purpose. The aim of this study was to, firstly, investigate whether silicone-hydrogel contact lenses (CL) are more or less susceptible to bacterial adhesion than conventional ones and, secondly, assess the influence of lens wear in the extent of bacterial adhesion. Four silicone-hydrogel CL (galyfilcon A, balafilcon A, lotrafilcon A, and lotrafilcon B) and one conventional hydrogel (etafilcon A) CL were tested. Methods. Bacterial adhesion experiments were performed on unworn and worn CL us...

  10. Particle Counter Determination of Bacterial Biomass in Seawater

    OpenAIRE

    Kogure, Kazuhiro; Koike, Isao

    1987-01-01

    The applicability of the Elzone particle counter to the determination of marine bacterial biomass was investigated. The biomass of bacterial pure cultures and a mixed natural population were followed by using the particle counter, a CHN analyzer, and an ATP analyzer. The particle counter showed the precise size distribution of number and volume of submicron-size particles in seawater. For the pure cultured bacterial strains, the conversion factor from volume to carbon is 0.209 mg of C per mm3...

  11. Biodiversity of Bacterial Ecosystems in Traditional Egyptian Domiati Cheese▿

    OpenAIRE

    El-Baradei, Gaber; Delacroix-Buchet, Agnès; Ogier, Jean-Claude

    2006-01-01

    Bacterial biodiversity occurring in traditional Egyptian soft Domiati cheese was studied by PCR-temporal temperature gel electrophoresis (TTGE) and PCR-denaturing gradient gel electrophoresis (DGGE). Bands were identified using a reference species database (J.-C. Ogier et al., Appl. Environ. Microbiol. 70:5628-5643, 2004); de novo bands having nonidentified migration patterns were identified by DNA sequencing. Results reveal a novel bacterial profile and extensive bacterial biodiversity in Do...

  12. Antibiotic efficacy is linked to bacterial cellular respiration

    OpenAIRE

    Lobritz, Michael A.; Belenky, Peter; Porter, Caroline B. M.; Gutierrez, Arnaud; Yang, Jason H.; Schwarz, Eric G.; Dwyer, Daniel J; Khalil, Ahmad S.; James J Collins

    2015-01-01

    The global burden of antibiotic resistance has created a demand to better understand the basic mechanisms of existing antibiotics. Of significant interest is how antibiotics may perturb bacterial metabolism, and how bacterial metabolism may influence antibiotic activity. Here, we study the interaction of bacteriostatic and bactericidal antibiotics, the two major phenotypic drug classes. Interestingly, the two classes differentially perturb bacterial cellular respiration, with major consequenc...

  13. Extraction of Bacterial RNA from Soil: Challenges and Solutions

    OpenAIRE

    Wang, Yong; Hayatsu, Masahito; Fujii, Takeshi

    2012-01-01

    Detection of bacterial gene expression in soil emerged in the early 1990s and provided information on bacterial responses in their original soil environments. As a key procedure in the detection, extraction of bacterial RNA from soil has attracted much interest, and many methods of soil RNA extraction have been reported in the past 20 years. In addition to various RT-PCR-based technologies, new technologies for gene expression analysis, such as microarrays and high-throughput sequencing techn...

  14. Molecular survey of bacterial communities associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers.

    Science.gov (United States)

    Jiang, Tieshan; Mandal, Rabindra K; Wideman, Robert F; Khatiwara, Anita; Pevzner, Igal; Min Kwon, Young

    2015-01-01

    Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in

  15. Molecular survey of bacterial communities associated with bacterial chondronecrosis with osteomyelitis (BCO in broilers.

    Directory of Open Access Journals (Sweden)

    Tieshan Jiang

    Full Text Available Bacterial chondronecrosis with osteomyelitis (BCO is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens. Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9% comprised the most common phylum, followed by Firmicutes (6.1% and Actinobacteria (2.6%, accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia, lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions, and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of

  16. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  17. Bacterial contamination of platelet concentrates: pathogen detection and inactivation methods

    Directory of Open Access Journals (Sweden)

    Dana Védy

    2009-04-01

    Full Text Available Whereas the reduction of transfusion related viral transmission has been a priority during the last decade, bacterial infection transmitted by transfusion still remains associated to a high morbidity and mortality, and constitutes the most frequent infectious risk of transfusion. This problem especially concerns platelet concentrates because of their favorable bacterial growth conditions. This review gives an overview of platelet transfusion-related bacterial contamination as well as on the different strategies to reduce this problem by using either bacterial detection or inactivation methods.

  18. Optimal control methods for controlling bacterial populations with persister dynamics

    Science.gov (United States)

    Cogan, N. G.

    2016-06-01

    Bacterial tolerance to antibiotics is a well-known phenomena; however, only recent studies of bacterial biofilms have shown how multifaceted tolerance really is. By joining into a structured community and offering shared protection and gene transfer, bacterial populations can protect themselves genotypically, phenotypically and physically. In this study, we collect a line of research that focuses on phenotypic (or plastic) tolerance. The dynamics of persister formation are becoming better understood, even though there are major questions that remain. The thrust of our results indicate that even without detailed description of the biological mechanisms, theoretical studies can offer strategies that can eradicate bacterial populations with existing drugs.

  19. Age, sun and substrate: triggers of bacterial communities in lichens.

    Science.gov (United States)

    Cardinale, Massimiliano; Steinová, Jana; Rabensteiner, Johannes; Berg, Gabriele; Grube, Martin

    2012-02-01

    Bacterial communities colonize the surfaces of lichens in a biofilm-like manner. The overall structure of the bacterial communities harboured by the lichens shows similarities, in particular the dominance of not yet cultured Alphaproteobacteria. Parameters causing variation in abundance, composition and spatial organization of the lichen-associated bacterial communities are so far poorly understood. As a first step, we used a microscopic approach to test the significance of both lichen-intrinsic and extrinsic environmental factors on the bacterial communities associated with 11 lichen samples, belonging to six species. Some of these species have thalli with a distinct age gradient. A statistically significant effect can be attributed to the age of the thallus parts, which is an intrinsic factor: growing parts of the lichens host bacterial communities that significantly differ from those of the ageing portions of the thalli. The substrate type (rock, tree, understory) and (at a lower extent) the exposition to the sun also affected the bacterial communities. Interestingly, the abundance of bacterial cells in the lichens was also influenced by the same structure-triggering factors. No effect on the composition with main bacterial groups was attributed to different lichen species, differentiated thallus parts or thallus growth type. Our results are important for the experimental designs in lichen-bacterial ecology. PMID:23757225

  20. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces.

    Science.gov (United States)

    Pereira da Fonseca, Tairacan Augusto; Pessôa, Rodrigo; Sanabani, Sabri Saeed

    2015-10-22

    Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$) notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or "feiras" in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  1. Molecular Analysis of Bacterial Microbiota on Brazilian Currency Note Surfaces

    Directory of Open Access Journals (Sweden)

    Tairacan Augusto Pereira da Fonseca

    2015-10-01

    Full Text Available Currency notes have been implicated as a vehicle for transmitting community-acquired bacterial infections. However, the overall diversity of the bacterial population residing on banknotes is still unknown in Brazil. In this study, we aimed to investigate the overall bacterial population from 150 different Brazilian Rial (R$ notes in circulation using a culture-independent Illumina massively parallel sequencing approach of the 16S rRNA genes. Samples were randomly collected from three different street markets or “feiras” in the metropolitan region of São Paulo. Taxonomical composition revealed the abundance of Proteobacteria phyla, followed by Firmicutes and Streptophyta, with a total of 1193 bacterial families and 3310 bacterial genera. Most of these bacterial genera are of human, animal, and environmental origins. Also, our analysis revealed the presence of some potential pathogenic bacterial genera including Salmonella, Staphylococcus, and Klebsiella. The results demonstrate that there is a tremendous diversity of bacterial contamination on currency notes, including organisms known to be opportunistic pathogens. One of the factors that may contribute to the richness of bacterial diversity in currency notes is personal hygiene. Thus, our results underscore the need to increase public awareness of the importance of personal hygiene of money handlers who also handle food.

  2. Bacterial and fungal markers in tobacco smoke

    Energy Technology Data Exchange (ETDEWEB)

    Szponar, B., E-mail: szponar@iitd.pan.wroc.pl [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden); Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Rudolfa Weigla 12, 53-114 Wroclaw (Poland); Pehrson, C.; Larsson, L. [Lund University, Dept. of Laboratory Medicine, Soelvegatan 23, 223 62 Lund (Sweden)

    2012-11-01

    Previous research has demonstrated that cigarette smoke contains bacterial and fungal components including lipopolysaccharide (LPS) and ergosterol. In the present study we used gas chromatography-mass spectrometry to analyze tobacco as well as mainstream and second hand smoke for 3-hydroxy fatty acids (3-OH FAs) of 10 to 18 carbon chain lengths, used as LPS markers, and ergosterol, used as a marker of fungal biomass. The air concentrations of LPS were 0.0017 nmol/m{sup 3} (N = 5) and 0.0007/m{sup 3} (N = 6) in the smoking vs. non-smoking rooms (p = 0.0559) of the studied private houses, and 0.0231 nmol/m{sup 3} (N = 5) vs. 0.0006 nmol/m{sup 3} (N = 5) (p = 0.0173), respectively, at the worksite. The air concentrations of ergosterol were also significantly higher in rooms with ongoing smoking than in rooms without smoking. A positive correlation was found between LPS and ergosterol in rooms with smoking but not in rooms without smoking. 3-OH C14:0 was the main 3-OH FA, followed by 3-OH C12:0, both in mainstream and second hand smoke and in phenol:water smoke extracts prepared in order to purify the LPS. The Limulus activity of the phenolic phase of tobacco was 3900 endotoxin units (EU)/cigarette; the corresponding amount of the smoke, collected on filters from 8 puffs, was 4 EU/cigarette. Tobacco smoking has been associated with a range of inflammatory airway conditions including COPD, asthma, bronchitis, alveolar hypersensitivity etc. Significant levels of LPS and ergosterol were identified in tobacco smoke and these observations support the hypothesis that microbial components of tobacco smoke contribute to inflammation and airway disease. -- Highlights: Black-Right-Pointing-Pointer Air concentration of bacterial and fungal markers is significantly higher in rooms with ongoing smoking than without smoking. Black-Right-Pointing-Pointer Bacterial LPS correlates with fungal marker in rooms with ongoing smoking but not without smoking. Black-Right-Pointing-Pointer LPS

  3. An Authomated approach for Bacterial Colony Counter

    Directory of Open Access Journals (Sweden)

    Shruti Nagpal

    2012-03-01

    Full Text Available Counting of bacterial colonies is complex task for microbiologist. To a large extent, accurate colony counting depends on the ability to see colonies distinctly, whether viewed by the naked eye or by an automated instrument. An increased area of focus in Microbiology is the automation of counting methods.. Further in an Industry thousands of such samples are formed per day and colonies on each sample are counted manually, then this becomes a time consuming hectic and error prone job.We proposed a method to count these colonies to save time with accurate results and fast delivery to customers. This proposed research work will count the colonies after 6 to 8 hours priori, saving a lot more time and this work will more efficient because market range for this is about 10,000 only as compare to prior systems.

  4. C-reactive protein and bacterial meningitis

    DEFF Research Database (Denmark)

    Gerdes, Lars Ulrik; Jørgensen, P E; Nexø, E;

    1998-01-01

    The aim of the study was to review published articles on the diagnostic accuracy of C-reactive protein (CRP) tests with cerebrospinal fluid and serum in diagnosing bacterial meningitis. The literature from 1980 and onwards was searched using the electronic databases of MEDLINE, and we used summary...... lower. Hence, only a negative test is highly informative in a typical clinical setting. This, as well as the absence of analyses to show if CRP tests contribute independent diagnostic information, relatively to the information held in the traditionally used clinical and biochemical variables, makes...... receiver operating characteristic curve analyses (SROCs) to describe central tendencies and examine possible sources of inter-study variability in the results. We included data from 35 studies of both children and adults: 21 in which CRP had been measured in cerebrospinal fluid, 10 in which CRP had been...

  5. [Bacterial vaginal fluor in intrauterine contraception].

    Science.gov (United States)

    Feichter, G E; Nohlen, M; Tauber, P F

    1979-11-01

    Vaginal swabs obtained from 100 IUD-users were examined bacteriologically. Fifty-one women had vaginal discharge and 49 women used as control group had no complaints originating either from the IUD or from the genital tract. In the group of IUD-users with vaginal discharge the number of bacterial isolates was higher and the cultures were more diversified. The nulliparous patients in this group exhibited more anaerobic cultures than the IUD-users without discharge. The significance of vaginal discharge in IUD-users is its function as a pool for pathogenic bacteria which may provoke and/or maintain inflammatory diseases of the female genital tract. IUD-users with vaginal discharge do therefore need not only bacteriologic diagnosis, but also consequent treatment of the discharge.

  6. Bacterial spoilage profiles to identify irradiated fish

    International Nuclear Information System (INIS)

    Effects of low dose gamma-irradiation of fish product on spoilage potentials of bacteria (Aeromonas hydrophila, Salmonella typhimurium, Bacillus megaterium, and Pseudomonas marinoglutinosa) and mixed flora were examined for ability to proliferate in radurized fish and produce volatile acids (TVA) and bases (TVBN). Bacteria proliferated well in unirradiated and irradiated fish, but formation of VA and VB were lower in irradiated than unirradiated counterparts. This was found in Bombay duck, Indian mackerel, white pomfret, seer and shrimp gamma-irradiated at 0 to 5 kGy under ice. TVA and TVBN produced by the organisms or mixed flora from fish were only 30-50% those of controls. A method for identifying radiation-processed fish could evolve based on lower susceptibility of irradiated fish to bacterial spoilage

  7. Soil bacterial community responses to global changes

    DEFF Research Database (Denmark)

    Bergmark, Lasse

    the bacterial soil population. The thesis addresses the effects of different global change manipulations on the soil microbial community composition (climate change in Manuscript 1-4 and unconventional urban fertilizers in Manuscript 5-6). A special emphasis was put on combining molecular techniques like 454......’ of climate change manipulations on soil microorganisms and nutrient availability in a Danish heathland, where the samples were taken shortly after a prolonged pre-summer drought. The major findings in the study are that warming increased measures of fungi and bacteria and drought might shift/change...... overall importance for ecosystem function in soil is poorly understood. Global change factors may affect the diversity and functioning of soil prokaryotes and thereby ecosystem functioning. To gain a better understanding of the effects of global changes it is of fundamental importance to classify...

  8. Targeted bacterial immunity buffers phage diversity.

    Science.gov (United States)

    Haerter, Jan O; Trusina, Ala; Sneppen, Kim

    2011-10-01

    Bacteria have evolved diverse defense mechanisms that allow them to fight viral attacks. One such mechanism, the clustered, regularly interspaced, short palindromic repeat (CRISPR) system, is an adaptive immune system consisting of genetic loci that can take up genetic material from invasive elements (viruses and plasmids) and later use them to reject the returning invaders. It remains an open question how, despite the ongoing evolution of attack and defense mechanisms, bacteria and viral phages manage to coexist. Using a simple mathematical model and a two-dimensional numerical simulation, we found that CRISPR adaptive immunity allows for robust phage-bacterium coexistence even when the number of virus species far exceeds the capacity of CRISPR-encoded genetic memory. Coexistence is predicted to be a consequence of the presence of many interdependent species that stress but do not overrun the bacterial defense system. PMID:21813617

  9. The physical basis of bacterial quorum communication

    CERN Document Server

    2015-01-01

    This book aims to educate physical scientists and quantitatively-oriented biologists on the application of physical experimentation and analysis, together with appropriate modeling, to understanding and interpreting microbial chemical communication and especially quorum sensing (QS). Quorum sensing describes a chemical communication behavior that is nearly universal among bacteria. Individual cells release a diffusible small molecule (an autoinducer) into their environment. A high concentration of this autoinducer serves as a signal of high population density, triggering new patterns of gene expression throughout the population. However QS is often much more complex than simple census-taking. Many QS bacteria produce and detect multiple autoinducers, which generate quorum signal cross talk with each other and with other bacterial species. QS gene regulatory networks operate in physically complex environments and respond to a range of inputs in addition to autoinducer signals. While many individual QS systems ...

  10. Transforming clinical microbiology with bacterial genome sequencing

    Science.gov (United States)

    2016-01-01

    Whole genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here we review the current status of clinical microbiology and how it has already begun to be transformed by the use of next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. The application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow. PMID:22868263

  11. Bacterial adherence and contamination during radiographic processing.

    Science.gov (United States)

    Bachman, C E; White, J M; Goodis, H E; Rosenquist, J W

    1990-11-01

    Oral fluids are potential contaminants of radiographic processors. This investigation measured bacterial contamination in a radiographic processing room during times of high and low clinical activity and processing effects on five types of microorganisms. Cultures in the clinical setting, during high and low activity, were taken by brain-heart infusion agar plates placed near automatic processors. Site samples were taken of entrance, developer, fixer, water, and exit surfaces. Measurements of processing effects were accomplished by intentional contamination of films run in series through an automatic processor. Site samples were again taken of the processor. In the clinical setting colony-forming units increased with activity. Radiographic processing after intentional contamination decreased colony-forming units on films, but they increased for all processing solutions. Bacteria on radiographic film survived processing. Although processing procedures significantly reduce the number of bacteria on films, the potential for contamination and cross-contamination remains. PMID:2122350

  12. [Spontaneous bacterial peritonitis in patients with cirrhosis].

    Science.gov (United States)

    Nousbaum, Jean-Baptiste

    2015-12-01

    Spontaneous bacterial peritonitis (SBP) is a severe complication occurring in patients with cirrhosis, and is associated with high mortality. Liver transplantation should be considered after a first episode of SBP. Gram-negative bacilli are the major cause of SBP, however there is an increasing trend of Gram-positive cocci related SBP. Management includes empirical antibiotic treatment and albumin infusion. The choice of antibiotics depends on the site of acquisition (community-acquired vs nosocomial or health-care associated infection) and local resistance profile, due to the emergence of drug-resistant bacteria. Secondary prophylaxis is recommended after resolution of SBP and reduces recurrence and mortality. Primary prophylaxis in patients with low protein ascites (<15 g/L) should be restricted to patients with severe cirrhosis awaiting for liver transplantation.

  13. Shellfish as reservoirs of bacterial pathogens

    Directory of Open Access Journals (Sweden)

    Harry Hariharan

    2016-04-01

    Full Text Available The objective of this article is to present an overview on bacterial pathogens associated with shellfish in Grenada and other countries including the authors’ experience. Although there have been considerable published work on vibrios, there is a lack of information on Salmonella serovars associated with various shellfish. In Grenada, for instance the blue land crabs collected from their habitats were found to harbor several Salmonella serovars. Also, it is notable that only minimal research has been done on shellfish such as conchs and whelks, which are common in the Caribbean and West Indies. Information on anaerobic bacteria, particularly, non-spore forming bacteria associated with shellfish, in general, is also scanty. This review re-examines this globally important topic based on the recent findings as well as past observations. Strategies for reduction of bacteria in oysters are briefly mentioned because of the fact that oysters are consumed commonly without complete cooking.

  14. Bacterial cellulose membrane as separation medium

    Energy Technology Data Exchange (ETDEWEB)

    Shibazaki, Hideki; Kuga, Shigenori; Onabe, Fumihiko; Usuda, Makoto (Univ. of Toyko, (Japan). Faculty of Agriculture)

    1993-11-10

    A thin membrane of bacterial cellulose (BC) obtained from Acetobacter culture was tested for its performance as a dialysis membrane in aqueous systems. The BC membrane showed superior mechanical strength to that of a dialysis-grade regenerated cellulose membrane, allowing the use of a thinner membrane than the latter. As a result, the BC membrane gave higher permeation rates for poly(ethylene glycols) as probe solutes. The cutoff molecular weight of the original BC membrane, significantly greater than that of regenerated cellulose, could be modified by concentrated alkali treatments of the membrane. The nature of the change at the ultrastructural level caused by the alkali treatments was studied by X-ray diffraction and scanning electron microscopy.

  15. Effective Rheological Properties in Semidilute Bacterial Suspensions

    CERN Document Server

    Potomkin, Mykhailo; Berlyand, Leonid

    2015-01-01

    Interactions between swimming bacteria have led to remarkable experimentally observable macroscopic properties such as the reduction of the effective viscosity, enhanced mixing, and diffusion. In this work, we study an individual based model for a suspension of interacting point dipoles representing bacteria in order to gain greater insight into the physical mechanisms responsible for the drastic reduction in the effective viscosity. In particular, asymptotic analysis is carried out on the corresponding kinetic equation governing the distribution of bacteria orientations. This allows one to derive an explicit asymptotic formula for the effective viscosity of the bacterial suspension in the limit of bacterium non-sphericity. The results show good qualitative agreement with numerical simulations and previous experimental observations. Finally, we justify our approach by proving existence, uniqueness, and regularity properties for this kinetic PDE model.

  16. Vaccination against bacterial kidney disease: Chapter 22

    Science.gov (United States)

    Elliott, Diane G.; Wiens, Gregory D.; Hammell, K. Larry; Rhodes, Linda D.; Edited by Gudding, Roar; Lillehaug, Atle; Evensen, Øystein

    2014-01-01

    Bacterial kidney disease (BKD) of salmonid fishes, caused by Renibacterium salmoninarum, has been recognized as a serious disease in salmonid fishes since the 1930s. This chapter discusses the occurrence and significance, etiology, and pathogenesis of BKD. It then describes the different vaccination procedures and the effects and side-effects of vaccination. Despite years of research, however, only a single vaccine has been licensed for prevention of BKD, and has demonstrated variable efficacy. Therefore, in addition to a presentation of the current status of BKD vaccination, a discussion of potential future directions for BKD vaccine development is included in the chapter. This discussion is focused on the unique characteristics of R. salmoninarum and its biology, as well as aspects of the salmonid immune system that might be explored specifically to develop more effective vaccines for BKD prevention.

  17. Architecture and Characteristics of Bacterial Nanotubes.

    Science.gov (United States)

    Dubey, Gyanendra P; Malli Mohan, Ganesh Babu; Dubrovsky, Anna; Amen, Triana; Tsipshtein, Shai; Rouvinski, Alex; Rosenberg, Alex; Kaganovich, Daniel; Sherman, Eilon; Medalia, Ohad; Ben-Yehuda, Sigal

    2016-02-22

    Bacteria display an array of contact-dependent interaction systems that have evolved to facilitate direct cell-to-cell communication. We have previously identified a mode of bacterial communication mediated by nanotubes bridging neighboring cells. Here, we elucidate nanotube architecture, dynamics, and molecular components. Utilizing Bacillus subtilis as a model organism, we found that at low cell density, nanotubes exhibit remarkable complexity, existing as both intercellular tubes and extending tubes, with the latter frequently surrounding the cells in a "root-like" fashion. Observing nanotube formation in real time showed that these structures are formed in the course of minutes, displaying rapid movements. Utilizing a combination of super-resolution, light, and electron microscopy, we revealed that nanotubes are composed of chains of membranous segments harboring a continuous lumen. Furthermore, we discovered that a conserved calcineurin-like protein, YmdB, presents in nanotubes and is required for both nanotube production and intercellular molecular trade.

  18. Bacterial meningitis in children. MR findings

    Energy Technology Data Exchange (ETDEWEB)

    Kinoshita, Toshibumi; Ishii, Kiyoshi; Nakagawa, Hiroshi; Onuma, Takehide [Sendai City Hospital (Japan)

    1998-09-01

    We analyzed MRI findings for 17 children with bacterial meningitis. Contrast-enhanced T1-weighted images revealed meningeal enhancement at the basal cistern and/or the convex surface of the brain in 15 cases. Cerebral infarcts were found in the distribution of perforating and/or medullary arteries in four cases. In one neonatal case, venous infarction with hemorrhagic transformation was evident. Communicating hydrocephalus was noted in three cases, subdural effusion in two, subdural empyema in one, and encephalitis in one. In one neonatal case ventriculitis was found. We conclude that MRI is useful for the evaluation of the active inflammatory process of the meninges and the identification of the focal lesions in central nervous system complications. (author)

  19. Magnetic polymer composite artificial bacterial flagella.

    Science.gov (United States)

    Peyer, K E; Siringil, E; Zhang, L; Nelson, B J

    2014-01-01

    Artificial bacterial flagella (ABFs) are magnetically actuated swimming microrobots inspired by Escherichia coli bacteria, which use a helical tail for propulsion. The ABFs presented are fabricated from a magnetic polymer composite (MPC) containing iron-oxide nanoparticles embedded in an SU-8 polymer that is shaped into a helix by direct laser writing. The paper discusses the swim performance of MPC ABFs fabricated with varying helicity angles. The locomotion model presented contains the fluidic drag of the microrobot, which is calculated based on the resistive force theory. The robot's magnetization is approximated by an analytical model for a soft-magnetic ellipsoid. The helicity angle influences the fluidic and magnetic properties of the robot, and it is shown that weakly magnetized robots prefer a small helicity angle to achieve corkscrew-type motion. PMID:25405833

  20. Tubercular and bacterial coinfection: A case series

    Directory of Open Access Journals (Sweden)

    Anshum Aneja Arora

    2015-01-01

    Full Text Available Tuberculosis (TB is a major public health issue in India. Although dual infection with tuberculosis and bacteria/fungi has been reported in immunocompromised patients, their co-occurrence in individuals with preserved immunity may complicate the clinical presentation, leading to inadequate treatment and unsatisfactory outcomes. In patients with pulmonary tuberculosis, the occurrence of tubercular lesions in atypical locations may further confound the clinical picture if only one of the pathogens is isolated, initially leading to a suboptimal therapeutic response. A strong index of suspicion and additional diagnostic testing may be required for diagnosis and treatment of the second infection. We report three unusual cases of concurrent tubercular and bacterial infection, of which two are pulmonary and one is extrapulmonary.

  1. Transforming clinical microbiology with bacterial genome sequencing.

    Science.gov (United States)

    Didelot, Xavier; Bowden, Rory; Wilson, Daniel J; Peto, Tim E A; Crook, Derrick W

    2012-09-01

    Whole-genome sequencing of bacteria has recently emerged as a cost-effective and convenient approach for addressing many microbiological questions. Here, we review the current status of clinical microbiology and how it has already begun to be transformed by using next-generation sequencing. We focus on three essential tasks: identifying the species of an isolate, testing its properties, such as resistance to antibiotics and virulence, and monitoring the emergence and spread of bacterial pathogens. We predict that the application of next-generation sequencing will soon be sufficiently fast, accurate and cheap to be used in routine clinical microbiology practice, where it could replace many complex current techniques with a single, more efficient workflow.

  2. Fusion of bacterial spheroplasts by electric fields.

    Science.gov (United States)

    Ruthe, H J; Adler, J

    1985-09-25

    Spheroplasts of Escherichia coli or Salmonella typhimurium were found to fuse in an electric field. We employed the fusion method developed by Zimmermann and Scheurich (1981): Close membrane contact between cells is established by dielectrophoresis (formation of chains of cells by an a.c. field), then membrane fusion is induced by the application of short pulses of direct current. Under optimum conditions the fusion yield was routinely 90%. Fusable spheroplasts were obtained by first growing filamentous bacteria in the presence of cephalexin, then converting these to spheroplasts by the use of lysozyme. The fusion products were viable and regenerated to the regular bacterial form. Fusion of genetically different spheroplasts resulted in strains of bacteria possessing a combination of genetic markers. Fusion could not be achieved with spheroplasts obtained by growing the cells in the presence of penicillin or by using lysozyme on bacteria of usual size. PMID:3899175

  3. Affinity chromatography of bacterial lactate dehydrogenases.

    Science.gov (United States)

    Kelly, N; Delaney, M; O'Carra, P

    1978-06-01

    The affinity system used was the immobilized oxamate derivative previously used to purify mammalian lactate dehydrogenases. The bacterial dehydrogenases specific for the L-stereoisomer of lactate behaved in the same way as the mammalian enzymes, binding strongly in the presence of NADH. The D-lactate-specific enzymes, however, did not show any biospecific affinity for this gel. The L-specific enzymes could be purified to homogeneity in one affinity-chromatographic step. The D-specific enzymes could be efficiently separated from the L-specific ones and could then be further purified on an immobilized NAD derivative. The mechanism of activation of the lactate dehydrogenase from Streptococcus faecalis by fructose 1,6-bisphosphate was investigated by using the immobilized oxamate gel. PMID:666726

  4. From bacterial genome to functionality; case bifidobacteria.

    Science.gov (United States)

    Ventura, Marco; O'Connell-Motherway, Mary; Leahy, Sinead; Moreno-Munoz, Jose Antonio; Fitzgerald, Gerald F; van Sinderen, Douwe

    2007-11-30

    The availability of complete bacterial genome sequences has significantly furthered our understanding of the genetics, physiology and biochemistry of the microorganisms in question, particularly those that have commercially important applications. Bifidobacteria are among such microorganisms, as they constitute mammalian commensals of biotechnological significance due to their perceived role in maintaining a balanced gastrointestinal (GIT) microflora. Bifidobacteria are therefore frequently used as health-promoting or probiotic components in functional food products. A fundamental understanding of the metabolic activities employed by these commensal bacteria, in particular their capability to utilize a wide range of complex oligosaccharides, can reveal ways to provide in vivo growth advantages relative to other competing gut bacteria or pathogens. Furthermore, an in depth analysis of adaptive responses to nutritional or environmental stresses may provide methodologies to retain viability and improve functionality during commercial preparation, storage and delivery of the probiotic organism. PMID:17629975

  5. Bacterial Artificial Chromosome Mutagenesis Using Recombineering

    Directory of Open Access Journals (Sweden)

    Kumaran Narayanan

    2011-01-01

    Full Text Available Gene expression from bacterial artificial chromosome (BAC clones has been demonstrated to facilitate physiologically relevant levels compared to viral and nonviral cDNA vectors. BACs are large enough to transfer intact genes in their native chromosomal setting together with flanking regulatory elements to provide all the signals for correct spatiotemporal gene expression. Until recently, the use of BACs for functional studies has been limited because their large size has inherently presented a major obstacle for introducing modifications using conventional genetic engineering strategies. The development of in vivo homologous recombination strategies based on recombineering in E. coli has helped resolve this problem by enabling facile engineering of high molecular weight BAC DNA without dependence on suitably placed restriction enzymes or cloning steps. These techniques have considerably expanded the possibilities for studying functional genetics using BACs in vitro and in vivo.

  6. Bacterial otitis media: current vaccine development strategies.

    Science.gov (United States)

    Cripps, Allan W; Kyd, Jennelle

    2003-02-01

    Otitis media is the most common reason for children less than 5 years of age to visit a medical practitioner. Whilst the disease rarely results in death, there is significant associated morbidity. The most common complication is loss of hearing at a critical stage of the development of speech, language and cognitive abilities in children. The cause and pathogenesis of otitis media is multifactorial. Among the contributing factors, the single most important are viral and bacterial infections. Infection with respiratory syncytial virus, influenza viruses, para-influenza viruses, enteroviruses and adenovirus are most commonly associated with acute and chronic otitis media. Streptococcus pneumoniae, non-typeable Haemophilus influenzae and Moraxella catarrhalis are the most commonly isolated bacteria from the middle ears of children with otitis media. Treatment of otitis media has largely relied on the administration of antimicrobials and surgical intervention. However, attention has recently focused on the development of a vaccine. For a vaccine to be effective against bacterial otitis media, it must, at the very least, contain antigens that induce a protective immune response in the middle ear against the three most common infecting bacteria. Whilst over the past decade there has been significant progress in the development of vaccines against invasive S. pneumoniae disease, these vaccines are less efficacious for otitis media. The search for candidate vaccine antigens for non-typeable H. influenzae are well advanced whilst less progress has been made for M. catarrhalis. No human studies have been conducted for non-typeable H. influenzae or M. catarrhalis and the concept of a tribacterial vaccine remains to be tested in animal models. Only when vaccine antigens are determined and an understanding of the immune responses induced in the middle ear by infection and immunization is gained will the formulation of a tribacterial vaccine against otitis media be possible.

  7. Prevention of bacterial foodborne disease using nanobiotechnology

    Directory of Open Access Journals (Sweden)

    Billington C

    2014-08-01

    Full Text Available Craig Billington, J Andrew Hudson, Elaine D'SaFood Safety Programme, ESR, Ilam, Christchurch, New Zealand Abstract: Foodborne disease is an important source of expense, morbidity, and mortality for society. Detection and control constitute significant components of the overall management of foodborne bacterial pathogens, and this review focuses on the use of nanosized biological entities and molecules to achieve these goals. There is an emphasis on the use of organisms called bacteriophages (phages: viruses that infect bacteria, which are increasingly being used in pathogen detection and biocontrol applications. Detection of pathogens in foods by conventional techniques is time-consuming and expensive, although it can also be sensitive and accurate. Nanobiotechnology is being used to decrease detection times and cost through the development of biosensors, exploiting specific cell-recognition properties of antibodies and phage proteins. Although sensitivity per test can be excellent (eg, the detection of one cell, the very small volumes tested mean that sensitivity per sample is less compelling. An ideal detection method needs to be inexpensive, sensitive, and accurate, but no approach yet achieves all three. For nanobiotechnology to displace existing methods (culture-based, antibody-based rapid methods, or those that detect amplified nucleic acid it will need to focus on improving sensitivity. Although manufactured nonbiological nanoparticles have been used to kill bacterial cells, nanosized organisms called phages are increasingly finding favor in food safety applications. Phages are amenable to protein and nucleic acid labeling, and can be very specific, and the typical large "burst size" resulting from phage amplification can be harnessed to produce a rapid increase in signal to facilitate detection. There are now several commercially available phages for pathogen control, and many reports in the literature demonstrate efficacy against a

  8. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  9. Bacterial Community Diversity Harboured by Interacting Species.

    Directory of Open Access Journals (Sweden)

    Mikaël Bili

    Full Text Available All animals are infected by microbial partners that can be passengers or residents and influence many biological traits of their hosts. Even if important factors that structure the composition and abundance of microbial communities within and among host individuals have been recently described, such as diet, developmental stage or phylogeny, few studies have conducted cross-taxonomic comparisons, especially on host species related by trophic relationships. Here, we describe and compare the microbial communities associated with the cabbage root fly Delia radicum and its three major parasitoids: the two staphylinid beetles Aleochara bilineata and A. bipustulata and the hymenopteran parasitoid Trybliographa rapae. For each species, two populations from Western France were sampled and microbial communities were described through culture independent methods (454 pyrosequencing. Each sample harbored at least 59 to 261 different bacterial phylotypes but was strongly dominated by one or two. Microbial communities differed markedly in terms of composition and abundance, being mainly influenced by phylogenetic proximity but also geography to a minor extent. Surprisingly, despite their strong trophic interaction, parasitoids shared a very low proportion of microbial partners with their insect host. Three vertically transmitted symbionts from the genus Wolbachia, Rickettsia, and Spiroplasma were found in this study. Among them, Wolbachia and Spiroplasma were found in both the cabbage fly and at least one of its parasitoids, which could result from horizontal transfers through trophic interactions. Phylogenetic analysis showed that this hypothesis may explain some but not all cases. More work is needed to understand the dynamics of symbiotic associations within trophic network and the effect of these bacterial communities on the fitness of their hosts.

  10. MRI findings of treated bacterial septic arthritis

    International Nuclear Information System (INIS)

    The purpose of this study was to report the MRI findings that can be encountered in successfully treated bacterial septic arthritis. The study included 12 patients (8 male and 4 female; mean age 38 years, range 9-85) with 13 proven cases of bacterial septic arthritis. The joints involved were hip (n = 3), knee (n = 3), shoulder (n = 2), sacroiliac (n = 2), ankle (n = 1), wrist (n = 1), and elbow (n = 1). MRI examinations following surgical debridement and at initiation of antibiotic therapy and after successful treatment were compared for changes in effusion, synovium, bone, and periarticular soft tissues. Imaging findings were correlated with microbiological and clinical findings. Joint effusions were present in all joints at baseline and regressed significantly at follow-up MRI (p = 0.001). Abscesses were present in 5 cases (38 %), and their sizes decreased significantly at follow-up (p = 0.001). Synovial enhancement and thickening were observed in all joints at both baseline and follow-up MRI. Myositis/cellulitis was present in 10 cases (77 %) at baseline and in 8 cases (62 %) at follow-up MRI. Bone marrow edema was present in 10 joints (77 %) at baseline and persisted in 8 joints (62 %). Bone erosions were found in 8 joints (62 %) and persisted at follow-up MRI in all cases. The sizes of joint effusions and abscesses appear to be the factors with the most potential for monitoring therapy for septic arthritis, since both decreased significantly following successful treatment. Synovial thickening and enhancement, periarticular myositis/cellulitis, and bone marrow edema can persist even after resolution of the infection. (orig.)

  11. MRI findings of treated bacterial septic arthritis

    Energy Technology Data Exchange (ETDEWEB)

    Bierry, Guillaume; Huang, Ambrose J.; Chang, Connie Y.; Torriani, Martin; Bredella, Miriam A. [Massachusetts General Hospital and Harvard Medical School, Musculoskeletal Imaging and Intervention, Department of Radiology, Boston, MA (United States)

    2012-12-15

    The purpose of this study was to report the MRI findings that can be encountered in successfully treated bacterial septic arthritis. The study included 12 patients (8 male and 4 female; mean age 38 years, range 9-85) with 13 proven cases of bacterial septic arthritis. The joints involved were hip (n = 3), knee (n = 3), shoulder (n = 2), sacroiliac (n = 2), ankle (n = 1), wrist (n = 1), and elbow (n = 1). MRI examinations following surgical debridement and at initiation of antibiotic therapy and after successful treatment were compared for changes in effusion, synovium, bone, and periarticular soft tissues. Imaging findings were correlated with microbiological and clinical findings. Joint effusions were present in all joints at baseline and regressed significantly at follow-up MRI (p = 0.001). Abscesses were present in 5 cases (38 %), and their sizes decreased significantly at follow-up (p = 0.001). Synovial enhancement and thickening were observed in all joints at both baseline and follow-up MRI. Myositis/cellulitis was present in 10 cases (77 %) at baseline and in 8 cases (62 %) at follow-up MRI. Bone marrow edema was present in 10 joints (77 %) at baseline and persisted in 8 joints (62 %). Bone erosions were found in 8 joints (62 %) and persisted at follow-up MRI in all cases. The sizes of joint effusions and abscesses appear to be the factors with the most potential for monitoring therapy for septic arthritis, since both decreased significantly following successful treatment. Synovial thickening and enhancement, periarticular myositis/cellulitis, and bone marrow edema can persist even after resolution of the infection. (orig.)

  12. Geometry and mechanics of growing bacterial colonies

    Science.gov (United States)

    You, Zhihong; Pearce, Daniel; Sengupta, Anupam; Giomi, Luca

    Bacterial colonies are abundant on living and non-living surfaces, and are known to mediate a broad range of processes in ecology, medicine and industry. Although extensively researched - from single cells up to the population levels - a comprehensive biophysical picture, highlighting the cell-to-colony dynamics, is still lacking. Here, using numerical and analytical models, we study the mechanics of self-organization leading to the colony morphology of cells growing on a substrate with free boundary. We consider hard rods to mimic the growth of rod-shaped non-motile cells, and show that the colony, as a whole, does not form an ordered nematic phase, nor does it result in a purely disordered (isotropic) phase. Instead, different sizes of domains, in which cells are highly aligned at specific orientations, are found. The distribution of the domain sizes follows an exponential relation - indicating the existence of a characteristic length scale that determines the domain size relative to that of the colony. A continuum theory, based on the hydrodynamics of liquid crystals, is built to account for these phenomena, and is applied to describe the buckling transition from a planar to three-dimensional (3D) colony. The theory supports preliminary experiments conducted with different strains of rod shaped bacterial cells, and reveals that the buckling transition can be regulated by varying the cell stiffness and aspect ratio. This work proposes that, in addition to biochemical pathways, the spatio-temporal organization in microbial colonies is significantly tuned by the biomechanical and geometric properties of the microbes in consideration.

  13. Dynamics of genome rearrangement in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Aaron E Darling

    represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.

  14. Lymphocytic colitis: A clue to bacterial etiology

    Institute of Scientific and Technical Information of China (English)

    Thanaa EA Helal; Naglaa S Ahmed; Osama Abo El Fotoh

    2005-01-01

    AIM: To find out the role of bacteria as a possible etiological factor in lymphocytic colitis.METHODS: Twenty patients with histopathological diagnosis of lymphocytic colitis and 10 normal controls were included in this study. Colonoscopic biopsies were obtained from three sites (hepatic and splenic flexures and rectosigmoid region). Each biopsy was divided into two parts. A fresh part was incubated on special cultures for bacterial growth. The other part was used for the preparation of histologic tissue sections that were examined for the presence of bacteria with the help of Giemsa stain.RESULTS: Culture of tissue biopsies revealed bacterial growth in 18 out of 20 patients with lymphocytic colitis mostly Escherichia coli(14/18), which was found in all rectosigmoid specimens (14/14), but only in 8/14 and 6/14 of splenic and hepatic flexure specimens respectively. In two of these cases, E coliwas associated with proteus. Proteus was found only in one case, Klebsiella in two cases, and Staphylococcus aureus in one case. In the control group, only 2 out of 10 controls showed the growth of E coliin their biopsy cultures.Histopathology showed rod-shaped bacilli in the tissue sections of 12 out of 14 cases with positive E coliin their specimen's culture. None of the controls showed these bacteria in histopathological sections.CONCLUSION: This preliminary study reports an association between E coliand lymphocytic colitis, based on histological and culture observations. Serotyping and molecular studies are in process to assess the role of E coliin the pathogenesis of lymphocytic colitis.

  15. Bacterial Swarming: social behaviour or hydrodynamics?

    Science.gov (United States)

    Vermant, Jan

    2010-03-01

    Bacterial swarming of colonies is typically described as a social phenomenon between bacteria, whereby groups of bacteria collectively move atop solid surfaces. This multicellular behavior, during which the organized bacterial populations are embedded in an extracellular slime layer, is connected to important features such as biofilm formation and virulence. Despite the possible intricate quorum sensing mechanisms that regulate swarming, several physico-chemical phenomena may play a role in the dynamics of swarming and biofilm formation. Especially the striking fingering patterns formed by some swarmer colonies on relatively soft sub phases have attracted the attention as they could be the signatures of an instability. Recently, a parallel has been drawn between the swarming patterns and the spreading of viscous drops under the influence of a surfactant, which lead to similar patterns [1]. Starting from the observation that several of the molecules, essential in swarming systems, are strong biosurfactants, the possibility of flows driven by gradients in surface tension, has been proposed. This Marangoni flows are known to lead to these characteristic patterns. For Rhizobium etli not only the pattern formation, but also the experimentally observed spreading speed has been shown to be consistent with the one expected for Marangoni flows for the surface pressures, thickness, and viscosities that have been observed [2]. We will present an experimental study of swarming colonies of the bacteria Pseudomonas aeruginosa, the pattern formation, the surfactant gradients and height profiles in comparison with predictions of a thin film hydrodynamic model.[4pt] [1] Matar O.K. and Troian S., Phys. Fluids 11 : 3232 (1999)[0pt] [2] Daniels, R et al., PNAS, 103 (40): 14965-14970 (2006)

  16. A Brief History of Bacterial Growth Physiology

    Directory of Open Access Journals (Sweden)

    Moselio eSchaechter

    2015-04-01

    Full Text Available Arguably, microbial physiology started when Leeuwenhoek became fascinated by observing a Vorticella beating its cilia, my point being that almost any observation of microbes has a physiological component. With the advent of modern microbiology in the mid 19th century, the field became recognizably distinctive with such discoveries as anaerobiosis, fermentation as a biological phenomenon, and the nutritional requirements of microbes. Soon came the discoveries of Winogradsky and his followers of the chemical changes in the environment that result from microbial activities. Later, during the first half of the 20th century, microbial physiology became the basis for much of the elucidation of central metabolism.Bacterial physiology then became a handmaiden of molecular biology and was greatly influenced by the discovery of cellular regulatory mechanisms. Microbial growth, which had come of age with the early work of Hershey, Monod, and others, was later pursued by studies on a whole cell level by what became known as the Copenhagen School. During this time, the exploration of physiological activities became coupled to modern inquiries into the structure of the bacterial cell.Recent years have seen the development of a further phase in microbial physiology, one seeking a deeper quantitative understanding of phenomena on a whole cell level. This pursuit is exemplified by the emergence of systems biology, which is made possible by the development of technologies that permit the gathering of information in huge amounts. As has been true through history, the research into microbial physiology continues to be guided by the development of new methods of analysis. Some of these developments may well afford the possibility of making stunning breakthroughs.

  17. Bacterial community development in experimental gingivitis.

    Science.gov (United States)

    Kistler, James O; Booth, Veronica; Bradshaw, David J; Wade, William G

    2013-01-01

    Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp), and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs) per sample. Principal coordinates analysis (PCoA) plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP) scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new therapeutic approaches

  18. Bacterial community development in experimental gingivitis.

    Directory of Open Access Journals (Sweden)

    James O Kistler

    Full Text Available Current knowledge of the microbial composition of dental plaque in early gingivitis is based largely on microscopy and cultural methods, which do not provide a comprehensive description of oral microbial communities. This study used 454-pyrosequencing of the V1-V3 region of 16S rRNA genes (approximately 500 bp, and bacterial culture, to characterize the composition of plaque during the transition from periodontal health to gingivitis. A total of 20 healthy volunteers abstained from oral hygiene for two weeks, allowing plaque to accumulate and gingivitis to develop. Plaque samples were analyzed at baseline, and after one and two weeks. In addition, plaque samples from 20 chronic periodontitis patients were analyzed for cross-sectional comparison to the experimental gingivitis cohort. All of the healthy volunteers developed gingivitis after two weeks. Pyrosequencing yielded a final total of 344,267 sequences after filtering, with a mean length of 354 bases, that were clustered into an average of 299 species-level Operational Taxonomic Units (OTUs per sample. Principal coordinates analysis (PCoA plots revealed significant shifts in the bacterial community structure of plaque as gingivitis was induced, and community diversity increased significantly after two weeks. Changes in the relative abundance of OTUs during the transition from health to gingivitis were correlated to bleeding on probing (BoP scores and resulted in the identification of new health- and gingivitis-associated taxa. Comparison of the healthy volunteers to the periodontitis patients also confirmed the association of a number of putative periodontal pathogens with chronic periodontitis. Taxa associated with gingivitis included Fusobacterium nucleatum subsp. polymorphum, Lachnospiraceae [G-2] sp. HOT100, Lautropia sp. HOTA94, and Prevotella oulorum, whilst Rothia dentocariosa was associated with periodontal health. Further study of these taxa is warranted and may lead to new

  19. AN EXPERIMENTAL ANALYSIS OF BACTERIAL ALLERGY.

    Science.gov (United States)

    Zinsser, H; Tamiya, T

    1926-11-30

    Our experiments have confirmed the fact that the so called bacterial allergies are dependent upon a mechanism which differs materially from that determining true protein anaphylaxis. Anaphylaxis to protein substances of the bacteria probably occurs but plays a relatively unimportant rôle in the phenomena of infection. The bacterial allergies, however, are of great importance since they develop rapidly and render the infected animal highly vulnerable to products of the bacterial growth which are relatively innocuous for the normal animal. Neither the type-specific carbohydrate "residue antigens" (the "soluble specific substances" of Avery and Heidelberger) nor the antibodies reacting with them play any part whatever in bacterial allergy, and since these type-specific substances represent the haptophore groups of the whole bacteria by which they react with the agglutinins, precipitins, sensitizers, etc., of immune serum, allergy, as previously determined by Mackenzie and Woo, is in no way related to that phase of resistance which is determined by these antibodies. This does not, however, preclude the possibility that allergic hypersusceptibility may not in some way be related to other factors of resistance more definitely associated with cellular rather than with intravascular reactions. Our previous studies with Jennings and Ward in tuberculosis point in this direction (20). Guinea pigs can be actively sensitized with all the bacteria with which we have worked when repeated injections of whole bacteria or of the protein (nucleoprotein) fraction are administered. Large amounts of the latter are necessary since these materials are indifferent antigens, possibly because of the severe manipulations necessary in their production. Sensitiveness develops usually within 10 days after the first dose and increases with continued treatment for 3 or 4 weeks. Sensitiveness is relatively specific, by which we mean that there is a definite specificity which, however, in highly

  20. Bacterial Population Genetics in a Forensic Context

    Energy Technology Data Exchange (ETDEWEB)

    Velsko, S P

    2009-11-02

    This report addresses the recent Department of Homeland Security (DHS) call for a Phase I study to (1) assess gaps in the forensically relevant knowledge about the population genetics of eight bacterial agents of concern, (2) formulate a technical roadmap to address those gaps, and (3) identify new bioinformatics tools that would be necessary to analyze and interpret population genetic data in a forensic context. The eight organisms that were studied are B. anthracis, Y. pestis, F. tularensis, Brucella spp., E. coli O157/H7, Burkholderia mallei, Burkholderia pseudomallei, and C. botulinum. Our study focused on the use of bacterial population genetics by forensic investigators to test hypotheses about the possible provenance of an agent that was used in a crime or act of terrorism. Just as human population genetics underpins the calculations of match probabilities for human DNA evidence, bacterial population genetics determines the level of support that microbial DNA evidence provides for or against certain well-defined hypotheses about the origins of an infecting strain. Our key findings are: (1) Bacterial population genetics is critical for answering certain types of questions in a probabilistic manner, akin (but not identical) to 'match probabilities' in DNA forensics. (2) A basic theoretical framework for calculating likelihood ratios or posterior probabilities for forensic hypotheses based on microbial genetic comparisons has been formulated. This 'inference-on-networks' framework has deep but simple connections to the population genetics of mtDNA and Y-STRs in human DNA forensics. (3) The 'phylogeographic' approach to identifying microbial sources is not an adequate basis for understanding bacterial population genetics in a forensic context, and has limited utility, even for generating 'leads' with respect to strain origin. (4) A collection of genotyped isolates obtained opportunistically from international locations

  1. Frequency of Bacterial Frequency of Bacterial Contamination in Traditional Ice Cream Produced in Arak, Iran (2011

    Directory of Open Access Journals (Sweden)

    Rezaei, M. (MSc

    2014-05-01

    Full Text Available Background and Objective: Ice cream is a suitable environment for microbial growth due to its chemical structure, ingredients, and its increased supply and demand. In the absence of hygienic considerations, it can cause poisoning. This study aimed to determine bacterial contamination in traditional ice cream produced in Arak city in 2011. Material and Methods: The samples (n= 30 were randomly obtained from different parts of Arak in, 2011. The Samples were shipped in cold conditions and total count of microorganisms test was performed according to Iranian national standards. Results: In 16.66%, the microbial contamination was below the limit of microbial load (5×104, and in 83.3% the contamination was more than allowed level. Conclusion: This study highlights the dire situation for bacterial contamination of traditional ice cream in Arak city. Keywords: Arak, Ice Cream, Microbial Contamination

  2. C-REACTIVE PROTEIN IN BACTERIAL MENINGITIS: DOSE IT HELP TO DIFFERENTIATE BACTERIAL FROM VIRAL MENINGITIS?

    Directory of Open Access Journals (Sweden)

    AR EMAMI NAEINI

    2001-03-01

    Full Text Available Introduction. Central nervous system infections are among the most serious conditions in of medical practice. C-reactive Protein has recently been evaluated in terms of its ability to diffeccentiate bacterial from nonbacterial central nervous system inflammations.
    Methods. We studied the frequency of positive CRP in 61 patients who had signs of meningitis. All the specimens referred to one laboratory and were examined by Slide method.
    Results. Positive CRP was found in 97.6 percent of those who were finally diagnosed as bacterial meningitis. The frequency of CRP for other types of meningitis was 16.6 percent (P < 0.05.
    Discussion. In the absence of infection, CSF is free of CRP. Positive CRP may help to the differentiate the different types of meningitis.

  3. In vitro activity of difloxacin against canine bacterial isolates

    NARCIS (Netherlands)

    Hoven, van den J.R.; Wagenaar, J.A.; Walker, R.D.

    2000-01-01

    The in vitro activity of difloxacin against canine bacterial isolates from clinical cases was studied in the United States and The Netherlands. Minimal inhibitory concentrations (MIC), the postantibiotic effect, the effect of pH on antimicrobial activity, and the bacterial killing rate tests were de

  4. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry.

  5. Bacterial endocarditis due to eikenella corrodens: A case report

    Directory of Open Access Journals (Sweden)

    Mahapatra A

    2003-01-01

    Full Text Available Of all the causes of bacterial endocarditis, HACEK group consisting of Haemophilus, Actinobacillus actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella Kingae are rare causative agents. We report a case of bacterial endocarditis by E. corrodens, which is one of the members of the HACEK group.

  6. Bacterial biofilms investigated by atomic force microscopy and electrochemistry

    DEFF Research Database (Denmark)

    Hu, Yifan

    Bacterial biofilms are aggregates of microorganisms in which cells adhere to each other and adhere to a solid surface or an animal host cavity. Bacterial biofilms play important roles in human life, and cause serious harm for human society and huge economic losses. The complex composition of bact...

  7. Risk factors for community-acquired bacterial meningitis in adults

    NARCIS (Netherlands)

    K.S. Adriani

    2015-01-01

    Bacterial meningitis is an inflammation of the meninges and occurs when bacteria invade the subarachnoid space. The meninges are the protective membranes that surround the brain and the spinal cord. Bacterial meningitis is a life-threatening disease because the proximity of the infection to the brai

  8. Lessons from Anaplasma phagocytophilum: Chromatin Remodeling by Bacterial Effectors

    OpenAIRE

    Rennoll-Bankert, Kristen E.; Dumler, J. Stephen

    2012-01-01

    Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of se...

  9. Bacterial Diversity in Rhizospheres of Nontransgenic and Transgenic Corn

    OpenAIRE

    Fang, Min; Kremer, Robert J.; Motavalli, Peter P.; Davis, Georgia

    2005-01-01

    Bacterial diversity in transgenic and nontransgenic corn rhizospheres was determined. In greenhouse and field studies, metabolic profiling and molecular analysis of 16S rRNAs differentiated bacterial communities among soil textures but not between corn varieties. We conclude that bacteria in corn rhizospheres are affected more by soil texture than by cultivation of transgenic varieties.

  10. Bacterial Cell Surface Damage Due to Centrifugal Compaction

    NARCIS (Netherlands)

    Peterson, Brandon W.; Sharma, Prashant K.; van der Mei, Henny C.; Busscher, Henk J.

    2012-01-01

    Centrifugal damage has been known to alter bacterial cell surface properties and interior structures, including DNA. Very few studies exist on bacterial damage caused by centrifugation because of the difficulty in relating centrifugation speed and container geometry to the damage caused. Here, we pr

  11. Dispersal networks for enhancing bacterial degradation in heterogeneous environments

    Energy Technology Data Exchange (ETDEWEB)

    Banitz, Thomas, E-mail: thomas.banitz@ufz.de [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Wick, Lukas Y.; Fetzer, Ingo [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Frank, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Harms, Hauke [Department of Environmental Microbiology, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Johst, Karin [Department of Ecological Modelling, UFZ - Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany)

    2011-10-15

    Successful biodegradation of organic soil pollutants depends on their bioavailability to catabolically active microorganisms. In particular, environmental heterogeneities often limit bacterial access to pollutants. Experimental and modelling studies revealed that fungal networks can facilitate bacterial dispersal and may thereby improve pollutant bioavailability. Here, we investigate the influence of such bacterial dispersal networks on biodegradation performance under spatially heterogeneous abiotic conditions using a process-based simulation model. To match typical situations in polluted soils, two types of abiotic conditions are studied: heterogeneous bacterial dispersal conditions and heterogeneous initial resource distributions. The model predicts that networks facilitating bacterial dispersal can enhance biodegradation performance for a wide range of these conditions. Additionally, the time horizon over which this performance is assessed and the network's spatial configuration are key factors determining the degree of biodegradation improvement. Our results support the idea of stimulating the establishment of fungal mycelia for enhanced bioremediation of polluted soils. - Highlights: > Bacterial dispersal networks can considerably improve biodegradation performance. > They facilitate bacterial access to dispersal-limited areas and remote resources. > Abiotic conditions, time horizon and network structure govern the improvements. > Stimulating the establishment of fungal mycelia promises enhanced soil remediation. - Simulation modelling demonstrates that fungus-mediated bacterial dispersal can considerably improve the bioavailability of organic pollutants under spatially heterogeneous abiotic conditions typical for water-unsaturated soils.

  12. Epidemiology, Diagnosis, and Antimicrobial Treatment of Acute Bacterial Meningitis

    NARCIS (Netherlands)

    M.C. Brouwer; A.R. Tunkel; D. van de Beek

    2010-01-01

    The epidemiology of bacterial meningitis has changed as a result of the widespread use of conjugate vaccines and preventive antimicrobial treatment of pregnant women. Given the significant morbidity and mortality associated with bacterial meningitis, accurate information is necessary regarding the i

  13. Binding and entry of DNA in bacterial transformation

    Energy Technology Data Exchange (ETDEWEB)

    Lacks, S.A.

    1976-01-01

    Bacterial transformation in relation to DNA transport and competence in Streptococcus pneumoniae (also called Diplococcus pneumoniae) is discussed. This species will serve as a model with which to compare transformation in other bacterial species, particularly Bacillus subtilis and Haemophilus influenzae, with emphasis on the many similarities as well as differences.

  14. Characterization of Bacterial Cellulose by Gluconacetobacter hansenii CGMCC 3917.

    Science.gov (United States)

    Feng, Xianchao; Ullah, Niamat; Wang, Xuejiao; Sun, Xuchun; Li, Chenyi; Bai, Yun; Chen, Lin; Li, Zhixi

    2015-10-01

    In this study, comprehensive characterization and drying methods on properties of bacterial cellulose were analyzed. Bacterial cellulose was prepared by Gluconacetobacter hansenii CGMCC 3917, which was mutated by high hydrostatic pressure (HHP) treatment. Bacterial cellulose is mainly comprised of cellulose Iα with high crystallinity and purity. High-water holding and absorption capacity were examined by reticulated structure. Thermogravimetric analysis showed high thermal stability. High tensile strength and Young's modulus indicated its mechanical properties. The rheological analysis showed that bacterial cellulose had good consistency and viscosity. These results indicated that bacterial cellulose is a potential food additive and also could be used for a food packaging material. The high textural stability during freeze-thaw cycles makes bacterial cellulose an effective additive for frozen food products. In addition, the properties of bacterial cellulose can be affected by drying methods. Our results suggest that the bacterial cellulose produced from HHP-mutant strain has an effective characterization, which can be used for a wide range of applications in food industry. PMID:26352877

  15. The mechanism of electronic excitation in the bacterial bioluminescent reaction

    International Nuclear Information System (INIS)

    The current state of the problem of formation of the electron-excited product in the chemiluminescent reaction that underlies the bacterial luminescence is analysed. Various schemes of chemical transformations capable of producing a bacterial bioluminescence emitter are presented. The problem of excitation of secondary emitters is considered; two possible mechanisms of their excitation are analysed.

  16. Differentiation of bacterial and non-bacterial community-acquired pneumonia by thin-section computed tomography

    International Nuclear Information System (INIS)

    Background and objective: The management of community-acquired pneumonia (CAP) depends, in part, on the identification of the causative agents. The objective of this study was to determine the potential of thin-section computed tomography (CT) in differentiating bacterial and non-bacterial pneumonia. Patients and methods: Thin-section CT studies were prospectively examined in hospitalized CAP patients within 2 days of admission, followed by retrospective assessment by two pulmonary radiologists. Thin-section CT findings on the pneumonias caused by each pathogen were examined, and two types of pneumonias were compared. Using multivariate logistic regression analyses, receiver operating characteristic (ROC) curves were produced. Results: Among 183 CAP episodes (181 patients, 125 men and 56 women, mean age ± S.D.: 61.1 ± 19.7) examined by thin-section CT, the etiologies of 125 were confirmed (94 bacterial pneumonia and 31 non-bacterial pneumonia). Centrilobular nodules were specific for non-bacterial pneumonia and airspace nodules were specific for bacterial pneumonia (specificities of 89% and 94%, respectively) when located in the outer lung areas. When centrilobular nodules were the principal finding, they were specific but lacked sensitivity for non-bacterial pneumonia (specificity 98% and sensitivity 23%). To distinguish the two types of pneumonias, centrilobular nodules, airspace nodules and lobular shadows were found to be important by multivariate analyses. ROC curve analysis discriminated bacterial pneumonia from non-bacterial pneumonia among patients without underlying lung diseases, yielding an optimal point with sensitivity and specificity of 86% and 79%, respectively, but was less effective when all patients were analyzed together (70% and 84%, respectively). Conclusion: Thin-section CT examination was applied for the differentiation of bacterial and non-bacterial pneumonias. Though showing some potential, this examination at the present time would not

  17. Frequency of Bacterial Frequency of Bacterial Contamination in Traditional Ice Cream Produced in Arak, Iran (2011)

    OpenAIRE

    M. Rezaei; Ghasemi khah , R. (PhD); M. Parviz; Zarei, D. (MSc

    2014-01-01

    Background and Objective: Ice cream is a suitable environment for microbial growth due to its chemical structure, ingredients, and its increased supply and demand. In the absence of hygienic considerations, it can cause poisoning. This study aimed to determine bacterial contamination in traditional ice cream produced in Arak city in 2011. Material and Methods: The samples (n= 30) were randomly obtained from different parts of Arak in, 2011. The Samples were shipped in cold conditions and tota...

  18. Comparison of bacterial communities in sands and water at beaches with bacterial water quality violations.

    Directory of Open Access Journals (Sweden)

    Elizabeth Halliday

    Full Text Available Recreational water quality, as measured by culturable fecal indicator bacteria (FIB, may be influenced by persistent populations of these bacteria in local sands or wrack, in addition to varied fecal inputs from human and/or animal sources. In this study, pyrosequencing was used to generate short sequence tags of the 16S hypervariable region ribosomal DNA from shallow water samples and from sand samples collected at the high tide line and at the intertidal water line at sites with and without FIB exceedance events. These data were used to examine the sand and water bacterial communities to assess the similarity between samples, and to determine the impact of water quality exceedance events on the community composition. Sequences belonging to a group of bacteria previously identified as alternative fecal indicators were also analyzed in relationship to water quality violation events. We found that sand and water samples hosted distinctly different overall bacterial communities, and there was greater similarity in the community composition between coastal water samples from two distant sites. The dissimilarity between high tide and intertidal sand bacterial communities, although more similar to each other than to water, corresponded to greater tidal range between the samples. Within the group of alternative fecal indicators greater similarity was observed within sand and water from the same site, likely reflecting the anthropogenic contribution at each beach. This study supports the growing evidence that community-based molecular tools can be leveraged to identify the sources and potential impact of fecal pollution in the environment, and furthermore suggests that a more diverse bacterial community in beach sand and water may reflect a less contaminated site and better water quality.

  19. Silver-nanoparticle-coated biliary stent inhibits bacterial adhesion in bacterial cholangitis in swine

    Institute of Scientific and Technical Information of China (English)

    Wei Wen; Li-Mei Ma; Wei He; Xiao-Wei Tang; Yin Zhang; Xiang Wang; Li Liu; Zhi-Ning Fan

    2016-01-01

    BACKGROUND: One of the major limitations of biliary stents is the stent occlusion, which is closely related to the over-growth of bacteria. This study aimed to evaluate the feasibility of a novel silver-nanoparticle-coated polyurethane (Ag/PU) stent in bacterial cholangitis model in swine. METHODS: Ag/PU was designed by coating silver nanopar-ticles on polyurethane (PU) stent. Twenty-four healthy pigs with bacterial cholangitis using Ag/PU and PU stents were ran-domly divided into an Ag/PU stent group (n=12) and a PU stent group (n=12), respectively. The stents were inserted by standard endoscopic retrograde cholangiopancreatography. Laboratory assay was performed for white blood cell (WBC) count, alanine aminotransferase (ALT), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) at baseline time, 8 hours, 1, 2, 3, and 7 days after stent placements. The segment of bile duct containing the stent was examined histologically ex vivo. Implanted bili-ary stents were examined by a scan electron microscope. The amount of silver release was also measured in vitro. RESULTS: The number of inflammatory cells and level of ALT, IL-1β and TNF-α were significantly lower in the Ag/PU stent group than in the PU stent group. Hyperplasia of the mucosa was more severe in the PU stent group than in the Ag/PU stent group. In contrast to the biofilm of bacteria on the PU stent, fewer bacteria adhered to the Ag/PU stent. CONCLUSIONS: PU biliary stents modified with silver nanoparticles are able to alleviate the inflammation of pigs with bacterial cholangitis. Silver-nanoparticle-coated stents are resistant to bacterial adhesion.

  20. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Science.gov (United States)

    Gama, João Alves; Reis, Ana Maria; Domingues, Iolanda; Mendes-Soares, Helena; Matos, Ana Margarida; Dionisio, Francisco

    2013-01-01

    It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails. PMID:23536852

  1. Temperate bacterial viruses as double-edged swords in bacterial warfare.

    Directory of Open Access Journals (Sweden)

    João Alves Gama

    Full Text Available It has been argued that bacterial cells may use their temperate viruses as biological weapons. For instance, a few bacterial cells among a population of lysogenic cells could release the virus and kill susceptible non-lysogenic competitors, while their clone mates would be immune. Because viruses replicate inside their victims upon infection, this process would amplify their number in the arena. Sometimes, however, temperate viruses spare recipient cells from death by establishing themselves in a dormant state inside cells. This phenomenon is called lysogenization and, for some viruses such as the λ virus, the probability of lysogenization increases with the multiplicity of infection. Therefore, the amplification of viruses leads to conflicting predictions about the efficacy of temperate viruses as biological weapons: amplification can increase the relative advantage of clone mates of lysogens but also the likelihood of saving susceptible cells from death, because the probability of lysogenization is higher. To test the usefulness of viruses as biological weapons, we performed competition experiments between lysogenic Escherichia coli cells carrying the λ virus and susceptible λ-free E. coli cells, either in a structured or unstructured habitat. In structured and sometimes in unstructured habitats, the λ virus qualitatively behaved as a "replicating toxin". However, such toxic effect of λ viruses ceased after a few days of competition. This was due to the fact that many of initially susceptible cells became lysogenic. Massive lysogenization of susceptible cells occurred precisely under the conditions where the amplification of the virus was substantial. From then on, these cells and their descendants became immune to the λ virus. In conclusion, if at short term bacterial cells may use temperate viruses as biological weapons, after a few days only the classical view of temperate bacterial viruses as parasitic agents prevails.

  2. Stability of multispecies bacterial communities: signaling networks may stabilize microbiomes.

    Directory of Open Access Journals (Sweden)

    Ádám Kerényi

    Full Text Available Multispecies bacterial communities can be remarkably stable and resilient even though they consist of cells and species that compete for environmental resources. In silico models suggest that common signals released into the environment may help selected bacterial species cluster at common locations and that sharing of public goods (i.e. molecules produced and released for mutual benefit can stabilize this coexistence. In contrast, unilateral eavesdropping on signals produced by a potentially invading species may protect a community by keeping invaders away from limited resources. Shared bacterial signals, such as those found in quorum sensing systems, may thus play a key role in fine tuning competition and cooperation within multi-bacterial communities. We suggest that in addition to metabolic complementarity, signaling dynamics may be important in further understanding complex bacterial communities such as the human, animal as well as plant microbiomes.

  3. Gut flora and bacterial translocation in chronic liver disease

    Institute of Scientific and Technical Information of China (English)

    John Almeida; Sumedha Galhenage; Jennifer Yu; Jelica Kurtovic; Stephen M Riordan

    2006-01-01

    Increasing evidence suggests that derangement of gut flora is of substantial clinical relevance to patients with cirrhosis. Intestinal bacterial overgrowth and increased bacterial translocation of gut flora from the intestinal lumen, in particular, predispose to an increased potential for bacterial infection in this group. Recent studies suggest that, in addition to their role in the pathogenesis of overt infective episodes and the clinical consequences of sepsis, gut flora contributes to the pro-inflammatory state of cirrhosis even in the absence of overt infection.Furthermore, manipulation of gut flora to augment the intestinal content of lactic acid-type bacteria at the expense of other gut flora species with more pathogenic potential may favourably influence liver function in cirrhotic patients. Here we review current concepts of the various inter-relationships between gut flora, bacterial translocation, bacterial infection, pro-inflammatory cytokine production and liver function in this group.

  4. Bacterial turbulence reduction by passive magnetic particle chains

    Science.gov (United States)

    Liu, Kuo-An; I, Lin

    2013-09-01

    We report the experimental observation of the bacterial turbulence reduction in dense E. coli suspensions by increasing the coupling of passive particle additives (paramagnetic particles). Applying an external magnetic field induces magnetic dipoles for particles and causes the formation of vertical chain bundles, which are hard for bacterial flows to tilt and break. The larger effective drag coefficient of chains causes slow horizontal motion of chains, which in turn form obstacles to suppress bacterial flows through the strong correlation in coherent bacterial clusters and intercluster interaction. The interruption of the upward energy flow from individual self-propelling bacteria to the larger scale in the bacterial turbulence with multiscaled coherent flow by the chain bundle leads to more severe suppression in the low frequency (wave number) regimes of the power spectra.

  5. The effect of deuteration on the structure of bacterial cellulose

    Energy Technology Data Exchange (ETDEWEB)

    Bali, Garima [Georgia Institute of Technology; Foston, Marcus [Georgia Institute of Technology; O' Neill, Hugh Michael [ORNL; Evans, Barbara R [ORNL; He, Junhong [ORNL; Ragauskas, Arthur [Georgia Institute of Technology

    2013-01-01

    ABSTRACT In vivo generated deuterated bacterial cellulose, cultivated from 100% deuterated glycerol in D2O medium, was analyzed for deuterium incorporation by ionic liquid dissolution and 2H and 1H nuclear magnetic resonance (NMR). A solution NMR method of the dissolved cellulose was used to determine that this bacterial cellulose had 85 % deuterium incorporation. Acetylation and 1H and 2H NMR of deuterated bacterial cellulose indicated near equal deuteration at all sites of the glucopyranosyl ring except C-6 which was partly deuterated. Despite the high level of deuterium incorporation there were no significant differences in the molecular and morphological properties were observed for the deuterated and protio bacterial cellulose samples. The highly deuterated bacterial cellulose presented here can be used as a model substrate for studying cellulose biopolymer properties via future small angle neutron scattering (SANS) studies.

  6. Kynetic resazurin assay (KRA) for bacterial quantification of foodborne pathogens

    Science.gov (United States)

    Arenas, Yaxal; Mandel, Arkady; Lilge, Lothar

    2012-03-01

    Fast detection of bacterial concentrations is important for the food industry and for healthcare. Early detection of infections and appropriate treatment is essential since, the delay of treatments for bacterial infections tends to be associated with higher mortality rates. In the food industry and in healthcare, standard procedures require the count of colony-forming units in order to quantify bacterial concentrations, however, this method is time consuming and reports require three days to be completed. An alternative is metabolic-colorimetric assays which provide time efficient in vitro bacterial concentrations. A colorimetric assay based on Resazurin was developed as a time kinetic assay (KRA) suitable for bacterial concentration measurements. An optimization was performed by finding excitation and emission wavelengths for fluorescent acquisition. A comparison of two non-related bacteria, foodborne pathogens Escherichia coli and Listeria monocytogenes, was performed in 96 well plates. A metabolic and clonogenic dependence was established for fluorescent kinetic signals.

  7. PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

    Science.gov (United States)

    2012-01-01

    Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP) combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID) was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample) were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T-RFLP and is particularly

  8. PyroTRF-ID: a novel bioinformatics methodology for the affiliation of terminal-restriction fragments using 16S rRNA gene pyrosequencing data

    Directory of Open Access Journals (Sweden)

    Weissbrodt David G

    2012-12-01

    Full Text Available Abstract Background In molecular microbial ecology, massive sequencing is gradually replacing classical fingerprinting techniques such as terminal-restriction fragment length polymorphism (T-RFLP combined with cloning-sequencing for the characterization of microbiomes. Here, a bioinformatics methodology for pyrosequencing-based T-RF identification (PyroTRF-ID was developed to combine pyrosequencing and T-RFLP approaches for the description of microbial communities. The strength of this methodology relies on the identification of T-RFs by comparison of experimental and digital T-RFLP profiles obtained from the same samples. DNA extracts were subjected to amplification of the 16S rRNA gene pool, T-RFLP with the HaeIII restriction enzyme, 454 tag encoded FLX amplicon pyrosequencing, and PyroTRF-ID analysis. Digital T-RFLP profiles were generated from the denoised full pyrosequencing datasets, and the sequences contributing to each digital T-RF were classified to taxonomic bins using the Greengenes reference database. The method was tested both on bacterial communities found in chloroethene-contaminated groundwater samples and in aerobic granular sludge biofilms originating from wastewater treatment systems. Results PyroTRF-ID was efficient for high-throughput mapping and digital T-RFLP profiling of pyrosequencing datasets. After denoising, a dataset comprising ca. 10′000 reads of 300 to 500 bp was typically processed within ca. 20 minutes on a high-performance computing cluster, running on a Linux-related CentOS 5.5 operating system, enabling parallel processing of multiple samples. Both digital and experimental T-RFLP profiles were aligned with maximum cross-correlation coefficients of 0.71 and 0.92 for high- and low-complexity environments, respectively. On average, 63±18% of all experimental T-RFs (30 to 93 peaks per sample were affiliated to phylotypes. Conclusions PyroTRF-ID profits from complementary advantages of pyrosequencing and T

  9. Metagenomic data of fungal internal transcribed Spacer and 18S rRNA gene sequences from Lonar lake sediment, India.

    Science.gov (United States)

    Dudhagara, Pravin; Ghelani, Anjana; Bhavsar, Sunil; Bhatt, Shreyas

    2015-09-01

    The data in this article contains the sequences of fungal Internal Transcribed Spacer (ITS) and 18S rRNA gene from a metagenome of Lonar soda lake, India. Sequences were amplified using fungal specific primers, which amplified the amplicon lined between the 18S and 28S rRNA genes. Data were obtained using Fungal tag-encoded FLX amplicon pyrosequencing (fTEFAP) technique and used to analyze fungal profile by the culture-independent method. Primary analysis using PlutoF 454 pipeline suggests the Lonar lake mycobiome contained the 29 different fungal species. The raw sequencing data used to perform this analysis along with FASTQ file are located in the NCBI Sequence Read Archive (SRA) under accession No. SRX889598 (http://www.ncbi.nlm.nih.gov/sra/SRX889598).

  10. Bacterial Translocation and Change in Intestinal Permeability in Patients after Abdominal Surgery

    Institute of Scientific and Technical Information of China (English)

    Zhi QIAO; Zhanliang LI; Jiye LI; Lianrong LU; Yi LV; Junyou LI

    2009-01-01

    sely related with bacterial translocation. Intestinal bacterial translocation (most commonly E. coli) might occur at early stage (2 h) after ab-dominal surgery. Postoperative SIRS and infection might bear a close relationship with bacterial translocation.

  11. DMPD: Structural and functional analyses of bacterial lipopolysaccharides. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 12106784 Structural and functional analyses of bacterial lipopolysaccharides. Carof...html) (.csml) Show Structural and functional analyses of bacterial lipopolysaccharides. PubmedID 12106784 Title Structural and functi...onal analyses of bacterial lipopolysaccharides. Authors

  12. Community structure of actively growing bacterial populations in plant pathogen suppressive soil

    NARCIS (Netherlands)

    Hjort, K.; Lembke, A.; Speksnijder, A.G.C.L.; Smalla, K.; Jansson, J.K.

    2007-01-01

    The bacterial community in soil was screened by using various molecular approaches for bacterial populations that were activated upon addition of different supplements. Plasmodiophora brassicae spores, chitin, sodium acetate, and cabbage plants were added to activate specific bacterial populations a

  13. Bacterial Multidrug Efflux Pumps: Much More Than Antibiotic Resistance Determinants

    Directory of Open Access Journals (Sweden)

    Paula Blanco

    2016-02-01

    Full Text Available Bacterial multidrug efflux pumps are antibiotic resistance determinants present in all microorganisms. With few exceptions, they are chromosomally encoded and present a conserved organization both at the genetic and at the protein levels. In addition, most, if not all, strains of a given bacterial species present the same chromosomally-encoded efflux pumps. Altogether this indicates that multidrug efflux pumps are ancient elements encoded in bacterial genomes long before the recent use of antibiotics for human and animal therapy. In this regard, it is worth mentioning that efflux pumps can extrude a wide range of substrates that include, besides antibiotics, heavy metals, organic pollutants, plant-produced compounds, quorum sensing signals or bacterial metabolites, among others. In the current review, we present information on the different functions that multidrug efflux pumps may have for the bacterial behaviour in different habitats as well as on their regulation by specific signals. Since, in addition to their function in non-clinical ecosystems, multidrug efflux pumps contribute to intrinsic, acquired, and phenotypic resistance of bacterial pathogens, the review also presents information on the search for inhibitors of multidrug efflux pumps, which are currently under development, in the aim of increasing the susceptibility of bacterial pathogens to antibiotics.

  14. Cerebrospinal fluid ferritin in children with viral and bacterial meningitis.

    Science.gov (United States)

    Rezaei, M; Mamishi, S; Mahmoudi, S; Pourakbari, B; Khotaei, G; Daneshjou, K; Hashemi, N

    2013-01-01

    Despite the fact that the prognosis of bacterial meningitis has been improved by the influence of antibiotics, this disease is still one of the significant causes of morbidity and mortality in children. Rapid differentiation between bacterial and aseptic meningitis, and the need for immediate antibiotic treatment in the former, is crucial in the prognosis of these patients. Ferritin is one of the most sensitive biochemical markers investigated in cerebrospinal fluid (CSF) for the early diagnosis of bacterial meningitis. The present study aims to evaluate the diagnostic capability of CSF ferritin in differentiating bacterial and viral meningitis in the paediatric setting. A cross-sectional study was carried out in the referral Children's Medical Center Hospital, Tehran, during 2008 and 2009. According to the inclusion criteria, CSF samples from 42 patients with suspected meningitis were obtained and divided into two meningitis groups, bacterial (n = 18) and viral (n = 24). Ferritin and other routine determinants (i.e., leucocytes, protein and glucose) were compared between the two groups. Ferritin concentration in the bacterial meningitis group was 106.39 +/- 86.96 ng/dL, which was considerably higher than in the viral meningitis group (10.17 +/- 14.09, P meningitis group and showed a positive correlation with CSF ferritin. In conclusion, this study suggests that CSF ferritin concentration is an accurate test for the early differentiation of bacterial and aseptic meningitis; however, further investigation on a larger cohort of patients is required to confirm this finding.

  15. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments

    Directory of Open Access Journals (Sweden)

    Lidianne L. Rocha

    2016-01-01

    Full Text Available We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1 to habitats covered by Avicennia schaueriana (S2 and Rhizophora mangle (S3. Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole.

  16. Bacterial selection by mycospheres of Atlantic Rainforest mushrooms.

    Science.gov (United States)

    Halsey, Joshua Andrew; de Cássia Pereira E Silva, Michele; Andreote, Fernando Dini

    2016-10-01

    This study focuses on the selection exerted on bacterial communities in the mycospheres of mushrooms collected in the Brazilian Atlantic Rainforest. A total of 24 paired samples (bulk soil vs. mycosphere) were assessed to investigate potential interactions between fungi and bacteria present in fungal mycospheres. Prevalent fungal families were identified as Marasmiaceae and Lepiotaceae (both Basidiomycota) based on ITS partial sequencing. We used culture-independent techniques to analyze bacterial DNA from soil and mycosphere samples. Bacterial communities in the samples were distinguished based on overall bacterial, alphaproteobacterial, and betaproteobacterial PCR-DGGE patterns, which were different in fungi belonging to different taxa. These results were confirmed by pyrosequencing the V4 region of the 16S rRNA gene (based on five bulk soil vs. mycosphere pairs), which revealed the most responsive bacterial families in the different conditions generated beneath the mushrooms, identified as Bradyrhizobiaceae, Burkholderiaceae, and Pseudomonadaceae. The bacterial families Acetobacteraceae, Chrhoniobacteraceae, Planctomycetaceae, Conexibacteraceae, and Burkholderiaceae were found in all mycosphere samples, composing the core mycosphere microbiome. Similarly, some bacterial groups identified as Koribacteriaceae, Acidobacteria (Solibacteriaceae) and an unclassified group of Acidobacteria were preferentially present in the bulk soil samples (found in all of them). In this study we depict the mycosphere effect exerted by mushrooms inhabiting the Brazilian Atlantic Rainforest, and identify the bacteria with highest response to such a specific niche, possibly indicating the role bacteria play in mushroom development and dissemination within this yet-unexplored environment. PMID:27411813

  17. Bacterial adaptation to the gut environment favors successful colonization

    Science.gov (United States)

    Rezzonico, Enea; Mestdagh, Renaud; Delley, Michèle; Combremont, Séverine; Dumas, Marc-Emmanuel; Holmes, Elaine; Nicholson, Jeremy; Bibiloni, Rodrigo

    2011-01-01

    Rodent models harboring a simple yet functional human intestinal microbiota provide a valuable tool to study the relationships between mammals and their bacterial inhabitants. In this study, we aimed to develop a simplified gnotobiotic mouse model containing 10 easy-to-grow bacteria, readily available from culture repositories, and of known genome sequence, that overall reflect the dominant commensal bacterial makeup found in adult human feces. We observed that merely inoculating a mix of fresh bacterial cultures into ex-germ free mice did not guarantee a successful intestinal colonization of the entire bacterial set, as mice inoculated simultaneously with all strains only harbored 3 after 21 d. Therefore, several inoculation procedures were tested and levels of individual strains were quantified using molecular tools. Best results were obtained by inoculating single bacterial strains into individual animals followed by an interval of two weeks before allowing the animals to socialize to exchange their commensal microbes. Through this procedure, animals were colonized with almost the complete bacterial set (9/10). Differences in the intestinal composition were also reflected in the urine and plasma metabolic profiles, where changes in lipids, SCFA, and amino acids were observed. We conclude that adaptation of bacterial strains to the host’s gut environment (mono-colonization) may predict a successful establishment of a more complex microbiota in rodents. PMID:22157236

  18. Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica

    Directory of Open Access Journals (Sweden)

    Neus eGarcias-Bonet

    2012-09-01

    Full Text Available Bacterial endophytes are crucial for the survival of many terrestrial plants, but little is known about the presence and importance of bacterial endophytes of marine plants. We conducted a survey of the endophytic bacterial community of the long-living Mediterranean marine angiosperm Posidonia oceanica in surface-sterilized tissues (roots, rhizomes and leaves by DGGE. A total of 26 Posidonia oceanica meadows around the Balearic Islands were sampled, and the band patterns obtained for each meadow were compared for the three sampled tissues. Endophytic bacterial sequences were detected in most of the samples analyzed. A total of 34 OTUs (Operational Taxonomic Units were detected. The main OTUs of endophytic bacteria present in P. oceanica tissues belonged primarily to Proteobacteria (α, γ and δ subclasses and Bacteroidetes. The OTUs found in roots significantly differed from those of rhizomes and leaves. Moreover, some OTUs were found to be associated to each type of tissue. Bipartite network analysis revealed differences in the bacterial endophyte communities present on different islands. The results of this study provide a pioneering step toward the characterization of the endophytic bacterial community associated with tissues of a marine angiosperm and reveal the presence of bacterial endophytes that differed among locations and tissue types.

  19. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm

    Science.gov (United States)

    Mellouk, Nora; Enninga, Jost

    2016-01-01

    Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it. PMID:27092296

  20. Distinct Habitats Select Particular Bacterial Communities in Mangrove Sediments.

    Science.gov (United States)

    Rocha, Lidianne L; Colares, Geórgia B; Nogueira, Vanessa L R; Paes, Fernanda A; Melo, Vânia M M

    2016-01-01

    We investigated the relationship among environmental variables, composition, and structure of bacterial communities in different habitats in a mangrove located nearby to an oil exploitation area, aiming to retrieve the natural pattern of bacterial communities in this ecosystem. The T-RFLP analysis showed a high diversity of bacterial populations and an increase in the bacterial richness from habitats closer to the sea and without vegetation (S1) to habitats covered by Avicennia schaueriana (S2) and Rhizophora mangle (S3). Environmental variables in S1 and S2 were more similar than in S3; however, when comparing the bacterial compositions, S2 and S3 shared more OTUs between them, suggesting that the presence of vegetation is an important factor in shaping these bacterial communities. In silico analyses of the fragments revealed a high diversity of the class Gammaproteobacteria in the 3 sites, although in general they presented quite different bacterial composition, which is probably shaped by the specificities of each habitat. This study shows that microhabitats inside of a mangrove ecosystem harbor diverse and distinct microbiota, reinforcing the need to conserve these ecosystems as a whole. PMID:26989418

  1. Mechanisms of bacterially catalyzed reductive dehalogenation

    Energy Technology Data Exchange (ETDEWEB)

    Picardal, F.W.

    1992-12-31

    Nine bacteria were tested for the ability to dehalogenate tetrachloromethane (CT), tetrachloroethene (PCE), and 1, 1, 1-trichloroethane (TCA) under anaerobic conditions. Three bacteria were able to reductively dehalogenate CT. Dehalogenation ability was not readily linked to a common metabolism or changes in culture redox potential. None of the bacteria tested were able to dehalogenate PCE or TCA. One of the bacteria capable of dehalogenating CT, Shewanella putrefaciens, was chosen as a model organism to study mechanisms of bacterially catalyzed reductive dehalogenation. The effect of a variety of alternate electron acceptors on CT dehalogenation ability by S. putrefaciens was determined. oxygen and nitrogen oxides were inhibitory but Fe (III), trimethylamine oxide, and fumarate were not. A model of the electron transport chain of S. putrefaciens was developed to explain inhibition patterns. A period of microaerobic growth prior to CT exposure increased the ability of S. putrefaciens to dehalogenate CT. A microaerobic growth period also increased cytochrome concentrations. A relationship between cytochrome content and dehalogenation ability was developed from studies in which cytochrome concentrations in S. putrefaciens were manipulated by changing growth conditions. Stoichiometry studies using {sup 14}C-CT suggested that CT was first reduced to form a trichloromethyl radical. Reduction of the radical to produce chloroform and reaction of the radical with cellular biochemicals explained observed product distributions. Carbon dioxide or other fully dehalogenated products were not found.

  2. Host-pathogen interactions in bacterial meningitis.

    Science.gov (United States)

    Doran, Kelly S; Fulde, Marcus; Gratz, Nina; Kim, Brandon J; Nau, Roland; Prasadarao, Nemani; Schubert-Unkmeir, Alexandra; Tuomanen, Elaine I; Valentin-Weigand, Peter

    2016-02-01

    Bacterial meningitis is a devastating disease occurring worldwide with up to half of the survivors left with permanent neurological sequelae. Due to intrinsic properties of the meningeal pathogens and the host responses they induce, infection can cause relatively specific lesions and clinical syndromes that result from interference with the function of the affected nervous system tissue. Pathogenesis is based on complex host-pathogen interactions, some of which are specific for certain bacteria, whereas others are shared among different pathogens. In this review, we summarize the recent progress made in understanding the molecular and cellular events involved in these interactions. We focus on selected major pathogens, Streptococcus pneumonia, S. agalactiae (Group B Streptococcus), Neisseria meningitidis, and Escherichia coli K1, and also include a neglected zoonotic pathogen, Streptococcus suis. These neuroinvasive pathogens represent common themes of host-pathogen interactions, such as colonization and invasion of mucosal barriers, survival in the blood stream, entry into the central nervous system by translocation of the blood-brain and blood-cerebrospinal fluid barrier, and induction of meningeal inflammation, affecting pia mater, the arachnoid and subarachnoid spaces. PMID:26744349

  3. Structure of bacterial respiratory complex I.

    Science.gov (United States)

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt. PMID:26807915

  4. Structure of bacterial respiratory complex I.

    Science.gov (United States)

    Berrisford, John M; Baradaran, Rozbeh; Sazanov, Leonid A

    2016-07-01

    Complex I (NADH:ubiquinone oxidoreductase) plays a central role in cellular energy production, coupling electron transfer between NADH and quinone to proton translocation. It is the largest protein assembly of respiratory chains and one of the most elaborate redox membrane proteins known. Bacterial enzyme is about half the size of mitochondrial and thus provides its important "minimal" model. Dysfunction of mitochondrial complex I is implicated in many human neurodegenerative diseases. The L-shaped complex consists of a hydrophilic arm, where electron transfer occurs, and a membrane arm, where proton translocation takes place. We have solved the crystal structures of the hydrophilic domain of complex I from Thermus thermophilus, the membrane domain from Escherichia coli and recently of the intact, entire complex I from T. thermophilus (536 kDa, 16 subunits, 9 iron-sulphur clusters, 64 transmembrane helices). The 95Å long electron transfer pathway through the enzyme proceeds from the primary electron acceptor flavin mononucleotide through seven conserved Fe-S clusters to the unusual elongated quinone-binding site at the interface with the membrane domain. Four putative proton translocation channels are found in the membrane domain, all linked by the central flexible axis containing charged residues. The redox energy of electron transfer is coupled to proton translocation by the as yet undefined mechanism proposed to involve long-range conformational changes. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  5. Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins

    Directory of Open Access Journals (Sweden)

    Gayani N. P. Dedduwa-Mudalige

    2015-09-01

    Full Text Available Cisplatin is a clinically important chemotherapeutic agent known to target purine bases in nucleic acids. In addition to major deoxyribonucleic acid (DNA intrastrand cross-links, cisplatin also forms stable adducts with many types of ribonucleic acid (RNA including siRNA, spliceosomal RNAs, tRNA, and rRNA. All of these RNAs play vital roles in the cell, such as catalysis of protein synthesis by rRNA, and therefore serve as potential drug targets. This work focused on platination of two highly conserved RNA hairpins from E. coli ribosomes, namely pseudouridine-modified helix 69 from 23S rRNA and the 790 loop of helix 24 from 16S rRNA. RNase T1 probing, MALDI mass spectrometry, and dimethyl sulfate mapping revealed platination at GpG sites. Chemical probing results also showed platination-induced RNA structural changes. These findings reveal solvent and structural accessibility of sites within bacterial RNA secondary structures that are functionally significant and therefore viable targets for cisplatin as well as other classes of small molecules. Identifying target preferences at the nucleotide level, as well as determining cisplatin-induced RNA conformational changes, is important for the design of more potent drug molecules. Furthermore, the knowledge gained through studies of RNA-targeting by cisplatin is applicable to a broad range of organisms from bacteria to human.

  6. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides. PMID:26837064

  7. Plaque fluid as a bacterial milieu.

    Science.gov (United States)

    Edgar, W M; Higham, S M

    1990-06-01

    Studies of the extracellular, free concentrations of substrates, growth factors, inhibitors, and end-products of metabolism to which the intact plaque microflora is exposed in situ can assist in the understanding of factors controlling plaque pathogenicity. Information is becoming increasingly available from analysis of fluid separated by centrifugation of plaques collected at various intervals after an intra-oral pulse of dietary or experimental substrate, or different procedures or treatments having cariostatic potential. Such analytical results give more information than those obtained by analysis of aqueous or other extracts, because they yield values of substrate concentration representing those occurring at the bacterial cell surface. The largest body of information concerns extracellular levels of acid end-products of sugar catabolism in relation to food quality or sequence, and of amino acids and other products of nitrogen metabolism, in relation to studies of the detailed metabolic events of the Stephan curve, and of the demineralizing effect of the plaque environment. Areas where little information is available and which merit further study include plaque clearance of salivary and other components with anti-caries activity (e.g., antibodies, enzymes, fluorides, cations, other antimicrobials, etc.), and substrate concentrations to determine gradients for diffusion into and out of plaque. PMID:2191982

  8. Enzymatic and bacterial conversions during sourdough fermentation.

    Science.gov (United States)

    Gänzle, Michael G

    2014-02-01

    Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds.

  9. Bacterial translocation - impact on the adipocyte compartment.

    Science.gov (United States)

    Kruis, Tassilo; Batra, Arvind; Siegmund, Britta

    2014-01-01

    Over the last decade it became broadly recognized that adipokines and thus the fat tissue compartment exert a regulatory function on the immune system. Our own group described the pro-inflammatory function of the adipokine leptin within intestinal inflammation in a variety of animal models. Following-up on this initial work, the aim was to reveal stimuli and mechanisms involved in the activation of the fat tissue compartment and the subsequent release of adipokines and other mediators paralleled by the infiltration of immune cells. This review will summarize the current literature on the possible role of the mesenteric fat tissue in intestinal inflammation with a focus on Crohn's disease (CD). CD is of particular interest in this context since the transmural intestinal inflammation has been associated with a characteristic hypertrophy of the mesenteric fat, a phenomenon called "creeping fat." The review will address three consecutive questions: (i) What is inducing adipocyte activation, (ii) which factors are released after activation and what are the consequences for the local fat tissue compartment and infiltrating cells; (iii) do the answers generated before allow for an explanation of the role of the mesenteric fat tissue within intestinal inflammation? With this review we will provide a working model indicating a close interaction in between bacterial translocation, activation of the adipocytes, and subsequent direction of the infiltrating immune cells. In summary, the models system mesenteric fat indicates a unique way how adipocytes can directly interact with the immune system.

  10. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  11. Enzymatic and bacterial conversions during sourdough fermentation.

    Science.gov (United States)

    Gänzle, Michael G

    2014-02-01

    Enzymatic and microbial conversion of flour components during bread making determines bread quality. Metabolism of sourdough microbiota and the activity of cereal enzymes are interdependent. Acidification, oxygen consumption, and thiols accumulation by microbial metabolism modulate the activity of cereal enzymes. In turn, cereal enzymes provide substrates for bacterial growth. This review highlights the role of cereal enzymes and the metabolism of lactic acid bacteria in conversion of carbohydrates, proteins, phenolic compounds and lipids. Heterofermentative lactic acid bacteria prevailing in wheat and rye sourdoughs preferentially metabolise sucrose and maltose; the latter is released by cereal enzymes during fermentation. Sucrose supports formation of acetate by heterofermentative lactobacilli, and the formation of exopolysaccharides. The release of maltose and glucose by cereal enzymes during fermentation determines the exopolysaccharide yield in sourdough fermentations. Proteolysis is dependent on cereal proteases. Peptidase activities of sourdough lactic acid bacteria determine the accumulation of (bioactive) peptides, amino acids, and amino acid metabolites in dough and bread. Enzymatic conversion and microbial metabolism of phenolic compounds is relevant in sorghum and millet containing high levels of phenolic compounds. The presence of phenolic compounds with antimicrobial activity in sorghum selects for fermentation microbiota that are resistant to the phenolic compounds. PMID:24230468

  12. Metabolic Responses of Bacterial Cells to Immobilization

    Directory of Open Access Journals (Sweden)

    Joanna Żur

    2016-07-01

    Full Text Available In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability.

  13. Fluorescent sensors based on bacterial fusion proteins

    Science.gov (United States)

    Prats Mateu, Batirtze; Kainz, Birgit; Pum, Dietmar; Sleytr, Uwe B.; Toca-Herrera, José L.

    2014-06-01

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins.

  14. [Bacterial identification methods in the microbiology laboratory].

    Science.gov (United States)

    Bou, Germán; Fernández-Olmos, Ana; García, Celia; Sáez-Nieto, Juan Antonio; Valdezate, Sylvia

    2011-10-01

    In order to identify the agent responsible of the infectious process and understanding the pathogenic/pathological implications, clinical course, and to implement an effective antimicrobial therapy, a mainstay in the practice of clinical microbiology is the allocation of species to a microbial isolation. In daily routine practice microbiology laboratory phenotypic techniques are applied to achieve this goal. However, they have some limitations that are seen more clearly for some kinds of microorganism. Molecular methods can circumvent some of these limitations, although its implementation is not universal. This is due to higher costs and the level of expertise required for thei implementation, so molecular methods are often centralized in reference laboratories and centers. Recently, proteomics-based methods made an important breakthrough in the field of diagnostic microbiology and will undoubtedly have a major impact on the future organization of the microbiology services. This paper is a short review of the most noteworthy aspects of the three bacterial identification methods described above used in microbiology laboratories.

  15. Bacterial Nanowires: Is the Subsurface Hardwired?

    Science.gov (United States)

    Gorby, Y. A.; Davis, C. A.; Atekwana, E.

    2006-05-01

    Bacteria, ranging from oxygenic photosynthetic cyanobacteria to heterotrophic sulfate reducing bacteria, produce electrically-conductive appendages referred to as bacterial nanowires. Dissimilatory metal reducing bacteria, including Shewanella oneidensis and Geobacter sulfurreducens, produce electrically conductive nanowires in direct response to electron acceptor limitation and facilitate electron transfer to solid phase iron oxides. Nanowires produced by S. oneidensis strain MR-1, which served as our primary model organism, are functionalized by decaheme cytochromes MtrC and OmcA that are distributed along the length of the nanowires. Mutants deficient in MtrC and OmcA produce nanowires that were poorly conductive. These mutants also differ from wild type cells in their ability to reduce solid phase iron oxides, to produce electrical current in a mediator less microbial fuel cell, and to form complex biofilms at air liquid interfaces. Recent results obtained using direct cell counts and low frequency electrical measurements demonstrate that microbial growth correlated with real and imaginary electrical conductivity response in uncoated silica sand columns. Direct observation of packing material with environmental scanning electron microscopy (ESEM) revealed a fine network of extracellular structures that were morphologically similar to nanowires observed in metal reducing bacteria. No such structures were observed in control columns. We hypothesize that microbial nanowires may in part be responsible for the electrical response observed in the biostimulated columns.

  16. Novel mechanisms power bacterial gliding motility.

    Science.gov (United States)

    Nan, Beiyan; Zusman, David R

    2016-07-01

    For many bacteria, motility is essential for survival, growth, virulence, biofilm formation and intra/interspecies interactions. Since natural environments differ, bacteria have evolved remarkable motility systems to adapt, including swimming in aqueous media, and swarming, twitching and gliding on solid and semi-solid surfaces. Although tremendous advances have been achieved in understanding swimming and swarming motilities powered by flagella, and twitching motility powered by Type IV pili, little is known about gliding motility. Bacterial gliders are a heterogeneous group containing diverse bacteria that utilize surface motilities that do not depend on traditional flagella or pili, but are powered by mechanisms that are less well understood. Recently, advances in our understanding of the molecular machineries for several gliding bacteria revealed the roles of modified ion channels, secretion systems and unique machinery for surface movements. These novel mechanisms provide rich source materials for studying the function and evolution of complex microbial nanomachines. In this review, we summarize recent findings made on the gliding mechanisms of the myxobacteria, flavobacteria and mycoplasmas. PMID:27028358

  17. Diversity rankings among bacterial lineages in soil.

    Science.gov (United States)

    Youssef, Noha H; Elshahed, Mostafa S

    2009-03-01

    We used rarefaction curve analysis and diversity ordering-based approaches to rank the 11 most frequently encountered bacterial lineages in soil according to diversity in 5 previously reported 16S rRNA gene clone libraries derived from agricultural, undisturbed tall grass prairie and forest soils (n=26,140, 28 328, 31 818, 13 001 and 53 533). The Planctomycetes, Firmicutes and the delta-Proteobacteria were consistently ranked among the most diverse lineages in all data sets, whereas the Verrucomicrobia, Gemmatimonadetes and beta-Proteobacteria were consistently ranked among the least diverse. On the other hand, the rankings of alpha-Proteobacteria, Acidobacteria, Actinobacteria, Bacteroidetes and Chloroflexi varied widely in different soil clone libraries. In general, lineages exhibiting largest differences in diversity rankings also exhibited the largest difference in relative abundance in the data sets examined. Within these lineages, a positive correlation between relative abundance and diversity was observed within the Acidobacteria, Actinobacteria and Chloroflexi, and a negative diversity-abundance correlation was observed within the Bacteroidetes. The ecological and evolutionary implications of these results are discussed. PMID:18987677

  18. Dinosaurian soft tissues interpreted as bacterial biofilms.

    Directory of Open Access Journals (Sweden)

    Thomas G Kaye

    Full Text Available A scanning electron microscope survey was initiated to determine if the previously reported findings of "dinosaurian soft tissues" could be identified in situ within the bones. The results obtained allowed a reinterpretation of the formation and preservation of several types of these "tissues" and their content. Mineralized and non-mineralized coatings were found extensively in the porous trabecular bone of a variety of dinosaur and mammal species across time. They represent bacterial biofilms common throughout nature. Biofilms form endocasts and once dissolved out of the bone, mimic real blood vessels and osteocytes. Bridged trails observed in biofilms indicate that a previously viscous film was populated with swimming bacteria. Carbon dating of the film points to its relatively modern origin. A comparison of infrared spectra of modern biofilms with modern collagen and fossil bone coatings suggests that modern biofilms share a closer molecular make-up than modern collagen to the coatings from fossil bones. Blood cell size iron-oxygen spheres found in the vessels were identified as an oxidized form of formerly pyritic framboids. Our observations appeal to a more conservative explanation for the structures found preserved in fossil bone.

  19. Bacterial oxidation activity in heap leaching

    Institute of Scientific and Technical Information of China (English)

    柳建设; 夏海波; 王兆慧; 胡岳华

    2004-01-01

    Bioleaching of sulfide minerals by bacteria, mainly Thiobacillus ferrooxidans (T. f. ) and Thiobacillus thiooxidans, plays an important role in hydrometallurgy because of its economic and environmental attractions. The surveys of production process and the bacterial oxidation activity in the heap bioleaching were investigated. The results show that pH value is high, bacteria biomass and ferric concentration are low, generation time (above 7.13 h)is long in leachate, and less bacteria are adsorbed on the ores. The bacteria in the leachate exposing on the surface and connecting with mineral, have much faster oxidation rate of Fe( Ⅱ ) and shorter generation time, compared with those which are in the reservoir for a long time. There is diversity for oxidation activity of Fe( Ⅱ ), while there is no diversity for oxidation of sulfur. So it is advisable to add sulfuric acid to degrade pH value to 2.0, add nutrients and shorten recycling time of leachate, so as to enhance bacteria concentration of leachate and the leaching efficiency.

  20. Metabolic Responses of Bacterial Cells to Immobilization.

    Science.gov (United States)

    Żur, Joanna; Wojcieszyńska, Danuta; Guzik, Urszula

    2016-01-01

    In recent years immobilized cells have commonly been used for various biotechnological applications, e.g., antibiotic production, soil bioremediation, biodegradation and biotransformation of xenobiotics in wastewater treatment plants. Although the literature data on the physiological changes and behaviour of cells in the immobilized state remain fragmentary, it is well documented that in natural settings microorganisms are mainly found in association with surfaces, which results in biofilm formation. Biofilms are characterized by genetic and physiological heterogeneity and the occurrence of altered microenvironments within the matrix. Microbial cells in communities display a variety of metabolic differences as compared to their free-living counterparts. Immobilization of bacteria can occur either as a natural phenomenon or as an artificial process. The majority of changes observed in immobilized cells result from protection provided by the supports. Knowledge about the main physiological responses occurring in immobilized cells may contribute to improving the efficiency of immobilization techniques. This paper reviews the main metabolic changes exhibited by immobilized bacterial cells, including growth rate, biodegradation capabilities, biocatalytic efficiency and plasmid stability. PMID:27455220

  1. Fluorescent sensors based on bacterial fusion proteins

    International Nuclear Information System (INIS)

    Fluorescence proteins are widely used as markers for biomedical and technological purposes. Therefore, the aim of this project was to create a fluorescent sensor, based in the green and cyan fluorescent protein, using bacterial S-layers proteins as scaffold for the fluorescent tag. We report the cloning, expression and purification of three S-layer fluorescent proteins: SgsE-EGFP, SgsE-ECFP and SgsE-13aa-ECFP, this last containing a 13-amino acid rigid linker. The pH dependence of the fluorescence intensity of the S-layer fusion proteins, monitored by fluorescence spectroscopy, showed that the ECFP tag was more stable than EGFP. Furthermore, the fluorescent fusion proteins were reassembled on silica particles modified with cationic and anionic polyelectrolytes. Zeta potential measurements confirmed the particle coatings and indicated their colloidal stability. Flow cytometry and fluorescence microscopy showed that the fluorescence of the fusion proteins was pH dependent and sensitive to the underlying polyelectrolyte coating. This might suggest that the fluorescent tag is not completely exposed to the bulk media as an independent moiety. Finally, it was found out that viscosity enhanced the fluorescence intensity of the three fluorescent S-layer proteins. (paper)

  2. Biodegradation of chlorpyrifos by bacterial genus Pseudomonas.

    Science.gov (United States)

    Gilani, Razia Alam; Rafique, Mazhar; Rehman, Abdul; Munis, Muhammad Farooq Hussain; Rehman, Shafiq Ur; Chaudhary, Hassan Javed

    2016-02-01

    Chlorpyrifos is an organophosphorus pesticide commonly used in agriculture. It is noxious to a variety of organisms that include living soil biota along with beneficial arthropods, fish, birds, humans, animals, and plants. Exposure to chlorpyrifos may cause detrimental effects as delayed seedling emergence, fruit deformities, and abnormal cell division. Contamination of chlorpyrifos has been found about 24 km from the site of its application. There are many physico-chemical and biological approaches to remove organophosphorus pesticides from the ecosystem, among them most promising is biodegradation. The 3,5,6-trichloro-2-pyridinol (TCP) and diethylthiophosphate (DETP) as primary products are made when chlorpyrifos is degraded by soil microorganisms which further break into nontoxic metabolites as CO(2), H(2)O, and NH(3). Pseudomonas is a diversified genus possessing a series of catabolic pathways and enzymes involved in pesticide degradation. Pseudomonas putida MAS-1 is reported to be more efficient in chlorpyrifos degradation by a rate of 90% in 24 h among Pseudomonas genus. The current review analyzed the comparative potential of bacterial species in Pseudomonas genus for degradation of chlorpyrifos thus, expressing an ecofriendly approach for the treatment of environmental contaminants like pesticides.

  3. Tracking bacterial virulence: global modulators as indicators

    Science.gov (United States)

    Prieto, Alejandro; Urcola, Imanol; Blanco, Jorge; Dahbi, Ghizlane; Muniesa, Maite; Quirós, Pablo; Falgenhauer, Linda; Chakraborty, Trinad; Hüttener, Mário; Juárez, Antonio

    2016-01-01

    The genomes of Gram-negative bacteria encode paralogues and/or orthologues of global modulators. The nucleoid-associated H-NS and Hha proteins are an example: several enterobacteria such as Escherichia coli or Salmonella harbor H-NS, Hha and their corresponding paralogues, StpA and YdgT proteins, respectively. Remarkably, the genome of the pathogenic enteroaggregative E. coli strain 042 encodes, in addition to the hha and ydgT genes, two additional hha paralogues, hha2 and hha3. We show in this report that there exists a strong correlation between the presence of these paralogues and the virulence phenotype of several E. coli strains. hha2 and hha3 predominate in some groups of intestinal pathogenic E. coli strains (enteroaggregative and shiga toxin-producing isolates), as well as in the widely distributed extraintestinal ST131 isolates. Because of the relationship between the presence of hha2/hha3 and some virulence factors, we have been able to provide evidence for Hha2/Hha3 modulating the expression of the antigen 43 pathogenic determinants. We show that tracking global modulators or their paralogues/orthologues can be a new strategy to identify bacterial pathogenic clones and propose PCR amplification of hha2 and hha3 as a virulence indicator in environmental and clinical E. coli isolates. PMID:27169404

  4. BACTERIAL FLORA OF RAINBOW TROUT LARVAE AND FRY (ONCORHYNCHUS MYKISS

    Directory of Open Access Journals (Sweden)

    Damir Kapetanović

    2003-09-01

    Full Text Available There are no information in available literature about the structure of bacterial flora in rainbow trout larvae and fry in the first days of their lives. The objective of our work has been to follow bacteroflora between the third and the eighth week of their lives. During 35 days of experiment bacteroflora of rainbow trout has been examined, along with following physico–chemical characteristics of water quality as well as it’s influence on health. Samples for bacteriological examination were taken from gill, heart and kidney areas and innoculated on the plates. Bacterial colonies were examined macroscopically, slides with Gram staining, and afterwords biochemical tests were performed. For identification, APILAB Plus programme (bio Mérieux, France was used. Bacterial population of rainbow trout larvae and fry changed in dependence with their age. Physico–chemical characteristics of water ranged within optimal values. Most of bacterial colonies originated from gill isolates (64,4 %, than from heart (21,8 % and kidney areas (13,8 %. The bacterial flora of larvae in incubator was composed mostly of Gram–positive bacteria (75,1 %, genera: Renibacterium (25 %, Lactobacillus (16,7 %, Staphilococcus (16,7 % and Corynebacterium (16,7 %. The transfer of larvae from incubator into the pools resulted in reducing bacterial flora (–66,7 % after 45 minute stay in the pool. Gram–negative bacteria, which have been represented in larvae in incubator with low percent (24, 9 %, after the transfer of larvae to the pools became dominant and represented more than 95 % of rainbow trout larvae and fry bacterial flora. Flavobacterium, Acinetobacter and Yersinia were the predominant Gram–negative genera in larvae in incubator, whereas Aeromonas, Pseudomonas, Flavobacterium and Pasteurella were the main isolates from rainbow trout larvae and fry until the end of experiment. Bacterial flora of larvae in incubator mostly consists of Gram–positive bacteria

  5. Isolation of the bacterial causes of tonsillitis in dogs

    Directory of Open Access Journals (Sweden)

    B. Al-Mufti

    2014-06-01

    Full Text Available The study was performed to identify the bacterial causes of tonsillitis in dogs. Twelve clinical cases of dogs (5 males and 7 females of different ages and breeds were observed. Tonsils swabs were taken from all the dogs, then cultured on different agars and bacterial smears prepared from all cultures and Gram stains were done. The study confirmed that the most bacterial causes of tonsillitis in dogs were Escherichia coli, Staphylococcus aureus, Staphylococcus intermedius, Staphylococcus albus, Streptococcus pyogenes, Klebsiella spp. and Pasteurella spp.

  6. Bacterial microcompartments and the modular construction of microbial metabolism.

    Science.gov (United States)

    Kerfeld, Cheryl A; Erbilgin, Onur

    2015-01-01

    Bacterial microcompartments (BMCs) are protein-bound organelles predicted to be present across 23 bacterial phyla. BMCs facilitate carbon fixation as well as the aerobic and anaerobic catabolism of a variety of organic compounds. These functions have been linked to ecological nutrient cycling, symbiosis, pathogenesis, and cardiovascular disease. Within bacterial cells, BMCs are metabolic modules that can be further dissociated into their constituent structural and functional protein domains. Viewing BMCs as genetic, structural, functional, and evolutionary modules provides a framework for understanding both BMC-mediated metabolism and for adapting their architectures for applications in synthetic biology.

  7. The role of temperate bacteriophages in bacterial infection.

    Science.gov (United States)

    Davies, Emily V; Winstanley, Craig; Fothergill, Joanne L; James, Chloe E

    2016-03-01

    Bacteriophages are viruses that infect bacteria. There are an estimated 10(31) phage on the planet, making them the most abundant form of life. We are rapidly approaching the centenary of their identification, and yet still have only a limited understanding of their role in the ecology and evolution of bacterial populations. Temperate prophage carriage is often associated with increased bacterial virulence. The rise in use of technologies, such as genome sequencing and transcriptomics, has highlighted more subtle ways in which prophages contribute to pathogenicity. This review discusses the current knowledge of the multifaceted effects that phage can exert on their hosts and how this may contribute to bacterial adaptation during infection.

  8. Connecting the dots between bacterial biofilms and ice cream

    Science.gov (United States)

    Stanley-Wall, Nicola R.; MacPhee, Cait E.

    2015-12-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream.

  9. Bacterial Metabolism Shapes the Host-Pathogen Interface.

    Science.gov (United States)

    Passalacqua, Karla D; Charbonneau, Marie-Eve; O'Riordan, Mary X D

    2016-06-01

    Bacterial pathogens have evolved to exploit humans as a rich source of nutrients to support survival and replication. The pathways of bacterial metabolism that permit successful colonization are surprisingly varied and highlight remarkable metabolic flexibility. The constraints and immune pressures of distinct niches within the human body set the stage for understanding the mechanisms by which bacteria acquire critical nutrients. In this article we discuss how different bacterial pathogens carry out carbon and energy metabolism in the host and how they obtain or use key nutrients for replication and immune evasion. PMID:27337445

  10. Cellular reprogramming by gram-positive bacterial components: a review.

    LENUS (Irish Health Repository)

    Buckley, Julliette M

    2012-02-03

    LPS tolerance has been the focus of extensive scientific and clinical research over the last several decades in an attempt to elucidate the sequence of changes that occur at a molecular level in tolerized cells. Tolerance to components of gram-positive bacterial cell walls such as bacterial lipoprotein and lipoteichoic acid is a much lesser studied, although equally important, phenomenon. This review will focus on cellular reprogramming by gram-positive bacterial components and examines the alterations in cell surface receptor expression, changes in intracellular signaling, gene expression and cytokine production, and the phenomenon of cross-tolerance.

  11. The continuity of bacterial and physicochemical evolution: theory and experiments.

    Science.gov (United States)

    Spitzer, Jan

    2014-01-01

    The continuity of chemical and biological evolution, incorporating life's emergence, can be explored experimentally by energizing 'dead' bacterial biomacromolecules with nutrients under cycling physicochemical gradients. This approach arises from three evolutionary principles rooted in physical chemistry: (i) broken bacterial cells cannot spontaneously self-assemble into a living state without the supply of external energy - 2nd law of thermodynamics, (ii) the energy delivery must be cycling - the primary mechanism of chemical evolution at rotating planetary surfaces under solar irradiation, (iii) the cycling energy must act on chemical mixtures of high molecular diversity and crowding - provided by dead bacterial populations.

  12. Investigation of septins using infection by bacterial pathogens.

    Science.gov (United States)

    Krokowski, S; Mostowy, S

    2016-01-01

    Investigation of the host cytoskeleton during infection by bacterial pathogens has significantly contributed to our understanding of cell biology and host defense. Work has shown that septins are recruited to the phagocytic cup as collarlike structures and enable bacterial entry into host cells. In the cytosol, septins can entrap actin-polymerizing bacteria in cage-like structures for targeting to autophagy, a highly conserved intracellular degradation process. In this chapter, we describe methods to investigate septin assembly and function during infection by bacterial pathogens. Use of these methods can lead to in-depth understanding of septin biology and suggest therapeutic approaches to combat infectious disease.

  13. Connecting the dots between bacterial biofilms and ice cream.

    Science.gov (United States)

    Stanley-Wall, Nicola R; MacPhee, Cait E

    2015-01-01

    Emerging research is revealing a diverse array of interfacially-active proteins that are involved in varied biological process from foaming horse sweat to bacterial raincoat formation. We describe an interdisciplinary approach to study the molecular and biophysical mechanisms controlling the activity of an unusual bacterial protein called BslA. This protein is needed for biofilm formation and forms a protective layer or raincoat over the bacterial community, but also has a multitude of potential applications in multiphase formulations. Here we document our journey from fundamental research to an examination of the applications for this surface-active protein in ice cream. PMID:26685107

  14. Proton dynamics in bacterial spores, a neutron scattering investigation

    Directory of Open Access Journals (Sweden)

    Noue Alexandre Colas de la

    2015-01-01

    Full Text Available Results from first neutron scattering experiments on bacterial spores are reported. The elastic intensities and mean square displacements have a non-linear behaviour as function of temperature, which is in agreement with a model presenting more pronounced variations at around 330 K (57 ∘C and 400 K (127 ∘C. Based on the available literature on thermal properties of bacterial spores, mainly referring to differential scanning calorimetry, they are suggested to be associated to main endothermic transitions induced by coat and/or core bacterial response to heat treatment.

  15. Validation of hierarchical cluster analysis for identification of bacterial species using 42 bacterial isolates

    Science.gov (United States)

    Ghebremedhin, Meron; Yesupriya, Shubha; Luka, Janos; Crane, Nicole J.

    2015-03-01

    Recent studies have demonstrated the potential advantages of the use of Raman spectroscopy in the biomedical field due to its rapidity and noninvasive nature. In this study, Raman spectroscopy is applied as a method for differentiating between bacteria isolates for Gram status and Genus species. We created models for identifying 28 bacterial isolates using spectra collected with a 785 nm laser excitation Raman spectroscopic system. In order to investigate the groupings of these samples, partial least squares discriminant analysis (PLSDA) and hierarchical cluster analysis (HCA) was implemented. In addition, cluster analyses of the isolates were performed using various data types consisting of, biochemical tests, gene sequence alignment, high resolution melt (HRM) analysis and antimicrobial susceptibility tests of minimum inhibitory concentration (MIC) and degree of antimicrobial resistance (SIR). In order to evaluate the ability of these models to correctly classify bacterial isolates using solely Raman spectroscopic data, a set of 14 validation samples were tested using the PLSDA models and consequently the HCA models. External cluster evaluation criteria of purity and Rand index were calculated at different taxonomic levels to compare the performance of clustering using Raman spectra as well as the other datasets. Results showed that Raman spectra performed comparably, and in some cases better than, the other data types with Rand index and purity values up to 0.933 and 0.947, respectively. This study clearly demonstrates that the discrimination of bacterial species using Raman spectroscopic data and hierarchical cluster analysis is possible and has the potential to be a powerful point-of-care tool in clinical settings.

  16. Bacterial colonization of metallic surfaces exposed in marine environment. Use of bacterial lipids

    International Nuclear Information System (INIS)

    Addressing fouling and more particularly biofouling phenomena occurring notably on structures in marine environment, this research thesis first describes the fouling phenomenon (components, sequences of biofouling development, bio-film chemical composition). The author reports the study of the composition of the biological veil (microbiological methods, presentation of the different components), addresses the various types of lipids (bacterial markers and others). Then, after a presentation of the experimental equipment and methods (test cells, sample preparation, gas phase chromatography, hydrogenation and bromination, mass spectrometry), the author discusses the influence of different parameters such as the substrate type, speed, season, chlorination, and correlation with thermal transfer

  17. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    Science.gov (United States)

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs.

  18. QTLs for Resistance to Major Rice Diseases Exacerbated by Global Warming: Brown Spot, Bacterial Seedling Rot, and Bacterial Grain Rot.

    Science.gov (United States)

    Mizobuchi, Ritsuko; Fukuoka, Shuichi; Tsushima, Seiya; Yano, Masahiro; Sato, Hiroyuki

    2016-12-01

    In rice (Oryza sativa L.), damage from diseases such as brown spot, caused by Bipolaris oryzae, and bacterial seedling rot and bacterial grain rot, caused by Burkholderia glumae, has increased under global warming because the optimal temperature ranges for growth of these pathogens are relatively high (around 30 °C). Therefore, the need for cultivars carrying genes for resistance to these diseases is increasing to ensure sustainable rice production. In contrast to the situation for other important rice diseases such as blast and bacterial blight, no genes for complete resistance to brown spot, bacterial seedling rot or bacterial grain rot have yet been discovered. Thus, rice breeders have to use partial resistance, which is largely influenced by environmental conditions. Recent progress in molecular genetics and improvement of evaluation methods for disease resistance have facilitated detection of quantitative trait loci (QTLs) associated with resistance. In this review, we summarize the results of worldwide screening for cultivars with resistance to brown spot, bacterial seedling rot and bacterial grain rot and we discuss the identification of QTLs conferring resistance to these diseases in order to provide useful information for rice breeding programs. PMID:27178300

  19. One bacterial cell, one complete genome.

    Directory of Open Access Journals (Sweden)

    Tanja Woyke

    Full Text Available While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200-900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA. Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs, indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.

  20. One Bacterial Cell, One Complete Genome

    Energy Technology Data Exchange (ETDEWEB)

    Woyke, Tanja; Tighe, Damon; Mavrommatis, Konstantinos; Clum, Alicia; Copeland, Alex; Schackwitz, Wendy; Lapidus, Alla; Wu, Dongying; McCutcheon, John P.; McDonald, Bradon R.; Moran, Nancy A.; Bristow, James; Cheng, Jan-Fang

    2010-04-26

    While the bulk of the finished microbial genomes sequenced to date are derived from cultured bacterial and archaeal representatives, the vast majority of microorganisms elude current culturing attempts, severely limiting the ability to recover complete or even partial genomes from these environmental species. Single cell genomics is a novel culture-independent approach, which enables access to the genetic material of an individual cell. No single cell genome has to our knowledge been closed and finished to date. Here we report the completed genome from an uncultured single cell of Candidatus Sulcia muelleri DMIN. Digital PCR on single symbiont cells isolated from the bacteriome of the green sharpshooter Draeculacephala minerva bacteriome allowed us to assess that this bacteria is polyploid with genome copies ranging from approximately 200?900 per cell, making it a most suitable target for single cell finishing efforts. For single cell shotgun sequencing, an individual Sulcia cell was isolated and whole genome amplified by multiple displacement amplification (MDA). Sanger-based finishing methods allowed us to close the genome. To verify the correctness of our single cell genome and exclude MDA-derived artifacts, we independently shotgun sequenced and assembled the Sulcia genome from pooled bacteriomes using a metagenomic approach, yielding a nearly identical genome. Four variations we detected appear to be genuine biological differences between the two samples. Comparison of the single cell genome with bacteriome metagenomic sequence data detected two single nucleotide polymorphisms (SNPs), indicating extremely low genetic diversity within a Sulcia population. This study demonstrates the power of single cell genomics to generate a complete, high quality, non-composite reference genome within an environmental sample, which can be used for population genetic analyzes.